sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
---|---|---|
def _validI(x, y, weights):
'''
return indices that have enough data points and are not erroneous
'''
# density filter:
i = np.logical_and(np.isfinite(y), weights > np.median(weights))
# filter outliers:
try:
grad = np.abs(np.gradient(y[i]))
max_gradient = 4 * np.median(grad)
i[i][grad > max_gradient] = False
except (IndexError, ValueError):
pass
return i | return indices that have enough data points and are not erroneous | entailment |
def smooth(x, y, weights):
'''
in case the NLF cannot be described by
a square root function
commit bounded polynomial interpolation
'''
# Spline hard to smooth properly, therefore solfed with
# bounded polynomal interpolation
# ext=3: no extrapolation, but boundary value
# return UnivariateSpline(x, y, w=weights,
# s=len(y)*weights.max()*100, ext=3)
# return np.poly1d(np.polyfit(x,y,w=weights,deg=2))
p = np.polyfit(x, y, w=weights, deg=2)
if np.any(np.isnan(p)):
# couldn't even do polynomial fit
# as last option: assume constant noise
my = np.average(y, weights=weights)
return lambda x: my
return lambda xint: np.poly1d(p)(np.clip(xint, x[0], x[-1])) | in case the NLF cannot be described by
a square root function
commit bounded polynomial interpolation | entailment |
def oneImageNLF(img, img2=None, signal=None):
'''
Estimate the NLF from one or two images of the same kind
'''
x, y, weights, signal = calcNLF(img, img2, signal)
_, fn, _ = _evaluate(x, y, weights)
return fn, signal | Estimate the NLF from one or two images of the same kind | entailment |
def _getMinMax(img):
'''
Get the a range of image intensities
that most pixels are in with
'''
av = np.mean(img)
std = np.std(img)
# define range for segmentation:
mn = av - 3 * std
mx = av + 3 * std
return max(img.min(), mn, 0), min(img.max(), mx) | Get the a range of image intensities
that most pixels are in with | entailment |
def calcNLF(img, img2=None, signal=None, mn_mx_nbins=None, x=None,
averageFn='AAD',
signalFromMultipleImages=False):
'''
Calculate the noise level function (NLF) as f(intensity)
using one or two image.
The approach for this work is published in JPV##########
img2 - 2nd image taken under same conditions
used to estimate noise via image difference
signalFromMultipleImages - whether the signal is an average of multiple
images and not just got from one median filtered image
'''
# CONSTANTS:
# factor Root mead square to average-absolute-difference:
F_RMS2AAD = (2 / np.pi)**-0.5
F_NOISE_WITH_MEDIAN = 1 + (1 / 3**2)
N_BINS = 100
MEDIAN_KERNEL_SIZE = 3
def _averageAbsoluteDeviation(d):
return np.mean(np.abs(d)) * F_RMS2AAD
def _rootMeanSquare(d):
return (d**2).mean()**0.5
if averageFn == 'AAD':
averageFn = _averageAbsoluteDeviation
else:
averageFn = _rootMeanSquare
img = np.asfarray(img)
if img2 is None:
if signal is None:
signal = median_filter(img, MEDIAN_KERNEL_SIZE)
if signalFromMultipleImages:
diff = img - signal
else:
# difference between the filtered and original image:
diff = (img - signal) * F_NOISE_WITH_MEDIAN
else:
img2 = np.asfarray(img2)
diff = (img - img2)
# 2**0.5 because noise is subtracted by noise
# and variance of sum = sum of variance:
# var(immg1-img2)~2*var(img)
# std(2*var) = 2**0.5*var**0.5
diff /= 2**0.5
if signal is None:
signal = median_filter(0.5 * (img + img2), MEDIAN_KERNEL_SIZE)
if mn_mx_nbins is not None:
mn, mx, nbins = mn_mx_nbins
min_len = 0
else:
mn, mx = _getMinMax(signal)
s = img.shape
min_len = int(s[0] * s[1] * 1e-3)
if min_len < 1:
min_len = 5
# number of bins/different intensity ranges to analyse:
nbins = N_BINS
if mx - mn < nbins:
nbins = int(mx - mn)
# bin width:
step = (mx - mn) / nbins
# empty arrays:
y = np.empty(shape=nbins)
set_x = False
if x is None:
set_x = True
x = np.empty(shape=nbins)
# give bins with more samples more weight:
weights = np.zeros(shape=nbins)
# cur step:
m = mn
for n in range(nbins):
# get indices of all pixel with in a bin:
ind = np.logical_and(signal >= m, signal <= m + step)
m += step
d = diff[ind]
ld = len(d)
if ld >= min_len:
weights[n] = ld
# average absolute deviation (AAD),
# scaled to RMS:
y[n] = averageFn(d)
if set_x:
x[n] = m - 0.5 * step
return x, y, weights, signal | Calculate the noise level function (NLF) as f(intensity)
using one or two image.
The approach for this work is published in JPV##########
img2 - 2nd image taken under same conditions
used to estimate noise via image difference
signalFromMultipleImages - whether the signal is an average of multiple
images and not just got from one median filtered image | entailment |
def polyfit2d(x, y, z, order=3 #bounds=None
):
'''
fit unstructured data
'''
ncols = (order + 1)**2
G = np.zeros((x.size, ncols))
ij = itertools.product(list(range(order+1)), list(range(order+1)))
for k, (i,j) in enumerate(ij):
G[:,k] = x**i * y**j
m = np.linalg.lstsq(G, z)[0]
return m | fit unstructured data | entailment |
def polyfit2dGrid(arr, mask=None, order=3, replace_all=False,
copy=True, outgrid=None):
'''
replace all masked values with polynomial fitted ones
'''
s0,s1 = arr.shape
if mask is None:
if outgrid is None:
y,x = np.mgrid[:float(s0),:float(s1)]
p = polyfit2d(x.flatten(),y.flatten(),arr.flatten(),order)
return polyval2d(x,y, p, dtype=arr.dtype)
mask = np.zeros_like(arr, dtype=bool)
elif mask.sum() == 0 and not replace_all and outgrid is None:
return arr
valid = ~mask
y,x = np.where(valid)
z = arr[valid]
p = polyfit2d(x,y,z,order)
if outgrid is not None:
yy,xx = outgrid
else:
if replace_all:
yy,xx = np.mgrid[:float(s0),:float(s1)]
else:
yy,xx = np.where(mask)
new = polyval2d(xx,yy, p, dtype=arr.dtype)
if outgrid is not None or replace_all:
return new
if copy:
arr = arr.copy()
arr[mask] = new
return arr | replace all masked values with polynomial fitted ones | entailment |
def minimumLineInArray(arr, relative=False, f=0,
refinePosition=True,
max_pos=100,
return_pos_arr=False,
# order=2
):
'''
find closest minimum position next to middle line
relative: return position relative to middle line
f: relative decrease (0...1) - setting this value close to one will
discriminate positions further away from the center
##order: 2 for cubic refinement
'''
s0, s1 = arr.shape[:2]
if max_pos >= s1:
x = np.arange(s1)
else:
# take fewer positions within 0->(s1-1)
x = np.rint(np.linspace(0, s1 - 1, min(max_pos, s1))).astype(int)
res = np.empty((s0, s0), dtype=float)
_lineSumXY(x, res, arr, f)
if return_pos_arr:
return res
# best integer index
i, j = np.unravel_index(np.nanargmin(res), res.shape)
if refinePosition:
try:
sub = res[i - 1:i + 2, j - 1:j + 2]
ii, jj = center_of_mass(sub)
if not np.isnan(ii):
i += (ii - 1)
if not np.isnan(jj):
j += (jj - 1)
except TypeError:
pass
if not relative:
return i, j
hs = (s0 - 1) / 2
return i - hs, j - hs | find closest minimum position next to middle line
relative: return position relative to middle line
f: relative decrease (0...1) - setting this value close to one will
discriminate positions further away from the center
##order: 2 for cubic refinement | entailment |
def highPassFilter(self, threshold):
'''
remove all low frequencies by setting a square in the middle of the
Fourier transformation of the size (2*threshold)^2 to zero
threshold = 0...1
'''
if not threshold:
return
rows, cols = self.img.shape
tx = int(cols * threshold)
ty = int(rows * threshold)
# middle:
crow, ccol = rows // 2, cols // 2
# square in the middle to zero
self.fshift[crow - tx:crow + tx, ccol - ty:ccol + ty] = 0 | remove all low frequencies by setting a square in the middle of the
Fourier transformation of the size (2*threshold)^2 to zero
threshold = 0...1 | entailment |
def lowPassFilter(self, threshold):
'''
remove all high frequencies by setting boundary around a quarry in the middle
of the size (2*threshold)^2 to zero
threshold = 0...1
'''
if not threshold:
return
rows, cols = self.img.shape
tx = int(cols * threshold * 0.25)
ty = int(rows * threshold * 0.25)
# upper side
self.fshift[rows - tx:rows, :] = 0
# lower side
self.fshift[0:tx, :] = 0
# left side
self.fshift[:, 0:ty] = 0
# right side
self.fshift[:, cols - ty:cols] = 0 | remove all high frequencies by setting boundary around a quarry in the middle
of the size (2*threshold)^2 to zero
threshold = 0...1 | entailment |
def reconstructImage(self):
'''
do inverse Fourier transform and return result
'''
f_ishift = np.fft.ifftshift(self.fshift)
return np.real(np.fft.ifft2(f_ishift)) | do inverse Fourier transform and return result | entailment |
def interpolate2dUnstructuredIDW(x, y, v, grid, power=2):
'''
x,y,v --> 1d numpy.array
grid --> 2d numpy.array
fast if number of given values is small relative to grid resolution
'''
n = len(v)
gx = grid.shape[0]
gy = grid.shape[1]
for i in range(gx):
for j in range(gy):
overPx = False # if pixel position == point position
sumWi = 0.0
value = 0.0
for k in range(n):
xx = x[k]
yy = y[k]
vv = v[k]
if xx == i and yy == j:
grid[i, j] = vv
overPx = True
break
# weight from inverse distance:
wi = 1 / ((xx - i)**2 + (yy - j)**2)**(0.5 * power)
sumWi += wi
value += wi * vv
if not overPx:
grid[i, j] = value / sumWi
return grid | x,y,v --> 1d numpy.array
grid --> 2d numpy.array
fast if number of given values is small relative to grid resolution | entailment |
def hog(image, orientations=8, ksize=(5, 5)):
'''
returns the Histogram of Oriented Gradients
:param ksize: convolution kernel size as (y,x) - needs to be odd
:param orientations: number of orientations in between rad=0 and rad=pi
similar to http://scikit-image.org/docs/dev/auto_examples/plot_hog.html
but faster and with less options
'''
s0, s1 = image.shape[:2]
# speed up the process through saving generated kernels:
try:
k = hog.kernels[str(ksize) + str(orientations)]
except KeyError:
k = _mkConvKernel(ksize, orientations)
hog.kernels[str(ksize) + str(orientations)] = k
out = np.empty(shape=(s0, s1, orientations))
image[np.isnan(image)] = 0
for i in range(orientations):
out[:, :, i] = convolve(image, k[i])
return out | returns the Histogram of Oriented Gradients
:param ksize: convolution kernel size as (y,x) - needs to be odd
:param orientations: number of orientations in between rad=0 and rad=pi
similar to http://scikit-image.org/docs/dev/auto_examples/plot_hog.html
but faster and with less options | entailment |
def visualize(hog, grid=(10, 10), radCircle=None):
'''
visualize HOG as polynomial around cell center
for [grid] * cells
'''
s0, s1, nang = hog.shape
angles = np.linspace(0, np.pi, nang + 1)[:-1]
# center of each sub array:
cx, cy = s0 // (2 * grid[0]), s1 // (2 * grid[1])
# max. radius of polynomial around cenetr:
rx, ry = cx, cy
# for drawing a position indicator (circle):
if radCircle is None:
radCircle = max(1, rx // 10)
# output array:
out = np.zeros((s0, s1), dtype=np.uint8)
# point of polynomial:
pts = np.empty(shape=(1, 2 * nang, 2), dtype=np.int32)
# takes grid[0]*grid[1] sample HOG values:
samplesHOG = subCell2DFnArray(hog, lambda arr: arr[cx, cy], grid)
mxHOG = samplesHOG.max()
# sub array slices:
slices = list(subCell2DSlices(out, grid))
m = 0
for m, hhh in enumerate(samplesHOG.reshape(grid[0] * grid[1], nang)):
hhmax = hhh.max()
hh = hhh / hhmax
sout = out[slices[m][2:4]]
for n, (o, a) in enumerate(zip(hh, angles)):
pts[0, n, 0] = cx + np.cos(a) * o * rx
pts[0, n, 1] = cy + np.sin(a) * o * ry
pts[0, n + nang, 0] = cx + np.cos(a + np.pi) * o * rx
pts[0, n + nang, 1] = cy + np.sin(a + np.pi) * o * ry
cv2.fillPoly(sout, pts, int(255 * hhmax / mxHOG))
cv2.circle(sout, (cx, cy), radCircle, 0, thickness=-1)
return out | visualize HOG as polynomial around cell center
for [grid] * cells | entailment |
def postProcessing(arr, method='KW replace + Gauss', mask=None):
'''
Post process measured flat field [arr].
Depending on the measurement, different
post processing [method]s are beneficial.
The available methods are presented in
---
K.Bedrich, M.Bokalic et al.:
ELECTROLUMINESCENCE IMAGING OF PV DEVICES:
ADVANCED FLAT FIELD CALIBRATION,2017
---
methods:
'POLY replace' --> replace [arr] with a 2d polynomial fit
'KW replace' --> ... a fitted Kang-Weiss function
'AoV replace' --> ... a fitted Angle-of-view function
'POLY repair' --> same as above but either replacing empty
'KW repair' areas of smoothing out high gradient
'AoV repair' variations (POLY only)
'KW repair + Gauss' --> same as 'KW replace' with additional
'KW repair + Median' Gaussian or Median filter
mask:
None/2darray(bool) --> array of same shape ar [arr] indicating
invalid or empty positions
'''
assert method in ppMETHODS, \
'post processing method (%s) must be one of %s' % (method, ppMETHODS)
if method == 'POLY replace':
return polyfit2dGrid(arr, mask, order=2, replace_all=True)
elif method == 'KW replace':
return function(arr, mask, replace_all=True)
elif method == 'POLY repair':
return polynomial(arr, mask, replace_all=False)
elif method == 'KW repair':
return function(arr, mask, replace_all=False)
elif method == 'KW repair + Median':
return median_filter(function(arr, mask, replace_all=False),
min(method.shape) // 20)
elif method == 'KW repair + Gauss':
return gaussian_filter(function(arr, mask, replace_all=False),
min(arr.shape) // 20)
elif method == 'AoV repair':
return function(arr, mask, fn=lambda XY, a:
angleOfView(XY, method.shape, a=a), guess=(0.01),
down_scale_factor=1)
elif method == 'AoV replace':
return function(arr, mask, fn=lambda XY, a:
angleOfView(XY, arr.shape, a=a), guess=(0.01),
replace_all=True, down_scale_factor=1) | Post process measured flat field [arr].
Depending on the measurement, different
post processing [method]s are beneficial.
The available methods are presented in
---
K.Bedrich, M.Bokalic et al.:
ELECTROLUMINESCENCE IMAGING OF PV DEVICES:
ADVANCED FLAT FIELD CALIBRATION,2017
---
methods:
'POLY replace' --> replace [arr] with a 2d polynomial fit
'KW replace' --> ... a fitted Kang-Weiss function
'AoV replace' --> ... a fitted Angle-of-view function
'POLY repair' --> same as above but either replacing empty
'KW repair' areas of smoothing out high gradient
'AoV repair' variations (POLY only)
'KW repair + Gauss' --> same as 'KW replace' with additional
'KW repair + Median' Gaussian or Median filter
mask:
None/2darray(bool) --> array of same shape ar [arr] indicating
invalid or empty positions | entailment |
def rmBorder(img, border=None):
'''
border [None], if images are corrected and device ends at
image border
[one number] (like 50),
if there is an equally spaced border
around the device
[two tuples] like ((50,60),(1500,900))
means ((Xfrom,Yfrom),(Xto, Yto))
[four tuples] like ((x0,y0),(x1,y1),...(x3,y3))
'''
if border is None:
pass
elif len(border) == 2:
s0 = slice(border[0][1], border[1][1])
s1 = slice(border[0][0], border[1][0])
img = img[s0, s1]
elif len(border) == 4:
# eval whether border values are orthogonal:
x = np.unique(border[:, 0])
y = np.unique(border[:, 1])
if len(x) == 2 and len(y) == 2:
s0 = slice(y[0], y[1])
s1 = slice(x[0], x[1])
img = img[s0, s1]
else:
# edges are irregular:
img = simplePerspectiveTransform(img, border)
else:
raise Exception('[border] input wrong')
return img | border [None], if images are corrected and device ends at
image border
[one number] (like 50),
if there is an equally spaced border
around the device
[two tuples] like ((50,60),(1500,900))
means ((Xfrom,Yfrom),(Xto, Yto))
[four tuples] like ((x0,y0),(x1,y1),...(x3,y3)) | entailment |
def addImage(self, image, mask=None):
'''
#########
mask -- optional
'''
self._last_diff = diff = image - self.noSTE
ste = diff > self.threshold
removeSinglePixels(ste)
self.mask_clean = clean = ~ste
if mask is not None:
clean = np.logical_and(mask, clean)
self.mma.update(image, clean)
if self.save_ste_indices:
self.mask_STE += ste
return self | #########
mask -- optional | entailment |
def relativeAreaSTE(self):
'''
return STE area - relative to image area
'''
s = self.noSTE.shape
return np.sum(self.mask_STE) / (s[0] * s[1]) | return STE area - relative to image area | entailment |
def intensityDistributionSTE(self, bins=10, range=None):
'''
return distribution of STE intensity
'''
v = np.abs(self._last_diff[self.mask_STE])
return np.histogram(v, bins, range) | return distribution of STE intensity | entailment |
def toUIntArray(img, dtype=None, cutNegative=True, cutHigh=True,
range=None, copy=True):
'''
transform a float to an unsigned integer array of a fitting dtype
adds an offset, to get rid of negative values
range = (min, max) - scale values between given range
cutNegative - all values <0 will be set to 0
cutHigh - set to False to rather scale values to fit
'''
mn, mx = None, None
if range is not None:
mn, mx = range
if dtype is None:
if mx is None:
mx = np.nanmax(img)
dtype = np.uint16 if mx > 255 else np.uint8
dtype = np.dtype(dtype)
if dtype == img.dtype:
return img
# get max px value:
b = {'uint8': 255,
'uint16': 65535,
'uint32': 4294967295,
'uint64': 18446744073709551615}[dtype.name]
if copy:
img = img.copy()
if range is not None:
img = np.asfarray(img)
img -= mn
# img[img<0]=0
# print np.nanmin(img), np.nanmax(img), mn, mx, range, b
img *= b / (mx - mn)
# print np.nanmin(img), np.nanmax(img), mn, mx, range, b
img = np.clip(img, 0, b)
else:
if cutNegative:
img[img < 0] = 0
else:
# add an offset to all values:
mn = np.min(img)
if mn < 0:
img -= mn # set minimum to 0
if cutHigh:
#ind = img > b
img[img > b] = b
else:
# scale values
mx = np.nanmax(img)
img = np.asfarray(img) * (float(b) / mx)
img = img.astype(dtype)
# if range is not None and cutHigh:
# img[ind] = b
return img | transform a float to an unsigned integer array of a fitting dtype
adds an offset, to get rid of negative values
range = (min, max) - scale values between given range
cutNegative - all values <0 will be set to 0
cutHigh - set to False to rather scale values to fit | entailment |
def toFloatArray(img):
'''
transform an unsigned integer array into a
float array of the right size
'''
_D = {1: np.float32, # uint8
2: np.float32, # uint16
4: np.float64, # uint32
8: np.float64} # uint64
return img.astype(_D[img.itemsize]) | transform an unsigned integer array into a
float array of the right size | entailment |
def toNoUintArray(arr):
'''
cast array to the next higher integer array
if dtype=unsigned integer
'''
d = arr.dtype
if d.kind == 'u':
arr = arr.astype({1: np.int16,
2: np.int32,
4: np.int64}[d.itemsize])
return arr | cast array to the next higher integer array
if dtype=unsigned integer | entailment |
def toGray(img):
'''
weights see
https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-prese
http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor
'''
return np.average(img, axis=-1, weights=(0.299, # red
0.587, # green
0.114) # blue
).astype(img.dtype) | weights see
https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-prese
http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor | entailment |
def rgChromaticity(img):
'''
returns the normalized RGB space (RGB/intensity)
see https://en.wikipedia.org/wiki/Rg_chromaticity
'''
out = _calc(img)
if img.dtype == np.uint8:
out = (255 * out).astype(np.uint8)
return out | returns the normalized RGB space (RGB/intensity)
see https://en.wikipedia.org/wiki/Rg_chromaticity | entailment |
def monochromaticWavelength(img):
'''
TODO##########
'''
# peak wave lengths: https://en.wikipedia.org/wiki/RGB_color_model
out = _calc(img)
peakWavelengths = (570, 540, 440) # (r,g,b)
# s = sum(peakWavelengths)
for n, p in enumerate(peakWavelengths):
out[..., n] *= p
return out.sum(axis=2) | TODO########## | entailment |
def rot90(img):
'''
rotate one or multiple grayscale or color images 90 degrees
'''
s = img.shape
if len(s) == 3:
if s[2] in (3, 4): # color image
out = np.empty((s[1], s[0], s[2]), dtype=img.dtype)
for i in range(s[2]):
out[:, :, i] = np.rot90(img[:, :, i])
else: # mutliple grayscale
out = np.empty((s[0], s[2], s[1]), dtype=img.dtype)
for i in range(s[0]):
out[i] = np.rot90(img[i])
elif len(s) == 2: # one grayscale
out = np.rot90(img)
elif len(s) == 4 and s[3] in (3, 4): # multiple color
out = np.empty((s[0], s[2], s[1], s[3]), dtype=img.dtype)
for i in range(s[0]): # for each img
for j in range(s[3]): # for each channel
out[i, :, :, j] = np.rot90(img[i, :, :, j])
else:
NotImplemented
return out | rotate one or multiple grayscale or color images 90 degrees | entailment |
def applyColorMap(gray, cmap='flame'):
'''
like cv2.applyColorMap(im_gray, cv2.COLORMAP_*) but with different color maps
'''
# TODO:implement more cmaps
if cmap != 'flame':
raise NotImplemented
# TODO: make better
mx = 256 # if gray.dtype==np.uint8 else 65535
lut = np.empty(shape=(256, 3))
cmap = (
# taken from pyqtgraph GradientEditorItem
(0, (0, 0, 0)),
(0.2, (7, 0, 220)),
(0.5, (236, 0, 134)),
(0.8, (246, 246, 0)),
(1.0, (255, 255, 255))
)
# build lookup table:
lastval, lastcol = cmap[0]
for step, col in cmap[1:]:
val = int(step * mx)
for i in range(3):
lut[lastval:val, i] = np.linspace(
lastcol[i], col[i], val - lastval)
lastcol = col
lastval = val
s0, s1 = gray.shape
out = np.empty(shape=(s0, s1, 3), dtype=np.uint8)
for i in range(3):
out[..., i] = cv2.LUT(gray, lut[:, i])
return out | like cv2.applyColorMap(im_gray, cv2.COLORMAP_*) but with different color maps | entailment |
def _insertDateIndex(date, l):
'''
returns the index to insert the given date in a list
where each items first value is a date
'''
return next((i for i, n in enumerate(l) if n[0] < date), len(l)) | returns the index to insert the given date in a list
where each items first value is a date | entailment |
def _getFromDate(l, date):
'''
returns the index of given or best fitting date
'''
try:
date = _toDate(date)
i = _insertDateIndex(date, l) - 1
if i == -1:
return l[0]
return l[i]
except (ValueError, TypeError):
# ValueError: date invalid / TypeError: date = None
return l[0] | returns the index of given or best fitting date | entailment |
def dates(self, typ, light=None):
'''
Args:
typ: type of calibration to look for. See .coeffs.keys() for all types available
light (Optional[str]): restrict to calibrations, done given light source
Returns:
list: All calibration dates available for given typ
'''
try:
d = self._getDate(typ, light)
return [self._toDateStr(c[0]) for c in d]
except KeyError:
return [] | Args:
typ: type of calibration to look for. See .coeffs.keys() for all types available
light (Optional[str]): restrict to calibrations, done given light source
Returns:
list: All calibration dates available for given typ | entailment |
def infos(self, typ, light=None, date=None):
'''
Args:
typ: type of calibration to look for. See .coeffs.keys() for all types available
date (Optional[str]): date of calibration
Returns:
list: all infos available for given typ
'''
d = self._getDate(typ, light)
if date is None:
return [c[1] for c in d]
# TODO: not struct time, but time in ms since epoch
return _getFromDate(d, date)[1] | Args:
typ: type of calibration to look for. See .coeffs.keys() for all types available
date (Optional[str]): date of calibration
Returns:
list: all infos available for given typ | entailment |
def overview(self):
'''
Returns:
str: an overview covering all calibrations
infos and shapes
'''
c = self.coeffs
out = 'camera name: %s' % c['name']
out += '\nmax value: %s' % c['depth']
out += '\nlight spectra: %s' % c['light spectra']
out += '\ndark current:'
for (date, info, (slope, intercept), error) in c['dark current']:
out += '\n\t date: %s' % self._toDateStr(date)
out += '\n\t\t info: %s; slope:%s, intercept:%s' % (
info, slope.shape, intercept.shape)
out += '\nflat field:'
for light, vals in c['flat field'].items():
out += '\n\t light: %s' % light
for (date, info, arr, error) in vals:
out += '\n\t\t date: %s' % self._toDateStr(date)
out += '\n\t\t\t info: %s; array:%s' % (info, arr.shape)
out += '\nlens:'
for light, vals in c['lens'].items():
out += '\n\t light: %s' % light
for (date, info, coeffs) in vals:
out += '\n\t\t date: %s' % self._toDateStr(date)
out += '\n\t\t\t info: %s; coeffs:%s' % (info, coeffs)
out += '\nnoise:'
for (date, info, nlf_coeff, error) in c['noise']:
out += '\n\t date: %s' % self._toDateStr(date)
out += '\n\t\t info: %s; coeffs:%s' % (info, nlf_coeff)
out += '\nPoint spread function:'
for light, vals in c['psf'].items():
out += '\n\t light: %s' % light
for (date, info, psf) in vals:
out += '\n\t\t date: %s' % self._toDateStr(date)
out += '\n\t\t\t info: %s; shape:%s' % (info, psf.shape)
return out | Returns:
str: an overview covering all calibrations
infos and shapes | entailment |
def setCamera(self, camera_name, bit_depth=16):
'''
Args:
camera_name (str): Name of the camera
bit_depth (int): depth (bit) of the camera sensor
'''
self.coeffs['name'] = camera_name
self.coeffs['depth'] = bit_depth | Args:
camera_name (str): Name of the camera
bit_depth (int): depth (bit) of the camera sensor | entailment |
def addDarkCurrent(self, slope, intercept=None, date=None, info='', error=None):
'''
Args:
slope (np.array)
intercept (np.array)
error (numpy.array)
slope (float): dPx/dExposureTime[sec]
error (float): absolute
date (str): "DD Mon YY" e.g. "30 Nov 16"
'''
date = _toDate(date)
self._checkShape(slope)
self._checkShape(intercept)
d = self.coeffs['dark current']
if intercept is None:
data = slope
else:
data = (slope, intercept)
d.insert(_insertDateIndex(date, d), [date, info, data, error]) | Args:
slope (np.array)
intercept (np.array)
error (numpy.array)
slope (float): dPx/dExposureTime[sec]
error (float): absolute
date (str): "DD Mon YY" e.g. "30 Nov 16" | entailment |
def addNoise(self, nlf_coeff, date=None, info='', error=None):
'''
Args:
nlf_coeff (list)
error (float): absolute
info (str): additional information
date (str): "DD Mon YY" e.g. "30 Nov 16"
'''
date = _toDate(date)
d = self.coeffs['noise']
d.insert(_insertDateIndex(date, d), [date, info, nlf_coeff, error]) | Args:
nlf_coeff (list)
error (float): absolute
info (str): additional information
date (str): "DD Mon YY" e.g. "30 Nov 16" | entailment |
def addPSF(self, psf, date=None, info='', light_spectrum='visible'):
'''
add a new point spread function
'''
self._registerLight(light_spectrum)
date = _toDate(date)
f = self.coeffs['psf']
if light_spectrum not in f:
f[light_spectrum] = []
f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]),
[date, info, psf]) | add a new point spread function | entailment |
def addFlatField(self, arr, date=None, info='', error=None,
light_spectrum='visible'):
'''
light_spectrum = light, IR ...
'''
self._registerLight(light_spectrum)
self._checkShape(arr)
date = _toDate(date)
f = self.coeffs['flat field']
if light_spectrum not in f:
f[light_spectrum] = []
f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]),
[date, info, arr, error]) | light_spectrum = light, IR ... | entailment |
def addLens(self, lens, date=None, info='', light_spectrum='visible'):
'''
lens -> instance of LensDistortion or saved file
'''
self._registerLight(light_spectrum)
date = _toDate(date)
if not isinstance(lens, LensDistortion):
l = LensDistortion()
l.readFromFile(lens)
lens = l
f = self.coeffs['lens']
if light_spectrum not in f:
f[light_spectrum] = []
f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]),
[date, info, lens.coeffs]) | lens -> instance of LensDistortion or saved file | entailment |
def clearOldCalibrations(self, date=None):
'''
if not only a specific date than remove all except of the youngest calibration
'''
self.coeffs['dark current'] = [self.coeffs['dark current'][-1]]
self.coeffs['noise'] = [self.coeffs['noise'][-1]]
for light in self.coeffs['flat field']:
self.coeffs['flat field'][light] = [
self.coeffs['flat field'][light][-1]]
for light in self.coeffs['lens']:
self.coeffs['lens'][light] = [self.coeffs['lens'][light][-1]] | if not only a specific date than remove all except of the youngest calibration | entailment |
def transpose(self):
'''
transpose all calibration arrays
in case different array shape orders were used (x,y) vs. (y,x)
'''
def _t(item):
if type(item) == list:
for n, it in enumerate(item):
if type(it) == tuple:
it = list(it)
item[n] = it
if type(it) == list:
_t(it)
if isinstance(it, np.ndarray) and it.shape == s:
item[n] = it.T
s = self.coeffs['shape']
for item in self.coeffs.values():
if type(item) == dict:
for item2 in item.values():
_t(item2)
else:
_t(item)
self.coeffs['shape'] = s[::-1] | transpose all calibration arrays
in case different array shape orders were used (x,y) vs. (y,x) | entailment |
def correct(self, images,
bgImages=None,
exposure_time=None,
light_spectrum=None,
threshold=0.1,
keep_size=True,
date=None,
deblur=False,
denoise=False):
'''
exposure_time [s]
date -> string e.g. '30. Nov 15' to get a calibration on from date
-> {'dark current':'30. Nov 15',
'flat field':'15. Nov 15',
'lens':'14. Nov 15',
'noise':'01. Nov 15'}
'''
print('CORRECT CAMERA ...')
if isinstance(date, string_types) or date is None:
date = {'dark current': date,
'flat field': date,
'lens': date,
'noise': date,
'psf': date}
if light_spectrum is None:
try:
light_spectrum = self.coeffs['light spectra'][0]
except IndexError:
pass
# do we have multiple images?
if (type(images) in (list, tuple) or
(isinstance(images, np.ndarray) and
images.ndim == 3 and
images.shape[-1] not in (3, 4) # is color
)):
if len(images) > 1:
# 0.NOISE
n = self.coeffs['noise']
if self.noise_level_function is None and len(n):
n = _getFromDate(n, date['noise'])[2]
self.noise_level_function = lambda x: NoiseLevelFunction.boundedFunction(
x, *n)
print('... remove single-time-effects from images ')
# 1. STE REMOVAL ONLY IF >=2 IMAGES ARE GIVEN:
ste = SingleTimeEffectDetection(images, nStd=4,
noise_level_function=self.noise_level_function)
image = ste.noSTE
if self.noise_level_function is None:
self.noise_level_function = ste.noise_level_function
else:
image = np.asfarray(imread(images[0], dtype=np.float))
else:
image = np.asfarray(imread(images, dtype=np.float))
self._checkShape(image)
self.last_light_spectrum = light_spectrum
self.last_img = image
# 2. BACKGROUND REMOVAL
try:
self._correctDarkCurrent(image, exposure_time, bgImages,
date['dark current'])
except Exception as errm:
print('Error: %s' % errm)
# 3. VIGNETTING/SENSITIVITY CORRECTION:
try:
self._correctVignetting(image, light_spectrum,
date['flat field'])
except Exception as errm:
print('Error: %s' % errm)
# 4. REPLACE DECECTIVE PX WITH MEDIAN FILTERED FALUE
if threshold > 0:
print('... remove artefacts')
try:
image = self._correctArtefacts(image, threshold)
except Exception as errm:
print('Error: %s' % errm)
# 5. DEBLUR
if deblur:
print('... remove blur')
try:
image = self._correctBlur(image, light_spectrum, date['psf'])
except Exception as errm:
print('Error: %s' % errm)
# 5. LENS CORRECTION:
try:
image = self._correctLens(image, light_spectrum, date['lens'],
keep_size)
except TypeError:
'Error: no lens calibration found'
except Exception as errm:
print('Error: %s' % errm)
# 6. Denoise
if denoise:
print('... denoise ... this might take some time')
image = self._correctNoise(image)
print('DONE')
return image | exposure_time [s]
date -> string e.g. '30. Nov 15' to get a calibration on from date
-> {'dark current':'30. Nov 15',
'flat field':'15. Nov 15',
'lens':'14. Nov 15',
'noise':'01. Nov 15'} | entailment |
def _correctNoise(self, image):
'''
denoise using non-local-means
with guessing best parameters
'''
from skimage.restoration import denoise_nl_means # save startup time
image[np.isnan(image)] = 0 # otherwise result =nan
out = denoise_nl_means(image,
patch_size=7,
patch_distance=11,
#h=signalStd(image) * 0.1
)
return out | denoise using non-local-means
with guessing best parameters | entailment |
def _correctDarkCurrent(self, image, exposuretime, bgImages, date):
'''
open OR calculate a background image: f(t)=m*t+n
'''
# either exposureTime or bgImages has to be given
# if exposuretime is not None or bgImages is not None:
print('... remove dark current')
if bgImages is not None:
if (type(bgImages) in (list, tuple) or
(isinstance(bgImages, np.ndarray) and
bgImages.ndim == 3)):
if len(bgImages) > 1:
# if multiple images are given: do STE removal:
nlf = self.noise_level_function
bg = SingleTimeEffectDetection(
bgImages, nStd=4,
noise_level_function=nlf).noSTE
else:
bg = imread(bgImages[0])
else:
bg = imread(bgImages)
else:
bg = self.calcDarkCurrent(exposuretime, date)
self.temp['bg'] = bg
image -= bg | open OR calculate a background image: f(t)=m*t+n | entailment |
def _correctArtefacts(self, image, threshold):
'''
Apply a thresholded median replacing high gradients
and values beyond the boundaries
'''
image = np.nan_to_num(image)
medianThreshold(image, threshold, copy=False)
return image | Apply a thresholded median replacing high gradients
and values beyond the boundaries | entailment |
def getCoeff(self, name, light=None, date=None):
'''
try to get calibration for right light source, but
use another if they is none existent
'''
d = self.coeffs[name]
try:
c = d[light]
except KeyError:
try:
k, i = next(iter(d.items()))
if light is not None:
print(
'no calibration found for [%s] - using [%s] instead' % (light, k))
except StopIteration:
return None
c = i
except TypeError:
# coeff not dependent on light source
c = d
return _getFromDate(c, date) | try to get calibration for right light source, but
use another if they is none existent | entailment |
def vignettingFromRandomSteps(imgs, bg, inPlane_scale_factor=None,
debugFolder=None, **kwargs):
'''
important: first image should shown most iof the device
because it is used as reference
'''
# TODO: inPlane_scale_factor
if debugFolder:
debugFolder = PathStr(debugFolder)
s = ObjectVignettingSeparation(imgs[0], bg, **kwargs)
for img in imgs[1:]:
fit = s.addImg(img)
if debugFolder and fit is not False:
imwrite(debugFolder.join('fit_%s.tiff' % len(s.fits)), fit)
if debugFolder:
imwrite(debugFolder.join('init.tiff'), s.flatField)
smoothed_ff, mask, flatField, obj = s.separate()
if debugFolder:
imwrite(debugFolder.join('object.tiff'), obj)
imwrite(debugFolder.join('flatfield.tiff'), flatField, dtype=float)
imwrite(debugFolder.join('flatfield_smoothed.tiff'), smoothed_ff,
dtype=float)
return smoothed_ff, mask | important: first image should shown most iof the device
because it is used as reference | entailment |
def addImg(self, img, maxShear=0.015, maxRot=100, minMatches=12,
borderWidth=3): # borderWidth=100
"""
Args:
img (path or array): image containing the same object as in the reference image
Kwargs:
maxShear (float): In order to define a good fit, refect higher shear values between
this and the reference image
maxRot (float): Same for rotation
minMatches (int): Minimum of mating points found in both, this and the reference image
"""
try:
fit, img, H, H_inv, nmatched = self._fitImg(img)
except Exception as e:
print(e)
return
# CHECK WHETHER FIT IS GOOD ENOUGH:
(translation, rotation, scale, shear) = decompHomography(H)
print('Homography ...\n\ttranslation: %s\n\trotation: %s\n\tscale: %s\n\tshear: %s'
% (translation, rotation, scale, shear))
if (nmatched > minMatches
and abs(shear) < maxShear
and abs(rotation) < maxRot):
print('==> img added')
# HOMOGRAPHY:
self.Hs.append(H)
# INVERSE HOMOGRSAPHY
self.Hinvs.append(H_inv)
# IMAGES WARPED TO THE BASE IMAGE
self.fits.append(fit)
# ADD IMAGE TO THE INITIAL flatField ARRAY:
i = img > self.signal_ranges[-1][0]
# remove borders (that might have erroneous light):
i = minimum_filter(i, borderWidth)
self._ff_mma.update(img, i)
# create fit img mask:
mask = fit < self.signal_ranges[-1][0]
mask = maximum_filter(mask, borderWidth)
# IGNORE BORDER
r = self.remove_border_size
if r:
mask[:r, :] = 1
mask[-r:, :] = 1
mask[:, -r:] = 1
mask[:, :r] = 1
self._fit_masks.append(mask)
# image added
return fit
return False | Args:
img (path or array): image containing the same object as in the reference image
Kwargs:
maxShear (float): In order to define a good fit, refect higher shear values between
this and the reference image
maxRot (float): Same for rotation
minMatches (int): Minimum of mating points found in both, this and the reference image | entailment |
def error(self, nCells=15):
'''
calculate the standard deviation of all fitted images,
averaged to a grid
'''
s0, s1 = self.fits[0].shape
aR = s0 / s1
if aR > 1:
ss0 = int(nCells)
ss1 = int(ss0 / aR)
else:
ss1 = int(nCells)
ss0 = int(ss1 * aR)
L = len(self.fits)
arr = np.array(self.fits)
arr[np.array(self._fit_masks)] = np.nan
avg = np.tile(np.nanmean(arr, axis=0), (L, 1, 1))
arr = (arr - avg) / avg
out = np.empty(shape=(L, ss0, ss1))
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
for n, f in enumerate(arr):
out[n] = subCell2DFnArray(f, np.nanmean, (ss0, ss1))
return np.nanmean(out**2)**0.5 | calculate the standard deviation of all fitted images,
averaged to a grid | entailment |
def _fitImg(self, img):
'''
fit perspective and size of the input image to the reference image
'''
img = imread(img, 'gray')
if self.bg is not None:
img = cv2.subtract(img, self.bg)
if self.lens is not None:
img = self.lens.correct(img, keepSize=True)
(H, _, _, _, _, _, _, n_matches) = self.findHomography(img)
H_inv = self.invertHomography(H)
s = self.obj_shape
fit = cv2.warpPerspective(img, H_inv, (s[1], s[0]))
return fit, img, H, H_inv, n_matches | fit perspective and size of the input image to the reference image | entailment |
def _findObject(self, img):
'''
Create a bounding box around the object within an image
'''
from imgProcessor.imgSignal import signalMinimum
# img is scaled already
i = img > signalMinimum(img) # img.max()/2.5
# filter noise, single-time-effects etc. from mask:
i = minimum_filter(i, 4)
return boundingBox(i) | Create a bounding box around the object within an image | entailment |
def filterVerticalLines(arr, min_line_length=4):
"""
Remove vertical lines in boolean array if linelength >=min_line_length
"""
gy = arr.shape[0]
gx = arr.shape[1]
mn = min_line_length-1
for i in range(gy):
for j in range(gx):
if arr[i,j]:
for d in range(min_line_length):
if not arr[i+d,j]:
break
if d == mn:
d = 0
while True:
if not arr[i+d,j]:
break
arr[i+d,j] = 0
d +=1 | Remove vertical lines in boolean array if linelength >=min_line_length | entailment |
def vignetting(xy, f=100, alpha=0, rot=0, tilt=0, cx=50, cy=50):
'''
Vignetting equation using the KANG-WEISS-MODEL
see http://research.microsoft.com/en-us/um/people/sbkang/publications/eccv00.pdf
f - focal length
alpha - coefficient in the geometric vignetting factor
tilt - tilt angle of a planar scene
rot - rotation angle of a planar scene
cx - image center, x
cy - image center, y
'''
x, y = xy
# distance to image center:
dist = ((x - cx)**2 + (y - cy)**2)**0.5
# OFF_AXIS ILLUMINATION FACTOR:
A = 1.0 / (1 + (dist / f)**2)**2
# GEOMETRIC FACTOR:
if alpha != 0:
G = (1 - alpha * dist)
else:
G = 1
# TILT FACTOR:
if tilt != 0:
T = tiltFactor((x, y), f, tilt, rot, (cy, cx))
else:
T = 1
return A * G * T | Vignetting equation using the KANG-WEISS-MODEL
see http://research.microsoft.com/en-us/um/people/sbkang/publications/eccv00.pdf
f - focal length
alpha - coefficient in the geometric vignetting factor
tilt - tilt angle of a planar scene
rot - rotation angle of a planar scene
cx - image center, x
cy - image center, y | entailment |
def tiltFactor(xy, f, tilt, rot, center=None):
'''
this function is extra to only cover vignetting through perspective distortion
f - focal length [px]
tau - tilt angle of a planar scene [radian]
rot - rotation angle of a planar scene [radian]
'''
x, y = xy
arr = np.cos(tilt) * (
1 + (np.tan(tilt) / f) * (
x * np.sin(rot) - y * np.cos(rot)))**3
return arr | this function is extra to only cover vignetting through perspective distortion
f - focal length [px]
tau - tilt angle of a planar scene [radian]
rot - rotation angle of a planar scene [radian] | entailment |
def imgAverage(images, copy=True):
'''
returns an image average
works on many, also unloaded images
minimises RAM usage
'''
i0 = images[0]
out = imread(i0, dtype='float')
if copy and id(i0) == id(out):
out = out.copy()
for i in images[1:]:
out += imread(i, dtype='float')
out /= len(images)
return out | returns an image average
works on many, also unloaded images
minimises RAM usage | entailment |
def offsetMeshgrid(offset, grid, shape):
'''
Imagine you have cell averages [grid] on an image.
the top-left position of [grid] within the image
can be variable [offset]
offset(x,y)
e.g.(0,0) if no offset
grid(nx,ny) resolution of smaller grid
shape(x,y) -> output shape
returns meshgrid to be used to upscale [grid] to [shape] resolution
'''
g0,g1 = grid
s0,s1 = shape
o0, o1 = offset
#rescale to small grid:
o0 = - o0/ s0 * (g0-1)
o1 = - o1/ s1 * (g1-1)
xx,yy = np.meshgrid(np.linspace(o1, o1+g1-1, s1),
np.linspace(o0,o0+g0-1, s0))
return yy,xx | Imagine you have cell averages [grid] on an image.
the top-left position of [grid] within the image
can be variable [offset]
offset(x,y)
e.g.(0,0) if no offset
grid(nx,ny) resolution of smaller grid
shape(x,y) -> output shape
returns meshgrid to be used to upscale [grid] to [shape] resolution | entailment |
def poisson(x, a, b, c, d=0):
'''
Poisson function
a -> height of the curve's peak
b -> position of the center of the peak
c -> standard deviation
d -> offset
'''
from scipy.misc import factorial #save startup time
lamb = 1
X = (x/(2*c)).astype(int)
return a * (( lamb**X/factorial(X)) * np.exp(-lamb) ) +d | Poisson function
a -> height of the curve's peak
b -> position of the center of the peak
c -> standard deviation
d -> offset | entailment |
def rotate(image, angle, interpolation=cv2.INTER_CUBIC,
borderMode=cv2.BORDER_REFLECT, borderValue=0):
'''
angle [deg]
'''
s0, s1 = image.shape
image_center = (s0 - 1) / 2., (s1 - 1) / 2.
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
result = cv2.warpAffine(image, rot_mat, image.shape,
flags=interpolation, borderMode=borderMode,
borderValue=borderValue)
return result | angle [deg] | entailment |
def adjustUncertToExposureTime(facExpTime, uncertMap, evtLenMap):
'''
Adjust image uncertainty (measured at exposure time t0)
to new exposure time
facExpTime --> new exp.time / reference exp.time =(t/t0)
uncertMap --> 2d array mapping image uncertainty
evtLen --> 2d array mapping event duration within image [sec]
event duration is relative to exposure time
e.g. duration = 2 means event is 2x longer than
exposure time
More information can be found at ...
----
K.Bedrich: Quantitative Electroluminescence Imaging, PhD Thesis, 2017
Subsection 5.1.4.3: Exposure Time Dependency
----
'''
#fit parameters, obtained from ####[simulateUncertDependencyOnExpTime]
params = np.array(
#a facExpTime f_0 f_inf
[[ 2.63017121e+00, 3.05873627e-01, 1.00000000e+01, 2.78233309e-01],
[ 2.26467931e+00, 2.86206621e-01, 8.01396977e+00, 2.04089232e-01],
[ 1.27361168e+00, 5.18377189e-01, 3.04180084e+00, 2.61396338e-01],
[ 7.34546040e-01, 7.34549823e-01, 1.86507345e+00, 2.77563156e-01],
[ 3.82715618e-01, 9.32410141e-01, 1.34510254e+00, 2.91228149e-01],
[ 1.71166071e-01, 1.14092885e+00, 1.11243702e+00, 3.07947386e-01],
[ 6.13455410e-02, 1.43802520e+00, 1.02995065e+00, 3.93920802e-01],
[ 1.65383071e-02, 1.75605076e+00, 1.00859395e+00, 5.02132321e-01],
[ 4.55800114e-03, 1.99855711e+00, 9.98819118e-01, 5.99572776e-01]])
#event duration relative to exposure time:(1/16...16)
dur = np.array([ 0.0625, 0.125 , 0.25 ,
0.5 , 1. , 2. ,
4. , 8. , 16. ])
#get factors from interpolation:
a = UnivariateSpline(dur, params[:, 0], k=3, s=0)
b = UnivariateSpline(dur, params[:, 1], k=3, s=0)
start = UnivariateSpline(dur, params[:, 2], k=3, s=0)
end = UnivariateSpline(dur, params[:, 3], k=3, s=0)
p0 = a(evtLenMap), b(evtLenMap), start(evtLenMap), end(evtLenMap)
#uncertainty for new exposure time:
out = uncertMap * _fitfn(facExpTime, *p0)
# everywhere where there ARE NO EVENTS --> scale uncert. as if would
# be normal distributed:
i = evtLenMap == 0
out[i] = uncertMap[i] * (1 / facExpTime)**0.5
return out | Adjust image uncertainty (measured at exposure time t0)
to new exposure time
facExpTime --> new exp.time / reference exp.time =(t/t0)
uncertMap --> 2d array mapping image uncertainty
evtLen --> 2d array mapping event duration within image [sec]
event duration is relative to exposure time
e.g. duration = 2 means event is 2x longer than
exposure time
More information can be found at ...
----
K.Bedrich: Quantitative Electroluminescence Imaging, PhD Thesis, 2017
Subsection 5.1.4.3: Exposure Time Dependency
---- | entailment |
def gaussian(x, a, b, c, d=0):
'''
a -> height of the curve's peak
b -> position of the center of the peak
c -> standard deviation or Gaussian RMS width
d -> offset
'''
return a * np.exp( -(((x-b)**2 )/ (2*(c**2))) ) + d | a -> height of the curve's peak
b -> position of the center of the peak
c -> standard deviation or Gaussian RMS width
d -> offset | entailment |
def videoWrite(path, imgs, levels=None, shape=None, frames=15,
annotate_names=None,
lut=None, updateFn=None):
'''
TODO
'''
frames = int(frames)
if annotate_names is not None:
assert len(annotate_names) == len(imgs)
if levels is None:
if imgs[0].dtype == np.uint8:
levels = 0, 255
elif imgs[0].dtype == np.uint16:
levels = 0, 2**16 - 1
else:
levels = np.min(imgs), np.max(imgs)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
h, w = imgs.shape[1:3]
if shape and shape != (h, w):
h, w = shape
imgs = [cv2.resize(i, (w, h)) for i in imgs]
assert path[-3:] in ('avi',
'png'), 'video export only supports *.avi or *.png'
isVideo = path[-3:] == 'avi'
if isVideo:
cap = cv2.VideoCapture(0)
# im.ndim==4)
out = cv2.VideoWriter(path, fourcc, frames, (w, h), isColor=1)
times = np.linspace(0, len(imgs) - 1, len(imgs) * frames)
interpolator = LinearInterpolateImageStack(imgs)
if lut is not None:
lut = lut(imgs[0])
for n, time in enumerate(times):
if updateFn:
# update progress:
updateFn.emit(100 * n / len(times))
image = interpolator(time)
cimg = makeRGBA(image, lut=lut,
levels=levels)[0]
cimg = cv2.cvtColor(cimg, cv2.COLOR_RGBA2BGR)
if annotate_names:
text = annotate_names[n // frames]
alpha = 0.5
org = (0, cimg.shape[0])
fontFace = cv2.FONT_HERSHEY_PLAIN
fontScale = 2
thickness = 3
putTextAlpha(cimg, text, alpha, org, fontFace, fontScale,
(0, 255, 0), thickness
)
if isVideo:
out.write(cimg)
else:
cv2.imwrite('%s_%i_%.3f.png' % (path[:-4], n, time), cimg)
if isVideo:
cap.release()
out.release() | TODO | entailment |
def imread(img, color=None, dtype=None):
'''
dtype = 'noUint', uint8, float, 'float', ...
'''
COLOR2CV = {'gray': cv2.IMREAD_GRAYSCALE,
'all': cv2.IMREAD_COLOR,
None: cv2.IMREAD_ANYCOLOR
}
c = COLOR2CV[color]
if callable(img):
img = img()
elif isinstance(img, string_types):
# from_file = True
# try:
# ftype = img[img.find('.'):]
# img = READERS[ftype](img)[0]
# except KeyError:
# open with openCV
# grey - 8 bit
if dtype in (None, "noUint") or np.dtype(dtype) != np.uint8:
c |= cv2.IMREAD_ANYDEPTH
img2 = cv2.imread(img, c)
if img2 is None:
raise IOError("image '%s' is not existing" % img)
img = img2
elif color == 'gray' and img.ndim == 3: # multi channel img like rgb
# cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #cannot handle float64
img = toGray(img)
# transform array to uint8 array due to openCV restriction
if dtype is not None:
if isinstance(img, np.ndarray):
img = _changeArrayDType(img, dtype, cutHigh=False)
return img | dtype = 'noUint', uint8, float, 'float', ... | entailment |
def addImg(self, img, roi=None):
'''
img - background, flat field, ste corrected image
roi - [(x1,y1),...,(x4,y4)] - boundaries where points are
'''
self.img = imread(img, 'gray')
s0, s1 = self.img.shape
if roi is None:
roi = ((0, 0), (s0, 0), (s0, s1), (0, s1))
k = self.kernel_size
hk = k // 2
# mask image
img2 = self.img.copy() # .astype(int)
mask = np.zeros(self.img.shape)
cv2.fillConvexPoly(mask, np.asarray(roi, dtype=np.int32), color=1)
mask = mask.astype(bool)
im = img2[mask]
bg = im.mean() # assume image average with in roi == background
mask = ~mask
img2[mask] = -1
# find points from local maxima:
self.points = np.zeros(shape=(self.max_points, 2), dtype=int)
thresh = 0.8 * bg + 0.2 * im.max()
_findPoints(img2, thresh, self.min_dist, self.points)
self.points = self.points[:np.argmin(self.points, axis=0)[0]]
# correct point position, to that every point is over max value:
for n, p in enumerate(self.points):
sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1]
i, j = np.unravel_index(np.nanargmax(sub), sub.shape)
self.points[n] += [j - hk, i - hk]
# remove points that are too close to their neighbour or the border
mask = maximum_filter(mask, hk)
i = np.ones(self.points.shape[0], dtype=bool)
for n, p in enumerate(self.points):
if mask[p[1], p[0]]: # too close to border
i[n] = False
else:
# too close to other points
for pp in self.points[n + 1:]:
if norm(p - pp) < hk + 1:
i[n] = False
isum = i.sum()
ll = len(i) - isum
print('found %s points' % isum)
if ll:
print(
'removed %s points (too close to border or other points)' %
ll)
self.points = self.points[i]
# self.n_points += len(self.points)
# for finding best peak position:
# def fn(xy,cx,cy):#par
# (x,y) = xy
# return 1-(((x-cx)**2 + (y-cy)**2)*(1/8)).flatten()
# x,y = np.mgrid[-2:3,-2:3]
# x = x.flatten()
# y = y.flatten()
# for shifting peak:
xx, yy = np.mgrid[0:k, 0:k]
xx = xx.astype(float)
yy = yy.astype(float)
self.subs = []
# import pylab as plt
# plt.figure(20)
# img = self.drawPoints()
# plt.imshow(img, interpolation='none')
# # plt.figure(21)
# # plt.imshow(sub2, interpolation='none')
# plt.show()
#thresh = 0.8*bg + 0.1*im.max()
for i, p in enumerate(self.points):
sub = self.img[p[1] - hk:p[1] + hk + 1,
p[0] - hk:p[0] + hk + 1].astype(float)
sub2 = sub.copy()
mean = sub2.mean()
mx = sub2.max()
sub2[sub2 < 0.5 * (mean + mx)] = 0 # only select peak
try:
# SHIFT SUB ARRAY to align peak maximum exactly in middle:
# only eval a 5x5 array in middle of sub:
# peak = sub[hk-3:hk+4,hk-3:hk+4]#.copy()
# peak -= peak.min()
# peak/=peak.max()
# peak = peak.flatten()
# fit paraboloid to get shift in x,y:
# p, _ = curve_fit(fn, (x,y), peak, (0,0))
c0, c1 = center_of_mass(sub2)
# print (p,c0,c1,hk)
#coords = np.array([xx+p[0],yy+p[1]])
coords = np.array([xx + (c0 - hk), yy + (c1 - hk)])
#print (c0,c1)
#import pylab as plt
#plt.imshow(sub2, interpolation='none')
# shift array:
sub = map_coordinates(sub, coords,
mode='nearest').reshape(k, k)
# plt.figure(2)
#plt.imshow(sub, interpolation='none')
# plt.show()
#normalize:
bg = 0.25* ( sub[0].mean() + sub[-1].mean()
+ sub[:,0].mean() + sub[:,-1].mean())
sub-=bg
sub /= sub.max()
# import pylab as plt
# plt.figure(20)
# plt.imshow(sub, interpolation='none')
# # plt.figure(21)
# # plt.imshow(sub2, interpolation='none')
# plt.show()
self._psf += sub
if self.calc_std:
self.subs.append(sub)
except ValueError:
pass | img - background, flat field, ste corrected image
roi - [(x1,y1),...,(x4,y4)] - boundaries where points are | entailment |
def interpolate2dStructuredFastIDW(grid, mask, kernel=15, power=2,
minnvals=5):
'''
FASTER IMPLEMENTATION OF interpolate2dStructuredIDW
replace all values in [grid] indicated by [mask]
with the inverse distance weighted interpolation of all values within
px+-kernel
[power] -> distance weighting factor: 1/distance**[power]
[minvals] -> minimum number of neighbour values to find until
interpolation stops
'''
indices, dist = growPositions(kernel)
weights = 1 / dist**(0.5 * power)
return _calc(grid, mask, indices, weights, minnvals - 1) | FASTER IMPLEMENTATION OF interpolate2dStructuredIDW
replace all values in [grid] indicated by [mask]
with the inverse distance weighted interpolation of all values within
px+-kernel
[power] -> distance weighting factor: 1/distance**[power]
[minvals] -> minimum number of neighbour values to find until
interpolation stops | entailment |
def linearBlend(img1, img2, overlap, backgroundColor=None):
'''
Stitch 2 images vertically together.
Smooth the overlap area of both images with a linear fade from img1 to img2
@param img1: numpy.2dArray
@param img2: numpy.2dArray of the same shape[1,2] as img1
@param overlap: number of pixels both images overlap
@returns: stitched-image
'''
(sizex, sizey) = img1.shape[:2]
overlapping = True
if overlap < 0:
overlapping = False
overlap = -overlap
# linear transparency change:
alpha = np.tile(np.expand_dims(np.linspace(1, 0, overlap), 1), sizey)
if len(img2.shape) == 3: # multi channel img like rgb
# make alpha 3d with n channels
alpha = np.dstack(([alpha for _ in range(img2.shape[2])]))
if overlapping:
img1_cut = img1[sizex - overlap:sizex, :]
img2_cut = img2[0:overlap, :]
else:
# take average of last 5 rows:
img1_cut = np.tile(img1[-min(sizex, 5):, :].mean(
axis=0), (overlap, 1)).reshape(alpha.shape)
img2_cut = np.tile(img2[:min(img2.shape[0], 5), :].mean(
axis=0), (overlap, 1)).reshape(alpha.shape)
# fill intermediate area as mixture of both images
#################bg transparent############
inter = (img1_cut * alpha + img2_cut * (1 - alpha)).astype(img1.dtype)
# set background areas to value of respective other img:
if backgroundColor is not None:
mask = np.logical_and(img1_cut == backgroundColor,
img2_cut != backgroundColor)
inter[mask] = img2_cut[mask]
mask = np.logical_and(img2_cut == backgroundColor,
img1_cut != backgroundColor)
inter[mask] = img1_cut[mask]
if not overlapping:
overlap = 0
return np.vstack((img1[0:sizex - overlap, :],
inter,
img2[overlap:, :])) | Stitch 2 images vertically together.
Smooth the overlap area of both images with a linear fade from img1 to img2
@param img1: numpy.2dArray
@param img2: numpy.2dArray of the same shape[1,2] as img1
@param overlap: number of pixels both images overlap
@returns: stitched-image | entailment |
def interpolate2dStructuredPointSpreadIDW(grid, mask, kernel=15, power=2,
maxIter=1e5, copy=True):
'''
same as interpolate2dStructuredIDW but using the point spread method
this is faster if there are bigger connected masked areas and the border
length is smaller
replace all values in [grid] indicated by [mask]
with the inverse distance weighted interpolation of all values within
px+-kernel
[power] -> distance weighting factor: 1/distance**[power]
[copy] -> False: a bit faster, but modifies 'grid' and 'mask'
'''
assert grid.shape == mask.shape, 'grid and mask shape are different'
border = np.zeros(shape=mask.shape, dtype=np.bool)
if copy:
# copy mask as well because if will be modified later:
mask = mask.copy()
grid = grid.copy()
return _calc(grid, mask, border, kernel, power, maxIter) | same as interpolate2dStructuredIDW but using the point spread method
this is faster if there are bigger connected masked areas and the border
length is smaller
replace all values in [grid] indicated by [mask]
with the inverse distance weighted interpolation of all values within
px+-kernel
[power] -> distance weighting factor: 1/distance**[power]
[copy] -> False: a bit faster, but modifies 'grid' and 'mask' | entailment |
def SNRaverage(snr, method='average', excludeBackground=True,
checkBackground=True,
backgroundLevel=None):
'''
average a signal-to-noise map
:param method: ['average','X75', 'RMS', 'median'] - X75: this SNR will be exceeded by 75% of the signal
:type method: str
:param checkBackground: check whether there is actually a background level to exclude
:type checkBackground: bool
:returns: averaged SNR as float
'''
if excludeBackground:
# get background level
if backgroundLevel is None:
try:
f = FitHistogramPeaks(snr).fitParams
if checkBackground:
if not hasBackground(f):
excludeBackground = False
if excludeBackground:
backgroundLevel = getSignalMinimum(f)
except (ValueError, AssertionError):
backgroundLevel = snr.min()
if excludeBackground:
snr = snr[snr >= backgroundLevel]
if method == 'RMS':
avg = (snr**2).mean()**0.5
elif method == 'average':
avg = snr.mean()
# if np.isnan(avg):
# avg = np.nanmean(snr)
elif method == 'median':
avg = np.median(snr)
# if np.isnan(avg):
# avg = np.nanmedian(snr)
elif method == 'X75':
r = (snr.min(), snr.max())
hist, bin_edges = np.histogram(snr, bins=2 * int(r[1] - r[0]), range=r)
hist = np.asfarray(hist) / hist.sum()
cdf = np.cumsum(hist)
i = np.argmax(cdf > 0.25)
avg = bin_edges[i]
else:
raise NotImplemented("given SNR average doesn't exist")
return avg | average a signal-to-noise map
:param method: ['average','X75', 'RMS', 'median'] - X75: this SNR will be exceeded by 75% of the signal
:type method: str
:param checkBackground: check whether there is actually a background level to exclude
:type checkBackground: bool
:returns: averaged SNR as float | entailment |
def maskedConvolve(arr, kernel, mask, mode='reflect'):
'''
same as scipy.ndimage.convolve but is only executed on mask==True
... which should speed up everything
'''
arr2 = extendArrayForConvolution(arr, kernel.shape, modex=mode, modey=mode)
print(arr2.shape)
out = np.zeros_like(arr)
return _calc(arr2, kernel, mask, out) | same as scipy.ndimage.convolve but is only executed on mask==True
... which should speed up everything | entailment |
def SNR(img1, img2=None, bg=None,
noise_level_function=None,
constant_noise_level=False,
imgs_to_be_averaged=False):
'''
Returns a signal-to-noise-map
uses algorithm as described in BEDRICH 2016 JPV (not jet published)
:param constant_noise_level: True, to assume noise to be constant
:param imgs_to_be_averaged: True, if SNR is for average(img1, img2)
'''
# dark current subtraction:
img1 = np.asfarray(img1)
if bg is not None:
img1 = img1 - bg
# SIGNAL:
if img2 is not None:
img2_exists = True
img2 = np.asfarray(img2) - bg
# signal as average on both images
signal = 0.5 * (img1 + img2)
else:
img2_exists = False
signal = img1
# denoise:
signal = median_filter(signal, 3)
# NOISE
if constant_noise_level:
# CONSTANT NOISE
if img2_exists:
d = img1 - img2
# 0.5**0.5 because of sum of variances
noise = 0.5**0.5 * np.mean(np.abs((d))) * F_RMS2AAD
else:
d = (img1 - signal) * F_NOISE_WITH_MEDIAN
noise = np.mean(np.abs(d)) * F_RMS2AAD
else:
# NOISE LEVEL FUNCTION
if noise_level_function is None:
noise_level_function, _ = oneImageNLF(img1, img2, signal)
noise = noise_level_function(signal)
noise[noise < 1] = 1 # otherwise SNR could be higher than image value
if imgs_to_be_averaged:
# SNR will be higher if both given images are supposed to be averaged:
# factor of noise reduction if SNR if for average(img1, img2):
noise *= 0.5**0.5
# BACKGROUND estimation and removal if background not given:
if bg is None:
bg = getBackgroundLevel(img1)
signal -= bg
snr = signal / noise
# limit to 1, saying at these points signal=noise:
snr[snr < 1] = 1
return snr | Returns a signal-to-noise-map
uses algorithm as described in BEDRICH 2016 JPV (not jet published)
:param constant_noise_level: True, to assume noise to be constant
:param imgs_to_be_averaged: True, if SNR is for average(img1, img2) | entailment |
def sortCorners(corners):
'''
sort the corners of a given quadrilateral of the type
corners : [ [xi,yi],... ]
to an anti-clockwise order starting with the bottom left corner
or (if plotted as image where y increases to the bottom):
clockwise, starting top left
'''
corners = np.asarray(corners)
# bring edges in order:
corners2 = corners[ConvexHull(corners).vertices]
if len(corners2) == 3:
# sometimes ConvexHull one point is missing because it is
# within the hull triangle
# find the right position of set corner as the minimum perimeter
# built with that point as different indices
for c in corners:
if c not in corners2:
break
perimeter = []
for n in range(0, 4):
corners3 = np.insert(corners2, n, c, axis=0)
perimeter.append(
np.linalg.norm(
np.diff(
corners3,
axis=0),
axis=1).sum())
n = np.argmin(perimeter)
corners2 = np.insert(corners2, n, c, axis=0)
# find the edge with the right angle to the quad middle:
mn = corners2.mean(axis=0)
d = (corners2 - mn)
ascent = np.arctan2(d[:, 1], d[:, 0])
bl = np.abs(BL_ANGLE + ascent).argmin()
# build a index list starting with bl:
i = list(range(bl, 4))
i.extend(list(range(0, bl)))
return corners2[i] | sort the corners of a given quadrilateral of the type
corners : [ [xi,yi],... ]
to an anti-clockwise order starting with the bottom left corner
or (if plotted as image where y increases to the bottom):
clockwise, starting top left | entailment |
def closestDirectDistance(arr, ksize=30, dtype=np.uint16):
'''
return an array with contains the closest distance to the next positive
value given in arr within a given kernel size
'''
out = np.zeros_like(arr, dtype=dtype)
_calc(out, arr, ksize)
return out | return an array with contains the closest distance to the next positive
value given in arr within a given kernel size | entailment |
def closestConnectedDistance(target, walls=None,
max_len_border_line=500,
max_n_path=100,
concentrate_every_n_pixel=1):
'''
returns an array with contains the closest distance from every pixel
the next position where target == 1
[walls] binary 2darray - e.g. walls in a labyrinth that have to be surrounded in order to get to the target
[target] binary 2darray - positions given by 1
[concentrate_every_n_pixel] often the distance of neighbour pixels is similar
to speed up calculation set this value to e.g. 3 to calculate only
the distance for every 3. pixel and interpolate in between
recommended are values up to 3-5
[max_len_border_line]
this function calculates distances travelled using region growth
e.g.
0123
1123
2223
3333
the last steps (e.g. for all steps 3 border_line=7) are stored in an array of limited
length defined in 'max_len_border_line'
[max_n_path]
how many paths are possible between every pixel and the target
only needed if fast==False
'''
c = concentrate_every_n_pixel
assert c >= 1
if walls is None:
walls = np.zeros_like(target, dtype=bool)
s = target.shape
dt = np.uint16
if max(target.shape) < 200:
dt = np.uint8
out = np.zeros((s[0] // c, s[1] // c), dtype=dt)
# temporary arrays:
growth = np.zeros_like(target, dtype=dt)
res = np.empty(shape=3, dtype=dt)
steps = np.empty(shape=(max_len_border_line, 2), dtype=dt)
new_steps = np.empty(shape=(max_len_border_line, 2), dtype=dt)
# run calculation:
_calc(growth, out, walls, target, steps, new_steps,
res, concentrate_every_n_pixel)
if c > 1:
# if concentrate_every_n_pixel > 1
# the resized output array
# will have wrong values close to the wall
# therefore substitute all wall value (-1)
# with an average of their closest neighbours
interpolate2dStructuredIDW(out, out == 0)
out = cv2.resize(out, s[::-1])
out[walls] = 0
return out | returns an array with contains the closest distance from every pixel
the next position where target == 1
[walls] binary 2darray - e.g. walls in a labyrinth that have to be surrounded in order to get to the target
[target] binary 2darray - positions given by 1
[concentrate_every_n_pixel] often the distance of neighbour pixels is similar
to speed up calculation set this value to e.g. 3 to calculate only
the distance for every 3. pixel and interpolate in between
recommended are values up to 3-5
[max_len_border_line]
this function calculates distances travelled using region growth
e.g.
0123
1123
2223
3333
the last steps (e.g. for all steps 3 border_line=7) are stored in an array of limited
length defined in 'max_len_border_line'
[max_n_path]
how many paths are possible between every pixel and the target
only needed if fast==False | entailment |
def _grow(growth, walls, target, i, j, steps, new_steps, res):
'''
fills [res] with [distance to next position where target == 1,
x coord.,
y coord. of that position in target]
using region growth
i,j -> pixel position
growth -> a work array, needed to measure the distance
steps, new_steps -> current and last positions of the region growth steps
using this instead of looking for the right step position in [growth]
should speed up the process
'''
# clean array:
growth[:] = 0
if target[i, j]:
# pixel is in target
res[0] = 1
res[1] = i
res[2] = j
return
step = 1
s0, s1 = growth.shape
step_len = 1
new_step_ind = 0
steps[new_step_ind, 0] = i
steps[new_step_ind, 1] = j
growth[i, j] = 1
while True:
for n in range(step_len):
i, j = steps[n]
for ii, jj in DIRECT_NEIGHBOURS:
pi = i + ii
pj = j + jj
# if in image:
if 0 <= pi < s0 and 0 <= pj < s1:
# is growth array is empty and there are no walls:
# fill growth with current step
if growth[pi, pj] == 0 and not walls[pi, pj]:
growth[pi, pj] = step
if target[pi, pj]:
# found destination
res[0] = 1
res[1] = pi
res[2] = pj
return
new_steps[new_step_ind, 0] = pi
new_steps[new_step_ind, 1] = pj
new_step_ind += 1
if new_step_ind == 0:
# couldn't populate any more because growth is full
# and all possible steps are gone
res[0] = 0
return
step += 1
steps, new_steps = new_steps, steps
step_len = new_step_ind
new_step_ind = 0 | fills [res] with [distance to next position where target == 1,
x coord.,
y coord. of that position in target]
using region growth
i,j -> pixel position
growth -> a work array, needed to measure the distance
steps, new_steps -> current and last positions of the region growth steps
using this instead of looking for the right step position in [growth]
should speed up the process | entailment |
def polylinesFromBinImage(img, minimum_cluster_size=6,
remove_small_obj_size=3,
reconnect_size=3,
max_n_contours=None, max_len_contour=None,
copy=True):
'''
return a list of arrays of un-branching contours
img -> (boolean) array
optional:
---------
minimum_cluster_size -> minimum number of pixels connected together to build a contour
##search_kernel_size -> TODO
##min_search_kernel_moment -> TODO
numeric:
-------------
max_n_contours -> maximum number of possible contours in img
max_len_contour -> maximum contour length
'''
assert minimum_cluster_size > 1
assert reconnect_size % 2, 'ksize needs to be odd'
# assert search_kernel_size == 0 or search_kernel_size > 2 and search_kernel_size%2, 'kernel size needs to be odd'
# assume array size parameters, is not given:
if max_n_contours is None:
max_n_contours = max(img.shape)
if max_len_contour is None:
max_len_contour = sum(img.shape[:2])
# array containing coord. of all contours:
contours = np.zeros(shape=(max_n_contours, max_len_contour, 2),
dtype=np.uint16) # if not search_kernel_size else np.float32)
if img.dtype != np.bool:
img = img.astype(bool)
elif copy:
img = img.copy()
if remove_small_obj_size:
remove_small_objects(img, remove_small_obj_size,
connectivity=2, in_place=True)
if reconnect_size:
# remove gaps
maximum_filter(img, reconnect_size, output=img)
# reduce contour width to 1
img = skeletonize(img)
n_contours = _populateContoursArray(img, contours, minimum_cluster_size)
contours = contours[:n_contours]
l = []
for c in contours:
ind = np.zeros(shape=len(c), dtype=bool)
_getValidInd(c, ind)
# remove all empty spaces:
l.append(c[ind])
return l | return a list of arrays of un-branching contours
img -> (boolean) array
optional:
---------
minimum_cluster_size -> minimum number of pixels connected together to build a contour
##search_kernel_size -> TODO
##min_search_kernel_moment -> TODO
numeric:
-------------
max_n_contours -> maximum number of possible contours in img
max_len_contour -> maximum contour length | entailment |
def cdf(arr, pos=None):
'''
Return the cumulative density function of a given array or
its intensity at a given position (0-1)
'''
r = (arr.min(), arr.max())
hist, bin_edges = np.histogram(arr, bins=2 * int(r[1] - r[0]), range=r)
hist = np.asfarray(hist) / hist.sum()
cdf = np.cumsum(hist)
if pos is None:
return cdf
i = np.argmax(cdf > pos)
return bin_edges[i] | Return the cumulative density function of a given array or
its intensity at a given position (0-1) | entailment |
def subCell2DGenerator(arr, shape, d01=None, p01=None):
'''Generator to access evenly sized sub-cells in a 2d array
Args:
shape (tuple): number of sub-cells in y,x e.g. (10,15)
d01 (tuple, optional): cell size in y and x
p01 (tuple, optional): position of top left edge
Returns:
int: 1st index
int: 2nd index
array: sub array
Example:
>>> a = np.array([[[0,1],[1,2]],[[2,3],[3,4]]])
>>> gen = subCell2DGenerator(a,(2,2))
>>> for i,j, sub in gen: print( i,j, sub )
0 0 [[[0 1]]]
0 1 [[[1 2]]]
1 0 [[[2 3]]]
1 1 [[[3 4]]]
'''
for i, j, s0, s1 in subCell2DSlices(arr, shape, d01, p01):
yield i, j, arr[s0, s1] | Generator to access evenly sized sub-cells in a 2d array
Args:
shape (tuple): number of sub-cells in y,x e.g. (10,15)
d01 (tuple, optional): cell size in y and x
p01 (tuple, optional): position of top left edge
Returns:
int: 1st index
int: 2nd index
array: sub array
Example:
>>> a = np.array([[[0,1],[1,2]],[[2,3],[3,4]]])
>>> gen = subCell2DGenerator(a,(2,2))
>>> for i,j, sub in gen: print( i,j, sub )
0 0 [[[0 1]]]
0 1 [[[1 2]]]
1 0 [[[2 3]]]
1 1 [[[3 4]]] | entailment |
def subCell2DSlices(arr, shape, d01=None, p01=None):
'''Generator to access evenly sized sub-cells in a 2d array
Args:
shape (tuple): number of sub-cells in y,x e.g. (10,15)
d01 (tuple, optional): cell size in y and x
p01 (tuple, optional): position of top left edge
Returns:
int: 1st index
int: 2nd index
slice: first dimension
slice: 1st dimension
'''
if p01 is not None:
yinit, xinit = p01
else:
xinit, yinit = 0, 0
x, y = xinit, yinit
g0, g1 = shape
s0, s1 = arr.shape[:2]
if d01 is not None:
d0, d1 = d01
else:
d0, d1 = s0 / g0, s1 / g1
y1 = d0 + yinit
for i in range(g0):
for j in range(g1):
x1 = x + d1
yield (i, j, slice(max(0, _rint(y)),
max(0, _rint(y1))),
slice(max(0, _rint(x)),
max(0, _rint(x1))))
x = x1
y = y1
y1 = y + d0
x = xinit | Generator to access evenly sized sub-cells in a 2d array
Args:
shape (tuple): number of sub-cells in y,x e.g. (10,15)
d01 (tuple, optional): cell size in y and x
p01 (tuple, optional): position of top left edge
Returns:
int: 1st index
int: 2nd index
slice: first dimension
slice: 1st dimension | entailment |
def subCell2DCoords(*args, **kwargs):
'''Same as subCell2DSlices but returning coordinates
Example:
g = subCell2DCoords(arr, shape)
for x, y in g:
plt.plot(x, y)
'''
for _, _, s0, s1 in subCell2DSlices(*args, **kwargs):
yield ((s1.start, s1.start, s1.stop),
(s0.start, s0.stop, s0.stop)) | Same as subCell2DSlices but returning coordinates
Example:
g = subCell2DCoords(arr, shape)
for x, y in g:
plt.plot(x, y) | entailment |
def subCell2DFnArray(arr, fn, shape, dtype=None, **kwargs):
'''
Return array where every cell is the output of a given cell function
Args:
fn (function): ...to be executed on all sub-arrays
Returns:
array: value of every cell equals result of fn(sub-array)
Example:
mx = subCell2DFnArray(myArray, np.max, (10,6) )
- -> here mx is a 2d array containing all cell maxima
'''
sh = list(arr.shape)
sh[:2] = shape
out = np.empty(sh, dtype=dtype)
for i, j, c in subCell2DGenerator(arr, shape, **kwargs):
out[i, j] = fn(c)
return out | Return array where every cell is the output of a given cell function
Args:
fn (function): ...to be executed on all sub-arrays
Returns:
array: value of every cell equals result of fn(sub-array)
Example:
mx = subCell2DFnArray(myArray, np.max, (10,6) )
- -> here mx is a 2d array containing all cell maxima | entailment |
def defocusThroughDepth(u, uf, f, fn, k=2.355):
'''
return the defocus (mm std) through DOF
u -> scene point (depth value)
uf -> in-focus position (the distance at which the scene point should be placed in order to be focused)
f -> focal length
k -> camera dependent constant (transferring blur circle to PSF), 2.335 would be FHWD of 2dgaussian
fn --> f-number (relative aperture)
equation (3) taken from http://linkinghub.elsevier.com/retrieve/pii/S0031320312004736
Pertuz et.al. "Analysis of focus measure operators for shape-from-focus"
all parameter should be in same physical unit [mm]
!! assumes spatial invariant blur
'''
# A = f/fn
return (k/fn) * (f**2*abs(u-uf)) / (u*(uf-f)) | return the defocus (mm std) through DOF
u -> scene point (depth value)
uf -> in-focus position (the distance at which the scene point should be placed in order to be focused)
f -> focal length
k -> camera dependent constant (transferring blur circle to PSF), 2.335 would be FHWD of 2dgaussian
fn --> f-number (relative aperture)
equation (3) taken from http://linkinghub.elsevier.com/retrieve/pii/S0031320312004736
Pertuz et.al. "Analysis of focus measure operators for shape-from-focus"
all parameter should be in same physical unit [mm]
!! assumes spatial invariant blur | entailment |
def extendArrayForConvolution(arr, kernelXY,
modex='reflect',
modey='reflect'):
'''
extends a given array right right border handling
for convolution
-->in opposite to skimage and skipy this function
allows to chose different mode = ('reflect', 'wrap')
in x and y direction
only supports 'warp' and 'reflect' at the moment
'''
(kx, ky) = kernelXY
kx//=2
ky//=2
#indexing 0:-0 leads to empty arrays and not the whole thing
#make it easy with assuming ksize=1 and removing extra size later:
nokx = kx == 0
noky = ky == 0
if nokx:
kx = 1
if noky:
ky = 1
s0,s1 = arr.shape
assert ky < s0
assert kx < s1
arr2 = np.zeros((s0+2*ky, s1+2*kx), dtype=arr.dtype)
if kx == 0:
kx = None
arr2[ky:-ky,kx:-kx]=arr
#original array:
t = arr[:ky] #TOP
rb = arr[-1:-ky-1:-1] #reverse bottom
rt = arr[ky-1::-1] #reverse top
rr = arr[:,-1:-kx-1:-1] #reverse right
l = arr[:,:kx] #left
# rtl = arr[ky-1::-1,kx-1::-1]
#filter array:
tm2 = arr2[:ky , kx:-kx] #TOP-MIDDLE
bm2 = arr2[-ky:, kx:-kx] #BOTTOM-MIDDLE
tl2 = arr2[:ky , :kx] #TOP-LEFT
bl2 = arr2[-ky:, :kx] #BOTTOM-LEFT
tr2 = arr2[:ky:, -kx:]#TOP-RIGHT
br2 = arr2[-ky:, -kx:]#TOP-RIGHT
#fill edges:
if modey == 'warp':
tm2[:] = t
bm2[:] = rb
tl2[:] = arr2[2*ky:ky:-1,:kx]
bl2[:] = arr2[-ky-1:-2*ky-1:-1,:kx]
#TODO: do other options!!!
elif modey == 'reflect':
tm2[:] = rt
bm2[:] = rb
if modex =='reflect':
tl2[:] = arr[ky-1::-1,kx-1::-1]
bl2[:] = arr[-1:-ky-1:-1,kx-1::-1]
tr2[:] = arr[:ky,-kx:][::-1,::-1]
br2[:] = arr[-ky:,-kx:][::-1,::-1]
else:#warp
tl2[:] = arr[ky-1::-1 , -kx:]
bl2[:] = arr[-1:-ky-1:-1 , -kx:]
tr2[:] = arr[ky-1::-1 , :kx]
br2[:] = arr[-1:-ky-1:-1 , :kx]
else:
raise Exception('modey not supported')
if modex == 'wrap':
arr2[ky:-ky,kx-1::-1] = rr
arr2[ky:-ky,-kx:] = l
elif modex == 'reflect':
arr2[ky:-ky,:kx] = l[:,::-1]
arr2[ky:-ky,-kx:] = rr
else:
raise Exception('modex not supported')
if nokx:
arr2 = arr2[:,1:-1]
if noky:
arr2 = arr2[1:-1]
return arr2 | extends a given array right right border handling
for convolution
-->in opposite to skimage and skipy this function
allows to chose different mode = ('reflect', 'wrap')
in x and y direction
only supports 'warp' and 'reflect' at the moment | entailment |
def calibrate(self, board_size=(8, 6), method='Chessboard', images=[],
max_images=100, sensorSize_mm=None,
detect_sensible=True):
'''
sensorSize_mm - (width, height) [mm] Physical size of the sensor
'''
self._coeffs = {}
self.opts = {'foundPattern': [], # whether pattern could be found for image
'size': board_size,
'imgs': [], # list of either npArrsays or img paths
# list or 2d coords. of found pattern features (e.g.
# chessboard corners)
'imgPoints': []
}
self._detect_sensible = detect_sensible
self.method = {'Chessboard': self._findChessboard,
'Symmetric circles': self._findSymmetricCircles,
'Asymmetric circles': self._findAsymmetricCircles,
'Manual': None
# TODO: 'Image grid':FindGridInImage
}[method]
self.max_images = max_images
self.findCount = 0
self.apertureSize = sensorSize_mm
self.objp = self._mkObjPoints(board_size)
if method == 'Asymmetric circles':
# this pattern have its points (every 2. row) displaced, so:
i = self.objp[:, 1] % 2 == 1
self.objp[:, 0] *= 2
self.objp[i, 0] += 1
# Arrays to store object points and image points from all the images.
self.objpoints = [] # 3d point in real world space
# self.imgpoints = [] # 2d points in image plane.
self.mapx, self.mapy = None, None
# from matplotlib import pyplot as plt
for n, i in enumerate(images):
print('working on image %s' % n)
if self.addImg(i):
print('OK') | sensorSize_mm - (width, height) [mm] Physical size of the sensor | entailment |
def addPoints(self, points, board_size=None):
'''
add corner points directly instead of extracting them from
image
points = ( (0,1), (...),... ) [x,y]
'''
self.opts['foundPattern'].append(True)
self.findCount += 1
if board_size is not None:
self.objpoints.append(self._mkObjPoints(board_size))
else:
self.objpoints.append(self.objp)
s0 = points.shape[0]
self.opts['imgPoints'].append(np.asarray(points).reshape(
s0, 1, 2).astype(np.float32)) | add corner points directly instead of extracting them from
image
points = ( (0,1), (...),... ) [x,y] | entailment |
def setImgShape(self, shape):
'''
image shape must be known for calculating camera matrix
if method==Manual and addPoints is used instead of addImg
this method must be called before .coeffs are obtained
'''
self.img = type('Dummy', (object,), {})
# if imgProcessor.ARRAYS_ORDER_IS_XY:
# self.img.shape = shape[::-1]
# else:
self.img.shape = shape | image shape must be known for calculating camera matrix
if method==Manual and addPoints is used instead of addImg
this method must be called before .coeffs are obtained | entailment |
def addImgStream(self, img):
'''
add images using a continous stream
- stop when max number of images is reached
'''
if self.findCount > self.max_images:
raise EnoughImages('have enough images')
return self.addImg(img) | add images using a continous stream
- stop when max number of images is reached | entailment |
def addImg(self, img):
'''
add one chessboard image for detection lens distortion
'''
# self.opts['imgs'].append(img)
self.img = imread(img, 'gray', 'uint8')
didFindCorners, corners = self.method()
self.opts['foundPattern'].append(didFindCorners)
if didFindCorners:
self.findCount += 1
self.objpoints.append(self.objp)
self.opts['imgPoints'].append(corners)
return didFindCorners | add one chessboard image for detection lens distortion | entailment |
def getCoeffStr(self):
'''
get the distortion coeffs in a formated string
'''
txt = ''
for key, val in self.coeffs.items():
txt += '%s = %s\n' % (key, val)
return txt | get the distortion coeffs in a formated string | entailment |
def drawChessboard(self, img=None):
'''
draw a grid fitting to the last added image
on this one or an extra image
img == None
==False -> draw chessbord on empty image
==img
'''
assert self.findCount > 0, 'cannot draw chessboard if nothing found'
if img is None:
img = self.img
elif isinstance(img, bool) and not img:
img = np.zeros(shape=(self.img.shape), dtype=self.img.dtype)
else:
img = imread(img, dtype='uint8')
gray = False
if img.ndim == 2:
gray = True
# need a color 8 bit image
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# Draw and display the corners
cv2.drawChessboardCorners(img, self.opts['size'],
self.opts['imgPoints'][-1],
self.opts['foundPattern'][-1])
if gray:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img | draw a grid fitting to the last added image
on this one or an extra image
img == None
==False -> draw chessbord on empty image
==img | entailment |
def writeToFile(self, filename, saveOpts=False):
'''
write the distortion coeffs to file
saveOpts --> Whether so save calibration options (and not just results)
'''
try:
if not filename.endswith('.%s' % self.ftype):
filename += '.%s' % self.ftype
s = {'coeffs': self.coeffs}
if saveOpts:
s['opts'] = self.opts
# else:
# s['opts':{}]
np.savez(filename, **s)
return filename
except AttributeError:
raise Exception(
'need to calibrate camera before calibration can be saved to file') | write the distortion coeffs to file
saveOpts --> Whether so save calibration options (and not just results) | entailment |
def readFromFile(self, filename):
'''
read the distortion coeffs from file
'''
s = dict(np.load(filename))
try:
self.coeffs = s['coeffs'][()]
except KeyError:
#LEGENCY - remove
self.coeffs = s
try:
self.opts = s['opts'][()]
except KeyError:
pass
return self.coeffs | read the distortion coeffs from file | entailment |
def undistortPoints(self, points, keepSize=False):
'''
points --> list of (x,y) coordinates
'''
s = self.img.shape
cam = self.coeffs['cameraMatrix']
d = self.coeffs['distortionCoeffs']
pts = np.asarray(points, dtype=np.float32)
if pts.ndim == 2:
pts = np.expand_dims(pts, axis=0)
(newCameraMatrix, roi) = cv2.getOptimalNewCameraMatrix(cam,
d, s[::-1], 1,
s[::-1])
if not keepSize:
xx, yy = roi[:2]
pts[0, 0] -= xx
pts[0, 1] -= yy
return cv2.undistortPoints(pts,
cam, d, P=newCameraMatrix) | points --> list of (x,y) coordinates | entailment |
def correct(self, image, keepSize=False, borderValue=0):
'''
remove lens distortion from given image
'''
image = imread(image)
(h, w) = image.shape[:2]
mapx, mapy = self.getUndistortRectifyMap(w, h)
self.img = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=borderValue
)
if not keepSize:
xx, yy, ww, hh = self.roi
self.img = self.img[yy: yy + hh, xx: xx + ww]
return self.img | remove lens distortion from given image | entailment |
def distortImage(self, image):
'''
opposite of 'correct'
'''
image = imread(image)
(imgHeight, imgWidth) = image.shape[:2]
mapx, mapy = self.getDistortRectifyMap(imgWidth, imgHeight)
return cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR,
borderValue=(0, 0, 0)) | opposite of 'correct' | entailment |
def getCameraParams(self):
'''
value positions based on
http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html#cv.InitUndistortRectifyMap
'''
c = self.coeffs['cameraMatrix']
fx = c[0][0]
fy = c[1][1]
cx = c[0][2]
cy = c[1][2]
k1, k2, p1, p2, k3 = tuple(self.coeffs['distortionCoeffs'].tolist()[0])
return fx, fy, cx, cy, k1, k2, k3, p1, p2 | value positions based on
http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html#cv.InitUndistortRectifyMap | entailment |
def standardUncertainties(self, sharpness=0.5):
'''
sharpness -> image sharpness // std of Gaussian PSF [px]
returns a list of standard uncertainties for the x and y component:
(1x,2x), (1y, 2y), (intensity:None)
1. px-size-changes(due to deflection)
2. reprojection error
'''
height, width = self.coeffs['shape']
fx, fy = self.getDeflection(width, height)
# is RMSE of imgPoint-projectedPoints
r = self.coeffs['reprojectionError']
t = (sharpness**2 + r**2)**0.5
return fx * t, fy * t | sharpness -> image sharpness // std of Gaussian PSF [px]
returns a list of standard uncertainties for the x and y component:
(1x,2x), (1y, 2y), (intensity:None)
1. px-size-changes(due to deflection)
2. reprojection error | entailment |
def edgesFromBoolImg(arr, dtype=None):
'''
takes a binary image (usually a mask)
and returns the edges of the object inside
'''
out = np.zeros_like(arr, dtype=dtype)
_calc(arr, out)
_calc(arr.T, out.T)
return out | takes a binary image (usually a mask)
and returns the edges of the object inside | entailment |
def draw_matches(img1, kp1, img2, kp2, matches, color=None, thickness=2, r=15):
"""Draws lines between matching keypoints of two images.
Keypoints not in a matching pair are not drawn.
Places the images side by side in a new image and draws circles
around each keypoint, with line segments connecting matching pairs.
You can tweak the r, thickness, and figsize values as needed.
Args:
img1: An openCV image ndarray in a grayscale or color format.
kp1: A list of cv2.KeyPoint objects for img1.
img2: An openCV image ndarray of the same format and with the same
element type as img1.
kp2: A list of cv2.KeyPoint objects for img2.
matches: A list of DMatch objects whose trainIdx attribute refers to
img1 keypoints and whose queryIdx attribute refers to img2 keypoints.
color: The color of the circles and connecting lines drawn on the images.
A 3-tuple for color images, a scalar for grayscale images. If None, these
values are randomly generated.
"""
# We're drawing them side by side. Get dimensions accordingly.
# Handle both color and grayscale images.
if len(img1.shape) == 3:
new_shape = (max(img1.shape[0], img2.shape[0]), img1.shape[
1] + img2.shape[1], img1.shape[2])
elif len(img1.shape) == 2:
new_shape = (
max(img1.shape[0], img2.shape[0]), img1.shape[1] + img2.shape[1])
new_img = np.zeros(new_shape, type(img1.flat[0]))
# Place images onto the new image.
new_img[0:img1.shape[0], 0:img1.shape[1]] = img1
new_img[0:img2.shape[0], img1.shape[1]
:img1.shape[1] + img2.shape[1]] = img2
# Draw lines between matches. Make sure to offset kp coords in second
# image appropriately.
if color:
c = color
for m in matches:
# Generate random color for RGB/BGR and grayscale images as needed.
if not color:
c = np.random.randint(0, 256, 3) if len(
img1.shape) == 3 else np.random.randint(0, 256)
# So the keypoint locs are stored as a tuple of floats. cv2.line(), like most other things,
# wants locs as a tuple of ints.
end1 = tuple(np.round(kp1[m.trainIdx].pt).astype(int))
end2 = tuple(np.round(kp2[m.queryIdx].pt).astype(
int) + np.array([img1.shape[1], 0]))
cv2.line(new_img, end1, end2, c, thickness)
cv2.circle(new_img, end1, r, c, thickness)
cv2.circle(new_img, end2, r, c, thickness)
return new_img | Draws lines between matching keypoints of two images.
Keypoints not in a matching pair are not drawn.
Places the images side by side in a new image and draws circles
around each keypoint, with line segments connecting matching pairs.
You can tweak the r, thickness, and figsize values as needed.
Args:
img1: An openCV image ndarray in a grayscale or color format.
kp1: A list of cv2.KeyPoint objects for img1.
img2: An openCV image ndarray of the same format and with the same
element type as img1.
kp2: A list of cv2.KeyPoint objects for img2.
matches: A list of DMatch objects whose trainIdx attribute refers to
img1 keypoints and whose queryIdx attribute refers to img2 keypoints.
color: The color of the circles and connecting lines drawn on the images.
A 3-tuple for color images, a scalar for grayscale images. If None, these
values are randomly generated. | entailment |
def _scaleTo8bit(self, img):
'''
The pattern comparator need images to be 8 bit
-> find the range of the signal and scale the image
'''
r = scaleSignalCutParams(img, 0.02) # , nSigma=3)
self.signal_ranges.append(r)
return toUIntArray(img, dtype=np.uint8, range=r) | The pattern comparator need images to be 8 bit
-> find the range of the signal and scale the image | entailment |
def findHomography(self, img, drawMatches=False):
'''
Find homography of the image through pattern
comparison with the base image
'''
print("\t Finding points...")
# Find points in the next frame
img = self._prepareImage(img)
features, descs = self.detector.detectAndCompute(img, None)
######################
# TODO: CURRENTLY BROKEN IN OPENCV3.1 - WAITNG FOR NEW RELEASE 3.2
# matches = self.matcher.knnMatch(descs,#.astype(np.float32),
# self.base_descs,
# k=3)
# print("\t Match Count: ", len(matches))
# matches_subset = self._filterMatches(matches)
# its working alternative (for now):
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches_subset = bf.match(descs, self.base_descs)
######################
# matches = bf.knnMatch(descs,self.base_descs, k=2)
# # Apply ratio test
# matches_subset = []
# medDist = np.median([m.distance for m in matches])
# matches_subset = [m for m in matches if m.distance < medDist]
# for m in matches:
# print(m.distance)
# for m,n in matches:
# if m.distance < 0.75*n.distance:
# matches_subset.append([m])
if not len(matches_subset):
raise Exception('no matches found')
print("\t Filtered Match Count: ", len(matches_subset))
distance = sum([m.distance for m in matches_subset])
print("\t Distance from Key Image: ", distance)
averagePointDistance = distance / (len(matches_subset))
print("\t Average Distance: ", averagePointDistance)
kp1 = []
kp2 = []
for match in matches_subset:
kp1.append(self.base_features[match.trainIdx])
kp2.append(features[match.queryIdx])
# /self._fH #scale with _fH, if image was resized
p1 = np.array([k.pt for k in kp1])
p2 = np.array([k.pt for k in kp2]) # /self._fH
H, status = cv2.findHomography(p1, p2,
cv2.RANSAC, # method
5.0 # max reprojection error (1...10)
)
if status is None:
raise Exception('no homography found')
else:
inliers = np.sum(status)
print('%d / %d inliers/matched' % (inliers, len(status)))
inlierRatio = inliers / len(status)
if self.minInlierRatio > inlierRatio or inliers < self.minInliers:
raise Exception('bad fit!')
# scale with _fH, if image was resized
# see
# http://answers.opencv.org/question/26173/the-relationship-between-homography-matrix-and-scaling-images/
s = np.eye(3, 3)
s[0, 0] = 1 / self._fH
s[1, 1] = 1 / self._fH
H = s.dot(H).dot(np.linalg.inv(s))
if drawMatches:
# s0,s1 = img.shape
# out = np.empty(shape=(s0,s1,3), dtype=np.uint8)
img = draw_matches(self.base8bit, self.base_features, img, features,
matches_subset[:20], # None,#out,
# flags=2
thickness=5
)
return (H, inliers, inlierRatio, averagePointDistance,
img, features,
descs, len(matches_subset)) | Find homography of the image through pattern
comparison with the base image | entailment |
def patCircles(s0):
'''make circle array'''
arr = np.zeros((s0,s0), dtype=np.uint8)
col = 255
for rad in np.linspace(s0,s0/7.,10):
cv2.circle(arr, (0,0), int(round(rad)), color=col,
thickness=-1, lineType=cv2.LINE_AA )
if col:
col = 0
else:
col = 255
return arr.astype(float) | make circle array | entailment |
def patCrossLines(s0):
'''make line pattern'''
arr = np.zeros((s0,s0), dtype=np.uint8)
col = 255
t = int(s0/100.)
for pos in np.logspace(0.01,1,10):
pos = int(round((pos-0.5)*s0/10.))
cv2.line(arr, (0,pos), (s0,pos), color=col,
thickness=t, lineType=cv2.LINE_AA )
cv2.line(arr, (pos,0), (pos,s0), color=col,
thickness=t, lineType=cv2.LINE_AA )
return arr.astype(float) | make line pattern | entailment |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.