sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def bitdepth(self): """The number of bits per sample in the audio encoding (an int). Only available for certain file formats (zero where unavailable). """ if hasattr(self.mgfile.info, 'bits_per_sample'): return self.mgfile.info.bits_per_sample return 0
The number of bits per sample in the audio encoding (an int). Only available for certain file formats (zero where unavailable).
entailment
def channels(self): """The number of channels in the audio (an int).""" if hasattr(self.mgfile.info, 'channels'): return self.mgfile.info.channels return 0
The number of channels in the audio (an int).
entailment
def bitrate(self): """The number of bits per seconds used in the audio coding (an int). If this is provided explicitly by the compressed file format, this is a precise reflection of the encoding. Otherwise, it is estimated from the on-disk file size. In this case, some imprecision is possible because the file header is incorporated in the file size. """ if hasattr(self.mgfile.info, 'bitrate') and self.mgfile.info.bitrate: # Many formats provide it explicitly. return self.mgfile.info.bitrate else: # Otherwise, we calculate bitrate from the file size. (This # is the case for all of the lossless formats.) if not self.length: # Avoid division by zero if length is not available. return 0 size = os.path.getsize(self.path) return int(size * 8 / self.length)
The number of bits per seconds used in the audio coding (an int). If this is provided explicitly by the compressed file format, this is a precise reflection of the encoding. Otherwise, it is estimated from the on-disk file size. In this case, some imprecision is possible because the file header is incorporated in the file size.
entailment
def fromfits(infilename, hdu = 0, verbose = True): """ Reads a FITS file and returns a 2D numpy array of the data. Use hdu to specify which HDU you want (default = primary = 0) """ pixelarray, hdr = pyfits.getdata(infilename, hdu, header=True) pixelarray = np.asarray(pixelarray).transpose() pixelarrayshape = pixelarray.shape if verbose : print "FITS import shape : (%i, %i)" % (pixelarrayshape[0], pixelarrayshape[1]) print "FITS file BITPIX : %s" % (hdr["BITPIX"]) print "Internal array type :", pixelarray.dtype.name return pixelarray, hdr
Reads a FITS file and returns a 2D numpy array of the data. Use hdu to specify which HDU you want (default = primary = 0)
entailment
def tofits(outfilename, pixelarray, hdr = None, verbose = True): """ Takes a 2D numpy array and write it into a FITS file. If you specify a header (pyfits format, as returned by fromfits()) it will be used for the image. You can give me boolean numpy arrays, I will convert them into 8 bit integers. """ pixelarrayshape = pixelarray.shape if verbose : print "FITS export shape : (%i, %i)" % (pixelarrayshape[0], pixelarrayshape[1]) if pixelarray.dtype.name == "bool": pixelarray = np.cast["uint8"](pixelarray) if os.path.isfile(outfilename): os.remove(outfilename) if hdr == None: # then a minimal header will be created hdu = pyfits.PrimaryHDU(pixelarray.transpose()) else: # this if else is probably not needed but anyway ... hdu = pyfits.PrimaryHDU(pixelarray.transpose(), hdr) hdu.writeto(outfilename) if verbose : print "Wrote %s" % outfilename
Takes a 2D numpy array and write it into a FITS file. If you specify a header (pyfits format, as returned by fromfits()) it will be used for the image. You can give me boolean numpy arrays, I will convert them into 8 bit integers.
entailment
def subsample(a): # this is more a generic function then a method ... """ Returns a 2x2-subsampled version of array a (no interpolation, just cutting pixels in 4). The version below is directly from the scipy cookbook on rebinning : U{http://www.scipy.org/Cookbook/Rebinning} There is ndimage.zoom(cutout.array, 2, order=0, prefilter=False), but it makes funny borders. """ """ # Ouuwww this is slow ... outarray = np.zeros((a.shape[0]*2, a.shape[1]*2), dtype=np.float64) for i in range(a.shape[0]): for j in range(a.shape[1]): outarray[2*i,2*j] = a[i,j] outarray[2*i+1,2*j] = a[i,j] outarray[2*i,2*j+1] = a[i,j] outarray[2*i+1,2*j+1] = a[i,j] return outarray """ # much better : newshape = (2*a.shape[0], 2*a.shape[1]) slices = [slice(0,old, float(old)/new) for old,new in zip(a.shape,newshape) ] coordinates = np.mgrid[slices] indices = coordinates.astype('i') #choose the biggest smaller integer index return a[tuple(indices)]
Returns a 2x2-subsampled version of array a (no interpolation, just cutting pixels in 4). The version below is directly from the scipy cookbook on rebinning : U{http://www.scipy.org/Cookbook/Rebinning} There is ndimage.zoom(cutout.array, 2, order=0, prefilter=False), but it makes funny borders.
entailment
def rebin2x2(a): """ Wrapper around rebin that actually rebins 2 by 2 """ inshape = np.array(a.shape) if not (inshape % 2 == np.zeros(2)).all(): # Modulo check to see if size is even raise RuntimeError, "I want even image shapes !" return rebin(a, inshape/2)
Wrapper around rebin that actually rebins 2 by 2
entailment
def labelmask(self, verbose = None): """ Finds and labels the cosmic "islands" and returns a list of dicts containing their positions. This is made on purpose for visualizations a la f2n.drawstarslist, but could be useful anyway. """ if verbose == None: verbose = self.verbose if verbose: print "Labeling mask pixels ..." # We morphologicaly dilate the mask to generously connect "sparse" cosmics : #dilstruct = np.ones((5,5)) dilmask = ndimage.morphology.binary_dilation(self.mask, structure=dilstruct, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False) # origin = 0 means center (labels, n) = ndimage.measurements.label(dilmask) #print "Number of cosmic ray hits : %i" % n #tofits(labels, "labels.fits", verbose = False) slicecouplelist = ndimage.measurements.find_objects(labels) # Now we have a huge list of couples of numpy slice objects giving a frame around each object # For plotting purposes, we want to transform this into the center of each object. if len(slicecouplelist) != n: # This never happened, but you never know ... raise RuntimeError, "Mega error in labelmask !" centers = [[(tup[0].start + tup[0].stop)/2.0, (tup[1].start + tup[1].stop)/2.0] for tup in slicecouplelist] # We also want to know how many pixels where affected by each cosmic ray. # Why ? Dunno... it's fun and available in scipy :-) sizes = ndimage.measurements.sum(self.mask.ravel(), labels.ravel(), np.arange(1,n+1,1)) retdictlist = [{"name":"%i" % size, "x":center[0], "y":center[1]} for (size, center) in zip(sizes, centers)] if verbose: print "Labeling done" return retdictlist
Finds and labels the cosmic "islands" and returns a list of dicts containing their positions. This is made on purpose for visualizations a la f2n.drawstarslist, but could be useful anyway.
entailment
def getdilatedmask(self, size=3): """ Returns a morphologically dilated copy of the current mask. size = 3 or 5 decides how to dilate. """ if size == 3: dilmask = ndimage.morphology.binary_dilation(self.mask, structure=growkernel, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False) elif size == 5: dilmask = ndimage.morphology.binary_dilation(self.mask, structure=dilstruct, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False) else: dismask = self.mask.copy() return dilmask
Returns a morphologically dilated copy of the current mask. size = 3 or 5 decides how to dilate.
entailment
def clean(self, mask = None, verbose = None): """ Given the mask, we replace the actual problematic pixels with the masked 5x5 median value. This mimics what is done in L.A.Cosmic, but it's a bit harder to do in python, as there is no readymade masked median. So for now we do a loop... Saturated stars, if calculated, are also masked : they are not "cleaned", but their pixels are not used for the interpolation. We will directly change self.cleanimage. Instead of using the self.mask, you can supply your own mask as argument. This might be useful to apply this cleaning function iteratively. But for the true L.A.Cosmic, we don't use this, i.e. we use the full mask at each iteration. """ if verbose == None: verbose = self.verbose if mask == None: mask = self.mask if verbose: print "Cleaning cosmic affected pixels ..." # So... mask is a 2D array containing False and True, where True means "here is a cosmic" # We want to loop through these cosmics one by one. cosmicindices = np.argwhere(mask) # This is a list of the indices of cosmic affected pixels. #print cosmicindices # We put cosmic ray pixels to np.Inf to flag them : self.cleanarray[mask] = np.Inf # Now we want to have a 2 pixel frame of Inf padding around our image. w = self.cleanarray.shape[0] h = self.cleanarray.shape[1] padarray = np.zeros((w+4,h+4))+np.Inf padarray[2:w+2,2:h+2] = self.cleanarray.copy() # that copy is important, we need 2 independent arrays # The medians will be evaluated in this padarray, skipping the np.Inf. # Now in this copy called padarray, we also put the saturated stars to np.Inf, if available : if self.satstars is not None: padarray[2:w+2,2:h+2][self.satstars] = np.Inf # Viva python, I tested this one, it works... # A loop through every cosmic pixel : for cosmicpos in cosmicindices: x = cosmicpos[0] y = cosmicpos[1] cutout = padarray[x:x+5, y:y+5].ravel() # remember the shift due to the padding ! #print cutout # Now we have our 25 pixels, some of them are np.Inf, and we want to take the median goodcutout = cutout[cutout != np.Inf] #print np.alen(goodcutout) if np.alen(goodcutout) >= 25 : # This never happened, but you never know ... raise RuntimeError, "Mega error in clean !" elif np.alen(goodcutout) > 0 : replacementvalue = np.median(goodcutout) else : # i.e. no good pixels : Shit, a huge cosmic, we will have to improvise ... print "OH NO, I HAVE A HUUUUUUUGE COSMIC !!!!!" replacementvalue = self.guessbackgroundlevel() # We update the cleanarray, # but measure the medians in the padarray, so to not mix things up... self.cleanarray[x, y] = replacementvalue # That's it. if verbose: print "Cleaning done" # FYI, that's how the LACosmic cleaning looks in iraf : """ imarith(outmask,"+",finalsel,outmask) imreplace(outmask,1,lower=1,upper=INDEF) # ok so outmask = 1 are the cosmics imcalc(outmask,inputmask,"(1.-10000.*im1)",verb-) imarith(oldoutput,"*",inputmask,inputmask) median(inputmask,med5,5,5,zloreject=-9999,zhi=INDEF,verb-) imarith(outmask,"*",med5,med5) if (i>1) imdel(output) imcalc(oldoutput//","//outmask//","//med5,output,"(1.-im2)*im1+im3",verb-) # = merging to full mask inputmask = 1.0 - 10000.0 * finalsel # So this is 1.0, but cosmics are very negative inputmask = oldoutput * inputmask # orig image, with very negative cosmics med5 = median of inputmask, but rejecting these negative cosmics # i dunno how to do this in python -> had to do the loop med5 = finalsel * med5 # we keep only the cosmics of this median # actual replacement : output = (1.0 - outmask)*oldoutput + med5 # ok """
Given the mask, we replace the actual problematic pixels with the masked 5x5 median value. This mimics what is done in L.A.Cosmic, but it's a bit harder to do in python, as there is no readymade masked median. So for now we do a loop... Saturated stars, if calculated, are also masked : they are not "cleaned", but their pixels are not used for the interpolation. We will directly change self.cleanimage. Instead of using the self.mask, you can supply your own mask as argument. This might be useful to apply this cleaning function iteratively. But for the true L.A.Cosmic, we don't use this, i.e. we use the full mask at each iteration.
entailment
def findsatstars(self, verbose = None): """ Uses the satlevel to find saturated stars (not cosmics !), and puts the result as a mask in self.satstars. This can then be used to avoid these regions in cosmic detection and cleaning procedures. Slow ... """ if verbose == None: verbose = self.verbose if verbose: print "Detecting saturated stars ..." # DETECTION satpixels = self.rawarray > self.satlevel # the candidate pixels # We build a smoothed version of the image to look for large stars and their support : m5 = ndimage.filters.median_filter(self.rawarray, size=5, mode='mirror') # We look where this is above half the satlevel largestruct = m5 > (self.satlevel/2.0) # The rough locations of saturated stars are now : satstarscenters = np.logical_and(largestruct, satpixels) if verbose: print "Building mask of saturated stars ..." # BUILDING THE MASK # The subtility is that we want to include all saturated pixels connected to these saturated stars... # I haven't found a better solution then the double loop # We dilate the satpixels alone, to ensure connectivity in glitchy regions and to add a safety margin around them. #dilstruct = np.array([[0,1,0], [1,1,1], [0,1,0]]) dilsatpixels = ndimage.morphology.binary_dilation(satpixels, structure=dilstruct, iterations=2, mask=None, output=None, border_value=0, origin=0, brute_force=False) # It turns out it's better to think large and do 2 iterations... # We label these : (dilsatlabels, nsat) = ndimage.measurements.label(dilsatpixels) #tofits(dilsatlabels, "test.fits") if verbose: print "We have %i saturated stars." % nsat # The ouput, False for now : outmask = np.zeros(self.rawarray.shape) for i in range(1,nsat+1): # we go through the islands of saturated pixels thisisland = dilsatlabels == i # gives us a boolean array # Does this intersect with satstarscenters ? overlap = np.logical_and(thisisland, satstarscenters) if np.sum(overlap) > 0: outmask = np.logical_or(outmask, thisisland) # we add thisisland to the mask self.satstars = np.cast['bool'](outmask) if verbose: print "Mask of saturated stars done"
Uses the satlevel to find saturated stars (not cosmics !), and puts the result as a mask in self.satstars. This can then be used to avoid these regions in cosmic detection and cleaning procedures. Slow ...
entailment
def getsatstars(self, verbose = None): """ Returns the mask of saturated stars after finding them if not yet done. Intended mainly for external use. """ if verbose == None: verbose = self.verbose if not self.satlevel > 0: raise RuntimeError, "Cannot determine satstars : you gave satlevel <= 0 !" if self.satstars == None: self.findsatstars(verbose = verbose) return self.satstars
Returns the mask of saturated stars after finding them if not yet done. Intended mainly for external use.
entailment
def guessbackgroundlevel(self): """ Estimates the background level. This could be used to fill pixels in large cosmics. """ if self.backgroundlevel == None: self.backgroundlevel = np.median(self.rawarray.ravel()) return self.backgroundlevel
Estimates the background level. This could be used to fill pixels in large cosmics.
entailment
def lacosmiciteration(self, verbose = None): """ Performs one iteration of the L.A.Cosmic algorithm. It operates on self.cleanarray, and afterwards updates self.mask by adding the newly detected cosmics to the existing self.mask. Cleaning is not made automatically ! You have to call clean() after each iteration. This way you can run it several times in a row to to L.A.Cosmic "iterations". See function lacosmic, that mimics the full iterative L.A.Cosmic algorithm. Returns a dict containing - niter : the number of cosmic pixels detected in this iteration - nnew : among these, how many were not yet in the mask - itermask : the mask of pixels detected in this iteration - newmask : the pixels detected that were not yet in the mask If findsatstars() was called, we exclude these regions from the search. """ if verbose == None: verbose = self.verbose if verbose: print "Convolving image with Laplacian kernel ..." # We subsample, convolve, clip negative values, and rebin to original size subsam = subsample(self.cleanarray) conved = signal.convolve2d(subsam, laplkernel, mode="same", boundary="symm") cliped = conved.clip(min=0.0) #cliped = np.abs(conved) # unfortunately this does not work to find holes as well ... lplus = rebin2x2(cliped) if verbose: print "Creating noise model ..." # We build a custom noise map, so to compare the laplacian to m5 = ndimage.filters.median_filter(self.cleanarray, size=5, mode='mirror') # We keep this m5, as I will use it later for the interpolation. m5clipped = m5.clip(min=0.00001) # As we will take the sqrt noise = (1.0/self.gain) * np.sqrt(self.gain*m5clipped + self.readnoise*self.readnoise) if verbose: print "Calculating Laplacian signal to noise ratio ..." # Laplacian signal to noise ratio : s = lplus / (2.0 * noise) # the 2.0 is from the 2x2 subsampling # This s is called sigmap in the original lacosmic.cl # We remove the large structures (s prime) : sp = s - ndimage.filters.median_filter(s, size=5, mode='mirror') if verbose: print "Selecting candidate cosmic rays ..." # Candidate cosmic rays (this will include stars + HII regions) candidates = sp > self.sigclip nbcandidates = np.sum(candidates) if verbose: print " %5i candidate pixels" % nbcandidates # At this stage we use the saturated stars to mask the candidates, if available : if self.satstars is not None: if verbose: print "Masking saturated stars ..." candidates = np.logical_and(np.logical_not(self.satstars), candidates) nbcandidates = np.sum(candidates) if verbose: print " %5i candidate pixels not part of saturated stars" % nbcandidates if verbose: print "Building fine structure image ..." # We build the fine structure image : m3 = ndimage.filters.median_filter(self.cleanarray, size=3, mode='mirror') m37 = ndimage.filters.median_filter(m3, size=7, mode='mirror') f = m3 - m37 # In the article that's it, but in lacosmic.cl f is divided by the noise... # Ok I understand why, it depends on if you use sp/f or L+/f as criterion. # There are some differences between the article and the iraf implementation. # So I will stick to the iraf implementation. f = f / noise f = f.clip(min=0.01) # as we will divide by f. like in the iraf version. if verbose: print "Removing suspected compact bright objects ..." # Now we have our better selection of cosmics : cosmics = np.logical_and(candidates, sp/f > self.objlim) # Note the sp/f and not lplus/f ... due to the f = f/noise above. nbcosmics = np.sum(cosmics) if verbose: print " %5i remaining candidate pixels" % nbcosmics # What follows is a special treatment for neighbors, with more relaxed constains. if verbose: print "Finding neighboring pixels affected by cosmic rays ..." # We grow these cosmics a first time to determine the immediate neighborhod : growcosmics = np.cast['bool'](signal.convolve2d(np.cast['float32'](cosmics), growkernel, mode="same", boundary="symm")) # From this grown set, we keep those that have sp > sigmalim # so obviously not requiring sp/f > objlim, otherwise it would be pointless growcosmics = np.logical_and(sp > self.sigclip, growcosmics) # Now we repeat this procedure, but lower the detection limit to sigmalimlow : finalsel = np.cast['bool'](signal.convolve2d(np.cast['float32'](growcosmics), growkernel, mode="same", boundary="symm")) finalsel = np.logical_and(sp > self.sigcliplow, finalsel) # Again, we have to kick out pixels on saturated stars : if self.satstars is not None: if verbose: print "Masking saturated stars ..." finalsel = np.logical_and(np.logical_not(self.satstars), finalsel) nbfinal = np.sum(finalsel) if verbose: print " %5i pixels detected as cosmics" % nbfinal # Now the replacement of the cosmics... # we outsource this to the function clean(), as for some purposes the cleaning might not even be needed. # Easy way without masking would be : #self.cleanarray[finalsel] = m5[finalsel] # We find how many cosmics are not yet known : newmask = np.logical_and(np.logical_not(self.mask), finalsel) nbnew = np.sum(newmask) # We update the mask with the cosmics we have found : self.mask = np.logical_or(self.mask, finalsel) # We return # (used by function lacosmic) return {"niter":nbfinal, "nnew":nbnew, "itermask":finalsel, "newmask":newmask}
Performs one iteration of the L.A.Cosmic algorithm. It operates on self.cleanarray, and afterwards updates self.mask by adding the newly detected cosmics to the existing self.mask. Cleaning is not made automatically ! You have to call clean() after each iteration. This way you can run it several times in a row to to L.A.Cosmic "iterations". See function lacosmic, that mimics the full iterative L.A.Cosmic algorithm. Returns a dict containing - niter : the number of cosmic pixels detected in this iteration - nnew : among these, how many were not yet in the mask - itermask : the mask of pixels detected in this iteration - newmask : the pixels detected that were not yet in the mask If findsatstars() was called, we exclude these regions from the search.
entailment
def run(self, maxiter = 4, verbose = False): """ Full artillery :-) - Find saturated stars - Run maxiter L.A.Cosmic iterations (stops if no more cosmics are found) Stops if no cosmics are found or if maxiter is reached. """ if self.satlevel > 0 and self.satstars == None: self.findsatstars(verbose=True) print "Starting %i L.A.Cosmic iterations ..." % maxiter for i in range(1, maxiter+1): print "Iteration %i" % i iterres = self.lacosmiciteration(verbose=verbose) print "%i cosmic pixels (%i new)" % (iterres["niter"], iterres["nnew"]) #self.clean(mask = iterres["mask"]) # No, we want clean to operate on really clean pixels only ! # Thus we always apply it on the full mask, as lacosmic does : self.clean(verbose=verbose) # But note that for huge cosmics, one might want to revise this. # Thats why I added a feature to skip saturated stars ! if iterres["niter"] == 0: break
Full artillery :-) - Find saturated stars - Run maxiter L.A.Cosmic iterations (stops if no more cosmics are found) Stops if no cosmics are found or if maxiter is reached.
entailment
def search_project_root(): """ Search your Django project root. returns: - path:string Django project root path """ while True: current = os.getcwd() if pathlib.Path("Miragefile.py").is_file() or pathlib.Path("Miragefile").is_file(): return current elif os.getcwd() == "/": raise FileNotFoundError else: os.chdir("../")
Search your Django project root. returns: - path:string Django project root path
entailment
def search_app_root(): """ Search your Django application root returns: - (String) Django application root path """ while True: current = os.getcwd() if pathlib.Path("apps.py").is_file(): return current elif pathlib.Path.cwd() == "/": raise FileNotFoundError else: os.chdir("../")
Search your Django application root returns: - (String) Django application root path
entailment
def in_app() -> bool: """ Judge where current working directory is in Django application or not. returns: - (Bool) cwd is in app dir returns True """ try: MirageEnvironment.set_import_root() import apps if os.path.isfile("apps.py"): return True else: return False except ImportError: return False except: return False
Judge where current working directory is in Django application or not. returns: - (Bool) cwd is in app dir returns True
entailment
def update_cached_fields(*args): """ Calls update_cached_fields() for each object passed in as argument. Supports also iterable objects by checking __iter__ attribute. :param args: List of objects :return: None """ for a in args: if a is not None: if hasattr(a, '__iter__'): for e in a: e.update_cached_fields() else: a.update_cached_fields()
Calls update_cached_fields() for each object passed in as argument. Supports also iterable objects by checking __iter__ attribute. :param args: List of objects :return: None
entailment
def update_cached_fields_pre_save(self, update_fields: list): """ Call on pre_save signal for objects (to automatically refresh on save). :param update_fields: list of fields to update """ if self.id and update_fields is None: self.update_cached_fields(commit=False, exceptions=False)
Call on pre_save signal for objects (to automatically refresh on save). :param update_fields: list of fields to update
entailment
def start(name): # type: (str) -> None """ Start working on a new hotfix. This will create a new branch off master called hotfix/<name>. Args: name (str): The name of the new feature. """ hotfix_branch = 'hotfix/' + common.to_branch_name(name) master = conf.get('git.master_branch', 'master') common.assert_on_branch(master) common.git_checkout(hotfix_branch, create=True)
Start working on a new hotfix. This will create a new branch off master called hotfix/<name>. Args: name (str): The name of the new feature.
entailment
def finish(): # type: () -> None """ Merge current feature into develop. """ pretend = context.get('pretend', False) if not pretend and (git.staged() or git.unstaged()): log.err( "You have uncommitted changes in your repo!\n" "You need to stash them before you merge the hotfix branch" ) sys.exit(1) develop = conf.get('git.devel_branch', 'develop') master = conf.get('git.master_branch', 'master') branch = git.current_branch(refresh=True) common.assert_branch_type('hotfix') # Merge hotfix into master common.git_checkout(master) common.git_pull(master) common.git_merge(master, branch.name) # Merge hotfix into develop common.git_checkout(develop) common.git_pull(develop) common.git_merge(develop, branch.name) # Cleanup common.git_branch_delete(branch.name) common.git_prune() common.git_checkout(master)
Merge current feature into develop.
entailment
def merged(): # type: () -> None """ Cleanup a remotely merged branch. """ develop = conf.get('git.devel_branch', 'develop') master = conf.get('git.master_branch', 'master') branch = git.current_branch(refresh=True) common.assert_branch_type('hotfix') # Pull master with the merged hotfix common.git_checkout(master) common.git_pull(master) # Merge to develop common.git_checkout(develop) common.git_pull(develop) common.git_merge(develop, branch.name) # Cleanup common.git_branch_delete(branch.name) common.git_prune() common.git_checkout(master)
Cleanup a remotely merged branch.
entailment
def run(self): """ Run the shell command Returns: ShellCommand: return this ShellCommand instance for chaining """ if not self.block: self.output = [] self.error = [] self.thread = threading.Thread(target=self.run_non_blocking) self.thread.start() else: self.__create_process() self.process.wait() if self._stdout is not None: self.output = self.process.stdout.read().decode("utf-8") if self._stderr is not None: self.error = self.process.stderr.read().decode("utf-8") self.return_code = self.process.returncode return self
Run the shell command Returns: ShellCommand: return this ShellCommand instance for chaining
entailment
def send(self, value): """ Send text to stdin. Can only be used on non blocking commands Args: value (str): the text to write on stdin Raises: TypeError: If command is blocking Returns: ShellCommand: return this ShellCommand instance for chaining """ if not self.block and self._stdin is not None: self.writer.write("{}\n".format(value)) return self else: raise TypeError(NON_BLOCKING_ERROR_MESSAGE)
Send text to stdin. Can only be used on non blocking commands Args: value (str): the text to write on stdin Raises: TypeError: If command is blocking Returns: ShellCommand: return this ShellCommand instance for chaining
entailment
def poll_output(self): """ Append lines from stdout to self.output. Returns: list: The lines added since last call """ if self.block: return self.output new_list = self.output[self.old_output_size:] self.old_output_size += len(new_list) return new_list
Append lines from stdout to self.output. Returns: list: The lines added since last call
entailment
def poll_error(self): """ Append lines from stderr to self.errors. Returns: list: The lines added since last call """ if self.block: return self.error new_list = self.error[self.old_error_size:] self.old_error_size += len(new_list) return new_list
Append lines from stderr to self.errors. Returns: list: The lines added since last call
entailment
def kill(self): """ Kill the current non blocking command Raises: TypeError: If command is blocking """ if self.block: raise TypeError(NON_BLOCKING_ERROR_MESSAGE) try: self.process.kill() except ProcessLookupError as exc: self.logger.debug(exc)
Kill the current non blocking command Raises: TypeError: If command is blocking
entailment
def wait_for(self, pattern, timeout=None): """ Block until a pattern have been found in stdout and stderr Args: pattern(:class:`~re.Pattern`): The pattern to search timeout(int): Maximum number of second to wait. If None, wait infinitely Raises: TimeoutError: When timeout is reach """ should_continue = True if self.block: raise TypeError(NON_BLOCKING_ERROR_MESSAGE) def stop(signum, frame): # pylint: disable=W0613 nonlocal should_continue if should_continue: raise TimeoutError() if timeout: signal.signal(signal.SIGALRM, stop) signal.alarm(timeout) while should_continue: output = self.poll_output() + self.poll_error() filtered = [line for line in output if re.match(pattern, line)] if filtered: should_continue = False
Block until a pattern have been found in stdout and stderr Args: pattern(:class:`~re.Pattern`): The pattern to search timeout(int): Maximum number of second to wait. If None, wait infinitely Raises: TimeoutError: When timeout is reach
entailment
def is_running(self): """ Check if the command is currently running Returns: bool: True if running, else False """ if self.block: return False return self.thread.is_alive() or self.process.poll() is None
Check if the command is currently running Returns: bool: True if running, else False
entailment
def print_live_output(self): ''' Block and print the output of the command Raises: TypeError: If command is blocking ''' if self.block: raise TypeError(NON_BLOCKING_ERROR_MESSAGE) else: while self.thread.is_alive() or self.old_output_size < len(self.output) or self.old_error_size < len(self.error): if self._stdout is not None and len(self.output) > self.old_output_size: while self.old_output_size < len(self.output): self.logger.info(self.output[self.old_output_size]) self.old_output_size += 1 if self._stderr is not None and len(self.error) > self.old_error_size: while self.old_error_size < len(self.error): self.logger.error(self.error[self.old_error_size]) self.old_error_size += 1
Block and print the output of the command Raises: TypeError: If command is blocking
entailment
def run(self, command, block=True, cwd=None, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE): """ Create an instance of :class:`~ShellCommand` and run it Args: command (str): :class:`~ShellCommand` block (bool): See :class:`~ShellCommand` cwd (str): Override the runner cwd. Useb by the :class:`~ShellCommand` instance """ if cwd is None: cwd = self.cwd return ShellCommand(command=command, logger=self.logger, block=block, cwd=cwd, stdin=stdin, stdout=stdout, stderr=stderr).run()
Create an instance of :class:`~ShellCommand` and run it Args: command (str): :class:`~ShellCommand` block (bool): See :class:`~ShellCommand` cwd (str): Override the runner cwd. Useb by the :class:`~ShellCommand` instance
entailment
def bces(x1, x2, x1err=[], x2err=[], cerr=[], logify=True, model='yx', \ bootstrap=5000, verbose='normal', full_output=True): """ Bivariate, Correlated Errors and intrinsic Scatter (BCES) translated from the FORTRAN code by Christina Bird and Matthew Bershady (Akritas & Bershady, 1996) Linear regression in the presence of heteroscedastic errors on both variables and intrinsic scatter Parameters ---------- x1 : array of floats Independent variable, or observable x2 : array of floats Dependent variable x1err : array of floats (optional) Uncertainties on the independent variable x2err : array of floats (optional) Uncertainties on the dependent variable cerr : array of floats (optional) Covariances of the uncertainties in the dependent and independent variables logify : bool (default True) Whether to take the log of the measurements in order to estimate the best-fit power law instead of linear relation model : {'yx', 'xy', 'bi', 'orth'} BCES model with which to calculate regression. See Notes below for details. bootstrap : False or int (default 5000) get the errors from bootstrap resampling instead of the analytical prescription? if bootstrap is an int, it is the number of bootstrap resamplings verbose : str (default 'normal') Verbose level. Options are {'quiet', 'normal', 'debug'} full_output : bool (default True) If True, return also the covariance between the normalization and slope of the regression. Returns ------- a : tuple of length 2 Best-fit normalization and its uncertainty (a, da) b : tuple of length 2 Best-fit slope and its uncertainty (b, db) Optional outputs ---------------- cov_ab : 2x2 array of floats covariance between a and b. Returned if full_output is set to True. Notes ----- If verbose is normal or debug, the results from all the BCES models will be printed (still, only the one selected in *model* will be returned). the *model* parameter: -'yx' stands for BCES(Y|X) -'xy' stands for BCES(X|Y) -'bi' stands for BCES Bisector -'orth' stands for BCES Orthogonal """ def _bess_bootstrap(npts, x1, x2, x1err, x2err, cerr,nsim): ##added by Gerrit, July 2014 ##Unfortunately I needed a copy of the _bess function for bootstrapping. #Would be nicer if those two could be combined """ Do the entire regression calculation for 4 slopes: OLS(Y|X), OLS(X|Y), bisector, orthogonal """ #calculate sigma's for datapoints using length of confidence intervals sig11var = numpy.sum(x1err ** 2,axis=1,keepdims=True) / npts sig22var = numpy.sum(x2err ** 2,axis=1,keepdims=True) / npts sig12var = numpy.sum(cerr,axis=1,keepdims=True) / npts # calculate means and variances x1av = numpy.mean(x1,axis=1,keepdims=True) x1var = x1.var(axis=1,keepdims=True) x2av = numpy.mean(x2,axis=1,keepdims=True) x2var = x2.var(axis=1,keepdims=True) covar_x1x2 = numpy.mean((x1-numpy.mean(x1,axis=1,keepdims=True)) * \ (x2-numpy.mean(x2,axis=1,keepdims=True)), axis=1,keepdims=True) # compute the regression slopes for OLS(X2|X1), OLS(X1|X2), # bisector and orthogonal if model == 'yx': modelint = 1 else: modelint = 4 b = numpy.zeros((modelint,nsim)) b[0] = ((covar_x1x2 - sig12var) / (x1var - sig11var)).flatten() if model != 'yx': b[1] = ((x2var - sig22var) / (covar_x1x2 - sig12var)).flatten() b[2] = ((b[0] * b[1] - 1 + numpy.sqrt((1 + b[0] ** 2) * \ (1 + b[1] ** 2))) / (b[0] + b[1])).flatten() b[3] = 0.5 * ((b[1] - 1 / b[0]) + numpy.sign(covar_x1x2).flatten()* \ numpy.sqrt(4 + (b[1] - 1 / b[0]) ** 2)) # compute intercepts for above 4 cases: a = x2av.flatten() - b * x1av.flatten() # set up variables to calculate standard deviations of slope and # intercept xi = [] xi.append(((x1 - x1av) * (x2 - b[0].reshape(nsim,1) * x1 - \ a[0].reshape(nsim,1)) + \ b[0].reshape(nsim,1) * x1err ** 2) / \ (x1var - sig11var)) if model != 'yx': xi.append(((x2 - x2av) * (x2 - b[1].reshape(nsim,1) * x1 - \ a[1].reshape(nsim,1)) + x2err ** 2) / \ covar_x1x2) xi.append((xi[0] * (1 + b[1].reshape(nsim,1) ** 2) + \ xi[1] * (1 + b[0].reshape(nsim,1) ** 2)) / \ ((b[0].reshape(nsim,1) + \ b[1].reshape(nsim,1)) * \ numpy.sqrt((1 + b[0].reshape(nsim,1) ** 2) * \ (1 + b[1].reshape(nsim,1) ** 2)))) xi.append((xi[0] / b[0].reshape(nsim,1) ** 2 + xi[1]) * \ b[3].reshape(nsim,1) / \ numpy.sqrt(4 + (b[1].reshape(nsim,1) - \ 1 / b[0].reshape(nsim,1)) ** 2)) zeta = [] for i in xrange(modelint): zeta.append(x2 - b[i].reshape(nsim,1) * x1 - x1av * xi[i]) # calculate variance for all a and b bvar = numpy.zeros((4,nsim)) avar = numpy.zeros((4,nsim)) for i in xrange(modelint): bvar[i] = xi[i].var(axis=1,keepdims=False)/ npts avar[i] = zeta[i].var(axis=1,keepdims=False) / npts return a, b, avar, bvar, xi, zeta def _bess(npts, x1, x2, x1err, x2err, cerr): """ Do the entire regression calculation for 4 slopes: OLS(Y|X), OLS(X|Y), bisector, orthogonal """ # calculate sigma's for datapoints using length of confidence # intervals sig11var = sum(x1err ** 2) / npts sig22var = sum(x2err ** 2) / npts sig12var = sum(cerr) / npts # calculate means and variances x1av = numpy.average(x1) x1var = numpy.std(x1) ** 2 x2av = numpy.average(x2) x2var = numpy.std(x2) ** 2 covar_x1x2 = sum((x1 - x1av) * (x2 - x2av)) / npts # compute the regression slopes for OLS(X2|X1), OLS(X1|X2), # bisector and orthogonal b = numpy.zeros(4) b[0] = (covar_x1x2 - sig12var) / (x1var - sig11var) b[1] = (x2var - sig22var) / (covar_x1x2 - sig12var) b[2] = (b[0] * b[1] - 1 + numpy.sqrt((1 + b[0] ** 2) * \ (1 + b[1] ** 2))) / (b[0] + b[1]) b[3] = 0.5 * ((b[1] - 1 / b[0]) + numpy.sign(covar_x1x2) * \ numpy.sqrt(4 + (b[1] - 1 / b[0]) ** 2)) # compute intercepts for above 4 cases: a = x2av - b * x1av # set up variables to calculate standard deviations of slope # and intercept xi = [] xi.append(((x1 - x1av) * \ (x2 - b[0] * x1 - a[0]) + b[0] * x1err ** 2) / \ (x1var - sig11var)) xi.append(((x2 - x2av) * (x2 - b[1] * x1 - a[1]) + x2err ** 2) / \ covar_x1x2) xi.append((xi[0] * (1 + b[1] ** 2) + xi[1] * (1 + b[0] ** 2)) / \ ((b[0] + b[1]) * \ numpy.sqrt((1 + b[0] ** 2) * (1 + b[1] ** 2)))) xi.append((xi[0] / b[0] ** 2 + xi[1]) * b[3] / \ numpy.sqrt(4 + (b[1] - 1 / b[0]) ** 2)) zeta = [] for i in xrange(4): zeta.append(x2 - b[i]*x1 - x1av*xi[i]) # calculate variance for all a and b bvar = numpy.zeros(4) avar = numpy.zeros(4) for i in xrange(4): bvar[i] = numpy.std(xi[i]) ** 2 / npts avar[i] = numpy.std(zeta[i]) ** 2 / npts return a, b, avar, bvar, xi, zeta def _bootspbec(npts, x, y, xerr, yerr, cerr): """ Bootstrap samples """ j = numpy.random.randint(npts, size = npts) xboot = x[j] xerrboot = xerr[j] yboot = y[j] yerrboot = yerr[j] cerrboot = cerr[j] return xboot, yboot, xerrboot, yerrboot, cerrboot # ---- Main routine starts here ---- # # convert to numpy arrays just in case x1 = numpy.array(x1) x2 = numpy.array(x2) x1err = numpy.array(x1err) x2err = numpy.array(x2err) if logify: x1, x2, x1err, x2err = to_log(x1, x2, x1err, x2err) cerr = numpy.array(cerr) models = [['yx', 'xy', 'bi', 'orth'], ['BCES(Y|X)', 'BCES(X|Y)', 'BCES Bisector', 'BCES Orthogonal']] # which to return? j = models[0].index(model) npts = len(x1) # are the errors defined? if len(x1err) == 0: x1err = numpy.zeros(npts) if len(x2err) == 0: x2err = numpy.zeros(npts) if len(cerr) == 0: cerr = numpy.zeros(npts) if verbose == 'debug': print 'x1 =', x1 print 'x1err =', x1err print 'x2 =', x2 print 'x2err =', x2err print 'cerr =', cerr print '\n ** Returning values for', models[1][j], '**' if bootstrap is not False: print ' with errors from %d bootstrap resamplings' %bootstrap print '' # calculate nominal fits bessresults = _bess(npts, x1, x2, x1err, x2err, cerr) (a, b, avar, bvar, xi, zeta) = bessresults # covariance between normalization and slope if full_output: covar_ab = numpy.cov(xi[j], zeta[j]) if bootstrap is not False: # make bootstrap simulated datasets, and compute averages and # standard deviations of regression coefficients asum = numpy.zeros(4) assum = numpy.zeros(4) bsum = numpy.zeros(4) bssum = numpy.zeros(4) sda = numpy.zeros(4) sdb = numpy.zeros(4) for i in xrange(bootstrap): samples = _bootspbec(npts, x1, x2, x1err, x2err, cerr) (x1sim, x2sim, x1errsim, x2errsim, cerrsim) = samples besssim = _bess(npts, x1sim, x2sim, x1errsim, x2errsim, cerrsim) (asim, bsim, avarsim, bvarsim, xi, zeta) = besssim asum += asim assum += asim ** 2 bsum += bsim bssum += bsim ** 2 aavg = asum / bootstrap bavg = bsum / bootstrap for i in range(4): sdtest = assum[i] - bootstrap * aavg[i] ** 2 if sdtest > 0: sda[i] = numpy.sqrt(sdtest / (bootstrap - 1)) sdtest = bssum[i] - bootstrap * bavg[i] ** 2 if sdtest > 0: sdb[i] = numpy.sqrt(sdtest / (bootstrap - 1)) if verbose in ('normal', 'debug'): print '%s B err(B)' %('Fit'.ljust(19)), print ' A err(A)' for i in range(4): print '%s %9.2e +/- %8.2e %10.3e +/- %9.3e' \ %(models[1][i].ljust(16), b[i], numpy.sqrt(bvar[i]), a[i], numpy.sqrt(avar[i])) if bootstrap is not False: print '%s %9.2e +/- %8.2e %10.3e +/- %9.3e' \ %('bootstrap'.ljust(16), bavg[i], sdb[i], aavg[i], sda[i]) print '' if verbose == 'debug': print 'cov[%s] =' %models[model] print covar_ab if bootstrap is not False: if full_output: return (a[j], sda[j]), (b[j], sdb[j]), covar_ab else: return (a[j], sda[j]), (b[j], sdb[j]) if full_output: out = ((a[j], numpy.sqrt(avar[j])), (b[j], numpy.sqrt(bvar[j])), covar_ab) else: out = ((a[j], numpy.sqrt(avar[j])), (b[j], numpy.sqrt(bvar[j]))) return out
Bivariate, Correlated Errors and intrinsic Scatter (BCES) translated from the FORTRAN code by Christina Bird and Matthew Bershady (Akritas & Bershady, 1996) Linear regression in the presence of heteroscedastic errors on both variables and intrinsic scatter Parameters ---------- x1 : array of floats Independent variable, or observable x2 : array of floats Dependent variable x1err : array of floats (optional) Uncertainties on the independent variable x2err : array of floats (optional) Uncertainties on the dependent variable cerr : array of floats (optional) Covariances of the uncertainties in the dependent and independent variables logify : bool (default True) Whether to take the log of the measurements in order to estimate the best-fit power law instead of linear relation model : {'yx', 'xy', 'bi', 'orth'} BCES model with which to calculate regression. See Notes below for details. bootstrap : False or int (default 5000) get the errors from bootstrap resampling instead of the analytical prescription? if bootstrap is an int, it is the number of bootstrap resamplings verbose : str (default 'normal') Verbose level. Options are {'quiet', 'normal', 'debug'} full_output : bool (default True) If True, return also the covariance between the normalization and slope of the regression. Returns ------- a : tuple of length 2 Best-fit normalization and its uncertainty (a, da) b : tuple of length 2 Best-fit slope and its uncertainty (b, db) Optional outputs ---------------- cov_ab : 2x2 array of floats covariance between a and b. Returned if full_output is set to True. Notes ----- If verbose is normal or debug, the results from all the BCES models will be printed (still, only the one selected in *model* will be returned). the *model* parameter: -'yx' stands for BCES(Y|X) -'xy' stands for BCES(X|Y) -'bi' stands for BCES Bisector -'orth' stands for BCES Orthogonal
entailment
def scatter(slope, zero, x1, x2, x1err=[], x2err=[]): """ Used mainly to measure scatter for the BCES best-fit """ n = len(x1) x2pred = zero + slope * x1 s = sum((x2 - x2pred) ** 2) / (n - 1) if len(x2err) == n: s_obs = sum((x2err / x2) ** 2) / n s0 = s - s_obs print numpy.sqrt(s), numpy.sqrt(s_obs), numpy.sqrt(s0) return numpy.sqrt(s0)
Used mainly to measure scatter for the BCES best-fit
entailment
def kelly(x1, x2, x1err=[], x2err=[], cerr=[], logify=True, miniter=5000, maxiter=1e5, metro=True, silent=True): """ Python wrapper for the linear regression MCMC of Kelly (2007). Requires pidly (http://astronomy.sussex.ac.uk/~anthonys/pidly/) and an IDL license. Parameters ---------- x1 : array of floats Independent variable, or observable x2 : array of floats Dependent variable x1err : array of floats (optional) Uncertainties on the independent variable x2err : array of floats (optional) Uncertainties on the dependent variable cerr : array of floats (optional) Covariances of the uncertainties in the dependent and independent variables """ import pidly n = len(x1) if len(x2) != n: raise ValueError('x1 and x2 must have same length') if len(x1err) == 0: x1err = numpy.zeros(n) if len(x2err) == 0: x2err = numpy.zeros(n) if logify: x1, x2, x1err, x2err = to_log(x1, x2, x1err, x2err) idl = pidly.IDL() idl('x1 = %s' %list(x1)) idl('x2 = %s' %list(x2)) cmd = 'linmix_err, x1, x2, fit' if len(x1err) == n: idl('x1err = %s' %list(x1err)) cmd += ', xsig=x1err' if len(x2err) == n: idl('x2err = %s' %list(x2err)) cmd += ', ysig=x2err' if len(cerr) == n: idl('cerr = %s' %list(cerr)) cmd += ', xycov=cerr' cmd += ', miniter=%d, maxiter=%d' %(miniter, maxiter) if metro: cmd += ', /metro' if silent: cmd += ', /silent' idl(cmd) alpha = idl.ev('fit.alpha') beta = idl.ev('fit.beta') sigma = numpy.sqrt(idl.ev('fit.sigsqr')) return alpha, beta, sigma
Python wrapper for the linear regression MCMC of Kelly (2007). Requires pidly (http://astronomy.sussex.ac.uk/~anthonys/pidly/) and an IDL license. Parameters ---------- x1 : array of floats Independent variable, or observable x2 : array of floats Dependent variable x1err : array of floats (optional) Uncertainties on the independent variable x2err : array of floats (optional) Uncertainties on the dependent variable cerr : array of floats (optional) Covariances of the uncertainties in the dependent and independent variables
entailment
def mcmc(x1, x2, x1err=[], x2err=[], po=(1,1,0.5), logify=True, nsteps=5000, nwalkers=100, nburn=500, output='full'): """ Use emcee to find the best-fit linear relation or power law accounting for measurement uncertainties and intrinsic scatter Parameters ---------- x1 : array of floats Independent variable, or observable x2 : array of floats Dependent variable x1err : array of floats (optional) Uncertainties on the independent variable x2err : array of floats (optional) Uncertainties on the dependent variable po : tuple of 3 floats (optional) Initial guesses for zero point, slope, and intrinsic scatter. Results are not very sensitive to these values so they shouldn't matter a lot. logify : bool (default True) Whether to take the log of the measurements in order to estimate the best-fit power law instead of linear relation nsteps : int (default 5000) Number of steps each walker should take in the MCMC nwalkers : int (default 100) Number of MCMC walkers nburn : int (default 500) Number of samples to discard to give the MCMC enough time to converge. output : list of ints or 'full' (default 'full') If 'full', then return the full samples (except for burn-in section) for each parameter. Otherwise, each float corresponds to a percentile that will be returned for each parameter. Returns ------- See *output* argument above for return options. """ import emcee if len(x1err) == 0: x1err = numpy.ones(len(x1)) if len(x2err) == 0: x2err = numpy.ones(len(x1)) def lnlike(theta, x, y, xerr, yerr): a, b, s = theta model = a + b*x sigma = numpy.sqrt((b*xerr)**2 + yerr*2 + s**2) lglk = 2 * sum(numpy.log(sigma)) + \ sum(((y-model) / sigma) ** 2) + \ numpy.log(len(x)) * numpy.sqrt(2*numpy.pi) / 2 return -lglk def lnprior(theta): a, b, s = theta if s >= 0: return 0 return -numpy.inf def lnprob(theta, x, y, xerr, yerr): lp = lnprior(theta) return lp + lnlike(theta, x, y, xerr, yerr) if logify: x1, x2, x1err, x2err = to_log(x1, x2, x1err, x2err) start = numpy.array(po) ndim = len(start) pos = [start + 1e-4*numpy.random.randn(ndim) for i in range(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x1,x2,x1err,x2err)) sampler.run_mcmc(pos, nsteps) samples = numpy.array([sampler.chain[:,nburn:,i].reshape(-1) \ for i in xrange(ndim)]) if logify: samples[2] *= numpy.log(10) if output == 'full': return samples else: try: values = [[numpy.percentile(s, o) for o in output] for s in samples] return values except TypeError: msg = 'ERROR: wrong value for argument output in mcmc().' msg += ' Must be "full" or list of ints.' print msg exit() return
Use emcee to find the best-fit linear relation or power law accounting for measurement uncertainties and intrinsic scatter Parameters ---------- x1 : array of floats Independent variable, or observable x2 : array of floats Dependent variable x1err : array of floats (optional) Uncertainties on the independent variable x2err : array of floats (optional) Uncertainties on the dependent variable po : tuple of 3 floats (optional) Initial guesses for zero point, slope, and intrinsic scatter. Results are not very sensitive to these values so they shouldn't matter a lot. logify : bool (default True) Whether to take the log of the measurements in order to estimate the best-fit power law instead of linear relation nsteps : int (default 5000) Number of steps each walker should take in the MCMC nwalkers : int (default 100) Number of MCMC walkers nburn : int (default 500) Number of samples to discard to give the MCMC enough time to converge. output : list of ints or 'full' (default 'full') If 'full', then return the full samples (except for burn-in section) for each parameter. Otherwise, each float corresponds to a percentile that will be returned for each parameter. Returns ------- See *output* argument above for return options.
entailment
def mle(x1, x2, x1err=[], x2err=[], cerr=[], s_int=True, po=(1,0,0.1), verbose=False, logify=True, full_output=False): """ Maximum Likelihood Estimation of best-fit parameters Parameters ---------- x1, x2 : float arrays the independent and dependent variables. x1err, x2err : float arrays (optional) measurement uncertainties on independent and dependent variables. Any of the two, or both, can be supplied. cerr : float array (same size as x1) covariance on the measurement errors s_int : boolean (default True) whether to include intrinsic scatter in the MLE. po : tuple of floats initial guess for free parameters. If s_int is True, then po must have 3 elements; otherwise it can have two (for the zero point and the slope) verbose : boolean (default False) verbose? logify : boolean (default True) whether to convert the values to log10's. This is to calculate the best-fit power law. Note that the result is given for the equation log(y)=a+b*log(x) -- i.e., the zero point must be converted to 10**a if logify=True full_output : boolean (default False) numpy.optimize.fmin's full_output argument Returns ------- a : float Maximum Likelihood Estimate of the zero point. Note that if logify=True, the power-law intercept is 10**a b : float Maximum Likelihood Estimate of the slope s : float (optional, if s_int=True) Maximum Likelihood Estimate of the intrinsic scatter """ from scipy import optimize n = len(x1) if len(x2) != n: raise ValueError('x1 and x2 must have same length') if len(x1err) == 0: x1err = numpy.ones(n) if len(x2err) == 0: x2err = numpy.ones(n) if logify: x1, x2, x1err, x2err = to_log(x1, x2, x1err, x2err) f = lambda a, b: a + b * x1 if s_int: w = lambda b, s: numpy.sqrt(b**2 * x1err**2 + x2err**2 + s**2) loglike = lambda p: 2 * sum(numpy.log(w(p[1],p[2]))) + \ sum(((x2 - f(p[0],p[1])) / w(p[1],p[2])) ** 2) + \ numpy.log(n * numpy.sqrt(2*numpy.pi)) / 2 else: w = lambda b: numpy.sqrt(b**2 * x1err**2 + x2err**2) loglike = lambda p: sum(numpy.log(w(p[1]))) + \ sum(((x2 - f(p[0],p[1])) / w(p[1])) ** 2) / 2 + \ numpy.log(n * numpy.sqrt(2*numpy.pi)) / 2 po = po[:2] out = optimize.fmin(loglike, po, disp=verbose, full_output=full_output) return out
Maximum Likelihood Estimation of best-fit parameters Parameters ---------- x1, x2 : float arrays the independent and dependent variables. x1err, x2err : float arrays (optional) measurement uncertainties on independent and dependent variables. Any of the two, or both, can be supplied. cerr : float array (same size as x1) covariance on the measurement errors s_int : boolean (default True) whether to include intrinsic scatter in the MLE. po : tuple of floats initial guess for free parameters. If s_int is True, then po must have 3 elements; otherwise it can have two (for the zero point and the slope) verbose : boolean (default False) verbose? logify : boolean (default True) whether to convert the values to log10's. This is to calculate the best-fit power law. Note that the result is given for the equation log(y)=a+b*log(x) -- i.e., the zero point must be converted to 10**a if logify=True full_output : boolean (default False) numpy.optimize.fmin's full_output argument Returns ------- a : float Maximum Likelihood Estimate of the zero point. Note that if logify=True, the power-law intercept is 10**a b : float Maximum Likelihood Estimate of the slope s : float (optional, if s_int=True) Maximum Likelihood Estimate of the intrinsic scatter
entailment
def to_log(x1, x2, x1err, x2err): """ Take linear measurements and uncertainties and transform to log values. """ logx1 = numpy.log10(numpy.array(x1)) logx2 = numpy.log10(numpy.array(x2)) x1err = numpy.log10(numpy.array(x1)+numpy.array(x1err)) - logx1 x2err = numpy.log10(numpy.array(x2)+numpy.array(x2err)) - logx2 return logx1, logx2, x1err, x2err
Take linear measurements and uncertainties and transform to log values.
entailment
def wrap_paths(paths): # type: (list[str]) -> str """ Put quotes around all paths and join them with space in-between. """ if isinstance(paths, string_types): raise ValueError( "paths cannot be a string. " "Use array with one element instead." ) return ' '.join('"' + path + '"' for path in paths)
Put quotes around all paths and join them with space in-between.
entailment
def filtered_walk(path, include=None, exclude=None): # type: (str, List[str], List[str]) -> Generator[str] """ Walk recursively starting at *path* excluding files matching *exclude* Args: path (str): A starting path. This has to be an existing directory. include (list[str]): A white list of glob patterns. If given, only files that match those globs will be yielded (filtered by exclude). exclude (list[str]): A list of glob string patterns to test against. If the file/path matches any of those patters, it will be filtered out. Returns: Generator[str]: A generator yielding all the files that do not match any pattern in ``exclude``. """ exclude = exclude or [] if not isdir(path): raise ValueError("Cannot walk files, only directories") files = os.listdir(path) for name in files: filename = normpath(join(path, name)) # If excluded, completely skip it. Will not recurse into directories if search_globs(filename, exclude): continue # If we have a whitelist and the pattern matches, yield it. If the # pattern didn't match and it's a dir, it will still be recursively # processed. if include is None or match_globs(filename, include): yield filename if isdir(filename): for p in filtered_walk(filename, include, exclude): yield p
Walk recursively starting at *path* excluding files matching *exclude* Args: path (str): A starting path. This has to be an existing directory. include (list[str]): A white list of glob patterns. If given, only files that match those globs will be yielded (filtered by exclude). exclude (list[str]): A list of glob string patterns to test against. If the file/path matches any of those patters, it will be filtered out. Returns: Generator[str]: A generator yielding all the files that do not match any pattern in ``exclude``.
entailment
def match_globs(path, patterns): # type: (str, List[str]) -> bool """ Test whether the given *path* matches any patterns in *patterns* Args: path (str): A file path to test for matches. patterns (list[str]): A list of glob string patterns to test against. If *path* matches any of those patters, it will return True. Returns: bool: **True** if the *path* matches any pattern in *patterns*. """ for pattern in (p for p in patterns if p): if pattern.startswith('/'): regex = fnmatch.translate(pattern[1:]) temp_path = path[1:] if path.startswith('/') else path m = re.search(regex, temp_path) if m and m.start() == 0: return True elif fnmatch.fnmatch(path, pattern): return True return False
Test whether the given *path* matches any patterns in *patterns* Args: path (str): A file path to test for matches. patterns (list[str]): A list of glob string patterns to test against. If *path* matches any of those patters, it will return True. Returns: bool: **True** if the *path* matches any pattern in *patterns*.
entailment
def search_globs(path, patterns): # type: (str, List[str]) -> bool """ Test whether the given *path* contains any patterns in *patterns* Args: path (str): A file path to test for matches. patterns (list[str]): A list of glob string patterns to test against. If *path* matches any of those patters, it will return True. Returns: bool: **True** if the ``path`` matches any pattern in *patterns*. """ for pattern in (p for p in patterns if p): if pattern.startswith('/'): # If pattern starts with root it means it match from root only regex = fnmatch.translate(pattern[1:]) regex = regex.replace('\\Z', '') temp_path = path[1:] if path.startswith('/') else path m = re.search(regex, temp_path) if m and m.start() == 0: return True else: regex = fnmatch.translate(pattern) regex = regex.replace('\\Z', '') if re.search(regex, path): return True return False
Test whether the given *path* contains any patterns in *patterns* Args: path (str): A file path to test for matches. patterns (list[str]): A list of glob string patterns to test against. If *path* matches any of those patters, it will return True. Returns: bool: **True** if the ``path`` matches any pattern in *patterns*.
entailment
def write_file(path, content, mode='w'): # type: (Text, Union[Text,bytes], Text) -> None """ --pretend aware file writing. You can always write files manually but you should always handle the --pretend case. Args: path (str): content (str): mode (str): """ from peltak.core import context from peltak.core import log if context.get('pretend', False): log.info("Would overwrite <34>{path}<32> with:\n<90>{content}", path=path, content=content) else: with open(path, mode) as fp: fp.write(content)
--pretend aware file writing. You can always write files manually but you should always handle the --pretend case. Args: path (str): content (str): mode (str):
entailment
def lint_cli(ctx, exclude, skip_untracked, commit_only): # type: (click.Context, List[str], bool, bool) -> None """ Run pep8 and pylint on all project files. You can configure the linting paths using the lint.paths config variable. This should be a list of paths that will be linted. If a path to a directory is given, all files in that directory and it's subdirectories will be used. The pep8 and pylint config paths are by default stored in ops/tools/pep8.ini and ops/tools/pylint.ini. You can customise those paths in your config with lint.pep8_cfg and lint.pylint_cfg variables. **Config Example**:: \b lint: pylint_cfg: 'ops/tools/pylint.ini' pep8_cfg: 'ops/tools/pep8.ini' paths: - 'src/mypkg' **Examples**:: \b $ peltak lint # Run linter in default mode, skip untracked $ peltak lint --commit # Lint only files staged for commit $ peltak lint --all # Lint all files, including untracked. $ peltak lint --pretend # Print the list of files to lint $ peltak lint -e "*.tox*" # Don't lint files inside .tox directory """ if ctx.invoked_subcommand: return from peltak.logic import lint lint.lint(exclude, skip_untracked, commit_only)
Run pep8 and pylint on all project files. You can configure the linting paths using the lint.paths config variable. This should be a list of paths that will be linted. If a path to a directory is given, all files in that directory and it's subdirectories will be used. The pep8 and pylint config paths are by default stored in ops/tools/pep8.ini and ops/tools/pylint.ini. You can customise those paths in your config with lint.pep8_cfg and lint.pylint_cfg variables. **Config Example**:: \b lint: pylint_cfg: 'ops/tools/pylint.ini' pep8_cfg: 'ops/tools/pep8.ini' paths: - 'src/mypkg' **Examples**:: \b $ peltak lint # Run linter in default mode, skip untracked $ peltak lint --commit # Lint only files staged for commit $ peltak lint --all # Lint all files, including untracked. $ peltak lint --pretend # Print the list of files to lint $ peltak lint -e "*.tox*" # Don't lint files inside .tox directory
entailment
def run_command(command, timeout_sec=3600.0, output=True): """Runs a command using the subprocess module :param command: List containing the command and all args :param timeout_sec (float) seconds to wait before killing the command. :param output (bool) True collects output, False ignores output :return: Dict containing the command output and return code :raises CommandError """ log = logging.getLogger(mod_logger + '.run_command') if not isinstance(command, list): msg = 'command arg must be a list' log.error(msg) raise CommandError(msg) if output: subproc_stdout = subprocess.PIPE subproc_stderr = subprocess.STDOUT else: subproc_stdout = None subproc_stderr = None command = map(str, command) command_str = ' '.join(command) timer = None log.debug('Running command: {c}'.format(c=command_str)) output_collector = '' try: log.debug('Opening subprocess...') subproc = subprocess.Popen( command, bufsize=1, stdin=open(os.devnull), stdout=subproc_stdout, stderr=subproc_stderr ) log.debug('Opened subprocess wih PID: {p}'.format(p=subproc.pid)) log.debug('Setting up process kill timer for PID {p} at {s} sec...'.format(p=subproc.pid, s=timeout_sec)) kill_proc = process_killer timer = Timer(timeout_sec, kill_proc, [subproc]) timer.start() if output: log.debug('Collecting and logging output...') with subproc.stdout: for line in iter(subproc.stdout.readline, b''): output_collector += line.rstrip() + '\n' print(">>> " + line.rstrip()) log.debug('Waiting for process completion...') subproc.wait() log.debug('Collecting the exit code...') code = subproc.poll() except ValueError: _, ex, trace = sys.exc_info() msg = 'Bad command supplied: {c}\n{e}'.format( c=command_str, e=str(ex) ) log.error(msg) raise CommandError, msg, trace except (OSError, IOError): _, ex, trace = sys.exc_info() msg = 'There was a problem running command: {c}\n{e}'.format( c=command_str, e=str(ex)) log.error(msg) raise CommandError, msg, trace except subprocess.CalledProcessError: _, ex, trace = sys.exc_info() msg = 'Command returned a non-zero exit code: {c}, return code: {cde}\n{e}'.format( c=command_str, cde=ex.returncode, e=ex) log.error(msg) raise CommandError, msg, trace finally: if timer is not None: log.debug('Cancelling the timer...') timer.cancel() else: log.debug('No need to cancel the timer.') # Collect exit code and output for return output = output_collector.strip() try: code = int(code) except ValueError: _, ex, trace = sys.exc_info() msg = 'Return code {c} could not be parsed into an int\n{e}'.format( c=code, e=str(ex)) log.error(msg) raise CommandError, msg, trace else: log.debug('Command executed and returned code: {c} with output:\n{o}'.format(c=code, o=output)) output = { 'output': output, 'code': code } return output
Runs a command using the subprocess module :param command: List containing the command and all args :param timeout_sec (float) seconds to wait before killing the command. :param output (bool) True collects output, False ignores output :return: Dict containing the command output and return code :raises CommandError
entailment
def get_ip_addresses(): """Gets the ip addresses from ifconfig :return: (dict) of devices and aliases with the IPv4 address """ log = logging.getLogger(mod_logger + '.get_ip_addresses') command = ['/sbin/ifconfig'] try: result = run_command(command) except CommandError: raise ifconfig = result['output'].strip() # Scan the ifconfig output for IPv4 addresses devices = {} parts = ifconfig.split() device = None for part in parts: if device is None: if 'eth' in part or 'eno' in part: device = part else: test = part.split(':', 1) if len(test) == 2: if test[0] == 'addr': ip_address = test[1] log.info('Found IP address %s on device %s', ip_address, device) devices[device] = ip_address device = None return devices
Gets the ip addresses from ifconfig :return: (dict) of devices and aliases with the IPv4 address
entailment
def get_mac_address(device_index=0): """Returns the Mac Address given a device index :param device_index: (int) Device index :return: (str) Mac address or None """ log = logging.getLogger(mod_logger + '.get_mac_address') command = ['ip', 'addr', 'show', 'eth{d}'.format(d=device_index)] log.info('Attempting to find a mac address at device index: {d}'.format(d=device_index)) try: result = run_command(command) except CommandError: _, ex, trace = sys.exc_info() log.error('There was a problem running command, unable to determine mac address: {c}\n{e}'.format( c=command, e=str(ex))) return ipaddr = result['output'].split() get_next = False mac_address = None for part in ipaddr: if get_next: mac_address = part log.info('Found mac address: {m}'.format(m=mac_address)) break if 'link' in part: get_next = True if not mac_address: log.info('mac address not found for device: {d}'.format(d=device_index)) return mac_address
Returns the Mac Address given a device index :param device_index: (int) Device index :return: (str) Mac address or None
entailment
def chmod(path, mode, recursive=False): """Emulates bash chmod command This method sets the file permissions to the specified mode. :param path: (str) Full path to the file or directory :param mode: (str) Mode to be set (e.g. 0755) :param recursive: (bool) Set True to make a recursive call :return: int exit code of the chmod command :raises CommandError """ log = logging.getLogger(mod_logger + '.chmod') # Validate args if not isinstance(path, basestring): msg = 'path argument is not a string' log.error(msg) raise CommandError(msg) if not isinstance(mode, basestring): msg = 'mode argument is not a string' log.error(msg) raise CommandError(msg) # Ensure the item exists if not os.path.exists(path): msg = 'Item not found: {p}'.format(p=path) log.error(msg) raise CommandError(msg) # Create the chmod command command = ['chmod'] # Make it recursive if specified if recursive: command.append('-R') command.append(mode) command.append(path) try: result = run_command(command) except CommandError: raise log.info('chmod command exited with code: {c}'.format(c=result['code'])) return result['code']
Emulates bash chmod command This method sets the file permissions to the specified mode. :param path: (str) Full path to the file or directory :param mode: (str) Mode to be set (e.g. 0755) :param recursive: (bool) Set True to make a recursive call :return: int exit code of the chmod command :raises CommandError
entailment
def mkdir_p(path): """Emulates 'mkdir -p' in bash :param path: (str) Path to create :return: None :raises CommandError """ log = logging.getLogger(mod_logger + '.mkdir_p') if not isinstance(path, basestring): msg = 'path argument is not a string' log.error(msg) raise CommandError(msg) log.info('Attempting to create directory: %s', path) try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): pass else: msg = 'Unable to create directory: {p}'.format(p=path) log.error(msg) raise CommandError(msg)
Emulates 'mkdir -p' in bash :param path: (str) Path to create :return: None :raises CommandError
entailment
def source(script): """Emulates 'source' command in bash :param script: (str) Full path to the script to source :return: Updated environment :raises CommandError """ log = logging.getLogger(mod_logger + '.source') if not isinstance(script, basestring): msg = 'script argument must be a string' log.error(msg) raise CommandError(msg) log.info('Attempting to source script: %s', script) try: pipe = subprocess.Popen(". %s; env" % script, stdout=subprocess.PIPE, shell=True) data = pipe.communicate()[0] except ValueError: _, ex, trace = sys.exc_info() msg = 'Invalid argument:\n{e}'.format(e=str(ex)) log.error(msg) raise CommandError, msg, trace except OSError: _, ex, trace = sys.exc_info() msg = 'File not found: {s}\n{e}'.format(s=script, e=str(ex)) raise CommandError, msg, trace except subprocess.CalledProcessError: _, ex, trace = sys.exc_info() msg = 'Script {s} returned a non-zero exit code: {c}\n{e}'.format( s=script, e=str(ex), c=ex.returncode) log.error(msg) raise CommandError, msg, trace env = {} log.debug('Adding environment variables from data: {d}'.format(d=data)) for line in data.splitlines(): entry = line.split("=", 1) if len(entry) != 2: log.warn('This property is not in prop=value format, and will be skipped: {p}'.format(p=line)) continue try: env[entry[0]] = entry[1] except IndexError: _, ex, trace = sys.exc_info() log.warn('IndexError: There was a problem setting environment variables from line: {p}\n{e}'.format( p=line, e=str(ex))) continue else: log.debug('Added environment variable {p}={v}'.format(p=entry[0], v=entry[1])) os.environ.update(env) return env
Emulates 'source' command in bash :param script: (str) Full path to the script to source :return: Updated environment :raises CommandError
entailment
def yum_update(downloadonly=False, dest_dir='/tmp'): """Run a yum update on this system This public method runs the yum -y update command to update packages from yum. If downloadonly is set to true, the yum updates will be downloaded to the specified dest_dir. :param dest_dir: (str) Full path to the download directory :param downloadonly: Boolean :return: int exit code from the yum command :raises CommandError """ log = logging.getLogger(mod_logger + '.yum_update') # Type checks on the args if not isinstance(dest_dir, basestring): msg = 'dest_dir argument must be a string' log.error(msg) raise CommandError(msg) if not isinstance(downloadonly, bool): msg = 'downloadonly argument must be a bool' log.error(msg) raise CommandError(msg) # If downloadonly was True, download packages to dest_dir if downloadonly: # Create the destination directory if it does not exist log.info('Creating directory: %s', dest_dir) try: mkdir_p(dest_dir) except OSError: _, ex, trace = sys.exc_info() msg = 'Unable to create destination directory: {d}'.format( d=dest_dir) log.error(msg) raise CommandError, msg, trace # Build command string with downloadonly options specified command = ['yum', '-y', 'update', '--downloadonly', '--downloaddir={d}'.format(d=dest_dir)] log.info('Downloading updates from yum to %s...', dest_dir) else: # Build command string to update directly command = ['yum', '-y', 'update'] log.info('Installing yum updates from RHN...') # Run the command try: result = run_command(command) except CommandError: raise log.info('Yum update completed and exit with code: {c}'.format( c=result['code'])) return result['code']
Run a yum update on this system This public method runs the yum -y update command to update packages from yum. If downloadonly is set to true, the yum updates will be downloaded to the specified dest_dir. :param dest_dir: (str) Full path to the download directory :param downloadonly: Boolean :return: int exit code from the yum command :raises CommandError
entailment
def yum_install(packages, downloadonly=False, dest_dir='/tmp'): """Installs (or downloads) a list of packages from yum This public method installs a list of packages from yum or downloads the packages to the specified destination directory using the yum-downloadonly yum plugin. :param downloadonly: Boolean, set to only download the package and not install it :param packages: List of package names (str) to download param :param dest_dir: (str) Full path to the download directory :return: int exit code from the yum command :raises CommandError """ log = logging.getLogger(mod_logger + '.yum_install') # Type checks on the args if not isinstance(dest_dir, basestring): msg = 'dest_dir argument must be a string' log.error(msg) raise CommandError(msg) if not isinstance(packages, list): msg = 'packages argument must be a list' log.error(msg) raise CommandError(msg) if not isinstance(downloadonly, bool): msg = 'downloadonly argument must be a bool' log.error(msg) raise CommandError(msg) if not packages: msg = 'Empty list of packages provided' log.error(msg) raise CommandError(msg) for package in packages: # Ensure the package is specified as a string if not isinstance(package, basestring): msg = 'One of the packages was not specified as a string' log.error(msg) raise CommandError(msg) # Build the yum install command string command = ['yum', '-y', 'install'] + packages # If downloadonly was True, download packages to dest_dir if downloadonly: log.info('yum downloadonly was specified, adding additional options...') # Append downloadonly args to the command command += ['--downloadonly', '--downloaddir={d}'.format(d=dest_dir)] # Create the destination directory if it does not exist log.info('Creating directory: %s', dest_dir) try: mkdir_p(dest_dir) except CommandError: _, ex, trace = sys.exc_info() msg = 'Unable to create destination directory: {d}'.format(d=dest_dir) log.error(msg) raise CommandError, msg, trace log.info('Downloading packages from yum to %s...', dest_dir) else: log.info('Installing yum packages from RHN...') # Run the yum install command try: result = run_command(command) except CommandError: raise log.info('Yum update completed and exit with code: {c}'.format( c=result['code'])) return result['code']
Installs (or downloads) a list of packages from yum This public method installs a list of packages from yum or downloads the packages to the specified destination directory using the yum-downloadonly yum plugin. :param downloadonly: Boolean, set to only download the package and not install it :param packages: List of package names (str) to download param :param dest_dir: (str) Full path to the download directory :return: int exit code from the yum command :raises CommandError
entailment
def rpm_install(install_dir): """This method installs all RPM files in a specific dir :param install_dir: (str) Full path to the directory :return int exit code form the rpm command :raises CommandError """ log = logging.getLogger(mod_logger + '.rpm_install') # Type checks on the args if not isinstance(install_dir, basestring): msg = 'install_dir argument must be a string' log.error(msg) raise CommandError(msg) # Ensure the install_dir directory exists if not os.path.isdir(install_dir): msg = 'Directory not found: {f}'.format(f=install_dir) log.error(msg) raise CommandError(msg) # Create the command command = ['rpm', '-iv', '--force', '{d}/*.rpm'.format(d=install_dir)] # Run the rpm command try: result = run_command(command) except CommandError: raise log.info('RPM completed and exit with code: {c}'.format( c=result['code'])) return result['code']
This method installs all RPM files in a specific dir :param install_dir: (str) Full path to the directory :return int exit code form the rpm command :raises CommandError
entailment
def sed(file_path, pattern, replace_str, g=0): """Python impl of the bash sed command This method emulates the functionality of a bash sed command. :param file_path: (str) Full path to the file to be edited :param pattern: (str) Search pattern to replace as a regex :param replace_str: (str) String to replace the pattern :param g: (int) Whether to globally replace (0) or replace 1 instance (equivalent to the 'g' option in bash sed :return: None :raises CommandError """ log = logging.getLogger(mod_logger + '.sed') # Type checks on the args if not isinstance(file_path, basestring): msg = 'file_path argument must be a string' log.error(msg) raise CommandError(msg) if not isinstance(pattern, basestring): msg = 'pattern argument must be a string' log.error(msg) raise CommandError(msg) if not isinstance(replace_str, basestring): msg = 'replace_str argument must be a string' log.error(msg) raise CommandError(msg) # Ensure the file_path file exists if not os.path.isfile(file_path): msg = 'File not found: {f}'.format(f=file_path) log.error(msg) raise CommandError(msg) # Search for a matching pattern and replace matching patterns log.info('Updating file: %s...', file_path) for line in fileinput.input(file_path, inplace=True): if re.search(pattern, line): log.info('Updating line: %s', line) new_line = re.sub(pattern, replace_str, line, count=g) log.info('Replacing with line: %s', new_line) sys.stdout.write(new_line) else: sys.stdout.write(line)
Python impl of the bash sed command This method emulates the functionality of a bash sed command. :param file_path: (str) Full path to the file to be edited :param pattern: (str) Search pattern to replace as a regex :param replace_str: (str) String to replace the pattern :param g: (int) Whether to globally replace (0) or replace 1 instance (equivalent to the 'g' option in bash sed :return: None :raises CommandError
entailment
def zip_dir(dir_path, zip_file): """Creates a zip file of a directory tree This method creates a zip archive using the directory tree dir_path and adds to zip_file output. :param dir_path: (str) Full path to directory to be zipped :param zip_file: (str) Full path to the output zip file :return: None :raises CommandError """ log = logging.getLogger(mod_logger + '.zip_dir') # Validate args if not isinstance(dir_path, basestring): msg = 'dir_path argument must be a string' log.error(msg) raise CommandError(msg) if not isinstance(zip_file, basestring): msg = 'zip_file argument must be a string' log.error(msg) raise CommandError(msg) # Ensure the dir_path file exists if not os.path.isdir(dir_path): msg = 'Directory not found: {f}'.format(f=dir_path) log.error(msg) raise CommandError(msg) try: with contextlib.closing(zipfile.ZipFile(zip_file, 'w', allowZip64=True)) as zip_w: for root, dirs, files in os.walk(dir_path): for f in files: log.debug('Adding file to zip: %s', f) strip = len(dir_path) - len(os.path.split(dir_path)[-1]) file_name = os.path.join(root, f) archive_name = os.path.join(root[strip:], f) zip_w.write(file_name, archive_name) except Exception: _, ex, trace = sys.exc_info() msg = 'Unable to create zip file: {f}\n{e}'.format( f=zip_file, e=str(ex)) log.error(msg) raise CommandError, msg, trace log.info('Successfully created zip file: %s', zip_file)
Creates a zip file of a directory tree This method creates a zip archive using the directory tree dir_path and adds to zip_file output. :param dir_path: (str) Full path to directory to be zipped :param zip_file: (str) Full path to the output zip file :return: None :raises CommandError
entailment
def get_ip(interface=0): """This method return the IP address :param interface: (int) Interface number (e.g. 0 for eth0) :return: (str) IP address or None """ log = logging.getLogger(mod_logger + '.get_ip') log.info('Getting the IP address for this system...') ip_address = None try: log.info('Attempting to get IP address by hostname...') ip_address = socket.gethostbyname(socket.gethostname()) except socket.error: log.info('Unable to get IP address for this system using hostname, ' 'using a bash command...') command = 'ip addr show eth%s | grep inet | grep -v inet6 | ' \ 'awk \'{ print $2 }\' | cut -d/ -f1 ' \ '>> /root/ip' % interface try: log.info('Running command: %s', command) subprocess.check_call(command, shell=True) except(OSError, subprocess.CalledProcessError): _, ex, trace = sys.exc_info() msg = 'Unable to get the IP address of this system\n{e}'.format( e=str(ex)) log.error(msg) raise CommandError, msg, trace else: ip_file = '/root/ip' log.info('Command executed successfully, pulling IP address from ' 'file: %s', ip_file) if os.path.isfile(ip_file): with open(ip_file, 'r') as f: for line in f: ip_address = line.strip() log.info('Found IP address from file: %s', ip_address) else: msg = 'File not found: {f}'.format(f=ip_file) log.error(msg) raise CommandError(msg) log.info('Returning IP address: %s', ip_address) return ip_address
This method return the IP address :param interface: (int) Interface number (e.g. 0 for eth0) :return: (str) IP address or None
entailment
def update_hosts_file(ip, entry): """Updates the /etc/hosts file for the specified ip This method updates the /etc/hosts file for the specified IP address with the specified entry. :param ip: (str) IP address to be added or updated :param entry: (str) Hosts file entry to be added :return: None :raises CommandError """ log = logging.getLogger(mod_logger + '.update_hosts_file') # Validate args if not isinstance(ip, basestring): msg = 'ip argument must be a string' log.error(msg) raise CommandError(msg) if not isinstance(entry, basestring): msg = 'entry argument must be a string' log.error(msg) raise CommandError(msg) # Ensure the file_path file exists hosts_file = '/etc/hosts' if not os.path.isfile(hosts_file): msg = 'File not found: {f}'.format(f=hosts_file) log.error(msg) raise CommandError(msg) # Updating /etc/hosts file log.info('Updating hosts file: {f} with IP {i} and entry: {e}'.format(f=hosts_file, i=ip, e=entry)) full_entry = ip + ' ' + entry.strip() + '\n' updated = False for line in fileinput.input(hosts_file, inplace=True): if re.search(ip, line): if line.split()[0] == ip: log.info('Found IP {i} in line: {li}, updating...'.format(i=ip, li=line)) log.info('Replacing with new line: {n}'.format(n=full_entry)) sys.stdout.write(full_entry) updated = True else: log.debug('Found ip {i} in line {li} but not an exact match, adding line back to hosts file {f}...'. format(i=ip, li=line, f=hosts_file)) sys.stdout.write(line) else: log.debug('IP address {i} not found in line, adding line back to hosts file {f}: {li}'.format( i=ip, li=line, f=hosts_file)) sys.stdout.write(line) # Append the entry if the hosts file was not updated if updated is False: with open(hosts_file, 'a') as f: log.info('Appending hosts file entry to {f}: {e}'.format(f=hosts_file, e=full_entry)) f.write(full_entry)
Updates the /etc/hosts file for the specified ip This method updates the /etc/hosts file for the specified IP address with the specified entry. :param ip: (str) IP address to be added or updated :param entry: (str) Hosts file entry to be added :return: None :raises CommandError
entailment
def set_hostname(new_hostname, pretty_hostname=None): """Sets this hosts hostname This method updates /etc/sysconfig/network and calls the hostname command to set a hostname on a Linux system. :param new_hostname: (str) New hostname :param pretty_hostname: (str) new pretty hostname, set to the same as new_hostname if not provided :return (int) exit code of the hostname command :raises CommandError """ log = logging.getLogger(mod_logger + '.set_hostname') # Ensure the hostname is a str if not isinstance(new_hostname, basestring): msg = 'new_hostname argument must be a string' raise CommandError(msg) # Update the network config file network_file = '/etc/sysconfig/network' if os.path.isfile(network_file): log.info('Updating {f} with the new hostname: {h}...'.format(f=network_file, h=new_hostname)) try: sed(network_file, '^HOSTNAME=.*', 'HOSTNAME=' + new_hostname) except CommandError: _, ex, trace = sys.exc_info() msg = 'Unable to update [{f}], produced output:\n{e}'.format(f=network_file, e=str(ex)) raise CommandError, msg, trace else: log.info('Network file not found, will not be updated: {f}'.format(f=network_file)) # Update the hostname if is_systemd(): hostname_file = '/etc/hostname' pretty_hostname_file = '/etc/machine-info' log.info('This is systemd, updating files: {h} and {p}'.format(h=hostname_file, p=pretty_hostname_file)) # Update the hostname file log.info('Updating hostname file: {h}...'.format(h=hostname_file)) if os.path.isfile(hostname_file): os.remove(hostname_file) with open(hostname_file, 'w') as f: f.write(new_hostname) log.info('Updating pretty hostname file: {p}'.format(p=pretty_hostname_file)) # Use the same thing if pretty hostname is not provided if pretty_hostname is None: log.info('Pretty hostname not provided, using: {p}'.format(p=pretty_hostname)) pretty_hostname = new_hostname # Update the pretty hostname file if os.path.isfile(pretty_hostname_file): os.remove(pretty_hostname_file) with open(pretty_hostname_file, 'w') as f: f.write('PRETTY_HOSTNAME={p}'.format(p=pretty_hostname)) return 0 else: command = ['/bin/hostname', new_hostname] # Run the hostname command log.info('Running hostname command to set the hostname: [{c}]'.format(c=' '.join(command))) try: result = run_command(command) except CommandError: raise log.info('Hostname command completed with code: {c} and output:\n{o}'.format( c=result['code'], o=result['output'])) return result['code']
Sets this hosts hostname This method updates /etc/sysconfig/network and calls the hostname command to set a hostname on a Linux system. :param new_hostname: (str) New hostname :param pretty_hostname: (str) new pretty hostname, set to the same as new_hostname if not provided :return (int) exit code of the hostname command :raises CommandError
entailment
def set_ntp_server(server): """Sets the NTP server on Linux :param server: (str) NTP server IP or hostname :return: None :raises CommandError """ log = logging.getLogger(mod_logger + '.set_ntp_server') # Ensure the hostname is a str if not isinstance(server, basestring): msg = 'server argument must be a string' log.error(msg) raise CommandError(msg) # Ensure the ntp.conf file exists ntp_conf = '/etc/ntp.conf' if not os.path.isfile(ntp_conf): msg = 'File not found: {f}'.format(f=ntp_conf) log.error(msg) raise CommandError(msg) log.info('Clearing out existing server entries from %s...', ntp_conf) try: sed(ntp_conf, '^server.*', '', g=0) except CommandError: _, ex, trace = sys.exc_info() msg = 'Unable to update file: {f}\n{e}'.format(f=ntp_conf, e=str(ex)) log.error(msg) raise CommandError, msg, trace out_str = 'server ' + server log.info('Appending server: %s', out_str) with open(ntp_conf, 'a') as f: f.write(out_str) log.info('Successfully updated file: {f}'.format(f=ntp_conf))
Sets the NTP server on Linux :param server: (str) NTP server IP or hostname :return: None :raises CommandError
entailment
def copy_ifcfg_file(source_interface, dest_interface): """Copies an existing ifcfg network script to another :param source_interface: String (e.g. 1) :param dest_interface: String (e.g. 0:0) :return: None :raises TypeError, OSError """ log = logging.getLogger(mod_logger + '.copy_ifcfg_file') # Validate args if not isinstance(source_interface, basestring): msg = 'source_interface argument must be a string' log.error(msg) raise TypeError(msg) if not isinstance(dest_interface, basestring): msg = 'dest_interface argument must be a string' log.error(msg) raise TypeError(msg) network_script = '/etc/sysconfig/network-scripts/ifcfg-eth' source_file = network_script + source_interface dest_file = network_script + dest_interface command = ['cp', '-f', source_file, dest_file] try: result = run_command(command) code = result['code'] except CommandError: _, ex, trace = sys.exc_info() msg = 'Unable to copy the ifcfg file from interface {s} to interface {d}\n{e}'.format( s=source_interface, d=dest_interface, e=str(ex)) raise OSError, msg, trace log.info('Copy command exited with code: {c}'.format(c=code)) if code != 0: msg = 'There was a problem copying file {s} file to {d}'.format(s=source, d=dest_file) log.error(msg) raise OSError(msg) # Updating the destination network script DEVICE property try: sed(file_path=dest_file, pattern='^DEVICE=.*', replace_str='DEVICE="eth{i}"'.format(i=dest_interface)) except CommandError: _, ex, trace = sys.exc_info() msg = 'Unable to update DEVICE in file: {d}\n{e}'.format( d=dest_file, e=str(ex)) log.error(msg) raise CommandError, msg, trace log.info('Successfully created file: {d}'.format(d=dest_file)) log.info('Restarting networking in 10 seconds to ensure the changes take effect...') time.sleep(10) retry_time = 10 max_retries = 10 for i in range(1, max_retries+2): if i > max_retries: msg = 'Unable to successfully start the networking service after {m} attempts'.format(m=max_retries) log.error(msg) raise OSError(msg) log.info('Attempting to restart the networking service, attempt #{i} of {m}'.format(i=i, m=max_retries)) try: service_network_restart() except CommandError: _, ex, trace = sys.exc_info() log.warn('Attempted unsuccessfully to restart networking on attempt #{i} of {m}, trying again in {t} ' 'seconds\n{e}'.format(i=i, m=max_retries, t=retry_time, e=str(ex))) time.sleep(retry_time) else: log.info('Successfully restarted networking') break log.info('Successfully configured interface: {d}'.format(d=dest_interface))
Copies an existing ifcfg network script to another :param source_interface: String (e.g. 1) :param dest_interface: String (e.g. 0:0) :return: None :raises TypeError, OSError
entailment
def remove_ifcfg_file(device_index='0'): """Removes the ifcfg file at the specified device index and restarts the network service :param device_index: (int) Device Index :return: None :raises CommandError """ log = logging.getLogger(mod_logger + '.remove_ifcfg_file') if not isinstance(device_index, basestring): msg = 'device_index argument must be a string' log.error(msg) raise CommandError(msg) network_script = '/etc/sysconfig/network-scripts/ifcfg-eth{d}'.format(d=device_index) if not os.path.isfile(network_script): log.info('File does not exist, nothing will be removed: {n}'.format(n=network_script)) return # Remove the network config script log.info('Attempting to remove file: {n}'.format(n=network_script)) try: os.remove(network_script) except(IOError, OSError): _, ex, trace = sys.exc_info() msg = 'There was a problem removing network script file: {n}\n{e}'.format(n=network_script, e=str(ex)) log.error(msg) raise OSError, msg, trace else: log.info('Successfully removed file: {n}'.format(n=network_script)) # Restart the network service log.info('Restarting the network service...') try: service_network_restart() except CommandError: _, ex, trace = sys.exc_info() msg = 'There was a problem restarting the network service\n{e}'.format(e=str(ex)) log.error(msg) raise OSError, msg, trace else: log.info('Successfully restarted the network service')
Removes the ifcfg file at the specified device index and restarts the network service :param device_index: (int) Device Index :return: None :raises CommandError
entailment
def add_nat_rule(port, source_interface, dest_interface): """Adds a NAT rule to iptables :param port: String or int port number :param source_interface: String (e.g. 1) :param dest_interface: String (e.g. 0:0) :return: None :raises: TypeError, OSError """ log = logging.getLogger(mod_logger + '.add_nat_rule') # Validate args if not isinstance(source_interface, basestring): msg = 'source_interface argument must be a string' log.error(msg) raise TypeError(msg) if not isinstance(dest_interface, basestring): msg = 'dest_interface argument must be a string' log.error(msg) raise TypeError(msg) ip_addresses = ip_addr() destination_ip = ip_addresses['eth{i}'.format(i=dest_interface)] log.info('Using destination IP address: {d}'.format(d=destination_ip)) command = ['iptables', '-t', 'nat', '-A', 'PREROUTING', '-i', 'eth{s}'.format(s=source_interface), '-p', 'tcp', '--dport', str(port), '-j', 'DNAT', '--to', '{d}:{p}'.format(p=port, d=destination_ip)] log.info('Running command: {c}'.format(c=command)) try: subprocess.check_call(command) except OSError: _, ex, trace = sys.exc_info() msg = 'There was a problem running command: {c}\n{e}'.format(c=command, e=str(ex)) log.error(msg) raise OSError, msg, trace except subprocess.CalledProcessError: _, ex, trace = sys.exc_info() msg = 'Command returned a non-zero exit code: {c}\n{e}'.format(c=command, e=str(ex)) log.error(msg) raise OSError, msg, trace else: log.info('Successfully ran command: {c}'.format(c=command)) # Save the iptables with the new NAT rule try: save_iptables() except OSError: _, ex, trace = sys.exc_info() msg = 'OSError: There was a problem saving iptables rules\n{e}'.format(e=str(ex)) raise OSError, msg, trace log.info('Successfully saved iptables rules with the NAT rule')
Adds a NAT rule to iptables :param port: String or int port number :param source_interface: String (e.g. 1) :param dest_interface: String (e.g. 0:0) :return: None :raises: TypeError, OSError
entailment
def service_network_restart(): """Restarts the network service on linux :return: None :raises CommandError """ log = logging.getLogger(mod_logger + '.service_network_restart') command = ['service', 'network', 'restart'] time.sleep(5) try: result = run_command(command) time.sleep(5) code = result['code'] except CommandError: raise log.info('Network restart produced output:\n{o}'.format(o=result['output'])) if code != 0: msg = 'Network services did not restart cleanly, exited with code: {c}'.format(c=code) log.error(msg) raise CommandError(msg) else: log.info('Successfully restarted networking!')
Restarts the network service on linux :return: None :raises CommandError
entailment
def save_iptables(rules_file='/etc/sysconfig/iptables'): """Saves iptables rules to the provided rules file :return: None :raises OSError """ log = logging.getLogger(mod_logger + '.save_iptables') # Run iptables-save to get the output command = ['iptables-save'] log.debug('Running command: iptables-save') try: iptables_out = run_command(command, timeout_sec=20) except CommandError: _, ex, trace = sys.exc_info() msg = 'There was a problem running iptables command: {c}\n{e}'.format(c=' '.join(command), e=str(ex)) raise OSError, msg, trace # Error if iptables-save did not exit clean if int(iptables_out['code']) != 0: raise OSError('Command [{g}] exited with code [{c}] and output:\n{o}'.format( g=' '.join(command), c=iptables_out['code'], o=iptables_out['output'])) # Back up the existing rules file if it exists if os.path.isfile(rules_file): time_now = datetime.now().strftime('%Y%m%d-%H%M%S') backup_file = '{f}.{d}'.format(f=rules_file, d=time_now) log.debug('Creating backup file: {f}'.format(f=backup_file)) shutil.copy2(rules_file, backup_file) # Save the output to the rules file log.debug('Creating file: {f}'.format(f=rules_file)) with open(rules_file, 'w') as f: f.write(iptables_out['output'])
Saves iptables rules to the provided rules file :return: None :raises OSError
entailment
def get_remote_host_environment_variable(host, environment_variable): """Retrieves the value of an environment variable of a remote host over SSH :param host: (str) host to query :param environment_variable: (str) variable to query :return: (str) value of the environment variable :raises: TypeError, CommandError """ log = logging.getLogger(mod_logger + '.get_remote_host_environment_variable') if not isinstance(host, basestring): msg = 'host argument must be a string' log.error(msg) raise TypeError(msg) if not isinstance(environment_variable, basestring): msg = 'environment_variable argument must be a string' log.error(msg) raise TypeError(msg) log.info('Checking host {h} for environment variable: {v}...'.format(h=host, v=environment_variable)) command = ['ssh', '{h}'.format(h=host), 'echo ${v}'.format(v=environment_variable)] try: result = run_command(command, timeout_sec=5.0) code = result['code'] except CommandError: raise if code != 0: msg = 'There was a problem checking the remote host {h} over SSH, return code: {c}'.format( h=host, c=code) log.error(msg) raise CommandError(msg) else: value = result['output'].strip() log.info('Environment variable {e} on host {h} value is: {v}'.format( e=environment_variable, h=host, v=value)) return value
Retrieves the value of an environment variable of a remote host over SSH :param host: (str) host to query :param environment_variable: (str) variable to query :return: (str) value of the environment variable :raises: TypeError, CommandError
entailment
def set_remote_host_environment_variable(host, variable_name, variable_value, env_file='/etc/bashrc'): """Sets an environment variable on the remote host in the specified environment file :param host: (str) host to set environment variable on :param variable_name: (str) name of the variable :param variable_value: (str) value of the variable :param env_file: (str) full path to the environment file to set :return: None :raises: TypeError, CommandError """ log = logging.getLogger(mod_logger + '.set_remote_host_environment_variable') if not isinstance(host, basestring): msg = 'host argument must be a string' log.error(msg) raise TypeError(msg) if not isinstance(variable_name, basestring): msg = 'variable_name argument must be a string' log.error(msg) raise TypeError(msg) if not isinstance(variable_value, basestring): msg = 'variable_value argument must be a string' log.error(msg) raise TypeError(msg) if not isinstance(env_file, basestring): msg = 'env_file argument must be a string' log.error(msg) raise TypeError(msg) log.info('Creating the environment file if it does not exist...') command = ['ssh', host, 'touch {f}'.format(f=env_file)] try: result = run_command(command, timeout_sec=5.0) code = result['code'] output = result['output'] except CommandError: raise if code != 0: msg = 'There was a problem creating environment file {f} on remote host {h} over SSH, ' \ 'exit code {c} and output:\n{o}'.format(h=host, c=code, f=env_file, o=output) log.error(msg) raise CommandError(msg) log.info('Creating ensuring the environment file is executable...') command = ['ssh', host, 'chmod +x {f}'.format(f=env_file)] try: result = run_command(command, timeout_sec=5.0) code = result['code'] output = result['output'] except CommandError: raise if code != 0: msg = 'There was a problem setting permissions on environment file {f} on remote host {h} over SSH, ' \ 'exit code {c} and output:\n{o}'.format(h=host, c=code, f=env_file, o=output) log.error(msg) raise CommandError(msg) log.info('Adding environment variable {v} with value {n} to file {f}...'.format( v=variable_name, n=variable_value, f=env_file)) command = ['ssh', host, 'echo "export {v}=\\"{n}\\"" >> {f}'.format(f=env_file, v=variable_name, n=variable_value)] try: result = run_command(command, timeout_sec=5.0) code = result['code'] output = result['output'] except CommandError: raise if code != 0: msg = 'There was a problem adding variable {v} to environment file {f} on remote host {h} over SSH, ' \ 'exit code {c} and output:\n{o}'.format(h=host, c=code, f=env_file, o=output, v=variable_name) log.error(msg) raise CommandError(msg) else: log.info('Environment variable {v} set to {n} on host {h}'.format(v=variable_name, n=variable_value, h=host))
Sets an environment variable on the remote host in the specified environment file :param host: (str) host to set environment variable on :param variable_name: (str) name of the variable :param variable_value: (str) value of the variable :param env_file: (str) full path to the environment file to set :return: None :raises: TypeError, CommandError
entailment
def run_remote_command(host, command, timeout_sec=5.0): """Retrieves the value of an environment variable of a remote host over SSH :param host: (str) host to query :param command: (str) command :param timeout_sec (float) seconds to wait before killing the command. :return: (str) command output :raises: TypeError, CommandError """ log = logging.getLogger(mod_logger + '.run_remote_command') if not isinstance(host, basestring): msg = 'host argument must be a string' raise TypeError(msg) if not isinstance(command, basestring): msg = 'command argument must be a string' raise TypeError(msg) log.debug('Running remote command on host: {h}: {c}...'.format(h=host, c=command)) command = ['ssh', '{h}'.format(h=host), '{c}'.format(c=command)] try: result = run_command(command, timeout_sec=timeout_sec) code = result['code'] except CommandError: raise if code != 0: msg = 'There was a problem running command [{m}] on host {h} over SSH, return code: {c}, and ' \ 'produced output:\n{o}'.format(h=host, c=code, m=' '.join(command), o=result['output']) raise CommandError(msg) else: output_text = result['output'].strip() log.debug('Running command [{m}] host {h} over SSH produced output: {o}'.format( m=command, h=host, o=output_text)) output = { 'output': output_text, 'code': code } return output
Retrieves the value of an environment variable of a remote host over SSH :param host: (str) host to query :param command: (str) command :param timeout_sec (float) seconds to wait before killing the command. :return: (str) command output :raises: TypeError, CommandError
entailment
def check_remote_host_marker_file(host, file_path): """Queries a remote host over SSH to check for existence of a marker file :param host: (str) host to query :param file_path: (str) path to the marker file :return: (bool) True if the marker file exists :raises: TypeError, CommandError """ log = logging.getLogger(mod_logger + '.check_remote_host_marker_file') if not isinstance(host, basestring): msg = 'host argument must be a string' log.error(msg) raise TypeError(msg) if not isinstance(file_path, basestring): msg = 'file_path argument must be a string' log.error(msg) raise TypeError(msg) log.debug('Checking host {h} for marker file: {f}...'.format(h=host, f=file_path)) command = ['ssh', '{h}'.format(h=host), 'if [ -f {f} ] ; then exit 0 ; else exit 1 ; fi'.format(f=file_path)] try: result = run_command(command, timeout_sec=5.0) code = result['code'] output = result['output'] except CommandError: raise if code == 0: log.debug('Marker file <{f}> was found on host {h}'.format(f=file_path, h=host)) return True elif code == 1 and output == '': log.debug('Marker file <{f}> was not found on host {h}'.format(f=file_path, h=host)) return False else: msg = 'There was a problem checking the remote host {h} over SSH for marker file {f}, ' \ 'command returned code {c} and produced output: {o}'.format( h=host, f=file_path, c=code, o=output) log.debug(msg) raise CommandError(msg)
Queries a remote host over SSH to check for existence of a marker file :param host: (str) host to query :param file_path: (str) path to the marker file :return: (bool) True if the marker file exists :raises: TypeError, CommandError
entailment
def restore_iptables(firewall_rules): """Restores and saves firewall rules from the firewall_rules file :param firewall_rules: (str) Full path to the firewall rules file :return: None :raises OSError """ log = logging.getLogger(mod_logger + '.restore_iptables') log.info('Restoring firewall rules from file: {f}'.format(f=firewall_rules)) # Ensure the firewall rules file exists if not os.path.isfile(firewall_rules): msg = 'Unable to restore iptables, file not found: {f}'.format(f=firewall_rules) log.error(msg) raise OSError(msg) # Restore the firewall rules log.info('Restoring iptables from file: {f}'.format(f=firewall_rules)) command = ['/sbin/iptables-restore', firewall_rules] try: result = run_command(command) except CommandError: _, ex, trace = sys.exc_info() msg = 'Unable to restore firewall rules from file: {f}\n{e}'.format(f=firewall_rules, e=str(ex)) log.error(msg) raise OSError(msg) log.info('Restoring iptables produced output:\n{o}'.format(o=result['output'])) # Save iptables log.info('Saving iptables...') command = ['/etc/init.d/iptables', 'save'] try: result = run_command(command) except CommandError: _, ex, trace = sys.exc_info() msg = 'Unable to save firewall rules\n{e}'.format(e=str(ex)) log.error(msg) raise OSError(msg) log.info('Saving iptables produced output:\n{o}'.format(o=result['output']))
Restores and saves firewall rules from the firewall_rules file :param firewall_rules: (str) Full path to the firewall rules file :return: None :raises OSError
entailment
def remove_default_gateway(): """Removes Default Gateway configuration from /etc/sysconfig/network and restarts networking :return: None :raises: OSError """ log = logging.getLogger(mod_logger + '.remove_default_gateway') # Ensure the network script exists network_script = '/etc/sysconfig/network' if not os.path.isfile(network_script): log.info('Network script not found, nothing to do: {f}'.format(f=network_script)) return log.debug('Found network script: {f}'.format(f=network_script)) # Remove settings for GATEWAY and GATEWAYDEV log.info('Attempting to remove any default gateway configurations...') for line in fileinput.input(network_script, inplace=True): if re.search('^GATEWAY=.*', line): log.info('Removing GATEWAY line: {li}'.format(li=line)) elif re.search('^GATEWAYDEV=.*', line): log.info('Removing GATEWAYDEV line: {li}'.format(li=line)) else: log.debug('Keeping line: {li}'.format(li=line)) sys.stdout.write(line) # Restart networking for the changes to take effect log.info('Restarting the network service...') try: service_network_restart() except CommandError: _, ex, trace = sys.exc_info() raise OSError('{n}: Attempted unsuccessfully to restart networking\n{e}'.format( n=ex.__class__.__name__, e=str(ex))) else: log.info('Successfully restarted networking')
Removes Default Gateway configuration from /etc/sysconfig/network and restarts networking :return: None :raises: OSError
entailment
def is_systemd(): """Determines whether this system uses systemd :return: (bool) True if this distro has systemd """ os_family = platform.system() if os_family != 'Linux': raise OSError('This method is only supported on Linux, found OS: {o}'.format(o=os_family)) linux_distro, linux_version, distro_name = platform.linux_distribution() # Determine when to use systemd systemd = False if 'ubuntu' in linux_distro.lower() and '16' in linux_version: systemd = True elif 'red' in linux_distro.lower() and '7' in linux_version: systemd = True elif 'cent' in linux_distro.lower() and '7' in linux_version: systemd = True return systemd
Determines whether this system uses systemd :return: (bool) True if this distro has systemd
entailment
def manage_service(service_name, service_action='status', systemd=None, output=True): """Use to run Linux sysv or systemd service commands :param service_name (str) name of the service to start :param service_action (str) action to perform on the service :param systemd (bool) True if the command should use systemd :param output (bool) True to print output :return: None :raises: OSError """ log = logging.getLogger(mod_logger + '.manage_service') # Ensure the service name is a string if not isinstance(service_name, basestring): raise OSError('service_name arg must be a string, found: {t}'.format(t=service_name.__class__.__name__)) # Ensure the service name is a string if not isinstance(service_action, basestring): raise OSError('service_action arg must be a string, found: {t}'.format(t=service_name.__class__.__name__)) # Ensure the service action is valid valid_actions = ['start', 'stop', 'reload', 'restart', 'status', 'enable', 'disable'] service_action = service_action.lower().strip() if service_action not in valid_actions: raise OSError('Invalid service action requested [{a}], valid actions are: [{v}]'.format( a=service_action, v=','.join(valid_actions) )) log.info('Attempting to [{a}] service: {s}'.format(a=service_action, s=service_name)) # If systemd was not provided, attempt to determine which method to use if not systemd: log.debug('Systemd not provided, attempting to determine which method to use...') systemd = is_systemd() # Create commands depending on the method command_list = [] if systemd: if not service_name.endswith('.service'): service_name = '{s}.service'.format(s=service_name) log.info('Attempting to manage service with systemd: {s}'.format(s=service_name)) command_list.append(['/usr/bin/systemctl', service_action, service_name]) else: log.info('Attempting to manage service with sysv: {s}'.format(s=service_name)) # Determine the commands to run if service_action == 'enable': command_list.append(['/sbin/chkconfig', '--add', service_name]) command_list.append(['/sbin/chkconfig', service_name, 'on']) elif service_action == 'disable': command_list.append(['/sbin/chkconfig', service_name, 'off']) else: command_list.append(['/sbin/service', service_name, service_action]) # Run the commands in the command list post_command_wait_time_sec = 3 for command in command_list: log.info('Attempting to run command: [{c}]'.format(c=' '.join(command))) try: result = run_command(command, timeout_sec=30, output=output) except CommandError: _, ex, trace = sys.exc_info() msg = 'There was a problem running a service management command\n{e}'.format(e=str(ex)) raise OSError, msg, trace log.info('Command exited with code: {c}'.format(c=str(result['code']))) if result['code'] != 0: msg = 'Command exited with a non-zero code: [{c}], and produced output:\n{o}'.format( c=str(result['code']), o=result['output']) raise OSError(msg) else: log.info('Command returned successfully with output:\n{o}'.format(o=result['output'])) log.info('Waiting {t} sec...'.format(t=str(post_command_wait_time_sec))) time.sleep(post_command_wait_time_sec)
Use to run Linux sysv or systemd service commands :param service_name (str) name of the service to start :param service_action (str) action to perform on the service :param systemd (bool) True if the command should use systemd :param output (bool) True to print output :return: None :raises: OSError
entailment
def system_reboot(wait_time_sec=20): """Reboots the system after a specified wait time. Must be run as root :param wait_time_sec: (int) number of sec to wait before performing the reboot :return: None :raises: SystemRebootError, SystemRebootTimeoutError """ log = logging.getLogger(mod_logger + '.system_reboot') try: wait_time_sec = int(wait_time_sec) except ValueError: raise CommandError('wait_time_sec must be an int, or a string convertible to an int') log.info('Waiting {t} seconds before reboot...'.format(t=str(wait_time_sec))) time.sleep(wait_time_sec) command = ['shutdown', '-r', 'now'] log.info('Shutting down with command: [{c}]'.format(c=' '.join(command))) time.sleep(2) log.info('Shutting down...') try: result = run_command(command=command, timeout_sec=60) except CommandError: _, ex, trace = sys.exc_info() msg = 'There was a problem running shutdown command: [{c}]\n{e}'.format(c=' '.join(command), e=str(ex)) raise SystemRebootError, msg, trace if result['code'] != 0: msg = 'Shutdown command exited with a non-zero code: [{c}], and produced output:\n{o}'.format( c=str(result['code']), o=result['output']) raise SystemRebootError(msg) log.info('Waiting 60 seconds to ensure the reboot completes...') time.sleep(60) msg = 'Reboot has not completed after 60 seconds' log.error(msg) raise SystemRebootTimeoutError(msg)
Reboots the system after a specified wait time. Must be run as root :param wait_time_sec: (int) number of sec to wait before performing the reboot :return: None :raises: SystemRebootError, SystemRebootTimeoutError
entailment
def main(): """Sample usage for this python module This main method simply illustrates sample usage for this python module. :return: None """ mkdir_p('/tmp/test/test') source('/root/.bash_profile') yum_install(['httpd', 'git']) yum_install(['httpd', 'git'], dest_dir='/tmp/test/test', downloadonly=True) sed('/Users/yennaco/Downloads/homer_testing/network', '^HOSTNAME.*', 'HOSTNAME=foo.joe') test_script = '/Users/yennaco/Downloads/homer/script.sh' results = run_command([test_script], timeout_sec=1000) print('Script {s} produced exit code [{c}] and output:\n{o}'.format( s=test_script, c=results['code'], o=results['output']))
Sample usage for this python module This main method simply illustrates sample usage for this python module. :return: None
entailment
def log_event(name: str, request: Request=None, data=None, ip=None): """ Logs consistent event for easy parsing/analysis. :param name: Name of the event. Will be logged as EVENT_XXX with XXX in capitals. :param request: Django REST framework Request (optional) :param data: Even data (optional) :param ip: Even IP (optional) """ log_data = {} if not ip and request: ip = get_real_ip(request) if ip: log_data['ip'] = ip if data: log_data['data'] = data msg = 'EVENT_{}: {}'.format(name.upper(), json.dumps(log_data)) logger.info(msg)
Logs consistent event for easy parsing/analysis. :param name: Name of the event. Will be logged as EVENT_XXX with XXX in capitals. :param request: Django REST framework Request (optional) :param data: Even data (optional) :param ip: Even IP (optional)
entailment
def aes_b64_encrypt(value, secret, block_size=AES.block_size): """ AES encrypt @value with @secret using the |CFB| mode of AES with a cryptographically secure initialization vector. -> (#str) AES encrypted @value .. from vital.security import aes_encrypt, aes_decrypt aes_encrypt("Hello, world", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=' aes_decrypt( "zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'Hello, world' .. """ # iv = randstr(block_size * 2, rng=random) iv = randstr(block_size * 2) cipher = AES.new(secret[:32], AES.MODE_CFB, iv[:block_size].encode()) return iv + b64encode(cipher.encrypt( uniorbytes(value, bytes))).decode('utf-8')
AES encrypt @value with @secret using the |CFB| mode of AES with a cryptographically secure initialization vector. -> (#str) AES encrypted @value .. from vital.security import aes_encrypt, aes_decrypt aes_encrypt("Hello, world", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=' aes_decrypt( "zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'Hello, world' ..
entailment
def aes_b64_decrypt(value, secret, block_size=AES.block_size): """ AES decrypt @value with @secret using the |CFB| mode of AES with a cryptographically secure initialization vector. -> (#str) AES decrypted @value .. from vital.security import aes_encrypt, aes_decrypt aes_encrypt("Hello, world", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=' aes_decrypt( "zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'Hello, world' .. """ if value is not None: iv = value[:block_size] cipher = AES.new(secret[:32], AES.MODE_CFB, iv) return cipher.decrypt(b64decode( uniorbytes(value[block_size * 2:], bytes))).decode('utf-8')
AES decrypt @value with @secret using the |CFB| mode of AES with a cryptographically secure initialization vector. -> (#str) AES decrypted @value .. from vital.security import aes_encrypt, aes_decrypt aes_encrypt("Hello, world", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=' aes_decrypt( "zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'Hello, world' ..
entailment
def aes_encrypt(value, secret, block_size=AES.block_size): """ AES encrypt @value with @secret using the |CFB| mode of AES with a cryptographically secure initialization vector. -> (#bytes) AES encrypted @value .. from vital.security import aes_encrypt, aes_decrypt aes_encrypt("Hello, world", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=' aes_decrypt( "zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'Hello, world' ..f """ iv = os.urandom(block_size * 2) cipher = AES.new(secret[:32], AES.MODE_CFB, iv[:block_size]) return b'%s%s' % (iv, cipher.encrypt(value))
AES encrypt @value with @secret using the |CFB| mode of AES with a cryptographically secure initialization vector. -> (#bytes) AES encrypted @value .. from vital.security import aes_encrypt, aes_decrypt aes_encrypt("Hello, world", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=' aes_decrypt( "zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'Hello, world' ..f
entailment
def aes_decrypt(value, secret, block_size=AES.block_size): """ AES decrypt @value with @secret using the |CFB| mode of AES with a cryptographically secure initialization vector. -> (#str) AES decrypted @value .. from vital.security import aes_encrypt, aes_decrypt aes_encrypt("Hello, world", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=' aes_decrypt( "zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'Hello, world' .. """ if value is not None: cipher = AES.new(secret[:32], AES.MODE_CFB, value[:block_size]) return cipher.decrypt(uniorbytes(value[block_size * 2:], bytes))
AES decrypt @value with @secret using the |CFB| mode of AES with a cryptographically secure initialization vector. -> (#str) AES decrypted @value .. from vital.security import aes_encrypt, aes_decrypt aes_encrypt("Hello, world", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=' aes_decrypt( "zYgVYMbeOuiHR50aMFinY9JsfyMQCvpzI+LNqNcmZhw=", "aLWEFlwgwlreWELFNWEFWLEgwklgbweLKWEBGW") # -> 'Hello, world' ..
entailment
def aes_pad(s, block_size=32, padding='{'): """ Adds padding to get the correct block sizes for AES encryption @s: #str being AES encrypted or decrypted @block_size: the AES block size @padding: character to pad with -> padded #str .. from vital.security import aes_pad aes_pad("swing") # -> 'swing{{{{{{{{{{{{{{{{{{{{{{{{{{{' .. """ return s + (block_size - len(s) % block_size) * padding
Adds padding to get the correct block sizes for AES encryption @s: #str being AES encrypted or decrypted @block_size: the AES block size @padding: character to pad with -> padded #str .. from vital.security import aes_pad aes_pad("swing") # -> 'swing{{{{{{{{{{{{{{{{{{{{{{{{{{{' ..
entailment
def lscmp(a, b): """ Compares two strings in a cryptographically safe way: Runtime is not affected by length of common prefix, so this is helpful against timing attacks. .. from vital.security import lscmp lscmp("ringo", "starr") # -> False lscmp("ringo", "ringo") # -> True .. """ l = len return not sum(0 if x == y else 1 for x, y in zip(a, b)) and l(a) == l(b)
Compares two strings in a cryptographically safe way: Runtime is not affected by length of common prefix, so this is helpful against timing attacks. .. from vital.security import lscmp lscmp("ringo", "starr") # -> False lscmp("ringo", "ringo") # -> True ..
entailment
def cookie(data, key_salt='', secret=None, digestmod=None): """ Encodes or decodes a signed cookie. @data: cookie data @key_salt: HMAC key signing salt @secret: HMAC signing secret key @digestmod: hashing algorithm to sign with, recommended >=sha256 -> HMAC signed or unsigned cookie data .. from vital.security import cookie cookie("Hello, world.", "saltyDog", secret="alBVlwe") # -> '!YuOoKwDp8GhrwwojdjTxSCj1c2Z+7yz7r6cC7E3hBWo=?IkhlbGxvLCB3b3JsZC4i' cookie( "!YuOoKwDp8GhrwwojdjTxSCj1c2Z+7yz7r6cC7E3hBWo=?IkhlbGxvLCB3b3JsZC4i", "saltyDog", secret="alBVlwe") # -> 'Hello, world.' .. """ digestmod = digestmod or sha256 if not data: return None try: # Decode signed cookie assert cookie_is_encoded(data) datab = uniorbytes(data, bytes) sig, msg = datab.split(uniorbytes('?', bytes), 1) key = ("{}{}").format(secret, key_salt) sig_check = hmac.new( key=uniorbytes(key, bytes), msg=msg, digestmod=digestmod).digest() sig_check = uniorbytes(b64encode(sig_check), bytes) if lscmp(sig[1:], sig_check): return json.loads(uniorbytes(b64decode(msg))) return None except: # Encode and sign a json-able object. Return a string. key = ("{}{}").format(secret, key_salt) msg = b64encode(uniorbytes(json.dumps(data), bytes)) sig = hmac.new( key=uniorbytes(key, bytes), msg=msg, digestmod=digestmod).digest() sig = uniorbytes(b64encode(sig), bytes) return uniorbytes('!'.encode() + sig + '?'.encode() + msg)
Encodes or decodes a signed cookie. @data: cookie data @key_salt: HMAC key signing salt @secret: HMAC signing secret key @digestmod: hashing algorithm to sign with, recommended >=sha256 -> HMAC signed or unsigned cookie data .. from vital.security import cookie cookie("Hello, world.", "saltyDog", secret="alBVlwe") # -> '!YuOoKwDp8GhrwwojdjTxSCj1c2Z+7yz7r6cC7E3hBWo=?IkhlbGxvLCB3b3JsZC4i' cookie( "!YuOoKwDp8GhrwwojdjTxSCj1c2Z+7yz7r6cC7E3hBWo=?IkhlbGxvLCB3b3JsZC4i", "saltyDog", secret="alBVlwe") # -> 'Hello, world.' ..
entailment
def strkey(val, chaffify=1, keyspace=string.ascii_letters + string.digits): """ Converts integers to a sequence of strings, and reverse. This is not intended to obfuscate numbers in any kind of cryptographically secure way, in fact it's the opposite. It's for predictable, reversable, obfuscation. It can also be used to transform a random bit integer to a string of the same bit length. @val: #int or #str @chaffify: #int multiple to avoid 0=a, 1=b, 2=c, ... obfuscates the ordering @keyspace: #str allowed output chars -> #str if @val is #int, #int if @val is #str .. from vital.security import strkey strkey(0, chaffify=1) # -> b strkey(0, chaffify=4) # -> e strkey(90000000000050500502200302035023) # -> 'f3yMpJQUazIZHp1UO7k' strkey('f3yMpJQUazIZHp1UO7k') # -> 90000000000050500502200302035023 strkey(2000000, chaffify=200000000000) # -> 'DIaqtyo2sC' .. """ chaffify = chaffify or 1 keylen = len(keyspace) try: # INT TO STRING if val < 0: raise ValueError("Input value must be greater than -1.") # chaffify the value val = val * chaffify if val == 0: return keyspace[0] # output the new string value out = [] out_add = out.append while val > 0: val, digit = divmod(val, keylen) out_add(keyspace[digit]) return "".join(out)[::-1] except TypeError: # STRING TO INT out = 0 val = str(val) find = str.find for c in val: out = out * keylen + find(keyspace, c) # dechaffify the value out = out // chaffify return int(out)
Converts integers to a sequence of strings, and reverse. This is not intended to obfuscate numbers in any kind of cryptographically secure way, in fact it's the opposite. It's for predictable, reversable, obfuscation. It can also be used to transform a random bit integer to a string of the same bit length. @val: #int or #str @chaffify: #int multiple to avoid 0=a, 1=b, 2=c, ... obfuscates the ordering @keyspace: #str allowed output chars -> #str if @val is #int, #int if @val is #str .. from vital.security import strkey strkey(0, chaffify=1) # -> b strkey(0, chaffify=4) # -> e strkey(90000000000050500502200302035023) # -> 'f3yMpJQUazIZHp1UO7k' strkey('f3yMpJQUazIZHp1UO7k') # -> 90000000000050500502200302035023 strkey(2000000, chaffify=200000000000) # -> 'DIaqtyo2sC' ..
entailment
def chars_in(bits, keyspace): """ .. log2(keyspace^x_chars) = bits log(keyspace^x_chars) = log(2) * bits exp(log(keyspace^x_chars)) = exp(log(2) * bits) x_chars = log(exp(log(2) * bits)) / log(keyspace) .. -> (#int) number of characters in @bits of entropy given the @keyspace """ keyspace = len(keyspace) if keyspace < 2: raise ValueError("Keyspace size must be >1") bits_per_cycle = 512 if bits > bits_per_cycle: chars = 0 bits_processed = 0 cycles = ceil(bits / bits_per_cycle) for _ in range(int(cycles)): if bits_processed + bits_per_cycle > bits: bits_per_cycle = bits - bits_processed chars += calc_chars_in(bits_per_cycle, keyspace) bits_processed += bits_per_cycle else: chars = calc_chars_in(bits, keyspace) return abs(chars)
.. log2(keyspace^x_chars) = bits log(keyspace^x_chars) = log(2) * bits exp(log(keyspace^x_chars)) = exp(log(2) * bits) x_chars = log(exp(log(2) * bits)) / log(keyspace) .. -> (#int) number of characters in @bits of entropy given the @keyspace
entailment
def bits_in(length, keyspace): """ |log2(keyspace^length) = bits| -> (#float) number of bits of entropy in @length of characters for a given a @keyspace """ keyspace = len(keyspace) length_per_cycle = 64 if length > length_per_cycle: bits = 0 length_processed = 0 cycles = ceil(length / length_per_cycle) for _ in range(int(cycles)): if length_processed + length_per_cycle > length: length_per_cycle = length - length_processed bits += calc_bits_in(length_per_cycle, keyspace) length_processed += length_per_cycle else: bits = calc_bits_in(length, keyspace) return float(abs(bits))
|log2(keyspace^length) = bits| -> (#float) number of bits of entropy in @length of characters for a given a @keyspace
entailment
def iter_random_chars(bits, keyspace=string.ascii_letters + string.digits + '#/.', rng=None): """ Yields a cryptographically secure random key of desired @bits of entropy within @keyspace using :class:random.SystemRandom @bits: (#int) minimum bits of entropy @keyspace: (#str) or iterable allowed output chars .. from vital.security import iter_rand for char in iter_rand(512): do_something_with(char) """ if bits < 8: raise ValueError('Bits cannot be <8') else: chars = chars_in(bits, keyspace) rng = rng or random.SystemRandom() for char in range(int(ceil(chars))): yield rng.choice(keyspace)
Yields a cryptographically secure random key of desired @bits of entropy within @keyspace using :class:random.SystemRandom @bits: (#int) minimum bits of entropy @keyspace: (#str) or iterable allowed output chars .. from vital.security import iter_rand for char in iter_rand(512): do_something_with(char)
entailment
def randkey(bits, keyspace=string.ascii_letters + string.digits + '#/.', rng=None): """ Returns a cryptographically secure random key of desired @bits of entropy within @keyspace using :class:random.SystemRandom @bits: (#int) minimum bits of entropy @keyspace: (#str) or iterable allowed output chars @rng: the random number generator to use. Defaults to :class:random.SystemRandom. Must have a |choice| method -> (#str) random key .. from vital.security import randkey randkey(24) # -> '9qaX' randkey(48) # -> 'iPJ5YWs9' randkey(64) # - > 'C..VJ.KLdxg' randkey(64, keyspace="abc", rng=random) # -> 'aabcccbabcaacaccccabcaabbabcacabacbbbaaab' .. """ return "".join(char for char in iter_random_chars(bits, keyspace, rng))
Returns a cryptographically secure random key of desired @bits of entropy within @keyspace using :class:random.SystemRandom @bits: (#int) minimum bits of entropy @keyspace: (#str) or iterable allowed output chars @rng: the random number generator to use. Defaults to :class:random.SystemRandom. Must have a |choice| method -> (#str) random key .. from vital.security import randkey randkey(24) # -> '9qaX' randkey(48) # -> 'iPJ5YWs9' randkey(64) # - > 'C..VJ.KLdxg' randkey(64, keyspace="abc", rng=random) # -> 'aabcccbabcaacaccccabcaabbabcacabacbbbaaab' ..
entailment
def randstr(size, keyspace=string.ascii_letters + string.digits, rng=None): """ Returns a cryptographically secure random string of desired @size (in character length) within @keyspace using :class:random.SystemRandom @size: (#int) number of random characters to generate @keyspace: (#str) or iterable allowed output chars @rng: the random number generator to use. Defaults to :class:random.SystemRandom. Must have a |choice| method -> #str random key .. from vital.security import randkey randstr(4) # -> '9qaX' .. """ rng = rng or random.SystemRandom() return "".join(rng.choice(keyspace) for char in range(int(ceil(size))))
Returns a cryptographically secure random string of desired @size (in character length) within @keyspace using :class:random.SystemRandom @size: (#int) number of random characters to generate @keyspace: (#str) or iterable allowed output chars @rng: the random number generator to use. Defaults to :class:random.SystemRandom. Must have a |choice| method -> #str random key .. from vital.security import randkey randstr(4) # -> '9qaX' ..
entailment
def parse_requirements(filename): """ load requirements from a pip requirements file """ lineiter = (line.strip() for line in open(filename)) return (line for line in lineiter if line and not line.startswith("#"))
load requirements from a pip requirements file
entailment
def round_sig(x, n, scien_notation = False): if x < 0: x = x * -1 symbol = '-' else: symbol = '' '''round floating point x to n significant figures''' if type(n) is not types.IntType: raise TypeError, "n must be an integer" try: x = float(x) except: raise TypeError, "x must be a floating point object" form = "%0." + str(n-1) + "e" st = form % x num,expo = epat.findall(st)[0] expo = int(expo) fs = string.split(num,'.') if len(fs) < 2: fs = [fs[0],""] if expo == 0: # print 'One', num return symbol + num elif expo > 0: if len(fs[1]) < expo: fs[1] += "0"*(expo-len(fs[1])) st = fs[0]+fs[1][0:expo] if len(fs[1][expo:]) > 0: st += '.'+fs[1][expo:] # print 'Two', st return symbol + st else: expo = -expo if fs[0][0] == '-': fs[0] = fs[0][1:] sign = "-" else: sign = "" if scien_notation: coso = float(sign+"0."+"0"*(expo-1)+fs[0]+fs[1]) scient_format = '{:.' + str(n) + 'e}' StrScientific = scient_format.format(coso) # print 'three', StrScientific return symbol + StrScientific else: formated = sign+"0."+"0"*(expo-1)+fs[0]+fs[1] if len(formated) > (n+5): formated = '0.' + '0' * n # print 'cuantro', formated return symbol + formated
round floating point x to n significant figures
entailment
def round_sig_error(x, ex, n, paren=False): '''Find ex rounded to n sig-figs and make the floating point x match the number of decimals. If [paren], the string is returned as quantity(error) format''' stex = round_sig(ex,n) if stex.find('.') < 0: extra_zeros = len(stex) - n sigfigs = len(str(int(x))) - extra_zeros stx = round_sig(x,sigfigs) else: num_after_dec = len(string.split(stex,'.')[1]) stx = ("%%.%df" % num_after_dec) % (x) if paren: if stex.find('.') >= 0: stex = stex[stex.find('.')+1:] return "%s(%s)" % (stx,stex) return stx,stex
Find ex rounded to n sig-figs and make the floating point x match the number of decimals. If [paren], the string is returned as quantity(error) format
entailment
def format_table(cols, errors, n, labels=None, headers=None, latex=False): '''Format a table such that the errors have n significant figures. [cols] and [errors] should be a list of 1D arrays that correspond to data and errors in columns. [n] is the number of significant figures to keep in the errors. [labels] is an optional column of strings that will be in the first column. [headers] is an optional list of column headers. If [latex] is true, myformat the table so that it can be included in a LaTeX table ''' if len(cols) != len(errors): raise ValueError, "Error: cols and errors must have same length" ncols = len(cols) nrows = len(cols[0]) if headers is not None: if labels is not None: if len(headers) == ncols: headers = [""] + headers elif len(headers) == ncols+1: pass else: raise ValueError, "length of headers should be %d" % (ncols+1) else: if len(headers) != ncols: raise ValueError, "length of headers should be %d" % (ncols) if labels is not None: if len(labels) != nrows: raise ValueError, "length of labels should be %d" % (nrows) strcols = [] for col,error in zip(cols,errors): strcols.append([]) strcols.append([]) for i in range(nrows): val,err = round_sig_error(col[i], error[i], n) strcols[-2].append(val) strcols[-1].append(err) lengths = [max([len(item) for item in strcol]) for strcol in strcols] myformat = "" if labels is not None: myformat += "%%%ds " % (max(map(len, labels))) if latex: myformat += "& " for length in lengths: myformat += "%%%ds " % (length) if latex: myformat += "& " if latex: myformat = myformat[:-2] + " \\\\" output = [] if headers: if labels: hs = [headers[0]] for head in headers[1:]: hs.append(head) hs.append('+/-') else: hs = [] for head in headers: hs.append(head) hs.append('+/-') output.append(myformat % tuple(hs)) for i in range(nrows): if labels is not None: output.append(myformat % tuple([labels[i]] + [strcol[i] for strcol in strcols])) else: output.append(myformat % tuple([strcol[i] for strcol in strcols])) return output
Format a table such that the errors have n significant figures. [cols] and [errors] should be a list of 1D arrays that correspond to data and errors in columns. [n] is the number of significant figures to keep in the errors. [labels] is an optional column of strings that will be in the first column. [headers] is an optional list of column headers. If [latex] is true, myformat the table so that it can be included in a LaTeX table
entailment
def round_sig_error2(x, ex1, ex2, n): '''Find min(ex1,ex2) rounded to n sig-figs and make the floating point x and max(ex,ex2) match the number of decimals.''' minerr = min(ex1,ex2) minstex = round_sig(minerr,n) if minstex.find('.') < 0: extra_zeros = len(minstex) - n sigfigs = len(str(int(x))) - extra_zeros stx = round_sig(x,sigfigs) maxstex = round_sig(max(ex1,ex2),sigfigs) else: num_after_dec = len(string.split(minstex,'.')[1]) stx = ("%%.%df" % num_after_dec) % (x) maxstex = ("%%.%df" % num_after_dec) % (max(ex1,ex2)) if ex1 < ex2: return stx,minstex,maxstex else: return stx,maxstex,minstex
Find min(ex1,ex2) rounded to n sig-figs and make the floating point x and max(ex,ex2) match the number of decimals.
entailment
def send_to_azure_multi_threads(instance, data, nb_threads=4, replace=True, types=None, primary_key=(), sub_commit=False): """ data = { "table_name" : 'name_of_the_azure_schema' + '.' + 'name_of_the_azure_table' #Must already exist, "columns_name" : [first_column_name,second_column_name,...,last_column_name], "rows" : [[first_raw_value,second_raw_value,...,last_raw_value],...] } """ # Time initialization start = datetime.datetime.now() # Extract info table_name = data["table_name"] columns_name = data["columns_name"] rows = data["rows"] total_len_data = len(rows) # Create table if needed if not existing_test(instance, table_name) or (types is not None) or (primary_key != ()): create.create_table(instance, data, primary_key, types) # Clean table if needed if replace: cleaning_function(instance, table_name) # Define batch size batch_size = int(total_len_data / nb_threads) + 1 if total_len_data < nb_threads: batch_size = 1 # Get table info table_info = get_table_info(instance, table_name) # Split data in batches of batch_size length split_data = [] # global threads_state # threads_state = {} for i in range(nb_threads): batch = create_a_batch(rows, batch_size, i) split_data.append( { "data": { "table_name": table_name, "columns_name": columns_name, "rows": batch }, "instance": instance, "thread_number": i, "nb_threads": nb_threads, "sub_commit": sub_commit, "table_info": table_info, } ) write_in_file("threads_state_%s" % str(i), str({ "iteration": 0, "total": len(batch) })) with concurrent.futures.ProcessPoolExecutor() as executor: r = list(executor.map(send_to_azure_from_one_thread, split_data)) print() for num_thread in range(nb_threads): insert_query = "INSERT INTO %s SELECT * FROM %s" % (table_name, table_name + "_" + str(num_thread)) print(insert_query) execute_query(instance, insert_query) for num_thread in range(nb_threads): sub_table = table_name + "_" + str(num_thread) print(C.HEADER + "DROP TABLE %s..." % sub_table + C.ENDC) execute_query(instance, "DROP TABLE %s" % sub_table) print(C.HEADER + "DROP TABLE %s...OK" % sub_table + C.ENDC) total_length_data = 0 for element in split_data: total_length_data = total_length_data + len(element["data"]["rows"]) for i in range(len(r)): print("Thread %s : %s seconds" % (str(i), str(r[i]))) print("Total rows: %s" % str(total_length_data)) print(C.BOLD + "Total time in seconds : %s" % str((datetime.datetime.now() - start).seconds) + C.ENDC) return 0
data = { "table_name" : 'name_of_the_azure_schema' + '.' + 'name_of_the_azure_table' #Must already exist, "columns_name" : [first_column_name,second_column_name,...,last_column_name], "rows" : [[first_raw_value,second_raw_value,...,last_raw_value],...] }
entailment
def send_to_azure(instance, data, thread_number, sub_commit, table_info, nb_threads): """ data = { "table_name" : 'name_of_the_azure_schema' + '.' + 'name_of_the_azure_table' #Must already exist, "columns_name" : [first_column_name,second_column_name,...,last_column_name], "rows" : [[first_raw_value,second_raw_value,...,last_raw_value],...] } """ rows = data["rows"] if not rows: return 0 columns_name = data["columns_name"] table_name = data["table_name"] + "_" + str(thread_number) print(C.HEADER + "Create table %s..." % table_name + C.ENDC) create_table_from_info(instance, table_info, table_name) print(C.OKGREEN + "Create table %s...OK" % table_name + C.ENDC) small_batch_size = int(2099 / len(columns_name)) cnxn = connect(instance) cursor = cnxn.cursor() # Initialize counters boolean = True total_rows = len(rows) question_mark_pattern = "(%s)" % ",".join(["?" for i in range(len(rows[0]))]) counter = 0 while boolean: temp_row = [] question_mark_list = [] for i in range(small_batch_size): if rows: temp_row.append(rows.pop()) question_mark_list.append(question_mark_pattern) else: boolean = False continue counter = counter + len(temp_row) # percent = round(float(counter * 100) / total_rows) threads_state = eval(read_file("threads_state_%s" % str(thread_number))) threads_state["iteration"] = counter write_in_file("threads_state_%s" % str(thread_number), str(threads_state)) # print(threads_state) if sub_commit: suffix = "rows sent" # print("Thread %s : %s %% rows sent" % (str(thread_number), str(percent))) else: suffix = "rows prepared to be sent" print_progress_bar_multi_threads(nb_threads, suffix=suffix) # print("Thread %s : %s %% rows prepared to be sent" % (str(thread_number), str(percent))) data_values_str = ','.join(question_mark_list) columns_name_str = ", ".join(columns_name) inserting_request = '''INSERT INTO %s (%s) VALUES %s ;''' % (table_name, columns_name_str, data_values_str) final_data = [y for x in temp_row for y in x] if final_data: cursor.execute(inserting_request, final_data) if sub_commit: commit_function(cnxn) if not sub_commit: commit_function(cnxn) cursor.close() cnxn.close() return 0
data = { "table_name" : 'name_of_the_azure_schema' + '.' + 'name_of_the_azure_table' #Must already exist, "columns_name" : [first_column_name,second_column_name,...,last_column_name], "rows" : [[first_raw_value,second_raw_value,...,last_raw_value],...] }
entailment
def create(self, items=[], taxes=[], custom_data=[]): """Adds the items to the invoice Format of 'items': [ InvoiceItem( name="VIP Ticket", quantity= 2, unit_price= "3500", total_price= "7000", description= "VIP Tickets for the Party" } ,... ] """ self.add_items(items) self.add_taxes(taxes) self.add_custom_data(custom_data) return self._process('checkout-invoice/create', self._prepare_data)
Adds the items to the invoice Format of 'items': [ InvoiceItem( name="VIP Ticket", quantity= 2, unit_price= "3500", total_price= "7000", description= "VIP Tickets for the Party" } ,... ]
entailment
def confirm(self, token=None): """Returns the status of the invoice STATUSES: pending, completed, cancelled """ _token = token if token else self._response.get("token") return self._process('checkout-invoice/confirm/' + str(_token))
Returns the status of the invoice STATUSES: pending, completed, cancelled
entailment
def add_taxes(self, taxes): """Appends the data to the 'taxes' key in the request object 'taxes' should be in format: [("tax_name", "tax_amount")] For example: [("Other TAX", 700), ("VAT", 5000)] """ # fixme: how to resolve duplicate tax names _idx = len(self.taxes) # current index to prevent overwriting for idx, tax in enumerate(taxes): tax_key = "tax_" + str(idx + _idx) self.taxes[tax_key] = {"name": tax[0], "amount": tax[1]}
Appends the data to the 'taxes' key in the request object 'taxes' should be in format: [("tax_name", "tax_amount")] For example: [("Other TAX", 700), ("VAT", 5000)]
entailment
def add_item(self, item): """Updates the list of items in the current transaction""" _idx = len(self.items) self.items.update({"item_" + str(_idx + 1): item})
Updates the list of items in the current transaction
entailment
def _prepare_data(self): """Formats the data in the current transaction for processing""" total_amount = self.total_amount or self.calculate_total_amt() self._data = { "invoice": { "items": self.__encode_items(self.items), "taxes": self.taxes, "total_amount": total_amount, "description": self.description, "channels": self.channels }, "store": self.store.info, "custom_data": self.custom_data, "actions": { "cancel_url": self.cancel_url, "return_url": self.return_url, "callback_url": self.callback_url } } return self._data
Formats the data in the current transaction for processing
entailment