sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def get_aux_files(basename): """ Look for and return all the aux files that are associated witht this filename. Will look for: background (_bkg.fits) rms (_rms.fits) mask (.mim) catalogue (_comp.fits) psf map (_psf.fits) will return filenames if they exist, or None where they do not. Parameters ---------- basename : str The name/path of the input image. Returns ------- aux : dict Dict of filenames or None with keys (bkg, rms, mask, cat, psf) """ base = os.path.splitext(basename)[0] files = {"bkg": base + "_bkg.fits", "rms": base + "_rms.fits", "mask": base + ".mim", "cat": base + "_comp.fits", "psf": base + "_psf.fits"} for k in files.keys(): if not os.path.exists(files[k]): files[k] = None return files
Look for and return all the aux files that are associated witht this filename. Will look for: background (_bkg.fits) rms (_rms.fits) mask (.mim) catalogue (_comp.fits) psf map (_psf.fits) will return filenames if they exist, or None where they do not. Parameters ---------- basename : str The name/path of the input image. Returns ------- aux : dict Dict of filenames or None with keys (bkg, rms, mask, cat, psf)
entailment
def _gen_flood_wrap(self, data, rmsimg, innerclip, outerclip=None, domask=False): """ Generator function. Segment an image into islands and return one island at a time. Needs to work for entire image, and also for components within an island. Parameters ---------- data : 2d-array Image array. rmsimg : 2d-array Noise image. innerclip, outerclip :float Seed (inner) and flood (outer) clipping values. domask : bool If True then look for a region mask in globals, only return islands that are within the region. Default = False. Yields ------ data_box : 2d-array A island of sources with subthreshold values masked. xmin, xmax, ymin, ymax : int The corners of the data_box within the initial data array. """ if outerclip is None: outerclip = innerclip # compute SNR image (data has already been background subtracted) snr = abs(data) / rmsimg # mask of pixles that are above the outerclip a = snr >= outerclip # segmentation a la scipy l, n = label(a) f = find_objects(l) if n == 0: self.log.debug("There are no pixels above the clipping limit") return self.log.debug("{1} Found {0} islands total above flood limit".format(n, data.shape)) # Yield values as before, though they are not sorted by flux for i in range(n): xmin, xmax = f[i][0].start, f[i][0].stop ymin, ymax = f[i][1].start, f[i][1].stop if np.any(snr[xmin:xmax, ymin:ymax] > innerclip): # obey inner clip constraint # self.log.info("{1} Island {0} is above the inner clip limit".format(i, data.shape)) data_box = copy.copy(data[xmin:xmax, ymin:ymax]) # copy so that we don't blank the master data data_box[np.where( snr[xmin:xmax, ymin:ymax] < outerclip)] = np.nan # blank pixels that are outside the outerclip data_box[np.where(l[xmin:xmax, ymin:ymax] != i + 1)] = np.nan # blank out other summits # check if there are any pixels left unmasked if not np.any(np.isfinite(data_box)): # self.log.info("{1} Island {0} has no non-masked pixels".format(i,data.shape)) continue if domask and (self.global_data.region is not None): y, x = np.where(snr[xmin:xmax, ymin:ymax] >= outerclip) # convert indices of this sub region to indices in the greater image yx = list(zip(y + ymin, x + xmin)) ra, dec = self.global_data.wcshelper.wcs.wcs_pix2world(yx, 1).transpose() mask = self.global_data.region.sky_within(ra, dec, degin=True) # if there are no un-masked pixels within the region then we skip this island. if not np.any(mask): continue self.log.debug("Mask {0}".format(mask)) # self.log.info("{1} Island {0} will be fit".format(i, data.shape)) yield data_box, xmin, xmax, ymin, ymax
Generator function. Segment an image into islands and return one island at a time. Needs to work for entire image, and also for components within an island. Parameters ---------- data : 2d-array Image array. rmsimg : 2d-array Noise image. innerclip, outerclip :float Seed (inner) and flood (outer) clipping values. domask : bool If True then look for a region mask in globals, only return islands that are within the region. Default = False. Yields ------ data_box : 2d-array A island of sources with subthreshold values masked. xmin, xmax, ymin, ymax : int The corners of the data_box within the initial data array.
entailment
def estimate_lmfit_parinfo(self, data, rmsimg, curve, beam, innerclip, outerclip=None, offsets=(0, 0), max_summits=None): """ Estimates the number of sources in an island and returns initial parameters for the fit as well as limits on those parameters. Parameters ---------- data : 2d-array (sub) image of flux values. Background should be subtracted. rmsimg : 2d-array Image of 1sigma values curve : 2d-array Image of curvature values [-1,0,+1] beam : :class:`AegeanTools.fits_image.Beam` The beam information for the image. innerclip, outerclip : float Inerr and outer level for clipping (sigmas). offsets : (int, int) The (x,y) offset of data within it's parent image max_summits : int If not None, only this many summits/components will be fit. More components may be present in the island, but subsequent components will not have free parameters. Returns ------- model : lmfit.Parameters The initial estimate of parameters for the components within this island. """ debug_on = self.log.isEnabledFor(logging.DEBUG) is_flag = 0 global_data = self.global_data # check to see if this island is a negative peak since we need to treat such cases slightly differently isnegative = max(data[np.where(np.isfinite(data))]) < 0 if isnegative: self.log.debug("[is a negative island]") if outerclip is None: outerclip = innerclip self.log.debug(" - shape {0}".format(data.shape)) if not data.shape == curve.shape: self.log.error("data and curvature are mismatched") self.log.error("data:{0} curve:{1}".format(data.shape, curve.shape)) raise AssertionError() # For small islands we can't do a 6 param fit # Don't count the NaN values as part of the island non_nan_pix = len(data[np.where(np.isfinite(data))].ravel()) if 4 <= non_nan_pix <= 6: self.log.debug("FIXED2PSF") is_flag |= flags.FIXED2PSF elif non_nan_pix < 4: self.log.debug("FITERRSMALL!") is_flag |= flags.FITERRSMALL else: is_flag = 0 if debug_on: self.log.debug(" - size {0}".format(len(data.ravel()))) if min(data.shape) <= 2 or (is_flag & flags.FITERRSMALL) or (is_flag & flags.FIXED2PSF): # 1d islands or small islands only get one source if debug_on: self.log.debug("Tiny summit detected") self.log.debug("{0}".format(data)) summits = [[data, 0, data.shape[0], 0, data.shape[1]]] # and are constrained to be point sources is_flag |= flags.FIXED2PSF else: if isnegative: # the summit should be able to include all pixels within the island not just those above innerclip kappa_sigma = np.where(curve > 0.5, np.where(data + outerclip * rmsimg < 0, data, np.nan), np.nan) else: kappa_sigma = np.where(-1 * curve > 0.5, np.where(data - outerclip * rmsimg > 0, data, np.nan), np.nan) summits = list(self._gen_flood_wrap(kappa_sigma, np.ones(kappa_sigma.shape), 0, domask=False)) params = lmfit.Parameters() i = 0 summits_considered = 0 # This can happen when the image contains regions of nans # the data/noise indicate an island, but the curvature doesn't back it up. if len(summits) < 1: self.log.debug("Island has {0} summits".format(len(summits))) return None # add summits in reverse order of peak SNR - ie brightest first for summit, xmin, xmax, ymin, ymax in sorted(summits, key=lambda x: np.nanmax(-1. * abs(x[0]))): summits_considered += 1 summit_flag = is_flag if debug_on: self.log.debug( "Summit({5}) - shape:{0} x:[{1}-{2}] y:[{3}-{4}]".format(summit.shape, ymin, ymax, xmin, xmax, i)) try: if isnegative: amp = np.nanmin(summit) xpeak, ypeak = np.unravel_index(np.nanargmin(summit), summit.shape) else: amp = np.nanmax(summit) xpeak, ypeak = np.unravel_index(np.nanargmax(summit), summit.shape) except ValueError as e: if "All-NaN" in e.message: self.log.warn("Summit of nan's detected - this shouldn't happen") continue else: raise e if debug_on: self.log.debug(" - max is {0:f}".format(amp)) self.log.debug(" - peak at {0},{1}".format(xpeak, ypeak)) yo = ypeak + ymin xo = xpeak + xmin # Summits are allowed to include pixels that are between the outer and inner clip # This means that sometimes we get a summit that has all it's pixels below the inner clip # So we test for that here. snr = np.nanmax(abs(data[xmin:xmax + 1, ymin:ymax + 1] / rmsimg[xmin:xmax + 1, ymin:ymax + 1])) if snr < innerclip: self.log.debug("Summit has SNR {0} < innerclip {1}: skipping".format(snr, innerclip)) continue # allow amp to be 5% or (innerclip) sigma higher # TODO: the 5% should depend on the beam sampling # note: when innerclip is 400 this becomes rather stupid if amp > 0: amp_min, amp_max = 0.95 * min(outerclip * rmsimg[xo, yo], amp), amp * 1.05 + innerclip * rmsimg[xo, yo] else: amp_max, amp_min = 0.95 * max(-outerclip * rmsimg[xo, yo], amp), amp * 1.05 - innerclip * rmsimg[xo, yo] if debug_on: self.log.debug("a_min {0}, a_max {1}".format(amp_min, amp_max)) pixbeam = global_data.psfhelper.get_pixbeam_pixel(yo + offsets[0], xo + offsets[1]) if pixbeam is None: self.log.debug(" Summit has invalid WCS/Beam - Skipping.") continue # set a square limit based on the size of the pixbeam xo_lim = 0.5 * np.hypot(pixbeam.a, pixbeam.b) yo_lim = xo_lim yo_min, yo_max = yo - yo_lim, yo + yo_lim # if yo_min == yo_max: # if we have a 1d summit then allow the position to vary by +/-0.5pix # yo_min, yo_max = yo_min - 0.5, yo_max + 0.5 xo_min, xo_max = xo - xo_lim, xo + xo_lim # if xo_min == xo_max: # if we have a 1d summit then allow the position to vary by +/-0.5pix # xo_min, xo_max = xo_min - 0.5, xo_max + 0.5 # the size of the island xsize = data.shape[0] ysize = data.shape[1] # initial shape is the psf sx = pixbeam.a * FWHM2CC sy = pixbeam.b * FWHM2CC # lmfit does silly things if we start with these two parameters being equal sx = max(sx, sy * 1.01) # constraints are based on the shape of the island # sx,sy can become flipped so we set the min/max account for this sx_min, sx_max = sy * 0.8, max((max(xsize, ysize) + 1) * math.sqrt(2) * FWHM2CC, sx * 1.1) sy_min, sy_max = sy * 0.8, max((max(xsize, ysize) + 1) * math.sqrt(2) * FWHM2CC, sx * 1.1) theta = pixbeam.pa # Degrees flag = summit_flag # check to see if we are going to fit this component if max_summits is not None: maxxed = i >= max_summits else: maxxed = False # components that are not fit need appropriate flags if maxxed: summit_flag |= flags.NOTFIT summit_flag |= flags.FIXED2PSF if debug_on: self.log.debug(" - var val min max | min max") self.log.debug(" - amp {0} {1} {2} ".format(amp, amp_min, amp_max)) self.log.debug(" - xo {0} {1} {2} ".format(xo, xo_min, xo_max)) self.log.debug(" - yo {0} {1} {2} ".format(yo, yo_min, yo_max)) self.log.debug(" - sx {0} {1} {2} | {3} {4}".format(sx, sx_min, sx_max, sx_min * CC2FHWM, sx_max * CC2FHWM)) self.log.debug(" - sy {0} {1} {2} | {3} {4}".format(sy, sy_min, sy_max, sy_min * CC2FHWM, sy_max * CC2FHWM)) self.log.debug(" - theta {0} {1} {2}".format(theta, -180, 180)) self.log.debug(" - flags {0}".format(flag)) self.log.debug(" - fit? {0}".format(not maxxed)) # TODO: figure out how incorporate the circular constraint on sx/sy prefix = "c{0}_".format(i) params.add(prefix + 'amp', value=amp, min=amp_min, max=amp_max, vary=not maxxed) params.add(prefix + 'xo', value=xo, min=float(xo_min), max=float(xo_max), vary=not maxxed) params.add(prefix + 'yo', value=yo, min=float(yo_min), max=float(yo_max), vary=not maxxed) if summit_flag & flags.FIXED2PSF > 0: psf_vary = False else: psf_vary = not maxxed params.add(prefix + 'sx', value=sx, min=sx_min, max=sx_max, vary=psf_vary) params.add(prefix + 'sy', value=sy, min=sy_min, max=sy_max, vary=psf_vary) params.add(prefix + 'theta', value=theta, vary=psf_vary) params.add(prefix + 'flags', value=summit_flag, vary=False) # starting at zero allows the maj/min axes to be fit better. # if params[prefix + 'theta'].vary: # params[prefix + 'theta'].value = 0 i += 1 if debug_on: self.log.debug("Estimated sources: {0}".format(i)) # remember how many components are fit. params.add('components', value=i, vary=False) # params.components=i if params['components'].value < 1: self.log.debug("Considered {0} summits, accepted {1}".format(summits_considered, i)) return params
Estimates the number of sources in an island and returns initial parameters for the fit as well as limits on those parameters. Parameters ---------- data : 2d-array (sub) image of flux values. Background should be subtracted. rmsimg : 2d-array Image of 1sigma values curve : 2d-array Image of curvature values [-1,0,+1] beam : :class:`AegeanTools.fits_image.Beam` The beam information for the image. innerclip, outerclip : float Inerr and outer level for clipping (sigmas). offsets : (int, int) The (x,y) offset of data within it's parent image max_summits : int If not None, only this many summits/components will be fit. More components may be present in the island, but subsequent components will not have free parameters. Returns ------- model : lmfit.Parameters The initial estimate of parameters for the components within this island.
entailment
def result_to_components(self, result, model, island_data, isflags): """ Convert fitting results into a set of components Parameters ---------- result : lmfit.MinimizerResult The fitting results. model : lmfit.Parameters The model that was fit. island_data : :class:`AegeanTools.models.IslandFittingData` Data about the island that was fit. isflags : int Flags that should be added to this island (in addition to those within the model) Returns ------- sources : list A list of components, and islands if requested. """ global_data = self.global_data # island data isle_num = island_data.isle_num idata = island_data.i xmin, xmax, ymin, ymax = island_data.offsets box = slice(int(xmin), int(xmax)), slice(int(ymin), int(ymax)) rms = global_data.rmsimg[box] bkg = global_data.bkgimg[box] residual = np.median(result.residual), np.std(result.residual) is_flag = isflags sources = [] j = 0 for j in range(model['components'].value): src_flags = is_flag source = OutputSource() source.island = isle_num source.source = j self.log.debug(" component {0}".format(j)) prefix = "c{0}_".format(j) xo = model[prefix + 'xo'].value yo = model[prefix + 'yo'].value sx = model[prefix + 'sx'].value sy = model[prefix + 'sy'].value theta = model[prefix + 'theta'].value amp = model[prefix + 'amp'].value src_flags |= model[prefix + 'flags'].value # these are goodness of fit statistics for the entire island. source.residual_mean = residual[0] source.residual_std = residual[1] # set the flags source.flags = src_flags # #pixel pos within island + # island offset within region + # region offset within image + # 1 for luck # (pyfits->fits conversion = luck) x_pix = xo + xmin + 1 y_pix = yo + ymin + 1 # update the source xo/yo so the error calculations can be done correctly # Note that you have to update the max or the value you set will be clipped at the max allowed value model[prefix + 'xo'].set(value=x_pix, max=np.inf) model[prefix + 'yo'].set(value=y_pix, max=np.inf) # ------ extract source parameters ------ # fluxes # the background is taken from background map # Clamp the pixel location to the edge of the background map y = max(min(int(round(y_pix - ymin)), bkg.shape[1] - 1), 0) x = max(min(int(round(x_pix - xmin)), bkg.shape[0] - 1), 0) source.background = bkg[x, y] source.local_rms = rms[x, y] source.peak_flux = amp # all params are in degrees source.ra, source.dec, source.a, source.b, source.pa = global_data.wcshelper.pix2sky_ellipse((x_pix, y_pix), sx * CC2FHWM, sy * CC2FHWM, theta) source.a *= 3600 # arcseconds source.b *= 3600 # force a>=b fix_shape(source) # limit the pa to be in (-90,90] source.pa = pa_limit(source.pa) # if one of these values are nan then there has been some problem with the WCS handling if not all(np.isfinite((source.ra, source.dec, source.a, source.b, source.pa))): src_flags |= flags.WCSERR # negative degrees is valid for RA, but I don't want them. if source.ra < 0: source.ra += 360 source.ra_str = dec2hms(source.ra) source.dec_str = dec2dms(source.dec) # calculate integrated flux source.int_flux = source.peak_flux * sx * sy * CC2FHWM ** 2 * np.pi # scale Jy/beam -> Jy using the area of the beam source.int_flux /= global_data.psfhelper.get_beamarea_pix(source.ra, source.dec) # Calculate errors for params that were fit (as well as int_flux) errors(source, model, global_data.wcshelper) source.flags = src_flags # add psf info local_beam = global_data.psfhelper.get_beam(source.ra, source.dec) if local_beam is not None: source.psf_a = local_beam.a * 3600 source.psf_b = local_beam.b * 3600 source.psf_pa = local_beam.pa else: source.psf_a = 0 source.psf_b = 0 source.psf_pa = 0 sources.append(source) self.log.debug(source) if global_data.blank: outerclip = island_data.scalars[1] idx, idy = np.where(abs(idata) - outerclip * rms > 0) idx += xmin idy += ymin self.global_data.img._pixels[[idx, idy]] = np.nan # calculate the integrated island flux if required if island_data.doislandflux: _, outerclip, _ = island_data.scalars self.log.debug("Integrated flux for island {0}".format(isle_num)) kappa_sigma = np.where(abs(idata) - outerclip * rms > 0, idata, np.NaN) self.log.debug("- island shape is {0}".format(kappa_sigma.shape)) source = IslandSource() source.flags = 0 source.island = isle_num source.components = j + 1 source.peak_flux = np.nanmax(kappa_sigma) # check for negative islands if source.peak_flux < 0: source.peak_flux = np.nanmin(kappa_sigma) self.log.debug("- peak flux {0}".format(source.peak_flux)) # positions and background if np.isfinite(source.peak_flux): positions = np.where(kappa_sigma == source.peak_flux) else: # if a component has been refit then it might have flux = np.nan positions = [[kappa_sigma.shape[0] / 2], [kappa_sigma.shape[1] / 2]] xy = positions[0][0] + xmin, positions[1][0] + ymin radec = global_data.wcshelper.pix2sky(xy) source.ra = radec[0] # convert negative ra's to positive ones if source.ra < 0: source.ra += 360 source.dec = radec[1] source.ra_str = dec2hms(source.ra) source.dec_str = dec2dms(source.dec) source.background = bkg[positions[0][0], positions[1][0]] source.local_rms = rms[positions[0][0], positions[1][0]] source.x_width, source.y_width = idata.shape source.pixels = int(sum(np.isfinite(kappa_sigma).ravel() * 1.0)) source.extent = [xmin, xmax, ymin, ymax] # TODO: investigate what happens when the sky coords are skewed w.r.t the pixel coords # calculate the area of the island as a fraction of the area of the bounding box bl = global_data.wcshelper.pix2sky([xmax, ymin]) tl = global_data.wcshelper.pix2sky([xmax, ymax]) tr = global_data.wcshelper.pix2sky([xmin, ymax]) height = gcd(tl[0], tl[1], bl[0], bl[1]) width = gcd(tl[0], tl[1], tr[0], tr[1]) area = height * width source.area = area * source.pixels / source.x_width / source.y_width # area is in deg^2 # create contours msq = MarchingSquares(idata) source.contour = [(a[0] + xmin, a[1] + ymin) for a in msq.perimeter] # calculate the maximum angular size of this island, brute force method source.max_angular_size = 0 for i, pos1 in enumerate(source.contour): radec1 = global_data.wcshelper.pix2sky(pos1) for j, pos2 in enumerate(source.contour[i:]): radec2 = global_data.wcshelper.pix2sky(pos2) dist = gcd(radec1[0], radec1[1], radec2[0], radec2[1]) if dist > source.max_angular_size: source.max_angular_size = dist source.pa = bear(radec1[0], radec1[1], radec2[0], radec2[1]) source.max_angular_size_anchors = [pos1[0], pos1[1], pos2[0], pos2[1]] self.log.debug("- peak position {0}, {1} [{2},{3}]".format(source.ra_str, source.dec_str, positions[0][0], positions[1][0])) # integrated flux beam_area = global_data.psfhelper.get_beamarea_deg2(source.ra, source.dec) # beam in deg^2 # get_beamarea_pix(source.ra, source.dec) # beam is in pix^2 isize = source.pixels # number of non zero pixels self.log.debug("- pixels used {0}".format(isize)) source.int_flux = np.nansum(kappa_sigma) # total flux Jy/beam self.log.debug("- sum of pixles {0}".format(source.int_flux)) source.int_flux *= beam_area # total flux in Jy self.log.debug("- integrated flux {0}".format(source.int_flux)) eta = erf(np.sqrt(-1 * np.log(abs(source.local_rms * outerclip / source.peak_flux)))) ** 2 self.log.debug("- eta {0}".format(eta)) source.eta = eta source.beam_area = beam_area # I don't know how to calculate this error so we'll set it to nan source.err_int_flux = np.nan sources.append(source) return sources
Convert fitting results into a set of components Parameters ---------- result : lmfit.MinimizerResult The fitting results. model : lmfit.Parameters The model that was fit. island_data : :class:`AegeanTools.models.IslandFittingData` Data about the island that was fit. isflags : int Flags that should be added to this island (in addition to those within the model) Returns ------- sources : list A list of components, and islands if requested.
entailment
def load_globals(self, filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, verb=False, rms=None, bkg=None, cores=1, do_curve=True, mask=None, lat=None, psf=None, blank=False, docov=True, cube_index=None): """ Populate the global_data object by loading or calculating the various components Parameters ---------- filename : str or HDUList Main image which source finding is run on hdu_index : int HDU index of the image within the fits file, default is 0 (first) bkgin, rmsin : str or HDUList background and noise image filename or HDUList beam : :class:`AegeanTools.fits_image.Beam` Beam object representing the synthsized beam. Will replace what is in the FITS header. verb : bool Verbose. Write extra lines to INFO level log. rms, bkg : float A float that represents a constant rms/bkg levels for the entire image. Default = None, which causes the rms/bkg to be loaded or calculated. cores : int Number of cores to use if different from what is autodetected. do_curve : bool If True a curvature map will be created, default=True. mask : str or :class:`AegeanTools.regions.Region` filename or Region object lat : float Latitude of the observing telescope (declination of zenith) psf : str or HDUList Filename or HDUList of a psf image blank : bool True = blank output image where islands are found. Default = False. docov : bool True = use covariance matrix in fitting. Default = True. cube_index : int For an image cube, which slice to use. """ # don't reload already loaded data if self.global_data.img is not None: return img = FitsImage(filename, hdu_index=hdu_index, beam=beam, cube_index=cube_index) beam = img.beam debug = logging.getLogger('Aegean').isEnabledFor(logging.DEBUG) if mask is None: self.global_data.region = None else: # allow users to supply and object instead of a filename if isinstance(mask, Region): self.global_data.region = mask elif os.path.exists(mask): self.log.info("Loading mask from {0}".format(mask)) self.global_data.region = Region.load(mask) else: self.log.error("File {0} not found for loading".format(mask)) self.global_data.region = None self.global_data.wcshelper = WCSHelper.from_header(img.get_hdu_header(), beam, lat) self.global_data.psfhelper = PSFHelper(psf, self.global_data.wcshelper) self.global_data.beam = self.global_data.wcshelper.beam self.global_data.img = img self.global_data.data_pix = img.get_pixels() self.global_data.dtype = type(self.global_data.data_pix[0][0]) self.global_data.bkgimg = np.zeros(self.global_data.data_pix.shape, dtype=self.global_data.dtype) self.global_data.rmsimg = np.zeros(self.global_data.data_pix.shape, dtype=self.global_data.dtype) self.global_data.pixarea = img.pixarea self.global_data.dcurve = None if do_curve: self.log.info("Calculating curvature") # calculate curvature but store it as -1,0,+1 dcurve = np.zeros(self.global_data.data_pix.shape, dtype=np.int8) peaks = scipy.ndimage.filters.maximum_filter(self.global_data.data_pix, size=3) troughs = scipy.ndimage.filters.minimum_filter(self.global_data.data_pix, size=3) pmask = np.where(self.global_data.data_pix == peaks) tmask = np.where(self.global_data.data_pix == troughs) dcurve[pmask] = -1 dcurve[tmask] = 1 self.global_data.dcurve = dcurve # if either of rms or bkg images are not supplied then calculate them both if not (rmsin and bkgin): if verb: self.log.info("Calculating background and rms data") self._make_bkg_rms(mesh_size=20, forced_rms=rms, forced_bkg=bkg, cores=cores) # replace the calculated images with input versions, if the user has supplied them. if bkgin: if verb: self.log.info("Loading background data from file {0}".format(bkgin)) self.global_data.bkgimg = self._load_aux_image(img, bkgin) if rmsin: if verb: self.log.info("Loading rms data from file {0}".format(rmsin)) self.global_data.rmsimg = self._load_aux_image(img, rmsin) # subtract the background image from the data image and save if verb and debug: self.log.debug("Data max is {0}".format(img.get_pixels()[np.isfinite(img.get_pixels())].max())) self.log.debug("Doing background subtraction") img.set_pixels(img.get_pixels() - self.global_data.bkgimg) self.global_data.data_pix = img.get_pixels() if verb and debug: self.log.debug("Data max is {0}".format(img.get_pixels()[np.isfinite(img.get_pixels())].max())) self.global_data.blank = blank self.global_data.docov = docov # Default to false until I can verify that this is working self.global_data.dobias = False # check if the WCS is galactic if 'lon' in self.global_data.img._header['CTYPE1'].lower(): self.log.info("Galactic coordinates detected and noted") SimpleSource.galactic = True return
Populate the global_data object by loading or calculating the various components Parameters ---------- filename : str or HDUList Main image which source finding is run on hdu_index : int HDU index of the image within the fits file, default is 0 (first) bkgin, rmsin : str or HDUList background and noise image filename or HDUList beam : :class:`AegeanTools.fits_image.Beam` Beam object representing the synthsized beam. Will replace what is in the FITS header. verb : bool Verbose. Write extra lines to INFO level log. rms, bkg : float A float that represents a constant rms/bkg levels for the entire image. Default = None, which causes the rms/bkg to be loaded or calculated. cores : int Number of cores to use if different from what is autodetected. do_curve : bool If True a curvature map will be created, default=True. mask : str or :class:`AegeanTools.regions.Region` filename or Region object lat : float Latitude of the observing telescope (declination of zenith) psf : str or HDUList Filename or HDUList of a psf image blank : bool True = blank output image where islands are found. Default = False. docov : bool True = use covariance matrix in fitting. Default = True. cube_index : int For an image cube, which slice to use.
entailment
def save_background_files(self, image_filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, rms=None, bkg=None, cores=1, outbase=None): """ Generate and save the background and RMS maps as FITS files. They are saved in the current directly as aegean-background.fits and aegean-rms.fits. Parameters ---------- image_filename : str or HDUList Input image. hdu_index : int If fits file has more than one hdu, it can be specified here. Default = 0. bkgin, rmsin : str or HDUList Background and noise image filename or HDUList beam : :class:`AegeanTools.fits_image.Beam` Beam object representing the synthsized beam. Will replace what is in the FITS header. rms, bkg : float A float that represents a constant rms/bkg level for the entire image. Default = None, which causes the rms/bkg to be loaded or calculated. cores : int Number of cores to use if different from what is autodetected. outbase : str Basename for output files. """ self.log.info("Saving background / RMS maps") # load image, and load/create background/rms images self.load_globals(image_filename, hdu_index=hdu_index, bkgin=bkgin, rmsin=rmsin, beam=beam, verb=True, rms=rms, bkg=bkg, cores=cores, do_curve=True) img = self.global_data.img bkgimg, rmsimg = self.global_data.bkgimg, self.global_data.rmsimg curve = np.array(self.global_data.dcurve, dtype=bkgimg.dtype) # mask these arrays have the same mask the same as the data mask = np.where(np.isnan(self.global_data.data_pix)) bkgimg[mask] = np.NaN rmsimg[mask] = np.NaN curve[mask] = np.NaN # Generate the new FITS files by copying the existing HDU and assigning new data. # This gives the new files the same WCS projection and other header fields. new_hdu = img.hdu # Set the ORIGIN to indicate Aegean made this file new_hdu.header["ORIGIN"] = "Aegean {0}-({1})".format(__version__, __date__) for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4', 'CTYPE3', 'CTYPE4']: if c in new_hdu.header: del new_hdu.header[c] if outbase is None: outbase, _ = os.path.splitext(os.path.basename(image_filename)) noise_out = outbase + '_rms.fits' background_out = outbase + '_bkg.fits' curve_out = outbase + '_crv.fits' snr_out = outbase + '_snr.fits' new_hdu.data = bkgimg new_hdu.writeto(background_out, overwrite=True) self.log.info("Wrote {0}".format(background_out)) new_hdu.data = rmsimg new_hdu.writeto(noise_out, overwrite=True) self.log.info("Wrote {0}".format(noise_out)) new_hdu.data = curve new_hdu.writeto(curve_out, overwrite=True) self.log.info("Wrote {0}".format(curve_out)) new_hdu.data = self.global_data.data_pix / rmsimg new_hdu.writeto(snr_out, overwrite=True) self.log.info("Wrote {0}".format(snr_out)) return
Generate and save the background and RMS maps as FITS files. They are saved in the current directly as aegean-background.fits and aegean-rms.fits. Parameters ---------- image_filename : str or HDUList Input image. hdu_index : int If fits file has more than one hdu, it can be specified here. Default = 0. bkgin, rmsin : str or HDUList Background and noise image filename or HDUList beam : :class:`AegeanTools.fits_image.Beam` Beam object representing the synthsized beam. Will replace what is in the FITS header. rms, bkg : float A float that represents a constant rms/bkg level for the entire image. Default = None, which causes the rms/bkg to be loaded or calculated. cores : int Number of cores to use if different from what is autodetected. outbase : str Basename for output files.
entailment
def save_image(self, outname): """ Save the image data. This is probably only useful if the image data has been blanked. Parameters ---------- outname : str Name for the output file. """ hdu = self.global_data.img.hdu hdu.data = self.global_data.img._pixels hdu.header["ORIGIN"] = "Aegean {0}-({1})".format(__version__, __date__) # delete some axes that we aren't going to need for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4', 'CTYPE3', 'CTYPE4']: if c in hdu.header: del hdu.header[c] hdu.writeto(outname, overwrite=True) self.log.info("Wrote {0}".format(outname)) return
Save the image data. This is probably only useful if the image data has been blanked. Parameters ---------- outname : str Name for the output file.
entailment
def _make_bkg_rms(self, mesh_size=20, forced_rms=None, forced_bkg=None, cores=None): """ Calculate an rms image and a bkg image. Parameters ---------- mesh_size : int Number of beams per box default = 20 forced_rms : float The rms of the image. If None: calculate the rms level (default). Otherwise assume a constant rms. forced_bkg : float The background level of the image. If None: calculate the background level (default). Otherwise assume a constant background. cores: int Number of cores to use if different from what is autodetected. """ if (forced_rms is not None): self.log.info("Forcing rms = {0}".format(forced_rms)) self.global_data.rmsimg[:] = forced_rms if (forced_bkg is not None): self.log.info("Forcing bkg = {0}".format(forced_bkg)) self.global_data.bkgimg[:] = forced_bkg # If we known both the rms and the bkg then there is nothing to compute if (forced_rms is not None) and (forced_bkg is not None): return data = self.global_data.data_pix beam = self.global_data.beam img_x, img_y = data.shape xcen = int(img_x / 2) ycen = int(img_y / 2) # calculate a local beam from the center of the data pixbeam = self.global_data.psfhelper.get_pixbeam_pixel(xcen, ycen) if pixbeam is None: self.log.error("Cannot determine the beam shape at the image center") sys.exit(1) width_x = mesh_size * max(abs(math.cos(np.radians(pixbeam.pa)) * pixbeam.a), abs(math.sin(np.radians(pixbeam.pa)) * pixbeam.b)) width_x = int(width_x) width_y = mesh_size * max(abs(math.sin(np.radians(pixbeam.pa)) * pixbeam.a), abs(math.cos(np.radians(pixbeam.pa)) * pixbeam.b)) width_y = int(width_y) self.log.debug("image size x,y:{0},{1}".format(img_x, img_y)) self.log.debug("beam: {0}".format(beam)) self.log.debug("mesh width (pix) x,y: {0},{1}".format(width_x, width_y)) # box centered at image center then tilling outwards xstart = int(xcen - width_x / 2) % width_x # the starting point of the first "full" box ystart = int(ycen - width_y / 2) % width_y xend = img_x - int(img_x - xstart) % width_x # the end point of the last "full" box yend = img_y - int(img_y - ystart) % width_y xmins = [0] xmins.extend(list(range(xstart, xend, width_x))) xmins.append(xend) xmaxs = [xstart] xmaxs.extend(list(range(xstart + width_x, xend + 1, width_x))) xmaxs.append(img_x) ymins = [0] ymins.extend(list(range(ystart, yend, width_y))) ymins.append(yend) ymaxs = [ystart] ymaxs.extend(list(range(ystart + width_y, yend + 1, width_y))) ymaxs.append(img_y) # if the image is smaller than our ideal mesh size, just use the whole image instead if width_x >= img_x: xmins = [0] xmaxs = [img_x] if width_y >= img_y: ymins = [0] ymaxs = [img_y] if cores > 1: # set up the queue queue = pprocess.Queue(limit=cores, reuse=1) estimate = queue.manage(pprocess.MakeReusable(self._estimate_bkg_rms)) # populate the queue for xmin, xmax in zip(xmins, xmaxs): for ymin, ymax in zip(ymins, ymaxs): estimate(ymin, ymax, xmin, xmax) else: queue = [] for xmin, xmax in zip(xmins, xmaxs): for ymin, ymax in zip(ymins, ymaxs): queue.append(self._estimate_bkg_rms(xmin, xmax, ymin, ymax)) # only copy across the bkg/rms if they are not already set # queue can only be traversed once so we have to put the if inside the loop for ymin, ymax, xmin, xmax, bkg, rms in queue: if (forced_rms is None): self.global_data.rmsimg[ymin:ymax, xmin:xmax] = rms if (forced_rms is None): self.global_data.bkgimg[ymin:ymax, xmin:xmax] = bkg return
Calculate an rms image and a bkg image. Parameters ---------- mesh_size : int Number of beams per box default = 20 forced_rms : float The rms of the image. If None: calculate the rms level (default). Otherwise assume a constant rms. forced_bkg : float The background level of the image. If None: calculate the background level (default). Otherwise assume a constant background. cores: int Number of cores to use if different from what is autodetected.
entailment
def _estimate_bkg_rms(self, xmin, xmax, ymin, ymax): """ Estimate the background noise mean and RMS. The mean is estimated as the median of data. The RMS is estimated as the IQR of data / 1.34896. Parameters ---------- xmin, xmax, ymin, ymax : int The bounding region over which the bkg/rms will be calculated. Returns ------- ymin, ymax, xmin, xmax : int A copy of the input parameters bkg, rms : float The calculated background and noise. """ data = self.global_data.data_pix[ymin:ymax, xmin:xmax] pixels = np.extract(np.isfinite(data), data).ravel() if len(pixels) < 4: bkg, rms = np.NaN, np.NaN else: pixels.sort() p25 = pixels[int(pixels.size / 4)] p50 = pixels[int(pixels.size / 2)] p75 = pixels[int(pixels.size / 4 * 3)] iqr = p75 - p25 bkg, rms = p50, iqr / 1.34896 # return the input and output data so we know what we are doing # when compiling the results of multiple processes return ymin, ymax, xmin, xmax, bkg, rms
Estimate the background noise mean and RMS. The mean is estimated as the median of data. The RMS is estimated as the IQR of data / 1.34896. Parameters ---------- xmin, xmax, ymin, ymax : int The bounding region over which the bkg/rms will be calculated. Returns ------- ymin, ymax, xmin, xmax : int A copy of the input parameters bkg, rms : float The calculated background and noise.
entailment
def _load_aux_image(self, image, auxfile): """ Load a fits file (bkg/rms/curve) and make sure that it is the same shape as the main image. Parameters ---------- image : :class:`AegeanTools.fits_image.FitsImage` The main image that has already been loaded. auxfile : str or HDUList The auxiliary file to be loaded. Returns ------- aux : :class:`AegeanTools.fits_image.FitsImage` The loaded image. """ auximg = FitsImage(auxfile, beam=self.global_data.beam).get_pixels() if auximg.shape != image.get_pixels().shape: self.log.error("file {0} is not the same size as the image map".format(auxfile)) self.log.error("{0}= {1}, image = {2}".format(auxfile, auximg.shape, image.get_pixels().shape)) sys.exit(1) return auximg
Load a fits file (bkg/rms/curve) and make sure that it is the same shape as the main image. Parameters ---------- image : :class:`AegeanTools.fits_image.FitsImage` The main image that has already been loaded. auxfile : str or HDUList The auxiliary file to be loaded. Returns ------- aux : :class:`AegeanTools.fits_image.FitsImage` The loaded image.
entailment
def _refit_islands(self, group, stage, outerclip=None, istart=0): """ Do island refitting (priorized fitting) on a group of islands. Parameters ---------- group : list A list of components grouped by island. stage : int Refitting stage. outerclip : float Ignored, placed holder for future development. istart : int The starting island number. Returns ------- sources : list List of sources (and islands). """ global_data = self.global_data sources = [] data = global_data.data_pix rmsimg = global_data.rmsimg for inum, isle in enumerate(group, start=istart): self.log.debug("-=-") self.log.debug("input island = {0}, {1} components".format(isle[0].island, len(isle))) # set up the parameters for each of the sources within the island i = 0 params = lmfit.Parameters() shape = data.shape xmin, ymin = shape xmax = ymax = 0 # island_mask = [] src_valid_psf = None # keep track of the sources that are actually being refit # this may be a subset of all sources in the island included_sources = [] for src in isle: pixbeam = global_data.psfhelper.get_pixbeam(src.ra, src.dec) # find the right pixels from the ra/dec source_x, source_y = global_data.wcshelper.sky2pix([src.ra, src.dec]) source_x -= 1 source_y -= 1 x = int(round(source_x)) y = int(round(source_y)) self.log.debug("pixel location ({0:5.2f},{1:5.2f})".format(source_x, source_y)) # reject sources that are outside the image bounds, or which have nan data/rms values if not 0 <= x < shape[0] or not 0 <= y < shape[1] or \ not np.isfinite(data[x, y]) or \ not np.isfinite(rmsimg[x, y]) or \ pixbeam is None: self.log.debug("Source ({0},{1}) not within usable region: skipping".format(src.island, src.source)) continue else: # Keep track of the last source to have a valid psf so that we can use it later on src_valid_psf = src # determine the shape parameters in pixel values _, _, sx, sy, theta = global_data.wcshelper.sky2pix_ellipse([src.ra, src.dec], src.a / 3600, src.b / 3600, src.pa) sx *= FWHM2CC sy *= FWHM2CC self.log.debug("Source shape [sky coords] {0:5.2f}x{1:5.2f}@{2:05.2f}".format(src.a, src.b, src.pa)) self.log.debug("Source shape [pixel coords] {0:4.2f}x{1:4.2f}@{2:05.2f}".format(sx, sy, theta)) # choose a region that is 2x the major axis of the source, 4x semimajor axis a width = 4 * sx ywidth = int(round(width)) + 1 xwidth = int(round(width)) + 1 # adjust the size of the island to include this source xmin = min(xmin, max(0, x - xwidth / 2)) ymin = min(ymin, max(0, y - ywidth / 2)) xmax = max(xmax, min(shape[0], x + xwidth / 2 + 1)) ymax = max(ymax, min(shape[1], y + ywidth / 2 + 1)) s_lims = [0.8 * min(sx, pixbeam.b * FWHM2CC), max(sy, sx) * 1.25] # Set up the parameters for the fit, including constraints prefix = "c{0}_".format(i) params.add(prefix + 'amp', value=src.peak_flux, vary=True) # for now the xo/yo are locations within the main image, we correct this later params.add(prefix + 'xo', value=source_x, min=source_x - sx / 2., max=source_x + sx / 2., vary=stage >= 2) params.add(prefix + 'yo', value=source_y, min=source_y - sy / 2., max=source_y + sy / 2., vary=stage >= 2) params.add(prefix + 'sx', value=sx, min=s_lims[0], max=s_lims[1], vary=stage >= 3) params.add(prefix + 'sy', value=sy, min=s_lims[0], max=s_lims[1], vary=stage >= 3) params.add(prefix + 'theta', value=theta, vary=stage >= 3) params.add(prefix + 'flags', value=0, vary=False) # this source is being refit so add it to the list included_sources.append(src) i += 1 # TODO: Allow this mask to be used in conjunction with the FWHM mask that is defined further on # # Use pixels above outerclip sigmas.. # if outerclip>=0: # mask = np.where(data[xmin:xmax,ymin:ymax]-outerclip*rmsimg[xmin:xmax,ymin:ymax]>0) # else: # negative outer clip means use all the pixels # mask = np.where(data[xmin:xmax,ymin:ymax]) # # # convert the pixel indices to be pixels within the parent data set # xmask = mask[0] + xmin # ymask = mask[1] + ymin # island_mask.extend(zip(xmask,ymask)) if i == 0: self.log.debug("No sources found in island {0}".format(src.island)) continue params.add('components', value=i, vary=False) # params.components = i self.log.debug(" {0} components being fit".format(i)) # now we correct the xo/yo positions to be relative to the sub-image self.log.debug("xmxxymyx {0} {1} {2} {3}".format(xmin, xmax, ymin, ymax)) for i in range(params['components'].value): prefix = "c{0}_".format(i) params[prefix + 'xo'].value -= xmin params[prefix + 'xo'].min -= xmin params[prefix + 'xo'].max -= xmin params[prefix + 'yo'].value -= ymin params[prefix + 'yo'].min -= ymin params[prefix + 'yo'].max -= ymin # self.log.debug(params) # don't fit if there are no sources if params['components'].value < 1: self.log.info("Island {0} has no components".format(src.island)) continue # this .copy() will stop us from modifying the parent region when we later apply our mask. idata = data[int(xmin):int(xmax), int(ymin):int(ymax)].copy() # now convert these back to indices within the idata region # island_mask = np.array([(x-xmin, y-ymin) for x, y in island_mask]) allx, ally = np.indices(idata.shape) # mask to include pixels that are withn the FWHM of the sources being fit mask_params = copy.deepcopy(params) for i in range(mask_params['components'].value): prefix = 'c{0}_'.format(i) mask_params[prefix + 'amp'].value = 1 mask_model = ntwodgaussian_lmfit(mask_params) mask = np.where(mask_model(allx.ravel(), ally.ravel()) <= 0.1) mask = allx.ravel()[mask], ally.ravel()[mask] del mask_params idata[mask] = np.nan mx, my = np.where(np.isfinite(idata)) non_nan_pix = len(mx) total_pix = len(allx.ravel()) self.log.debug("island extracted:") self.log.debug(" x[{0}:{1}] y[{2}:{3}]".format(xmin, xmax, ymin, ymax)) self.log.debug(" max = {0}".format(np.nanmax(idata))) self.log.debug( " total {0}, masked {1}, not masked {2}".format(total_pix, total_pix - non_nan_pix, non_nan_pix)) # Check to see that each component has some data within the central 3x3 pixels of it's location # If not then we don't fit that component for i in range(params['components'].value): prefix = "c{0}_".format(i) # figure out a box around the center of this cx, cy = params[prefix + 'xo'].value, params[prefix + 'yo'].value # central pixel coords self.log.debug(" comp {0}".format(i)) self.log.debug(" x0, y0 {0} {1}".format(cx, cy)) xmx = int(round(np.clip(cx + 2, 0, idata.shape[0]))) xmn = int(round(np.clip(cx - 1, 0, idata.shape[0]))) ymx = int(round(np.clip(cy + 2, 0, idata.shape[1]))) ymn = int(round(np.clip(cy - 1, 0, idata.shape[1]))) square = idata[xmn:xmx, ymn:ymx] # if there are no not-nan pixels in this region then don't vary any parameters if not np.any(np.isfinite(square)): self.log.debug(" not fitting component {0}".format(i)) params[prefix + 'amp'].value = np.nan for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']: params[prefix + p].vary = False params[prefix + p].stderr = np.nan # this results in an error of -1 later on params[prefix + 'flags'].value |= flags.NOTFIT # determine the number of free parameters and if we have enough data for a fit nfree = np.count_nonzero([params[p].vary for p in params.keys()]) self.log.debug(params) if nfree < 1: self.log.debug(" Island has no components to fit") result = DummyLM() model = params else: if non_nan_pix < nfree: self.log.debug("More free parameters {0} than available pixels {1}".format(nfree, non_nan_pix)) if non_nan_pix >= params['components'].value: self.log.debug("Fixing all parameters except amplitudes") for p in params.keys(): if 'amp' not in p: params[p].vary = False else: self.log.debug(" no not-masked pixels, skipping") continue # do the fit # if the pixel beam is not valid, then recalculate using the location of the last source to have a valid psf if pixbeam is None: if src_valid_psf is not None: pixbeam = global_data.psfhelper.get_pixbeam(src_valid_psf.ra, src_valid_psf.dec) else: self.log.critical("Cannot determine pixel beam") fac = 1 / np.sqrt(2) if self.global_data.docov: C = Cmatrix(mx, my, pixbeam.a * FWHM2CC * fac, pixbeam.b * FWHM2CC * fac, pixbeam.pa) B = Bmatrix(C) else: C = B = None errs = np.nanmax(rmsimg[int(xmin):int(xmax), int(ymin):int(ymax)]) result, _ = do_lmfit(idata, params, B=B) model = covar_errors(result.params, idata, errs=errs, B=B, C=C) # convert the results to a source object offsets = (xmin, xmax, ymin, ymax) # TODO allow for island fluxes in the refitting. island_data = IslandFittingData(inum, i=idata, offsets=offsets, doislandflux=False, scalars=(4, 4, None)) new_src = self.result_to_components(result, model, island_data, src.flags) for ns, s in zip(new_src, included_sources): # preserve the uuid so we can do exact matching between catalogs ns.uuid = s.uuid # flag the sources as having been priorized ns.flags |= flags.PRIORIZED # if the position wasn't fit then copy the errors from the input catalog if stage < 2: ns.err_ra = s.err_ra ns.err_dec = s.err_dec ns.flags |= flags.FIXED2PSF # if the shape wasn't fit then copy the errors from the input catalog if stage < 3: ns.err_a = s.err_a ns.err_b = s.err_b ns.err_pa = s.err_pa sources.extend(new_src) return sources
Do island refitting (priorized fitting) on a group of islands. Parameters ---------- group : list A list of components grouped by island. stage : int Refitting stage. outerclip : float Ignored, placed holder for future development. istart : int The starting island number. Returns ------- sources : list List of sources (and islands).
entailment
def _fit_island(self, island_data): """ Take an Island, do all the parameter estimation and fitting. Parameters ---------- island_data : :class:`AegeanTools.models.IslandFittingData` The island to be fit. Returns ------- sources : list The sources that were fit. """ global_data = self.global_data # global data dcurve = global_data.dcurve rmsimg = global_data.rmsimg # island data isle_num = island_data.isle_num idata = island_data.i innerclip, outerclip, max_summits = island_data.scalars xmin, xmax, ymin, ymax = island_data.offsets # get the beam parameters at the center of this island midra, middec = global_data.wcshelper.pix2sky([0.5 * (xmax + xmin), 0.5 * (ymax + ymin)]) beam = global_data.psfhelper.get_psf_pix(midra, middec) del middec, midra icurve = dcurve[xmin:xmax, ymin:ymax] rms = rmsimg[xmin:xmax, ymin:ymax] is_flag = 0 pixbeam = global_data.psfhelper.get_pixbeam_pixel((xmin + xmax) / 2., (ymin + ymax) / 2.) if pixbeam is None: # This island is not 'on' the sky, ignore it return [] self.log.debug("=====") self.log.debug("Island ({0})".format(isle_num)) params = self.estimate_lmfit_parinfo(idata, rms, icurve, beam, innerclip, outerclip, offsets=[xmin, ymin], max_summits=max_summits) # islands at the edge of a region of nans # result in no components if params is None or params['components'].value < 1: return [] self.log.debug("Rms is {0}".format(np.shape(rms))) self.log.debug("Isle is {0}".format(np.shape(idata))) self.log.debug(" of which {0} are masked".format(sum(np.isnan(idata).ravel() * 1))) # Check that there is enough data to do the fit mx, my = np.where(np.isfinite(idata)) non_blank_pix = len(mx) free_vars = len([1 for a in params.keys() if params[a].vary]) if non_blank_pix < free_vars or free_vars == 0: self.log.debug("Island {0} doesn't have enough pixels to fit the given model".format(isle_num)) self.log.debug("non_blank_pix {0}, free_vars {1}".format(non_blank_pix, free_vars)) result = DummyLM() model = params is_flag |= flags.NOTFIT else: # Model is the fitted parameters fac = 1 / np.sqrt(2) if self.global_data.docov: C = Cmatrix(mx, my, pixbeam.a * FWHM2CC * fac, pixbeam.b * FWHM2CC * fac, pixbeam.pa) B = Bmatrix(C) else: C = B = None self.log.debug( "C({0},{1},{2},{3},{4})".format(len(mx), len(my), pixbeam.a * FWHM2CC, pixbeam.b * FWHM2CC, pixbeam.pa)) errs = np.nanmax(rms) self.log.debug("Initial params") self.log.debug(params) result, _ = do_lmfit(idata, params, B=B) if not result.errorbars: is_flag |= flags.FITERR # get the real (sky) parameter errors model = covar_errors(result.params, idata, errs=errs, B=B, C=C) if self.global_data.dobias and self.global_data.docov: x, y = np.indices(idata.shape) acf = elliptical_gaussian(x, y, 1, 0, 0, pixbeam.a * FWHM2CC * fac, pixbeam.b * FWHM2CC * fac, pixbeam.pa) bias_correct(model, idata, acf=acf * errs ** 2) if not result.success: is_flag |= flags.FITERR self.log.debug("Final params") self.log.debug(model) # convert the fitting results to a list of sources [and islands] sources = self.result_to_components(result, model, island_data, is_flag) return sources
Take an Island, do all the parameter estimation and fitting. Parameters ---------- island_data : :class:`AegeanTools.models.IslandFittingData` The island to be fit. Returns ------- sources : list The sources that were fit.
entailment
def _fit_islands(self, islands): """ Execute fitting on a list of islands This function just wraps around fit_island, so that when we do multiprocesing a single process will fit multiple islands before returning results. Parameters ---------- islands : list of :class:`AegeanTools.models.IslandFittingData` The islands to be fit. Returns ------- sources : list The sources that were fit. """ self.log.debug("Fitting group of {0} islands".format(len(islands))) sources = [] for island in islands: res = self._fit_island(island) sources.extend(res) return sources
Execute fitting on a list of islands This function just wraps around fit_island, so that when we do multiprocesing a single process will fit multiple islands before returning results. Parameters ---------- islands : list of :class:`AegeanTools.models.IslandFittingData` The islands to be fit. Returns ------- sources : list The sources that were fit.
entailment
def find_sources_in_image(self, filename, hdu_index=0, outfile=None, rms=None, bkg=None, max_summits=None, innerclip=5, outerclip=4, cores=None, rmsin=None, bkgin=None, beam=None, doislandflux=False, nopositive=False, nonegative=False, mask=None, lat=None, imgpsf=None, blank=False, docov=True, cube_index=None): """ Run the Aegean source finder. Parameters ---------- filename : str or HDUList Image filename or HDUList. hdu_index : int The index of the FITS HDU (extension). outfile : str file for printing catalog (NOT a table, just a text file of my own design) rms : float Use this rms for the entire image (will also assume that background is 0) max_summits : int Fit up to this many components to each island (extras are included but not fit) innerclip, outerclip : float The seed (inner) and flood (outer) clipping level (sigmas). cores : int Number of CPU cores to use. None means all cores. rmsin, bkgin : str or HDUList Filename or HDUList for the noise and background images. If either are None, then it will be calculated internally. beam : (major, minor, pa) Floats representing the synthesised beam (degrees). Replaces whatever is given in the FITS header. If the FITS header has no BMAJ/BMIN then this is required. doislandflux : bool If True then each island will also be characterized. nopositive, nonegative : bool Whether to return positive or negative sources. Default nopositive=False, nonegative=True. mask : str The filename of a region file created by MIMAS. Islands outside of this region will be ignored. lat : float The latitude of the telescope (declination of zenith). imgpsf : str or HDUList Filename or HDUList for a psf image. blank : bool Cause the output image to be blanked where islands are found. docov : bool If True then include covariance matrix in the fitting process. (default=True) cube_index : int For image cubes, cube_index determines which slice is used. Returns ------- sources : list List of sources found. """ # Tell numpy to be quiet np.seterr(invalid='ignore') if cores is not None: if not (cores >= 1): raise AssertionError("cores must be one or more") self.load_globals(filename, hdu_index=hdu_index, bkgin=bkgin, rmsin=rmsin, beam=beam, rms=rms, bkg=bkg, cores=cores, verb=True, mask=mask, lat=lat, psf=imgpsf, blank=blank, docov=docov, cube_index=cube_index) global_data = self.global_data rmsimg = global_data.rmsimg data = global_data.data_pix self.log.info("beam = {0:5.2f}'' x {1:5.2f}'' at {2:5.2f}deg".format( global_data.beam.a * 3600, global_data.beam.b * 3600, global_data.beam.pa)) # stop people from doing silly things. if outerclip > innerclip: outerclip = innerclip self.log.info("seedclip={0}".format(innerclip)) self.log.info("floodclip={0}".format(outerclip)) isle_num = 0 if cores == 1: # single-threaded, no parallel processing queue = [] else: queue = pprocess.Queue(limit=cores, reuse=1) fit_parallel = queue.manage(pprocess.MakeReusable(self._fit_islands)) island_group = [] group_size = 20 for i, xmin, xmax, ymin, ymax in self._gen_flood_wrap(data, rmsimg, innerclip, outerclip, domask=True): # ignore empty islands # This should now be impossible to trigger if np.size(i) < 1: self.log.warn("Empty island detected, this should be imposisble.") continue isle_num += 1 scalars = (innerclip, outerclip, max_summits) offsets = (xmin, xmax, ymin, ymax) island_data = IslandFittingData(isle_num, i, scalars, offsets, doislandflux) # If cores==1 run fitting in main process. Otherwise build up groups of islands # and submit to queue for subprocesses. Passing a group of islands is more # efficient than passing single islands to the subprocesses. if cores == 1: res = self._fit_island(island_data) queue.append(res) else: island_group.append(island_data) # If the island group is full queue it for the subprocesses to fit if len(island_group) >= group_size: fit_parallel(island_group) island_group = [] # The last partially-filled island group also needs to be queued for fitting if len(island_group) > 0: fit_parallel(island_group) # Write the output to the output file if outfile: print(header.format("{0}-({1})".format(__version__, __date__), filename), file=outfile) print(OutputSource.header, file=outfile) sources = [] for srcs in queue: if srcs: # ignore empty lists for src in srcs: # ignore sources that we have been told to ignore if (src.peak_flux > 0 and nopositive) or (src.peak_flux < 0 and nonegative): continue sources.append(src) if outfile: print(str(src), file=outfile) self.sources.extend(sources) return sources
Run the Aegean source finder. Parameters ---------- filename : str or HDUList Image filename or HDUList. hdu_index : int The index of the FITS HDU (extension). outfile : str file for printing catalog (NOT a table, just a text file of my own design) rms : float Use this rms for the entire image (will also assume that background is 0) max_summits : int Fit up to this many components to each island (extras are included but not fit) innerclip, outerclip : float The seed (inner) and flood (outer) clipping level (sigmas). cores : int Number of CPU cores to use. None means all cores. rmsin, bkgin : str or HDUList Filename or HDUList for the noise and background images. If either are None, then it will be calculated internally. beam : (major, minor, pa) Floats representing the synthesised beam (degrees). Replaces whatever is given in the FITS header. If the FITS header has no BMAJ/BMIN then this is required. doislandflux : bool If True then each island will also be characterized. nopositive, nonegative : bool Whether to return positive or negative sources. Default nopositive=False, nonegative=True. mask : str The filename of a region file created by MIMAS. Islands outside of this region will be ignored. lat : float The latitude of the telescope (declination of zenith). imgpsf : str or HDUList Filename or HDUList for a psf image. blank : bool Cause the output image to be blanked where islands are found. docov : bool If True then include covariance matrix in the fitting process. (default=True) cube_index : int For image cubes, cube_index determines which slice is used. Returns ------- sources : list List of sources found.
entailment
def priorized_fit_islands(self, filename, catalogue, hdu_index=0, outfile=None, bkgin=None, rmsin=None, cores=1, rms=None, bkg=None, beam=None, lat=None, imgpsf=None, catpsf=None, stage=3, ratio=None, outerclip=3, doregroup=True, docov=True, cube_index=None): """ Take an input catalog, and image, and optional background/noise images fit the flux and ra/dec for each of the given sources, keeping the morphology fixed if doregroup is true the groups will be recreated based on a matching radius/probability. if doregroup is false then the islands of the input catalog will be preserved. Multiple cores can be specified, and will be used. Parameters ---------- filename : str or HDUList Image filename or HDUList. catalogue : str or list Input catalogue file name or list of OutputSource objects. hdu_index : int The index of the FITS HDU (extension). outfile : str file for printing catalog (NOT a table, just a text file of my own design) rmsin, bkgin : str or HDUList Filename or HDUList for the noise and background images. If either are None, then it will be calculated internally. cores : int Number of CPU cores to use. None means all cores. rms : float Use this rms for the entire image (will also assume that background is 0) beam : (major, minor, pa) Floats representing the synthesised beam (degrees). Replaces whatever is given in the FITS header. If the FITS header has no BMAJ/BMIN then this is required. lat : float The latitude of the telescope (declination of zenith). imgpsf : str or HDUList Filename or HDUList for a psf image. catpsf : str or HDUList Filename or HDUList for the catalogue psf image. stage : int Refitting stage ratio : float If not None - ratio of image psf to catalog psf, otherwise interpret from catalogue or image if possible innerclip, outerclip : float The seed (inner) and flood (outer) clipping level (sigmas). docov : bool If True then include covariance matrix in the fitting process. (default=True) cube_index : int For image cubes, slice determines which slice is used. Returns ------- sources : list List of sources measured. """ from AegeanTools.cluster import regroup self.load_globals(filename, hdu_index=hdu_index, bkgin=bkgin, rmsin=rmsin, rms=rms, bkg=bkg, cores=cores, verb=True, do_curve=False, beam=beam, lat=lat, psf=imgpsf, docov=docov, cube_index=cube_index) global_data = self.global_data far = 10 * global_data.beam.a # degrees # load the table and convert to an input source list if isinstance(catalogue, six.string_types): input_table = load_table(catalogue) input_sources = np.array(table_to_source_list(input_table)) else: input_sources = np.array(catalogue) if len(input_sources) < 1: self.log.debug("No input sources for priorized fitting") return [] # reject sources with missing params ok = True for param in ['ra', 'dec', 'peak_flux', 'a', 'b', 'pa']: if np.isnan(getattr(input_sources[0], param)): self.log.info("Source 0, is missing param '{0}'".format(param)) ok = False if not ok: self.log.error("Missing parameters! Not fitting.") self.log.error("Maybe your table is missing or mis-labeled columns?") return [] del ok src_mask = np.ones(len(input_sources), dtype=bool) # check to see if the input catalog contains psf information has_psf = getattr(input_sources[0], 'psf_a', None) is not None # the input sources are the initial conditions for our fits. # Expand each source size if needed. # If ratio is provided we just the psf by this amount if ratio is not None: self.log.info("Using ratio of {0} to scale input source shapes".format(ratio)) far *= ratio for i, src in enumerate(input_sources): # Sources with an unknown psf are rejected as they are either outside the image # or outside the region covered by the psf skybeam = global_data.psfhelper.get_beam(src.ra, src.dec) if skybeam is None: src_mask[i] = False self.log.info("Excluding source ({0.island},{0.source}) due to lack of psf knowledge".format(src)) continue # the new source size is the previous size, convolved with the expanded psf src.a = np.sqrt(src.a ** 2 + (skybeam.a * 3600) ** 2 * (1 - 1 / ratio ** 2)) src.b = np.sqrt(src.b ** 2 + (skybeam.b * 3600) ** 2 * (1 - 1 / ratio ** 2)) # source with funky a/b are also rejected if not np.all(np.isfinite((src.a, src.b))): self.log.info("Excluding source ({0.island},{0.source}) due to funky psf ({0.a},{0.b},{0.pa})".format(src)) src_mask[i] = False # if we know the psf from the input catalogue (has_psf), or if it was provided via a psf map # then we use that psf. elif catpsf is not None or has_psf: if catpsf is not None: self.log.info("Using catalog PSF from {0}".format(catpsf)) psf_helper = PSFHelper(catpsf, None) # might need to set the WCSHelper to be not None else: self.log.info("Using catalog PSF from input catalog") psf_helper = None for i, src in enumerate(input_sources): if (src.psf_a <=0) or (src.psf_b <=0): src_mask[i] = False self.log.info("Excluding source ({0.island},{0.source}) due to psf_a/b <=0".format(src)) continue if has_psf: catbeam = Beam(src.psf_a / 3600, src.psf_b / 3600, src.psf_pa) else: catbeam = psf_helper.get_beam(src.ra, src.dec) imbeam = global_data.psfhelper.get_beam(src.ra, src.dec) # If either of the above are None then we skip this source. if catbeam is None or imbeam is None: src_mask[i] = False self.log.info("Excluding source ({0.island},{0.source}) due to lack of psf knowledge".format(src)) continue # TODO: The following assumes that the various psf's are scaled versions of each other # and makes no account for differing position angles. This needs to be checked and/or addressed. # deconvolve the source shape from the catalogue psf src.a = (src.a / 3600) ** 2 - catbeam.a ** 2 + imbeam.a ** 2 # degrees # clip the minimum source shape to be the image psf if src.a < 0: src.a = imbeam.a * 3600 # arcsec else: src.a = np.sqrt(src.a) * 3600 # arcsec src.b = (src.b / 3600) ** 2 - catbeam.b ** 2 + imbeam.b ** 2 if src.b < 0: src.b = imbeam.b * 3600 # arcsec else: src.b = np.sqrt(src.b) * 3600 # arcsec else: self.log.info("Not scaling input source sizes") self.log.info("{0} sources in catalog".format(len(input_sources))) self.log.info("{0} sources accepted".format(sum(src_mask))) if len(src_mask) < 1: self.log.debug("No sources accepted for priorized fitting") return [] input_sources = input_sources[src_mask] # redo the grouping if required if doregroup: groups = regroup(input_sources, eps=np.sqrt(2), far=far) else: groups = list(island_itergen(input_sources)) if cores == 1: # single-threaded, no parallel processing queue = [] else: queue = pprocess.Queue(limit=cores, reuse=1) fit_parallel = queue.manage(pprocess.MakeReusable(self._refit_islands)) sources = [] island_group = [] group_size = 20 for i, island in enumerate(groups): island_group.append(island) # If the island group is full queue it for the subprocesses to fit if len(island_group) >= group_size: if cores > 1: fit_parallel(island_group, stage, outerclip, istart=i) else: res = self._refit_islands(island_group, stage, outerclip, istart=i) queue.append(res) island_group = [] # The last partially-filled island group also needs to be queued for fitting if len(island_group) > 0: if cores > 1: fit_parallel(island_group, stage, outerclip, istart=i) else: res = self._refit_islands(island_group, stage, outerclip, istart=i) queue.append(res) # now unpack the fitting results in to a list of sources for s in queue: sources.extend(s) sources = sorted(sources) # Write the output to the output file if outfile: print(header.format("{0}-({1})".format(__version__, __date__), filename), file=outfile) print(OutputSource.header, file=outfile) components = 0 for source in sources: if isinstance(source, OutputSource): components += 1 if outfile: print(str(source), file=outfile) self.log.info("fit {0} components".format(components)) self.sources.extend(sources) return sources
Take an input catalog, and image, and optional background/noise images fit the flux and ra/dec for each of the given sources, keeping the morphology fixed if doregroup is true the groups will be recreated based on a matching radius/probability. if doregroup is false then the islands of the input catalog will be preserved. Multiple cores can be specified, and will be used. Parameters ---------- filename : str or HDUList Image filename or HDUList. catalogue : str or list Input catalogue file name or list of OutputSource objects. hdu_index : int The index of the FITS HDU (extension). outfile : str file for printing catalog (NOT a table, just a text file of my own design) rmsin, bkgin : str or HDUList Filename or HDUList for the noise and background images. If either are None, then it will be calculated internally. cores : int Number of CPU cores to use. None means all cores. rms : float Use this rms for the entire image (will also assume that background is 0) beam : (major, minor, pa) Floats representing the synthesised beam (degrees). Replaces whatever is given in the FITS header. If the FITS header has no BMAJ/BMIN then this is required. lat : float The latitude of the telescope (declination of zenith). imgpsf : str or HDUList Filename or HDUList for a psf image. catpsf : str or HDUList Filename or HDUList for the catalogue psf image. stage : int Refitting stage ratio : float If not None - ratio of image psf to catalog psf, otherwise interpret from catalogue or image if possible innerclip, outerclip : float The seed (inner) and flood (outer) clipping level (sigmas). docov : bool If True then include covariance matrix in the fitting process. (default=True) cube_index : int For image cubes, slice determines which slice is used. Returns ------- sources : list List of sources measured.
entailment
def check_table_formats(files): """ Determine whether a list of files are of a recognizable output type. Parameters ---------- files : str A list of file names Returns ------- result : bool True if *all* the file names are supported """ cont = True formats = get_table_formats() for t in files.split(','): _, ext = os.path.splitext(t) ext = ext[1:].lower() if ext not in formats: cont = False log.warn("Format not supported for {0} ({1})".format(t, ext)) if not cont: log.error("Invalid table format specified.") return cont
Determine whether a list of files are of a recognizable output type. Parameters ---------- files : str A list of file names Returns ------- result : bool True if *all* the file names are supported
entailment
def show_formats(): """ Print a list of all the file formats that are supported for writing. The file formats are determined by their extensions. Returns ------- None """ fmts = { "ann": "Kvis annotation", "reg": "DS9 regions file", "fits": "FITS Binary Table", "csv": "Comma separated values", "tab": "tabe separated values", "tex": "LaTeX table format", "html": "HTML table", "vot": "VO-Table", "xml": "VO-Table", "db": "Sqlite3 database", "sqlite": "Sqlite3 database"} supported = get_table_formats() print("Extension | Description | Supported?") for k in sorted(fmts.keys()): print("{0:10s} {1:24s} {2}".format(k, fmts[k], k in supported)) return
Print a list of all the file formats that are supported for writing. The file formats are determined by their extensions. Returns ------- None
entailment
def update_meta_data(meta=None): """ Modify the metadata dictionary. DATE, PROGRAM, and PROGVER are added/modified. Parameters ---------- meta : dict The dictionary to be modified, default = None (empty) Returns ------- An updated dictionary. """ if meta is None: meta = {} if 'DATE' not in meta: meta['DATE'] = strftime("%Y-%m-%d %H:%M:%S", gmtime()) if 'PROGRAM' not in meta: meta['PROGRAM'] = "AegeanTools.catalogs" meta['PROGVER'] = "{0}-({1})".format(__version__, __date__) return meta
Modify the metadata dictionary. DATE, PROGRAM, and PROGVER are added/modified. Parameters ---------- meta : dict The dictionary to be modified, default = None (empty) Returns ------- An updated dictionary.
entailment
def save_catalog(filename, catalog, meta=None, prefix=None): """ Save a catalogue of sources using filename as a model. Meta data can be written to some file types (fits, votable). Each type of source will be in a separate file: - base_comp.ext :class:`AegeanTools.models.OutputSource` - base_isle.ext :class:`AegeanTools.models.IslandSource` - base_simp.ext :class:`AegeanTools.models.SimpleSource` Where filename = `base.ext` Parameters ---------- filename : str Name of file to write, format is determined by extension. catalog : list A list of sources to write. Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. prefix : str Prepend each column name with "prefix_". Default is to prepend nothing. meta : dict Meta data to be written to the output file. Support for metadata depends on file type. Returns ------- None """ ascii_table_formats = {'csv': 'csv', 'tab': 'tab', 'tex': 'latex', 'html': 'html'} # .ann and .reg are handled by me meta = update_meta_data(meta) extension = os.path.splitext(filename)[1][1:].lower() if extension in ['ann', 'reg']: writeAnn(filename, catalog, extension) elif extension in ['db', 'sqlite']: writeDB(filename, catalog, meta) elif extension in ['hdf5', 'fits', 'vo', 'vot', 'xml']: write_catalog(filename, catalog, extension, meta, prefix=prefix) elif extension in ascii_table_formats.keys(): write_catalog(filename, catalog, fmt=ascii_table_formats[extension], meta=meta, prefix=prefix) else: log.warning("extension not recognised {0}".format(extension)) log.warning("You get tab format") write_catalog(filename, catalog, fmt='tab', prefix=prefix) return
Save a catalogue of sources using filename as a model. Meta data can be written to some file types (fits, votable). Each type of source will be in a separate file: - base_comp.ext :class:`AegeanTools.models.OutputSource` - base_isle.ext :class:`AegeanTools.models.IslandSource` - base_simp.ext :class:`AegeanTools.models.SimpleSource` Where filename = `base.ext` Parameters ---------- filename : str Name of file to write, format is determined by extension. catalog : list A list of sources to write. Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. prefix : str Prepend each column name with "prefix_". Default is to prepend nothing. meta : dict Meta data to be written to the output file. Support for metadata depends on file type. Returns ------- None
entailment
def load_catalog(filename): """ Load a catalogue and extract the source positions (only) Parameters ---------- filename : str Filename to read. Supported types are csv, tab, tex, vo, vot, and xml. Returns ------- catalogue : list A list of [ (ra, dec), ...] """ supported = get_table_formats() fmt = os.path.splitext(filename)[-1][1:].lower() # extension sans '.' if fmt in ['csv', 'tab', 'tex'] and fmt in supported: log.info("Reading file {0}".format(filename)) t = ascii.read(filename) catalog = list(zip(t.columns['ra'], t.columns['dec'])) elif fmt in ['vo', 'vot', 'xml'] and fmt in supported: log.info("Reading file {0}".format(filename)) t = parse_single_table(filename) catalog = list(zip(t.array['ra'].tolist(), t.array['dec'].tolist())) else: log.info("Assuming ascii format, reading first two columns") lines = [a.strip().split() for a in open(filename, 'r').readlines() if not a.startswith('#')] try: catalog = [(float(a[0]), float(a[1])) for a in lines] except: log.error("Expecting two columns of floats but failed to parse") log.error("Catalog file {0} not loaded".format(filename)) raise Exception("Could not determine file format") return catalog
Load a catalogue and extract the source positions (only) Parameters ---------- filename : str Filename to read. Supported types are csv, tab, tex, vo, vot, and xml. Returns ------- catalogue : list A list of [ (ra, dec), ...]
entailment
def load_table(filename): """ Load a table from a given file. Supports csv, tab, tex, vo, vot, xml, fits, and hdf5. Parameters ---------- filename : str File to read Returns ------- table : Table Table of data. """ supported = get_table_formats() fmt = os.path.splitext(filename)[-1][1:].lower() # extension sans '.' if fmt in ['csv', 'tab', 'tex'] and fmt in supported: log.info("Reading file {0}".format(filename)) t = ascii.read(filename) elif fmt in ['vo', 'vot', 'xml', 'fits', 'hdf5'] and fmt in supported: log.info("Reading file {0}".format(filename)) t = Table.read(filename) else: log.error("Table format not recognized or supported") log.error("{0} [{1}]".format(filename, fmt)) raise Exception("Table format not recognized or supported") return t
Load a table from a given file. Supports csv, tab, tex, vo, vot, xml, fits, and hdf5. Parameters ---------- filename : str File to read Returns ------- table : Table Table of data.
entailment
def write_table(table, filename): """ Write a table to a file. Parameters ---------- table : Table Table to be written filename : str Destination for saving table. Returns ------- None """ try: if os.path.exists(filename): os.remove(filename) table.write(filename) log.info("Wrote {0}".format(filename)) except Exception as e: if "Format could not be identified" not in e.message: raise e else: fmt = os.path.splitext(filename)[-1][1:].lower() # extension sans '.' raise Exception("Cannot auto-determine format for {0}".format(fmt)) return
Write a table to a file. Parameters ---------- table : Table Table to be written filename : str Destination for saving table. Returns ------- None
entailment
def table_to_source_list(table, src_type=OutputSource): """ Convert a table of data into a list of sources. A single table must have consistent source types given by src_type. src_type should be one of :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. Parameters ---------- table : Table Table of sources src_type : class Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. Returns ------- sources : list A list of objects of the given type. """ source_list = [] if table is None: return source_list for row in table: # Initialise our object src = src_type() # look for the columns required by our source object for param in src_type.names: if param in table.colnames: # copy the value to our object val = row[param] # hack around float32's broken-ness if isinstance(val, np.float32): val = np.float64(val) setattr(src, param, val) # save this object to our list of sources source_list.append(src) return source_list
Convert a table of data into a list of sources. A single table must have consistent source types given by src_type. src_type should be one of :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. Parameters ---------- table : Table Table of sources src_type : class Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. Returns ------- sources : list A list of objects of the given type.
entailment
def write_catalog(filename, catalog, fmt=None, meta=None, prefix=None): """ Write a catalog (list of sources) to a file with format determined by extension. Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. Parameters ---------- filename : str Base name for file to write. `_simp`, `_comp`, or `_isle` will be added to differentiate the different types of sources that are being written. catalog : list A list of source objects. Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. fmt : str The file format extension. prefix : str Prepend each column name with "prefix_". Default is to prepend nothing. meta : dict A dictionary to be used as metadata for some file types (fits, VOTable). Returns ------- None """ if meta is None: meta = {} if prefix is None: pre='' else: pre = prefix + '_' def writer(filename, catalog, fmt=None): """ construct a dict of the data this method preserves the data types in the VOTable """ tab_dict = {} name_list = [] for name in catalog[0].names: col_name = name if catalog[0].galactic: if name.startswith('ra'): col_name = 'lon'+name[2:] elif name.endswith('ra'): col_name = name[:-2] + 'lon' elif name.startswith('dec'): col_name = 'lat'+name[3:] elif name.endswith('dec'): col_name = name[:-3] + 'lat' col_name = pre + col_name tab_dict[col_name] = [getattr(c, name, None) for c in catalog] name_list.append(col_name) t = Table(tab_dict, meta=meta) # re-order the columns t = t[[n for n in name_list]] if fmt is not None: if fmt in ["vot", "vo", "xml"]: vot = from_table(t) # description of this votable vot.description = repr(meta) writetoVO(vot, filename) elif fmt in ['hdf5']: t.write(filename, path='data', overwrite=True) elif fmt in ['fits']: writeFITSTable(filename, t) else: ascii.write(t, filename, fmt, overwrite=True) else: ascii.write(t, filename, overwrite=True) return # sort the sources into types and then write them out individually components, islands, simples = classify_catalog(catalog) if len(components) > 0: new_name = "{1}{0}{2}".format('_comp', *os.path.splitext(filename)) writer(new_name, components, fmt) log.info("wrote {0}".format(new_name)) if len(islands) > 0: new_name = "{1}{0}{2}".format('_isle', *os.path.splitext(filename)) writer(new_name, islands, fmt) log.info("wrote {0}".format(new_name)) if len(simples) > 0: new_name = "{1}{0}{2}".format('_simp', *os.path.splitext(filename)) writer(new_name, simples, fmt) log.info("wrote {0}".format(new_name)) return
Write a catalog (list of sources) to a file with format determined by extension. Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. Parameters ---------- filename : str Base name for file to write. `_simp`, `_comp`, or `_isle` will be added to differentiate the different types of sources that are being written. catalog : list A list of source objects. Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. fmt : str The file format extension. prefix : str Prepend each column name with "prefix_". Default is to prepend nothing. meta : dict A dictionary to be used as metadata for some file types (fits, VOTable). Returns ------- None
entailment
def writeFITSTable(filename, table): """ Convert a table into a FITSTable and then write to disk. Parameters ---------- filename : str Filename to write. table : Table Table to write. Returns ------- None Notes ----- Due to a bug in numpy, `int32` and `float32` are converted to `int64` and `float64` before writing. """ def FITSTableType(val): """ Return the FITSTable type corresponding to each named parameter in obj """ if isinstance(val, bool): types = "L" elif isinstance(val, (int, np.int64, np.int32)): types = "J" elif isinstance(val, (float, np.float64, np.float32)): types = "E" elif isinstance(val, six.string_types): types = "{0}A".format(len(val)) else: log.warning("Column {0} is of unknown type {1}".format(val, type(val))) log.warning("Using 5A") types = "5A" return types cols = [] for name in table.colnames: cols.append(fits.Column(name=name, format=FITSTableType(table[name][0]), array=table[name])) cols = fits.ColDefs(cols) tbhdu = fits.BinTableHDU.from_columns(cols) for k in table.meta: tbhdu.header['HISTORY'] = ':'.join((k, table.meta[k])) tbhdu.writeto(filename, overwrite=True)
Convert a table into a FITSTable and then write to disk. Parameters ---------- filename : str Filename to write. table : Table Table to write. Returns ------- None Notes ----- Due to a bug in numpy, `int32` and `float32` are converted to `int64` and `float64` before writing.
entailment
def writeIslandContours(filename, catalog, fmt='reg'): """ Write an output file in ds9 .reg format that outlines the boundaries of each island. Parameters ---------- filename : str Filename to write. catalog : list List of sources. Only those of type :class:`AegeanTools.models.IslandSource` will have contours drawn. fmt : str Output format type. Currently only 'reg' is supported (default) Returns ------- None See Also -------- :func:`AegeanTools.catalogs.writeIslandBoxes` """ if fmt != 'reg': log.warning("Format {0} not yet supported".format(fmt)) log.warning("not writing anything") return out = open(filename, 'w') print("#Aegean island contours", file=out) print("#AegeanTools.catalogs version {0}-({1})".format(__version__, __date__), file=out) line_fmt = 'image;line({0},{1},{2},{3})' text_fmt = 'fk5; text({0},{1}) # text={{{2}}}' mas_fmt = 'image; line({1},{0},{3},{2}) #color = yellow' x_fmt = 'image; point({1},{0}) # point=x' for c in catalog: contour = c.contour if len(contour) > 1: for p1, p2 in zip(contour[:-1], contour[1:]): print(line_fmt.format(p1[1] + 0.5, p1[0] + 0.5, p2[1] + 0.5, p2[0] + 0.5), file=out) print(line_fmt.format(contour[-1][1] + 0.5, contour[-1][0] + 0.5, contour[0][1] + 0.5, contour[0][0] + 0.5), file=out) # comment out lines that have invalid ra/dec (WCS problems) if np.nan in [c.ra, c.dec]: print('#', end=' ', file=out) # some islands may not have anchors because they don't have any contours if len(c.max_angular_size_anchors) == 4: print(text_fmt.format(c.ra, c.dec, c.island), file=out) print(mas_fmt.format(*[a + 0.5 for a in c.max_angular_size_anchors]), file=out) for p1, p2 in c.pix_mask: # DS9 uses 1-based instead of 0-based indexing print(x_fmt.format(p1 + 1, p2 + 1), file=out) out.close() return
Write an output file in ds9 .reg format that outlines the boundaries of each island. Parameters ---------- filename : str Filename to write. catalog : list List of sources. Only those of type :class:`AegeanTools.models.IslandSource` will have contours drawn. fmt : str Output format type. Currently only 'reg' is supported (default) Returns ------- None See Also -------- :func:`AegeanTools.catalogs.writeIslandBoxes`
entailment
def writeIslandBoxes(filename, catalog, fmt): """ Write an output file in ds9 .reg, or kvis .ann format that contains bounding boxes for all the islands. Parameters ---------- filename : str Filename to write. catalog : list List of sources. Only those of type :class:`AegeanTools.models.IslandSource` will have contours drawn. fmt : str Output format type. Currently only 'reg' and 'ann' are supported. Default = 'reg'. Returns ------- None See Also -------- :func:`AegeanTools.catalogs.writeIslandContours` """ if fmt not in ['reg', 'ann']: log.warning("Format not supported for island boxes{0}".format(fmt)) return # fmt not supported out = open(filename, 'w') print("#Aegean Islands", file=out) print("#Aegean version {0}-({1})".format(__version__, __date__), file=out) if fmt == 'reg': print("IMAGE", file=out) box_fmt = 'box({0},{1},{2},{3}) #{4}' else: print("COORD P", file=out) box_fmt = 'box P {0} {1} {2} {3} #{4}' for c in catalog: # x/y swap for pyfits/numpy translation ymin, ymax, xmin, xmax = c.extent # +1 for array/image offset xcen = (xmin + xmax) / 2.0 + 1 # + 0.5 in each direction to make lines run 'between' DS9 pixels xwidth = xmax - xmin + 1 ycen = (ymin + ymax) / 2.0 + 1 ywidth = ymax - ymin + 1 print(box_fmt.format(xcen, ycen, xwidth, ywidth, c.island), file=out) out.close() return
Write an output file in ds9 .reg, or kvis .ann format that contains bounding boxes for all the islands. Parameters ---------- filename : str Filename to write. catalog : list List of sources. Only those of type :class:`AegeanTools.models.IslandSource` will have contours drawn. fmt : str Output format type. Currently only 'reg' and 'ann' are supported. Default = 'reg'. Returns ------- None See Also -------- :func:`AegeanTools.catalogs.writeIslandContours`
entailment
def writeAnn(filename, catalog, fmt): """ Write an annotation file that can be read by Kvis (.ann) or DS9 (.reg). Uses ra/dec from catalog. Draws ellipses if bmaj/bmin/pa are in catalog. Draws 30" circles otherwise. Only :class:`AegeanTools.models.OutputSource` will appear in the annotation file unless there are none, in which case :class:`AegeanTools.models.SimpleSource` (if present) will be written. If any :class:`AegeanTools.models.IslandSource` objects are present then an island contours file will be written. Parameters ---------- filename : str Output filename base. catalog : list List of sources. fmt : ['ann', 'reg'] Output file type. Returns ------- None See Also -------- AegeanTools.catalogs.writeIslandContours """ if fmt not in ['reg', 'ann']: log.warning("Format not supported for island boxes{0}".format(fmt)) return # fmt not supported components, islands, simples = classify_catalog(catalog) if len(components) > 0: cat = sorted(components) suffix = "comp" elif len(simples) > 0: cat = simples suffix = "simp" else: cat = [] if len(cat) > 0: ras = [a.ra for a in cat] decs = [a.dec for a in cat] if not hasattr(cat[0], 'a'): # a being the variable that I used for bmaj. bmajs = [30 / 3600.0 for a in cat] bmins = bmajs pas = [0 for a in cat] else: bmajs = [a.a / 3600.0 for a in cat] bmins = [a.b / 3600.0 for a in cat] pas = [a.pa for a in cat] names = [a.__repr__() for a in cat] if fmt == 'ann': new_file = re.sub('.ann$', '_{0}.ann'.format(suffix), filename) out = open(new_file, 'w') print("#Aegean version {0}-({1})".format(__version__, __date__), file=out) print('PA SKY', file=out) print('FONT hershey12', file=out) print('COORD W', file=out) formatter = "ELLIPSE W {0} {1} {2} {3} {4:+07.3f} #{5}\nTEXT W {0} {1} {5}" else: # reg new_file = re.sub('.reg$', '_{0}.reg'.format(suffix), filename) out = open(new_file, 'w') print("#Aegean version {0}-({1})".format(__version__, __date__), file=out) print("fk5", file=out) formatter = 'ellipse {0} {1} {2:.9f}d {3:.9f}d {4:+07.3f}d # text="{5}"' # DS9 has some strange ideas about position angle pas = [a - 90 for a in pas] for ra, dec, bmaj, bmin, pa, name in zip(ras, decs, bmajs, bmins, pas, names): # comment out lines that have invalid or stupid entries if np.nan in [ra, dec, bmaj, bmin, pa] or bmaj >= 180: print('#', end=' ', file=out) print(formatter.format(ra, dec, bmaj, bmin, pa, name), file=out) out.close() log.info("wrote {0}".format(new_file)) if len(islands) > 0: if fmt == 'reg': new_file = re.sub('.reg$', '_isle.reg', filename) elif fmt == 'ann': log.warning('kvis islands are currently not working') return else: log.warning('format {0} not supported for island annotations'.format(fmt)) return writeIslandContours(new_file, islands, fmt) log.info("wrote {0}".format(new_file)) return
Write an annotation file that can be read by Kvis (.ann) or DS9 (.reg). Uses ra/dec from catalog. Draws ellipses if bmaj/bmin/pa are in catalog. Draws 30" circles otherwise. Only :class:`AegeanTools.models.OutputSource` will appear in the annotation file unless there are none, in which case :class:`AegeanTools.models.SimpleSource` (if present) will be written. If any :class:`AegeanTools.models.IslandSource` objects are present then an island contours file will be written. Parameters ---------- filename : str Output filename base. catalog : list List of sources. fmt : ['ann', 'reg'] Output file type. Returns ------- None See Also -------- AegeanTools.catalogs.writeIslandContours
entailment
def writeDB(filename, catalog, meta=None): """ Output an sqlite3 database containing one table for each source type Parameters ---------- filename : str Output filename catalog : list List of sources of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. meta : dict Meta data to be written to table `meta` Returns ------- None """ def sqlTypes(obj, names): """ Return the sql type corresponding to each named parameter in obj """ types = [] for n in names: val = getattr(obj, n) if isinstance(val, bool): types.append("BOOL") elif isinstance(val, (int, np.int64, np.int32)): types.append("INT") elif isinstance(val, (float, np.float64, np.float32)): # float32 is bugged and claims not to be a float types.append("FLOAT") elif isinstance(val, six.string_types): types.append("VARCHAR") else: log.warning("Column {0} is of unknown type {1}".format(n, type(n))) log.warning("Using VARCHAR") types.append("VARCHAR") return types if os.path.exists(filename): log.warning("overwriting {0}".format(filename)) os.remove(filename) conn = sqlite3.connect(filename) db = conn.cursor() # determine the column names by inspecting the catalog class for t, tn in zip(classify_catalog(catalog), ["components", "islands", "simples"]): if len(t) < 1: continue #don't write empty tables col_names = t[0].names col_types = sqlTypes(t[0], col_names) stmnt = ','.join(["{0} {1}".format(a, b) for a, b in zip(col_names, col_types)]) db.execute('CREATE TABLE {0} ({1})'.format(tn, stmnt)) stmnt = 'INSERT INTO {0} ({1}) VALUES ({2})'.format(tn, ','.join(col_names), ','.join(['?' for i in col_names])) # expend the iterators that are created by python 3+ data = list(map(nulls, list(r.as_list() for r in t))) db.executemany(stmnt, data) log.info("Created table {0}".format(tn)) # metadata add some meta data db.execute("CREATE TABLE meta (key VARCHAR, val VARCHAR)") for k in meta: db.execute("INSERT INTO meta (key, val) VALUES (?,?)", (k, meta[k])) conn.commit() log.info(db.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()) conn.close() log.info("Wrote file {0}".format(filename)) return
Output an sqlite3 database containing one table for each source type Parameters ---------- filename : str Output filename catalog : list List of sources of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. meta : dict Meta data to be written to table `meta` Returns ------- None
entailment
def norm_dist(src1, src2): """ Calculate the normalised distance between two sources. Sources are elliptical Gaussians. The normalised distance is calculated as the GCD distance between the centers, divided by quadrature sum of the radius of each ellipse along a line joining the two ellipses. For ellipses that touch at a single point, the normalized distance will be 1/sqrt(2). Parameters ---------- src1, src2 : object The two positions to compare. Objects must have the following parameters: (ra, dec, a, b, pa). Returns ------- dist: float The normalised distance. """ if np.all(src1 == src2): return 0 dist = gcd(src1.ra, src1.dec, src2.ra, src2.dec) # degrees # the angle between the ellipse centers phi = bear(src1.ra, src1.dec, src2.ra, src2.dec) # Degrees # Calculate the radius of each ellipse along a line that joins their centers. r1 = src1.a*src1.b / np.hypot(src1.a * np.sin(np.radians(phi - src1.pa)), src1.b * np.cos(np.radians(phi - src1.pa))) r2 = src2.a*src2.b / np.hypot(src2.a * np.sin(np.radians(180 + phi - src2.pa)), src2.b * np.cos(np.radians(180 + phi - src2.pa))) R = dist / (np.hypot(r1, r2) / 3600) return R
Calculate the normalised distance between two sources. Sources are elliptical Gaussians. The normalised distance is calculated as the GCD distance between the centers, divided by quadrature sum of the radius of each ellipse along a line joining the two ellipses. For ellipses that touch at a single point, the normalized distance will be 1/sqrt(2). Parameters ---------- src1, src2 : object The two positions to compare. Objects must have the following parameters: (ra, dec, a, b, pa). Returns ------- dist: float The normalised distance.
entailment
def sky_dist(src1, src2): """ Great circle distance between two sources. A check is made to determine if the two sources are the same object, in this case the distance is zero. Parameters ---------- src1, src2 : object Two sources to check. Objects must have parameters (ra,dec) in degrees. Returns ------- distance : float The distance between the two sources. See Also -------- :func:`AegeanTools.angle_tools.gcd` """ if np.all(src1 == src2): return 0 return gcd(src1.ra, src1.dec, src2.ra, src2.dec)
Great circle distance between two sources. A check is made to determine if the two sources are the same object, in this case the distance is zero. Parameters ---------- src1, src2 : object Two sources to check. Objects must have parameters (ra,dec) in degrees. Returns ------- distance : float The distance between the two sources. See Also -------- :func:`AegeanTools.angle_tools.gcd`
entailment
def pairwise_ellpitical_binary(sources, eps, far=None): """ Do a pairwise comparison of all sources and determine if they have a normalized distance within eps. Form this into a matrix of shape NxN. Parameters ---------- sources : list A list of sources (objects with parameters: ra,dec,a,b,pa) eps : float Normalised distance constraint. far : float If sources have a dec that differs by more than this amount then they are considered to be not matched. This is a short-cut around performing GCD calculations. Returns ------- prob : numpy.ndarray A 2d array of True/False. See Also -------- :func:`AegeanTools.cluster.norm_dist` """ if far is None: far = max(a.a/3600 for a in sources) l = len(sources) distances = np.zeros((l, l), dtype=bool) for i in range(l): for j in range(i, l): if i == j: distances[i, j] = False continue src1 = sources[i] src2 = sources[j] if src2.dec - src1.dec > far: break if abs(src2.ra - src1.ra)*np.cos(np.radians(src1.dec)) > far: continue distances[i, j] = norm_dist(src1, src2) > eps distances[j, i] = distances[i, j] return distances
Do a pairwise comparison of all sources and determine if they have a normalized distance within eps. Form this into a matrix of shape NxN. Parameters ---------- sources : list A list of sources (objects with parameters: ra,dec,a,b,pa) eps : float Normalised distance constraint. far : float If sources have a dec that differs by more than this amount then they are considered to be not matched. This is a short-cut around performing GCD calculations. Returns ------- prob : numpy.ndarray A 2d array of True/False. See Also -------- :func:`AegeanTools.cluster.norm_dist`
entailment
def regroup_vectorized(srccat, eps, far=None, dist=norm_dist): """ Regroup the islands of a catalog according to their normalised distance. Assumes srccat is recarray-like for efficiency. Return a list of island groups. Parameters ---------- srccat : np.rec.arry or pd.DataFrame Should have the following fields[units]: ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any] eps : float maximum normalised distance within which sources are considered to be grouped far : float (degrees) sources that are further than this distance apart will not be grouped, and will not be tested. Default = 0.5. dist : func a function that calculates the distance between a source and each element of an array of sources. Default = :func:`AegeanTools.cluster.norm_dist` Returns ------- islands : list of lists Each island contians integer indices for members from srccat (in descending dec order). """ if far is None: far = 0.5 # 10*max(a.a/3600 for a in srccat) # most negative declination first # XXX: kind='mergesort' ensures stable sorting for determinism. # Do we need this? order = np.argsort(srccat.dec, kind='mergesort')[::-1] # TODO: is it better to store groups as arrays even if appends are more # costly? groups = [[order[0]]] for idx in order[1:]: rec = srccat[idx] # TODO: Find out if groups are big enough for this to give us a speed # gain. If not, get distance to all entries in groups above # decmin simultaneously. decmin = rec.dec - far for group in reversed(groups): # when an island's largest (last) declination is smaller than # decmin, we don't need to look at any more islands if srccat.dec[group[-1]] < decmin: # new group groups.append([idx]) rafar = far / np.cos(np.radians(rec.dec)) group_recs = np.take(srccat, group, mode='clip') group_recs = group_recs[abs(rec.ra - group_recs.ra) <= rafar] if len(group_recs) and dist(rec, group_recs).min() < eps: group.append(idx) break else: # new group groups.append([idx]) # TODO?: a more numpy-like interface would return only an array providing # the mapping: # group_idx = np.empty(len(srccat), dtype=int) # for i, group in enumerate(groups): # group_idx[group] = i # return group_idx return groups
Regroup the islands of a catalog according to their normalised distance. Assumes srccat is recarray-like for efficiency. Return a list of island groups. Parameters ---------- srccat : np.rec.arry or pd.DataFrame Should have the following fields[units]: ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any] eps : float maximum normalised distance within which sources are considered to be grouped far : float (degrees) sources that are further than this distance apart will not be grouped, and will not be tested. Default = 0.5. dist : func a function that calculates the distance between a source and each element of an array of sources. Default = :func:`AegeanTools.cluster.norm_dist` Returns ------- islands : list of lists Each island contians integer indices for members from srccat (in descending dec order).
entailment
def regroup(catalog, eps, far=None, dist=norm_dist): """ Regroup the islands of a catalog according to their normalised distance. Return a list of island groups. Sources have their (island,source) parameters relabeled. Parameters ---------- catalog : str or object Either a filename to read into a source list, or a list of objects with the following properties[units]: ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any] eps : float maximum normalised distance within which sources are considered to be grouped far : float (degrees) sources that are further than this distance appart will not be grouped, and will not be tested. Default = None. dist : func a function that calculates the distance between two sources must accept two SimpleSource objects. Default = :func:`AegeanTools.cluster.norm_dist` Returns ------- islands : list A list of islands. Each island is a list of sources. See Also -------- :func:`AegeanTools.cluster.norm_dist` """ if isinstance(catalog, str): table = load_table(catalog) srccat = table_to_source_list(table) else: try: srccat = catalog _ = catalog[0].ra, catalog[0].dec, catalog[0].a, catalog[0].b, catalog[0].pa, catalog[0].peak_flux except AttributeError as e: log.error("catalog is not understood.") log.error("catalog: Should be a list of objects with the following properties[units]:\n" + "ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any]") raise e log.info("Regrouping islands within catalog") log.debug("Calculating distances") if far is None: far = 0.5 # 10*max(a.a/3600 for a in srccat) srccat_array = np.rec.fromrecords( [(s.ra, s.dec, s.a, s.b, s.pa, s.peak_flux) for s in srccat], names=['ra', 'dec', 'a', 'b', 'pa', 'peak_flux']) groups = regroup_vectorized(srccat_array, eps=eps, far=far, dist=dist) groups = [[srccat[idx] for idx in group] for group in groups] islands = [] # now that we have the groups, we relabel the sources to have (island,component) in flux order # note that the order of sources within an island list is not changed - just their labels for isle, group in enumerate(groups): for comp, src in enumerate(sorted(group, key=lambda x: -1*x.peak_flux)): src.island = isle src.source = comp islands.append(group) return islands
Regroup the islands of a catalog according to their normalised distance. Return a list of island groups. Sources have their (island,source) parameters relabeled. Parameters ---------- catalog : str or object Either a filename to read into a source list, or a list of objects with the following properties[units]: ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any] eps : float maximum normalised distance within which sources are considered to be grouped far : float (degrees) sources that are further than this distance appart will not be grouped, and will not be tested. Default = None. dist : func a function that calculates the distance between two sources must accept two SimpleSource objects. Default = :func:`AegeanTools.cluster.norm_dist` Returns ------- islands : list A list of islands. Each island is a list of sources. See Also -------- :func:`AegeanTools.cluster.norm_dist`
entailment
def load_file_or_hdu(filename): """ Load a file from disk and return an HDUList If filename is already an HDUList return that instead Parameters ---------- filename : str or HDUList File or HDU to be loaded Returns ------- hdulist : HDUList """ if isinstance(filename, fits.HDUList): hdulist = filename else: hdulist = fits.open(filename, ignore_missing_end=True) return hdulist
Load a file from disk and return an HDUList If filename is already an HDUList return that instead Parameters ---------- filename : str or HDUList File or HDU to be loaded Returns ------- hdulist : HDUList
entailment
def compress(datafile, factor, outfile=None): """ Compress a file using decimation. Parameters ---------- datafile : str or HDUList Input data to be loaded. (HDUList will be modified if passed). factor : int Decimation factor. outfile : str File to be written. Default = None, which means don't write a file. Returns ------- hdulist : HDUList A decimated HDUList See Also -------- :func:`AegeanTools.fits_interp.expand` """ if not (factor > 0 and isinstance(factor, int)): logging.error("factor must be a positive integer") return None hdulist = load_file_or_hdu(datafile) header = hdulist[0].header data = np.squeeze(hdulist[0].data) cx, cy = data.shape[0], data.shape[1] nx = cx // factor ny = cy // factor # check to see if we will have some residual data points lcx = cx % factor lcy = cy % factor if lcx > 0: nx += 1 if lcy > 0: ny += 1 # decimate the data new_data = np.empty((nx + 1, ny + 1)) new_data[:nx, :ny] = data[::factor, ::factor] # copy the last row/col across new_data[-1, :ny] = data[-1, ::factor] new_data[:nx, -1] = data[::factor, -1] new_data[-1, -1] = data[-1, -1] # TODO: Figure out what to do when CD2_1 and CD1_2 are non-zero if 'CDELT1' in header: header['CDELT1'] *= factor elif 'CD1_1' in header: header['CD1_1'] *= factor else: logging.error("Error: Can't find CDELT1 or CD1_1") return None if 'CDELT2' in header: header['CDELT2'] *= factor elif "CD2_2" in header: header['CD2_2'] *= factor else: logging.error("Error: Can't find CDELT2 or CD2_2") return None # Move the reference pixel so that the WCS is correct header['CRPIX1'] = (header['CRPIX1'] + factor - 1) / factor header['CRPIX2'] = (header['CRPIX2'] + factor - 1) / factor # Update the header so that we can do the correct interpolation later on header['BN_CFAC'] = (factor, "Compression factor (grid size) used by BANE") header['BN_NPX1'] = (header['NAXIS1'], 'original NAXIS1 value') header['BN_NPX2'] = (header['NAXIS2'], 'original NAXIS2 value') header['BN_RPX1'] = (lcx, 'Residual on axis 1') header['BN_RPX2'] = (lcy, 'Residual on axis 2') header['HISTORY'] = "Compressed by a factor of {0}".format(factor) # save the changes hdulist[0].data = np.array(new_data, dtype=np.float32) hdulist[0].header = header if outfile is not None: hdulist.writeto(outfile, overwrite=True) logging.info("Wrote: {0}".format(outfile)) return hdulist
Compress a file using decimation. Parameters ---------- datafile : str or HDUList Input data to be loaded. (HDUList will be modified if passed). factor : int Decimation factor. outfile : str File to be written. Default = None, which means don't write a file. Returns ------- hdulist : HDUList A decimated HDUList See Also -------- :func:`AegeanTools.fits_interp.expand`
entailment
def expand(datafile, outfile=None): """ Expand and interpolate the given data file using the given method. Datafile can be a filename or an HDUList It is assumed that the file has been compressed and that there are `BN_?` keywords in the fits header that describe how the compression was done. Parameters ---------- datafile : str or HDUList filename or HDUList of file to work on outfile : str filename to write to (default = None) Returns ------- hdulist : HDUList HDUList of the expanded data. See Also -------- :func:`AegeanTools.fits_interp.compress` """ hdulist = load_file_or_hdu(datafile) header = hdulist[0].header data = hdulist[0].data # Check for the required key words, only expand if they exist if not all(a in header for a in ['BN_CFAC', 'BN_NPX1', 'BN_NPX2', 'BN_RPX1', 'BN_RPX2']): return hdulist factor = header['BN_CFAC'] (gx, gy) = np.mgrid[0:header['BN_NPX2'], 0:header['BN_NPX1']] # fix the last column of the grid to account for residuals lcx = header['BN_RPX2'] lcy = header['BN_RPX1'] rows = (np.arange(data.shape[0]) + int(lcx/factor))*factor cols = (np.arange(data.shape[1]) + int(lcy/factor))*factor # Do the interpolation hdulist[0].data = np.array(RegularGridInterpolator((rows,cols), data)((gx, gy)), dtype=np.float32) # update the fits keywords so that the WCS is correct header['CRPIX1'] = (header['CRPIX1'] - 1) * factor + 1 header['CRPIX2'] = (header['CRPIX2'] - 1) * factor + 1 if 'CDELT1' in header: header['CDELT1'] /= factor elif 'CD1_1' in header: header['CD1_1'] /= factor else: logging.error("Error: Can't find CD1_1 or CDELT1") return None if 'CDELT2' in header: header['CDELT2'] /= factor elif "CD2_2" in header: header['CD2_2'] /= factor else: logging.error("Error: Can't find CDELT2 or CD2_2") return None header['HISTORY'] = 'Expanded by factor {0}'.format(factor) # don't need these any more so delete them. del header['BN_CFAC'], header['BN_NPX1'], header['BN_NPX2'], header['BN_RPX1'], header['BN_RPX2'] hdulist[0].header = header if outfile is not None: hdulist.writeto(outfile, overwrite=True) logging.info("Wrote: {0}".format(outfile)) return hdulist
Expand and interpolate the given data file using the given method. Datafile can be a filename or an HDUList It is assumed that the file has been compressed and that there are `BN_?` keywords in the fits header that describe how the compression was done. Parameters ---------- datafile : str or HDUList filename or HDUList of file to work on outfile : str filename to write to (default = None) Returns ------- hdulist : HDUList HDUList of the expanded data. See Also -------- :func:`AegeanTools.fits_interp.compress`
entailment
def change_autocommit_mode(self, switch): """ Strip and make a string case insensitive and ensure it is either 'true' or 'false'. If neither, prompt user for either value. When 'true', return True, and when 'false' return False. """ parsed_switch = switch.strip().lower() if not parsed_switch in ['true', 'false']: self.send_response( self.iopub_socket, 'stream', { 'name': 'stderr', 'text': 'autocommit must be true or false.\n\n' } ) switch_bool = (parsed_switch == 'true') committed = self.switch_autocommit(switch_bool) message = ( 'committed current transaction & ' if committed else '' + 'switched autocommit mode to ' + str(self._autocommit) ) self.send_response( self.iopub_socket, 'stream', { 'name': 'stderr', 'text': message, } )
Strip and make a string case insensitive and ensure it is either 'true' or 'false'. If neither, prompt user for either value. When 'true', return True, and when 'false' return False.
entailment
def armor(data, versioned=True): """ Returns a string in ASCII Armor format, for the given binary data. The output of this is compatiple with pgcrypto's armor/dearmor functions. """ template = '-----BEGIN PGP MESSAGE-----\n%(headers)s%(body)s\n=%(crc)s\n-----END PGP MESSAGE-----' body = base64.b64encode(data) # The 24-bit CRC should be in big-endian, strip off the first byte (it's already masked in crc24). crc = base64.b64encode(struct.pack('>L', crc24(data))[1:]) return template % { 'headers': 'Version: django-pgcrypto %s\n\n' % __version__ if versioned else '\n', 'body': body.decode('ascii'), 'crc': crc.decode('ascii'), }
Returns a string in ASCII Armor format, for the given binary data. The output of this is compatiple with pgcrypto's armor/dearmor functions.
entailment
def dearmor(text, verify=True): """ Given a string in ASCII Armor format, returns the decoded binary data. If verify=True (the default), the CRC is decoded and checked against that of the decoded data, otherwise it is ignored. If the checksum does not match, a BadChecksumError exception is raised. """ lines = text.strip().split('\n') data_lines = [] check_data = None started = False in_body = False for line in lines: if line.startswith('-----BEGIN'): started = True elif line.startswith('-----END'): break elif started: if in_body: if line.startswith('='): # Once we get the checksum data, we're done. check_data = line[1:5].encode('ascii') break else: # This is part of the base64-encoded data. data_lines.append(line) else: if line.strip(): # This is a header line, which we basically ignore for now. pass else: # The data starts after an empty line. in_body = True b64_str = ''.join(data_lines) # Python 3's b64decode expects bytes, not a string. We know base64 is ASCII, though. data = base64.b64decode(b64_str.encode('ascii')) if verify and check_data: # The 24-bit CRC is in big-endian, so we add a null byte to the beginning. crc = struct.unpack('>L', b'\0' + base64.b64decode(check_data))[0] if crc != crc24(data): raise BadChecksumError() return data
Given a string in ASCII Armor format, returns the decoded binary data. If verify=True (the default), the CRC is decoded and checked against that of the decoded data, otherwise it is ignored. If the checksum does not match, a BadChecksumError exception is raised.
entailment
def unpad(text, block_size): """ Takes the last character of the text, and if it is less than the block_size, assumes the text is padded, and removes any trailing zeros or bytes with the value of the pad character. See http://www.di-mgt.com.au/cryptopad.html for more information (methods 1, 3, and 4). """ end = len(text) if end == 0: return text padch = ord_safe(text[end - 1]) if padch > block_size: # If the last byte value is larger than the block size, it's not padded. return text while end > 0 and ord_safe(text[end - 1]) in (0, padch): end -= 1 return text[:end]
Takes the last character of the text, and if it is less than the block_size, assumes the text is padded, and removes any trailing zeros or bytes with the value of the pad character. See http://www.di-mgt.com.au/cryptopad.html for more information (methods 1, 3, and 4).
entailment
def pad(text, block_size, zero=False): """ Given a text string and a block size, pads the text with bytes of the same value as the number of padding bytes. This is the recommended method, and the one used by pgcrypto. See http://www.di-mgt.com.au/cryptopad.html for more information. """ num = block_size - (len(text) % block_size) ch = b'\0' if zero else chr(num).encode('latin-1') return text + (ch * num)
Given a text string and a block size, pads the text with bytes of the same value as the number of padding bytes. This is the recommended method, and the one used by pgcrypto. See http://www.di-mgt.com.au/cryptopad.html for more information.
entailment
def aes_pad_key(key): """ AES keys must be either 16, 24, or 32 bytes long. If a key is provided that is not one of these lengths, pad it with zeroes (this is what pgcrypto does). """ if len(key) in (16, 24, 32): return key if len(key) < 16: return pad(key, 16, zero=True) elif len(key) < 24: return pad(key, 24, zero=True) else: return pad(key[:32], 32, zero=True)
AES keys must be either 16, 24, or 32 bytes long. If a key is provided that is not one of these lengths, pad it with zeroes (this is what pgcrypto does).
entailment
def deconstruct(self): """ Deconstruct the field for Django 1.7+ migrations. """ name, path, args, kwargs = super(BaseEncryptedField, self).deconstruct() kwargs.update({ #'key': self.cipher_key, 'cipher': self.cipher_name, 'charset': self.charset, 'check_armor': self.check_armor, 'versioned': self.versioned, }) return name, path, args, kwargs
Deconstruct the field for Django 1.7+ migrations.
entailment
def get_cipher(self): """ Return a new Cipher object for each time we want to encrypt/decrypt. This is because pgcrypto expects a zeroed block for IV (initial value), but the IV on the cipher object is cumulatively updated each time encrypt/decrypt is called. """ return self.cipher_class.new(self.cipher_key, self.cipher_class.MODE_CBC, b'\0' * self.cipher_class.block_size)
Return a new Cipher object for each time we want to encrypt/decrypt. This is because pgcrypto expects a zeroed block for IV (initial value), but the IV on the cipher object is cumulatively updated each time encrypt/decrypt is called.
entailment
def find_packages_by_root_package(where): """Better than excluding everything that is not needed, collect only what is needed. """ root_package = os.path.basename(where) packages = [ "%s.%s" % (root_package, sub_package) for sub_package in find_packages(where)] packages.insert(0, root_package) return packages
Better than excluding everything that is not needed, collect only what is needed.
entailment
def make_long_description(marker=None, intro=None): """ click_ is a framework to simplify writing composable commands for command-line tools. This package extends the click_ functionality by adding support for commands that use configuration files. .. _click: https://click.pocoo.org/ EXAMPLE: A configuration file, like: .. code-block:: INI # -- FILE: foo.ini [foo] flag = yes name = Alice and Bob numbers = 1 4 9 16 25 filenames = foo/xxx.txt bar/baz/zzz.txt [person.alice] name = Alice birthyear = 1995 [person.bob] name = Bob birthyear = 2001 can be processed with: .. code-block:: python # EXAMPLE: """ if intro is None: intro = inspect.getdoc(make_long_description) with open("README.rst", "r") as infile: line = infile.readline() while not line.strip().startswith(marker): line = infile.readline() # -- COLLECT REMAINING: Usage example contents = infile.read() text = intro +"\n" + contents return text
click_ is a framework to simplify writing composable commands for command-line tools. This package extends the click_ functionality by adding support for commands that use configuration files. .. _click: https://click.pocoo.org/ EXAMPLE: A configuration file, like: .. code-block:: INI # -- FILE: foo.ini [foo] flag = yes name = Alice and Bob numbers = 1 4 9 16 25 filenames = foo/xxx.txt bar/baz/zzz.txt [person.alice] name = Alice birthyear = 1995 [person.bob] name = Bob birthyear = 2001 can be processed with: .. code-block:: python # EXAMPLE:
entailment
def pubsub_pop_message(self, deadline=None): """Pops a message for a subscribed client. Args: deadline (int): max number of seconds to wait (None => no timeout) Returns: Future with the popped message as result (or None if timeout or ConnectionError object in case of connection errors or ClientError object if you are not subscribed) """ if not self.subscribed: excep = ClientError("you must subscribe before using " "pubsub_pop_message") raise tornado.gen.Return(excep) reply = None try: reply = self._reply_list.pop(0) raise tornado.gen.Return(reply) except IndexError: pass if deadline is not None: td = timedelta(seconds=deadline) yield self._condition.wait(timeout=td) else: yield self._condition.wait() try: reply = self._reply_list.pop(0) except IndexError: pass raise tornado.gen.Return(reply)
Pops a message for a subscribed client. Args: deadline (int): max number of seconds to wait (None => no timeout) Returns: Future with the popped message as result (or None if timeout or ConnectionError object in case of connection errors or ClientError object if you are not subscribed)
entailment
def _get_flat_ids(assigned): """ This is a helper function to recover the coordinates of regions that have been labeled within an image. This function efficiently computes the coordinate of all regions and returns the information in a memory-efficient manner. Parameters ----------- assigned : ndarray[ndim=2, dtype=int] The labeled image. For example, the result of calling scipy.ndimage.label on a binary image Returns -------- I : ndarray[ndim=1, dtype=int] Array of 1d coordinate indices of all regions in the image region_ids : ndarray[shape=[n_features + 1], dtype=int] Indexing array used to separate the coordinates of the different regions. For example, region k has xy coordinates of xy[region_ids[k]:region_ids[k+1], :] labels : ndarray[ndim=1, dtype=int] The labels of the regions in the image corresponding to the coordinates For example, assigned.ravel()[I[k]] == labels[k] """ # MPU optimization: # Let's segment the regions and store in a sparse format # First, let's use where once to find all the information we want ids_labels = np.arange(len(assigned.ravel()), 'int64') I = ids_labels[assigned.ravel().astype(bool)] labels = assigned.ravel()[I] # Now sort these arrays by the label to figure out where to segment sort_id = np.argsort(labels) labels = labels[sort_id] I = I[sort_id] # this should be of size n_features-1 region_ids = np.where(labels[1:] - labels[:-1] > 0)[0] + 1 # This should be of size n_features + 1 region_ids = np.concatenate(([0], region_ids, [len(labels)])) return [I, region_ids, labels]
This is a helper function to recover the coordinates of regions that have been labeled within an image. This function efficiently computes the coordinate of all regions and returns the information in a memory-efficient manner. Parameters ----------- assigned : ndarray[ndim=2, dtype=int] The labeled image. For example, the result of calling scipy.ndimage.label on a binary image Returns -------- I : ndarray[ndim=1, dtype=int] Array of 1d coordinate indices of all regions in the image region_ids : ndarray[shape=[n_features + 1], dtype=int] Indexing array used to separate the coordinates of the different regions. For example, region k has xy coordinates of xy[region_ids[k]:region_ids[k+1], :] labels : ndarray[ndim=1, dtype=int] The labels of the regions in the image corresponding to the coordinates For example, assigned.ravel()[I[k]] == labels[k]
entailment
def _tarboton_slopes_directions(data, dX, dY, facets, ang_adj): """ Calculate the slopes and directions based on the 8 sections from Tarboton http://www.neng.usu.edu/cee/faculty/dtarb/96wr03137.pdf """ shp = np.array(data.shape) - 1 direction = np.full(data.shape, FLAT_ID_INT, 'float64') mag = np.full(data.shape, FLAT_ID_INT, 'float64') slc0 = [slice(1, -1), slice(1, -1)] for ind in xrange(8): e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(1 + e1[0], shp[0] + e1[0]), slice(1 + e1[1], shp[1] + e1[1])] slc2 = [slice(1 + e2[0], shp[0] + e2[0]), slice(1 + e2[1], shp[1] + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp) mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) # %%Now do the edges # if the edge is lower than the interior, we need to copy the value # from the interior (as an approximation) ids1 = (direction[:, 1] > np.pi / 2) \ & (direction[:, 1] < 3 * np.pi / 2) direction[ids1, 0] = direction[ids1, 1] mag[ids1, 0] = mag[ids1, 1] ids1 = (direction[:, -2] < np.pi / 2) \ | (direction[:, -2] > 3 * np.pi / 2) direction[ids1, -1] = direction[ids1, -2] mag[ids1, -1] = mag[ids1, -2] ids1 = (direction[1, :] > 0) & (direction[1, :] < np.pi) direction[0, ids1] = direction[1, ids1] mag[0, ids1] = mag[1, ids1] ids1 = (direction[-2, :] > np.pi) & (direction[-2, :] < 2 * np.pi) direction[-1, ids1] = direction[-2, ids1] mag[-1, ids1] = mag[-2, ids1] # Now update the edges in case they are higher than the interior (i.e. # look at the downstream angle) # left edge slc0 = [slice(1, -1), slice(0, 1)] for ind in [0, 1, 6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(1 + e1[0], shp[0] + e1[0]), slice(e1[1], 1 + e1[1])] slc2 = [slice(1 + e2[0], shp[0] + e2[0]), slice(e2[1], 1 + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp) mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) # right edge slc0 = [slice(1, -1), slice(-1, None)] for ind in [2, 3, 4, 5]: e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(1 + e1[0], shp[0] + e1[0]), slice(shp[1] + e1[1], shp[1] + 1 + e1[1])] slc2 = [slice(1 + e2[0], shp[0] + e2[0]), slice(shp[1] + e2[1], shp[1] + 1 + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp) mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) # top edge slc0 = [slice(0, 1), slice(1, -1)] for ind in [4, 5, 6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(e1[0], 1 + e1[0]), slice(1 + e1[1], shp[1] + e1[1])] slc2 = [slice(e2[0], 1 + e2[0]), slice(1 + e2[1], shp[1] + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp, 'top') mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) # bottom edge slc0 = [slice(-1, None), slice(1, -1)] for ind in [0, 1, 2, 3]: e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(shp[0] + e1[0], shp[0] + 1 + e1[0]), slice(1 + e1[1], shp[1] + e1[1])] slc2 = [slice(shp[0] + e2[0], shp[0] + 1 + e2[0]), slice(1 + e2[1], shp[1] + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp, 'bot') mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) # top-left corner slc0 = [slice(0, 1), slice(0, 1)] for ind in [6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(e1[0], 1 + e1[0]), slice(e1[1], 1 + e1[1])] slc2 = [slice(e2[0], 1 + e2[0]), slice(e2[1], 1 + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp, 'top') mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) # top-right corner slc0 = [slice(0, 1), slice(-1, None)] for ind in [4, 5]: e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(e1[0], 1 + e1[0]), slice(shp[1] + e1[1], shp[1] + 1 + e1[1])] slc2 = [slice(e2[0], 1 + e2[0]), slice(shp[1] + e2[1], shp[1] + 1 + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp, 'top') mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) # bottom-left corner slc0 = [slice(-1, None), slice(0, 1)] for ind in [0, 1]: e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(shp[0] + e1[0], shp[0] + 1 + e1[0]), slice(e1[1], 1 + e1[1])] slc2 = [slice(shp[0] + e2[0], shp[0] + 1 + e2[0]), slice(e2[1], 1 + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp, 'bot') mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) # bottom-right corner slc0 = [slice(-1, None), slice(-1, None)] for ind in [3, 4]: e1 = facets[ind][1] e2 = facets[ind][2] ang = ang_adj[ind] slc1 = [slice(shp[0] + e1[0], shp[0] + 1 + e1[0]), slice(shp[1] + e1[1], shp[1] + 1 + e1[1])] slc2 = [slice(shp[0] + e2[0], shp[0] + 1 + e2[0]), slice(shp[1] + e2[1], shp[1] + 1 + e2[1])] d1, d2, theta = _get_d1_d2(dX, dY, ind, e1, e2, shp, 'bot') mag, direction = _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2) mag[mag > 0] = np.sqrt(mag[mag > 0]) return mag, direction
Calculate the slopes and directions based on the 8 sections from Tarboton http://www.neng.usu.edu/cee/faculty/dtarb/96wr03137.pdf
entailment
def _get_d1_d2(dX, dY, ind, e1, e2, shp, topbot=None): """ This finds the distances along the patch (within the eight neighboring pixels around a central pixel) given the difference in x and y coordinates of the real image. This is the function that allows real coordinates to be used when calculating the magnitude and directions of slopes. """ if topbot == None: if ind in [0, 3, 4, 7]: d1 = dX[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)] d2 = dY[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)] if d1.size == 0: d1 = np.array([dX[0]]) d2 = np.array([dY[0]]) else: d2 = dX[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)] d1 = dY[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)] if d1.size == 0: d2 = dX[0] d1 = dY[0] elif topbot == 'top': if ind in [0, 3, 4, 7]: d1, d2 = dX[0], dY[0] else: d2, d1 = dX[0], dY[0] elif topbot == 'bot': if ind in [0, 3, 4, 7]: d1, d2 = dX[-1], dY[-1] else: d2, d1 = dX[-1], dY[-1] theta = np.arctan2(d2, d1) return d1.reshape(d1.size, 1), d2.reshape(d2.size, 1), theta.reshape(theta.size, 1)
This finds the distances along the patch (within the eight neighboring pixels around a central pixel) given the difference in x and y coordinates of the real image. This is the function that allows real coordinates to be used when calculating the magnitude and directions of slopes.
entailment
def _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2): """ This function gives the magnitude and direction of the slope based on Tarboton's D_\infty method. This is a helper-function to _tarboton_slopes_directions """ data0 = data[slc0] data1 = data[slc1] data2 = data[slc2] s1 = (data0 - data1) / d1 s2 = (data1 - data2) / d2 s1_2 = s1**2 sd = (data0 - data2) / np.sqrt(d1**2 + d2**2) r = np.arctan2(s2, s1) rad2 = s1_2 + s2**2 # Handle special cases # should be on diagonal b_s1_lte0 = s1 <= 0 b_s2_lte0 = s2 <= 0 b_s1_gt0 = s1 > 0 b_s2_gt0 = s2 > 0 I1 = (b_s1_lte0 & b_s2_gt0) | (r > theta) if I1.any(): rad2[I1] = sd[I1] ** 2 r[I1] = theta.repeat(I1.shape[1], 1)[I1] I2 = (b_s1_gt0 & b_s2_lte0) | (r < 0) # should be on straight section if I2.any(): rad2[I2] = s1_2[I2] r[I2] = 0 I3 = b_s1_lte0 & (b_s2_lte0 | (b_s2_gt0 & (sd <= 0))) # upslope or flat rad2[I3] = -1 I4 = rad2 > mag[slc0] if I4.any(): mag[slc0][I4] = rad2[I4] direction[slc0][I4] = r[I4] * ang[1] + ang[0] * np.pi/2 return mag, direction
This function gives the magnitude and direction of the slope based on Tarboton's D_\infty method. This is a helper-function to _tarboton_slopes_directions
entailment
def get(self, key, side): """ Returns an edge given a particular key Parmeters ---------- key : tuple (te, be, le, re) tuple that identifies a tile side : str top, bottom, left, or right, which edge to return """ return getattr(self, side).ravel()[self.keys[key]]
Returns an edge given a particular key Parmeters ---------- key : tuple (te, be, le, re) tuple that identifies a tile side : str top, bottom, left, or right, which edge to return
entailment
def set_i(self, i, data, field, side): """ Assigns data on the i'th tile to the data 'field' of the 'side' edge of that tile """ edge = self.get_i(i, side) setattr(edge, field, data[edge.slice])
Assigns data on the i'th tile to the data 'field' of the 'side' edge of that tile
entailment
def set_sides(self, key, data, field, local=False): """ Assign data on the 'key' tile to all the edges """ for side in ['left', 'right', 'top', 'bottom']: self.set(key, data, field, side, local)
Assign data on the 'key' tile to all the edges
entailment
def set_neighbor_data(self, neighbor_side, data, key, field): """ Assign data from the 'key' tile to the edge on the neighboring tile which is on the 'neighbor_side' of the 'key' tile. The data is assigned to the 'field' attribute of the neihboring tile's edge. """ i = self.keys[key] found = False sides = [] if 'left' in neighbor_side: if i % self.n_cols == 0: return None i -= 1 sides.append('right') found = True if 'right' in neighbor_side: if i % self.n_cols == self.n_cols - 1: return None i += 1 sides.append('left') found = True if 'top' in neighbor_side: sides.append('bottom') i -= self.n_cols found = True if 'bottom' in neighbor_side: sides.append('top') i += self.n_cols found = True if not found: print "Side '%s' not found" % neighbor_side # Check if i is in range if i < 0 or i >= self.n_chunks: return None # Otherwise, set the data for side in sides: self.set_i(i, data, field, side)
Assign data from the 'key' tile to the edge on the neighboring tile which is on the 'neighbor_side' of the 'key' tile. The data is assigned to the 'field' attribute of the neihboring tile's edge.
entailment
def set_all_neighbors_data(self, data, done, key): """ Given they 'key' tile's data, assigns this information to all neighboring tiles """ # The order of this for loop is important because the topleft gets # it's data from the left neighbor, which should have already been # updated... for side in ['left', 'right', 'top', 'bottom', 'topleft', 'topright', 'bottomleft', 'bottomright']: self.set_neighbor_data(side, data, key, 'data') # self.set_neighbor_data(side, todo, key, 'todo') self.set_neighbor_data(side, done, key, 'done')
Given they 'key' tile's data, assigns this information to all neighboring tiles
entailment
def fill_n_todo(self): """ Calculate and record the number of edge pixels left to do on each tile """ left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.n_todo.ravel()[i] = np.sum([left.ravel()[i].n_todo, right.ravel()[i].n_todo, top.ravel()[i].n_todo, bottom.ravel()[i].n_todo])
Calculate and record the number of edge pixels left to do on each tile
entailment
def fill_n_done(self): """ Calculate and record the number of edge pixels that are done one each tile. """ left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.n_done.ravel()[i] = np.sum([left.ravel()[i].n_done, right.ravel()[i].n_done, top.ravel()[i].n_done, bottom.ravel()[i].n_done])
Calculate and record the number of edge pixels that are done one each tile.
entailment
def fill_percent_done(self): """ Calculate the percentage of edge pixels that would be done if the tile was reprocessed. This is done for each tile. """ left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.percent_done.ravel()[i] = \ np.sum([left.ravel()[i].percent_done, right.ravel()[i].percent_done, top.ravel()[i].percent_done, bottom.ravel()[i].percent_done]) self.percent_done.ravel()[i] /= \ np.sum([left.ravel()[i].percent_done > 0, right.ravel()[i].percent_done > 0, top.ravel()[i].percent_done > 0, bottom.ravel()[i].percent_done > 0, 1e-16])
Calculate the percentage of edge pixels that would be done if the tile was reprocessed. This is done for each tile.
entailment
def fill_array(self, array, field, add=False, maximize=False): """ Given a full array (for the while image), fill it with the data on the edges. """ self.fix_shapes() for i in xrange(self.n_chunks): for side in ['left', 'right', 'top', 'bottom']: edge = getattr(self, side).ravel()[i] if add: array[edge.slice] += getattr(edge, field) elif maximize: array[edge.slice] = np.maximum(array[edge.slice], getattr(edge, field)) else: array[edge.slice] = getattr(edge, field) return array
Given a full array (for the while image), fill it with the data on the edges.
entailment
def fix_shapes(self): """ Fixes the shape of the data fields on edges. Left edges should be column vectors, and top edges should be row vectors, for example. """ for i in xrange(self.n_chunks): for side in ['left', 'right', 'top', 'bottom']: edge = getattr(self, side).ravel()[i] if side in ['left', 'right']: shp = [edge.todo.size, 1] else: shp = [1, edge.todo.size] edge.done = edge.done.reshape(shp) edge.data = edge.data.reshape(shp) edge.todo = edge.todo.reshape(shp)
Fixes the shape of the data fields on edges. Left edges should be column vectors, and top edges should be row vectors, for example.
entailment
def find_best_candidate(self): """ Determine which tile, when processed, would complete the largest percentage of unresolved edge pixels. This is a heuristic function and does not give the optimal tile. """ self.fill_percent_done() i_b = np.argmax(self.percent_done.ravel()) if self.percent_done.ravel()[i_b] <= 0: return None # check for ties I = self.percent_done.ravel() == self.percent_done.ravel()[i_b] if I.sum() == 1: return i_b else: I2 = np.argmax(self.max_elev.ravel()[I]) return I.nonzero()[0][I2]
Determine which tile, when processed, would complete the largest percentage of unresolved edge pixels. This is a heuristic function and does not give the optimal tile.
entailment
def save_array(self, array, name=None, partname=None, rootpath='.', raw=False, as_int=True): """ Standard array saving routine Parameters ----------- array : array Array to save to file name : str, optional Default 'array.tif'. Filename of array to save. Over-writes partname. partname : str, optional Part of the filename to save (with the coordinates appended) rootpath : str, optional Default '.'. Which directory to save file raw : bool, optional Default False. If true will save a .npz of the array. If false, will save a geotiff as_int : bool, optional Default True. If true will save array as an integer array ( excellent compression). If false will save as float array. """ if name is None and partname is not None: fnl_file = self.get_full_fn(partname, rootpath) tmp_file = os.path.join(rootpath, partname, self.get_fn(partname + '_tmp')) elif name is not None: fnl_file = name tmp_file = fnl_file + '_tmp.tiff' else: fnl_file = 'array.tif' if not raw: s_file = self.elev.clone_traits() s_file.raster_data = np.ma.masked_array(array) count = 10 while count > 0 and (s_file.raster_data.mask.sum() > 0 \ or np.isnan(s_file.raster_data).sum() > 0): s_file.inpaint() count -= 1 s_file.export_to_geotiff(tmp_file) if as_int: cmd = "gdalwarp -multi -wm 2000 -co BIGTIFF=YES -of GTiff -co compress=lzw -ot Int16 -co TILED=YES -wo OPTIMIZE_SIZE=YES -r near -t_srs %s %s %s" \ % (self.save_projection, tmp_file, fnl_file) else: cmd = "gdalwarp -multi -wm 2000 -co BIGTIFF=YES -of GTiff -co compress=lzw -co TILED=YES -wo OPTIMIZE_SIZE=YES -r near -t_srs %s %s %s" \ % (self.save_projection, tmp_file, fnl_file) print "<<"*4, cmd, ">>"*4 subprocess.call(cmd) os.remove(tmp_file) else: np.savez_compressed(fnl_file, array)
Standard array saving routine Parameters ----------- array : array Array to save to file name : str, optional Default 'array.tif'. Filename of array to save. Over-writes partname. partname : str, optional Part of the filename to save (with the coordinates appended) rootpath : str, optional Default '.'. Which directory to save file raw : bool, optional Default False. If true will save a .npz of the array. If false, will save a geotiff as_int : bool, optional Default True. If true will save array as an integer array ( excellent compression). If false will save as float array.
entailment
def save_uca(self, rootpath, raw=False, as_int=False): """ Saves the upstream contributing area to a file """ self.save_array(self.uca, None, 'uca', rootpath, raw, as_int=as_int)
Saves the upstream contributing area to a file
entailment
def save_twi(self, rootpath, raw=False, as_int=True): """ Saves the topographic wetness index to a file """ self.twi = np.ma.masked_array(self.twi, mask=self.twi <= 0, fill_value=-9999) # self.twi = self.twi.filled() self.twi[self.flats] = 0 self.twi.mask[self.flats] = True # self.twi = self.flats self.save_array(self.twi, None, 'twi', rootpath, raw, as_int=as_int)
Saves the topographic wetness index to a file
entailment
def save_slope(self, rootpath, raw=False, as_int=False): """ Saves the magnitude of the slope to a file """ self.save_array(self.mag, None, 'mag', rootpath, raw, as_int=as_int)
Saves the magnitude of the slope to a file
entailment
def save_direction(self, rootpath, raw=False, as_int=False): """ Saves the direction of the slope to a file """ self.save_array(self.direction, None, 'ang', rootpath, raw, as_int=as_int)
Saves the direction of the slope to a file
entailment
def save_outputs(self, rootpath='.', raw=False): """Saves TWI, UCA, magnitude and direction of slope to files. """ self.save_twi(rootpath, raw) self.save_uca(rootpath, raw) self.save_slope(rootpath, raw) self.save_direction(rootpath, raw)
Saves TWI, UCA, magnitude and direction of slope to files.
entailment
def load_array(self, fn, name): """ Can only load files that were saved in the 'raw' format. Loads previously computed field 'name' from file Valid names are 'mag', 'direction', 'uca', 'twi' """ if os.path.exists(fn + '.npz'): array = np.load(fn + '.npz') try: setattr(self, name, array['arr_0']) except Exception, e: print e finally: array.close() else: raise RuntimeError("File %s does not exist." % (fn + '.npz'))
Can only load files that were saved in the 'raw' format. Loads previously computed field 'name' from file Valid names are 'mag', 'direction', 'uca', 'twi'
entailment
def _get_chunk_edges(self, NN, chunk_size, chunk_overlap): """ Given the size of the array, calculate and array that gives the edges of chunks of nominal size, with specified overlap Parameters ---------- NN : int Size of array chunk_size : int Nominal size of chunks (chunk_size < NN) chunk_overlap : int Number of pixels chunks will overlap Returns ------- start_id : array The starting id of a chunk. start_id[i] gives the starting id of the i'th chunk end_id : array The ending id of a chunk. end_id[i] gives the ending id of the i'th chunk """ left_edge = np.arange(0, NN - chunk_overlap, chunk_size) left_edge[1:] -= chunk_overlap right_edge = np.arange(0, NN - chunk_overlap, chunk_size) right_edge[:-1] = right_edge[1:] + chunk_overlap right_edge[-1] = NN right_edge = np.minimum(right_edge, NN) return left_edge, right_edge
Given the size of the array, calculate and array that gives the edges of chunks of nominal size, with specified overlap Parameters ---------- NN : int Size of array chunk_size : int Nominal size of chunks (chunk_size < NN) chunk_overlap : int Number of pixels chunks will overlap Returns ------- start_id : array The starting id of a chunk. start_id[i] gives the starting id of the i'th chunk end_id : array The ending id of a chunk. end_id[i] gives the ending id of the i'th chunk
entailment
def _assign_chunk(self, data, arr1, arr2, te, be, le, re, ovr, add=False): """ Assign data from a chunk to the full array. The data in overlap regions will not be assigned to the full array Parameters ----------- data : array Unused array (except for shape) that has size of full tile arr1 : array Full size array to which data will be assigned arr2 : array Chunk-sized array from which data will be assigned te : int Top edge id be : int Bottom edge id le : int Left edge id re : int Right edge id ovr : int The number of pixels in the overlap add : bool, optional Default False. If true, the data in arr2 will be added to arr1, otherwise data in arr2 will overwrite data in arr1 """ if te == 0: i1 = 0 else: i1 = ovr if be == data.shape[0]: i2 = 0 i2b = None else: i2 = -ovr i2b = -ovr if le == 0: j1 = 0 else: j1 = ovr if re == data.shape[1]: j2 = 0 j2b = None else: j2 = -ovr j2b = -ovr if add: arr1[te+i1:be+i2, le+j1:re+j2] += arr2[i1:i2b, j1:j2b] else: arr1[te+i1:be+i2, le+j1:re+j2] = arr2[i1:i2b, j1:j2b]
Assign data from a chunk to the full array. The data in overlap regions will not be assigned to the full array Parameters ----------- data : array Unused array (except for shape) that has size of full tile arr1 : array Full size array to which data will be assigned arr2 : array Chunk-sized array from which data will be assigned te : int Top edge id be : int Bottom edge id le : int Left edge id re : int Right edge id ovr : int The number of pixels in the overlap add : bool, optional Default False. If true, the data in arr2 will be added to arr1, otherwise data in arr2 will overwrite data in arr1
entailment
def calc_slopes_directions(self, plotflag=False): """ Calculates the magnitude and direction of slopes and fills self.mag, self.direction """ # TODO minimum filter behavior with nans? # fill/interpolate flats first if self.fill_flats: data = np.ma.filled(self.data.astype('float64'), np.nan) filled = data.copy() edge = np.ones_like(data, bool) edge[1:-1, 1:-1] = False if self.fill_flats_below_sea: sea_mask = data != 0 else: sea_mask = data > 0 flat = (spndi.minimum_filter(data, (3, 3)) >= data) & sea_mask flats, n = spndi.label(flat, structure=FLATS_KERNEL3) objs = spndi.find_objects(flats) for i, _obj in enumerate(objs): obj = grow_obj(_obj, data.shape) self._fill_flat(data[obj], filled[obj], flats[obj]==i+1, edge[obj]) self.data = np.ma.masked_array(filled, mask=np.isnan(filled)).astype(self.data.dtype) # %% Calculate the slopes and directions based on the 8 sections from # Tarboton http://www.neng.usu.edu/cee/faculty/dtarb/96wr03137.pdf if self.data.shape[0] <= self.chunk_size_slp_dir and \ self.data.shape[1] <= self.chunk_size_slp_dir: print "starting slope/direction calculation" self.mag, self.direction = self._slopes_directions( self.data, self.dX, self.dY, 'tarboton') # Find the flat regions. This is mostly simple (look for mag < 0), # but the downstream pixel at the edge of a flat will have a # calcuable angle which will not be accurate. We have to also find # these edges and set their magnitude to -1 (that is, the flat_id) self.find_flats() else: self.direction = np.full(self.data.shape, FLAT_ID_INT, 'float64') self.mag = np.full(self.data.shape, FLAT_ID_INT, 'float64') self.flats = np.zeros(self.data.shape, bool) top_edge, bottom_edge = \ self._get_chunk_edges(self.data.shape[0], self.chunk_size_slp_dir, self.chunk_overlap_slp_dir) left_edge, right_edge = \ self._get_chunk_edges(self.data.shape[1], self.chunk_size_slp_dir, self.chunk_overlap_slp_dir) ovr = self.chunk_overlap_slp_dir count = 1 for te, be in zip(top_edge, bottom_edge): for le, re in zip(left_edge, right_edge): print "starting slope/direction calculation for chunk", \ count, "[%d:%d, %d:%d]" % (te, be, le, re) count += 1 mag, direction = \ self._slopes_directions(self.data[te:be, le:re], self.dX[te:be-1], self.dY[te:be-1]) flats = self._find_flats_edges(self.data[te:be, le:re], mag, direction) direction[flats] = FLAT_ID_INT mag[flats] = FLAT_ID_INT self._assign_chunk(self.data, self.mag, mag, te, be, le, re, ovr) self._assign_chunk(self.data, self.direction, direction, te, be, le, re, ovr) self._assign_chunk(self.data, self.flats, flats, te, be, le, re, ovr) if plotflag: self._plot_debug_slopes_directions() gc.collect() # Just in case return self.mag, self.direction
Calculates the magnitude and direction of slopes and fills self.mag, self.direction
entailment
def _slopes_directions(self, data, dX, dY, method='tarboton'): """ Wrapper to pick between various algorithms """ # %% if method == 'tarboton': return self._tarboton_slopes_directions(data, dX, dY) elif method == 'central': return self._central_slopes_directions(data, dX, dY)
Wrapper to pick between various algorithms
entailment
def _tarboton_slopes_directions(self, data, dX, dY): """ Calculate the slopes and directions based on the 8 sections from Tarboton http://www.neng.usu.edu/cee/faculty/dtarb/96wr03137.pdf """ return _tarboton_slopes_directions(data, dX, dY, self.facets, self.ang_adj)
Calculate the slopes and directions based on the 8 sections from Tarboton http://www.neng.usu.edu/cee/faculty/dtarb/96wr03137.pdf
entailment
def _central_slopes_directions(self, data, dX, dY): """ Calculates magnitude/direction of slopes using central difference """ shp = np.array(data.shape) - 1 direction = np.full(data.shape, FLAT_ID_INT, 'float64') mag = np.full(direction, FLAT_ID_INT, 'float64') ind = 0 d1, d2, theta = _get_d1_d2(dX, dY, ind, [0, 1], [1, 1], shp) s2 = (data[0:-2, 1:-1] - data[2:, 1:-1]) / d2 s1 = -(data[1:-1, 0:-2] - data[1:-1, 2:]) / d1 direction[1:-1, 1:-1] = np.arctan2(s2, s1) + np.pi mag = np.sqrt(s1**2 + s2**2) return mag, direction
Calculates magnitude/direction of slopes using central difference
entailment
def _find_flats_edges(self, data, mag, direction): """ Extend flats 1 square downstream Flats on the downstream side of the flat might find a valid angle, but that doesn't mean that it's a correct angle. We have to find these and then set them equal to a flat """ i12 = np.arange(data.size).reshape(data.shape) flat = mag == FLAT_ID_INT flats, n = spndi.label(flat, structure=FLATS_KERNEL3) objs = spndi.find_objects(flats) f = flat.ravel() d = data.ravel() for i, _obj in enumerate(objs): region = flats[_obj] == i+1 I = i12[_obj][region] J = get_adjacent_index(I, data.shape, data.size) f[J] = d[J] == d[I[0]] flat = f.reshape(data.shape) return flat
Extend flats 1 square downstream Flats on the downstream side of the flat might find a valid angle, but that doesn't mean that it's a correct angle. We have to find these and then set them equal to a flat
entailment
def calc_uca(self, plotflag=False, edge_init_data=None, uca_init=None): """Calculates the upstream contributing area. Parameters ---------- plotflag : bool, optional Default False. If true will plot debugging plots. For large files, this will be very slow edge_init_data : list, optional edge_init_data = [uca_data, done_data, todo_data] uca_data : dict Dictionary with 'left', 'right', 'top', 'bottom' keys that gives the arrays filled with uca data on the edge corresponding to the key done_data : dict As uca_data, but bool array indicating if neighboring tiles have computed a finished value for that edge pixel todo_data : dict As uca_data, but bool array indicating if edges on tile still have to be computed uca_init : array, optional Array with pre-computed upstream contributing area (without edge contributions) Notes ------- if edge_init_data is given, then the initialized area will be modified such that the edges are equal to the edge_init_data. If uca_init is given, then the interior of the upstream area will not be calculated. Only the information from the edges will be updated. Unless the tile is too large so that the calculation is chunked. In that case, the whole tile is re-computed. """ if self.direction is None: self.calc_slopes_directions() # Initialize the upstream area uca_edge_init = np.zeros(self.data.shape, 'float64') uca_edge_done = np.zeros(self.data.shape, bool) uca_edge_todo = np.zeros(self.data.shape, bool) edge_init_done, edge_init_todo = None, None if edge_init_data is not None: edge_init_data, edge_init_done, edge_init_todo = edge_init_data slices = {'left': [slice(None), slice(0, 1)], 'right': [slice(None), slice(-1, None)], 'top': [slice(0, 1), slice(None)], 'bottom': [slice(-1, None), slice(None)]} for key, val in slices.iteritems(): # To initialize and edge it needs to have data and be finished uca_edge_done[val] += \ edge_init_done[key].reshape(uca_edge_init[val].shape) uca_edge_init[val] = \ edge_init_data[key].reshape(uca_edge_init[val].shape) uca_edge_init[val][~uca_edge_done[val]] = 0 uca_edge_todo[val] += \ edge_init_todo[key].reshape(uca_edge_init[val].shape) if uca_init is None: self.uca = np.full(self.data.shape, FLAT_ID_INT, 'float64') else: self.uca = uca_init.astype('float64') if self.data.shape[0] <= self.chunk_size_uca and \ self.data.shape[1] <= self.chunk_size_uca: if uca_init is None: print "Starting uca calculation" res = self._calc_uca_chunk(self.data, self.dX, self.dY, self.direction, self.mag, self.flats, area_edges=uca_edge_init, plotflag=plotflag) self.edge_todo = res[1] self.edge_done = res[2] self.uca = res[0] else: print "Starting edge resolution round: ", # last return value will be None: edge_ area, e2doi, edone, _ = \ self._calc_uca_chunk_update(self.data, self.dX, self.dY, self.direction, self.mag, self.flats, area_edges=uca_edge_init, edge_todo=uca_edge_todo, edge_done=uca_edge_done) self.uca += area self.edge_todo = e2doi self.edge_done = edone else: top_edge, bottom_edge = \ self._get_chunk_edges(self.data.shape[0], self.chunk_size_uca, self.chunk_overlap_uca) left_edge, right_edge = \ self._get_chunk_edges(self.data.shape[1], self.chunk_size_uca, self.chunk_overlap_uca) ovr = self.chunk_overlap_uca # Initialize the edge_todo and done arrays edge_todo = np.zeros(self.data.shape, bool) edge_todo_tile = np.zeros(self.data.shape, bool) edge_not_done_tile = np.zeros(self.data.shape, bool) edge_done = np.zeros(self.data.shape, bool) tile_edge = TileEdge(top_edge, bottom_edge, left_edge, right_edge, ovr, self.elev.grid_coordinates.x_axis, self.elev.grid_coordinates.y_axis, self.data) count = 1 # Mask out the edges because we're just trying to resolve the # internal edge conflicts self.data.mask[:, 0] = True self.data.mask[:, -1] = True self.data.mask[0, :] = True self.data.mask[-1, :] = True # if 1: # uca_init == None: print "Starting uca calculation for chunk: ", # %% for te, be in zip(top_edge, bottom_edge): for le, re in zip(left_edge, right_edge): print count, "[%d:%d, %d:%d]" % (te, be, le, re), count += 1 area, e2doi, edone, e2doi_no_mask, e2o_no_mask = \ self._calc_uca_chunk(self.data[te:be, le:re], self.dX[te:be-1], self.dY[te:be-1], self.direction[te:be, le:re], self.mag[te:be, le:re], self.flats[te:be, le:re], area_edges=uca_edge_init[te:be, le:re], plotflag=plotflag, edge_todo_i_no_mask=uca_edge_todo[te:be, le:re]) self._assign_chunk(self.data, self.uca, area, te, be, le, re, ovr) edge_todo[te:be, le:re] += e2doi edge_not_done_tile[te:be, le:re] += e2o_no_mask # if this tile is on the edge of the domain, we actually # want to keep the edge information # UPDATE: I don't think we actually need this here as it # will be handled by chunk update ??? self._assign_chunk(self.data, edge_todo_tile, e2doi_no_mask, te, be, le, re, ovr) # if te == top_edge[0] or be == bottom_edge[-1] \ # or le == left_edge[0] or re == right_edge[-1]: # edge_todo_tile[te:be, le:re] = e2doi self._assign_chunk(self.data, edge_done, edone, te, be, le, re, ovr) tile_edge.set_all_neighbors_data(self.uca, edge_done, (te, be, le, re)) tile_edge.set_sides((te, be, le, re), e2doi, 'todo', local=True) # %% print '..Done' # This needs to be much more sophisticated because we have to # follow the tile's edge value through the interior. # Since we have to do that anyway, we might as well recompute # the UCA from scratch. So the above branch does that. The branch # below would be more efficient if we can get it working. if 0: # else: # need to populate tile_edge somehow edge_todo_tile = uca_edge_todo & ~uca_edge_done edge_not_done_tile = edge_todo_tile.copy() for te, be in zip(top_edge, bottom_edge): for le, re in zip( [left_edge[0], left_edge[-1]], [right_edge[0], right_edge[-1]]): e2doi = uca_edge_todo[te:be, le:re] tiledata = uca_edge_init[te:be, le:re] tile_edge.set_sides((te, be, le, re), tiledata, 'data', local=True) tiledone = uca_edge_done[te:be, le:re] tile_edge.set_sides((te, be, le, re), tiledone, 'done', local=True) for te, be in zip([top_edge[0], top_edge[-1]], [bottom_edge[0], bottom_edge[-1]]): for le, re in zip(left_edge, right_edge): e2doi = uca_edge_todo[te:be, le:re] tiledata = uca_edge_init[te:be, le:re] tile_edge.set_sides((te, be, le, re), tiledata, 'data', local=True) tiledone = uca_edge_done[te:be, le:re] tile_edge.set_sides((te, be, le, re), tiledone, 'done', local=True) if not self.resolve_edges: # This branch is probably horribly broken (but it might have # always been that way) self.tile_edge = tile_edge self.edge_todo = edge_todo self.edge_done = edge_done return self.uca # ## RESOLVING EDGES ## # # Get a good starting tile for the iteration i = tile_edge.find_best_candidate() tile_edge.fix_shapes() # dbug = np.zeros_like(self.uca) print "Starting edge resolution round: ", count = 0 i_old = -1 while i is not None and i != i_old: count += 1 print count, '(%d) .' % i, # %% te, be, le, re = tile_edge.coords[i] data, dX, dY, direction, mag, flats = \ [self.data[te:be, le:re], self.dX[te:be-1], self.dY[te:be-1], self.direction[te:be, le:re], self.mag[te:be, le:re], self.flats[te:be, le:re]] area, e2doi, edone, e2doi_tile = self._calc_uca_chunk_update( data, dX, dY, direction, mag, flats, tile_edge, i, edge_todo=edge_not_done_tile[te:be, le:re]) self._assign_chunk(self.data, self.uca, area, te, be, le, re, ovr, add=True) self._assign_chunk(self.data, edge_done, edone, te, be, le, re, ovr) tile_edge.set_all_neighbors_data(self.uca, edge_done, (te, be, le, re)) try: edge_not_done_tile[te:be, le:re] += e2doi_tile except: import ipdb; ipdb.set_trace() # BREAKPOINT tile_edge.set_sides((te, be, le, re), e2doi, 'todo', local=True) i_old = i i = tile_edge.find_best_candidate() # Debugging plots below. Feel free to uncomment for debugging # def drawgrid(): # ax = gca(); # ax.set_xticks(np.linspace(-0.5, 63.5, 9)) # ax.set_yticks(np.linspace(-0.5, 63.5, 9)) # grid(lw=2, ls='-', c=(0.5, 0.5, 0.5)) # figure(1);clf();imshow((self.uca), interpolation='none');colorbar(); title("uca" + str(i_old) + " " + str(i));drawgrid() # figure(2);clf();imshow(area, interpolation='none');colorbar(); title("local area" + str(i_old) + " " + str(i)) ## edge_todo[:] = 0 ## edge_todo = tile_edge.fill_array(edge_todo, 'todo', add=True) # figure(3);clf();imshow(edge_todo*1.0 + edge_done*2.0, interpolation='none');colorbar(); title("todo" + str(i_old) + " " + str(i));clim(0, 3) # edge_todo[:] = 0 # edge_todo = tile_edge.fill_array(edge_todo, 'coulddo', add=True) # figure(3);clf();imshow(edge_todo*1.0 + edge_done*2.0, interpolation='none');colorbar(); title("todo" + str(i_old) + " " + str(i));clim(0, 3);drawgrid() # figure(4);clf();imshow(tile_edge.percent_done, interpolation='none');colorbar(); title("percent done" + str(i_old) + " " + str(i));clim(0, 1) # dbug[:] = 0 # dbug = tile_edge.fill_array(dbug, 'coulddo', maximize=False) # dbug[dbug > 0] -= (self.uca - ref_area)[dbug > 0] # figure(5);clf();imshow(dbug, interpolation='none');colorbar(); title("data diff" + str(i_old) + " " + str(i));drawgrid() # dbug = (self.uca - area1) # figure(6);clf();imshow(np.log10(np.abs(dbug)), interpolation='none');colorbar(); title("uca diff" + str(i_old) + " " + str(i));drawgrid() # %% self.tile_edge = tile_edge self.edge_todo = edge_todo_tile self.edge_done = ~edge_not_done_tile print '..Done' # Fix the very last pixel on the edges self.fix_edge_pixels(edge_init_data, edge_init_done, edge_init_todo) gc.collect() # Just in case return self.uca
Calculates the upstream contributing area. Parameters ---------- plotflag : bool, optional Default False. If true will plot debugging plots. For large files, this will be very slow edge_init_data : list, optional edge_init_data = [uca_data, done_data, todo_data] uca_data : dict Dictionary with 'left', 'right', 'top', 'bottom' keys that gives the arrays filled with uca data on the edge corresponding to the key done_data : dict As uca_data, but bool array indicating if neighboring tiles have computed a finished value for that edge pixel todo_data : dict As uca_data, but bool array indicating if edges on tile still have to be computed uca_init : array, optional Array with pre-computed upstream contributing area (without edge contributions) Notes ------- if edge_init_data is given, then the initialized area will be modified such that the edges are equal to the edge_init_data. If uca_init is given, then the interior of the upstream area will not be calculated. Only the information from the edges will be updated. Unless the tile is too large so that the calculation is chunked. In that case, the whole tile is re-computed.
entailment
def fix_edge_pixels(self, edge_init_data, edge_init_done, edge_init_todo): """ This function fixes the pixels on the very edge of the tile. Drainage is calculated if the edge is downstream from the interior. If there is data available on the edge (from edge_init_data, for eg) then this data is used. This is a bit of hack to take care of the edge-values. It could possibly be handled through the main algorithm, but at least here the treatment is explicit. """ data, dX, dY, direction, flats = \ self.data, self.dX, self.dY, self.direction, self.flats sides = ['left', 'right', 'top', 'bottom'] slices_o = [[slice(None), slice(1, 2)], [slice(None), slice(-2, -1)], [slice(1, 2), slice(None)], [slice(-2, -1), slice(None)]] slices_d = [[slice(None), slice(0, 1)], [slice(None), slice(-1, None)], [slice(0, 1), slice(None)], [slice(-1, None), slice(None)]] # The first set of edges will have contributions from two nodes whereas # the second set of edges will only have contributinos from one node indices = {'left': [[3, 4], [2, 5]], 'right': [[0, 7], [1, 6]], 'top': [[1, 2], [0, 3]], 'bottom': [[5, 6], [4, 7]]} # Figure out which section the drainage goes towards, and what # proportion goes to the straight-sided (as opposed to diagonal) node. for side, slice_o, slice_d in zip(sides, slices_o, slices_d): section, proportion = \ self._calc_uca_section_proportion(data[slice_o], dX[slice_o[0]], dY[slice_o[0]], direction[slice_o], flats[slice_o]) # self-initialize: if side in ['left', 'right']: self.uca[slice_d] = \ np.concatenate(([dX[slice_d[0]][0] * dY[slice_d[0]][0]], dX[slice_d[0]] * dY[slice_d[0]]))\ .reshape(self.uca[slice_d].shape) else: self.uca[slice_d] = dX[slice_d[0]][0] * dY[slice_d[0]][0] for e in range(2): for i in indices[side][e]: ed = self.facets[i][2] ids = section == i if e == 0: self.uca[slice_d][ids] += self.uca[slice_o][ids] \ * proportion[ids] self.uca[slice_d][ids] += \ np.roll(np.roll(self.uca[slice_o] * (1 - proportion), ed[0], 0), ed[1], 1)[ids] if e == 1: self.uca[slice_d][ids] += \ np.roll(np.roll(self.uca[slice_o] * (proportion), ed[0], 0), ed[1], 1)[ids] # Finally, add the edge data from adjacent tiles if edge_init_done is not None: ids = edge_init_done[side] # > 0 if side in ['left', 'right']: self.uca[slice_d][ids, :] = \ edge_init_data[side][ids][:, None] else: self.uca[slice_d][:, ids] = edge_init_data[side][ids]
This function fixes the pixels on the very edge of the tile. Drainage is calculated if the edge is downstream from the interior. If there is data available on the edge (from edge_init_data, for eg) then this data is used. This is a bit of hack to take care of the edge-values. It could possibly be handled through the main algorithm, but at least here the treatment is explicit.
entailment
def _calc_uca_chunk_update(self, data, dX, dY, direction, mag, flats, tile_edge=None, i=None, area_edges=None, edge_todo=None, edge_done=None, plotflag=False): """ Calculates the upstream contributing area due to contributions from the edges only. """ # %% sides = ['left', 'right', 'top', 'bottom'] slices = [[slice(None), slice(0, 1)], [slice(None), slice(-1, None)], [slice(0, 1), slice(None)], [slice(-1, None), slice(None)]] # Figure out which section the drainage goes towards, and what # proportion goes to the straight-sided (as opposed to diagonal) node. section, proportion = self._calc_uca_section_proportion( data, dX, dY, direction, flats) # Build the drainage or adjacency matrix A = self._mk_adjacency_matrix(section, proportion, flats, data, mag, dX, dY) if CYTHON: B = A C = A.tocsr() if not CYTHON: A = A.tocoo() ids = np.zeros(data.shape, bool) area = np.zeros(data.shape, 'float64') # Set the ids to the edges that are now done, and initialize the # edge area if tile_edge is not None: if edge_todo is not None: edge_todo_tile = edge_todo else: edge_todo_tile = None edge_todo = np.zeros(data.shape, bool) for side, slice0 in zip(sides, slices): edge = getattr(tile_edge, side).ravel()[i] ids[slice0] = edge.done & edge.coulddo # only add area from the finished edges area[slice0] = edge.data * edge.done * edge.coulddo edge_todo[slice0] = edge.todo & ~edge.done elif area_edges is not None and edge_todo is not None \ and edge_done is not None: area[:, 0] = area_edges[:, 0] area[:, -1] = area_edges[:, -1] area[-1, :] = area_edges[-1, :] area[0, :] = area_edges[0, :] # Initialize starting ids ids = edge_done & edge_todo edge_todo = edge_todo & ~edge_done edge_todo_tile = None else: raise RuntimeError("Need to specify either tile_edge or area_edges" "in _calc_uca_chunk_update") ids = ids.ravel() ids0 = ids.copy() area[flats] = np.nan edge_done = ~edge_todo edge_todo_i = edge_todo.copy() ids_old = np.zeros_like(ids) # I need this to keep track of when I have to add the area, and when # I have to replace the area. ids_i = np.arange(ids.size) done = np.ones(data.shape, bool) done.ravel()[ids] = False # Now we have to advance done through the mesh to figure out which # contributions matter (i.e. what's done already) def drain_pixels_done(ids, arr, rows_A, cols_A): ids_old = ids.copy() ids_old[:] = False # If I use ids.sum() > 0 then I might get stuck in circular # references. while (ids - ids_old).sum() > 0: # %% print "x", ids_old = ids.copy() ids_todo = ids_i[ids.ravel()] ids[:] = False for id_todo in ids_todo: rows = cols_A == id_todo rows_id = rows_A[rows] ids[rows_id] += arr.ravel()[rows_id] is True arr.ravel()[rows_id] = False # Set second arrival new id return arr if CYTHON: a = cyutils.drain_connections( done.ravel(), ids, B.indptr, B.indices, set_to=False) done = a.reshape(done.shape).astype(bool) else: done = drain_pixels_done(ids, done, A.row, A.col) done[data.mask] = True # deal with no-data values # ids = ids0.copy() # Set all the edges to "done" for ids0. This ensures that no edges # will ever be updated, whether they are done or not. ids0 = ids0.reshape(data.shape) ids0[:, 0] = True ids0[:, -1] = True ids0[0, :] = True ids0[-1, :] = True ids0 = ids0.ravel() ids_old[:] = 0 # %% def drain_area(ids, area, done, rows_A, cols_A, data_A, edge_todo_tile): ids_old = ids.copy() ids_old[:] = False # If I use ids.sum() > 0 then I might get stuck in # circular references. while (ids - ids_old).sum() > 0: # %% print "o", ids_old = ids.copy() done.ravel()[ids] = True ids_todo = ids_i[ids.ravel()] ids[:] = False for id_todo in ids_todo: rows = cols_A == id_todo rows_id = rows_A[rows] factor = data_A[rows] # not allowed to modify edge values edge_filter_ids = ~ids0[rows_id] factor = factor[edge_filter_ids] rows_id = rows_id[edge_filter_ids] area.ravel()[rows_id] += area.ravel()[id_todo] * factor if edge_todo_tile is not None: edge_todo_tile.ravel()[rows_id] += \ edge_todo_tile.ravel()[id_todo] * factor # Figure out of this cell that just received a contribution # should give its contribution to what's next... i.e. make # sure all inputs have been added together for row_id in rows_id: # this is the 'waiting' part cols = cols_A[rows_A == row_id] ids[row_id] += (~(done.ravel()[cols])).sum() == 0 # for col in cols: # print 'row', row_id, 'col', col, 'done', done.ravel()[col] # Follow the drainage along. New candidates are cells that # just changed #ids = (track_id_old.ravel() == -1) \ # & (track_id_old.ravel() != track_id.ravel()) # done.ravel()[ids] = True # figure(7);clf();imshow(ids.reshape(mag.shape), interpolation='none') # figure(8);clf();imshow(area, interpolation='none');colorbar() # figure(9);clf();imshow(done, interpolation='none');colorbar() # figure(10);clf();imshow(a + area - b, interpolation='none');colorbar() #%% # self._plot_connectivity(A, data=data) return area, done, edge_todo_tile if CYTHON: if edge_todo_tile is not None: a, b, c, d = cyutils.drain_area(area.ravel(), done.ravel(), ids, B.indptr, B.indices, B.data, C.indptr, C.indices, area.shape[0], area.shape[1], edge_todo_tile.astype('float64').ravel(), skip_edge=True) edge_todo_tile = c.reshape(edge_todo_tile.shape) else: a, b, c, d = cyutils.drain_area(area.ravel(), done.ravel(), ids, B.indptr, B.indices, B.data, C.indptr, C.indices, area.shape[0], area.shape[1], skip_edge=True) area = a.reshape(area.shape) done = b.reshape(done.shape) else: area, done, edge_todo_tile = \ drain_area(ids, area, done, A.row, A.col, A.data, edge_todo_tile) # Rather unfortunately, we still have to follow through the boolean # edge_todo matrix... ids = edge_todo.copy().ravel() # %% def drain_pixels_todo(ids, arr, rows_A, cols_A): ids_old = ids.copy() ids_old[:] = False # If I use ids.sum() > 0 then I might get stuck in # circular references. while (ids - ids_old).sum() > 0: # %% print "x", ids_old = ids.copy() # edge_todo_old = arr.copy() ids_todo = ids_i[ids.ravel()] ids[:] = False for id_todo in ids_todo: rows = cols_A == id_todo rows_id = rows_A[rows] ids[rows_id] += arr.ravel()[rows_id] == False arr.ravel()[rows_id] = True # Set new id of second arrival # #Follow the drainage along. New candidates are cells that just changed # ids = (edge_todo_old.ravel() != arr.ravel()) return arr if CYTHON: a = cyutils.drain_connections(edge_todo.ravel(), ids, B.indptr, B.indices, set_to=True) edge_todo = a.reshape(edge_todo.shape).astype(bool) else: edge_todo = drain_pixels_todo(ids, edge_todo, A.row, A.col) area[flats] = np.nan edge_done = ~edge_todo return area, edge_todo_i, edge_done, edge_todo_tile
Calculates the upstream contributing area due to contributions from the edges only.
entailment
def _calc_uca_chunk(self, data, dX, dY, direction, mag, flats, area_edges, plotflag=False, edge_todo_i_no_mask=True): """ Calculates the upstream contributing area for the interior, and includes edge contributions if they are provided through area_edges. """ # %% # Figure out which section the drainage goes towards, and what # proportion goes to the straight-sided (as opposed to diagonal) node. section, proportion = self._calc_uca_section_proportion( data, dX, dY, direction, flats) # Build the drainage or adjacency matrix A = self._mk_adjacency_matrix(section, proportion, flats, data, mag, dX, dY) if CYTHON: B = A.tocsr() colsum = np.array(A.sum(1)).ravel() ids = colsum == 0 # If no one drains into me area = (dX * dY) # Record minimum area min_area = np.nanmin(area) self.twi_min_area = min(self.twi_min_area, min_area) area = np.concatenate((area[0:1], area)).reshape(area.size+1, 1) area = area.repeat(data.shape[1], 1) # Set the edge areas to zero, will add those contributions later area[:, 0] = area_edges[:, 0] area[:, -1] = area_edges[:, -1] area[-1, :] = area_edges[-1, :] area[0, :] = area_edges[0, :] # These edges are done, they have been drained already ids[area_edges.ravel() > 0] = True done = np.zeros(data.shape, bool) done.ravel()[ids] = True # deal with no-data values done[1:-1, 1:-1] = done[1:-1, 1:-1] | data.mask[1:-1, 1:-1] # Check the inlet edges edge_todo = np.zeros_like(done) ids_ed = np.arange(data.size).reshape(data.shape) # left edge_todo[:, 0] = (A[:, ids_ed[:, 0]].sum(0) > 0) \ & (area_edges[:, 0] == 0) edge_todo[:, -1] = (A[:, ids_ed[:, -1]].sum(0) > 0) \ & (area_edges[:, -1] == 0) edge_todo[0, :] = (A[:, ids_ed[0, :]].sum(0) > 0) \ & (area_edges[0, :] == 0) edge_todo[-1, :] = (A[:, ids_ed[-1, :]].sum(0) > 0) \ & (area_edges[-1, :] == 0) # Will do the tile-level doneness edge_todo_i_no_mask = edge_todo.copy() & edge_todo_i_no_mask edge_todo_no_mask = edge_todo_i_no_mask.copy() # tile-level doneness edge_todo[data.mask] = False # Don't do masked areas # Initialize done edges edge_todo_i = edge_todo.copy() ids_old = np.zeros_like(ids) # %% count = 1 if CYTHON: area_ = area.ravel() done_ = done.ravel() edge_todo_ = edge_todo.astype('float64').ravel() edge_todo_no_mask_ = edge_todo_no_mask.astype('float64').ravel() data_ = data.ravel() while (np.any(~done) and count < self.circular_ref_maxcount): print ".", count += 1 if CYTHON: area_, done_, edge_todo_, edge_todo_no_mask_ = cyutils.drain_area(area_, done_, ids, A.indptr, A.indices, A.data, B.indptr, B.indices, area.shape[0], area.shape[1], edge_todo_, edge_todo_no_mask_) else: # If I use ids.sum() > 0 then I might get stuck in # circular references. while (ids - ids_old).sum() > 0: # %% ids_old = ids.copy() ids, area, done, edge_todo = \ self._drain_step(A, ids, area, done, edge_todo) # figure(1);clf();imshow(area, interpolation='none');colorbar() # figure(2);clf();imshow(ids.reshape(area.shape), interpolation='none');colorbar() # figure(3);clf();imshow(done, interpolation='none');colorbar() done_ = done.ravel() #%% ids[:] = False max_elev = (data_ * (~done_)).max() ids[((data_ * (~done_) - max_elev) / max_elev > -0.01)] = True if CYTHON: area = area_.reshape(area.shape) done = done_.reshape(done.shape) edge_todo = edge_todo_.reshape(edge_todo.shape).astype(bool) edge_todo_no_mask = edge_todo_no_mask_.reshape(edge_todo_no_mask.shape).astype(bool) area[flats] = np.nan edge_done = ~edge_todo edge_done[data.mask] = True # Don't do masked areas if self.apply_uca_limit_edges: # 2x because of bifurcations (maybe should be more than 2x, but # should be ok edge_done[area > self.uca_saturation_limit * 2 * min_area] = True # %% if plotflag: # TODO DTYPE self._plot_connectivity(A, (done.astype('float64') is False) + flats.astype('float64') * 2, [0, 3]) return area, edge_todo_i, edge_done, edge_todo_i_no_mask, edge_todo_no_mask
Calculates the upstream contributing area for the interior, and includes edge contributions if they are provided through area_edges.
entailment
def _drain_step(self, A, ids, area, done, edge_todo): """ Does a single step of the upstream contributing area calculation. Here the pixels in ids are drained downstream, the areas are updated and the next set of pixels to drain are determined for the next round. """ # Only drain to cells that have a contribution A_todo = A[:, ids.ravel()] colsum = np.array(A_todo.sum(1)).ravel() # Only touch cells that actually receive a contribution # during this stage ids_new = colsum != 0 # Is it possible that I may drain twice from my own cell? # -- No, I don't think so... # Is it possible that other cells may drain into me in # multiple iterations -- yes # Then say I check for when I'm done ensures that I don't drain until # everyone has drained into me area.ravel()[ids_new] += (A_todo[ids_new, :] * (area.ravel()[ids].ravel())) edge_todo.ravel()[ids_new] += (A_todo[ids_new, :] * (edge_todo.ravel()[ids].ravel())) # Figure out what's left to do. done.ravel()[ids] = True colsum = A * (~done.ravel()) ids = colsum == 0 # Figure out the new-undrained ids ids = ids & (~done.ravel()) return ids, area, done, edge_todo
Does a single step of the upstream contributing area calculation. Here the pixels in ids are drained downstream, the areas are updated and the next set of pixels to drain are determined for the next round.
entailment
def _calc_uca_section_proportion(self, data, dX, dY, direction, flats): """ Given the direction, figure out which nodes the drainage will go toward, and what proportion of the drainage goes to which node """ shp = np.array(data.shape) - 1 facets = self.facets adjust = self.ang_adj[:, 1] d1, d2, theta = _get_d1_d2(dX, dY, 0, facets[0][1], facets[0][2], shp) if dX.size > 1: theta = np.row_stack((theta[0, :], theta, theta[-1, :])) # Which quadrant am I in? section = ((direction / np.pi * 2.0) // 1).astype('int8') # TODO DTYPE # Gets me in the quadrant quadrant = (direction - np.pi / 2.0 * section) proportion = np.full_like(quadrant, np.nan) # Now which section within the quadrant section = section * 2 \ + (quadrant > theta.repeat(data.shape[1], 1)) * (section % 2 == 0) \ + (quadrant > (np.pi/2 - theta.repeat(data.shape[1], 1))) \ * (section % 2 == 1) # greater than because of ties resolution b4 # %% Calculate proportion # As a side note, it's crazy to me how: # _get_d1_d2 needs to use indices 0, 3, 4, 7, # section uses even/odd (i.e. % 2) # proportion uses indices (0, 1, 4, 5) {ALl of them different! ARG!} I1 = (section == 0) | (section == 1) | (section == 4) | (section == 5) # I1 = section % 2 == 0 I = I1 & (quadrant <= theta.repeat(data.shape[1], 1)) proportion[I] = quadrant[I] / theta.repeat(data.shape[1], 1)[I] I = I1 & (quadrant > theta.repeat(data.shape[1], 1)) proportion[I] = (quadrant[I] - theta.repeat(data.shape[1], 1)[I]) \ / (np.pi / 2 - theta.repeat(data.shape[1], 1)[I]) I = (~I1) & (quadrant <= (np.pi / 2 - theta.repeat(data.shape[1], 1))) proportion[I] = (quadrant[I]) \ / (np.pi / 2 - theta.repeat(data.shape[1], 1)[I]) I = (~I1) & (quadrant > (np.pi / 2 - theta.repeat(data.shape[1], 1))) proportion[I] = (quadrant[I] - (np.pi / 2 - theta.repeat(data.shape[1], 1)[I])) \ / (theta.repeat(data.shape[1], 1)[I]) # %%Finish Proportion Calculation section[flats] = FLAT_ID_INT proportion[flats] = FLAT_ID section[section == 8] = 0 # Fence-post error correction proportion = (1 + adjust[section]) / 2.0 - adjust[section] * proportion return section, proportion
Given the direction, figure out which nodes the drainage will go toward, and what proportion of the drainage goes to which node
entailment
def _mk_adjacency_matrix(self, section, proportion, flats, elev, mag, dX, dY): """ Calculates the adjacency of connectivity matrix. This matrix tells which pixels drain to which. For example, the pixel i, will recieve area from np.nonzero(A[i, :]) at the proportions given in A[i, :]. So, the row gives the pixel drain to, and the columns the pixels drained from. """ shp = section.shape mat_data = np.row_stack((proportion, 1 - proportion)) NN = np.prod(shp) i12 = np.arange(NN).reshape(shp) j1 = - np.ones_like(i12) j2 = - np.ones_like(i12) # make the connectivity for the non-flats/pits j1, j2 = self._mk_connectivity(section, i12, j1, j2) j = np.row_stack((j1, j2)) i = np.row_stack((i12, i12)) # connectivity for flats/pits if self.drain_pits: pit_i, pit_j, pit_prop, flats, mag = \ self._mk_connectivity_pits(i12, flats, elev, mag, dX, dY) j = np.concatenate([j.ravel(), pit_j]).astype('int64') i = np.concatenate([i.ravel(), pit_i]).astype('int64') mat_data = np.concatenate([mat_data.ravel(), pit_prop]) elif self.drain_flats: j1, j2, mat_data, flat_i, flat_j, flat_prop = \ self._mk_connectivity_flats( i12, j1, j2, mat_data, flats, elev, mag) j = np.concatenate([j.ravel(), flat_j]).astype('int64') i = np.concatenate([i.ravel(), flat_j]).astype('int64') mat_data = np.concatenate([mat_data.ravel(), flat_prop]) # This prevents no-data values, remove connections when not present, # and makes sure that floating point precision errors do not # create circular references where a lower elevation cell drains # to a higher elevation cell I = ~np.isnan(mat_data) & (j != -1) & (mat_data > 1e-8) \ & (elev.ravel()[j] <= elev.ravel()[i]) mat_data = mat_data[I] j = j[I] i = i[I] # %%Make the matrix and initialize # What is A? The row i area receives area contributions from the # entries in its columns. If all the entries in my columns have # drained, then I can drain. A = sps.csc_matrix((mat_data.ravel(), np.row_stack((j.ravel(), i.ravel()))), shape=(NN, NN)) normalize = np.array(A.sum(0) + 1e-16).squeeze() A = np.dot(A, sps.diags(1/normalize, 0)) return A
Calculates the adjacency of connectivity matrix. This matrix tells which pixels drain to which. For example, the pixel i, will recieve area from np.nonzero(A[i, :]) at the proportions given in A[i, :]. So, the row gives the pixel drain to, and the columns the pixels drained from.
entailment
def _mk_connectivity(self, section, i12, j1, j2): """ Helper function for _mk_adjacency_matrix. Calculates the drainage neighbors and proportions based on the direction. This deals with non-flat regions in the image. In this case, each pixel can only drain to either 1 or two neighbors. """ shp = np.array(section.shape) - 1 facets = self.facets for ii, facet in enumerate(facets): e1 = facet[1] e2 = facet[2] I = section[1:-1, 1:-1] == ii j1[1:-1, 1:-1][I] = i12[1 + e1[0]:shp[0] + e1[0], 1 + e1[1]:shp[1] + e1[1]][I] j2[1:-1, 1:-1][I] = i12[1 + e2[0]:shp[0] + e2[0], 1 + e2[1]:shp[1] + e2[1]][I] # Now do the edges # left edge slc0 = [slice(1, -1), slice(0, 1)] for ind in [0, 1, 6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] I = section[slc0] == ind j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], e1[1]][I.ravel()] j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], e2[1]][I.ravel()] # right edge slc0 = [slice(1, -1), slice(-1, None)] for ind in [2, 3, 4, 5]: e1 = facets[ind][1] e2 = facets[ind][2] I = section[slc0] == ind j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], shp[1] + e1[1]][I.ravel()] j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], shp[1] + e2[1]][I.ravel()] # top edge slc0 = [slice(0, 1), slice(1, -1)] for ind in [4, 5, 6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] I = section[slc0] == ind j1[slc0][I] = i12[e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()] j2[slc0][I] = i12[e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()] # bottom edge slc0 = [slice(-1, None), slice(1, -1)] for ind in [0, 1, 2, 3]: e1 = facets[ind][1] e2 = facets[ind][2] I = section[slc0] == ind j1[slc0][I] = i12[shp[0] + e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()] j2[slc0][I] = i12[shp[0] + e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()] # top-left corner slc0 = [slice(0, 1), slice(0, 1)] for ind in [6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] if section[slc0] == ind: j1[slc0] = i12[e1[0], e1[1]] j2[slc0] = i12[e2[0], e2[1]] # top-right corner slc0 = [slice(0, 1), slice(-1, None)] for ind in [4, 5]: e1 = facets[ind][1] e2 = facets[ind][2] if section[slc0] == ind: j1[slc0] = i12[e1[0], shp[1] + e1[1]] j2[slc0] = i12[e2[0], shp[1] + e2[1]] # bottom-left corner slc0 = [slice(-1, None), slice(0, 1)] for ind in [0, 1]: e1 = facets[ind][1] e2 = facets[ind][2] if section[slc0] == ind: j1[slc0] = i12[shp[0] + e1[0], e1[1]] j2[slc0] = i12[shp[0] + e2[0], e2[1]] # bottom-right corner slc0 = [slice(-1, None), slice(-1, None)] for ind in [2, 3]: e1 = facets[ind][1] e2 = facets[ind][2] if section[slc0] == ind: j1[slc0] = i12[e1[0] + shp[0], shp[1] + e1[1]] j2[slc0] = i12[e2[0] + shp[0], shp[1] + e2[1]] return j1, j2
Helper function for _mk_adjacency_matrix. Calculates the drainage neighbors and proportions based on the direction. This deals with non-flat regions in the image. In this case, each pixel can only drain to either 1 or two neighbors.
entailment
def _mk_connectivity_pits(self, i12, flats, elev, mag, dX, dY): """ Helper function for _mk_adjacency_matrix. This is a more general version of _mk_adjacency_flats which drains pits and flats to nearby but non-adjacent pixels. The slope magnitude (and flats mask) is updated for these pits and flats so that the TWI can be computed. """ e = elev.data.ravel() pit_i = [] pit_j = [] pit_prop = [] warn_pits = [] pits = i12[flats & (elev > 0)] I = np.argsort(e[pits]) for pit in pits[I]: # find drains pit_area = np.array([pit], 'int64') drain = None epit = e[pit] for it in range(self.drain_pits_max_iter): border = get_border_index(pit_area, elev.shape, elev.size) eborder = e[border] emin = eborder.min() if emin < epit: drain = border[eborder < epit] break pit_area = np.concatenate([pit_area, border[eborder == emin]]) if drain is None: warn_pits.append(pit) continue ipit, jpit = np.unravel_index(pit, elev.shape) Idrain, Jdrain = np.unravel_index(drain, elev.shape) # filter by drain distance in coordinate space if self.drain_pits_max_dist: dij = np.sqrt((ipit - Idrain)**2 + (jpit-Jdrain)**2) b = dij <= self.drain_pits_max_dist if not b.any(): warn_pits.append(pit) continue drain = drain[b] Idrain = Idrain[b] Jdrain = Jdrain[b] # calculate real distances dx = [_get_dX_mean(dX, ipit, idrain) * (jpit - jdrain) for idrain, jdrain in zip(Idrain, Jdrain)] dy = [dY[make_slice(ipit, idrain)].sum() for idrain in Idrain] dxy = np.sqrt(np.array(dx)**2 + np.array(dy)**2) # filter by drain distance in real space if self.drain_pits_max_dist_XY: b = dxy <= self.drain_pits_max_dist_XY if not b.any(): warn_pits.append(pit) continue drain = drain[b] dxy = dxy[b] # calculate magnitudes s = (e[pit]-e[drain]) / dxy # connectivity info # TODO proportion calculation (_mk_connectivity_flats used elev?) pit_i += [pit for i in drain] pit_j += drain.tolist() pit_prop += s.tolist() # update pit magnitude and flats mask mag[ipit, jpit] = np.mean(s) flats[ipit, jpit] = False if warn_pits: warnings.warn("Warning %d pits had no place to drain to in this " "chunk" % len(warn_pits)) # Note: returning flats and mag here is not strictly necessary return (np.array(pit_i, 'int64'), np.array(pit_j, 'int64'), np.array(pit_prop, 'float64'), flats, mag)
Helper function for _mk_adjacency_matrix. This is a more general version of _mk_adjacency_flats which drains pits and flats to nearby but non-adjacent pixels. The slope magnitude (and flats mask) is updated for these pits and flats so that the TWI can be computed.
entailment
def _mk_connectivity_flats(self, i12, j1, j2, mat_data, flats, elev, mag): """ Helper function for _mk_adjacency_matrix. This calcualtes the connectivity for flat regions. Every pixel in the flat will drain to a random pixel in the flat. This accumulates all the area in the flat region to a single pixel. All that area is then drained from that pixel to the surroundings on the flat. If the border of the flat has a single pixel with a much lower elevation, all the area will go towards that pixel. If the border has pixels with similar elevation, then the area will be distributed amongst all the border pixels proportional to their elevation. """ nn, mm = flats.shape NN = np.prod(flats.shape) # Label the flats assigned, n_flats = spndi.label(flats, FLATS_KERNEL3) flat_ids, flat_coords, flat_labelsf = _get_flat_ids(assigned) flat_j = [None] * n_flats flat_prop = [None] * n_flats flat_i = [None] * n_flats # Temporary array to find the flats edges = np.zeros_like(flats) # %% Calcute the flat drainage warn_flats = [] for ii in xrange(n_flats): ids_flats = flat_ids[flat_coords[ii]:flat_coords[ii+1]] edges[:] = 0 j = ids_flats % mm i = ids_flats // mm for iii in [-1, 0, 1]: for jjj in [-1, 0, 1]: i_2 = i + iii j_2 = j + jjj ids_tmp = (i_2 >= 0) & (j_2 >= 0) & (i_2 < nn) & (j_2 < mm) edges[i_2[ids_tmp], j_2[ids_tmp]] += \ FLATS_KERNEL3[iii+1, jjj+1] edges.ravel()[ids_flats] = 0 ids_edge = np.argwhere(edges.ravel()).squeeze() flat_elev_loc = elev.ravel()[ids_flats] # It is possble for the edges to merge 2 flats, so we need to # take the lower elevation to avoid large circular regions flat_elev = flat_elev_loc.min() loc_elev = elev.ravel()[ids_edge] # Filter out any elevations larger than the flat elevation # TODO: Figure out if this should be <= or < I_filt = loc_elev < flat_elev try: loc_elev = loc_elev[I_filt] loc_slope = mag.ravel()[ids_edge][I_filt] except: # If this is fully masked out (i.e. inside a no-data area) loc_elev = np.array([]) loc_slope = np.array([]) loc_dx = self.dX.mean() # Now I have to figure out if I should just use the minimum or # distribute amongst many pixels on the flat boundary n = len(loc_slope) if n == 0: # Flat does not have anywhere to drain # Let's see if the flat goes to the edge. If yes, we'll just # distribute the area along the edge. ids_flat_on_edge = ((ids_flats % mag.shape[1]) == 0) | \ ((ids_flats % mag.shape[1]) == (mag.shape[1] - 1)) | \ (ids_flats <= mag.shape[1]) | \ (ids_flats >= (mag.shape[1] * (mag.shape[0] - 1))) if ids_flat_on_edge.sum() == 0: warn_flats.append(ii) continue drain_ids = ids_flats[ids_flat_on_edge] loc_proportions = mag.ravel()[ids_flats[ids_flat_on_edge]] loc_proportions /= loc_proportions.sum() ids_flats = ids_flats[~ids_flat_on_edge] # This flat is entirely on the edge of the image if len(ids_flats) == 0: # therefore, whatever drains into it is done. continue flat_elev_loc = flat_elev_loc[~ids_flat_on_edge] else: # Flat has a place to drain to min_edges = np.zeros(loc_slope.shape, bool) min_edges[np.argmin(loc_slope)] = True # Add to the min edges any edge that is within an error # tolerance as small as the minimum min_edges = (loc_slope + loc_slope * loc_dx / 2) \ >= loc_slope[min_edges] drain_ids = ids_edge[I_filt][min_edges] loc_proportions = loc_slope[min_edges] loc_proportions /= loc_proportions.sum() # Now distribute the connectivity amongst the chosen elevations # proportional to their slopes # First, let all the the ids in the flats drain to 1 # flat id (for ease) one_id = np.zeros(ids_flats.size, bool) one_id[np.argmin(flat_elev_loc)] = True j1.ravel()[ids_flats[~one_id]] = ids_flats[one_id] mat_data.ravel()[ids_flats[~one_id]] = 1 # Negative indices will be eliminated before making the matix j2.ravel()[ids_flats[~one_id]] = -1 mat_data.ravel()[ids_flats[~one_id] + NN] = 0 # Now drain the 1 flat to the drains j1.ravel()[ids_flats[one_id]] = drain_ids[0] mat_data.ravel()[ids_flats[one_id]] = loc_proportions[0] if len(drain_ids) > 1: j2.ravel()[ids_flats[one_id]] = drain_ids[1] mat_data.ravel()[ids_flats[one_id] + NN] = loc_proportions[1] if len(loc_proportions > 2): flat_j[ii] = drain_ids[2:] flat_prop[ii] = loc_proportions[2:] flat_i[ii] = np.ones(drain_ids[2:].size, 'int64') * ids_flats[one_id] try: flat_j = np.concatenate([fj for fj in flat_j if fj is not None]) flat_prop = \ np.concatenate([fp for fp in flat_prop if fp is not None]) flat_i = np.concatenate([fi for fi in flat_i if fi is not None]) except: flat_j = np.array([], 'int64') flat_prop = np.array([], 'float64') flat_i = np.array([], 'int64') if len(warn_flats) > 0: warnings.warn("Warning %d flats had no place" % len(warn_flats) + " to drain to --> these are pits (check pit-remove" "algorithm).") return j1, j2, mat_data, flat_i, flat_j, flat_prop
Helper function for _mk_adjacency_matrix. This calcualtes the connectivity for flat regions. Every pixel in the flat will drain to a random pixel in the flat. This accumulates all the area in the flat region to a single pixel. All that area is then drained from that pixel to the surroundings on the flat. If the border of the flat has a single pixel with a much lower elevation, all the area will go towards that pixel. If the border has pixels with similar elevation, then the area will be distributed amongst all the border pixels proportional to their elevation.
entailment
def calc_twi(self): """ Calculates the topographic wetness index and saves the result in self.twi. Returns ------- twi : array Array giving the topographic wetness index at each pixel """ if self.uca is None: self.calc_uca() gc.collect() # Just in case min_area = self.twi_min_area min_slope = self.twi_min_slope twi = self.uca.copy() if self.apply_twi_limits_on_uca: twi[twi > self.uca_saturation_limit * min_area] = \ self.uca_saturation_limit * min_area gc.collect() # Just in case twi = np.log((twi) / (self.mag + min_slope)) # apply the cap if self.apply_twi_limits: twi_sat_value = \ np.log(self.uca_saturation_limit * min_area / min_slope) twi[twi > twi_sat_value] = twi_sat_value # multiply by 10 for better integer resolution when storing self.twi = twi * 10 gc.collect() # Just in case return twi
Calculates the topographic wetness index and saves the result in self.twi. Returns ------- twi : array Array giving the topographic wetness index at each pixel
entailment
def _plot_connectivity(self, A, data=None, lims=[None, None]): """ A debug function used to plot the adjacency/connectivity matrix. This is really just a light wrapper around _plot_connectivity_helper """ if data is None: data = self.data B = A.tocoo() self._plot_connectivity_helper(B.col, B.row, B.data, data, lims)
A debug function used to plot the adjacency/connectivity matrix. This is really just a light wrapper around _plot_connectivity_helper
entailment
def _plot_connectivity_helper(self, ii, ji, mat_datai, data, lims=[1, 8]): """ A debug function used to plot the adjacency/connectivity matrix. """ from matplotlib.pyplot import quiver, colorbar, clim, matshow I = ~np.isnan(mat_datai) & (ji != -1) & (mat_datai >= 0) mat_data = mat_datai[I] j = ji[I] i = ii[I] x = i.astype(float) % data.shape[1] y = i.astype(float) // data.shape[1] x1 = (j.astype(float) % data.shape[1]).ravel() y1 = (j.astype(float) // data.shape[1]).ravel() nx = (x1 - x) ny = (y1 - y) matshow(data, cmap='gist_rainbow'); colorbar(); clim(lims) quiver(x, y, nx, ny, mat_data.ravel(), angles='xy', scale_units='xy', scale=1, cmap='bone') colorbar(); clim([0, 1])
A debug function used to plot the adjacency/connectivity matrix.
entailment
def _plot_debug_slopes_directions(self): """ A debug function to plot the direction calculated in various ways. """ # %% from matplotlib.pyplot import matshow, colorbar, clim, title matshow(self.direction / np.pi * 180); colorbar(); clim(0, 360) title('Direction') mag2, direction2 = self._central_slopes_directions() matshow(direction2 / np.pi * 180.0); colorbar(); clim(0, 360) title('Direction (central difference)') matshow(self.mag); colorbar() title('Magnitude') matshow(mag2); colorbar(); title("Magnitude (Central difference)") # %% # Compare to Taudem filename = self.file_name os.chdir('testtiff') try: os.remove('test_ang.tif') os.remove('test_slp.tif') except: pass cmd = ('dinfflowdir -fel "%s" -ang "%s" -slp "%s"' % (os.path.split(filename)[-1], 'test_ang.tif', 'test_slp.tif')) taudem._run(cmd) td_file = GdalReader(file_name='test_ang.tif') td_ang, = td_file.raster_layers td_file2 = GdalReader(file_name='test_slp.tif') td_mag, = td_file2.raster_layers os.chdir('..') matshow(td_ang.raster_data / np.pi*180); clim(0, 360); colorbar() title('Taudem direction') matshow(td_mag.raster_data); colorbar() title('Taudem magnitude') matshow(self.data); colorbar() title('The test data (elevation)') diff = (td_ang.raster_data - self.direction) / np.pi * 180.0 diff[np.abs(diff) > 300] = np.nan matshow(diff); colorbar(); clim([-1, 1]) title('Taudem direction - calculated Direction') # normalize magnitudes mag2 = td_mag.raster_data mag2 /= np.nanmax(mag2) mag = self.mag.copy() mag /= np.nanmax(mag) matshow(mag - mag2); colorbar() title('Taudem magnitude - calculated magnitude') del td_file del td_file2 del td_ang del td_mag
A debug function to plot the direction calculated in various ways.
entailment
def clean(ctx, dry_run=False): """Cleanup generated document artifacts.""" basedir = ctx.sphinx.destdir or "build/docs" cleanup_dirs([basedir], dry_run=dry_run)
Cleanup generated document artifacts.
entailment
def build(ctx, builder="html", options=""): """Build docs with sphinx-build""" sourcedir = ctx.config.sphinx.sourcedir destdir = Path(ctx.config.sphinx.destdir or "build")/builder destdir = destdir.abspath() with cd(sourcedir): destdir_relative = Path(".").relpathto(destdir) command = "sphinx-build {opts} -b {builder} {sourcedir} {destdir}" \ .format(builder=builder, sourcedir=".", destdir=destdir_relative, opts=options) ctx.run(command)
Build docs with sphinx-build
entailment
def browse(ctx): """Open documentation in web browser.""" page_html = Path(ctx.config.sphinx.destdir)/"html"/"index.html" if not page_html.exists(): build(ctx, builder="html") assert page_html.exists() open_cmd = "open" # -- WORKS ON: MACOSX if sys.platform.startswith("win"): open_cmd = "start" ctx.run("{open} {page_html}".format(open=open_cmd, page_html=page_html))
Open documentation in web browser.
entailment
def save(ctx, dest="docs.html", format="html"): """Save/update docs under destination directory.""" print("STEP: Generate docs in HTML format") build(ctx, builder=format) print("STEP: Save docs under %s/" % dest) source_dir = Path(ctx.config.sphinx.destdir)/format Path(dest).rmtree_p() source_dir.copytree(dest) # -- POST-PROCESSING: Polish up. for part in [ ".buildinfo", ".doctrees" ]: partpath = Path(dest)/part if partpath.isdir(): partpath.rmtree_p() elif partpath.exists(): partpath.remove_p()
Save/update docs under destination directory.
entailment
def find_neighbors(neighbors, coords, I, source_files, f, sides): """Find the tile neighbors based on filenames Parameters ----------- neighbors : dict Dictionary that stores the neighbors. Format is neighbors["source_file_name"]["side"] = "neighbor_source_file_name" coords : list List of coordinates determined from the filename. See :py:func:`utils.parse_fn` I : array Sort index. Different sorting schemes will speed up when neighbors are found source_files : list List of strings of source file names f : callable Function that determines if two tiles are neighbors based on their coordinates. f(c1, c2) returns True if tiles are neighbors sides : list List of 2 strings that give the "side" where tiles are neighbors. Returns ------- neighbors : dict Dictionary of neighbors Notes ------- For example, if Tile1 is to the left of Tile2, then neighbors['Tile1']['right'] = 'Tile2' neighbors['Tile2']['left'] = 'Tile1' """ for i, c1 in enumerate(coords): me = source_files[I[i]] # If the left neighbor has already been found... if neighbors[me][sides[0]] != '': continue # could try coords[i:] (+ fixes) for speed if it becomes a problem for j, c2 in enumerate(coords): if f(c1, c2): # then tiles are neighbors neighbors neigh = source_files[I[j]] neighbors[me][sides[0]] = neigh neighbors[neigh][sides[1]] = me break return neighbors
Find the tile neighbors based on filenames Parameters ----------- neighbors : dict Dictionary that stores the neighbors. Format is neighbors["source_file_name"]["side"] = "neighbor_source_file_name" coords : list List of coordinates determined from the filename. See :py:func:`utils.parse_fn` I : array Sort index. Different sorting schemes will speed up when neighbors are found source_files : list List of strings of source file names f : callable Function that determines if two tiles are neighbors based on their coordinates. f(c1, c2) returns True if tiles are neighbors sides : list List of 2 strings that give the "side" where tiles are neighbors. Returns ------- neighbors : dict Dictionary of neighbors Notes ------- For example, if Tile1 is to the left of Tile2, then neighbors['Tile1']['right'] = 'Tile2' neighbors['Tile2']['left'] = 'Tile1'
entailment
def set_neighbor_data(self, elev_fn, dem_proc, interp=None): """ From the elevation filename, we can figure out and load the data and done arrays. """ if interp is None: interp = self.build_interpolator(dem_proc) opp = {'top': 'bottom', 'left': 'right'} for key in self.neighbors[elev_fn].keys(): tile = self.neighbors[elev_fn][key] if tile == '': continue oppkey = key for me, neigh in opp.iteritems(): if me in key: oppkey = oppkey.replace(me, neigh) else: oppkey = oppkey.replace(neigh, me) opp_edge = self.neighbors[tile][oppkey] if opp_edge == '': continue interp.values = dem_proc.uca[::-1, :] # interp.values[:, 0] = np.ravel(dem_proc.uca) # for other interp. # for the top-left tile we have to set the bottom and right edges # of that tile, so two edges for those tiles for key_ed in oppkey.split('-'): self.edges[tile][key_ed].set_data('data', interp) interp.values = dem_proc.edge_done[::-1, :].astype(float) # interp.values[:, 0] = np.ravel(dem_proc.edge_done) for key_ed in oppkey.split('-'): self.edges[tile][key_ed].set_data('done', interp)
From the elevation filename, we can figure out and load the data and done arrays.
entailment
def update_edge_todo(self, elev_fn, dem_proc): """ Can figure out how to update the todo based on the elev filename """ for key in self.edges[elev_fn].keys(): self.edges[elev_fn][key].set_data('todo', data=dem_proc.edge_todo)
Can figure out how to update the todo based on the elev filename
entailment
def update_edges(self, elev_fn, dem_proc): """ After finishing a calculation, this will update the neighbors and the todo for that tile """ interp = self.build_interpolator(dem_proc) self.update_edge_todo(elev_fn, dem_proc) self.set_neighbor_data(elev_fn, dem_proc, interp)
After finishing a calculation, this will update the neighbors and the todo for that tile
entailment
def get_edge_init_data(self, fn, save_path=None): """ Creates the initialization data from the edge structure """ edge_init_data = {key: self.edges[fn][key].get('data') for key in self.edges[fn].keys()} edge_init_done = {key: self.edges[fn][key].get('done') for key in self.edges[fn].keys()} edge_init_todo = {key: self.edges[fn][key].get('todo') for key in self.edges[fn].keys()} return edge_init_data, edge_init_done, edge_init_todo
Creates the initialization data from the edge structure
entailment