sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
---|---|---|
def predict(self, X):
"""Predict label for data.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = (n_samples,)
"""
logprob, responsibilities = self.score_samples(X)
return responsibilities.argmax(axis=1) | Predict label for data.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = (n_samples,) | entailment |
def sample(self, n_samples=1, random_state=None):
"""Generate random samples from the model.
Parameters
----------
n_samples : int, optional
Number of samples to generate. Defaults to 1.
Returns
-------
X : array_like, shape (n_samples, n_features)
List of samples
"""
check_is_fitted(self, 'means_')
if random_state is None:
random_state = self.random_state
random_state = check_random_state(random_state)
weight_cdf = np.cumsum(self.weights_)
X = np.empty((n_samples, self.means_.shape[1]))
rand = random_state.rand(n_samples)
# decide which component to use for each sample
comps = weight_cdf.searchsorted(rand)
# for each component, generate all needed samples
for comp in range(self.n_components):
# occurrences of current component in X
comp_in_X = (comp == comps)
# number of those occurrences
num_comp_in_X = comp_in_X.sum()
if num_comp_in_X > 0:
if self.covariance_type == 'tied':
cv = self.covars_
elif self.covariance_type == 'spherical':
cv = self.covars_[comp][0]
else:
cv = self.covars_[comp]
X[comp_in_X] = sample_gaussian(
self.means_[comp], cv, self.covariance_type,
num_comp_in_X, random_state=random_state).T
return X | Generate random samples from the model.
Parameters
----------
n_samples : int, optional
Number of samples to generate. Defaults to 1.
Returns
-------
X : array_like, shape (n_samples, n_features)
List of samples | entailment |
def fit(self, X, y=None):
"""Estimate model parameters with the expectation-maximization
algorithm.
A initialization step is performed before entering the em
algorithm. If you want to avoid this step, set the keyword
argument init_params to the empty string '' when creating the
GMM object. Likewise, if you would like just to do an
initialization, set n_iter=0.
Parameters
----------
X : array_like, shape (n, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
"""
# initialization step
X = check_array(X, dtype=np.float64)
if X.shape[0] < self.n_components:
raise ValueError(
'GMM estimation with %s components, but got only %s samples' %
(self.n_components, X.shape[0]))
max_log_prob = -np.infty
for _ in range(self.n_init):
if 'm' in self.init_params or not hasattr(self, 'means_'):
if np.issubdtype(X.dtype, np.float32):
from bhmm._external.clustering.kmeans_clustering_32 import init_centers
elif np.issubdtype(X.dtype, np.float64):
from bhmm._external.clustering.kmeans_clustering_64 import init_centers
else:
raise ValueError("Could not handle dtype %s for clustering!" % X.dtype)
centers = init_centers(X, 'euclidean', self.n_components)
self.means_ = centers
if 'w' in self.init_params or not hasattr(self, 'weights_'):
self.weights_ = np.tile(1.0 / self.n_components,
self.n_components)
if 'c' in self.init_params or not hasattr(self, 'covars_'):
cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1])
if not cv.shape:
cv.shape = (1, 1)
self.covars_ = \
distribute_covar_matrix_to_match_covariance_type(
cv, self.covariance_type, self.n_components)
# EM algorithms
current_log_likelihood = None
# reset self.converged_ to False
self.converged_ = False
# this line should be removed when 'thresh' is removed in v0.18
tol = (self.tol if self.thresh is None
else self.thresh / float(X.shape[0]))
for i in range(self.n_iter):
prev_log_likelihood = current_log_likelihood
# Expectation step
log_likelihoods, responsibilities = self.score_samples(X)
current_log_likelihood = log_likelihoods.mean()
# Check for convergence.
# (should compare to self.tol when dreprecated 'thresh' is
# removed in v0.18)
if prev_log_likelihood is not None:
change = abs(current_log_likelihood - prev_log_likelihood)
if change < tol:
self.converged_ = True
break
# Maximization step
self._do_mstep(X, responsibilities, self.params,
self.min_covar)
# if the results are better, keep it
if self.n_iter:
if current_log_likelihood > max_log_prob:
max_log_prob = current_log_likelihood
best_params = {'weights': self.weights_,
'means': self.means_,
'covars': self.covars_}
# check the existence of an init param that was not subject to
# likelihood computation issue.
if np.isneginf(max_log_prob) and self.n_iter:
raise RuntimeError(
"EM algorithm was never able to compute a valid likelihood " +
"given initial parameters. Try different init parameters " +
"(or increasing n_init) or check for degenerate data.")
# self.n_iter == 0 occurs when using GMM within HMM
if self.n_iter:
self.covars_ = best_params['covars']
self.means_ = best_params['means']
self.weights_ = best_params['weights']
return self | Estimate model parameters with the expectation-maximization
algorithm.
A initialization step is performed before entering the em
algorithm. If you want to avoid this step, set the keyword
argument init_params to the empty string '' when creating the
GMM object. Likewise, if you would like just to do an
initialization, set n_iter=0.
Parameters
----------
X : array_like, shape (n, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point. | entailment |
def _do_mstep(self, X, responsibilities, params, min_covar=0):
""" Perform the Mstep of the EM algorithm and return the class weihgts.
"""
weights = responsibilities.sum(axis=0)
weighted_X_sum = np.dot(responsibilities.T, X)
inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS)
if 'w' in params:
self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS)
if 'm' in params:
self.means_ = weighted_X_sum * inverse_weights
if 'c' in params:
covar_mstep_func = _covar_mstep_funcs[self.covariance_type]
self.covars_ = covar_mstep_func(
self, X, responsibilities, weighted_X_sum, inverse_weights,
min_covar)
return weights | Perform the Mstep of the EM algorithm and return the class weihgts. | entailment |
def _n_parameters(self):
"""Return the number of free parameters in the model."""
ndim = self.means_.shape[1]
if self.covariance_type == 'full':
cov_params = self.n_components * ndim * (ndim + 1) / 2.
elif self.covariance_type == 'diag':
cov_params = self.n_components * ndim
elif self.covariance_type == 'tied':
cov_params = ndim * (ndim + 1) / 2.
elif self.covariance_type == 'spherical':
cov_params = self.n_components
mean_params = ndim * self.n_components
return int(cov_params + mean_params + self.n_components - 1) | Return the number of free parameters in the model. | entailment |
def bic(self, X):
"""Bayesian information criterion for the current model fit
and the proposed data
Parameters
----------
X : array of shape(n_samples, n_dimensions)
Returns
-------
bic: float (the lower the better)
"""
return (-2 * self.score(X).sum() +
self._n_parameters() * np.log(X.shape[0])) | Bayesian information criterion for the current model fit
and the proposed data
Parameters
----------
X : array of shape(n_samples, n_dimensions)
Returns
-------
bic: float (the lower the better) | entailment |
def _get_param_names(cls):
"""Get parameter names for the estimator"""
# fetch the constructor or the original constructor before
# deprecation wrapping if any
init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
if init is object.__init__:
# No explicit constructor to introspect
return []
# introspect the constructor arguments to find the model parameters
# to represent
args, varargs, kw, default = inspect.getargspec(init)
if varargs is not None:
raise RuntimeError("scikit-learn estimators should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s doesn't follow this convention."
% (cls, ))
# Remove 'self'
# XXX: This is going to fail if the init is a staticmethod, but
# who would do this?
args.pop(0)
args.sort()
return args | Get parameter names for the estimator | entailment |
def set_params(self, **params):
"""Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
Returns
-------
self
"""
if not params:
# Simple optimisation to gain speed (inspect is slow)
return self
valid_params = self.get_params(deep=True)
for key, value in six.iteritems(params):
split = key.split('__', 1)
if len(split) > 1:
# nested objects case
name, sub_name = split
if not name in valid_params:
raise ValueError('Invalid parameter %s for estimator %s' %
(name, self))
sub_object = valid_params[name]
sub_object.set_params(**{sub_name: value})
else:
# simple objects case
if not key in valid_params:
raise ValueError('Invalid parameter %s ' 'for estimator %s'
% (key, self.__class__.__name__))
setattr(self, key, value)
return self | Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
Returns
-------
self | entailment |
def init_model_gaussian1d(observations, nstates, reversible=True):
"""Generate an initial model with 1D-Gaussian output densities
Parameters
----------
observations : list of ndarray((T_i), dtype=float)
list of arrays of length T_i with observation data
nstates : int
The number of states.
Examples
--------
Generate initial model for a gaussian output model.
>>> from bhmm import testsystems
>>> [model, observations, states] = testsystems.generate_synthetic_observations(output='gaussian')
>>> initial_model = init_model_gaussian1d(observations, model.nstates)
"""
ntrajectories = len(observations)
# Concatenate all observations.
collected_observations = np.array([], dtype=config.dtype)
for o_t in observations:
collected_observations = np.append(collected_observations, o_t)
# Fit a Gaussian mixture model to obtain emission distributions and state stationary probabilities.
from bhmm._external.sklearn import mixture
gmm = mixture.GMM(n_components=nstates)
gmm.fit(collected_observations[:,None])
from bhmm import GaussianOutputModel
output_model = GaussianOutputModel(nstates, means=gmm.means_[:,0], sigmas=np.sqrt(gmm.covars_[:,0]))
logger().info("Gaussian output model:\n"+str(output_model))
# Extract stationary distributions.
Pi = np.zeros([nstates], np.float64)
Pi[:] = gmm.weights_[:]
logger().info("GMM weights: %s" % str(gmm.weights_))
# Compute fractional state memberships.
Nij = np.zeros([nstates, nstates], np.float64)
for o_t in observations:
# length of trajectory
T = o_t.shape[0]
# output probability
pobs = output_model.p_obs(o_t)
# normalize
pobs /= pobs.sum(axis=1)[:,None]
# Accumulate fractional transition counts from this trajectory.
for t in range(T-1):
Nij[:,:] = Nij[:,:] + np.outer(pobs[t,:], pobs[t+1,:])
logger().info("Nij\n"+str(Nij))
# Compute transition matrix maximum likelihood estimate.
import msmtools.estimation as msmest
import msmtools.analysis as msmana
Tij = msmest.transition_matrix(Nij, reversible=reversible)
pi = msmana.stationary_distribution(Tij)
# Update model.
model = HMM(pi, Tij, output_model)
return model | Generate an initial model with 1D-Gaussian output densities
Parameters
----------
observations : list of ndarray((T_i), dtype=float)
list of arrays of length T_i with observation data
nstates : int
The number of states.
Examples
--------
Generate initial model for a gaussian output model.
>>> from bhmm import testsystems
>>> [model, observations, states] = testsystems.generate_synthetic_observations(output='gaussian')
>>> initial_model = init_model_gaussian1d(observations, model.nstates) | entailment |
def _p_o(self, o):
"""
Returns the output probability for symbol o from all hidden states
Parameters
----------
o : float
A single observation.
Return
------
p_o : ndarray (N)
p_o[i] is the probability density of the observation o from state i emission distribution
Examples
--------
Create an observation model.
>>> output_model = GaussianOutputModel(nstates=3, means=[-1, 0, 1], sigmas=[0.5, 1, 2])
Compute the output probability of a single observation from all hidden states.
>>> observation = 0
>>> p_o = output_model._p_o(observation)
"""
if self.__impl__ == self.__IMPL_C__:
return gc.p_o(o, self.means, self.sigmas, out=None, dtype=type(o))
elif self.__impl__ == self.__IMPL_PYTHON__:
if np.any(self.sigmas < np.finfo(self.sigmas.dtype).eps):
raise RuntimeError('at least one sigma is too small to continue.')
C = 1.0 / (np.sqrt(2.0 * np.pi) * self.sigmas)
Pobs = C * np.exp(-0.5 * ((o-self.means)/self.sigmas)**2)
return Pobs
else:
raise RuntimeError('Implementation '+str(self.__impl__)+' not available') | Returns the output probability for symbol o from all hidden states
Parameters
----------
o : float
A single observation.
Return
------
p_o : ndarray (N)
p_o[i] is the probability density of the observation o from state i emission distribution
Examples
--------
Create an observation model.
>>> output_model = GaussianOutputModel(nstates=3, means=[-1, 0, 1], sigmas=[0.5, 1, 2])
Compute the output probability of a single observation from all hidden states.
>>> observation = 0
>>> p_o = output_model._p_o(observation) | entailment |
def p_obs(self, obs, out=None):
"""
Returns the output probabilities for an entire trajectory and all hidden states
Parameters
----------
oobs : ndarray((T), dtype=int)
a discrete trajectory of length T
Return
------
p_o : ndarray (T,N)
the probability of generating the symbol at time point t from any of the N hidden states
Examples
--------
Generate an observation model and synthetic observation trajectory.
>>> nobs = 1000
>>> output_model = GaussianOutputModel(nstates=3, means=[-1, 0, +1], sigmas=[0.5, 1, 2])
>>> s_t = np.random.randint(0, output_model.nstates, size=[nobs])
>>> o_t = output_model.generate_observation_trajectory(s_t)
Compute output probabilities for entire trajectory and all hidden states.
>>> p_o = output_model.p_obs(o_t)
"""
if self.__impl__ == self.__IMPL_C__:
res = gc.p_obs(obs, self.means, self.sigmas, out=out, dtype=config.dtype)
return self._handle_outliers(res)
elif self.__impl__ == self.__IMPL_PYTHON__:
T = len(obs)
if out is None:
res = np.zeros((T, self.nstates), dtype=config.dtype)
else:
res = out
for t in range(T):
res[t, :] = self._p_o(obs[t])
return self._handle_outliers(res)
else:
raise RuntimeError('Implementation '+str(self.__impl__)+' not available') | Returns the output probabilities for an entire trajectory and all hidden states
Parameters
----------
oobs : ndarray((T), dtype=int)
a discrete trajectory of length T
Return
------
p_o : ndarray (T,N)
the probability of generating the symbol at time point t from any of the N hidden states
Examples
--------
Generate an observation model and synthetic observation trajectory.
>>> nobs = 1000
>>> output_model = GaussianOutputModel(nstates=3, means=[-1, 0, +1], sigmas=[0.5, 1, 2])
>>> s_t = np.random.randint(0, output_model.nstates, size=[nobs])
>>> o_t = output_model.generate_observation_trajectory(s_t)
Compute output probabilities for entire trajectory and all hidden states.
>>> p_o = output_model.p_obs(o_t) | entailment |
def estimate(self, observations, weights):
"""
Fits the output model given the observations and weights
Parameters
----------
observations : [ ndarray(T_k,) ] with K elements
A list of K observation trajectories, each having length T_k and d dimensions
weights : [ ndarray(T_k,nstates) ] with K elements
A list of K weight matrices, each having length T_k
weights[k][t,n] is the weight assignment from observations[k][t] to state index n
Examples
--------
Generate an observation model and samples from each state.
>>> ntrajectories = 3
>>> nobs = 1000
>>> output_model = GaussianOutputModel(nstates=3, means=[-1, 0, +1], sigmas=[0.5, 1, 2])
>>> observations = [ np.random.randn(nobs) for _ in range(ntrajectories) ] # random observations
>>> weights = [ np.random.dirichlet([2, 3, 4], size=nobs) for _ in range(ntrajectories) ] # random weights
Update the observation model parameters my a maximum-likelihood fit.
>>> output_model.estimate(observations, weights)
"""
# sizes
N = self.nstates
K = len(observations)
# fit means
self._means = np.zeros(N)
w_sum = np.zeros(N)
for k in range(K):
# update nominator
for i in range(N):
self.means[i] += np.dot(weights[k][:, i], observations[k])
# update denominator
w_sum += np.sum(weights[k], axis=0)
# normalize
self._means /= w_sum
# fit variances
self._sigmas = np.zeros(N)
w_sum = np.zeros(N)
for k in range(K):
# update nominator
for i in range(N):
Y = (observations[k] - self.means[i])**2
self.sigmas[i] += np.dot(weights[k][:, i], Y)
# update denominator
w_sum += np.sum(weights[k], axis=0)
# normalize
self._sigmas /= w_sum
self._sigmas = np.sqrt(self.sigmas)
if np.any(self._sigmas < np.finfo(self._sigmas.dtype).eps):
raise RuntimeError('at least one sigma is too small to continue.') | Fits the output model given the observations and weights
Parameters
----------
observations : [ ndarray(T_k,) ] with K elements
A list of K observation trajectories, each having length T_k and d dimensions
weights : [ ndarray(T_k,nstates) ] with K elements
A list of K weight matrices, each having length T_k
weights[k][t,n] is the weight assignment from observations[k][t] to state index n
Examples
--------
Generate an observation model and samples from each state.
>>> ntrajectories = 3
>>> nobs = 1000
>>> output_model = GaussianOutputModel(nstates=3, means=[-1, 0, +1], sigmas=[0.5, 1, 2])
>>> observations = [ np.random.randn(nobs) for _ in range(ntrajectories) ] # random observations
>>> weights = [ np.random.dirichlet([2, 3, 4], size=nobs) for _ in range(ntrajectories) ] # random weights
Update the observation model parameters my a maximum-likelihood fit.
>>> output_model.estimate(observations, weights) | entailment |
def sample(self, observations, prior=None):
"""
Sample a new set of distribution parameters given a sample of observations from the given state.
Both the internal parameters and the attached HMM model are updated.
Parameters
----------
observations : [ numpy.array with shape (N_k,) ] with `nstates` elements
observations[k] is a set of observations sampled from state `k`
prior : object
prior option for compatibility
Examples
--------
Generate synthetic observations.
>>> nstates = 3
>>> nobs = 1000
>>> output_model = GaussianOutputModel(nstates=nstates, means=[-1, 0, 1], sigmas=[0.5, 1, 2])
>>> observations = [ output_model.generate_observations_from_state(state_index, nobs) for state_index in range(nstates) ]
Update output parameters by sampling.
>>> output_model.sample(observations)
"""
for state_index in range(self.nstates):
# Update state emission distribution parameters.
observations_in_state = observations[state_index]
# Determine number of samples in this state.
nsamples_in_state = len(observations_in_state)
# Skip update if no observations.
if nsamples_in_state == 0:
logger().warn('Warning: State %d has no observations.' % state_index)
if nsamples_in_state > 0: # Sample new mu.
self.means[state_index] = np.random.randn()*self.sigmas[state_index]/np.sqrt(nsamples_in_state) + np.mean(observations_in_state)
if nsamples_in_state > 1: # Sample new sigma
# This scheme uses the improper Jeffreys prior on sigma^2, P(mu, sigma^2) \propto 1/sigma
chisquared = np.random.chisquare(nsamples_in_state-1)
sigmahat2 = np.mean((observations_in_state - self.means[state_index])**2)
self.sigmas[state_index] = np.sqrt(sigmahat2) / np.sqrt(chisquared / nsamples_in_state)
return | Sample a new set of distribution parameters given a sample of observations from the given state.
Both the internal parameters and the attached HMM model are updated.
Parameters
----------
observations : [ numpy.array with shape (N_k,) ] with `nstates` elements
observations[k] is a set of observations sampled from state `k`
prior : object
prior option for compatibility
Examples
--------
Generate synthetic observations.
>>> nstates = 3
>>> nobs = 1000
>>> output_model = GaussianOutputModel(nstates=nstates, means=[-1, 0, 1], sigmas=[0.5, 1, 2])
>>> observations = [ output_model.generate_observations_from_state(state_index, nobs) for state_index in range(nstates) ]
Update output parameters by sampling.
>>> output_model.sample(observations) | entailment |
def generate_observation_from_state(self, state_index):
"""
Generate a single synthetic observation data from a given state.
Parameters
----------
state_index : int
Index of the state from which observations are to be generated.
Returns
-------
observation : float
A single observation from the given state.
Examples
--------
Generate an observation model.
>>> output_model = GaussianOutputModel(nstates=2, means=[0, 1], sigmas=[1, 2])
Generate sample from a state.
>>> observation = output_model.generate_observation_from_state(0)
"""
observation = self.sigmas[state_index] * np.random.randn() + self.means[state_index]
return observation | Generate a single synthetic observation data from a given state.
Parameters
----------
state_index : int
Index of the state from which observations are to be generated.
Returns
-------
observation : float
A single observation from the given state.
Examples
--------
Generate an observation model.
>>> output_model = GaussianOutputModel(nstates=2, means=[0, 1], sigmas=[1, 2])
Generate sample from a state.
>>> observation = output_model.generate_observation_from_state(0) | entailment |
def generate_observations_from_state(self, state_index, nobs):
"""
Generate synthetic observation data from a given state.
Parameters
----------
state_index : int
Index of the state from which observations are to be generated.
nobs : int
The number of observations to generate.
Returns
-------
observations : numpy.array of shape(nobs,)
A sample of `nobs` observations from the specified state.
Examples
--------
Generate an observation model.
>>> output_model = GaussianOutputModel(nstates=2, means=[0, 1], sigmas=[1, 2])
Generate samples from each state.
>>> observations = [ output_model.generate_observations_from_state(state_index, nobs=100) for state_index in range(output_model.nstates) ]
"""
observations = self.sigmas[state_index] * np.random.randn(nobs) + self.means[state_index]
return observations | Generate synthetic observation data from a given state.
Parameters
----------
state_index : int
Index of the state from which observations are to be generated.
nobs : int
The number of observations to generate.
Returns
-------
observations : numpy.array of shape(nobs,)
A sample of `nobs` observations from the specified state.
Examples
--------
Generate an observation model.
>>> output_model = GaussianOutputModel(nstates=2, means=[0, 1], sigmas=[1, 2])
Generate samples from each state.
>>> observations = [ output_model.generate_observations_from_state(state_index, nobs=100) for state_index in range(output_model.nstates) ] | entailment |
def generate_observation_trajectory(self, s_t):
"""
Generate synthetic observation data from a given state sequence.
Parameters
----------
s_t : numpy.array with shape (T,) of int type
s_t[t] is the hidden state sampled at time t
Returns
-------
o_t : numpy.array with shape (T,) of type dtype
o_t[t] is the observation associated with state s_t[t]
Examples
--------
Generate an observation model and synthetic state trajectory.
>>> nobs = 1000
>>> output_model = GaussianOutputModel(nstates=3, means=[-1, 0, +1], sigmas=[0.5, 1, 2])
>>> s_t = np.random.randint(0, output_model.nstates, size=[nobs])
Generate a synthetic trajectory
>>> o_t = output_model.generate_observation_trajectory(s_t)
"""
# Determine number of samples to generate.
T = s_t.shape[0]
o_t = np.zeros([T], dtype=config.dtype)
for t in range(T):
s = s_t[t]
o_t[t] = self.sigmas[s] * np.random.randn() + self.means[s]
return o_t | Generate synthetic observation data from a given state sequence.
Parameters
----------
s_t : numpy.array with shape (T,) of int type
s_t[t] is the hidden state sampled at time t
Returns
-------
o_t : numpy.array with shape (T,) of type dtype
o_t[t] is the observation associated with state s_t[t]
Examples
--------
Generate an observation model and synthetic state trajectory.
>>> nobs = 1000
>>> output_model = GaussianOutputModel(nstates=3, means=[-1, 0, +1], sigmas=[0.5, 1, 2])
>>> s_t = np.random.randint(0, output_model.nstates, size=[nobs])
Generate a synthetic trajectory
>>> o_t = output_model.generate_observation_trajectory(s_t) | entailment |
def initial_distribution_samples(self):
r""" Samples of the initial distribution """
res = np.empty((self.nsamples, self.nstates), dtype=config.dtype)
for i in range(self.nsamples):
res[i, :] = self._sampled_hmms[i].stationary_distribution
return res | r""" Samples of the initial distribution | entailment |
def transition_matrix_samples(self):
r""" Samples of the transition matrix """
res = np.empty((self.nsamples, self.nstates, self.nstates), dtype=config.dtype)
for i in range(self.nsamples):
res[i, :, :] = self._sampled_hmms[i].transition_matrix
return res | r""" Samples of the transition matrix | entailment |
def eigenvalues_samples(self):
r""" Samples of the eigenvalues """
res = np.empty((self.nsamples, self.nstates), dtype=config.dtype)
for i in range(self.nsamples):
res[i, :] = self._sampled_hmms[i].eigenvalues
return res | r""" Samples of the eigenvalues | entailment |
def eigenvectors_left_samples(self):
r""" Samples of the left eigenvectors of the hidden transition matrix """
res = np.empty((self.nsamples, self.nstates, self.nstates), dtype=config.dtype)
for i in range(self.nsamples):
res[i, :, :] = self._sampled_hmms[i].eigenvectors_left
return res | r""" Samples of the left eigenvectors of the hidden transition matrix | entailment |
def eigenvectors_right_samples(self):
r""" Samples of the right eigenvectors of the hidden transition matrix """
res = np.empty((self.nsamples, self.nstates, self.nstates), dtype=config.dtype)
for i in range(self.nsamples):
res[i, :, :] = self._sampled_hmms[i].eigenvectors_right
return res | r""" Samples of the right eigenvectors of the hidden transition matrix | entailment |
def timescales_samples(self):
r""" Samples of the timescales """
res = np.empty((self.nsamples, self.nstates-1), dtype=config.dtype)
for i in range(self.nsamples):
res[i, :] = self._sampled_hmms[i].timescales
return res | r""" Samples of the timescales | entailment |
def lifetimes_samples(self):
r""" Samples of the timescales """
res = np.empty((self.nsamples, self.nstates), dtype=config.dtype)
for i in range(self.nsamples):
res[i, :] = self._sampled_hmms[i].lifetimes
return res | r""" Samples of the timescales | entailment |
def set_implementation(self, impl):
"""
Sets the implementation of this module
Parameters
----------
impl : str
One of ["python", "c"]
"""
if impl.lower() == 'python':
self.__impl__ = self.__IMPL_PYTHON__
elif impl.lower() == 'c':
self.__impl__ = self.__IMPL_C__
else:
import warnings
warnings.warn('Implementation '+impl+' is not known. Using the fallback python implementation.')
self.__impl__ = self.__IMPL_PYTHON__ | Sets the implementation of this module
Parameters
----------
impl : str
One of ["python", "c"] | entailment |
def log_p_obs(self, obs, out=None, dtype=np.float32):
"""
Returns the element-wise logarithm of the output probabilities for an entire trajectory and all hidden states
This is a default implementation that will take the log of p_obs(obs) and should only be used if p_obs(obs)
is numerically stable. If there is any danger of running into numerical problems *during* the calculation of
p_obs, this function should be overwritten in order to compute the log-probabilities directly.
Parameters
----------
obs : ndarray((T), dtype=int)
a discrete trajectory of length T
Return
------
p_o : ndarray (T,N)
the log probability of generating the symbol at time point t from any of the N hidden states
"""
if out is None:
return np.log(self.p_obs(obs))
else:
self.p_obs(obs, out=out, dtype=dtype)
np.log(out, out=out)
return out | Returns the element-wise logarithm of the output probabilities for an entire trajectory and all hidden states
This is a default implementation that will take the log of p_obs(obs) and should only be used if p_obs(obs)
is numerically stable. If there is any danger of running into numerical problems *during* the calculation of
p_obs, this function should be overwritten in order to compute the log-probabilities directly.
Parameters
----------
obs : ndarray((T), dtype=int)
a discrete trajectory of length T
Return
------
p_o : ndarray (T,N)
the log probability of generating the symbol at time point t from any of the N hidden states | entailment |
def _handle_outliers(self, p_o):
""" Sets observation probabilities of outliers to uniform if ignore_outliers is set.
Parameters
----------
p_o : ndarray((T, N))
output probabilities
"""
if self.ignore_outliers:
outliers = np.where(p_o.sum(axis=1)==0)[0]
if outliers.size > 0:
p_o[outliers, :] = 1.0
self.found_outliers = True
return p_o | Sets observation probabilities of outliers to uniform if ignore_outliers is set.
Parameters
----------
p_o : ndarray((T, N))
output probabilities | entailment |
def forward(A, pobs, pi, T=None, alpha_out=None, dtype=np.float32):
"""Compute P( obs | A, B, pi ) and all forward coefficients.
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
pi : ndarray((N), dtype = float)
initial distribution of hidden states
T : int, optional, default = None
trajectory length. If not given, T = pobs.shape[0] will be used.
alpha_out : ndarray((T,N), dtype = float), optional, default = None
container for the alpha result variables. If None, a new container will be created.
dtype : type, optional, default = np.float32
data type of the result.
Returns
-------
logprob : float
The probability to observe the sequence `ob` with the model given
by `A`, `B` and `pi`.
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t. These can be
used in many different algorithms related to HMMs.
"""
# set T
if T is None:
T = pobs.shape[0] # if not set, use the length of pobs as trajectory length
elif T > pobs.shape[0]:
raise ValueError('T must be at most the length of pobs.')
# set N
N = A.shape[0]
# initialize output if necessary
if alpha_out is None:
alpha_out = np.zeros((T, N), dtype=dtype)
elif T > alpha_out.shape[0]:
raise ValueError('alpha_out must at least have length T in order to fit trajectory.')
# log-likelihood
logprob = 0.0
# initial values
# alpha_i(0) = pi_i * B_i,ob[0]
np.multiply(pi, pobs[0, :], out=alpha_out[0])
# scaling factor
scale = np.sum(alpha_out[0, :])
# scale
alpha_out[0, :] /= scale
logprob += np.log(scale)
# induction
for t in range(T-1):
# alpha_j(t+1) = sum_i alpha_i(t) * A_i,j * B_j,ob(t+1)
np.multiply(np.dot(alpha_out[t, :], A), pobs[t+1, :], out=alpha_out[t+1])
# scaling factor
scale = np.sum(alpha_out[t+1, :])
# scale
alpha_out[t+1, :] /= scale
# update logprob
logprob += np.log(scale)
return logprob, alpha_out | Compute P( obs | A, B, pi ) and all forward coefficients.
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
pi : ndarray((N), dtype = float)
initial distribution of hidden states
T : int, optional, default = None
trajectory length. If not given, T = pobs.shape[0] will be used.
alpha_out : ndarray((T,N), dtype = float), optional, default = None
container for the alpha result variables. If None, a new container will be created.
dtype : type, optional, default = np.float32
data type of the result.
Returns
-------
logprob : float
The probability to observe the sequence `ob` with the model given
by `A`, `B` and `pi`.
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t. These can be
used in many different algorithms related to HMMs. | entailment |
def backward(A, pobs, T=None, beta_out=None, dtype=np.float32):
"""Compute all backward coefficients. With scaling!
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
beta_out : ndarray((T,N), dtype = float), optional, default = None
containter for the beta result variables. If None, a new container will be created.
dtype : type, optional, default = np.float32
data type of the result.
Returns
-------
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith backward coefficient of time t. These can be
used in many different algorithms related to HMMs.
"""
# set T
if T is None:
T = pobs.shape[0] # if not set, use the length of pobs as trajectory length
elif T > pobs.shape[0]:
raise ValueError('T must be at most the length of pobs.')
# set N
N = A.shape[0]
# initialize output if necessary
if beta_out is None:
beta_out = np.zeros((T, N), dtype=dtype)
elif T > beta_out.shape[0]:
raise ValueError('beta_out must at least have length T in order to fit trajectory.')
# initialization
beta_out[T-1, :] = 1.0
# scaling factor
scale = np.sum(beta_out[T-1, :])
# scale
beta_out[T-1, :] /= scale
# induction
for t in range(T-2, -1, -1):
# beta_i(t) = sum_j A_i,j * beta_j(t+1) * B_j,ob(t+1)
np.dot(A, beta_out[t+1, :] * pobs[t+1, :], out=beta_out[t, :])
# scaling factor
scale = np.sum(beta_out[t, :])
# scale
beta_out[t, :] /= scale
return beta_out | Compute all backward coefficients. With scaling!
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
beta_out : ndarray((T,N), dtype = float), optional, default = None
containter for the beta result variables. If None, a new container will be created.
dtype : type, optional, default = np.float32
data type of the result.
Returns
-------
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith backward coefficient of time t. These can be
used in many different algorithms related to HMMs. | entailment |
def transition_counts(alpha, beta, A, pobs, T=None, out=None, dtype=np.float32):
""" Sum for all t the probability to transition from state i to state j.
Parameters
----------
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith forward coefficient of time t.
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
T : int
number of time steps
out : ndarray((N,N), dtype = float), optional, default = None
containter for the resulting count matrix. If None, a new matrix will be created.
dtype : type, optional, default = np.float32
data type of the result.
Returns
-------
counts : numpy.array shape (N, N)
counts[i, j] is the summed probability to transition from i to j in time [0,T)
See Also
--------
forward : calculate forward coefficients `alpha`
backward : calculate backward coefficients `beta`
"""
# set T
if T is None:
T = pobs.shape[0] # if not set, use the length of pobs as trajectory length
elif T > pobs.shape[0]:
raise ValueError('T must be at most the length of pobs.')
# set N
N = len(A)
# output
if out is None:
out = np.zeros((N, N), dtype=dtype, order='C')
else:
out[:] = 0.0
# compute transition counts
xi = np.zeros((N, N), dtype=dtype, order='C')
for t in range(T-1):
# xi_i,j(t) = alpha_i(t) * A_i,j * B_j,ob(t+1) * beta_j(t+1)
np.dot(alpha[t, :][:, None] * A, np.diag(pobs[t+1, :] * beta[t+1, :]), out=xi)
# normalize to 1 for each time step
xi /= np.sum(xi)
# add to counts
np.add(out, xi, out)
# return
return out | Sum for all t the probability to transition from state i to state j.
Parameters
----------
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith forward coefficient of time t.
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
T : int
number of time steps
out : ndarray((N,N), dtype = float), optional, default = None
containter for the resulting count matrix. If None, a new matrix will be created.
dtype : type, optional, default = np.float32
data type of the result.
Returns
-------
counts : numpy.array shape (N, N)
counts[i, j] is the summed probability to transition from i to j in time [0,T)
See Also
--------
forward : calculate forward coefficients `alpha`
backward : calculate backward coefficients `beta` | entailment |
def viterbi(A, pobs, pi, dtype=np.float32):
""" Estimate the hidden pathway of maximum likelihood using the Viterbi algorithm.
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
pi : ndarray((N), dtype = float)
initial distribution of hidden states
Returns
-------
q : numpy.array shape (T)
maximum likelihood hidden path
"""
T, N = pobs.shape[0], pobs.shape[1]
# temporary viterbi state
psi = np.zeros((T, N), dtype=int)
# initialize
v = pi * pobs[0, :]
# rescale
v /= v.sum()
psi[0] = 0.0
# iterate
for t in range(1, T):
vA = np.dot(np.diag(v), A)
# propagate v
v = pobs[t, :] * np.max(vA, axis=0)
# rescale
v /= v.sum()
psi[t] = np.argmax(vA, axis=0)
# iterate
q = np.zeros(T, dtype=int)
q[T-1] = np.argmax(v)
for t in range(T-2, -1, -1):
q[t] = psi[t+1, q[t+1]]
# done
return q | Estimate the hidden pathway of maximum likelihood using the Viterbi algorithm.
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
pi : ndarray((N), dtype = float)
initial distribution of hidden states
Returns
-------
q : numpy.array shape (T)
maximum likelihood hidden path | entailment |
def sample_path(alpha, A, pobs, T=None, dtype=np.float32):
"""
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith forward coefficient of time t.
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
"""
N = pobs.shape[1]
# set T
if T is None:
T = pobs.shape[0] # if not set, use the length of pobs as trajectory length
elif T > pobs.shape[0] or T > alpha.shape[0]:
raise ValueError('T must be at most the length of pobs and alpha.')
# initialize path
S = np.zeros(T, dtype=int)
# Sample final state.
psel = alpha[T-1, :]
psel /= psel.sum() # make sure it's normalized
# Draw from this distribution.
S[T-1] = np.random.choice(range(N), size=1, p=psel)
# Work backwards from T-2 to 0.
for t in range(T-2, -1, -1):
# Compute P(s_t = i | s_{t+1}..s_T).
psel = alpha[t, :] * A[:, S[t+1]]
psel /= psel.sum() # make sure it's normalized
# Draw from this distribution.
S[t] = np.random.choice(range(N), size=1, p=psel)
return S | alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith forward coefficient of time t.
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i | entailment |
def coarse_grain_transition_matrix(P, M):
""" Coarse grain transition matrix P using memberships M
Computes
.. math:
Pc = (M' M)^-1 M' P M
Parameters
----------
P : ndarray(n, n)
microstate transition matrix
M : ndarray(n, m)
membership matrix. Membership to macrostate m for each microstate.
Returns
-------
Pc : ndarray(m, m)
coarse-grained transition matrix.
"""
# coarse-grain matrix: Pc = (M' M)^-1 M' P M
W = np.linalg.inv(np.dot(M.T, M))
A = np.dot(np.dot(M.T, P), M)
P_coarse = np.dot(W, A)
# this coarse-graining can lead to negative elements. Setting them to zero here.
P_coarse = np.maximum(P_coarse, 0)
# and renormalize
P_coarse /= P_coarse.sum(axis=1)[:, None]
return P_coarse | Coarse grain transition matrix P using memberships M
Computes
.. math:
Pc = (M' M)^-1 M' P M
Parameters
----------
P : ndarray(n, n)
microstate transition matrix
M : ndarray(n, m)
membership matrix. Membership to macrostate m for each microstate.
Returns
-------
Pc : ndarray(m, m)
coarse-grained transition matrix. | entailment |
def regularize_hidden(p0, P, reversible=True, stationary=False, C=None, eps=None):
""" Regularizes the hidden initial distribution and transition matrix.
Makes sure that the hidden initial distribution and transition matrix have
nonzero probabilities by setting them to eps and then renormalizing.
Avoids zeros that would cause estimation algorithms to crash or get stuck
in suboptimal states.
Parameters
----------
p0 : ndarray(n)
Initial hidden distribution of the HMM
P : ndarray(n, n)
Hidden transition matrix
reversible : bool
HMM is reversible. Will make sure it is still reversible after modification.
stationary : bool
p0 is the stationary distribution of P. In this case, will not regularize
p0 separately. If stationary=False, the regularization will be applied to p0.
C : ndarray(n, n)
Hidden count matrix. Only needed for stationary=True and P disconnected.
epsilon : float or None
minimum value of the resulting transition matrix. Default: evaluates
to 0.01 / n. The coarse-graining equation can lead to negative elements
and thus epsilon should be set to at least 0. Positive settings of epsilon
are similar to a prior and enforce minimum positive values for all
transition probabilities.
Return
------
p0 : ndarray(n)
regularized initial distribution
P : ndarray(n, n)
regularized transition matrix
"""
# input
n = P.shape[0]
if eps is None: # default output probability, in order to avoid zero columns
eps = 0.01 / n
# REGULARIZE P
P = np.maximum(P, eps)
# and renormalize
P /= P.sum(axis=1)[:, None]
# ensure reversibility
if reversible:
P = _tmatrix_disconnected.enforce_reversible_on_closed(P)
# REGULARIZE p0
if stationary:
_tmatrix_disconnected.stationary_distribution(P, C=C)
else:
p0 = np.maximum(p0, eps)
p0 /= p0.sum()
return p0, P | Regularizes the hidden initial distribution and transition matrix.
Makes sure that the hidden initial distribution and transition matrix have
nonzero probabilities by setting them to eps and then renormalizing.
Avoids zeros that would cause estimation algorithms to crash or get stuck
in suboptimal states.
Parameters
----------
p0 : ndarray(n)
Initial hidden distribution of the HMM
P : ndarray(n, n)
Hidden transition matrix
reversible : bool
HMM is reversible. Will make sure it is still reversible after modification.
stationary : bool
p0 is the stationary distribution of P. In this case, will not regularize
p0 separately. If stationary=False, the regularization will be applied to p0.
C : ndarray(n, n)
Hidden count matrix. Only needed for stationary=True and P disconnected.
epsilon : float or None
minimum value of the resulting transition matrix. Default: evaluates
to 0.01 / n. The coarse-graining equation can lead to negative elements
and thus epsilon should be set to at least 0. Positive settings of epsilon
are similar to a prior and enforce minimum positive values for all
transition probabilities.
Return
------
p0 : ndarray(n)
regularized initial distribution
P : ndarray(n, n)
regularized transition matrix | entailment |
def regularize_pobs(B, nonempty=None, separate=None, eps=None):
""" Regularizes the output probabilities.
Makes sure that the output probability distributions has
nonzero probabilities by setting them to eps and then renormalizing.
Avoids zeros that would cause estimation algorithms to crash or get stuck
in suboptimal states.
Parameters
----------
B : ndarray(n, m)
HMM output probabilities
nonempty : None or iterable of int
Nonempty set. Only regularize on this subset.
separate : None or iterable of int
Force the given set of observed states to stay in a separate hidden state.
The remaining nstates-1 states will be assigned by a metastable decomposition.
reversible : bool
HMM is reversible. Will make sure it is still reversible after modification.
Returns
-------
B : ndarray(n, m)
Regularized output probabilities
"""
# input
B = B.copy() # modify copy
n, m = B.shape # number of hidden / observable states
if eps is None: # default output probability, in order to avoid zero columns
eps = 0.01 / m
# observable sets
if nonempty is None:
nonempty = np.arange(m)
if separate is None:
B[:, nonempty] = np.maximum(B[:, nonempty], eps)
else:
nonempty_nonseparate = np.array(list(set(nonempty) - set(separate)), dtype=int)
nonempty_separate = np.array(list(set(nonempty).intersection(set(separate))), dtype=int)
B[:n-1, nonempty_nonseparate] = np.maximum(B[:n-1, nonempty_nonseparate], eps)
B[n-1, nonempty_separate] = np.maximum(B[n-1, nonempty_separate], eps)
# renormalize and return copy
B /= B.sum(axis=1)[:, None]
return B | Regularizes the output probabilities.
Makes sure that the output probability distributions has
nonzero probabilities by setting them to eps and then renormalizing.
Avoids zeros that would cause estimation algorithms to crash or get stuck
in suboptimal states.
Parameters
----------
B : ndarray(n, m)
HMM output probabilities
nonempty : None or iterable of int
Nonempty set. Only regularize on this subset.
separate : None or iterable of int
Force the given set of observed states to stay in a separate hidden state.
The remaining nstates-1 states will be assigned by a metastable decomposition.
reversible : bool
HMM is reversible. Will make sure it is still reversible after modification.
Returns
-------
B : ndarray(n, m)
Regularized output probabilities | entailment |
def init_discrete_hmm_spectral(C_full, nstates, reversible=True, stationary=True, active_set=None, P=None,
eps_A=None, eps_B=None, separate=None):
"""Initializes discrete HMM using spectral clustering of observation counts
Initializes HMM as described in [1]_. First estimates a Markov state model
on the given observations, then uses PCCA+ to coarse-grain the transition
matrix [2]_ which initializes the HMM transition matrix. The HMM output
probabilities are given by Bayesian inversion from the PCCA+ memberships [1]_.
The regularization parameters eps_A and eps_B are used
to guarantee that the hidden transition matrix and output probability matrix
have no zeros. HMM estimation algorithms such as the EM algorithm and the
Bayesian sampling algorithm cannot recover from zero entries, i.e. once they
are zero, they will stay zero.
Parameters
----------
C_full : ndarray(N, N)
Transition count matrix on the full observable state space
nstates : int
The number of hidden states.
reversible : bool
Estimate reversible HMM transition matrix.
stationary : bool
p0 is the stationary distribution of P. In this case, will not
active_set : ndarray(n, dtype=int) or None
Index area. Will estimate kinetics only on the given subset of C
P : ndarray(n, n)
Transition matrix estimated from C (with option reversible). Use this
option if P has already been estimated to avoid estimating it twice.
eps_A : float or None
Minimum transition probability. Default: 0.01 / nstates
eps_B : float or None
Minimum output probability. Default: 0.01 / nfull
separate : None or iterable of int
Force the given set of observed states to stay in a separate hidden state.
The remaining nstates-1 states will be assigned by a metastable decomposition.
Returns
-------
p0 : ndarray(n)
Hidden state initial distribution
A : ndarray(n, n)
Hidden state transition matrix
B : ndarray(n, N)
Hidden-to-observable state output probabilities
Raises
------
ValueError
If the given active set is illegal.
NotImplementedError
If the number of hidden states exceeds the number of observed states.
Examples
--------
Generate initial model for a discrete output model.
>>> import numpy as np
>>> C = np.array([[0.5, 0.5, 0.0], [0.4, 0.5, 0.1], [0.0, 0.1, 0.9]])
>>> initial_model = init_discrete_hmm_spectral(C, 2)
References
----------
.. [1] F. Noe, H. Wu, J.-H. Prinz and N. Plattner: Projected and hidden
Markov models for calculating kinetics and metastable states of
complex molecules. J. Chem. Phys. 139, 184114 (2013)
.. [2] S. Kube and M. Weber: A coarse graining method for the identification
of transition rates between molecular conformations.
J. Chem. Phys. 126, 024103 (2007)
"""
# MICROSTATE COUNT MATRIX
nfull = C_full.shape[0]
# INPUTS
if eps_A is None: # default transition probability, in order to avoid zero columns
eps_A = 0.01 / nstates
if eps_B is None: # default output probability, in order to avoid zero columns
eps_B = 0.01 / nfull
# Manage sets
symsum = C_full.sum(axis=0) + C_full.sum(axis=1)
nonempty = np.where(symsum > 0)[0]
if active_set is None:
active_set = nonempty
else:
if np.any(symsum[active_set] == 0):
raise ValueError('Given active set has empty states') # don't tolerate empty states
if P is not None:
if np.shape(P)[0] != active_set.size: # needs to fit to active
raise ValueError('Given initial transition matrix P has shape ' + str(np.shape(P))
+ 'while active set has size ' + str(active_set.size))
# when using separate states, only keep the nonempty ones (the others don't matter)
if separate is None:
active_nonseparate = active_set.copy()
nmeta = nstates
else:
if np.max(separate) >= nfull:
raise ValueError('Separate set has indexes that do not exist in full state space: '
+ str(np.max(separate)))
active_nonseparate = np.array(list(set(active_set) - set(separate)))
nmeta = nstates - 1
# check if we can proceed
if active_nonseparate.size < nmeta:
raise NotImplementedError('Trying to initialize ' + str(nmeta) + '-state HMM from smaller '
+ str(active_nonseparate.size) + '-state MSM.')
# MICROSTATE TRANSITION MATRIX (MSM).
C_active = C_full[np.ix_(active_set, active_set)]
if P is None: # This matrix may be disconnected and have transient states
P_active = _tmatrix_disconnected.estimate_P(C_active, reversible=reversible, maxiter=10000) # short iteration
else:
P_active = P
# MICROSTATE EQUILIBRIUM DISTRIBUTION
pi_active = _tmatrix_disconnected.stationary_distribution(P_active, C=C_active)
pi_full = np.zeros(nfull)
pi_full[active_set] = pi_active
# NONSEPARATE TRANSITION MATRIX FOR PCCA+
C_active_nonseparate = C_full[np.ix_(active_nonseparate, active_nonseparate)]
if reversible and separate is None: # in this case we already have a reversible estimate with the right size
P_active_nonseparate = P_active
else: # not yet reversible. re-estimate
P_active_nonseparate = _tmatrix_disconnected.estimate_P(C_active_nonseparate, reversible=True)
# COARSE-GRAINING WITH PCCA+
if active_nonseparate.size > nmeta:
from msmtools.analysis.dense.pcca import PCCA
pcca_obj = PCCA(P_active_nonseparate, nmeta)
M_active_nonseparate = pcca_obj.memberships # memberships
B_active_nonseparate = pcca_obj.output_probabilities # output probabilities
else: # equal size
M_active_nonseparate = np.eye(nmeta)
B_active_nonseparate = np.eye(nmeta)
# ADD SEPARATE STATE IF NEEDED
if separate is None:
M_active = M_active_nonseparate
else:
M_full = np.zeros((nfull, nstates))
M_full[active_nonseparate, :nmeta] = M_active_nonseparate
M_full[separate, -1] = 1
M_active = M_full[active_set]
# COARSE-GRAINED TRANSITION MATRIX
P_hmm = coarse_grain_transition_matrix(P_active, M_active)
if reversible:
P_hmm = _tmatrix_disconnected.enforce_reversible_on_closed(P_hmm)
C_hmm = M_active.T.dot(C_active).dot(M_active)
pi_hmm = _tmatrix_disconnected.stationary_distribution(P_hmm, C=C_hmm) # need C_hmm in case if A is disconnected
# COARSE-GRAINED OUTPUT DISTRIBUTION
B_hmm = np.zeros((nstates, nfull))
B_hmm[:nmeta, active_nonseparate] = B_active_nonseparate
if separate is not None: # add separate states
B_hmm[-1, separate] = pi_full[separate]
# REGULARIZE SOLUTION
pi_hmm, P_hmm = regularize_hidden(pi_hmm, P_hmm, reversible=reversible, stationary=stationary, C=C_hmm, eps=eps_A)
B_hmm = regularize_pobs(B_hmm, nonempty=nonempty, separate=separate, eps=eps_B)
# print 'cg pi: ', pi_hmm
# print 'cg A:\n ', P_hmm
# print 'cg B:\n ', B_hmm
logger().info('Initial model: ')
logger().info('initial distribution = \n'+str(pi_hmm))
logger().info('transition matrix = \n'+str(P_hmm))
logger().info('output matrix = \n'+str(B_hmm.T))
return pi_hmm, P_hmm, B_hmm | Initializes discrete HMM using spectral clustering of observation counts
Initializes HMM as described in [1]_. First estimates a Markov state model
on the given observations, then uses PCCA+ to coarse-grain the transition
matrix [2]_ which initializes the HMM transition matrix. The HMM output
probabilities are given by Bayesian inversion from the PCCA+ memberships [1]_.
The regularization parameters eps_A and eps_B are used
to guarantee that the hidden transition matrix and output probability matrix
have no zeros. HMM estimation algorithms such as the EM algorithm and the
Bayesian sampling algorithm cannot recover from zero entries, i.e. once they
are zero, they will stay zero.
Parameters
----------
C_full : ndarray(N, N)
Transition count matrix on the full observable state space
nstates : int
The number of hidden states.
reversible : bool
Estimate reversible HMM transition matrix.
stationary : bool
p0 is the stationary distribution of P. In this case, will not
active_set : ndarray(n, dtype=int) or None
Index area. Will estimate kinetics only on the given subset of C
P : ndarray(n, n)
Transition matrix estimated from C (with option reversible). Use this
option if P has already been estimated to avoid estimating it twice.
eps_A : float or None
Minimum transition probability. Default: 0.01 / nstates
eps_B : float or None
Minimum output probability. Default: 0.01 / nfull
separate : None or iterable of int
Force the given set of observed states to stay in a separate hidden state.
The remaining nstates-1 states will be assigned by a metastable decomposition.
Returns
-------
p0 : ndarray(n)
Hidden state initial distribution
A : ndarray(n, n)
Hidden state transition matrix
B : ndarray(n, N)
Hidden-to-observable state output probabilities
Raises
------
ValueError
If the given active set is illegal.
NotImplementedError
If the number of hidden states exceeds the number of observed states.
Examples
--------
Generate initial model for a discrete output model.
>>> import numpy as np
>>> C = np.array([[0.5, 0.5, 0.0], [0.4, 0.5, 0.1], [0.0, 0.1, 0.9]])
>>> initial_model = init_discrete_hmm_spectral(C, 2)
References
----------
.. [1] F. Noe, H. Wu, J.-H. Prinz and N. Plattner: Projected and hidden
Markov models for calculating kinetics and metastable states of
complex molecules. J. Chem. Phys. 139, 184114 (2013)
.. [2] S. Kube and M. Weber: A coarse graining method for the identification
of transition rates between molecular conformations.
J. Chem. Phys. 126, 024103 (2007) | entailment |
def init_discrete_hmm_ml(C_full, nstates, reversible=True, stationary=True, active_set=None, P=None,
eps_A=None, eps_B=None, separate=None):
"""Initializes discrete HMM using maximum likelihood of observation counts"""
raise NotImplementedError('ML-initialization not yet implemented') | Initializes discrete HMM using maximum likelihood of observation counts | entailment |
def update(self, Pi, Tij):
r""" Updates the transition matrix and recomputes all derived quantities """
from msmtools import analysis as msmana
# update transition matrix by copy
self._Tij = np.array(Tij)
assert msmana.is_transition_matrix(self._Tij), 'Given transition matrix is not a stochastic matrix'
assert self._Tij.shape[0] == self._nstates, 'Given transition matrix has unexpected number of states '
# reset spectral decomposition
self._spectral_decomp_available = False
# check initial distribution
assert np.all(Pi >= 0), 'Given initial distribution contains negative elements.'
assert np.any(Pi > 0), 'Given initial distribution is zero'
self._Pi = np.array(Pi) / np.sum(Pi) | r""" Updates the transition matrix and recomputes all derived quantities | entailment |
def is_stationary(self):
r""" Whether the MSM is stationary, i.e. whether the initial distribution is the stationary distribution
of the hidden transition matrix. """
# for disconnected matrices, the stationary distribution depends on the estimator, so we can't compute
# it directly. Therefore we test whether the initial distribution is stationary.
return np.allclose(np.dot(self._Pi, self._Tij), self._Pi) | r""" Whether the MSM is stationary, i.e. whether the initial distribution is the stationary distribution
of the hidden transition matrix. | entailment |
def stationary_distribution(self):
r""" Compute stationary distribution of hidden states if possible.
Raises
------
ValueError if the HMM is not stationary
"""
assert _tmatrix_disconnected.is_connected(self._Tij, strong=False), \
'No unique stationary distribution because transition matrix is not connected'
import msmtools.analysis as msmana
return msmana.stationary_distribution(self._Tij) | r""" Compute stationary distribution of hidden states if possible.
Raises
------
ValueError if the HMM is not stationary | entailment |
def timescales(self):
r""" Relaxation timescales of the hidden transition matrix
Returns
-------
ts : ndarray(m)
relaxation timescales in units of the input trajectory time step,
defined by :math:`-tau / ln | \lambda_i |, i = 2,...,nstates`, where
:math:`\lambda_i` are the hidden transition matrix eigenvalues.
"""
from msmtools.analysis.dense.decomposition import timescales_from_eigenvalues as _timescales
self._ensure_spectral_decomposition()
ts = _timescales(self._eigenvalues, tau=self._lag)
return ts[1:] | r""" Relaxation timescales of the hidden transition matrix
Returns
-------
ts : ndarray(m)
relaxation timescales in units of the input trajectory time step,
defined by :math:`-tau / ln | \lambda_i |, i = 2,...,nstates`, where
:math:`\lambda_i` are the hidden transition matrix eigenvalues. | entailment |
def lifetimes(self):
r""" Lifetimes of states of the hidden transition matrix
Returns
-------
l : ndarray(nstates)
state lifetimes in units of the input trajectory time step,
defined by :math:`-tau / ln | p_{ii} |, i = 1,...,nstates`, where
:math:`p_{ii}` are the diagonal entries of the hidden transition matrix.
"""
return -self._lag / np.log(np.diag(self.transition_matrix)) | r""" Lifetimes of states of the hidden transition matrix
Returns
-------
l : ndarray(nstates)
state lifetimes in units of the input trajectory time step,
defined by :math:`-tau / ln | p_{ii} |, i = 1,...,nstates`, where
:math:`p_{ii}` are the diagonal entries of the hidden transition matrix. | entailment |
def sub_hmm(self, states):
r""" Returns HMM on a subset of states
Returns the HMM restricted to the selected subset of states.
Will raise exception if the hidden transition matrix cannot be normalized on this subset
"""
# restrict initial distribution
pi_sub = self._Pi[states]
pi_sub /= pi_sub.sum()
# restrict transition matrix
P_sub = self._Tij[states, :][:, states]
# checks if this selection is possible
assert np.all(P_sub.sum(axis=1) > 0), \
'Illegal sub_hmm request: transition matrix cannot be normalized on ' + str(states)
P_sub /= P_sub.sum(axis=1)[:, None]
# restrict output model
out_sub = self.output_model.sub_output_model(states)
return HMM(pi_sub, P_sub, out_sub, lag=self.lag) | r""" Returns HMM on a subset of states
Returns the HMM restricted to the selected subset of states.
Will raise exception if the hidden transition matrix cannot be normalized on this subset | entailment |
def count_matrix(self):
# TODO: does this belong here or to the BHMM sampler, or in a subclass containing HMM with data?
"""Compute the transition count matrix from hidden state trajectory.
Returns
-------
C : numpy.array with shape (nstates,nstates)
C[i,j] is the number of transitions observed from state i to state j
Raises
------
RuntimeError
A RuntimeError is raised if the HMM model does not yet have a hidden state trajectory associated with it.
Examples
--------
"""
if self.hidden_state_trajectories is None:
raise RuntimeError('HMM model does not have a hidden state trajectory.')
C = msmest.count_matrix(self.hidden_state_trajectories, 1, nstates=self._nstates)
return C.toarray() | Compute the transition count matrix from hidden state trajectory.
Returns
-------
C : numpy.array with shape (nstates,nstates)
C[i,j] is the number of transitions observed from state i to state j
Raises
------
RuntimeError
A RuntimeError is raised if the HMM model does not yet have a hidden state trajectory associated with it.
Examples
-------- | entailment |
def count_init(self):
"""Compute the counts at the first time step
Returns
-------
n : ndarray(nstates)
n[i] is the number of trajectories starting in state i
"""
if self.hidden_state_trajectories is None:
raise RuntimeError('HMM model does not have a hidden state trajectory.')
n = [traj[0] for traj in self.hidden_state_trajectories]
return np.bincount(n, minlength=self.nstates) | Compute the counts at the first time step
Returns
-------
n : ndarray(nstates)
n[i] is the number of trajectories starting in state i | entailment |
def collect_observations_in_state(self, observations, state_index):
# TODO: this would work well in a subclass with data
"""Collect a vector of all observations belonging to a specified hidden state.
Parameters
----------
observations : list of numpy.array
List of observed trajectories.
state_index : int
The index of the hidden state for which corresponding observations are to be retrieved.
dtype : numpy.dtype, optional, default=numpy.float64
The numpy dtype to use to store the collected observations.
Returns
-------
collected_observations : numpy.array with shape (nsamples,)
The collected vector of observations belonging to the specified hidden state.
Raises
------
RuntimeError
A RuntimeError is raised if the HMM model does not yet have a hidden state trajectory associated with it.
"""
if not self.hidden_state_trajectories:
raise RuntimeError('HMM model does not have a hidden state trajectory.')
dtype = observations[0].dtype
collected_observations = np.array([], dtype=dtype)
for (s_t, o_t) in zip(self.hidden_state_trajectories, observations):
indices = np.where(s_t == state_index)[0]
collected_observations = np.append(collected_observations, o_t[indices])
return collected_observations | Collect a vector of all observations belonging to a specified hidden state.
Parameters
----------
observations : list of numpy.array
List of observed trajectories.
state_index : int
The index of the hidden state for which corresponding observations are to be retrieved.
dtype : numpy.dtype, optional, default=numpy.float64
The numpy dtype to use to store the collected observations.
Returns
-------
collected_observations : numpy.array with shape (nsamples,)
The collected vector of observations belonging to the specified hidden state.
Raises
------
RuntimeError
A RuntimeError is raised if the HMM model does not yet have a hidden state trajectory associated with it. | entailment |
def generate_synthetic_state_trajectory(self, nsteps, initial_Pi=None, start=None, stop=None, dtype=np.int32):
"""Generate a synthetic state trajectory.
Parameters
----------
nsteps : int
Number of steps in the synthetic state trajectory to be generated.
initial_Pi : np.array of shape (nstates,), optional, default=None
The initial probability distribution, if samples are not to be taken from the intrinsic
initial distribution.
start : int
starting state. Exclusive with initial_Pi
stop : int
stopping state. Trajectory will terminate when reaching the stopping state before length number of steps.
dtype : numpy.dtype, optional, default=numpy.int32
The numpy dtype to use to store the synthetic trajectory.
Returns
-------
states : np.array of shape (nstates,) of dtype=np.int32
The trajectory of hidden states, with each element in range(0,nstates).
Examples
--------
Generate a synthetic state trajectory of a specified length.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model()
>>> states = model.generate_synthetic_state_trajectory(nsteps=100)
"""
# consistency check
if initial_Pi is not None and start is not None:
raise ValueError('Arguments initial_Pi and start are exclusive. Only set one of them.')
# Generate first state sample.
if start is None:
if initial_Pi is not None:
start = np.random.choice(range(self._nstates), size=1, p=initial_Pi)
else:
start = np.random.choice(range(self._nstates), size=1, p=self._Pi)
# Generate and return trajectory
from msmtools import generation as msmgen
traj = msmgen.generate_traj(self.transition_matrix, nsteps, start=start, stop=stop, dt=1)
return traj.astype(dtype) | Generate a synthetic state trajectory.
Parameters
----------
nsteps : int
Number of steps in the synthetic state trajectory to be generated.
initial_Pi : np.array of shape (nstates,), optional, default=None
The initial probability distribution, if samples are not to be taken from the intrinsic
initial distribution.
start : int
starting state. Exclusive with initial_Pi
stop : int
stopping state. Trajectory will terminate when reaching the stopping state before length number of steps.
dtype : numpy.dtype, optional, default=numpy.int32
The numpy dtype to use to store the synthetic trajectory.
Returns
-------
states : np.array of shape (nstates,) of dtype=np.int32
The trajectory of hidden states, with each element in range(0,nstates).
Examples
--------
Generate a synthetic state trajectory of a specified length.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model()
>>> states = model.generate_synthetic_state_trajectory(nsteps=100) | entailment |
def generate_synthetic_observation_trajectory(self, length, initial_Pi=None):
"""Generate a synthetic realization of observables.
Parameters
----------
length : int
Length of synthetic state trajectory to be generated.
initial_Pi : np.array of shape (nstates,), optional, default=None
The initial probability distribution, if samples are not to be taken from equilibrium.
Returns
-------
o_t : np.array of shape (nstates,) of dtype=np.float32
The trajectory of observations.
s_t : np.array of shape (nstates,) of dtype=np.int32
The trajectory of hidden states, with each element in range(0,nstates).
Examples
--------
Generate a synthetic observation trajectory for an equilibrium realization.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model()
>>> [o_t, s_t] = model.generate_synthetic_observation_trajectory(length=100)
Use an initial nonequilibrium distribution.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model()
>>> [o_t, s_t] = model.generate_synthetic_observation_trajectory(length=100, initial_Pi=np.array([1,0,0]))
"""
# First, generate synthetic state trajetory.
s_t = self.generate_synthetic_state_trajectory(length, initial_Pi=initial_Pi)
# Next, generate observations from these states.
o_t = self.output_model.generate_observation_trajectory(s_t)
return [o_t, s_t] | Generate a synthetic realization of observables.
Parameters
----------
length : int
Length of synthetic state trajectory to be generated.
initial_Pi : np.array of shape (nstates,), optional, default=None
The initial probability distribution, if samples are not to be taken from equilibrium.
Returns
-------
o_t : np.array of shape (nstates,) of dtype=np.float32
The trajectory of observations.
s_t : np.array of shape (nstates,) of dtype=np.int32
The trajectory of hidden states, with each element in range(0,nstates).
Examples
--------
Generate a synthetic observation trajectory for an equilibrium realization.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model()
>>> [o_t, s_t] = model.generate_synthetic_observation_trajectory(length=100)
Use an initial nonequilibrium distribution.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model()
>>> [o_t, s_t] = model.generate_synthetic_observation_trajectory(length=100, initial_Pi=np.array([1,0,0])) | entailment |
def generate_synthetic_observation_trajectories(self, ntrajectories, length, initial_Pi=None):
"""Generate a number of synthetic realization of observables from this model.
Parameters
----------
ntrajectories : int
The number of trajectories to be generated.
length : int
Length of synthetic state trajectory to be generated.
initial_Pi : np.array of shape (nstates,), optional, default=None
The initial probability distribution, if samples are not to be taken from equilibrium.
Returns
-------
O : list of np.array of shape (nstates,) of dtype=np.float32
The trajectories of observations
S : list of np.array of shape (nstates,) of dtype=np.int32
The trajectories of hidden states
Examples
--------
Generate a number of synthetic trajectories.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model()
>>> O, S = model.generate_synthetic_observation_trajectories(ntrajectories=10, length=100)
Use an initial nonequilibrium distribution.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model(nstates=3)
>>> O, S = model.generate_synthetic_observation_trajectories(ntrajectories=10, length=100, initial_Pi=np.array([1,0,0]))
"""
O = list() # observations
S = list() # state trajectories
for trajectory_index in range(ntrajectories):
o_t, s_t = self.generate_synthetic_observation_trajectory(length=length, initial_Pi=initial_Pi)
O.append(o_t)
S.append(s_t)
return O, S | Generate a number of synthetic realization of observables from this model.
Parameters
----------
ntrajectories : int
The number of trajectories to be generated.
length : int
Length of synthetic state trajectory to be generated.
initial_Pi : np.array of shape (nstates,), optional, default=None
The initial probability distribution, if samples are not to be taken from equilibrium.
Returns
-------
O : list of np.array of shape (nstates,) of dtype=np.float32
The trajectories of observations
S : list of np.array of shape (nstates,) of dtype=np.int32
The trajectories of hidden states
Examples
--------
Generate a number of synthetic trajectories.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model()
>>> O, S = model.generate_synthetic_observation_trajectories(ntrajectories=10, length=100)
Use an initial nonequilibrium distribution.
>>> from bhmm import testsystems
>>> model = testsystems.dalton_model(nstates=3)
>>> O, S = model.generate_synthetic_observation_trajectories(ntrajectories=10, length=100, initial_Pi=np.array([1,0,0])) | entailment |
def nb_to_python(nb_path):
"""convert notebook to python script"""
exporter = python.PythonExporter()
output, resources = exporter.from_filename(nb_path)
return output | convert notebook to python script | entailment |
def nb_to_html(nb_path):
"""convert notebook to html"""
exporter = html.HTMLExporter(template_file='full')
output, resources = exporter.from_filename(nb_path)
header = output.split('<head>', 1)[1].split('</head>',1)[0]
body = output.split('<body>', 1)[1].split('</body>',1)[0]
# http://imgur.com/eR9bMRH
header = header.replace('<style', '<style scoped="scoped"')
header = header.replace('body {\n overflow: visible;\n padding: 8px;\n}\n', '')
# Filter out styles that conflict with the sphinx theme.
filter_strings = [
'navbar',
'body{',
'alert{',
'uneditable-input{',
'collapse{',
]
filter_strings.extend(['h%s{' % (i+1) for i in range(6)])
header_lines = filter(
lambda x: not any([s in x for s in filter_strings]), header.split('\n'))
header = '\n'.join(header_lines)
# concatenate raw html lines
lines = ['<div class="ipynotebook">']
lines.append(header)
lines.append(body)
lines.append('</div>')
return '\n'.join(lines) | convert notebook to html | entailment |
def p_obs(self, obs, out=None):
"""
Returns the output probabilities for an entire trajectory and all hidden states
Parameters
----------
obs : ndarray((T), dtype=int)
a discrete trajectory of length T
Return
------
p_o : ndarray (T,N)
the probability of generating the symbol at time point t from any of the N hidden states
"""
if out is None:
out = self._output_probabilities[:, obs].T
# out /= np.sum(out, axis=1)[:,None]
return self._handle_outliers(out)
else:
if obs.shape[0] == out.shape[0]:
np.copyto(out, self._output_probabilities[:, obs].T)
elif obs.shape[0] < out.shape[0]:
out[:obs.shape[0], :] = self._output_probabilities[:, obs].T
else:
raise ValueError('output array out is too small: '+str(out.shape[0])+' < '+str(obs.shape[0]))
# out /= np.sum(out, axis=1)[:,None]
return self._handle_outliers(out) | Returns the output probabilities for an entire trajectory and all hidden states
Parameters
----------
obs : ndarray((T), dtype=int)
a discrete trajectory of length T
Return
------
p_o : ndarray (T,N)
the probability of generating the symbol at time point t from any of the N hidden states | entailment |
def estimate(self, observations, weights):
"""
Maximum likelihood estimation of output model given the observations and weights
Parameters
----------
observations : [ ndarray(T_k) ] with K elements
A list of K observation trajectories, each having length T_k
weights : [ ndarray(T_k, N) ] with K elements
A list of K weight matrices, each having length T_k and containing the probability of any of the states in
the given time step
Examples
--------
Generate an observation model and samples from each state.
>>> import numpy as np
>>> ntrajectories = 3
>>> nobs = 1000
>>> B = np.array([[0.5,0.5],[0.1,0.9]])
>>> output_model = DiscreteOutputModel(B)
>>> from scipy import stats
>>> nobs = 1000
>>> obs = np.empty(nobs, dtype = object)
>>> weights = np.empty(nobs, dtype = object)
>>> gens = [stats.rv_discrete(values=(range(len(B[i])), B[i])) for i in range(B.shape[0])]
>>> obs = [gens[i].rvs(size=nobs) for i in range(B.shape[0])]
>>> weights = [np.zeros((nobs, B.shape[1])) for i in range(B.shape[0])]
>>> for i in range(B.shape[0]): weights[i][:, i] = 1.0
Update the observation model parameters my a maximum-likelihood fit.
>>> output_model.estimate(obs, weights)
"""
# sizes
N, M = self._output_probabilities.shape
K = len(observations)
# initialize output probability matrix
self._output_probabilities = np.zeros((N, M))
# update output probability matrix (numerator)
if self.__impl__ == self.__IMPL_C__:
for k in range(K):
dc.update_pout(observations[k], weights[k], self._output_probabilities, dtype=config.dtype)
elif self.__impl__ == self.__IMPL_PYTHON__:
for k in range(K):
for o in range(M):
times = np.where(observations[k] == o)[0]
self._output_probabilities[:, o] += np.sum(weights[k][times, :], axis=0)
else:
raise RuntimeError('Implementation '+str(self.__impl__)+' not available')
# normalize
self._output_probabilities /= np.sum(self._output_probabilities, axis=1)[:, None] | Maximum likelihood estimation of output model given the observations and weights
Parameters
----------
observations : [ ndarray(T_k) ] with K elements
A list of K observation trajectories, each having length T_k
weights : [ ndarray(T_k, N) ] with K elements
A list of K weight matrices, each having length T_k and containing the probability of any of the states in
the given time step
Examples
--------
Generate an observation model and samples from each state.
>>> import numpy as np
>>> ntrajectories = 3
>>> nobs = 1000
>>> B = np.array([[0.5,0.5],[0.1,0.9]])
>>> output_model = DiscreteOutputModel(B)
>>> from scipy import stats
>>> nobs = 1000
>>> obs = np.empty(nobs, dtype = object)
>>> weights = np.empty(nobs, dtype = object)
>>> gens = [stats.rv_discrete(values=(range(len(B[i])), B[i])) for i in range(B.shape[0])]
>>> obs = [gens[i].rvs(size=nobs) for i in range(B.shape[0])]
>>> weights = [np.zeros((nobs, B.shape[1])) for i in range(B.shape[0])]
>>> for i in range(B.shape[0]): weights[i][:, i] = 1.0
Update the observation model parameters my a maximum-likelihood fit.
>>> output_model.estimate(obs, weights) | entailment |
def sample(self, observations_by_state):
"""
Sample a new set of distribution parameters given a sample of observations from the given state.
The internal parameters are updated.
Parameters
----------
observations : [ numpy.array with shape (N_k,) ] with nstates elements
observations[k] are all observations associated with hidden state k
Examples
--------
initialize output model
>>> B = np.array([[0.5, 0.5], [0.1, 0.9]])
>>> output_model = DiscreteOutputModel(B)
sample given observation
>>> obs = [[0, 0, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1]]
>>> output_model.sample(obs)
"""
from numpy.random import dirichlet
N, M = self._output_probabilities.shape # nstates, nsymbols
for i, obs_by_state in enumerate(observations_by_state):
# count symbols found in data
count = np.bincount(obs_by_state, minlength=M).astype(float)
# sample dirichlet distribution
count += self.prior[i]
positive = count > 0
# if counts at all: can't sample, so leave output probabilities as they are.
self._output_probabilities[i, positive] = dirichlet(count[positive]) | Sample a new set of distribution parameters given a sample of observations from the given state.
The internal parameters are updated.
Parameters
----------
observations : [ numpy.array with shape (N_k,) ] with nstates elements
observations[k] are all observations associated with hidden state k
Examples
--------
initialize output model
>>> B = np.array([[0.5, 0.5], [0.1, 0.9]])
>>> output_model = DiscreteOutputModel(B)
sample given observation
>>> obs = [[0, 0, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1]]
>>> output_model.sample(obs) | entailment |
def generate_observation_from_state(self, state_index):
"""
Generate a single synthetic observation data from a given state.
Parameters
----------
state_index : int
Index of the state from which observations are to be generated.
Returns
-------
observation : float
A single observation from the given state.
Examples
--------
Generate an observation model.
>>> output_model = DiscreteOutputModel(np.array([[0.5,0.5],[0.1,0.9]]))
Generate sample from each state.
>>> observation = output_model.generate_observation_from_state(0)
"""
# generate random generator (note that this is inefficient - better use one of the next functions
import scipy.stats
gen = scipy.stats.rv_discrete(values=(range(len(self._output_probabilities[state_index])),
self._output_probabilities[state_index]))
gen.rvs(size=1) | Generate a single synthetic observation data from a given state.
Parameters
----------
state_index : int
Index of the state from which observations are to be generated.
Returns
-------
observation : float
A single observation from the given state.
Examples
--------
Generate an observation model.
>>> output_model = DiscreteOutputModel(np.array([[0.5,0.5],[0.1,0.9]]))
Generate sample from each state.
>>> observation = output_model.generate_observation_from_state(0) | entailment |
def generate_observations_from_state(self, state_index, nobs):
"""
Generate synthetic observation data from a given state.
Parameters
----------
state_index : int
Index of the state from which observations are to be generated.
nobs : int
The number of observations to generate.
Returns
-------
observations : numpy.array of shape(nobs,) with type dtype
A sample of `nobs` observations from the specified state.
Examples
--------
Generate an observation model.
>>> output_model = DiscreteOutputModel(np.array([[0.5,0.5],[0.1,0.9]]))
Generate sample from each state.
>>> observations = [output_model.generate_observations_from_state(state_index, nobs=100) for state_index in range(output_model.nstates)]
"""
import scipy.stats
gen = scipy.stats.rv_discrete(values=(range(self._nsymbols), self._output_probabilities[state_index]))
gen.rvs(size=nobs) | Generate synthetic observation data from a given state.
Parameters
----------
state_index : int
Index of the state from which observations are to be generated.
nobs : int
The number of observations to generate.
Returns
-------
observations : numpy.array of shape(nobs,) with type dtype
A sample of `nobs` observations from the specified state.
Examples
--------
Generate an observation model.
>>> output_model = DiscreteOutputModel(np.array([[0.5,0.5],[0.1,0.9]]))
Generate sample from each state.
>>> observations = [output_model.generate_observations_from_state(state_index, nobs=100) for state_index in range(output_model.nstates)] | entailment |
def generate_observation_trajectory(self, s_t, dtype=None):
"""
Generate synthetic observation data from a given state sequence.
Parameters
----------
s_t : numpy.array with shape (T,) of int type
s_t[t] is the hidden state sampled at time t
Returns
-------
o_t : numpy.array with shape (T,) of type dtype
o_t[t] is the observation associated with state s_t[t]
dtype : numpy.dtype, optional, default=None
The datatype to return the resulting observations in. If None, will select int32.
Examples
--------
Generate an observation model and synthetic state trajectory.
>>> nobs = 1000
>>> output_model = DiscreteOutputModel(np.array([[0.5,0.5],[0.1,0.9]]))
>>> s_t = np.random.randint(0, output_model.nstates, size=[nobs])
Generate a synthetic trajectory
>>> o_t = output_model.generate_observation_trajectory(s_t)
"""
if dtype is None:
dtype = np.int32
# Determine number of samples to generate.
T = s_t.shape[0]
nsymbols = self._output_probabilities.shape[1]
if (s_t.max() >= self.nstates) or (s_t.min() < 0):
msg = ''
msg += 's_t = %s\n' % s_t
msg += 's_t.min() = %d, s_t.max() = %d\n' % (s_t.min(), s_t.max())
msg += 's_t.argmax = %d\n' % s_t.argmax()
msg += 'self.nstates = %d\n' % self.nstates
msg += 's_t is out of bounds.\n'
raise Exception(msg)
# generate random generators
# import scipy.stats
# gens = [scipy.stats.rv_discrete(values=(range(len(self.B[state_index])), self.B[state_index]))
# for state_index in range(self.B.shape[0])]
# o_t = np.zeros([T], dtype=dtype)
# for t in range(T):
# s = s_t[t]
# o_t[t] = gens[s].rvs(size=1)
# return o_t
o_t = np.zeros([T], dtype=dtype)
for t in range(T):
s = s_t[t]
o_t[t] = np.random.choice(nsymbols, p=self._output_probabilities[s, :])
return o_t | Generate synthetic observation data from a given state sequence.
Parameters
----------
s_t : numpy.array with shape (T,) of int type
s_t[t] is the hidden state sampled at time t
Returns
-------
o_t : numpy.array with shape (T,) of type dtype
o_t[t] is the observation associated with state s_t[t]
dtype : numpy.dtype, optional, default=None
The datatype to return the resulting observations in. If None, will select int32.
Examples
--------
Generate an observation model and synthetic state trajectory.
>>> nobs = 1000
>>> output_model = DiscreteOutputModel(np.array([[0.5,0.5],[0.1,0.9]]))
>>> s_t = np.random.randint(0, output_model.nstates, size=[nobs])
Generate a synthetic trajectory
>>> o_t = output_model.generate_observation_trajectory(s_t) | entailment |
def set_implementation(impl):
"""
Sets the implementation of this module
Parameters
----------
impl : str
One of ["python", "c"]
"""
global __impl__
if impl.lower() == 'python':
__impl__ = __IMPL_PYTHON__
elif impl.lower() == 'c':
__impl__ = __IMPL_C__
else:
import warnings
warnings.warn('Implementation '+impl+' is not known. Using the fallback python implementation.')
__impl__ = __IMPL_PYTHON__ | Sets the implementation of this module
Parameters
----------
impl : str
One of ["python", "c"] | entailment |
def forward(A, pobs, pi, T=None, alpha_out=None):
"""Compute P( obs | A, B, pi ) and all forward coefficients.
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
pi : ndarray((N), dtype = float)
initial distribution of hidden states
T : int, optional, default = None
trajectory length. If not given, T = pobs.shape[0] will be used.
alpha_out : ndarray((T,N), dtype = float), optional, default = None
containter for the alpha result variables. If None, a new container will be created.
Returns
-------
logprob : float
The probability to observe the sequence `ob` with the model given
by `A`, `B` and `pi`.
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t. These can be
used in many different algorithms related to HMMs.
"""
if __impl__ == __IMPL_PYTHON__:
return ip.forward(A, pobs, pi, T=T, alpha_out=alpha_out, dtype=config.dtype)
elif __impl__ == __IMPL_C__:
return ic.forward(A, pobs, pi, T=T, alpha_out=alpha_out, dtype=config.dtype)
else:
raise RuntimeError('Nonexisting implementation selected: '+str(__impl__)) | Compute P( obs | A, B, pi ) and all forward coefficients.
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
pi : ndarray((N), dtype = float)
initial distribution of hidden states
T : int, optional, default = None
trajectory length. If not given, T = pobs.shape[0] will be used.
alpha_out : ndarray((T,N), dtype = float), optional, default = None
containter for the alpha result variables. If None, a new container will be created.
Returns
-------
logprob : float
The probability to observe the sequence `ob` with the model given
by `A`, `B` and `pi`.
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t. These can be
used in many different algorithms related to HMMs. | entailment |
def backward(A, pobs, T=None, beta_out=None):
"""Compute all backward coefficients. With scaling!
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
T : int, optional, default = None
trajectory length. If not given, T = pobs.shape[0] will be used.
beta_out : ndarray((T,N), dtype = float), optional, default = None
containter for the beta result variables. If None, a new container will be created.
Returns
-------
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith backward coefficient of time t. These can be
used in many different algorithms related to HMMs.
"""
if __impl__ == __IMPL_PYTHON__:
return ip.backward(A, pobs, T=T, beta_out=beta_out, dtype=config.dtype)
elif __impl__ == __IMPL_C__:
return ic.backward(A, pobs, T=T, beta_out=beta_out, dtype=config.dtype)
else:
raise RuntimeError('Nonexisting implementation selected: '+str(__impl__)) | Compute all backward coefficients. With scaling!
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
T : int, optional, default = None
trajectory length. If not given, T = pobs.shape[0] will be used.
beta_out : ndarray((T,N), dtype = float), optional, default = None
containter for the beta result variables. If None, a new container will be created.
Returns
-------
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith backward coefficient of time t. These can be
used in many different algorithms related to HMMs. | entailment |
def state_probabilities(alpha, beta, T=None, gamma_out=None):
""" Calculate the (T,N)-probabilty matrix for being in state i at time t.
Parameters
----------
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith forward coefficient of time t.
T : int, optional, default = None
trajectory length. If not given, gamma_out.shape[0] will be used. If
gamma_out is neither given, T = alpha.shape[0] will be used.
gamma_out : ndarray((T,N), dtype = float), optional, default = None
containter for the gamma result variables. If None, a new container will be created.
Returns
-------
gamma : ndarray((T,N), dtype = float), optional, default = None
gamma[t,i] is the probabilty at time t to be in state i !
See Also
--------
forward : to calculate `alpha`
backward : to calculate `beta`
"""
# get summation helper - we use matrix multiplication with 1's because it's faster than the np.sum function (yes!)
global ones_size
if ones_size != alpha.shape[1]:
global ones
ones = np.ones(alpha.shape[1])[:, None]
ones_size = alpha.shape[1]
#
if alpha.shape[0] != beta.shape[0]:
raise ValueError('Inconsistent sizes of alpha and beta.')
# determine T to use
if T is None:
if gamma_out is None:
T = alpha.shape[0]
else:
T = gamma_out.shape[0]
# compute
if gamma_out is None:
gamma_out = alpha * beta
if T < gamma_out.shape[0]:
gamma_out = gamma_out[:T]
else:
if gamma_out.shape[0] < alpha.shape[0]:
np.multiply(alpha[:T], beta[:T], gamma_out)
else:
np.multiply(alpha, beta, gamma_out)
# normalize
np.divide(gamma_out, np.dot(gamma_out, ones), out=gamma_out)
# done
return gamma_out | Calculate the (T,N)-probabilty matrix for being in state i at time t.
Parameters
----------
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith forward coefficient of time t.
T : int, optional, default = None
trajectory length. If not given, gamma_out.shape[0] will be used. If
gamma_out is neither given, T = alpha.shape[0] will be used.
gamma_out : ndarray((T,N), dtype = float), optional, default = None
containter for the gamma result variables. If None, a new container will be created.
Returns
-------
gamma : ndarray((T,N), dtype = float), optional, default = None
gamma[t,i] is the probabilty at time t to be in state i !
See Also
--------
forward : to calculate `alpha`
backward : to calculate `beta` | entailment |
def state_counts(gamma, T, out=None):
""" Sum the probabilities of being in state i to time t
Parameters
----------
gamma : ndarray((T,N), dtype = float), optional, default = None
gamma[t,i] is the probabilty at time t to be in state i !
T : int
number of time steps
Returns
-------
count : numpy.array shape (N)
count[i] is the summed probabilty to be in state i !
See Also
--------
state_probabilities : to calculate `gamma`
"""
return np.sum(gamma[0:T], axis=0, out=out) | Sum the probabilities of being in state i to time t
Parameters
----------
gamma : ndarray((T,N), dtype = float), optional, default = None
gamma[t,i] is the probabilty at time t to be in state i !
T : int
number of time steps
Returns
-------
count : numpy.array shape (N)
count[i] is the summed probabilty to be in state i !
See Also
--------
state_probabilities : to calculate `gamma` | entailment |
def transition_counts(alpha, beta, A, pobs, T=None, out=None):
""" Sum for all t the probability to transition from state i to state j.
Parameters
----------
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith forward coefficient of time t.
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
T : int
number of time steps
out : ndarray((N,N), dtype = float), optional, default = None
containter for the resulting count matrix. If None, a new matrix will be created.
Returns
-------
counts : numpy.array shape (N, N)
counts[i, j] is the summed probability to transition from i to j in time [0,T)
See Also
--------
forward : calculate forward coefficients `alpha`
backward : calculate backward coefficients `beta`
"""
if __impl__ == __IMPL_PYTHON__:
return ip.transition_counts(alpha, beta, A, pobs, T=T, out=out, dtype=config.dtype)
elif __impl__ == __IMPL_C__:
return ic.transition_counts(alpha, beta, A, pobs, T=T, out=out, dtype=config.dtype)
else:
raise RuntimeError('Nonexisting implementation selected: '+str(__impl__)) | Sum for all t the probability to transition from state i to state j.
Parameters
----------
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
beta : ndarray((T,N), dtype = float), optional, default = None
beta[t,i] is the ith forward coefficient of time t.
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
T : int
number of time steps
out : ndarray((N,N), dtype = float), optional, default = None
containter for the resulting count matrix. If None, a new matrix will be created.
Returns
-------
counts : numpy.array shape (N, N)
counts[i, j] is the summed probability to transition from i to j in time [0,T)
See Also
--------
forward : calculate forward coefficients `alpha`
backward : calculate backward coefficients `beta` | entailment |
def viterbi(A, pobs, pi):
""" Estimate the hidden pathway of maximum likelihood using the Viterbi algorithm.
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
pi : ndarray((N), dtype = float)
initial distribution of hidden states
Returns
-------
q : numpy.array shape (T)
maximum likelihood hidden path
"""
if __impl__ == __IMPL_PYTHON__:
return ip.viterbi(A, pobs, pi, dtype=config.dtype)
elif __impl__ == __IMPL_C__:
return ic.viterbi(A, pobs, pi, dtype=config.dtype)
else:
raise RuntimeError('Nonexisting implementation selected: '+str(__impl__)) | Estimate the hidden pathway of maximum likelihood using the Viterbi algorithm.
Parameters
----------
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
pi : ndarray((N), dtype = float)
initial distribution of hidden states
Returns
-------
q : numpy.array shape (T)
maximum likelihood hidden path | entailment |
def sample_path(alpha, A, pobs, T=None):
""" Sample the hidden pathway S from the conditional distribution P ( S | Parameters, Observations )
Parameters
----------
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
T : int
number of time steps
Returns
-------
S : numpy.array shape (T)
maximum likelihood hidden path
"""
if __impl__ == __IMPL_PYTHON__:
return ip.sample_path(alpha, A, pobs, T=T, dtype=config.dtype)
elif __impl__ == __IMPL_C__:
return ic.sample_path(alpha, A, pobs, T=T, dtype=config.dtype)
else:
raise RuntimeError('Nonexisting implementation selected: '+str(__impl__)) | Sample the hidden pathway S from the conditional distribution P ( S | Parameters, Observations )
Parameters
----------
alpha : ndarray((T,N), dtype = float), optional, default = None
alpha[t,i] is the ith forward coefficient of time t.
A : ndarray((N,N), dtype = float)
transition matrix of the hidden states
pobs : ndarray((T,N), dtype = float)
pobs[t,i] is the observation probability for observation at time t given hidden state i
T : int
number of time steps
Returns
-------
S : numpy.array shape (T)
maximum likelihood hidden path | entailment |
def logger(name='BHMM', pattern='%(asctime)s %(levelname)s %(name)s: %(message)s',
date_format='%H:%M:%S', handler=logging.StreamHandler(sys.stdout)):
"""
Retrieves the logger instance associated to the given name.
:param name: The name of the logger instance.
:type name: str
:param pattern: The associated pattern.
:type pattern: str
:param date_format: The date format to be used in the pattern.
:type date_format: str
:param handler: The logging handler, by default console output.
:type handler: FileHandler or StreamHandler or NullHandler
:return: The logger.
:rtype: Logger
"""
_logger = logging.getLogger(name)
_logger.setLevel(config.log_level())
if not _logger.handlers:
formatter = logging.Formatter(pattern, date_format)
handler.setFormatter(formatter)
handler.setLevel(config.log_level())
_logger.addHandler(handler)
_logger.propagate = False
return _logger | Retrieves the logger instance associated to the given name.
:param name: The name of the logger instance.
:type name: str
:param pattern: The associated pattern.
:type pattern: str
:param date_format: The date format to be used in the pattern.
:type date_format: str
:param handler: The logging handler, by default console output.
:type handler: FileHandler or StreamHandler or NullHandler
:return: The logger.
:rtype: Logger | entailment |
def sample(self, nsamples, nburn=0, nthin=1, save_hidden_state_trajectory=False,
call_back=None):
"""Sample from the BHMM posterior.
Parameters
----------
nsamples : int
The number of samples to generate.
nburn : int, optional, default=0
The number of samples to discard to burn-in, following which `nsamples` will be generated.
nthin : int, optional, default=1
The number of Gibbs sampling updates used to generate each returned sample.
save_hidden_state_trajectory : bool, optional, default=False
If True, the hidden state trajectory for each sample will be saved as well.
call_back : function, optional, default=None
a call back function with no arguments, which if given is being called
after each computed sample. This is useful for implementing progress bars.
Returns
-------
models : list of bhmm.HMM
The sampled HMM models from the Bayesian posterior.
Examples
--------
>>> from bhmm import testsystems
>>> [model, observations, states, sampled_model] = testsystems.generate_random_bhmm(ntrajectories=5, length=1000)
>>> nburn = 5 # run the sampler a bit before recording samples
>>> nsamples = 10 # generate 10 samples
>>> nthin = 2 # discard one sample in between each recorded sample
>>> samples = sampled_model.sample(nsamples, nburn=nburn, nthin=nthin)
"""
# Run burn-in.
for iteration in range(nburn):
logger().info("Burn-in %8d / %8d" % (iteration, nburn))
self._update()
# Collect data.
models = list()
for iteration in range(nsamples):
logger().info("Iteration %8d / %8d" % (iteration, nsamples))
# Run a number of Gibbs sampling updates to generate each sample.
for thin in range(nthin):
self._update()
# Save a copy of the current model.
model_copy = copy.deepcopy(self.model)
# print "Sampled: \n",repr(model_copy)
if not save_hidden_state_trajectory:
model_copy.hidden_state_trajectory = None
models.append(model_copy)
if call_back is not None:
call_back()
# Return the list of models saved.
return models | Sample from the BHMM posterior.
Parameters
----------
nsamples : int
The number of samples to generate.
nburn : int, optional, default=0
The number of samples to discard to burn-in, following which `nsamples` will be generated.
nthin : int, optional, default=1
The number of Gibbs sampling updates used to generate each returned sample.
save_hidden_state_trajectory : bool, optional, default=False
If True, the hidden state trajectory for each sample will be saved as well.
call_back : function, optional, default=None
a call back function with no arguments, which if given is being called
after each computed sample. This is useful for implementing progress bars.
Returns
-------
models : list of bhmm.HMM
The sampled HMM models from the Bayesian posterior.
Examples
--------
>>> from bhmm import testsystems
>>> [model, observations, states, sampled_model] = testsystems.generate_random_bhmm(ntrajectories=5, length=1000)
>>> nburn = 5 # run the sampler a bit before recording samples
>>> nsamples = 10 # generate 10 samples
>>> nthin = 2 # discard one sample in between each recorded sample
>>> samples = sampled_model.sample(nsamples, nburn=nburn, nthin=nthin) | entailment |
def _update(self):
"""Update the current model using one round of Gibbs sampling.
"""
initial_time = time.time()
self._updateHiddenStateTrajectories()
self._updateEmissionProbabilities()
self._updateTransitionMatrix()
final_time = time.time()
elapsed_time = final_time - initial_time
logger().info("BHMM update iteration took %.3f s" % elapsed_time) | Update the current model using one round of Gibbs sampling. | entailment |
def _updateHiddenStateTrajectories(self):
"""Sample a new set of state trajectories from the conditional distribution P(S | T, E, O)
"""
self.model.hidden_state_trajectories = list()
for trajectory_index in range(self.nobs):
hidden_state_trajectory = self._sampleHiddenStateTrajectory(self.observations[trajectory_index])
self.model.hidden_state_trajectories.append(hidden_state_trajectory)
return | Sample a new set of state trajectories from the conditional distribution P(S | T, E, O) | entailment |
def _sampleHiddenStateTrajectory(self, obs, dtype=np.int32):
"""Sample a hidden state trajectory from the conditional distribution P(s | T, E, o)
Parameters
----------
o_t : numpy.array with dimensions (T,)
observation[n] is the nth observation
dtype : numpy.dtype, optional, default=numpy.int32
The dtype to to use for returned state trajectory.
Returns
-------
s_t : numpy.array with dimensions (T,) of type `dtype`
Hidden state trajectory, with s_t[t] the hidden state corresponding to observation o_t[t]
Examples
--------
>>> import bhmm
>>> [model, observations, states, sampled_model] = bhmm.testsystems.generate_random_bhmm(ntrajectories=5, length=1000)
>>> o_t = observations[0]
>>> s_t = sampled_model._sampleHiddenStateTrajectory(o_t)
"""
# Determine observation trajectory length
T = obs.shape[0]
# Convenience access.
A = self.model.transition_matrix
pi = self.model.initial_distribution
# compute output probability matrix
self.model.output_model.p_obs(obs, out=self.pobs)
# compute forward variables
logprob = hidden.forward(A, self.pobs, pi, T=T, alpha_out=self.alpha)[0]
# sample path
S = hidden.sample_path(self.alpha, A, self.pobs, T=T)
return S | Sample a hidden state trajectory from the conditional distribution P(s | T, E, o)
Parameters
----------
o_t : numpy.array with dimensions (T,)
observation[n] is the nth observation
dtype : numpy.dtype, optional, default=numpy.int32
The dtype to to use for returned state trajectory.
Returns
-------
s_t : numpy.array with dimensions (T,) of type `dtype`
Hidden state trajectory, with s_t[t] the hidden state corresponding to observation o_t[t]
Examples
--------
>>> import bhmm
>>> [model, observations, states, sampled_model] = bhmm.testsystems.generate_random_bhmm(ntrajectories=5, length=1000)
>>> o_t = observations[0]
>>> s_t = sampled_model._sampleHiddenStateTrajectory(o_t) | entailment |
def _updateEmissionProbabilities(self):
"""Sample a new set of emission probabilites from the conditional distribution P(E | S, O)
"""
observations_by_state = [self.model.collect_observations_in_state(self.observations, state)
for state in range(self.model.nstates)]
self.model.output_model.sample(observations_by_state) | Sample a new set of emission probabilites from the conditional distribution P(E | S, O) | entailment |
def _updateTransitionMatrix(self):
"""
Updates the hidden-state transition matrix and the initial distribution
"""
# TRANSITION MATRIX
C = self.model.count_matrix() + self.prior_C # posterior count matrix
# check if we work with these options
if self.reversible and not _tmatrix_disconnected.is_connected(C, strong=True):
raise NotImplementedError('Encountered disconnected count matrix with sampling option reversible:\n '
+ str(C) + '\nUse prior to ensure connectivity or use reversible=False.')
# ensure consistent sparsity pattern (P0 might have additional zeros because of underflows)
# TODO: these steps work around a bug in msmtools. Should be fixed there
P0 = msmest.transition_matrix(C, reversible=self.reversible, maxiter=10000, warn_not_converged=False)
zeros = np.where(P0 + P0.T == 0)
C[zeros] = 0
# run sampler
Tij = msmest.sample_tmatrix(C, nsample=1, nsteps=self.transition_matrix_sampling_steps,
reversible=self.reversible)
# INITIAL DISTRIBUTION
if self.stationary: # p0 is consistent with P
p0 = _tmatrix_disconnected.stationary_distribution(Tij, C=C)
else:
n0 = self.model.count_init().astype(float)
first_timestep_counts_with_prior = n0 + self.prior_n0
positive = first_timestep_counts_with_prior > 0
p0 = np.zeros_like(n0)
p0[positive] = np.random.dirichlet(first_timestep_counts_with_prior[positive]) # sample p0 from posterior
# update HMM with new sample
self.model.update(p0, Tij) | Updates the hidden-state transition matrix and the initial distribution | entailment |
def _generateInitialModel(self, output_model_type):
"""Initialize using an MLHMM.
"""
logger().info("Generating initial model for BHMM using MLHMM...")
from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator
mlhmm = MaximumLikelihoodEstimator(self.observations, self.nstates, reversible=self.reversible,
output=output_model_type)
model = mlhmm.fit()
return model | Initialize using an MLHMM. | entailment |
def ensure_dtraj(dtraj):
r"""Makes sure that dtraj is a discrete trajectory (array of int)
"""
if is_int_vector(dtraj):
return dtraj
elif is_list_of_int(dtraj):
return np.array(dtraj, dtype=int)
else:
raise TypeError('Argument dtraj is not a discrete trajectory - only list of integers or int-ndarrays are allowed. Check type.') | r"""Makes sure that dtraj is a discrete trajectory (array of int) | entailment |
def ensure_dtraj_list(dtrajs):
r"""Makes sure that dtrajs is a list of discrete trajectories (array of int)
"""
if isinstance(dtrajs, list):
# elements are ints? then wrap into a list
if is_list_of_int(dtrajs):
return [np.array(dtrajs, dtype=int)]
else:
for i in range(len(dtrajs)):
dtrajs[i] = ensure_dtraj(dtrajs[i])
return dtrajs
else:
return [ensure_dtraj(dtrajs)] | r"""Makes sure that dtrajs is a list of discrete trajectories (array of int) | entailment |
def connected_sets(C, mincount_connectivity=0, strong=True):
""" Computes the connected sets of C.
C : count matrix
mincount_connectivity : float
Minimum count which counts as a connection.
strong : boolean
True: Seek strongly connected sets. False: Seek weakly connected sets.
"""
import msmtools.estimation as msmest
Cconn = C.copy()
Cconn[np.where(C <= mincount_connectivity)] = 0
# treat each connected set separately
S = msmest.connected_sets(Cconn, directed=strong)
return S | Computes the connected sets of C.
C : count matrix
mincount_connectivity : float
Minimum count which counts as a connection.
strong : boolean
True: Seek strongly connected sets. False: Seek weakly connected sets. | entailment |
def closed_sets(C, mincount_connectivity=0):
""" Computes the strongly connected closed sets of C """
n = np.shape(C)[0]
S = connected_sets(C, mincount_connectivity=mincount_connectivity, strong=True)
closed = []
for s in S:
mask = np.zeros(n, dtype=bool)
mask[s] = True
if C[np.ix_(mask, ~mask)].sum() == 0: # closed set, take it
closed.append(s)
return closed | Computes the strongly connected closed sets of C | entailment |
def nonempty_set(C, mincount_connectivity=0):
""" Returns the set of states that have at least one incoming or outgoing count """
# truncate to states with at least one observed incoming or outgoing count.
if mincount_connectivity > 0:
C = C.copy()
C[np.where(C < mincount_connectivity)] = 0
return np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0] | Returns the set of states that have at least one incoming or outgoing count | entailment |
def estimate_P(C, reversible=True, fixed_statdist=None, maxiter=1000000, maxerr=1e-8, mincount_connectivity=0):
""" Estimates full transition matrix for general connectivity structure
Parameters
----------
C : ndarray
count matrix
reversible : bool
estimate reversible?
fixed_statdist : ndarray or None
estimate with given stationary distribution
maxiter : int
Maximum number of reversible iterations.
maxerr : float
Stopping criterion for reversible iteration: Will stop when infinity
norm of difference vector of two subsequent equilibrium distributions
is below maxerr.
mincount_connectivity : float
Minimum count which counts as a connection.
"""
import msmtools.estimation as msmest
n = np.shape(C)[0]
# output matrix. Set initially to Identity matrix in order to handle empty states
P = np.eye(n, dtype=np.float64)
# decide if we need to proceed by weakly or strongly connected sets
if reversible and fixed_statdist is None: # reversible to unknown eq. dist. - use strongly connected sets.
S = connected_sets(C, mincount_connectivity=mincount_connectivity, strong=True)
for s in S:
mask = np.zeros(n, dtype=bool)
mask[s] = True
if C[np.ix_(mask, ~mask)].sum() > np.finfo(C.dtype).eps: # outgoing transitions - use partial rev algo.
transition_matrix_partial_rev(C, P, mask, maxiter=maxiter, maxerr=maxerr)
else: # closed set - use standard estimator
I = np.ix_(mask, mask)
if s.size > 1: # leave diagonal 1 if single closed state.
P[I] = msmest.transition_matrix(C[I], reversible=True, warn_not_converged=False,
maxiter=maxiter, maxerr=maxerr)
else: # nonreversible or given equilibrium distribution - weakly connected sets
S = connected_sets(C, mincount_connectivity=mincount_connectivity, strong=False)
for s in S:
I = np.ix_(s, s)
if not reversible:
Csub = C[I]
# any zero rows? must set Cii = 1 to avoid dividing by zero
zero_rows = np.where(Csub.sum(axis=1) == 0)[0]
Csub[zero_rows, zero_rows] = 1.0
P[I] = msmest.transition_matrix(Csub, reversible=False)
elif reversible and fixed_statdist is not None:
P[I] = msmest.transition_matrix(C[I], reversible=True, fixed_statdist=fixed_statdist,
maxiter=maxiter, maxerr=maxerr)
else: # unknown case
raise NotImplementedError('Transition estimation for the case reversible=' + str(reversible) +
' fixed_statdist=' + str(fixed_statdist is not None) + ' not implemented.')
# done
return P | Estimates full transition matrix for general connectivity structure
Parameters
----------
C : ndarray
count matrix
reversible : bool
estimate reversible?
fixed_statdist : ndarray or None
estimate with given stationary distribution
maxiter : int
Maximum number of reversible iterations.
maxerr : float
Stopping criterion for reversible iteration: Will stop when infinity
norm of difference vector of two subsequent equilibrium distributions
is below maxerr.
mincount_connectivity : float
Minimum count which counts as a connection. | entailment |
def transition_matrix_partial_rev(C, P, S, maxiter=1000000, maxerr=1e-8):
"""Maximum likelihood estimation of transition matrix which is reversible on parts
Partially-reversible estimation of transition matrix. Maximizes the likelihood:
.. math:
P_S &=& arg max prod_{S, :} (p_ij)^c_ij \\
\Pi_S P_{S,S} &=& \Pi_S P_{S,S}
where the product runs over all elements of the rows S, and detailed balance only
acts on the block with rows and columns S. :math:`\Pi_S` is the diagonal matrix of
equilibrium probabilities restricted to set S.
Note that this formulation
Parameters
----------
C : ndarray
full count matrix
P : ndarray
full transition matrix to write to. Will overwrite P[S]
S : ndarray, bool
boolean selection of reversible set with outgoing transitions
maxerr : float
maximum difference in matrix sums between iterations (infinity norm) in order to stop.
"""
# test input
assert np.array_equal(C.shape, P.shape)
# constants
A = C[S][:, S]
B = C[S][:, ~S]
ATA = A + A.T
countsums = C[S].sum(axis=1)
# initialize
X = 0.5 * ATA
Y = C[S][:, ~S]
# normalize X, Y
totalsum = X.sum() + Y.sum()
X /= totalsum
Y /= totalsum
# rowsums
rowsums = X.sum(axis=1) + Y.sum(axis=1)
err = 1.0
it = 0
while err > maxerr and it < maxiter:
# update
d = countsums / rowsums
X = ATA / (d[:, None] + d)
Y = B / d[:, None]
# normalize X, Y
totalsum = X.sum() + Y.sum()
X /= totalsum
Y /= totalsum
# update sums
rowsums_new = X.sum(axis=1) + Y.sum(axis=1)
# compute error
err = np.max(np.abs(rowsums_new - rowsums))
# update
rowsums = rowsums_new
it += 1
# write to P
P[np.ix_(S, S)] = X
P[np.ix_(S, ~S)] = Y
P[S] /= P[S].sum(axis=1)[:, None] | Maximum likelihood estimation of transition matrix which is reversible on parts
Partially-reversible estimation of transition matrix. Maximizes the likelihood:
.. math:
P_S &=& arg max prod_{S, :} (p_ij)^c_ij \\
\Pi_S P_{S,S} &=& \Pi_S P_{S,S}
where the product runs over all elements of the rows S, and detailed balance only
acts on the block with rows and columns S. :math:`\Pi_S` is the diagonal matrix of
equilibrium probabilities restricted to set S.
Note that this formulation
Parameters
----------
C : ndarray
full count matrix
P : ndarray
full transition matrix to write to. Will overwrite P[S]
S : ndarray, bool
boolean selection of reversible set with outgoing transitions
maxerr : float
maximum difference in matrix sums between iterations (infinity norm) in order to stop. | entailment |
def enforce_reversible_on_closed(P):
""" Enforces transition matrix P to be reversible on its closed sets. """
import msmtools.analysis as msmana
n = np.shape(P)[0]
Prev = P.copy()
# treat each weakly connected set separately
sets = closed_sets(P)
for s in sets:
I = np.ix_(s, s)
# compute stationary probability
pi_s = msmana.stationary_distribution(P[I])
# symmetrize
X_s = pi_s[:, None] * P[I]
X_s = 0.5 * (X_s + X_s.T)
# normalize
Prev[I] = X_s / X_s.sum(axis=1)[:, None]
return Prev | Enforces transition matrix P to be reversible on its closed sets. | entailment |
def is_reversible(P):
""" Returns if P is reversible on its weakly connected sets """
import msmtools.analysis as msmana
# treat each weakly connected set separately
sets = connected_sets(P, strong=False)
for s in sets:
Ps = P[s, :][:, s]
if not msmana.is_transition_matrix(Ps):
return False # isn't even a transition matrix!
pi = msmana.stationary_distribution(Ps)
X = pi[:, None] * Ps
if not np.allclose(X, X.T):
return False
# survived.
return True | Returns if P is reversible on its weakly connected sets | entailment |
def stationary_distribution(P, C=None, mincount_connectivity=0):
""" Simple estimator for stationary distribution for multiple strongly connected sets """
# can be replaced by msmtools.analysis.stationary_distribution in next msmtools release
from msmtools.analysis.dense.stationary_vector import stationary_distribution as msmstatdist
if C is None:
if is_connected(P, strong=True):
return msmstatdist(P)
else:
raise ValueError('Computing stationary distribution for disconnected matrix. Need count matrix.')
# disconnected sets
n = np.shape(C)[0]
ctot = np.sum(C)
pi = np.zeros(n)
# treat each weakly connected set separately
sets = connected_sets(C, mincount_connectivity=mincount_connectivity, strong=False)
for s in sets:
# compute weight
w = np.sum(C[s, :]) / ctot
pi[s] = w * msmstatdist(P[s, :][:, s])
# reinforce normalization
pi /= np.sum(pi)
return pi | Simple estimator for stationary distribution for multiple strongly connected sets | entailment |
def means_samples(self):
r""" Samples of the Gaussian distribution means """
res = np.empty((self.nsamples, self.nstates, self.dimension), dtype=config.dtype)
for i in range(self.nsamples):
for j in range(self.nstates):
res[i, j, :] = self._sampled_hmms[i].means[j]
return res | r""" Samples of the Gaussian distribution means | entailment |
def sigmas_samples(self):
r""" Samples of the Gaussian distribution standard deviations """
res = np.empty((self.nsamples, self.nstates, self.dimension), dtype=config.dtype)
for i in range(self.nsamples):
for j in range(self.nstates):
res[i, j, :] = self._sampled_hmms[i].sigmas[j]
return res | r""" Samples of the Gaussian distribution standard deviations | entailment |
def _guess_output_type(observations):
""" Suggests a HMM model type based on the observation data
Uses simple rules in order to decide which HMM model type makes sense based on observation data.
If observations consist of arrays/lists of integer numbers (irrespective of whether the python type is
int or float), our guess is 'discrete'.
If observations consist of arrays/lists of 1D-floats, our guess is 'discrete'.
In any other case, a TypeError is raised because we are not supporting that data type yet.
Parameters
----------
observations : list of lists or arrays
observation trajectories
Returns
-------
output_type : str
One of {'discrete', 'gaussian'}
"""
from bhmm.util import types as _types
o1 = _np.array(observations[0])
# CASE: vector of int? Then we want a discrete HMM
if _types.is_int_vector(o1):
return 'discrete'
# CASE: not int type, but everything is an integral number. Then we also go for discrete
if _np.allclose(o1, _np.round(o1)):
isintegral = True
for i in range(1, len(observations)):
if not _np.allclose(observations[i], _np.round(observations[i])):
isintegral = False
break
if isintegral:
return 'discrete'
# CASE: vector of double? Then we want a gaussian
if _types.is_float_vector(o1):
return 'gaussian'
# None of the above? Then we currently do not support this format!
raise TypeError('Observations is neither sequences of integers nor 1D-sequences of floats. The current version'
'does not support your input.') | Suggests a HMM model type based on the observation data
Uses simple rules in order to decide which HMM model type makes sense based on observation data.
If observations consist of arrays/lists of integer numbers (irrespective of whether the python type is
int or float), our guess is 'discrete'.
If observations consist of arrays/lists of 1D-floats, our guess is 'discrete'.
In any other case, a TypeError is raised because we are not supporting that data type yet.
Parameters
----------
observations : list of lists or arrays
observation trajectories
Returns
-------
output_type : str
One of {'discrete', 'gaussian'} | entailment |
def lag_observations(observations, lag, stride=1):
r""" Create new trajectories that are subsampled at lag but shifted
Given a trajectory (s0, s1, s2, s3, s4, ...) and lag 3, this function will generate 3 trajectories
(s0, s3, s6, ...), (s1, s4, s7, ...) and (s2, s5, s8, ...). Use this function in order to parametrize a MLE
at lag times larger than 1 without discarding data. Do not use this function for Bayesian estimators, where
data must be given such that subsequent transitions are uncorrelated.
Parameters
----------
observations : list of int arrays
observation trajectories
lag : int
lag time
stride : int, default=1
will return only one trajectory for every stride. Use this for Bayesian analysis.
"""
obsnew = []
for obs in observations:
for shift in range(0, lag, stride):
obs_lagged = (obs[shift:][::lag])
if len(obs_lagged) > 1:
obsnew.append(obs_lagged)
return obsnew | r""" Create new trajectories that are subsampled at lag but shifted
Given a trajectory (s0, s1, s2, s3, s4, ...) and lag 3, this function will generate 3 trajectories
(s0, s3, s6, ...), (s1, s4, s7, ...) and (s2, s5, s8, ...). Use this function in order to parametrize a MLE
at lag times larger than 1 without discarding data. Do not use this function for Bayesian estimators, where
data must be given such that subsequent transitions are uncorrelated.
Parameters
----------
observations : list of int arrays
observation trajectories
lag : int
lag time
stride : int, default=1
will return only one trajectory for every stride. Use this for Bayesian analysis. | entailment |
def gaussian_hmm(pi, P, means, sigmas):
""" Initializes a 1D-Gaussian HMM
Parameters
----------
pi : ndarray(nstates, )
Initial distribution.
P : ndarray(nstates,nstates)
Hidden transition matrix
means : ndarray(nstates, )
Means of Gaussian output distributions
sigmas : ndarray(nstates, )
Standard deviations of Gaussian output distributions
stationary : bool, optional, default=True
If True: initial distribution is equal to stationary distribution of transition matrix
reversible : bool, optional, default=True
If True: transition matrix will fulfill detailed balance constraints.
"""
from bhmm.hmm.gaussian_hmm import GaussianHMM
from bhmm.output_models.gaussian import GaussianOutputModel
# count states
nstates = _np.array(P).shape[0]
# initialize output model
output_model = GaussianOutputModel(nstates, means, sigmas)
# initialize general HMM
from bhmm.hmm.generic_hmm import HMM as _HMM
ghmm = _HMM(pi, P, output_model)
# turn it into a Gaussian HMM
ghmm = GaussianHMM(ghmm)
return ghmm | Initializes a 1D-Gaussian HMM
Parameters
----------
pi : ndarray(nstates, )
Initial distribution.
P : ndarray(nstates,nstates)
Hidden transition matrix
means : ndarray(nstates, )
Means of Gaussian output distributions
sigmas : ndarray(nstates, )
Standard deviations of Gaussian output distributions
stationary : bool, optional, default=True
If True: initial distribution is equal to stationary distribution of transition matrix
reversible : bool, optional, default=True
If True: transition matrix will fulfill detailed balance constraints. | entailment |
def discrete_hmm(pi, P, pout):
""" Initializes a discrete HMM
Parameters
----------
pi : ndarray(nstates, )
Initial distribution.
P : ndarray(nstates,nstates)
Hidden transition matrix
pout : ndarray(nstates,nsymbols)
Output matrix from hidden states to observable symbols
pi : ndarray(nstates, )
Fixed initial (if stationary=False) or fixed stationary distribution (if stationary=True).
stationary : bool, optional, default=True
If True: initial distribution is equal to stationary distribution of transition matrix
reversible : bool, optional, default=True
If True: transition matrix will fulfill detailed balance constraints.
"""
from bhmm.hmm.discrete_hmm import DiscreteHMM
from bhmm.output_models.discrete import DiscreteOutputModel
# initialize output model
output_model = DiscreteOutputModel(pout)
# initialize general HMM
from bhmm.hmm.generic_hmm import HMM as _HMM
dhmm = _HMM(pi, P, output_model)
# turn it into a Gaussian HMM
dhmm = DiscreteHMM(dhmm)
return dhmm | Initializes a discrete HMM
Parameters
----------
pi : ndarray(nstates, )
Initial distribution.
P : ndarray(nstates,nstates)
Hidden transition matrix
pout : ndarray(nstates,nsymbols)
Output matrix from hidden states to observable symbols
pi : ndarray(nstates, )
Fixed initial (if stationary=False) or fixed stationary distribution (if stationary=True).
stationary : bool, optional, default=True
If True: initial distribution is equal to stationary distribution of transition matrix
reversible : bool, optional, default=True
If True: transition matrix will fulfill detailed balance constraints. | entailment |
def init_hmm(observations, nstates, lag=1, output=None, reversible=True):
"""Use a heuristic scheme to generate an initial model.
Parameters
----------
observations : list of ndarray((T_i))
list of arrays of length T_i with observation data
nstates : int
The number of states.
output : str, optional, default=None
Output model type from [None, 'gaussian', 'discrete']. If None, will automatically select an output
model type based on the format of observations.
Examples
--------
Generate initial model for a gaussian output model.
>>> import bhmm
>>> [model, observations, states] = bhmm.testsystems.generate_synthetic_observations(output='gaussian')
>>> initial_model = init_hmm(observations, model.nstates, output='gaussian')
Generate initial model for a discrete output model.
>>> import bhmm
>>> [model, observations, states] = bhmm.testsystems.generate_synthetic_observations(output='discrete')
>>> initial_model = init_hmm(observations, model.nstates, output='discrete')
"""
# select output model type
if output is None:
output = _guess_output_type(observations)
if output == 'discrete':
return init_discrete_hmm(observations, nstates, lag=lag, reversible=reversible)
elif output == 'gaussian':
return init_gaussian_hmm(observations, nstates, lag=lag, reversible=reversible)
else:
raise NotImplementedError('output model type '+str(output)+' not yet implemented.') | Use a heuristic scheme to generate an initial model.
Parameters
----------
observations : list of ndarray((T_i))
list of arrays of length T_i with observation data
nstates : int
The number of states.
output : str, optional, default=None
Output model type from [None, 'gaussian', 'discrete']. If None, will automatically select an output
model type based on the format of observations.
Examples
--------
Generate initial model for a gaussian output model.
>>> import bhmm
>>> [model, observations, states] = bhmm.testsystems.generate_synthetic_observations(output='gaussian')
>>> initial_model = init_hmm(observations, model.nstates, output='gaussian')
Generate initial model for a discrete output model.
>>> import bhmm
>>> [model, observations, states] = bhmm.testsystems.generate_synthetic_observations(output='discrete')
>>> initial_model = init_hmm(observations, model.nstates, output='discrete') | entailment |
def init_gaussian_hmm(observations, nstates, lag=1, reversible=True):
""" Use a heuristic scheme to generate an initial model.
Parameters
----------
observations : list of ndarray((T_i))
list of arrays of length T_i with observation data
nstates : int
The number of states.
Examples
--------
Generate initial model for a gaussian output model.
>>> import bhmm
>>> [model, observations, states] = bhmm.testsystems.generate_synthetic_observations(output='gaussian')
>>> initial_model = init_gaussian_hmm(observations, model.nstates)
"""
from bhmm.init import gaussian
if lag > 1:
observations = lag_observations(observations, lag)
hmm0 = gaussian.init_model_gaussian1d(observations, nstates, reversible=reversible)
hmm0._lag = lag
return hmm0 | Use a heuristic scheme to generate an initial model.
Parameters
----------
observations : list of ndarray((T_i))
list of arrays of length T_i with observation data
nstates : int
The number of states.
Examples
--------
Generate initial model for a gaussian output model.
>>> import bhmm
>>> [model, observations, states] = bhmm.testsystems.generate_synthetic_observations(output='gaussian')
>>> initial_model = init_gaussian_hmm(observations, model.nstates) | entailment |
def init_discrete_hmm(observations, nstates, lag=1, reversible=True, stationary=True, regularize=True,
method='connect-spectral', separate=None):
"""Use a heuristic scheme to generate an initial model.
Parameters
----------
observations : list of ndarray((T_i))
list of arrays of length T_i with observation data
nstates : int
The number of states.
lag : int
Lag time at which the observations should be counted.
reversible : bool
Estimate reversible HMM transition matrix.
stationary : bool
p0 is the stationary distribution of P. Currently only reversible=True is implemented
regularize : bool
Regularize HMM probabilities to avoid 0's.
method : str
* 'lcs-spectral' : Does spectral clustering on the largest connected set
of observed states.
* 'connect-spectral' : Uses a weak regularization to connect the weakly
connected sets and then initializes HMM using spectral clustering on
the nonempty set.
* 'spectral' : Uses spectral clustering on the nonempty subsets. Separated
observed states will end up in separate hidden states. This option is
only recommended for small observation spaces. Use connect-spectral for
large observation spaces.
separate : None or iterable of int
Force the given set of observed states to stay in a separate hidden state.
The remaining nstates-1 states will be assigned by a metastable decomposition.
Examples
--------
Generate initial model for a discrete output model.
>>> import bhmm
>>> [model, observations, states] = bhmm.testsystems.generate_synthetic_observations(output='discrete')
>>> initial_model = init_discrete_hmm(observations, model.nstates)
"""
import msmtools.estimation as msmest
from bhmm.init.discrete import init_discrete_hmm_spectral
C = msmest.count_matrix(observations, lag).toarray()
# regularization
if regularize:
eps_A = None
eps_B = None
else:
eps_A = 0
eps_B = 0
if not stationary:
raise NotImplementedError('Discrete-HMM initialization with stationary=False is not yet implemented.')
if method=='lcs-spectral':
lcs = msmest.largest_connected_set(C)
p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=reversible, stationary=stationary,
active_set=lcs, separate=separate, eps_A=eps_A, eps_B=eps_B)
elif method=='connect-spectral':
# make sure we're strongly connected
C += msmest.prior_neighbor(C, 0.001)
nonempty = _np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0]
C[nonempty, nonempty] = _np.maximum(C[nonempty, nonempty], 0.001)
p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=reversible, stationary=stationary,
active_set=nonempty, separate=separate, eps_A=eps_A, eps_B=eps_B)
elif method=='spectral':
p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=reversible, stationary=stationary,
active_set=None, separate=separate, eps_A=eps_A, eps_B=eps_B)
else:
raise NotImplementedError('Unknown discrete-HMM initialization method ' + str(method))
hmm0 = discrete_hmm(p0, P, B)
hmm0._lag = lag
return hmm0 | Use a heuristic scheme to generate an initial model.
Parameters
----------
observations : list of ndarray((T_i))
list of arrays of length T_i with observation data
nstates : int
The number of states.
lag : int
Lag time at which the observations should be counted.
reversible : bool
Estimate reversible HMM transition matrix.
stationary : bool
p0 is the stationary distribution of P. Currently only reversible=True is implemented
regularize : bool
Regularize HMM probabilities to avoid 0's.
method : str
* 'lcs-spectral' : Does spectral clustering on the largest connected set
of observed states.
* 'connect-spectral' : Uses a weak regularization to connect the weakly
connected sets and then initializes HMM using spectral clustering on
the nonempty set.
* 'spectral' : Uses spectral clustering on the nonempty subsets. Separated
observed states will end up in separate hidden states. This option is
only recommended for small observation spaces. Use connect-spectral for
large observation spaces.
separate : None or iterable of int
Force the given set of observed states to stay in a separate hidden state.
The remaining nstates-1 states will be assigned by a metastable decomposition.
Examples
--------
Generate initial model for a discrete output model.
>>> import bhmm
>>> [model, observations, states] = bhmm.testsystems.generate_synthetic_observations(output='discrete')
>>> initial_model = init_discrete_hmm(observations, model.nstates) | entailment |
def estimate_hmm(observations, nstates, lag=1, initial_model=None, output=None,
reversible=True, stationary=False, p=None, accuracy=1e-3, maxit=1000, maxit_P=100000,
mincount_connectivity=1e-2):
r""" Estimate maximum-likelihood HMM
Generic maximum-likelihood estimation of HMMs
Parameters
----------
observations : list of numpy arrays representing temporal data
`observations[i]` is a 1d numpy array corresponding to the observed trajectory index `i`
nstates : int
The number of states in the model.
lag : int
the lag time at which observations should be read
initial_model : HMM, optional, default=None
If specified, the given initial model will be used to initialize the BHMM.
Otherwise, a heuristic scheme is used to generate an initial guess.
output : str, optional, default=None
Output model type from [None, 'gaussian', 'discrete']. If None, will automatically select an output
model type based on the format of observations.
reversible : bool, optional, default=True
If True, a prior that enforces reversible transition matrices (detailed balance) is used;
otherwise, a standard non-reversible prior is used.
stationary : bool, optional, default=False
If True, the initial distribution of hidden states is self-consistently computed as the stationary
distribution of the transition matrix. If False, it will be estimated from the starting states.
Only set this to true if you're sure that the observation trajectories are initiated from a global
equilibrium distribution.
p : ndarray (nstates), optional, default=None
Initial or fixed stationary distribution. If given and stationary=True, transition matrices will be
estimated with the constraint that they have p as their stationary distribution. If given and
stationary=False, p is the fixed initial distribution of hidden states.
accuracy : float
convergence threshold for EM iteration. When two the likelihood does not increase by more than accuracy, the
iteration is stopped successfully.
maxit : int
stopping criterion for EM iteration. When so many iterations are performed without reaching the requested
accuracy, the iteration is stopped without convergence (a warning is given)
Return
------
hmm : :class:`HMM <bhmm.hmm.generic_hmm.HMM>`
"""
# select output model type
if output is None:
output = _guess_output_type(observations)
if lag > 1:
observations = lag_observations(observations, lag)
# construct estimator
from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator as _MaximumLikelihoodEstimator
est = _MaximumLikelihoodEstimator(observations, nstates, initial_model=initial_model, output=output,
reversible=reversible, stationary=stationary, p=p, accuracy=accuracy,
maxit=maxit, maxit_P=maxit_P)
# run
est.fit()
# set lag time
est.hmm._lag = lag
# return model
# TODO: package into specific class (DiscreteHMM, GaussianHMM)
return est.hmm | r""" Estimate maximum-likelihood HMM
Generic maximum-likelihood estimation of HMMs
Parameters
----------
observations : list of numpy arrays representing temporal data
`observations[i]` is a 1d numpy array corresponding to the observed trajectory index `i`
nstates : int
The number of states in the model.
lag : int
the lag time at which observations should be read
initial_model : HMM, optional, default=None
If specified, the given initial model will be used to initialize the BHMM.
Otherwise, a heuristic scheme is used to generate an initial guess.
output : str, optional, default=None
Output model type from [None, 'gaussian', 'discrete']. If None, will automatically select an output
model type based on the format of observations.
reversible : bool, optional, default=True
If True, a prior that enforces reversible transition matrices (detailed balance) is used;
otherwise, a standard non-reversible prior is used.
stationary : bool, optional, default=False
If True, the initial distribution of hidden states is self-consistently computed as the stationary
distribution of the transition matrix. If False, it will be estimated from the starting states.
Only set this to true if you're sure that the observation trajectories are initiated from a global
equilibrium distribution.
p : ndarray (nstates), optional, default=None
Initial or fixed stationary distribution. If given and stationary=True, transition matrices will be
estimated with the constraint that they have p as their stationary distribution. If given and
stationary=False, p is the fixed initial distribution of hidden states.
accuracy : float
convergence threshold for EM iteration. When two the likelihood does not increase by more than accuracy, the
iteration is stopped successfully.
maxit : int
stopping criterion for EM iteration. When so many iterations are performed without reaching the requested
accuracy, the iteration is stopped without convergence (a warning is given)
Return
------
hmm : :class:`HMM <bhmm.hmm.generic_hmm.HMM>` | entailment |
def bayesian_hmm(observations, estimated_hmm, nsample=100, reversible=True, stationary=False,
p0_prior='mixed', transition_matrix_prior='mixed', store_hidden=False, call_back=None):
r""" Bayesian HMM based on sampling the posterior
Generic maximum-likelihood estimation of HMMs
Parameters
----------
observations : list of numpy arrays representing temporal data
`observations[i]` is a 1d numpy array corresponding to the observed trajectory index `i`
estimated_hmm : HMM
HMM estimated from estimate_hmm or initialize_hmm
reversible : bool, optional, default=True
If True, a prior that enforces reversible transition matrices (detailed balance) is used;
otherwise, a standard non-reversible prior is used.
stationary : bool, optional, default=False
If True, the stationary distribution of the transition matrix will be used as initial distribution.
Only use True if you are confident that the observation trajectories are started from a global
equilibrium. If False, the initial distribution will be estimated as usual from the first step
of the hidden trajectories.
nsample : int, optional, default=100
number of Gibbs sampling steps
p0_prior : None, str, float or ndarray(n)
Prior for the initial distribution of the HMM. Will only be active
if stationary=False (stationary=True means that p0 is identical to
the stationary distribution of the transition matrix).
Currently implements different versions of the Dirichlet prior that
is conjugate to the Dirichlet distribution of p0. p0 is sampled from:
.. math:
p0 \sim \prod_i (p0)_i^{a_i + n_i - 1}
where :math:`n_i` are the number of times a hidden trajectory was in
state :math:`i` at time step 0 and :math:`a_i` is the prior count.
Following options are available:
| 'mixed' (default), :math:`a_i = p_{0,init}`, where :math:`p_{0,init}`
is the initial distribution of initial_model.
| 'uniform', :math:`a_i = 1`
| ndarray(n) or float,
the given array will be used as A.
| None, :math:`a_i = 0`. This option ensures coincidence between
sample mean an MLE. Will sooner or later lead to sampling problems,
because as soon as zero trajectories are drawn from a given state,
the sampler cannot recover and that state will never serve as a starting
state subsequently. Only recommended in the large data regime and
when the probability to sample zero trajectories from any state
is negligible.
transition_matrix_prior : str or ndarray(n, n)
Prior for the HMM transition matrix.
Currently implements Dirichlet priors if reversible=False and reversible
transition matrix priors as described in [1]_ if reversible=True. For the
nonreversible case the posterior of transition matrix :math:`P` is:
.. math:
P \sim \prod_{i,j} p_{ij}^{b_{ij} + c_{ij} - 1}
where :math:`c_{ij}` are the number of transitions found for hidden
trajectories and :math:`b_{ij}` are prior counts.
| 'mixed' (default), :math:`b_{ij} = p_{ij,init}`, where :math:`p_{ij,init}`
is the transition matrix of initial_model. That means one prior
count will be used per row.
| 'uniform', :math:`b_{ij} = 1`
| ndarray(n, n) or broadcastable,
the given array will be used as B.
| None, :math:`b_ij = 0`. This option ensures coincidence between
sample mean an MLE. Will sooner or later lead to sampling problems,
because as soon as a transition :math:`ij` will not occur in a
sample, the sampler cannot recover and that transition will never
be sampled again. This option is not recommended unless you have
a small HMM and a lot of data.
store_hidden : bool, optional, default=False
store hidden trajectories in sampled HMMs
call_back : function, optional, default=None
a call back function with no arguments, which if given is being called
after each computed sample. This is useful for implementing progress bars.
Return
------
hmm : :class:`SampledHMM <bhmm.hmm.generic_sampled_hmm.SampledHMM>`
References
----------
.. [1] Trendelkamp-Schroer, B., H. Wu, F. Paul and F. Noe:
Estimation and uncertainty of reversible Markov models.
J. Chem. Phys. 143, 174101 (2015).
"""
# construct estimator
from bhmm.estimators.bayesian_sampling import BayesianHMMSampler as _BHMM
sampler = _BHMM(observations, estimated_hmm.nstates, initial_model=estimated_hmm,
reversible=reversible, stationary=stationary, transition_matrix_sampling_steps=1000,
p0_prior=p0_prior, transition_matrix_prior=transition_matrix_prior,
output=estimated_hmm.output_model.model_type)
# Sample models.
sampled_hmms = sampler.sample(nsamples=nsample, save_hidden_state_trajectory=store_hidden,
call_back=call_back)
# return model
from bhmm.hmm.generic_sampled_hmm import SampledHMM
return SampledHMM(estimated_hmm, sampled_hmms) | r""" Bayesian HMM based on sampling the posterior
Generic maximum-likelihood estimation of HMMs
Parameters
----------
observations : list of numpy arrays representing temporal data
`observations[i]` is a 1d numpy array corresponding to the observed trajectory index `i`
estimated_hmm : HMM
HMM estimated from estimate_hmm or initialize_hmm
reversible : bool, optional, default=True
If True, a prior that enforces reversible transition matrices (detailed balance) is used;
otherwise, a standard non-reversible prior is used.
stationary : bool, optional, default=False
If True, the stationary distribution of the transition matrix will be used as initial distribution.
Only use True if you are confident that the observation trajectories are started from a global
equilibrium. If False, the initial distribution will be estimated as usual from the first step
of the hidden trajectories.
nsample : int, optional, default=100
number of Gibbs sampling steps
p0_prior : None, str, float or ndarray(n)
Prior for the initial distribution of the HMM. Will only be active
if stationary=False (stationary=True means that p0 is identical to
the stationary distribution of the transition matrix).
Currently implements different versions of the Dirichlet prior that
is conjugate to the Dirichlet distribution of p0. p0 is sampled from:
.. math:
p0 \sim \prod_i (p0)_i^{a_i + n_i - 1}
where :math:`n_i` are the number of times a hidden trajectory was in
state :math:`i` at time step 0 and :math:`a_i` is the prior count.
Following options are available:
| 'mixed' (default), :math:`a_i = p_{0,init}`, where :math:`p_{0,init}`
is the initial distribution of initial_model.
| 'uniform', :math:`a_i = 1`
| ndarray(n) or float,
the given array will be used as A.
| None, :math:`a_i = 0`. This option ensures coincidence between
sample mean an MLE. Will sooner or later lead to sampling problems,
because as soon as zero trajectories are drawn from a given state,
the sampler cannot recover and that state will never serve as a starting
state subsequently. Only recommended in the large data regime and
when the probability to sample zero trajectories from any state
is negligible.
transition_matrix_prior : str or ndarray(n, n)
Prior for the HMM transition matrix.
Currently implements Dirichlet priors if reversible=False and reversible
transition matrix priors as described in [1]_ if reversible=True. For the
nonreversible case the posterior of transition matrix :math:`P` is:
.. math:
P \sim \prod_{i,j} p_{ij}^{b_{ij} + c_{ij} - 1}
where :math:`c_{ij}` are the number of transitions found for hidden
trajectories and :math:`b_{ij}` are prior counts.
| 'mixed' (default), :math:`b_{ij} = p_{ij,init}`, where :math:`p_{ij,init}`
is the transition matrix of initial_model. That means one prior
count will be used per row.
| 'uniform', :math:`b_{ij} = 1`
| ndarray(n, n) or broadcastable,
the given array will be used as B.
| None, :math:`b_ij = 0`. This option ensures coincidence between
sample mean an MLE. Will sooner or later lead to sampling problems,
because as soon as a transition :math:`ij` will not occur in a
sample, the sampler cannot recover and that transition will never
be sampled again. This option is not recommended unless you have
a small HMM and a lot of data.
store_hidden : bool, optional, default=False
store hidden trajectories in sampled HMMs
call_back : function, optional, default=None
a call back function with no arguments, which if given is being called
after each computed sample. This is useful for implementing progress bars.
Return
------
hmm : :class:`SampledHMM <bhmm.hmm.generic_sampled_hmm.SampledHMM>`
References
----------
.. [1] Trendelkamp-Schroer, B., H. Wu, F. Paul and F. Noe:
Estimation and uncertainty of reversible Markov models.
J. Chem. Phys. 143, 174101 (2015). | entailment |
def logsumexp(arr, axis=0):
"""Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils.extmath import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107
"""
arr = np.rollaxis(arr, axis)
# Use the max to normalize, as with the log this is what accumulates
# the less errors
vmax = arr.max(axis=0)
out = np.log(np.sum(np.exp(arr - vmax), axis=0))
out += vmax
return out | Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils.extmath import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107 | entailment |
def _ensure_sparse_format(spmatrix, accept_sparse, dtype, order, copy,
force_all_finite):
"""Convert a sparse matrix to a given format.
Checks the sparse format of spmatrix and converts if necessary.
Parameters
----------
spmatrix : scipy sparse matrix
Input to validate and convert.
accept_sparse : string, list of string or None (default=None)
String[s] representing allowed sparse matrix formats ('csc',
'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). None means that sparse
matrix input will raise an error. If the input is sparse but not in
the allowed format, it will be converted to the first listed format.
dtype : string, type or None (default=none)
Data type of result. If None, the dtype of the input is preserved.
order : 'F', 'C' or None (default=None)
Whether an array will be forced to be fortran or c-style.
copy : boolean (default=False)
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean (default=True)
Whether to raise an error on np.inf and np.nan in X.
Returns
-------
spmatrix_converted : scipy sparse matrix.
Matrix that is ensured to have an allowed type.
"""
if accept_sparse is None:
raise TypeError('A sparse matrix was passed, but dense '
'data is required. Use X.toarray() to '
'convert to a dense numpy array.')
sparse_type = spmatrix.format
if dtype is None:
dtype = spmatrix.dtype
if sparse_type in accept_sparse:
# correct type
if dtype == spmatrix.dtype:
# correct dtype
if copy:
spmatrix = spmatrix.copy()
else:
# convert dtype
spmatrix = spmatrix.astype(dtype)
else:
# create new
spmatrix = spmatrix.asformat(accept_sparse[0]).astype(dtype)
if force_all_finite:
if not hasattr(spmatrix, "data"):
warnings.warn("Can't check %s sparse matrix for nan or inf."
% spmatrix.format)
else:
_assert_all_finite(spmatrix.data)
if hasattr(spmatrix, "data"):
spmatrix.data = np.array(spmatrix.data, copy=False, order=order)
return spmatrix | Convert a sparse matrix to a given format.
Checks the sparse format of spmatrix and converts if necessary.
Parameters
----------
spmatrix : scipy sparse matrix
Input to validate and convert.
accept_sparse : string, list of string or None (default=None)
String[s] representing allowed sparse matrix formats ('csc',
'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). None means that sparse
matrix input will raise an error. If the input is sparse but not in
the allowed format, it will be converted to the first listed format.
dtype : string, type or None (default=none)
Data type of result. If None, the dtype of the input is preserved.
order : 'F', 'C' or None (default=None)
Whether an array will be forced to be fortran or c-style.
copy : boolean (default=False)
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean (default=True)
Whether to raise an error on np.inf and np.nan in X.
Returns
-------
spmatrix_converted : scipy sparse matrix.
Matrix that is ensured to have an allowed type. | entailment |
def check_array(array, accept_sparse=None, dtype="numeric", order=None,
copy=False, force_all_finite=True, ensure_2d=True,
allow_nd=False, ensure_min_samples=1, ensure_min_features=1):
"""Input validation on an array, list, sparse matrix or similar.
By default, the input is converted to an at least 2nd numpy array.
If the dtype of the array is object, attempt converting to float,
raising on failure.
Parameters
----------
array : object
Input object to check / convert.
accept_sparse : string, list of string or None (default=None)
String[s] representing allowed sparse matrix formats, such as 'csc',
'csr', etc. None means that sparse matrix input will raise an error.
If the input is sparse but not in the allowed format, it will be
converted to the first listed format.
dtype : string, type or None (default="numeric")
Data type of result. If None, the dtype of the input is preserved.
If "numeric", dtype is preserved unless array.dtype is object.
order : 'F', 'C' or None (default=None)
Whether an array will be forced to be fortran or c-style.
copy : boolean (default=False)
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean (default=True)
Whether to raise an error on np.inf and np.nan in X.
ensure_2d : boolean (default=True)
Whether to make X at least 2d.
allow_nd : boolean (default=False)
Whether to allow X.ndim > 2.
ensure_min_samples : int (default=1)
Make sure that the array has a minimum number of samples in its first
axis (rows for a 2D array). Setting to 0 disables this check.
ensure_min_features : int (default=1)
Make sure that the 2D array has some minimum number of features
(columns). The default value of 1 rejects empty datasets.
This check is only enforced when the input data has effectively 2
dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0
disables this check.
Returns
-------
X_converted : object
The converted and validated X.
"""
if isinstance(accept_sparse, str):
accept_sparse = [accept_sparse]
# store whether originally we wanted numeric dtype
dtype_numeric = dtype == "numeric"
if sp.issparse(array):
if dtype_numeric:
dtype = None
array = _ensure_sparse_format(array, accept_sparse, dtype, order,
copy, force_all_finite)
else:
if ensure_2d:
array = np.atleast_2d(array)
if dtype_numeric:
if hasattr(array, "dtype") and getattr(array.dtype, "kind", None) == "O":
# if input is object, convert to float.
dtype = np.float64
else:
dtype = None
array = np.array(array, dtype=dtype, order=order, copy=copy)
# make sure we actually converted to numeric:
if dtype_numeric and array.dtype.kind == "O":
array = array.astype(np.float64)
if not allow_nd and array.ndim >= 3:
raise ValueError("Found array with dim %d. Expected <= 2" %
array.ndim)
if force_all_finite:
_assert_all_finite(array)
shape_repr = _shape_repr(array.shape)
if ensure_min_samples > 0:
n_samples = _num_samples(array)
if n_samples < ensure_min_samples:
raise ValueError("Found array with %d sample(s) (shape=%s) while a"
" minimum of %d is required."
% (n_samples, shape_repr, ensure_min_samples))
if ensure_min_features > 0 and array.ndim == 2:
n_features = array.shape[1]
if n_features < ensure_min_features:
raise ValueError("Found array with %d feature(s) (shape=%s) while"
" a minimum of %d is required."
% (n_features, shape_repr, ensure_min_features))
return array | Input validation on an array, list, sparse matrix or similar.
By default, the input is converted to an at least 2nd numpy array.
If the dtype of the array is object, attempt converting to float,
raising on failure.
Parameters
----------
array : object
Input object to check / convert.
accept_sparse : string, list of string or None (default=None)
String[s] representing allowed sparse matrix formats, such as 'csc',
'csr', etc. None means that sparse matrix input will raise an error.
If the input is sparse but not in the allowed format, it will be
converted to the first listed format.
dtype : string, type or None (default="numeric")
Data type of result. If None, the dtype of the input is preserved.
If "numeric", dtype is preserved unless array.dtype is object.
order : 'F', 'C' or None (default=None)
Whether an array will be forced to be fortran or c-style.
copy : boolean (default=False)
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean (default=True)
Whether to raise an error on np.inf and np.nan in X.
ensure_2d : boolean (default=True)
Whether to make X at least 2d.
allow_nd : boolean (default=False)
Whether to allow X.ndim > 2.
ensure_min_samples : int (default=1)
Make sure that the array has a minimum number of samples in its first
axis (rows for a 2D array). Setting to 0 disables this check.
ensure_min_features : int (default=1)
Make sure that the 2D array has some minimum number of features
(columns). The default value of 1 rejects empty datasets.
This check is only enforced when the input data has effectively 2
dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0
disables this check.
Returns
-------
X_converted : object
The converted and validated X. | entailment |
def beta_confidence_intervals(ci_X, ntrials, ci=0.95):
"""
Compute confidence intervals of beta distributions.
Parameters
----------
ci_X : numpy.array
Computed confidence interval estimate from `ntrials` experiments
ntrials : int
The number of trials that were run.
ci : float, optional, default=0.95
Confidence interval to report (e.g. 0.95 for 95% confidence interval)
Returns
-------
Plow : float
The lower bound of the symmetric confidence interval.
Phigh : float
The upper bound of the symmetric confidence interval.
Examples
--------
>>> ci_X = np.random.rand(10,10)
>>> ntrials = 100
>>> [Plow, Phigh] = beta_confidence_intervals(ci_X, ntrials)
"""
# Compute low and high confidence interval for symmetric CI about mean.
ci_low = 0.5 - ci/2;
ci_high = 0.5 + ci/2;
# Compute for every element of ci_X.
from scipy.stats import beta
Plow = ci_X * 0.0;
Phigh = ci_X * 0.0;
for i in range(ci_X.shape[0]):
for j in range(ci_X.shape[1]):
Plow[i,j] = beta.ppf(ci_low, a = ci_X[i,j] * ntrials, b = (1-ci_X[i,j]) * ntrials);
Phigh[i,j] = beta.ppf(ci_high, a = ci_X[i,j] * ntrials, b = (1-ci_X[i,j]) * ntrials);
return [Plow, Phigh] | Compute confidence intervals of beta distributions.
Parameters
----------
ci_X : numpy.array
Computed confidence interval estimate from `ntrials` experiments
ntrials : int
The number of trials that were run.
ci : float, optional, default=0.95
Confidence interval to report (e.g. 0.95 for 95% confidence interval)
Returns
-------
Plow : float
The lower bound of the symmetric confidence interval.
Phigh : float
The upper bound of the symmetric confidence interval.
Examples
--------
>>> ci_X = np.random.rand(10,10)
>>> ntrials = 100
>>> [Plow, Phigh] = beta_confidence_intervals(ci_X, ntrials) | entailment |
def empirical_confidence_interval(sample, interval=0.95):
"""
Compute specified symmetric confidence interval for empirical sample.
Parameters
----------
sample : numpy.array
The empirical samples.
interval : float, optional, default=0.95
Size of desired symmetric confidence interval (0 < interval < 1)
e.g. 0.68 for 68% confidence interval, 0.95 for 95% confidence interval
Returns
-------
low : float
The lower bound of the symmetric confidence interval.
high : float
The upper bound of the symmetric confidence interval.
Examples
--------
>>> sample = np.random.randn(1000)
>>> [low, high] = empirical_confidence_interval(sample)
>>> [low, high] = empirical_confidence_interval(sample, interval=0.65)
>>> [low, high] = empirical_confidence_interval(sample, interval=0.99)
"""
# Sort sample in increasing order.
sample = np.sort(sample)
# Determine sample size.
N = len(sample)
# Compute low and high indices.
low_index = int(np.round((N-1) * (0.5 - interval/2))) + 1
high_index = int(np.round((N-1) * (0.5 + interval/2))) + 1
# Compute low and high.
low = sample[low_index]
high = sample[high_index]
return [low, high] | Compute specified symmetric confidence interval for empirical sample.
Parameters
----------
sample : numpy.array
The empirical samples.
interval : float, optional, default=0.95
Size of desired symmetric confidence interval (0 < interval < 1)
e.g. 0.68 for 68% confidence interval, 0.95 for 95% confidence interval
Returns
-------
low : float
The lower bound of the symmetric confidence interval.
high : float
The upper bound of the symmetric confidence interval.
Examples
--------
>>> sample = np.random.randn(1000)
>>> [low, high] = empirical_confidence_interval(sample)
>>> [low, high] = empirical_confidence_interval(sample, interval=0.65)
>>> [low, high] = empirical_confidence_interval(sample, interval=0.99) | entailment |
def generate_latex_table(sampled_hmm, conf=0.95, dt=1, time_unit='ms', obs_name='force', obs_units='pN',
caption='', outfile=None):
"""
Generate a LaTeX column-wide table showing various computed properties and uncertainties.
Parameters
----------
conf : float
confidence interval. Use 0.68 for 1 sigma, 0.95 for 2 sigma etc.
"""
# check input
from bhmm.hmm.generic_sampled_hmm import SampledHMM
from bhmm.hmm.gaussian_hmm import SampledGaussianHMM
assert issubclass(sampled_hmm.__class__, SampledHMM), 'sampled_hmm ist not a SampledHMM'
# confidence interval
sampled_hmm.set_confidence(conf)
# dt
dt = float(dt)
# nstates
nstates = sampled_hmm.nstates
table = """
\\begin{table}
\\begin{tabular*}{\columnwidth}{@{\extracolsep{\\fill}}lcc}
\hline
{\\bf Property} & {\\bf Symbol} & {\\bf Value} \\\\
\hline
"""
# Stationary probability.
p = sampled_hmm.stationary_distribution_mean
p_lo, p_hi = sampled_hmm.stationary_distribution_conf
for i in range(nstates):
if i == 0:
table += '\t\tEquilibrium probability '
table += '\t\t& $\pi_{%d}$ & $%0.3f_{\:%0.3f}^{\:%0.3f}$ \\\\' % (i+1, p[i], p_lo[i], p_hi[i]) + '\n'
table += '\t\t\hline' + '\n'
# Transition probabilities.
P = sampled_hmm.transition_matrix_mean
P_lo, P_hi = sampled_hmm.transition_matrix_conf
for i in range(nstates):
for j in range(nstates):
if i == 0 and j == 0:
table += '\t\tTransition probability ($\Delta t = $%s) ' % (str(dt)+' '+time_unit)
table += '\t\t& $T_{%d%d}$ & $%0.4f_{\:%0.4f}^{\:%0.4f}$ \\\\' % (i+1, j+1, P[i, j], P_lo[i, j], P_hi[i, j]) + '\n'
table += '\t\t\hline' + '\n'
table += '\t\t\hline' + '\n'
# Transition rates via pseudogenerator.
K = P - np.eye(sampled_hmm.nstates)
K /= dt
K_lo = P_lo - np.eye(sampled_hmm.nstates)
K_lo /= dt
K_hi = P_hi - np.eye(sampled_hmm.nstates)
K_hi /= dt
for i in range(nstates):
for j in range(nstates):
if i == 0 and j == 0:
table += '\t\tTransition rate (%s$^{-1}$) ' % time_unit
if i != j:
table += '\t\t& $k_{%d%d}$ & $%2.4f_{\:%2.4f}^{\:%2.4f}$ \\\\' % (i+1, j+1, K[i, j], K_lo[i, j], K_hi[i, j]) + '\n'
table += '\t\t\hline' + '\n'
# State mean lifetimes.
l = sampled_hmm.lifetimes_mean
l *= dt
l_lo, l_hi = sampled_hmm.lifetimes_conf
l_lo *= dt
l_hi *= dt
for i in range(nstates):
if i == 0:
table += '\t\tState mean lifetime (%s) ' % time_unit
table += '\t\t& $t_{%d}$ & $%.3f_{\:%.3f}^{\:%.3f}$ \\\\' % (i+1, l[i], l_lo[i], l_hi[i]) + '\n'
table += '\t\t\hline' + '\n'
# State relaxation timescales.
t = sampled_hmm.timescales_mean
t *= dt
t_lo, t_hi = sampled_hmm.timescales_conf
t_lo *= dt
t_hi *= dt
for i in range(nstates-1):
if i == 0:
table += '\t\tRelaxation time (%s) ' % time_unit
table += '\t\t& $\\tau_{%d}$ & $%.3f_{\:%.3f}^{\:%.3f}$ \\\\' % (i+1, t[i], t_lo[i], t_hi[i]) + '\n'
table += '\t\t\hline' + '\n'
if issubclass(sampled_hmm.__class__, SampledGaussianHMM):
table += '\t\t\hline' + '\n'
# State mean forces.
m = sampled_hmm.means_mean
m_lo, m_hi = sampled_hmm.means_conf
for i in range(nstates):
if i == 0:
table += '\t\tState %s mean (%s) ' % (obs_name, obs_units)
table += '\t\t& $\mu_{%d}$ & $%.3f_{\:%.3f}^{\:%.3f}$ \\\\' % (i+1, m[i], m_lo[i], m_hi[i]) + '\n'
table += '\t\t\hline' + '\n'
# State force standard deviations.
s = sampled_hmm.sigmas_mean
s_lo, s_hi = sampled_hmm.sigmas_conf
for i in range(nstates):
if i == 0:
table += '\t\tState %s std dev (%s) ' % (obs_name, obs_units)
table += '\t\t& $s_{%d}$ & $%.3f_{\:%.3f}^{\:%.3f}$ \\\\' % (i+1, s[i], s_lo[i], s_hi[i]) + '\n'
table += '\t\t\hline' + '\n'
table += """
\\hline
\\end{tabular*}
\\caption{{\\bf %s}}
\\end{table}
""" % caption
# write to file if wanted:
if outfile is not None:
f = open(outfile, 'w')
f.write(table)
f.close()
return table | Generate a LaTeX column-wide table showing various computed properties and uncertainties.
Parameters
----------
conf : float
confidence interval. Use 0.68 for 1 sigma, 0.95 for 2 sigma etc. | entailment |
def confidence_interval(data, alpha):
"""
Computes the mean and alpha-confidence interval of the given sample set
Parameters
----------
data : ndarray
a 1D-array of samples
alpha : float in [0,1]
the confidence level, i.e. percentage of data included in the interval
Returns
-------
[m,l,r] where m is the mean of the data, and (l,r) are the m-alpha/2 and m+alpha/2
confidence interval boundaries.
"""
if alpha < 0 or alpha > 1:
raise ValueError('Not a meaningful confidence level: '+str(alpha))
# compute mean
m = np.mean(data)
# sort data
sdata = np.sort(data)
# index of the mean
im = np.searchsorted(sdata, m)
if im == 0 or im == len(sdata):
pm = im
else:
pm = (im-1) + (m-sdata[im-1]) / (sdata[im]-sdata[im-1])
# left interval boundary
pl = pm - alpha * pm
il1 = max(0, int(math.floor(pl)))
il2 = min(len(sdata)-1, int(math.ceil(pl)))
l = sdata[il1] + (pl - il1)*(sdata[il2] - sdata[il1])
# right interval boundary
pr = pm + alpha * (len(data)-im)
ir1 = max(0, int(math.floor(pr)))
ir2 = min(len(sdata)-1, int(math.ceil(pr)))
r = sdata[ir1] + (pr - ir1)*(sdata[ir2] - sdata[ir1])
# return
return m, l, r | Computes the mean and alpha-confidence interval of the given sample set
Parameters
----------
data : ndarray
a 1D-array of samples
alpha : float in [0,1]
the confidence level, i.e. percentage of data included in the interval
Returns
-------
[m,l,r] where m is the mean of the data, and (l,r) are the m-alpha/2 and m+alpha/2
confidence interval boundaries. | entailment |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.