code
stringlengths 1
46.1k
⌀ | label
class label 1.18k
classes | domain_label
class label 21
classes | index
stringlengths 4
5
|
---|---|---|---|
function a(i)
print "Function a(i) called."
return i
end
function b(i)
print "Function b(i) called."
return i
end
i = true
x = a(i) and b(i); print ""
y = a(i) or b(i); print ""
i = false
x = a(i) and b(i); print ""
y = a(i) or b(i) | 284Short-circuit evaluation
| 1lua
| jcv71 |
import Data.Char (ord)
import Crypto.Hash.SHA256 (hash)
import Data.ByteString (unpack, pack)
import Text.Printf (printf)
main = putStrLn $
concatMap (printf "%02x") $
unpack $
hash $
pack $
map (fromIntegral.ord)
"Rosetta code" | 290SHA-256
| 8haskell
| 60x3k |
int count_divisors(int n) {
int i, count = 0;
for (i = 1; i * i <= n; ++i) {
if (!(n % i)) {
if (i == n / i)
count++;
else
count += 2;
}
}
return count;
}
int main() {
int i, next = 1;
printf(, MAX);
for (i = 1; next <= MAX; ++i) {
if (next == count_divisors(i)) {
printf(, i);
next++;
}
}
printf();
return 0;
} | 293Sequence: smallest number greater than previous term with exactly n divisors
| 5c
| 60a32 |
var str = 'Rosetta code';
puts(Util.hash(str, {type:'sha1'})); | 289SHA-1
| 9java
| rm6g0 |
require 'prime'
prime_array, sppair2, sppair3, sppair4, sppair5 = Array.new(5) {Array.new()}
unsexy, i, start = [2], 0, Time.now
Prime.each(1_000_100) {|prime| prime_array.push prime}
while prime_array[i] < 1_000_035
i+=1
unsexy.push(i) if prime_array[(i+1)..(i+2)].include?(prime_array[i]+6) == false && prime_array[(i-2)..(i-1)].include?(prime_array[i]-6) == false && prime_array[i]+6 < 1_000_035
prime_array[(i+1)..(i+4)].include?(prime_array[i]+6) && prime_array[i]+6 < 1_000_035? sppair2.push(i): next
prime_array[(i+2)..(i+5)].include?(prime_array[i]+12) && prime_array[i]+12 < 1_000_035? sppair3.push(i): next
prime_array[(i+3)..(i+6)].include?(prime_array[i]+18) && prime_array[i]+18 < 1_000_035? sppair4.push(i): next
prime_array[(i+4)..(i+7)].include?(prime_array[i]+24) && prime_array[i]+24 < 1_000_035? sppair5.push(i): next
end
puts
sppair2.last(5).each {|prime| print [prime_array[prime], prime_array[prime]+6].join(), }
puts
sppair3.last(5).each {|prime| print [prime_array[prime], prime_array[prime]+6, prime_array[prime]+12].join(), }
puts
sppair4.last(5).each {|prime| print [prime_array[prime], prime_array[prime]+6, prime_array[prime]+12, prime_array[prime]+18].join(), }
puts
sppair5.last(5).each {|prime| print [prime_array[prime], prime_array[prime]+6, prime_array[prime]+12, prime_array[prime]+18, prime_array[prime]+24].join(), }
puts
unsexy.last(10).each {|item| print prime_array[item], }
print , Time.now - start, | 286Sexy primes
| 14ruby
| cnd9k |
public static boolean inCarpet(long x, long y) {
while (x!=0 && y!=0) {
if (x % 3 == 1 && y % 3 == 1)
return false;
x /= 3;
y /= 3;
}
return true;
}
public static void carpet(final int n) {
final double power = Math.pow(3,n);
for(long i = 0; i < power; i++) {
for(long j = 0; j < power; j++) {
System.out.print(inCarpet(i, j) ? "*" : " ");
}
System.out.println();
}
} | 283Sierpinski carpet
| 9java
| hl5jm |
int smallPrimes[LIMIT];
static void sieve() {
int i = 2, j;
int p = 5;
smallPrimes[0] = 2;
smallPrimes[1] = 3;
while (i < LIMIT) {
for (j = 0; j < i; j++) {
if (smallPrimes[j] * smallPrimes[j] <= p) {
if (p % smallPrimes[j] == 0) {
p += 2;
break;
}
} else {
smallPrimes[i++] = p;
p += 2;
break;
}
}
}
}
static bool is_prime(uint64_t n) {
uint64_t i;
for (i = 0; i < LIMIT; i++) {
if (n % smallPrimes[i] == 0) {
return n == smallPrimes[i];
}
}
i = smallPrimes[LIMIT - 1] + 2;
for (; i * i <= n; i += 2) {
if (n % i == 0) {
return false;
}
}
return true;
}
static uint64_t divisor_count(uint64_t n) {
uint64_t count = 1;
uint64_t d;
while (n % 2 == 0) {
n /= 2;
count++;
}
for (d = 3; d * d <= n; d += 2) {
uint64_t q = n / d;
uint64_t r = n % d;
uint64_t dc = 0;
while (r == 0) {
dc += count;
n = q;
q = n / d;
r = n % d;
}
count += dc;
}
if (n != 1) {
return count *= 2;
}
return count;
}
static uint64_t OEISA073916(size_t n) {
uint64_t count = 0;
uint64_t result = 0;
size_t i;
if (is_prime(n)) {
return (uint64_t)pow(smallPrimes[n - 1], n - 1);
}
for (i = 1; count < n; i++) {
if (n % 2 == 1) {
uint64_t root = (uint64_t)sqrt(i);
if (root * root != i) {
continue;
}
}
if (divisor_count(i) == n) {
count++;
result = i;
}
}
return result;
}
int main() {
size_t n;
sieve();
for (n = 1; n <= LIMIT; n++) {
if (n == 13) {
printf(, n);
} else {
printf(, n, OEISA073916(n));
}
}
return 0;
} | 294Sequence: nth number with exactly n divisors
| 5c
| ldqcy |
typedef unsigned int bitset;
int consolidate(bitset *x, int len)
{
int i, j;
for (i = len - 2; i >= 0; i--)
for (j = len - 1; j > i; j--)
if (x[i] & x[j])
x[i] |= x[j], x[j] = x[--len];
return len;
}
void show_sets(bitset *x, int len)
{
bitset b;
while(len--) {
for (b = 'A'; b <= 'Z'; b++)
if (x[len] & s(b)) printf(, b);
putchar('\n');
}
}
int main(void)
{
bitset x[] = { s('A') | s('B'), s('C') | s('D'), s('B') | s('D'),
s('F') | s('G') | s('H'), s('H') | s('I') | s('K') };
int len = sizeof(x) / sizeof(x[0]);
puts(); show_sets(x, len);
puts(); show_sets(x, consolidate(x, len));
return 0;
} | 295Set consolidation
| 5c
| 79drg |
null | 289SHA-1
| 11kotlin
| vtd21 |
null | 286Sexy primes
| 15rust
| ldfcc |
object SexyPrimes {
def isPrime(n: Int): Boolean = ! ((2 until n-1) exists (n % _ == 0)) && n > 1
def getSexyPrimesPairs (primes : List[Int]) = {
primes
.map(n => if(primes.contains(n+6)) (n, n+6))
.filter(p => p != ())
.map{ case (a,b) => (a.toString.toInt, b.toString.toInt)}
}
def getSexyPrimesTriplets (primes : List[Int]) = {
primes
.map(n => if(
primes.contains(n+6) && primes.contains(n+12))
(n, n+6, n+12)
)
.filter(p => p != ())
.map{ case (a,b,c) => (a.toString.toInt, b.toString.toInt, c.toString.toInt)}
}
def getSexyPrimesQuadruplets (primes : List[Int]) = {
primes
.map(n => if(
primes.contains(n+6) && primes.contains(n+12) && primes.contains(n+18))
(n, n+6, n+12, n+18)
)
.filter(p => p != ())
.map{ case (a,b,c,d) => (a.toString.toInt, b.toString.toInt, c.toString.toInt, d.toString.toInt)}
}
def getSexyPrimesQuintuplets (primes : List[Int]) = {
primes
.map(n => if (
primes.contains(n+6) && primes.contains(n+12) && primes.contains(n+18) && primes.contains(n + 24))
(n, n + 6, n + 12, n + 18, n + 24)
)
.filter(p => p != ())
.map { case (a, b, c, d, e) => (a.toString.toInt, b.toString.toInt, c.toString.toInt, d.toString.toInt, e.toString.toInt) }
}
def removeOutsideSexyPrimes( l : List[Int], limit : Int) : List[Int] = {
l.filter(n => !isPrime(n+6) && n+6 < limit)
}
def main(args: Array[String]): Unit = {
val limit = 1000035
val l = List.range(1,limit)
val primes = l.filter( n => isPrime(n))
val sexyPairs = getSexyPrimesPairs(primes)
println("Number of sexy pairs: " + sexyPairs.size)
println("5 last sexy pairs: " + sexyPairs.takeRight(5))
val primes2 = sexyPairs.flatMap(t => List(t._1, t._2)).distinct.sorted
val sexyTriplets = getSexyPrimesTriplets(primes2)
println("Number of sexy triplets: " + sexyTriplets.size)
println("5 last sexy triplets: " + sexyTriplets.takeRight(5))
val primes3 = sexyTriplets.flatMap(t => List(t._1, t._2, t._3)).distinct.sorted
val sexyQuadruplets = getSexyPrimesQuadruplets(primes3)
println("Number of sexy quadruplets: " + sexyQuadruplets.size)
println("5 last sexy quadruplets: " + sexyQuadruplets.takeRight(5))
val primes4 = sexyQuadruplets.flatMap(t => List(t._1, t._2, t._3, t._4)).distinct.sorted
val sexyQuintuplets = getSexyPrimesQuintuplets(primes4)
println("Number of sexy quintuplets: " + sexyQuintuplets.size)
println("The last sexy quintuplet: " + sexyQuintuplets.takeRight(10))
val sexyPrimes = primes2.toSet
val unsexyPrimes = removeOutsideSexyPrimes( primes.toSet.diff((sexyPrimes)).toList.sorted, limit)
println("Number of unsexy primes: " + unsexyPrimes.size)
println("10 last unsexy primes: " + unsexyPrimes.takeRight(10))
}
} | 286Sexy primes
| 16scala
| uz3v8 |
sub sierpinski {
my ($n) = @_;
my @down = '*';
my $space = ' ';
foreach (1..$n) {
@down = (map("$space$_$space", @down), map("$_ $_", @down));
$space = "$space$space";
}
return @down;
}
print "$_\n" foreach sierpinski 4; | 278Sierpinski triangle
| 2perl
| 7c7rh |
<!DOCTYPE html PUBLIC "- | 283Sierpinski carpet
| 10javascript
| a4j10 |
from itertools import product, combinations
from random import sample
features = [ 'green purple red'.split(),
'one two three'.split(),
'oval diamond squiggle'.split(),
'open striped solid'.split() ]
deck = list(product(list(range(3)), repeat=4))
dealt = 9
def printcard(card):
print(' '.join('%8s'% f[i] for f,i in zip(features, card)))
def getdeal(dealt=dealt):
deal = sample(deck, dealt)
return deal
def getsets(deal):
good_feature_count = set([1, 3])
sets = [ comb for comb in combinations(deal, 3)
if all( [(len(set(feature)) in good_feature_count)
for feature in zip(*comb)]
) ]
return sets
def printit(deal, sets):
print('Dealt%i cards:'% len(deal))
for card in deal: printcard(card)
print('\nFound%i sets:'% len(sets))
for s in sets:
for card in s: printcard(card)
print('')
if __name__ == '__main__':
while True:
deal = getdeal()
sets = getsets(deal)
if len(sets) == dealt / 2:
break
printit(deal, sets) | 291Set puzzle
| 3python
| 46f5k |
int count_divisors(int n) {
int i, count = 0;
for (i = 1; i * i <= n; ++i) {
if (!(n % i)) {
if (i == n / i)
count++;
else
count += 2;
}
}
return count;
}
int main() {
int i, k, n, seq[MAX];
for (i = 0; i < MAX; ++i) seq[i] = 0;
printf(, MAX);
for (i = 1, n = 0; n < MAX; ++i) {
k = count_divisors(i);
if (k <= MAX && seq[k - 1] == 0) {
seq[k - 1] = i;
++n;
}
}
for (i = 0; i < MAX; ++i) printf(, seq[i]);
printf();
return 0;
} | 296Sequence: smallest number with exactly n divisors
| 5c
| fw7d3 |
const crypto = require('crypto');
const msg = 'Rosetta code';
const hash = crypto.createHash('sha256').update(msg).digest('hex');
console.log(hash); | 290SHA-256
| 9java
| nabih |
const crypto = require('crypto');
const msg = 'Rosetta code';
const hash = crypto.createHash('sha256').update(msg).digest('hex');
console.log(hash); | 290SHA-256
| 10javascript
| 3swz0 |
(defn consolidate-linked-sets [sets]
(apply clojure.set/union sets))
(defn linked? [s1 s2]
(not (empty? (clojure.set/intersection s1 s2))))
(defn consolidate [& sets]
(loop [seeds sets
sets sets]
(if (empty? seeds)
sets
(let [s0 (first seeds)
linked (filter #(linked? s0 %) sets)
remove-used (fn [sets used]
(remove #(contains? (set used) %) sets))]
(recur (remove-used (rest seeds) linked)
(conj (remove-used sets linked)
(consolidate-linked-sets linked))))))) | 295Set consolidation
| 6clojure
| pu6bd |
sub dice5 { 1+int rand(5) }
sub dice7 {
while(1) {
my $d7 = (5*dice5()+dice5()-6) % 8;
return $d7 if $d7;
}
}
my %count7;
my $n = 1000000;
$count7{dice7()}++ for 1..$n;
printf "%s:%5.2f%%\n", $_, 100*($count7{$_}/$n*7-1) for sort keys %count7; | 292Seven-sided dice from five-sided dice
| 2perl
| moxyz |
package main
import "fmt"
func main() {
for i := 0; i < 16; i++ {
for j := 32 + i; j < 128; j += 16 {
k := string(j)
switch j {
case 32:
k = "Spc"
case 127:
k = "Del"
}
fmt.Printf("%3d:%-3s ", j, k)
}
fmt.Println()
}
} | 288Show ASCII table
| 0go
| 60s3p |
int main(void)
{
mpz_t p, s;
mpz_init_set_ui(p, 1);
mpz_init_set_ui(s, 1);
for (int n = 1, i = 0; i < 20; n++) {
mpz_nextprime(s, s);
mpz_mul(p, p, s);
mpz_add_ui(p, p, 1);
if (mpz_probab_prime_p(p, 25)) {
mpz_sub_ui(p, p, 1);
gmp_printf(, n);
i++;
continue;
}
mpz_sub_ui(p, p, 2);
if (mpz_probab_prime_p(p, 25)) {
mpz_add_ui(p, p, 1);
gmp_printf(, n);
i++;
continue;
}
mpz_add_ui(p, p, 1);
}
mpz_clear(s);
mpz_clear(p);
} | 297Sequence of primorial primes
| 5c
| 0k2st |
null | 290SHA-256
| 11kotlin
| shrq7 |
package main
import "fmt"
func countDivisors(n int) int {
count := 0
for i := 1; i*i <= n; i++ {
if n%i == 0 {
if i == n/i {
count++
} else {
count += 2
}
}
}
return count
}
func main() {
const max = 15
fmt.Println("The first", max, "terms of the sequence are:")
for i, next := 1, 1; next <= max; i++ {
if next == countDivisors(i) {
fmt.Printf("%d ", i)
next++
}
}
fmt.Println()
} | 293Sequence: smallest number greater than previous term with exactly n divisors
| 0go
| pumbg |
#!/usr/bin/lua
local sha1 = require "sha1"
for i, str in ipairs{"Rosetta code", "Rosetta Code"} do
print(string.format("SHA-1(%q) =%s", str, sha1(str)))
end | 289SHA-1
| 1lua
| uzfvl |
class ShowAsciiTable {
static void main(String[] args) {
for (int i = 32; i <= 127; i++) {
if (i == 32 || i == 127) {
String s = i == 32 ? "Spc": "Del"
printf("%3d:%s ", i, s)
} else {
printf("%3d:%c ", i, i)
}
if ((i - 1) % 6 == 0) {
println()
}
}
}
} | 288Show ASCII table
| 7groovy
| dean3 |
<?php
function sierpinskiTriangle($order) {
$char = '
$n = 1 << $order;
$line = array();
for ($i = 0 ; $i <= 2 * $n ; $i++) {
$line[$i] = ' ';
}
$line[$n] = $char;
for ($i = 0 ; $i < $n ; $i++) {
echo implode('', $line), PHP_EOL;
$u = $char;
for ($j = $n - $i ; $j < $n + $i + 1 ; $j++) {
$t = ($line[$j - 1] == $line[$j + 1]? ' ' : $char);
$line[$j - 1] = $u;
$u = $t;
}
$line[$n + $i] = $t;
$line[$n + $i + 1] = $char;
}
}
sierpinskiTriangle(4); | 278Sierpinski triangle
| 12php
| fxfdh |
null | 283Sierpinski carpet
| 11kotlin
| 46c57 |
COLORS = %i(red green purple)
SYMBOLS = %i(oval squiggle diamond)
NUMBERS = %i(one two three)
SHADINGS = %i(solid open striped)
DECK = COLORS.product(SYMBOLS, NUMBERS, SHADINGS)
def get_all_sets(hand)
hand.combination(3).select do |candidate|
grouped_features = candidate.flatten.group_by{|f| f}
grouped_features.values.none?{|v| v.size == 2}
end
end
def get_puzzle_and_answer(hand_size, num_sets_goal)
begin
hand = DECK.sample(hand_size)
sets = get_all_sets(hand)
end until sets.size == num_sets_goal
[hand, sets]
end
def print_cards(cards)
puts cards.map{|card| * 4 % card}
puts
end
def set_puzzle(deal, goal=deal/2)
puzzle, sets = get_puzzle_and_answer(deal, goal)
puts
print_cards(puzzle)
puts
sets.each{|set| print_cards(set)}
end
set_puzzle(9)
set_puzzle(12) | 291Set puzzle
| 14ruby
| rmzgs |
struct RealSet {
bool(*contains)(struct RealSet*, struct RealSet*, double);
struct RealSet *left;
struct RealSet *right;
double low, high;
};
typedef enum {
CLOSED,
LEFT_OPEN,
RIGHT_OPEN,
BOTH_OPEN,
} RangeType;
double length(struct RealSet *self) {
const double interval = 0.00001;
double p = self->low;
int count = 0;
if (isinf(self->low) || isinf(self->high)) return -1.0;
if (self->high <= self->low) return 0.0;
do {
if (self->contains(self, NULL, p)) count++;
p += interval;
} while (p < self->high);
return count * interval;
}
bool empty(struct RealSet *self) {
if (self->low == self->high) {
return !self->contains(self, NULL, self->low);
}
return length(self) == 0.0;
}
static bool contains_closed(struct RealSet *self, struct RealSet *_, double d) {
return self->low <= d && d <= self->high;
}
static bool contains_left_open(struct RealSet *self, struct RealSet *_, double d) {
return self->low < d && d <= self->high;
}
static bool contains_right_open(struct RealSet *self, struct RealSet *_, double d) {
return self->low <= d && d < self->high;
}
static bool contains_both_open(struct RealSet *self, struct RealSet *_, double d) {
return self->low < d && d < self->high;
}
static bool contains_intersect(struct RealSet *self, struct RealSet *_, double d) {
return self->left->contains(self->left, NULL, d) && self->right->contains(self->right, NULL, d);
}
static bool contains_union(struct RealSet *self, struct RealSet *_, double d) {
return self->left->contains(self->left, NULL, d) || self->right->contains(self->right, NULL, d);
}
static bool contains_subtract(struct RealSet *self, struct RealSet *_, double d) {
return self->left->contains(self->left, NULL, d) && !self->right->contains(self->right, NULL, d);
}
struct RealSet* makeSet(double low, double high, RangeType type) {
bool(*contains)(struct RealSet*, struct RealSet*, double);
struct RealSet *rs;
switch (type) {
case CLOSED:
contains = contains_closed;
break;
case LEFT_OPEN:
contains = contains_left_open;
break;
case RIGHT_OPEN:
contains = contains_right_open;
break;
case BOTH_OPEN:
contains = contains_both_open;
break;
default:
return NULL;
}
rs = malloc(sizeof(struct RealSet));
rs->contains = contains;
rs->left = NULL;
rs->right = NULL;
rs->low = low;
rs->high = high;
return rs;
}
struct RealSet* makeIntersect(struct RealSet *left, struct RealSet *right) {
struct RealSet *rs = malloc(sizeof(struct RealSet));
rs->contains = contains_intersect;
rs->left = left;
rs->right = right;
rs->low = fmin(left->low, right->low);
rs->high = fmin(left->high, right->high);
return rs;
}
struct RealSet* makeUnion(struct RealSet *left, struct RealSet *right) {
struct RealSet *rs = malloc(sizeof(struct RealSet));
rs->contains = contains_union;
rs->left = left;
rs->right = right;
rs->low = fmin(left->low, right->low);
rs->high = fmin(left->high, right->high);
return rs;
}
struct RealSet* makeSubtract(struct RealSet *left, struct RealSet *right) {
struct RealSet *rs = malloc(sizeof(struct RealSet));
rs->contains = contains_subtract;
rs->left = left;
rs->right = right;
rs->low = left->low;
rs->high = left->high;
return rs;
}
int main() {
struct RealSet *a = makeSet(0.0, 1.0, LEFT_OPEN);
struct RealSet *b = makeSet(0.0, 2.0, RIGHT_OPEN);
struct RealSet *c = makeSet(1.0, 2.0, LEFT_OPEN);
struct RealSet *d = makeSet(0.0, 3.0, RIGHT_OPEN);
struct RealSet *e = makeSet(0.0, 1.0, BOTH_OPEN);
struct RealSet *f = makeSet(0.0, 1.0, CLOSED);
struct RealSet *g = makeSet(0.0, 0.0, CLOSED);
int i;
for (i = 0; i < 3; ++i) {
struct RealSet *t;
t = makeUnion(a, b);
printf(, i, t->contains(t, NULL, i));
free(t);
t = makeIntersect(b, c);
printf(, i, t->contains(t, NULL, i));
free(t);
t = makeSubtract(d, e);
printf(, i, t->contains(t, NULL, i));
free(t);
t = makeSubtract(d, f);
printf(, i, t->contains(t, NULL, i));
free(t);
printf();
}
printf(, empty(g));
free(a);
free(b);
free(c);
free(d);
free(e);
free(f);
free(g);
return 0;
} | 298Set of real numbers
| 5c
| de4nv |
package main
import (
"fmt"
"math"
"math/big"
)
var bi = new(big.Int)
func isPrime(n int) bool {
bi.SetUint64(uint64(n))
return bi.ProbablyPrime(0)
}
func generateSmallPrimes(n int) []int {
primes := make([]int, n)
primes[0] = 2
for i, count := 3, 1; count < n; i += 2 {
if isPrime(i) {
primes[count] = i
count++
}
}
return primes
}
func countDivisors(n int) int {
count := 1
for n%2 == 0 {
n >>= 1
count++
}
for d := 3; d*d <= n; d += 2 {
q, r := n/d, n%d
if r == 0 {
dc := 0
for r == 0 {
dc += count
n = q
q, r = n/d, n%d
}
count += dc
}
}
if n != 1 {
count *= 2
}
return count
}
func main() {
const max = 33
primes := generateSmallPrimes(max)
z := new(big.Int)
p := new(big.Int)
fmt.Println("The first", max, "terms in the sequence are:")
for i := 1; i <= max; i++ {
if isPrime(i) {
z.SetUint64(uint64(primes[i-1]))
p.SetUint64(uint64(i - 1))
z.Exp(z, p, nil)
fmt.Printf("%2d:%d\n", i, z)
} else {
count := 0
for j := 1; ; j++ {
if i%2 == 1 {
sq := int(math.Sqrt(float64(j)))
if sq*sq != j {
continue
}
}
if countDivisors(j) == i {
count++
if count == i {
fmt.Printf("%2d:%d\n", i, j)
break
}
}
}
}
}
} | 294Sequence: nth number with exactly n divisors
| 0go
| x72wf |
#!/usr/bin/lua
require "sha2"
print(sha2.sha256hex("Rosetta code")) | 290SHA-256
| 1lua
| 0k7sd |
import Text.Printf (printf)
sequence_A069654 :: [(Int,Int)]
sequence_A069654 = go 1 $ (,) <*> countDivisors <$> [1..]
where go t ((n,c):xs) | c == t = (t,n):go (succ t) xs
| otherwise = go t xs
countDivisors n = foldr f 0 [1..floor $ sqrt $ realToFrac n]
where f x r | n `mod` x == 0 = if n `div` x == x then r+1 else r+2
| otherwise = r
main :: IO ()
main = mapM_ (uncurry $ printf "a(%2d)=%5d\n") $ take 15 sequence_A069654 | 293Sequence: smallest number greater than previous term with exactly n divisors
| 8haskell
| fwkd1 |
from random import randint
def dice5():
return randint(1, 5)
def dice7():
r = dice5() + dice5() * 5 - 6
return (r% 7) + 1 if r < 21 else dice7() | 292Seven-sided dice from five-sided dice
| 3python
| 9iqmf |
dice5 <- function(n=1) sample(5, n, replace=TRUE) | 292Seven-sided dice from five-sided dice
| 13r
| 3sazt |
import Data.Char (chr)
import Data.List (transpose)
import Data.List.Split (chunksOf)
import Text.Printf (printf)
asciiTable :: String
asciiTable =
unlines $
(printf "%-12s" =<<)
<$> transpose
(chunksOf 16 $ asciiEntry <$> [32 .. 127])
asciiEntry :: Int -> String
asciiEntry n
| null k = k
| otherwise = concat [printf "%3d" n, ": ", k]
where
k = asciiName n
asciiName :: Int -> String
asciiName n
| 32 > n = []
| 127 < n = []
| 32 == n = "Spc"
| 127 == n = "Del"
| otherwise = [chr n]
main :: IO ()
main = putStrLn asciiTable | 288Show ASCII table
| 8haskell
| jc97g |
local function carpet(n, f)
print("n = " .. n)
local function S(x, y)
if x==0 or y==0 then return true
elseif x%3==1 and y%3==1 then return false end
return S(x//3, y//3)
end
for y = 0, 3^n-1 do
for x = 0, 3^n-1 do
io.write(f(S(x, y)))
end
print()
end
print()
end
for n = 0, 4 do
carpet(n, function(b) return b and " " or " " end)
end | 283Sierpinski carpet
| 1lua
| gyl4j |
use itertools::Itertools;
use rand::Rng;
const DECK_SIZE: usize = 81;
const NUM_ATTRIBUTES: usize = 4;
const ATTRIBUTES: [&[&str]; NUM_ATTRIBUTES] = [
&["red", "green", "purple"],
&["one", "two", "three"],
&["oval", "squiggle", "diamond"],
&["solid", "open", "striped"],
];
fn get_random_card_indexes(num_of_cards: usize) -> Vec<usize> {
let mut selected_cards: Vec<usize> = Vec::with_capacity(num_of_cards);
let mut rng = rand::thread_rng();
loop {
let idx = rng.gen_range(0..DECK_SIZE);
if!selected_cards.contains(&idx) {
selected_cards.push(idx);
}
if selected_cards.len() == num_of_cards {
break;
}
}
selected_cards
}
fn run_game(num_of_cards: usize, minimum_number_of_sets: usize) {
println!(
"\nGAME: # of cards: {} # of sets: {}",
num_of_cards, minimum_number_of_sets
); | 291Set puzzle
| 15rust
| 793rc |
(ns example
(:gen-class))
(def primes (iterate #(.nextProbablePrime %) (biginteger 2)))
(defn primorial-prime? [v]
" Test if value is a primorial prime "
(let [a (biginteger (inc v))
b (biginteger (dec v))]
(or (.isProbablePrime a 16)
(.isProbablePrime b 16))))
(println (take 20 (keep-indexed
#(if (primorial-prime? %2) (inc %1))
(reductions *' primes)))) | 297Sequence of primorial primes
| 6clojure
| degnb |
import Control.Monad (guard)
import Math.NumberTheory.ArithmeticFunctions (divisorCount)
import Math.NumberTheory.Primes (Prime, unPrime)
import Math.NumberTheory.Primes.Testing (isPrime)
calc :: Integer -> [(Integer, Integer)]
calc n = do
x <- [1..]
guard (even n || odd n && f x == x)
[(x, divisorCount x)]
where f n = floor (sqrt $ realToFrac n) ^ 2
havingNthDivisors :: Integer -> [(Integer, Integer)]
havingNthDivisors n = filter ((==n) . snd) $ calc n
nths :: [(Integer, Integer)]
nths = do
n <- [1..35] :: [Integer]
if isPrime n then
pure (n, nthPrime (fromIntegral n) ^ pred n)
else
pure (n, f n)
where
f n = fst (havingNthDivisors n !! pred (fromIntegral n))
nthPrime n = unPrime (toEnum n :: Prime Integer)
main :: IO ()
main = mapM_ print nths | 294Sequence: nth number with exactly n divisors
| 8haskell
| y8a66 |
package main
import "fmt"
func countDivisors(n int) int {
count := 0
for i := 1; i*i <= n; i++ {
if n%i == 0 {
if i == n/i {
count++
} else {
count += 2
}
}
}
return count
}
func main() {
const max = 15
seq := make([]int, max)
fmt.Println("The first", max, "terms of the sequence are:")
for i, n := 1, 0; n < max; i++ {
if k := countDivisors(i); k <= max && seq[k-1] == 0 {
seq[k-1] = i
n++
}
}
fmt.Println(seq)
} | 296Sequence: smallest number with exactly n divisors
| 0go
| jcd7d |
public class AntiPrimesPlus {
static int count_divisors(int n) {
int count = 0;
for (int i = 1; i * i <= n; ++i) {
if (n % i == 0) {
if (i == n / i)
count++;
else
count += 2;
}
}
return count;
}
public static void main(String[] args) {
final int max = 15;
System.out.printf("The first%d terms of the sequence are:\n", max);
for (int i = 1, next = 1; next <= max; ++i) {
if (next == count_divisors(i)) {
System.out.printf("%d ", i);
next++;
}
}
System.out.println();
}
} | 293Sequence: smallest number greater than previous term with exactly n divisors
| 9java
| 0k4se |
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
public class SequenceNthNumberWithExactlyNDivisors {
public static void main(String[] args) {
int max = 45;
smallPrimes(max);
for ( int n = 1; n <= max ; n++ ) {
System.out.printf("A073916(%d) =%s%n", n, OEISA073916(n));
}
}
private static List<Integer> smallPrimes = new ArrayList<>();
private static void smallPrimes(int numPrimes) {
smallPrimes.add(2);
for ( int n = 3, count = 0 ; count < numPrimes ; n += 2 ) {
if ( isPrime(n) ) {
smallPrimes.add(n);
count++;
}
}
}
private static final boolean isPrime(long test) {
if ( test == 2 ) {
return true;
}
if ( test % 2 == 0 ) {
return false;
}
for ( long d = 3 ; d*d <= test ; d += 2 ) {
if ( test % d == 0 ) {
return false;
}
}
return true;
}
private static int getDivisorCount(long n) {
int count = 1;
while ( n % 2 == 0 ) {
n /= 2;
count += 1;
}
for ( long d = 3 ; d*d <= n ; d += 2 ) {
long q = n / d;
long r = n % d;
int dc = 0;
while ( r == 0 ) {
dc += count;
n = q;
q = n / d;
r = n % d;
}
count += dc;
}
if ( n != 1 ) {
count *= 2;
}
return count;
}
private static BigInteger OEISA073916(int n) {
if ( isPrime(n) ) {
return BigInteger.valueOf(smallPrimes.get(n-1)).pow(n - 1);
}
int count = 0;
int result = 0;
for ( int i = 1 ; count < n ; i++ ) {
if ( n % 2 == 1 ) { | 294Sequence: nth number with exactly n divisors
| 9java
| dejn9 |
import Data.List (find, group, sort)
import Data.Maybe (mapMaybe)
import Data.Numbers.Primes (primeFactors)
a005179 :: [Int]
a005179 =
mapMaybe
( \n ->
find
((n ==) . succ . length . properDivisors)
[1 ..]
)
[1 ..]
main :: IO ()
main = print $ take 15 a005179
properDivisors :: Int -> [Int]
properDivisors =
init
. sort
. foldr
(flip ((<*>) . fmap (*)) . scanl (*) 1)
[1]
. group
. primeFactors | 296Sequence: smallest number with exactly n divisors
| 8haskell
| op58p |
null | 293Sequence: smallest number greater than previous term with exactly n divisors
| 11kotlin
| egla4 |
(ns rosettacode.real-set)
(defn >=|<= [lo hi] #(<= lo % hi))
(defn >|< [lo hi] #(< lo % hi))
(defn >=|< [lo hi] #(and (<= lo %) (< % hi)))
(defn >|<= [lo hi] #(and (< lo %) (<= % hi)))
(def some-fn)
(def every-pred)
(defn
([s1] s1)
([s1 s2]
#(and (s1 %) (not (s2 %))))
([s1 s2 s3]
#(and (s1 %) (not (s2 %)) (not (s3 %))))
([s1 s2 s3 & ss]
(fn [x] (every? #(not (% x)) (list* s1 s2 s3 ss)))))
(clojure.pprint/pprint
(map #(map % [0 1 2])
[( (>|<= 0 1) (>=|< 0 2))
( (>=|< 0 2) (>|<= 1 2))
( (>=|< 0 3) (>|< 0 1))
( (>=|< 0 3) (>=|<= 0 1))])
(def (constantly false))
(def R (constantly true))
(def Z integer?)
(def Q ratio?)
(def I #( R Z Q))
(def N #( Z neg?)) | 298Set of real numbers
| 6clojure
| 60h3q |
null | 294Sequence: nth number with exactly n divisors
| 11kotlin
| 0k5sf |
(() => {
'use strict'; | 296Sequence: smallest number with exactly n divisors
| 10javascript
| 8bu0l |
require './distcheck.rb'
def d5
1 + rand(5)
end
def d7
loop do
d55 = 5*d5 + d5 - 6
return (d55 % 7 + 1) if d55 < 21
end
end
distcheck(1_000_000) {d5}
distcheck(1_000_000) {d7} | 292Seven-sided dice from five-sided dice
| 14ruby
| ld0cl |
import scala.util.Random
object SevenSidedDice extends App {
private val rnd = new Random
private def seven = {
var v = 21
def five = 1 + rnd.nextInt(5)
while (v > 20) v = five + five * 5 - 6
1 + v % 7
}
println("Random number from 1 to 7: " + seven)
} | 292Seven-sided dice from five-sided dice
| 16scala
| 53nut |
public class ShowAsciiTable {
public static void main(String[] args) {
for ( int i = 32 ; i <= 127 ; i++ ) {
if ( i == 32 || i == 127 ) {
String s = i == 32 ? "Spc" : "Del";
System.out.printf("%3d:%s ", i, s);
}
else {
System.out.printf("%3d:%c ", i, i);
}
if ( (i-1) % 6 == 0 ) {
System.out.println();
}
}
}
} | 288Show ASCII table
| 9java
| uztvv |
import java.util.Arrays;
public class OEIS_A005179 {
static int count_divisors(int n) {
int count = 0;
for (int i = 1; i * i <= n; ++i) {
if (n % i == 0) {
if (i == n / i)
count++;
else
count += 2;
}
}
return count;
}
public static void main(String[] args) {
final int max = 15;
int[] seq = new int[max];
System.out.printf("The first%d terms of the sequence are:\n", max);
for (int i = 1, n = 0; n < max; ++i) {
int k = count_divisors(i);
if (k <= max && seq[k - 1] == 0) {
seq[k- 1] = i;
n++;
}
}
System.out.println(Arrays.toString(seq));
}
} | 296Sequence: smallest number with exactly n divisors
| 9java
| wr9ej |
use strict;
use warnings;
use ntheory 'divisors';
print "First 15 terms of OEIS: A069654\n";
my $m = 0;
for my $n (1..15) {
my $l = $m;
while (++$l) {
print("$l "), $m = $l, last if $n == divisors($l);
}
} | 293Sequence: smallest number greater than previous term with exactly n divisors
| 2perl
| cnq9a |
(() => {
"use strict"; | 288Show ASCII table
| 10javascript
| 79mrd |
(import '[java.util Date])
(import '[clojure.lang Reflector])
(def date1 (Date.))
(def date2 (Date.))
(def method "equals")
(Reflector/invokeMethod date1 method (object-array [date2]))
(eval `(. date1 ~(symbol method) date2)) | 299Send an unknown method call
| 6clojure
| 0kcsj |
package main
import (
"fmt"
"math/big"
)
func main() {
one := big.NewInt(1)
pm := big.NewInt(1) | 297Sequence of primorial primes
| 0go
| uzqvt |
use strict;
use warnings;
use bigint;
use ntheory <nth_prime is_prime divisors>;
my $limit = 20;
print "First $limit terms of OEIS:A073916\n";
for my $n (1..$limit) {
if ($n > 4 and is_prime($n)) {
print nth_prime($n)**($n-1) . ' ';
} else {
my $i = my $x = 0;
while (1) {
my $nn = $n%2 ? ++$x**2 : ++$x;
next unless $n == divisors($nn) and ++$i == $n;
print "$nn " and last;
}
}
} | 294Sequence: nth number with exactly n divisors
| 2perl
| 53ou2 |
package main
import "fmt"
type set map[string]bool
var testCase = []set{
set{"H": true, "I": true, "K": true},
set{"A": true, "B": true},
set{"C": true, "D": true},
set{"D": true, "B": true},
set{"F": true, "G": true, "H": true},
}
func main() {
fmt.Println(consolidate(testCase))
}
func consolidate(sets []set) []set {
setlist := []set{}
for _, s := range sets {
if s != nil && len(s) > 0 {
setlist = append(setlist, s)
}
}
for i, s1 := range setlist {
if len(s1) > 0 {
for _, s2 := range setlist[i+1:] {
if s1.disjoint(s2) {
continue
}
for e := range s1 {
s2[e] = true
delete(s1, e)
}
s1 = s2
}
}
}
r := []set{}
for _, s := range setlist {
if len(s) > 0 {
r = append(r, s)
}
}
return r
}
func (s1 set) disjoint(s2 set) bool {
for e := range s2 {
if s1[e] {
return false
}
}
return true
} | 295Set consolidation
| 0go
| de7ne |
static const char *payload_text[] = {
,
to ,
from ,
cc ,
,
,
,
,
,
,
,
,
,
NULL
};
struct upload_status {
int lines_read;
};
static size_t payload_source(void *ptr, size_t size, size_t nmemb, void *userp)
{
struct upload_status *upload_ctx = (struct upload_status *)userp;
const char *data;
if((size == 0) || (nmemb == 0) || ((size*nmemb) < 1)) {
return 0;
}
data = payload_text[upload_ctx->lines_read];
if(data) {
size_t len = strlen(data);
memcpy(ptr, data, len);
upload_ctx->lines_read++;
return len;
}
return 0;
}
int main(void)
{
CURL *curl;
CURLcode res = CURLE_OK;
struct curl_slist *recipients = NULL;
struct upload_status upload_ctx;
upload_ctx.lines_read = 0;
curl = curl_easy_init();
if(curl) {
curl_easy_setopt(curl, CURLOPT_USERNAME, );
curl_easy_setopt(curl, CURLOPT_PASSWORD, );
curl_easy_setopt(curl, CURLOPT_URL, );
curl_easy_setopt(curl, CURLOPT_USE_SSL, (long)CURLUSESSL_ALL);
curl_easy_setopt(curl, CURLOPT_CAINFO, );
curl_easy_setopt(curl, CURLOPT_MAIL_FROM, from);
recipients = curl_slist_append(recipients, to);
recipients = curl_slist_append(recipients, cc);
curl_easy_setopt(curl, CURLOPT_MAIL_RCPT, recipients);
curl_easy_setopt(curl, CURLOPT_READFUNCTION, payload_source);
curl_easy_setopt(curl, CURLOPT_READDATA, &upload_ctx);
curl_easy_setopt(curl, CURLOPT_UPLOAD, 1L);
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L);
res = curl_easy_perform(curl);
if(res != CURLE_OK)
fprintf(stderr, ,curl_easy_strerror(res));
curl_slist_free_all(recipients);
curl_easy_cleanup(curl);
}
return (int)res;
} | 300Send email
| 5c
| x76wu |
package main
import (
"fmt"
"reflect"
)
type example struct{} | 299Send an unknown method call
| 0go
| 9ibmt |
import Data.List (scanl1, elemIndices, nub)
primes :: [Integer]
primes = 2: filter isPrime [3,5 ..]
isPrime :: Integer -> Bool
isPrime = isPrime_ primes
where
isPrime_ :: [Integer] -> Integer -> Bool
isPrime_ (p:ps) n
| p * p > n = True
| n `mod` p == 0 = False
| otherwise = isPrime_ ps n
primorials :: [Integer]
primorials = 1: scanl1 (*) primes
primorialsPlusMinusOne :: [Integer]
primorialsPlusMinusOne = concatMap (((:) . pred) <*> (return . succ)) primorials
sequenceOfPrimorialPrimes :: [Int]
sequenceOfPrimorialPrimes = (tail . nub) $ (`div` 2) <$> elemIndices True bools
where
bools = isPrime <$> primorialsPlusMinusOne
main :: IO ()
main = mapM_ print $ take 10 sequenceOfPrimorialPrimes | 297Sequence of primorial primes
| 8haskell
| wrmed |
def divisors(n):
divs = [1]
for ii in range(2, int(n ** 0.5) + 3):
if n% ii == 0:
divs.append(ii)
divs.append(int(n / ii))
divs.append(n)
return list(set(divs))
def is_prime(n):
return len(divisors(n)) == 2
def primes():
ii = 1
while True:
ii += 1
if is_prime(ii):
yield ii
def prime(n):
generator = primes()
for ii in range(n - 1):
generator.__next__()
return generator.__next__()
def n_divisors(n):
ii = 0
while True:
ii += 1
if len(divisors(ii)) == n:
yield ii
def sequence(max_n=None):
if max_n is not None:
for ii in range(1, max_n + 1):
if is_prime(ii):
yield prime(ii) ** (ii - 1)
else:
generator = n_divisors(ii)
for jj, out in zip(range(ii - 1), generator):
pass
yield generator.__next__()
else:
ii = 1
while True:
ii += 1
if is_prime(ii):
yield prime(ii) ** (ii - 1)
else:
generator = n_divisors(ii)
for jj, out in zip(range(ii - 1), generator):
pass
yield generator.__next__()
if __name__ == '__main__':
for item in sequence(15):
print(item) | 294Sequence: nth number with exactly n divisors
| 3python
| 46i5k |
import Data.List (intersperse, intercalate)
import qualified Data.Set as S
consolidate
:: Ord a
=> [S.Set a] -> [S.Set a]
consolidate = foldr comb []
where
comb s_ [] = [s_]
comb s_ (s:ss)
| S.null (s `S.intersection` s_) = s: comb s_ ss
| otherwise = comb (s `S.union` s_) ss
main :: IO ()
main =
(putStrLn . unlines)
((intercalate ", and " . fmap showSet . consolidate) . fmap S.fromList <$>
[ ["ab", "cd"]
, ["ab", "bd"]
, ["ab", "cd", "db"]
, ["hik", "ab", "cd", "db", "fgh"]
])
showSet :: S.Set Char -> String
showSet = flip intercalate ["{", "}"] . intersperse ',' . S.elems | 295Set consolidation
| 8haskell
| 538ug |
null | 296Sequence: smallest number with exactly n divisors
| 11kotlin
| bvzkb |
sub a { print 'A'; return $_[0] }
sub b { print 'B'; return $_[0] }
sub test {
for my $op ('&&','||') {
for (qw(1,1 1,0 0,1 0,0)) {
my ($x,$y) = /(.),(.)/;
print my $str = "a($x) $op b($y)", ': ';
eval $str; print "\n"; } }
}
test(); | 284Short-circuit evaluation
| 2perl
| fwsd7 |
class Example {
def foo(value) {
"Invoked with '$value'"
}
}
def example = new Example()
def method = "foo"
def arg = "test value"
assert "Invoked with 'test value'" == example."$method"(arg) | 299Send an unknown method call
| 7groovy
| zqrt5 |
import java.math.BigInteger;
public class PrimorialPrimes {
final static int sieveLimit = 1550_000;
static boolean[] notPrime = sieve(sieveLimit);
public static void main(String[] args) {
int count = 0;
for (int i = 1; i < 1000_000 && count < 20; i++) {
BigInteger b = primorial(i);
if (b.add(BigInteger.ONE).isProbablePrime(1)
|| b.subtract(BigInteger.ONE).isProbablePrime(1)) {
System.out.printf("%d ", i);
count++;
}
}
}
static BigInteger primorial(int n) {
if (n == 0)
return BigInteger.ONE;
BigInteger result = BigInteger.ONE;
for (int i = 0; i < sieveLimit && n > 0; i++) {
if (notPrime[i])
continue;
result = result.multiply(BigInteger.valueOf(i));
n--;
}
return result;
}
public static boolean[] sieve(int limit) {
boolean[] composite = new boolean[limit];
composite[0] = composite[1] = true;
int max = (int) Math.sqrt(limit);
for (int n = 2; n <= max; n++) {
if (!composite[n]) {
for (int k = n * n; k < limit; k += n) {
composite[k] = true;
}
}
}
return composite;
}
} | 297Sequence of primorial primes
| 9java
| k2fhm |
import java.util.*;
public class SetConsolidation {
public static void main(String[] args) {
List<Set<Character>> h1 = hashSetList("AB", "CD");
System.out.println(consolidate(h1));
List<Set<Character>> h2 = hashSetList("AB", "BD");
System.out.println(consolidateR(h2));
List<Set<Character>> h3 = hashSetList("AB", "CD", "DB");
System.out.println(consolidate(h3));
List<Set<Character>> h4 = hashSetList("HIK", "AB", "CD", "DB", "FGH");
System.out.println(consolidateR(h4));
} | 295Set consolidation
| 9java
| 9iemu |
use strict ;
use warnings ;
use Digest::SHA qw( sha256_hex ) ;
my $digest = sha256_hex my $phrase = "Rosetta code" ;
print "SHA-256('$phrase'): $digest\n" ; | 290SHA-256
| 2perl
| uzdvr |
use Digest::SHA qw(sha1_hex);
print sha1_hex('Rosetta Code'), "\n"; | 289SHA-1
| 2perl
| 0kjs4 |
(require '[postal.core:refer [send-message]])
(send-message {:host "smtp.gmail.com"
:ssl true
:user your_username
:pass your_password}
{:from "[email protected]"
:to ["[email protected]"]
:cc ["[email protected]" "[email protected]"]
:subject "Yo"
:body "Testing."}) | 300Send email
| 6clojure
| opl8j |
import java.lang.reflect.Method;
class Example {
public int foo(int x) {
return 42 + x;
}
}
public class Main {
public static void main(String[] args) throws Exception {
Object example = new Example();
String name = "foo";
Class<?> clazz = example.getClass();
Method meth = clazz.getMethod(name, int.class);
Object result = meth.invoke(example, 5); | 299Send an unknown method call
| 9java
| gys4m |
example = new Object;
example.foo = function(x) {
return 42 + x;
};
name = "foo";
example[name](5) # => 47 | 299Send an unknown method call
| 10javascript
| k2nhq |
null | 297Sequence of primorial primes
| 11kotlin
| gy84d |
(() => {
'use strict'; | 295Set consolidation
| 10javascript
| uz0vb |
<?php
echo hash('sha256', 'Rosetta code'); | 290SHA-256
| 12php
| 8bj0m |
def divisors(n):
divs = [1]
for ii in range(2, int(n ** 0.5) + 3):
if n% ii == 0:
divs.append(ii)
divs.append(int(n / ii))
divs.append(n)
return list(set(divs))
def sequence(max_n=None):
previous = 0
n = 0
while True:
n += 1
ii = previous
if max_n is not None:
if n > max_n:
break
while True:
ii += 1
if len(divisors(ii)) == n:
yield ii
previous = ii
break
if __name__ == '__main__':
for item in sequence(15):
print(item) | 293Sequence: smallest number greater than previous term with exactly n divisors
| 3python
| ldscv |
<?php
$string = 'Rosetta Code';
echo sha1( $string ), ;
?> | 289SHA-1
| 12php
| 53tus |
null | 288Show ASCII table
| 11kotlin
| 9iomh |
package main
import (
"fmt"
"strings"
)
func main() {
s := "abracadabra"
ss := []byte(s)
var ixs []int
for ix, c := range s {
if c == 'a' {
ixs = append(ixs, ix)
}
}
repl := "ABaCD"
for i := 0; i < 5; i++ {
ss[ixs[i]] = repl[i]
}
s = string(ss)
s = strings.Replace(s, "b", "E", 1)
s = strings.Replace(s, "r", "F", 2)
s = strings.Replace(s, "F", "r", 1)
fmt.Println(s)
} | 301Selectively replace multiple instances of a character within a string
| 0go
| 15dp5 |
package main
import "fmt"
type Set func(float64) bool
func Union(a, b Set) Set { return func(x float64) bool { return a(x) || b(x) } }
func Inter(a, b Set) Set { return func(x float64) bool { return a(x) && b(x) } }
func Diff(a, b Set) Set { return func(x float64) bool { return a(x) && !b(x) } }
func open(a, b float64) Set { return func(x float64) bool { return a < x && x < b } }
func closed(a, b float64) Set { return func(x float64) bool { return a <= x && x <= b } }
func opCl(a, b float64) Set { return func(x float64) bool { return a < x && x <= b } }
func clOp(a, b float64) Set { return func(x float64) bool { return a <= x && x < b } }
func main() {
s := make([]Set, 4)
s[0] = Union(opCl(0, 1), clOp(0, 2)) | 298Set of real numbers
| 0go
| 79or2 |
null | 299Send an unknown method call
| 11kotlin
| 2fali |
local example = { }
function example:foo (x) return 42 + x end
local name = "foo"
example[name](example, 5) | 299Send an unknown method call
| 1lua
| vte2x |
def isPrime(n)
return false if n < 2
return n == 2 if n % 2 == 0
return n == 3 if n % 3 == 0
k = 5
while k * k <= n
return false if n % k == 0
k = k + 2
end
return true
end
def getSmallPrimes(numPrimes)
smallPrimes = [2]
count = 0
n = 3
while count < numPrimes
if isPrime(n) then
smallPrimes << n
count = count + 1
end
n = n + 2
end
return smallPrimes
end
def getDivisorCount(n)
count = 1
while n% 2 == 0
n = (n / 2).floor
count = count + 1
end
d = 3
while d * d <= n
q = (n / d).floor
r = n% d
dc = 0
while r == 0
dc = dc + count
n = q
q = (n / d).floor
r = n% d
end
count = count + dc
d = d + 2
end
if n!= 1 then
count = 2 * count
end
return count
end
MAX = 15
@smallPrimes = getSmallPrimes(MAX)
def OEISA073916(n)
if isPrime(n) then
return @smallPrimes[n - 1] ** (n - 1)
end
count = 0
result = 0
i = 1
while count < n
if n% 2 == 1 then
root = Math.sqrt(i)
if root * root!= i then
i = i + 1
next
end
end
if getDivisorCount(i) == n then
count = count + 1
result = i
end
i = i + 1
end
return result
end
n = 1
while n <= MAX
print , n, , OEISA073916(n),
n = n + 1
end | 294Sequence: nth number with exactly n divisors
| 14ruby
| rmdgs |
divisorCount <- function(n) length(Filter(function(x) n %% x == 0, seq_len(n %/% 2))) + 1
A06954 <- function(terms)
{
out <- 1
while((resultCount <- length(out)) != terms)
{
n <- resultCount + 1
out[n] <- out[resultCount]
while(divisorCount(out[n]) != n) out[n] <- out[n] + 1
}
out
}
print(A06954(15)) | 293Sequence: smallest number greater than previous term with exactly n divisors
| 13r
| y8e6h |
use strict;
use warnings;
use feature 'say';
sub transmogrify {
my($str, %sub) = @_;
for my $l (keys %sub) {
$str =~ s/$l/$_/ for split '', $sub{$l};
$str =~ s/_/$l/g;
}
$str
}
my $word = 'abracadabra';
say "$word -> " . transmogrify $word, 'a' => 'AB_CD', 'r' => '_F', 'b' => 'E'; | 301Selectively replace multiple instances of a character within a string
| 2perl
| ldbc5 |
import Data.List
import Data.Maybe
data BracketType = OpenSub | ClosedSub
deriving (Show, Enum, Eq, Ord)
data RealInterval = RealInterval {left :: BracketType, right :: BracketType,
lowerBound :: Double, upperBound :: Double}
deriving (Eq)
type RealSet = [RealInterval]
posInf = 1.0/0.0 :: Double
negInf = (-1.0/0.0) :: Double
set_R = RealInterval ClosedSub ClosedSub negInf posInf :: RealInterval
emptySet = [] :: [RealInterval]
instance Show RealInterval where
show x@(RealInterval _ _ y y')
| y == y' && (left x == right x) && (left x == ClosedSub) = "{" ++ (show y) ++ "}"
| otherwise = [['(', '[']!!(fromEnum $ left x)] ++ (show $ lowerBound x) ++
"," ++ (show $ upperBound x) ++ [[')', ']']!!(fromEnum $ right x)]
showList [x] = shows x
showList (h:t) = shows h . (" U " ++) . showList t
showList [] = (++ "(/)")
construct_interval :: Char -> Double -> Double -> Char -> RealInterval
construct_interval '(' x y ')' = RealInterval OpenSub OpenSub x y
construct_interval '(' x y ']' = RealInterval OpenSub ClosedSub x y
construct_interval '[' x y ')' = RealInterval ClosedSub OpenSub x y
construct_interval _ x y _ = RealInterval ClosedSub ClosedSub x y
set_is_empty :: RealSet -> Bool
set_is_empty rs = (rs == emptySet)
set_in :: Double -> RealSet -> Bool
set_in x [] = False
set_in x rs =
isJust (find (\s ->
((lowerBound s < x) && (x < upperBound s)) ||
(x == lowerBound s && left s == ClosedSub) ||
(x == upperBound s && right s == ClosedSub))
rs)
max_p :: (Double, BracketType) -> (Double, BracketType) -> (Double, BracketType)
min_p :: (Double, BracketType) -> (Double, BracketType) -> (Double, BracketType)
max_p p1@(x, y) p2@(x', y')
| x == x' = (x, max y y')
| x < x' = p2
| otherwise = p1
min_p p1@(x, y) p2@(x', y')
| x == x' = (x, min y y')
| x < x' = p1
| otherwise = p2
simple_intersection :: RealInterval -> RealInterval -> [RealInterval]
simple_intersection ri1@(RealInterval l_ri1 r_ri1 x1 y1) ri2@(RealInterval l_ri2 r_ri2 x2 y2)
| (y1 < x2) || (y2 < x1) = emptySet
| (y1 == x2) && ((fromEnum r_ri1) + (fromEnum l_ri2) /= 2) = emptySet
| (y2 == x1) && ((fromEnum r_ri2) + (fromEnum l_ri1) /= 2) = emptySet
| otherwise = let lb = if x1 == x2 then (x1, min l_ri1 l_ri2) else max_p (x1, l_ri1) (x2, l_ri2) in
let rb = min_p (y1, right ri1) (y2, right ri2) in
[RealInterval (snd lb) (snd rb) (fst lb) (fst rb)]
simple_union :: RealInterval -> RealInterval -> [RealInterval]
simple_union ri1@(RealInterval l_ri1 r_ri1 x1 y1) ri2@(RealInterval l_ri2 r_ri2 x2 y2)
| (y1 < x2) || (y2 < x1) = [ri2, ri1]
| (y1 == x2) && ((fromEnum r_ri1) + (fromEnum l_ri2) /= 2) = [ri1, ri2]
| (y2 == x1) && ((fromEnum r_ri2) + (fromEnum l_ri1) /= 2) = [ri1, ri2]
| otherwise = let lb = if x1 == x2 then (x1, max l_ri1 l_ri2) else min_p (x1, l_ri1) (x2, l_ri2) in
let rb = max_p (y1, right ri1) (y2, right ri2) in
[RealInterval (snd lb) (snd rb) (fst lb) (fst rb)]
simple_complement :: RealInterval -> [RealInterval]
simple_complement ri1@(RealInterval l_ri1 r_ri1 x1 y1) =
[(RealInterval ClosedSub (inv l_ri1) negInf x1), (RealInterval (inv r_ri1) ClosedSub y1 posInf)]
where
inv OpenSub = ClosedSub
inv ClosedSub = OpenSub
set_sort :: RealSet -> RealSet
set_sort rs =
sortBy
(\s1 s2 ->
let (lp, rp) = ((lowerBound s1, left s1), (lowerBound s2, left s2)) in
if max_p lp rp == lp then GT else LT)
rs
set_simplify :: RealSet -> RealSet
set_simplify [] = emptySet
set_simplify rs =
concat (map make_empty (set_sort (foldl
(\acc ri1 -> (simple_union (head acc) ri1) ++ (tail acc))
[head sorted_rs]
sorted_rs)))
where
sorted_rs = set_sort rs
make_empty ri@(RealInterval lb rb x y)
| x >= y && (lb /= rb || rb /= ClosedSub) = emptySet
| otherwise = [ri]
set_complement :: RealSet -> RealSet
set_union :: RealSet -> RealSet -> RealSet
set_intersection :: RealSet -> RealSet -> RealSet
set_difference :: RealSet -> RealSet -> RealSet
set_measure :: RealSet -> Double
set_complement rs =
foldl set_intersection [set_R] (map simple_complement rs)
set_union rs1 rs2 =
set_simplify (rs1 ++ rs2)
set_intersection rs1 rs2 =
set_simplify $ concat [simple_intersection s1 s2 | s1 <- rs1, s2 <- rs2]
set_difference rs1 rs2 =
set_intersection (set_complement rs2) rs1
set_measure rs =
foldl (\acc x -> acc + (upperBound x) - (lowerBound x)) 0.0 rs
test = map (\x -> [x]) [construct_interval '(' 0 1 ']', construct_interval '[' 0 2 ')',
construct_interval '[' 0 2 ')', construct_interval '(' 1 2 ']',
construct_interval '[' 0 3 ')', construct_interval '(' 0 1 ')',
construct_interval '[' 0 3 ')', construct_interval '[' 0 1 ']']
restest = [set_union (test!!0) (test!!1), set_intersection (test!!2) (test!!3),
set_difference (test!!4) (test!!5), set_difference (test!!6) (test!!7)]
isintest s =
mapM_
(\x -> putStrLn ((show x) ++ " is in " ++ (show s) ++ ": " ++ (show (set_in x s))))
[0, 1, 2]
testA = [construct_interval '(' (sqrt (n + (1.0/6))) (sqrt (n + (5.0/6))) ')' | n <- [0..99]]
testB = [construct_interval '(' (n + (1.0/6)) (n + (5.0/6)) ')' | n <- [0..9]]
main =
putStrLn ("union " ++ (show (test!!0)) ++ " " ++ (show (test!!1)) ++ " = " ++ (show (restest!!0))) >>
putStrLn ("inter " ++ (show (test!!2)) ++ " " ++ (show (test!!3)) ++ " = " ++ (show (restest!!1))) >>
putStrLn ("diff " ++ (show (test!!4)) ++ " " ++ (show (test!!5)) ++ " = " ++ (show (restest!!2))) >>
putStrLn ("diff " ++ (show (test!!6)) ++ " " ++ (show (test!!7)) ++ " = " ++ (show (restest!!3))) >>
mapM_ isintest restest >>
putStrLn ("measure: " ++ (show (set_measure (set_difference testA testB)))) | 298Set of real numbers
| 8haskell
| 8b20z |
use ntheory ":all";
my $i = 0;
for (1..1e6) {
my $n = pn_primorial($_);
if (is_prime($n-1) || is_prime($n+1)) {
print "$_\n";
last if ++$i >= 20;
}
} | 297Sequence of primorial primes
| 2perl
| na4iw |
null | 295Set consolidation
| 11kotlin
| zqkts |
use strict;
use warnings;
use ntheory 'divisors';
print "First 15 terms of OEIS: A005179\n";
for my $n (1..15) {
my $l = 0;
while (++$l) {
print "$l " and last if $n == divisors($l);
}
} | 296Sequence: smallest number with exactly n divisors
| 2perl
| 60b36 |
import hashlib
h = hashlib.sha1()
h.update(bytes(, encoding=))
h.hexdigest() | 289SHA-1
| 3python
| 8bh0o |
null | 288Show ASCII table
| 1lua
| cni92 |
def sierpinski(n):
d = []
for i in xrange(n):
sp = * (2 ** i)
d = [sp+x+sp for x in d] + [x++x for x in d]
return d
print .join(sierpinski(4)) | 278Sierpinski triangle
| 3python
| jlj7p |
from collections import defaultdict
rep = {'a': {1: 'A', 2: 'B', 4: 'C', 5: 'D'}, 'b': {1: 'E'}, 'r': {2: 'F'}}
def trstring(oldstring, repdict):
seen, newchars = defaultdict(lambda:1, {}), []
for c in oldstring:
i = seen[c]
newchars.append(repdict[c][i] if c in repdict and i in repdict[c] else c)
seen[c] += 1
return ''.join(newchars)
print('abracadabra ->', trstring('abracadabra', rep)) | 301Selectively replace multiple instances of a character within a string
| 3python
| 2fplz |
package Example;
sub new {
bless {}
}
sub foo {
my ($self, $x) = @_;
return 42 + $x;
}
package main;
my $name = "foo";
print Example->new->$name(5), "\n"; | 299Send an unknown method call
| 2perl
| sh9q3 |
null | 295Set consolidation
| 1lua
| 3sbzo |
def divisors(n):
divs = [1]
for ii in range(2, int(n ** 0.5) + 3):
if n% ii == 0:
divs.append(ii)
divs.append(int(n / ii))
divs.append(n)
return list(set(divs))
def sequence(max_n=None):
n = 0
while True:
n += 1
ii = 0
if max_n is not None:
if n > max_n:
break
while True:
ii += 1
if len(divisors(ii)) == n:
yield ii
break
if __name__ == '__main__':
for item in sequence(15):
print(item) | 296Sequence: smallest number with exactly n divisors
| 3python
| y8p6q |
>>> import hashlib
>>> hashlib.sha256( .encode() ).hexdigest()
'764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf'
>>> | 290SHA-256
| 3python
| 53fux |
library(digest)
input <- "Rosetta code"
cat(digest(input, algo = "sha256", serialize = FALSE), "\n") | 290SHA-256
| 13r
| ldoce |
require 'prime'
def num_divisors(n)
n.prime_division.inject(1){|prod, (_p,n)| prod *= (n + 1) }
end
seq = Enumerator.new do |y|
cur = 0
(1..).each do |i|
if num_divisors(i) == cur + 1 then
y << i
cur += 1
end
end
end
p seq.take(15) | 293Sequence: smallest number greater than previous term with exactly n divisors
| 14ruby
| vt82n |
library(digest)
input <- "Rosetta Code"
cat(digest(input, algo = "sha1", serialize = FALSE), "\n") | 289SHA-1
| 13r
| x7gw2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.