id
int32
0
27.3k
func
stringlengths
26
142k
target
bool
2 classes
project
stringclasses
2 values
commit_id
stringlengths
40
40
6,216
static av_cold int fdk_aac_decode_init(AVCodecContext *avctx) { FDKAACDecContext *s = avctx->priv_data; AAC_DECODER_ERROR err; int ret; s->handle = aacDecoder_Open(avctx->extradata_size ? TT_MP4_RAW : TT_MP4_ADTS, 1); if (!s->handle) { av_log(avctx, AV_LOG_ERROR, "Error opening decoder\n"); return AVERROR_UNKNOWN; } if (avctx->extradata_size) { if ((err = aacDecoder_ConfigRaw(s->handle, &avctx->extradata, &avctx->extradata_size)) != AAC_DEC_OK) { av_log(avctx, AV_LOG_ERROR, "Unable to set extradata\n"); return AVERROR_INVALIDDATA; } } if ((err = aacDecoder_SetParam(s->handle, AAC_CONCEAL_METHOD, s->conceal_method)) != AAC_DEC_OK) { av_log(avctx, AV_LOG_ERROR, "Unable to set error concealment method\n"); return AVERROR_UNKNOWN; } if (avctx->request_channel_layout > 0 && avctx->request_channel_layout != AV_CH_LAYOUT_NATIVE) { int downmix_channels = -1; switch (avctx->request_channel_layout) { case AV_CH_LAYOUT_STEREO: case AV_CH_LAYOUT_STEREO_DOWNMIX: downmix_channels = 2; break; case AV_CH_LAYOUT_MONO: downmix_channels = 1; break; default: av_log(avctx, AV_LOG_WARNING, "Invalid request_channel_layout\n"); break; } if (downmix_channels != -1) { if (aacDecoder_SetParam(s->handle, AAC_PCM_MAX_OUTPUT_CHANNELS, downmix_channels) != AAC_DEC_OK) { av_log(avctx, AV_LOG_WARNING, "Unable to set output channels in the decoder\n"); } else { s->anc_buffer = av_malloc(DMX_ANC_BUFFSIZE); if (!s->anc_buffer) { av_log(avctx, AV_LOG_ERROR, "Unable to allocate ancillary buffer for the decoder\n"); ret = AVERROR(ENOMEM); goto fail; } if (aacDecoder_AncDataInit(s->handle, s->anc_buffer, DMX_ANC_BUFFSIZE)) { av_log(avctx, AV_LOG_ERROR, "Unable to register downmix ancillary buffer in the decoder\n"); ret = AVERROR_UNKNOWN; goto fail; } } } } if (s->drc_boost != -1) { if (aacDecoder_SetParam(s->handle, AAC_DRC_BOOST_FACTOR, s->drc_boost) != AAC_DEC_OK) { av_log(avctx, AV_LOG_ERROR, "Unable to set DRC boost factor in the decoder\n"); return AVERROR_UNKNOWN; } } if (s->drc_cut != -1) { if (aacDecoder_SetParam(s->handle, AAC_DRC_ATTENUATION_FACTOR, s->drc_cut) != AAC_DEC_OK) { av_log(avctx, AV_LOG_ERROR, "Unable to set DRC attenuation factor in the decoder\n"); return AVERROR_UNKNOWN; } } if (s->drc_level != -1) { if (aacDecoder_SetParam(s->handle, AAC_DRC_REFERENCE_LEVEL, s->drc_level) != AAC_DEC_OK) { av_log(avctx, AV_LOG_ERROR, "Unable to set DRC reference level in the decoder\n"); return AVERROR_UNKNOWN; } } if (s->drc_heavy != -1) { if (aacDecoder_SetParam(s->handle, AAC_DRC_HEAVY_COMPRESSION, s->drc_heavy) != AAC_DEC_OK) { av_log(avctx, AV_LOG_ERROR, "Unable to set DRC heavy compression in the decoder\n"); return AVERROR_UNKNOWN; } } #ifdef AACDECODER_LIB_VL0 if (aacDecoder_SetParam(s->handle, AAC_PCM_LIMITER_ENABLE, s->level_limit) != AAC_DEC_OK) { av_log(avctx, AV_LOG_ERROR, "Unable to set in signal level limiting in the decoder\n"); return AVERROR_UNKNOWN; } #endif avctx->sample_fmt = AV_SAMPLE_FMT_S16; s->decoder_buffer_size = DECODER_BUFFSIZE * DECODER_MAX_CHANNELS; s->decoder_buffer = av_malloc(s->decoder_buffer_size); if (!s->decoder_buffer) { ret = AVERROR(ENOMEM); goto fail; } return 0; fail: fdk_aac_decode_close(avctx); return ret; }
true
FFmpeg
f34b152eb7b7e8d2aee57c710a072cf74173fbe1
6,218
int ff_hevc_decode_extradata(const uint8_t *data, int size, HEVCParamSets *ps, int *is_nalff, int *nal_length_size, int err_recognition, void *logctx) { int ret = 0; GetByteContext gb; bytestream2_init(&gb, data, size); if (size > 3 && (data[0] || data[1] || data[2] > 1)) { /* It seems the extradata is encoded as hvcC format. * Temporarily, we support configurationVersion==0 until 14496-15 3rd * is finalized. When finalized, configurationVersion will be 1 and we * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */ int i, j, num_arrays, nal_len_size; *is_nalff = 1; bytestream2_skip(&gb, 21); nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1; num_arrays = bytestream2_get_byte(&gb); /* nal units in the hvcC always have length coded with 2 bytes, * so put a fake nal_length_size = 2 while parsing them */ *nal_length_size = 2; /* Decode nal units from hvcC. */ for (i = 0; i < num_arrays; i++) { int type = bytestream2_get_byte(&gb) & 0x3f; int cnt = bytestream2_get_be16(&gb); for (j = 0; j < cnt; j++) { // +2 for the nal size field int nalsize = bytestream2_peek_be16(&gb) + 2; if (bytestream2_get_bytes_left(&gb) < nalsize) { av_log(logctx, AV_LOG_ERROR, "Invalid NAL unit size in extradata.\n"); return AVERROR_INVALIDDATA; } ret = hevc_decode_nal_units(gb.buffer, nalsize, ps, *is_nalff, *nal_length_size, logctx); if (ret < 0) { av_log(logctx, AV_LOG_ERROR, "Decoding nal unit %d %d from hvcC failed\n", type, i); return ret; } bytestream2_skip(&gb, nalsize); } } /* Now store right nal length size, that will be used to parse * all other nals */ *nal_length_size = nal_len_size; } else { *is_nalff = 0; ret = hevc_decode_nal_units(data, size, ps, *is_nalff, *nal_length_size, logctx); if (ret < 0) return ret; } return ret; }
true
FFmpeg
159ab4625bd3641e79b564335be8069dca881978
6,219
static void frame_thread_free(AVCodecContext *avctx, int thread_count) { FrameThreadContext *fctx = avctx->thread_opaque; AVCodec *codec = avctx->codec; int i; park_frame_worker_threads(fctx, thread_count); if (fctx->prev_thread && fctx->prev_thread != fctx->threads) update_context_from_thread(fctx->threads->avctx, fctx->prev_thread->avctx, 0); fctx->die = 1; for (i = 0; i < thread_count; i++) { PerThreadContext *p = &fctx->threads[i]; pthread_mutex_lock(&p->mutex); pthread_cond_signal(&p->input_cond); pthread_mutex_unlock(&p->mutex); pthread_join(p->thread, NULL); if (codec->close) codec->close(p->avctx); avctx->codec = NULL; release_delayed_buffers(p); } for (i = 0; i < thread_count; i++) { PerThreadContext *p = &fctx->threads[i]; avcodec_default_free_buffers(p->avctx); pthread_mutex_destroy(&p->mutex); pthread_mutex_destroy(&p->progress_mutex); pthread_cond_destroy(&p->input_cond); pthread_cond_destroy(&p->progress_cond); pthread_cond_destroy(&p->output_cond); av_freep(&p->avpkt.data); if (i) av_freep(&p->avctx->priv_data); av_freep(&p->avctx); } av_freep(&fctx->threads); pthread_mutex_destroy(&fctx->buffer_mutex); av_freep(&avctx->thread_opaque); avctx->has_b_frames -= avctx->thread_count - 1; }
true
FFmpeg
26ae9a5d7c448a3eb42641b546ee8d585ab716e6
6,220
int qio_dns_resolver_lookup_sync(QIODNSResolver *resolver, SocketAddress *addr, size_t *naddrs, SocketAddress ***addrs, Error **errp) { switch (addr->type) { case SOCKET_ADDRESS_KIND_INET: return qio_dns_resolver_lookup_sync_inet(resolver, addr, naddrs, addrs, errp); case SOCKET_ADDRESS_KIND_UNIX: case SOCKET_ADDRESS_KIND_VSOCK: case SOCKET_ADDRESS_KIND_FD: return qio_dns_resolver_lookup_sync_nop(resolver, addr, naddrs, addrs, errp); default: abort(); } }
false
qemu
dfd100f242370886bb6732f70f1f7cbd8eb9fedc
6,221
int fw_cfg_add_file(FWCfgState *s, const char *dir, const char *filename, uint8_t *data, uint32_t len) { const char *basename; int index; if (!s->files) { int dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * FW_CFG_FILE_SLOTS; s->files = qemu_mallocz(dsize); fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, (uint8_t*)s->files, dsize); } index = be32_to_cpu(s->files->count); if (index == FW_CFG_FILE_SLOTS) { fprintf(stderr, "fw_cfg: out of file slots\n"); return 0; } fw_cfg_add_bytes(s, FW_CFG_FILE_FIRST + index, data, len); basename = strrchr(filename, '/'); if (basename) { basename++; } else { basename = filename; } if (dir) { snprintf(s->files->f[index].name, sizeof(s->files->f[index].name), "%s/%s", dir, basename); } else { snprintf(s->files->f[index].name, sizeof(s->files->f[index].name), "%s", basename); } s->files->f[index].size = cpu_to_be32(len); s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); FW_CFG_DPRINTF("%s: #%d: %s (%d bytes)\n", __FUNCTION__, index, s->files->f[index].name, len); s->files->count = cpu_to_be32(index+1); return 1; }
false
qemu
de9352bcaed2452af1d2b06b829748676c691794
6,222
static void mov_text_text_cb(void *priv, const char *text, int len) { MovTextContext *s = priv; av_strlcpy(s->ptr, text, FFMIN(s->end - s->ptr, len + 1)); s->ptr += len; }
false
FFmpeg
b0635e2fcf80717dd618ef75d3317d62ed85c300
6,223
void qmp_balloon(int64_t value, Error **errp) { if (kvm_enabled() && !kvm_has_sync_mmu()) { error_set(errp, QERR_KVM_MISSING_CAP, "synchronous MMU", "balloon"); return; } if (value <= 0) { error_set(errp, QERR_INVALID_PARAMETER_VALUE, "target", "a size"); return; } if (qemu_balloon(value) == 0) { error_set(errp, QERR_DEVICE_NOT_ACTIVE, "balloon"); } }
false
qemu
6502a14734e71b2f6dd079b0a1e546e6aa2d2f8d
6,224
struct GuestFileSeek *qmp_guest_file_seek(int64_t handle, int64_t offset, int64_t whence, Error **errp) { GuestFileHandle *gfh = guest_file_handle_find(handle, errp); GuestFileSeek *seek_data = NULL; FILE *fh; int ret; if (!gfh) { return NULL; } fh = gfh->fh; ret = fseek(fh, offset, whence); if (ret == -1) { error_setg_errno(errp, errno, "failed to seek file"); if (errno == ESPIPE) { /* file is non-seekable, stdio shouldn't be buffering anyways */ gfh->state = RW_STATE_NEW; } } else { seek_data = g_new0(GuestFileSeek, 1); seek_data->position = ftell(fh); seek_data->eof = feof(fh); gfh->state = RW_STATE_NEW; } clearerr(fh); return seek_data; }
false
qemu
0a982b1bf3953dc8640c4d6e619fb1132ebbebc3
6,225
static bool virtio_device_endian_needed(void *opaque) { VirtIODevice *vdev = opaque; assert(vdev->device_endian != VIRTIO_DEVICE_ENDIAN_UNKNOWN); if (!virtio_has_feature(vdev, VIRTIO_F_VERSION_1)) { return vdev->device_endian != virtio_default_endian(); } /* Devices conforming to VIRTIO 1.0 or later are always LE. */ return vdev->device_endian != VIRTIO_DEVICE_ENDIAN_LITTLE; }
false
qemu
95129d6fc9ead97155627a4ca0cfd37282883658
6,226
static int uhci_handle_td(UHCIState *s, uint32_t addr, UHCI_TD *td, uint32_t *int_mask) { UHCIAsync *async; int len = 0, max_len; uint8_t pid; /* Is active ? */ if (!(td->ctrl & TD_CTRL_ACTIVE)) return 1; async = uhci_async_find_td(s, addr, td->token); if (async) { /* Already submitted */ async->valid = 32; if (!async->done) return 1; uhci_async_unlink(s, async); goto done; } /* Allocate new packet */ async = uhci_async_alloc(s); if (!async) return 1; async->valid = 10; async->td = addr; async->token = td->token; max_len = ((td->token >> 21) + 1) & 0x7ff; pid = td->token & 0xff; async->packet.pid = pid; async->packet.devaddr = (td->token >> 8) & 0x7f; async->packet.devep = (td->token >> 15) & 0xf; async->packet.data = async->buffer; async->packet.len = max_len; async->packet.complete_cb = uhci_async_complete; async->packet.complete_opaque = s; switch(pid) { case USB_TOKEN_OUT: case USB_TOKEN_SETUP: cpu_physical_memory_read(td->buffer, async->buffer, max_len); len = uhci_broadcast_packet(s, &async->packet); if (len >= 0) len = max_len; break; case USB_TOKEN_IN: len = uhci_broadcast_packet(s, &async->packet); break; default: /* invalid pid : frame interrupted */ uhci_async_free(s, async); s->status |= UHCI_STS_HCPERR; uhci_update_irq(s); return -1; } if (len == USB_RET_ASYNC) { uhci_async_link(s, async); return 2; } async->packet.len = len; done: len = uhci_complete_td(s, td, async, int_mask); uhci_async_free(s, async); return len; }
false
qemu
8e65b7c04965c8355e4ce43211582b6b83054e3d
6,227
static void omap_pwt_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { struct omap_pwt_s *s = (struct omap_pwt_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; if (size != 1) { omap_badwidth_write8(opaque, addr, value); return; } switch (offset) { case 0x00: /* FRC */ s->frc = value & 0x3f; break; case 0x04: /* VRC */ if ((value ^ s->vrc) & 1) { if (value & 1) printf("%s: %iHz buzz on\n", __FUNCTION__, (int) /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */ ((omap_clk_getrate(s->clk) >> 3) / /* Pre-multiplexer divider */ ((s->gcr & 2) ? 1 : 154) / /* Octave multiplexer */ (2 << (value & 3)) * /* 101/107 divider */ ((value & (1 << 2)) ? 101 : 107) * /* 49/55 divider */ ((value & (1 << 3)) ? 49 : 55) * /* 50/63 divider */ ((value & (1 << 4)) ? 50 : 63) * /* 80/127 divider */ ((value & (1 << 5)) ? 80 : 127) / (107 * 55 * 63 * 127))); else printf("%s: silence!\n", __FUNCTION__); } s->vrc = value & 0x7f; break; case 0x08: /* GCR */ s->gcr = value & 3; break; default: OMAP_BAD_REG(addr); return; } }
false
qemu
a89f364ae8740dfc31b321eed9ee454e996dc3c1
6,228
START_TEST(unterminated_array_comma) { QObject *obj = qobject_from_json("[32,"); fail_unless(obj == NULL); }
false
qemu
ef76dc59fa5203d146a2acf85a0ad5a5971a4824
6,229
uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index) { uint64_t token = 0; hwaddr pte_offset; pte_offset = pte_index * HASH_PTE_SIZE_64; if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { /* * HTAB is controlled by KVM. Fetch the PTEG into a new buffer. */ token = kvmppc_hash64_read_pteg(cpu, pte_index); } else if (cpu->env.external_htab) { /* * HTAB is controlled by QEMU. Just point to the internally * accessible PTEG. */ token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset; } else if (cpu->env.htab_base) { token = cpu->env.htab_base + pte_offset; } return token; }
false
qemu
1ad9f0a464fe78d30ee60b3629f7a825cf2fab13
6,230
static inline void gen_neon_negl(TCGv var, int size) { switch (size) { case 0: gen_helper_neon_negl_u16(var, var); break; case 1: gen_helper_neon_negl_u32(var, var); break; case 2: gen_helper_neon_negl_u64(var, var); break; default: abort(); } }
false
qemu
a7812ae412311d7d47f8aa85656faadac9d64b56
6,231
void curses_display_init(DisplayState *ds, int full_screen) { #ifndef _WIN32 if (!isatty(1)) { fprintf(stderr, "We need a terminal output\n"); exit(1); } #endif curses_setup(); curses_keyboard_setup(); atexit(curses_atexit); #ifndef _WIN32 signal(SIGINT, SIG_DFL); signal(SIGQUIT, SIG_DFL); #if defined(SIGWINCH) && defined(KEY_RESIZE) /* some curses implementations provide a handler, but we * want to be sure this is handled regardless of the library */ signal(SIGWINCH, curses_winch_handler); #endif #endif ds->data = (void *) screen; ds->linesize = 0; ds->depth = 0; ds->width = 640; ds->height = 400; ds->dpy_update = curses_update; ds->dpy_resize = curses_resize; ds->dpy_refresh = curses_refresh; ds->dpy_text_cursor = curses_cursor_position; invalidate = 1; /* Standard VGA initial text mode dimensions */ curses_resize(ds, 80, 25); }
false
qemu
5b08fc106d3146ddc1447d82d4770fc402fc363b
6,232
void qio_channel_socket_dgram_async(QIOChannelSocket *ioc, SocketAddress *localAddr, SocketAddress *remoteAddr, QIOTaskFunc callback, gpointer opaque, GDestroyNotify destroy) { QIOTask *task = qio_task_new( OBJECT(ioc), callback, opaque, destroy); struct QIOChannelSocketDGramWorkerData *data = g_new0( struct QIOChannelSocketDGramWorkerData, 1); data->localAddr = QAPI_CLONE(SocketAddress, localAddr); data->remoteAddr = QAPI_CLONE(SocketAddress, remoteAddr); trace_qio_channel_socket_dgram_async(ioc, localAddr, remoteAddr); qio_task_run_in_thread(task, qio_channel_socket_dgram_worker, data, qio_channel_socket_dgram_worker_free); }
false
qemu
dfd100f242370886bb6732f70f1f7cbd8eb9fedc
6,233
static av_cold int libx265_encode_init(AVCodecContext *avctx) { libx265Context *ctx = avctx->priv_data; ctx->api = x265_api_get(av_pix_fmt_desc_get(avctx->pix_fmt)->comp[0].depth_minus1 + 1); if (!ctx->api) ctx->api = x265_api_get(0); if (avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL && !av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_w) { av_log(avctx, AV_LOG_ERROR, "4:2:2 and 4:4:4 support is not fully defined for HEVC yet. " "Set -strict experimental to encode anyway.\n"); return AVERROR(ENOSYS); } avctx->coded_frame = av_frame_alloc(); if (!avctx->coded_frame) { av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n"); return AVERROR(ENOMEM); } ctx->params = ctx->api->param_alloc(); if (!ctx->params) { av_log(avctx, AV_LOG_ERROR, "Could not allocate x265 param structure.\n"); return AVERROR(ENOMEM); } if (ctx->api->param_default_preset(ctx->params, ctx->preset, ctx->tune) < 0) { int i; av_log(avctx, AV_LOG_ERROR, "Error setting preset/tune %s/%s.\n", ctx->preset, ctx->tune); av_log(avctx, AV_LOG_INFO, "Possible presets:"); for (i = 0; x265_preset_names[i]; i++) av_log(avctx, AV_LOG_INFO, " %s", x265_preset_names[i]); av_log(avctx, AV_LOG_INFO, "\n"); av_log(avctx, AV_LOG_INFO, "Possible tunes:"); for (i = 0; x265_tune_names[i]; i++) av_log(avctx, AV_LOG_INFO, " %s", x265_tune_names[i]); av_log(avctx, AV_LOG_INFO, "\n"); return AVERROR(EINVAL); } ctx->params->frameNumThreads = avctx->thread_count; ctx->params->fpsNum = avctx->time_base.den; ctx->params->fpsDenom = avctx->time_base.num * avctx->ticks_per_frame; ctx->params->sourceWidth = avctx->width; ctx->params->sourceHeight = avctx->height; ctx->params->bEnablePsnr = !!(avctx->flags & CODEC_FLAG_PSNR); if ((avctx->color_primaries <= AVCOL_PRI_BT2020 && avctx->color_primaries != AVCOL_PRI_UNSPECIFIED) || (avctx->color_trc <= AVCOL_TRC_BT2020_12 && avctx->color_trc != AVCOL_TRC_UNSPECIFIED) || (avctx->colorspace <= AVCOL_SPC_BT2020_CL && avctx->colorspace != AVCOL_SPC_UNSPECIFIED)) { ctx->params->vui.bEnableVideoSignalTypePresentFlag = 1; ctx->params->vui.bEnableColorDescriptionPresentFlag = 1; // x265 validates the parameters internally ctx->params->vui.colorPrimaries = avctx->color_primaries; ctx->params->vui.transferCharacteristics = avctx->color_trc; ctx->params->vui.matrixCoeffs = avctx->colorspace; } if (avctx->sample_aspect_ratio.num > 0 && avctx->sample_aspect_ratio.den > 0) { char sar[12]; int sar_num, sar_den; av_reduce(&sar_num, &sar_den, avctx->sample_aspect_ratio.num, avctx->sample_aspect_ratio.den, 65535); snprintf(sar, sizeof(sar), "%d:%d", sar_num, sar_den); if (ctx->api->param_parse(ctx->params, "sar", sar) == X265_PARAM_BAD_VALUE) { av_log(avctx, AV_LOG_ERROR, "Invalid SAR: %d:%d.\n", sar_num, sar_den); return AVERROR_INVALIDDATA; } } switch (avctx->pix_fmt) { case AV_PIX_FMT_YUV420P: case AV_PIX_FMT_YUV420P10: ctx->params->internalCsp = X265_CSP_I420; break; case AV_PIX_FMT_YUV422P: case AV_PIX_FMT_YUV422P10: ctx->params->internalCsp = X265_CSP_I422; break; case AV_PIX_FMT_YUV444P: case AV_PIX_FMT_YUV444P10: ctx->params->internalCsp = X265_CSP_I444; break; } if (ctx->crf >= 0) { char crf[6]; snprintf(crf, sizeof(crf), "%2.2f", ctx->crf); if (ctx->api->param_parse(ctx->params, "crf", crf) == X265_PARAM_BAD_VALUE) { av_log(avctx, AV_LOG_ERROR, "Invalid crf: %2.2f.\n", ctx->crf); return AVERROR(EINVAL); } } else if (avctx->bit_rate > 0) { ctx->params->rc.bitrate = avctx->bit_rate / 1000; ctx->params->rc.rateControlMode = X265_RC_ABR; } if (!(avctx->flags & CODEC_FLAG_GLOBAL_HEADER)) ctx->params->bRepeatHeaders = 1; if (ctx->x265_opts) { AVDictionary *dict = NULL; AVDictionaryEntry *en = NULL; if (!av_dict_parse_string(&dict, ctx->x265_opts, "=", ":", 0)) { while ((en = av_dict_get(dict, "", en, AV_DICT_IGNORE_SUFFIX))) { int parse_ret = ctx->api->param_parse(ctx->params, en->key, en->value); switch (parse_ret) { case X265_PARAM_BAD_NAME: av_log(avctx, AV_LOG_WARNING, "Unknown option: %s.\n", en->key); break; case X265_PARAM_BAD_VALUE: av_log(avctx, AV_LOG_WARNING, "Invalid value for %s: %s.\n", en->key, en->value); break; default: break; } } av_dict_free(&dict); } } ctx->encoder = ctx->api->encoder_open(ctx->params); if (!ctx->encoder) { av_log(avctx, AV_LOG_ERROR, "Cannot open libx265 encoder.\n"); libx265_encode_close(avctx); return AVERROR_INVALIDDATA; } if (avctx->flags & CODEC_FLAG_GLOBAL_HEADER) { x265_nal *nal; int nnal; avctx->extradata_size = ctx->api->encoder_headers(ctx->encoder, &nal, &nnal); if (avctx->extradata_size <= 0) { av_log(avctx, AV_LOG_ERROR, "Cannot encode headers.\n"); libx265_encode_close(avctx); return AVERROR_INVALIDDATA; } avctx->extradata = av_malloc(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE); if (!avctx->extradata) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate HEVC header of size %d.\n", avctx->extradata_size); libx265_encode_close(avctx); return AVERROR(ENOMEM); } memcpy(avctx->extradata, nal[0].payload, avctx->extradata_size); } return 0; }
false
FFmpeg
d6604b29ef544793479d7fb4e05ef6622bb3e534
6,234
static uint32_t set_allocation_state(sPAPRDRConnector *drc, sPAPRDRAllocationState state) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); trace_spapr_drc_set_allocation_state(get_index(drc), state); if (state == SPAPR_DR_ALLOCATION_STATE_USABLE) { /* if there's no resource/device associated with the DRC, there's * no way for us to put it in an allocation state consistent with * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should * result in an RTAS return code of -3 / "no such indicator" */ if (!drc->dev) { return RTAS_OUT_NO_SUCH_INDICATOR; } if (drc->awaiting_release && drc->awaiting_allocation) { /* kernel is acknowledging a previous hotplug event * while we are already removing it. * it's safe to ignore awaiting_allocation here since we know the * situation is predicated on the guest either already having done * so (boot-time hotplug), or never being able to acquire in the * first place (hotplug followed by immediate unplug). */ drc->awaiting_allocation_skippable = true; return RTAS_OUT_NO_SUCH_INDICATOR; } } if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI) { drc->allocation_state = state; if (drc->awaiting_release && drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) { trace_spapr_drc_set_allocation_state_finalizing(get_index(drc)); drck->detach(drc, DEVICE(drc->dev), drc->detach_cb, drc->detach_cb_opaque, NULL); } else if (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) { drc->awaiting_allocation = false; } } return RTAS_OUT_SUCCESS; }
false
qemu
318347234d7069b62d38391dd27e269a3107d668
6,235
static void vfio_pci_reset_handler(void *opaque) { VFIOGroup *group; VFIOPCIDevice *vdev; QLIST_FOREACH(group, &group_list, next) { QLIST_FOREACH(vdev, &group->device_list, next) { if (!vdev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { vdev->needs_reset = true; } } } QLIST_FOREACH(group, &group_list, next) { QLIST_FOREACH(vdev, &group->device_list, next) { if (vdev->needs_reset) { vfio_pci_hot_reset_multi(vdev); } } } }
false
qemu
b47d8efa9f430c332bf96ce6eede169eb48422ad
6,236
static void virt_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->init = machvirt_init; /* Start max_cpus at the maximum QEMU supports. We'll further restrict * it later in machvirt_init, where we have more information about the * configuration of the particular instance. */ mc->max_cpus = MAX_CPUMASK_BITS; mc->has_dynamic_sysbus = true; mc->block_default_type = IF_VIRTIO; mc->no_cdrom = 1; mc->pci_allow_0_address = true; }
false
qemu
079019f2e319bd1279681b6c1d7dde785d09e69e
6,237
static void xtensa_lx60_init(MachineState *machine) { static const LxBoardDesc lx60_board = { .flash_base = 0xf8000000, .flash_size = 0x00400000, .flash_sector_size = 0x10000, .sram_size = 0x20000, }; lx_init(&lx60_board, machine); }
false
qemu
68931a4082812f56657b39168e815c48f0ab0a8c
6,238
int udp_output2(struct socket *so, struct mbuf *m, struct sockaddr_in *saddr, struct sockaddr_in *daddr, int iptos) { register struct udpiphdr *ui; int error = 0; DEBUG_CALL("udp_output"); DEBUG_ARG("so = %p", so); DEBUG_ARG("m = %p", m); DEBUG_ARG("saddr = %lx", (long)saddr->sin_addr.s_addr); DEBUG_ARG("daddr = %lx", (long)daddr->sin_addr.s_addr); /* * Adjust for header */ m->m_data -= sizeof(struct udpiphdr); m->m_len += sizeof(struct udpiphdr); /* * Fill in mbuf with extended UDP header * and addresses and length put into network format. */ ui = mtod(m, struct udpiphdr *); memset(&ui->ui_i.ih_mbuf, 0 , sizeof(struct mbuf_ptr)); ui->ui_x1 = 0; ui->ui_pr = IPPROTO_UDP; ui->ui_len = htons(m->m_len - sizeof(struct ip)); /* XXXXX Check for from-one-location sockets, or from-any-location sockets */ ui->ui_src = saddr->sin_addr; ui->ui_dst = daddr->sin_addr; ui->ui_sport = saddr->sin_port; ui->ui_dport = daddr->sin_port; ui->ui_ulen = ui->ui_len; /* * Stuff checksum and output datagram. */ ui->ui_sum = 0; if ((ui->ui_sum = cksum(m, m->m_len)) == 0) ui->ui_sum = 0xffff; ((struct ip *)ui)->ip_len = m->m_len; ((struct ip *)ui)->ip_ttl = IPDEFTTL; ((struct ip *)ui)->ip_tos = iptos; error = ip_output(so, m); return (error); }
false
qemu
5379229a2708df3a1506113315214c3ce5325859
6,239
static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg) { S390CPU *cpu = S390_CPU(cs); S390CPUClass *scc = S390_CPU_GET_CLASS(cpu); SigpInfo *si = arg.host_ptr; cpu_synchronize_state(cs); scc->initial_cpu_reset(cs); cpu_synchronize_post_reset(cs); si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; }
false
qemu
74b4c74d5efb0a489bdf0acc5b5d0197167e7649
6,240
void cris_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) { unsigned int i; (*cpu_fprintf)(f, "Available CPUs:\n"); for (i = 0; i < ARRAY_SIZE(cris_cores); i++) { (*cpu_fprintf)(f, " %s\n", cris_cores[i].name); } }
false
qemu
9a78eead0c74333a394c0f7bbfc4423ac746fcd5
6,242
void GCC_FMT_ATTR(2, 3) virtio_error(VirtIODevice *vdev, const char *fmt, ...) { va_list ap; va_start(ap, fmt); error_vreport(fmt, ap); va_end(ap); vdev->broken = true; if (virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) { virtio_set_status(vdev, vdev->status | VIRTIO_CONFIG_S_NEEDS_RESET); virtio_notify_config(vdev); } }
false
qemu
66453cff9e5e75344c601cd7674c8ef5fefee8a6
6,244
const char *avcodec_configuration(void) { return FFMPEG_CONFIGURATION; }
false
FFmpeg
29ba091136a5e04574f7bfc1b17536c923958f6f
6,245
av_cold void ff_ps_ctx_init(PSContext *ps) { ipdopd_reset(ps->ipd_hist, ps->opd_hist); }
false
FFmpeg
e90e1f558a194ef75e396ac9ae5128be03e66362
6,246
void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down) { if (row >= 5 || row < 0) hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row); if (down) s->buttons[row] |= 1 << col; else s->buttons[row] &= ~(1 << col); omap_mpuio_kbd_update(s); }
false
qemu
a89f364ae8740dfc31b321eed9ee454e996dc3c1
6,247
int ff_put_wav_header(AVIOContext *pb, AVCodecContext *enc) { int bps, blkalign, bytespersec; int hdrsize = 18; int waveformatextensible; uint8_t temp[256]; uint8_t *riff_extradata= temp; uint8_t *riff_extradata_start= temp; if(!enc->codec_tag || enc->codec_tag > 0xffff) return -1; waveformatextensible = (enc->channels > 2 && enc->channel_layout) || enc->sample_rate > 48000 || av_get_bits_per_sample(enc->codec_id) > 16; if (waveformatextensible) { avio_wl16(pb, 0xfffe); } else { avio_wl16(pb, enc->codec_tag); } avio_wl16(pb, enc->channels); avio_wl32(pb, enc->sample_rate); if (enc->codec_id == CODEC_ID_MP2 || enc->codec_id == CODEC_ID_MP3 || enc->codec_id == CODEC_ID_GSM_MS) { bps = 0; } else if (enc->codec_id == CODEC_ID_ADPCM_G726) { bps = 4; } else { if (!(bps = av_get_bits_per_sample(enc->codec_id))) bps = 16; // default to 16 } if(bps != enc->bits_per_coded_sample && enc->bits_per_coded_sample){ av_log(enc, AV_LOG_WARNING, "requested bits_per_coded_sample (%d) and actually stored (%d) differ\n", enc->bits_per_coded_sample, bps); } if (enc->codec_id == CODEC_ID_MP2 || enc->codec_id == CODEC_ID_MP3) { blkalign = enc->frame_size; //this is wrong, but it seems many demuxers do not work if this is set correctly //blkalign = 144 * enc->bit_rate/enc->sample_rate; } else if (enc->codec_id == CODEC_ID_AC3) { blkalign = 3840; //maximum bytes per frame } else if (enc->codec_id == CODEC_ID_ADPCM_G726) { // blkalign = 1; } else if (enc->block_align != 0) { /* specified by the codec */ blkalign = enc->block_align; } else blkalign = enc->channels*bps >> 3; if (enc->codec_id == CODEC_ID_PCM_U8 || enc->codec_id == CODEC_ID_PCM_S24LE || enc->codec_id == CODEC_ID_PCM_S32LE || enc->codec_id == CODEC_ID_PCM_F32LE || enc->codec_id == CODEC_ID_PCM_F64LE || enc->codec_id == CODEC_ID_PCM_S16LE) { bytespersec = enc->sample_rate * blkalign; } else { bytespersec = enc->bit_rate / 8; } avio_wl32(pb, bytespersec); /* bytes per second */ avio_wl16(pb, blkalign); /* block align */ avio_wl16(pb, bps); /* bits per sample */ if (enc->codec_id == CODEC_ID_MP3) { hdrsize += 12; bytestream_put_le16(&riff_extradata, 1); /* wID */ bytestream_put_le32(&riff_extradata, 2); /* fdwFlags */ bytestream_put_le16(&riff_extradata, 1152); /* nBlockSize */ bytestream_put_le16(&riff_extradata, 1); /* nFramesPerBlock */ bytestream_put_le16(&riff_extradata, 1393); /* nCodecDelay */ } else if (enc->codec_id == CODEC_ID_MP2) { hdrsize += 22; bytestream_put_le16(&riff_extradata, 2); /* fwHeadLayer */ bytestream_put_le32(&riff_extradata, enc->bit_rate); /* dwHeadBitrate */ bytestream_put_le16(&riff_extradata, enc->channels == 2 ? 1 : 8); /* fwHeadMode */ bytestream_put_le16(&riff_extradata, 0); /* fwHeadModeExt */ bytestream_put_le16(&riff_extradata, 1); /* wHeadEmphasis */ bytestream_put_le16(&riff_extradata, 16); /* fwHeadFlags */ bytestream_put_le32(&riff_extradata, 0); /* dwPTSLow */ bytestream_put_le32(&riff_extradata, 0); /* dwPTSHigh */ } else if (enc->codec_id == CODEC_ID_GSM_MS || enc->codec_id == CODEC_ID_ADPCM_IMA_WAV) { hdrsize += 2; bytestream_put_le16(&riff_extradata, enc->frame_size); /* wSamplesPerBlock */ } else if(enc->extradata_size){ riff_extradata_start= enc->extradata; riff_extradata= enc->extradata + enc->extradata_size; hdrsize += enc->extradata_size; } else if (!waveformatextensible){ hdrsize -= 2; } if(waveformatextensible) { /* write WAVEFORMATEXTENSIBLE extensions */ hdrsize += 22; avio_wl16(pb, riff_extradata - riff_extradata_start + 22); /* 22 is WAVEFORMATEXTENSIBLE size */ avio_wl16(pb, enc->bits_per_coded_sample); /* ValidBitsPerSample || SamplesPerBlock || Reserved */ avio_wl32(pb, enc->channel_layout); /* dwChannelMask */ avio_wl32(pb, enc->codec_tag); /* GUID + next 3 */ avio_wl32(pb, 0x00100000); avio_wl32(pb, 0xAA000080); avio_wl32(pb, 0x719B3800); } else if(riff_extradata - riff_extradata_start) { avio_wl16(pb, riff_extradata - riff_extradata_start); } avio_write(pb, riff_extradata_start, riff_extradata - riff_extradata_start); if(hdrsize&1){ hdrsize++; avio_w8(pb, 0); } return hdrsize; }
false
FFmpeg
2c4e08d89327595f7f4be57dda4b3775e1198d5e
6,248
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) { CPUState *cpu = current_cpu; CPUClass *cc = CPU_GET_CLASS(cpu); CPUArchState *env = cpu->env_ptr; target_ulong pc, cs_base; target_ulong vaddr; CPUWatchpoint *wp; uint32_t cpu_flags; assert(tcg_enabled()); if (cpu->watchpoint_hit) { /* We re-entered the check after replacing the TB. Now raise * the debug interrupt so that is will trigger after the * current instruction. */ cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); return; } vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { if (cpu_watchpoint_address_matches(wp, vaddr, len) && (wp->flags & flags)) { if (flags == BP_MEM_READ) { wp->flags |= BP_WATCHPOINT_HIT_READ; } else { wp->flags |= BP_WATCHPOINT_HIT_WRITE; } wp->hitaddr = vaddr; wp->hitattrs = attrs; if (!cpu->watchpoint_hit) { if (wp->flags & BP_CPU && !cc->debug_check_watchpoint(cpu, wp)) { wp->flags &= ~BP_WATCHPOINT_HIT; continue; } cpu->watchpoint_hit = wp; /* Both tb_lock and iothread_mutex will be reset when * cpu_loop_exit or cpu_loop_exit_noexc longjmp * back into the cpu_exec main loop. */ tb_lock(); tb_check_watchpoint(cpu); if (wp->flags & BP_STOP_BEFORE_ACCESS) { cpu->exception_index = EXCP_DEBUG; cpu_loop_exit(cpu); } else { cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); tb_gen_code(cpu, pc, cs_base, cpu_flags, 1 | curr_cflags()); cpu_loop_exit_noexc(cpu); } } } else { wp->flags &= ~BP_WATCHPOINT_HIT; } } }
false
qemu
9b990ee5a3cc6aa38f81266fb0c6ef37a36c45b9
6,249
dbdma_control_write(DBDMA_channel *ch) { uint16_t mask, value; uint32_t status; mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff; value = ch->regs[DBDMA_CONTROL] & 0xffff; value &= (RUN | PAUSE | FLUSH | WAKE | DEVSTAT); status = ch->regs[DBDMA_STATUS]; status = (value & mask) | (status & ~mask); if (status & WAKE) status |= ACTIVE; if (status & RUN) { status |= ACTIVE; status &= ~DEAD; } if (status & PAUSE) status &= ~ACTIVE; if ((ch->regs[DBDMA_STATUS] & RUN) && !(status & RUN)) { /* RUN is cleared */ status &= ~(ACTIVE|DEAD); } DBDMA_DPRINTF(" status 0x%08x\n", status); ch->regs[DBDMA_STATUS] = status; if (status & ACTIVE) qemu_bh_schedule(dbdma_bh); if (status & FLUSH) ch->flush(&ch->io); }
false
qemu
a9ceb76d55abfed9426a819024aa3a4b87266c9f
6,250
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, int access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size_ptr, uint32_t *fsr, ARMMMUFaultInfo *fi) { ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); /* Read an LPAE long-descriptor translation table. */ MMUFaultType fault_type = translation_fault; uint32_t level; uint32_t epd = 0; int32_t t0sz, t1sz; uint32_t tg; uint64_t ttbr; int ttbr_select; hwaddr descaddr, indexmask, indexmask_grainsize; uint32_t tableattrs; target_ulong page_size; uint32_t attrs; int32_t stride = 9; int32_t va_size; int inputsize; int32_t tbi = 0; TCR *tcr = regime_tcr(env, mmu_idx); int ap, ns, xn, pxn; uint32_t el = regime_el(env, mmu_idx); bool ttbr1_valid = true; uint64_t descaddrmask; /* TODO: * This code does not handle the different format TCR for VTCR_EL2. * This code also does not support shareability levels. * Attribute and permission bit handling should also be checked when adding * support for those page table walks. */ if (arm_el_is_aa64(env, el)) { level = 0; va_size = 64; if (el > 1) { if (mmu_idx != ARMMMUIdx_S2NS) { tbi = extract64(tcr->raw_tcr, 20, 1); } } else { if (extract64(address, 55, 1)) { tbi = extract64(tcr->raw_tcr, 38, 1); } else { tbi = extract64(tcr->raw_tcr, 37, 1); } } tbi *= 8; /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it * invalid. */ if (el > 1) { ttbr1_valid = false; } } else { level = 1; va_size = 32; /* There is no TTBR1 for EL2 */ if (el == 2) { ttbr1_valid = false; } } /* Determine whether this address is in the region controlled by * TTBR0 or TTBR1 (or if it is in neither region and should fault). * This is a Non-secure PL0/1 stage 1 translation, so controlled by * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: */ if (va_size == 64) { /* AArch64 translation. */ t0sz = extract32(tcr->raw_tcr, 0, 6); t0sz = MIN(t0sz, 39); t0sz = MAX(t0sz, 16); } else if (mmu_idx != ARMMMUIdx_S2NS) { /* AArch32 stage 1 translation. */ t0sz = extract32(tcr->raw_tcr, 0, 3); } else { /* AArch32 stage 2 translation. */ bool sext = extract32(tcr->raw_tcr, 4, 1); bool sign = extract32(tcr->raw_tcr, 3, 1); t0sz = sextract32(tcr->raw_tcr, 0, 4); /* If the sign-extend bit is not the same as t0sz[3], the result * is unpredictable. Flag this as a guest error. */ if (sign != sext) { qemu_log_mask(LOG_GUEST_ERROR, "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n"); } } t1sz = extract32(tcr->raw_tcr, 16, 6); if (va_size == 64) { t1sz = MIN(t1sz, 39); t1sz = MAX(t1sz, 16); } if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { /* there is a ttbr0 region and we are in it (high bits all zero) */ ttbr_select = 0; } else if (ttbr1_valid && t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) { /* there is a ttbr1 region and we are in it (high bits all one) */ ttbr_select = 1; } else if (!t0sz) { /* ttbr0 region is "everything not in the ttbr1 region" */ ttbr_select = 0; } else if (!t1sz && ttbr1_valid) { /* ttbr1 region is "everything not in the ttbr0 region" */ ttbr_select = 1; } else { /* in the gap between the two regions, this is a Translation fault */ fault_type = translation_fault; goto do_fault; } /* Note that QEMU ignores shareability and cacheability attributes, * so we don't need to do anything with the SH, ORGN, IRGN fields * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently * implement any ASID-like capability so we can ignore it (instead * we will always flush the TLB any time the ASID is changed). */ if (ttbr_select == 0) { ttbr = regime_ttbr(env, mmu_idx, 0); if (el < 2) { epd = extract32(tcr->raw_tcr, 7, 1); } inputsize = va_size - t0sz; tg = extract32(tcr->raw_tcr, 14, 2); if (tg == 1) { /* 64KB pages */ stride = 13; } if (tg == 2) { /* 16KB pages */ stride = 11; } } else { /* We should only be here if TTBR1 is valid */ assert(ttbr1_valid); ttbr = regime_ttbr(env, mmu_idx, 1); epd = extract32(tcr->raw_tcr, 23, 1); inputsize = va_size - t1sz; tg = extract32(tcr->raw_tcr, 30, 2); if (tg == 3) { /* 64KB pages */ stride = 13; } if (tg == 1) { /* 16KB pages */ stride = 11; } } /* Here we should have set up all the parameters for the translation: * va_size, inputsize, ttbr, epd, stride, tbi */ if (epd) { /* Translation table walk disabled => Translation fault on TLB miss * Note: This is always 0 on 64-bit EL2 and EL3. */ goto do_fault; } if (mmu_idx != ARMMMUIdx_S2NS) { /* The starting level depends on the virtual address size (which can * be up to 48 bits) and the translation granule size. It indicates * the number of strides (stride bits at a time) needed to * consume the bits of the input address. In the pseudocode this is: * level = 4 - RoundUp((inputsize - grainsize) / stride) * where their 'inputsize' is our 'inputsize', 'grainsize' is * our 'stride + 3' and 'stride' is our 'stride'. * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: * = 4 - (inputsize - stride - 3 + stride - 1) / stride * = 4 - (inputsize - 4) / stride; */ level = 4 - (inputsize - 4) / stride; } else { /* For stage 2 translations the starting level is specified by the * VTCR_EL2.SL0 field (whose interpretation depends on the page size) */ uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); uint32_t startlevel; bool ok; if (va_size == 32 || stride == 9) { /* AArch32 or 4KB pages */ startlevel = 2 - sl0; } else { /* 16KB or 64KB pages */ startlevel = 3 - sl0; } /* Check that the starting level is valid. */ ok = check_s2_mmu_setup(cpu, va_size == 64, startlevel, inputsize, stride); if (!ok) { fault_type = translation_fault; goto do_fault; } level = startlevel; } indexmask_grainsize = (1ULL << (stride + 3)) - 1; indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; /* Now we can extract the actual base address from the TTBR */ descaddr = extract64(ttbr, 0, 48); descaddr &= ~indexmask; /* The address field in the descriptor goes up to bit 39 for ARMv7 * but up to bit 47 for ARMv8, but we use the descaddrmask * up to bit 39 for AArch32, because we don't need other bits in that case * to construct next descriptor address (anyway they should be all zeroes). */ descaddrmask = ((1ull << (va_size == 64 ? 48 : 40)) - 1) & ~indexmask_grainsize; /* Secure accesses start with the page table in secure memory and * can be downgraded to non-secure at any step. Non-secure accesses * remain non-secure. We implement this by just ORing in the NSTable/NS * bits at each step. */ tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); for (;;) { uint64_t descriptor; bool nstable; descaddr |= (address >> (stride * (4 - level))) & indexmask; descaddr &= ~7ULL; nstable = extract32(tableattrs, 4, 1); descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); if (fi->s1ptw) { goto do_fault; } if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { /* Invalid, or the Reserved level 3 encoding */ goto do_fault; } descaddr = descriptor & descaddrmask; if ((descriptor & 2) && (level < 3)) { /* Table entry. The top five bits are attributes which may * propagate down through lower levels of the table (and * which are all arranged so that 0 means "no effect", so * we can gather them up by ORing in the bits at each level). */ tableattrs |= extract64(descriptor, 59, 5); level++; indexmask = indexmask_grainsize; continue; } /* Block entry at level 1 or 2, or page entry at level 3. * These are basically the same thing, although the number * of bits we pull in from the vaddr varies. */ page_size = (1ULL << ((stride * (4 - level)) + 3)); descaddr |= (address & (page_size - 1)); /* Extract attributes from the descriptor */ attrs = extract64(descriptor, 2, 10) | (extract64(descriptor, 52, 12) << 10); if (mmu_idx == ARMMMUIdx_S2NS) { /* Stage 2 table descriptors do not include any attribute fields */ break; } /* Merge in attributes from table descriptors */ attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 * means "force PL1 access only", which means forcing AP[1] to 0. */ if (extract32(tableattrs, 2, 1)) { attrs &= ~(1 << 4); } attrs |= nstable << 3; /* NS */ break; } /* Here descaddr is the final physical address, and attributes * are all in attrs. */ fault_type = access_fault; if ((attrs & (1 << 8)) == 0) { /* Access flag */ goto do_fault; } ap = extract32(attrs, 4, 2); xn = extract32(attrs, 12, 1); if (mmu_idx == ARMMMUIdx_S2NS) { ns = true; *prot = get_S2prot(env, ap, xn); } else { ns = extract32(attrs, 3, 1); pxn = extract32(attrs, 11, 1); *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); } fault_type = permission_fault; if (!(*prot & (1 << access_type))) { goto do_fault; } if (ns) { /* The NS bit will (as required by the architecture) have no effect if * the CPU doesn't support TZ or this is a non-secure translation * regime, because the attribute will already be non-secure. */ txattrs->secure = false; } *phys_ptr = descaddr; *page_size_ptr = page_size; return false; do_fault: /* Long-descriptor format IFSR/DFSR value */ *fsr = (1 << 9) | (fault_type << 2) | level; /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); return true; }
false
qemu
6e99f762612827afeff54add2e4fc2c3b2657fed
6,252
static void monitor_parse(const char *optarg, const char *mode, bool pretty) { static int monitor_device_index = 0; Error *local_err = NULL; QemuOpts *opts; const char *p; char label[32]; int def = 0; if (strstart(optarg, "chardev:", &p)) { snprintf(label, sizeof(label), "%s", p); } else { snprintf(label, sizeof(label), "compat_monitor%d", monitor_device_index); if (monitor_device_index == 0) { def = 1; } opts = qemu_chr_parse_compat(label, optarg); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } } opts = qemu_opts_create(qemu_find_opts("mon"), label, 1, &local_err); if (!opts) { error_report_err(local_err); exit(1); } qemu_opt_set(opts, "mode", mode, &error_abort); qemu_opt_set(opts, "chardev", label, &error_abort); qemu_opt_set_bool(opts, "pretty", pretty, &error_abort); if (def) qemu_opt_set(opts, "default", "on", &error_abort); monitor_device_index++; }
false
qemu
f61eddcb2bb5cbbdd1d911b7e937db9affc29028
6,253
void drive_hot_add(Monitor *mon, const QDict *qdict) { int dom, pci_bus; unsigned slot; int type, bus; int success = 0; PCIDevice *dev; DriveInfo *dinfo; const char *pci_addr = qdict_get_str(qdict, "pci_addr"); const char *opts = qdict_get_str(qdict, "opts"); BusState *scsibus; if (pci_read_devaddr(mon, pci_addr, &dom, &pci_bus, &slot)) { return; } dev = pci_find_device(pci_bus, slot, 0); if (!dev) { monitor_printf(mon, "no pci device with address %s\n", pci_addr); return; } dinfo = add_init_drive(opts); if (!dinfo) return; if (dinfo->devaddr) { monitor_printf(mon, "Parameter addr not supported\n"); return; } type = dinfo->type; bus = drive_get_max_bus (type); switch (type) { case IF_SCSI: success = 1; scsibus = LIST_FIRST(&dev->qdev.child_bus); scsi_bus_legacy_add_drive(DO_UPCAST(SCSIBus, qbus, scsibus), dinfo, dinfo->unit); break; default: monitor_printf(mon, "Can't hot-add drive to type %d\n", type); } if (success) monitor_printf(mon, "OK bus %d, unit %d\n", dinfo->bus, dinfo->unit); return; }
false
qemu
72cf2d4f0e181d0d3a3122e04129c58a95da713e
6,254
build_append_notify(GArray *device, const char *name, const char *format, int skip, int count) { int i; GArray *method = build_alloc_array(); uint8_t op = 0x14; /* MethodOp */ build_append_nameseg(method, "%s", name); build_append_byte(method, 0x02); /* MethodFlags: ArgCount */ for (i = skip; i < count; i++) { GArray *target = build_alloc_array(); build_append_nameseg(target, format, i); assert(i < 256); /* Fits in 1 byte */ build_append_notify_target(method, target, i, 1); build_free_array(target); } build_package(method, op, 2); build_append_array(device, method); build_free_array(method); }
false
qemu
99fd437dee468609de8218f0eb3b16621fb6a9c9
6,255
void virtio_input_send(VirtIOInput *vinput, virtio_input_event *event) { VirtQueueElement *elem; unsigned have, need; int i, len; if (!vinput->active) { return; } /* queue up events ... */ if (vinput->qindex == vinput->qsize) { vinput->qsize++; vinput->queue = g_realloc(vinput->queue, vinput->qsize * sizeof(virtio_input_event)); } vinput->queue[vinput->qindex++] = *event; /* ... until we see a report sync ... */ if (event->type != cpu_to_le16(EV_SYN) || event->code != cpu_to_le16(SYN_REPORT)) { return; } /* ... then check available space ... */ need = sizeof(virtio_input_event) * vinput->qindex; virtqueue_get_avail_bytes(vinput->evt, &have, NULL, need, 0); if (have < need) { vinput->qindex = 0; trace_virtio_input_queue_full(); return; } /* ... and finally pass them to the guest */ for (i = 0; i < vinput->qindex; i++) { elem = virtqueue_pop(vinput->evt, sizeof(VirtQueueElement)); if (!elem) { /* should not happen, we've checked for space beforehand */ fprintf(stderr, "%s: Huh? No vq elem available ...\n", __func__); return; } len = iov_from_buf(elem->in_sg, elem->in_num, 0, vinput->queue+i, sizeof(virtio_input_event)); virtqueue_push(vinput->evt, elem, len); g_free(elem); } virtio_notify(VIRTIO_DEVICE(vinput), vinput->evt); vinput->qindex = 0; }
false
qemu
57094547dfea4ce784923b8abb53ac3ab4e3961a
6,256
int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) { MultiwriteCB *mcb; int i; /* don't submit writes if we don't have a medium */ if (bs->drv == NULL) { for (i = 0; i < num_reqs; i++) { reqs[i].error = -ENOMEDIUM; } return -1; } if (num_reqs == 0) { return 0; } // Create MultiwriteCB structure mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); mcb->num_requests = 0; mcb->num_callbacks = num_reqs; for (i = 0; i < num_reqs; i++) { mcb->callbacks[i].cb = reqs[i].cb; mcb->callbacks[i].opaque = reqs[i].opaque; } // Check for mergable requests num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); /* Run the aio requests. */ mcb->num_requests = num_reqs; for (i = 0; i < num_reqs; i++) { bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov, reqs[i].nb_sectors, reqs[i].flags, multiwrite_cb, mcb, true); } return 0; }
false
qemu
61007b316cd71ee7333ff7a0a749a8949527575f
6,257
static void omap_sti_fifo_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { struct omap_sti_s *s = (struct omap_sti_s *) opaque; int ch = addr >> 6; uint8_t byte = value; if (size != 1) { return omap_badwidth_write8(opaque, addr, size); } if (ch == STI_TRACE_CONTROL_CHANNEL) { /* Flush channel <i>value</i>. */ qemu_chr_fe_write(s->chr, (const uint8_t *) "\r", 1); } else if (ch == STI_TRACE_CONSOLE_CHANNEL || 1) { if (value == 0xc0 || value == 0xc3) { /* Open channel <i>ch</i>. */ } else if (value == 0x00) qemu_chr_fe_write(s->chr, (const uint8_t *) "\n", 1); else qemu_chr_fe_write(s->chr, &byte, 1); } }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
6,258
static void active_parameter_sets(HEVCContext *s) { GetBitContext *gb = &s->HEVClc->gb; int num_sps_ids_minus1; int i; get_bits(gb, 4); // active_video_parameter_set_id get_bits(gb, 1); // self_contained_cvs_flag get_bits(gb, 1); // num_sps_ids_minus1 num_sps_ids_minus1 = get_ue_golomb_long(gb); // num_sps_ids_minus1 s->active_seq_parameter_set_id = get_ue_golomb_long(gb); for (i = 1; i <= num_sps_ids_minus1; i++) get_ue_golomb_long(gb); // active_seq_parameter_set_id[i] }
false
FFmpeg
63a37d0e1ec59377af9fb7973ffc847f928ba851
6,259
static void term_backward_char(void) { if (term_cmd_buf_index > 0) { term_cmd_buf_index--; } }
false
qemu
7e2515e87c41e2e658aaed466e11cbdf1ea8bcb1
6,260
static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr); }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
6,261
static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, uint32_t val) { int dirty_flags; dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; if (!(dirty_flags & CODE_DIRTY_FLAG)) { #if !defined(CONFIG_USER_ONLY) tb_invalidate_phys_page_fast(ram_addr, 1); dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; #endif } stb_p(qemu_get_ram_ptr(ram_addr), val); #ifdef CONFIG_KQEMU if (cpu_single_env->kqemu_enabled && (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) kqemu_modify_page(cpu_single_env, ram_addr); #endif dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; /* we remove the notdirty callback only if the code has been flushed */ if (dirty_flags == 0xff) tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); }
false
qemu
4a1418e07bdcfaa3177739e04707ecaec75d89e1
6,262
BlockJob *backup_job_create(const char *job_id, BlockDriverState *bs, BlockDriverState *target, int64_t speed, MirrorSyncMode sync_mode, BdrvDirtyBitmap *sync_bitmap, bool compress, BlockdevOnError on_source_error, BlockdevOnError on_target_error, int creation_flags, BlockCompletionFunc *cb, void *opaque, BlockJobTxn *txn, Error **errp) { int64_t len; BlockDriverInfo bdi; BackupBlockJob *job = NULL; int ret; assert(bs); assert(target); if (bs == target) { error_setg(errp, "Source and target cannot be the same"); return NULL; } if (!bdrv_is_inserted(bs)) { error_setg(errp, "Device is not inserted: %s", bdrv_get_device_name(bs)); return NULL; } if (!bdrv_is_inserted(target)) { error_setg(errp, "Device is not inserted: %s", bdrv_get_device_name(target)); return NULL; } if (compress && target->drv->bdrv_co_pwritev_compressed == NULL) { error_setg(errp, "Compression is not supported for this drive %s", bdrv_get_device_name(target)); return NULL; } if (bdrv_op_is_blocked(bs, BLOCK_OP_TYPE_BACKUP_SOURCE, errp)) { return NULL; } if (bdrv_op_is_blocked(target, BLOCK_OP_TYPE_BACKUP_TARGET, errp)) { return NULL; } if (sync_mode == MIRROR_SYNC_MODE_INCREMENTAL) { if (!sync_bitmap) { error_setg(errp, "must provide a valid bitmap name for " "\"incremental\" sync mode"); return NULL; } /* Create a new bitmap, and freeze/disable this one. */ if (bdrv_dirty_bitmap_create_successor(bs, sync_bitmap, errp) < 0) { return NULL; } } else if (sync_bitmap) { error_setg(errp, "a sync_bitmap was provided to backup_run, " "but received an incompatible sync_mode (%s)", MirrorSyncMode_lookup[sync_mode]); return NULL; } len = bdrv_getlength(bs); if (len < 0) { error_setg_errno(errp, -len, "unable to get length for '%s'", bdrv_get_device_name(bs)); goto error; } /* job->common.len is fixed, so we can't allow resize */ job = block_job_create(job_id, &backup_job_driver, bs, BLK_PERM_CONSISTENT_READ, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED | BLK_PERM_GRAPH_MOD, speed, creation_flags, cb, opaque, errp); if (!job) { goto error; } /* The target must match the source in size, so no resize here either */ job->target = blk_new(BLK_PERM_WRITE, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED | BLK_PERM_GRAPH_MOD); ret = blk_insert_bs(job->target, target, errp); if (ret < 0) { goto error; } job->on_source_error = on_source_error; job->on_target_error = on_target_error; job->sync_mode = sync_mode; job->sync_bitmap = sync_mode == MIRROR_SYNC_MODE_INCREMENTAL ? sync_bitmap : NULL; job->compress = compress; /* If there is no backing file on the target, we cannot rely on COW if our * backup cluster size is smaller than the target cluster size. Even for * targets with a backing file, try to avoid COW if possible. */ ret = bdrv_get_info(target, &bdi); if (ret == -ENOTSUP && !target->backing) { /* Cluster size is not defined */ error_report("WARNING: The target block device doesn't provide " "information about the block size and it doesn't have a " "backing file. The default block size of %u bytes is " "used. If the actual block size of the target exceeds " "this default, the backup may be unusable", BACKUP_CLUSTER_SIZE_DEFAULT); job->cluster_size = BACKUP_CLUSTER_SIZE_DEFAULT; } else if (ret < 0 && !target->backing) { error_setg_errno(errp, -ret, "Couldn't determine the cluster size of the target image, " "which has no backing file"); error_append_hint(errp, "Aborting, since this may create an unusable destination image\n"); goto error; } else if (ret < 0 && target->backing) { /* Not fatal; just trudge on ahead. */ job->cluster_size = BACKUP_CLUSTER_SIZE_DEFAULT; } else { job->cluster_size = MAX(BACKUP_CLUSTER_SIZE_DEFAULT, bdi.cluster_size); } /* Required permissions are already taken with target's blk_new() */ block_job_add_bdrv(&job->common, "target", target, 0, BLK_PERM_ALL, &error_abort); job->common.len = len; block_job_txn_add_job(txn, &job->common); return &job->common; error: if (sync_bitmap) { bdrv_reclaim_dirty_bitmap(bs, sync_bitmap, NULL); } if (job) { backup_clean(&job->common); block_job_early_fail(&job->common); } return NULL; }
false
qemu
3dc6f8693694a649a9c83f1e2746565b47683923
6,263
void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) { CPUState *cs = CPU(x86_env_get_cpu(env)); target_ulong addr; uint32_t event_inj; uint32_t int_ctl; cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0); if (aflag == 2) { addr = env->regs[R_EAX]; } else { addr = (uint32_t)env->regs[R_EAX]; } qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr); env->vm_vmcb = addr; /* save the current CPU state in the hsave page */ stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base); stl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base); stl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rflags), cpu_compute_eflags(env)); svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.es), &env->segs[R_ES]); svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.cs), &env->segs[R_CS]); svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ss), &env->segs[R_SS]); svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ds), &env->segs[R_DS]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rip), env->eip + next_eip_addend); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); /* load the interception bitmaps so we do not need to access the vmcb in svm mode */ env->intercept = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept)); env->intercept_cr_read = lduw_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read)); env->intercept_cr_write = lduw_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write)); env->intercept_dr_read = lduw_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read)); env->intercept_dr_write = lduw_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write)); env->intercept_exceptions = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions )); /* enable intercepts */ env->hflags |= HF_SVMI_MASK; env->tsc_offset = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.tsc_offset)); env->gdt.base = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base)); env->gdt.limit = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit)); env->idt.base = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base)); env->idt.limit = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit)); /* clear exit_info_2 so we behave like the real hardware */ stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0); cpu_x86_update_cr0(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr0))); cpu_x86_update_cr4(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr4))); cpu_x86_update_cr3(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr3))); env->cr[2] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr2)); int_ctl = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); if (int_ctl & V_INTR_MASKING_MASK) { env->v_tpr = int_ctl & V_TPR_MASK; env->hflags2 |= HF2_VINTR_MASK; if (env->eflags & IF_MASK) { env->hflags2 |= HF2_HIF_MASK; } } cpu_load_efer(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.efer))); env->eflags = 0; cpu_load_eflags(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rflags)), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); CC_OP = CC_OP_EFLAGS; svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.es), R_ES); svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.cs), R_CS); svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ss), R_SS); svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ds), R_DS); env->eip = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rip)); env->regs[R_ESP] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rsp)); env->regs[R_EAX] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rax)); env->dr[7] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.dr7)); env->dr[6] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.dr6)); cpu_x86_set_cpl(env, ldub_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cpl))); /* FIXME: guest state consistency checks */ switch (ldub_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) { case TLB_CONTROL_DO_NOTHING: break; case TLB_CONTROL_FLUSH_ALL_ASID: /* FIXME: this is not 100% correct but should work for now */ tlb_flush(cs, 1); break; } env->hflags2 |= HF2_GIF_MASK; if (int_ctl & V_IRQ_MASK) { CPUState *cs = CPU(x86_env_get_cpu(env)); cs->interrupt_request |= CPU_INTERRUPT_VIRQ; } /* maybe we need to inject an event */ event_inj = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.event_inj)); if (event_inj & SVM_EVTINJ_VALID) { uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK; uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR; uint32_t event_inj_err = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err)); qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err); /* FIXME: need to implement valid_err */ switch (event_inj & SVM_EVTINJ_TYPE_MASK) { case SVM_EVTINJ_TYPE_INTR: cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = -1; qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR"); /* XXX: is it always correct? */ do_interrupt_x86_hardirq(env, vector, 1); break; case SVM_EVTINJ_TYPE_NMI: cs->exception_index = EXCP02_NMI; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = env->eip; qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI"); cpu_loop_exit(cs); break; case SVM_EVTINJ_TYPE_EXEPT: cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = -1; qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT"); cpu_loop_exit(cs); break; case SVM_EVTINJ_TYPE_SOFT: cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 1; env->exception_next_eip = env->eip; qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT"); cpu_loop_exit(cs); break; } qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index, env->error_code); } }
false
qemu
7848c8d19f8556666df25044bbd5d8b29439c368
6,264
static void spr_write_ibatu (void *opaque, int sprn) { DisasContext *ctx = opaque; gen_op_store_ibatu((sprn - SPR_IBAT0U) / 2); RET_STOP(ctx); }
false
qemu
e1833e1f96456fd8fc17463246fe0b2050e68efb
6,265
static void machine_numa_validate(MachineState *machine) { int i; GString *s = g_string_new(NULL); MachineClass *mc = MACHINE_GET_CLASS(machine); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(machine); assert(nb_numa_nodes); for (i = 0; i < possible_cpus->len; i++) { const CPUArchId *cpu_slot = &possible_cpus->cpus[i]; /* at this point numa mappings are initilized by CLI options * or with default mappings so it's sufficient to list * all not yet mapped CPUs here */ /* TODO: make it hard error in future */ if (!cpu_slot->props.has_node_id) { char *cpu_str = cpu_slot_to_string(cpu_slot); g_string_append_printf(s, "%sCPU %d [%s]", s->len ? ", " : "", i, cpu_str); g_free(cpu_str); } } if (s->len) { error_report("warning: CPU(s) not present in any NUMA nodes: %s", s->str); error_report("warning: All CPU(s) up to maxcpus should be described " "in NUMA config, ability to start up with partial NUMA " "mappings is obsoleted and will be removed in future"); } g_string_free(s, true); }
false
qemu
c6ff347c8078bb86f75d38955641cb73e9d5b309
6,266
int qcow2_refcount_init(BlockDriverState *bs) { BDRVQcowState *s = bs->opaque; unsigned int refcount_table_size2, i; int ret; assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t)); refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t); s->refcount_table = g_try_malloc(refcount_table_size2); if (s->refcount_table_size > 0) { if (s->refcount_table == NULL) { goto fail; } BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD); ret = bdrv_pread(bs->file, s->refcount_table_offset, s->refcount_table, refcount_table_size2); if (ret != refcount_table_size2) goto fail; for(i = 0; i < s->refcount_table_size; i++) be64_to_cpus(&s->refcount_table[i]); } return 0; fail: return -ENOMEM; }
true
qemu
8fcffa9853473ab148d36858f15c5531161a1824
6,267
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) { int j, k, l, sb_x, sb_y; int coding_mode; int motion_x[6]; int motion_y[6]; int last_motion_x = 0; int last_motion_y = 0; int prior_last_motion_x = 0; int prior_last_motion_y = 0; int current_macroblock; int current_fragment; if (s->keyframe) return 0; memset(motion_x, 0, 6 * sizeof(int)); memset(motion_y, 0, 6 * sizeof(int)); /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ coding_mode = get_bits1(gb); /* iterate through all of the macroblocks that contain 1 or more * coded fragments */ for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { for (j = 0; j < 4; j++) { int mb_x = 2*sb_x + (j>>1); int mb_y = 2*sb_y + (((j>>1)+j)&1); current_macroblock = mb_y * s->macroblock_width + mb_x; if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height || (s->macroblock_coding[current_macroblock] == MODE_COPY)) continue; switch (s->macroblock_coding[current_macroblock]) { case MODE_INTER_PLUS_MV: case MODE_GOLDEN_MV: /* all 6 fragments use the same motion vector */ if (coding_mode == 0) { motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; } else { motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; } /* vector maintenance, only on MODE_INTER_PLUS_MV */ if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) { prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; } break; case MODE_INTER_FOURMV: /* vector maintenance */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; /* fetch 4 vectors from the bitstream, one for each * Y fragment, then average for the C fragment vectors */ motion_x[4] = motion_y[4] = 0; for (k = 0; k < 4; k++) { current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X; for (l = 0; l < s->coded_fragment_list_index; l++) if (s->coded_fragment_list[l] == current_fragment) break; if (l < s->coded_fragment_list_index) { if (coding_mode == 0) { motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; } else { motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; } last_motion_x = motion_x[k]; last_motion_y = motion_y[k]; } else { motion_x[k] = 0; motion_y[k] = 0; } motion_x[4] += motion_x[k]; motion_y[4] += motion_y[k]; } motion_x[5]= motion_x[4]= RSHIFT(motion_x[4], 2); motion_y[5]= motion_y[4]= RSHIFT(motion_y[4], 2); break; case MODE_INTER_LAST_MV: /* all 6 fragments use the last motion vector */ motion_x[0] = last_motion_x; motion_y[0] = last_motion_y; /* no vector maintenance (last vector remains the * last vector) */ break; case MODE_INTER_PRIOR_LAST: /* all 6 fragments use the motion vector prior to the * last motion vector */ motion_x[0] = prior_last_motion_x; motion_y[0] = prior_last_motion_y; /* vector maintenance */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; break; default: /* covers intra, inter without MV, golden without MV */ motion_x[0] = 0; motion_y[0] = 0; /* no vector maintenance */ break; } /* assign the motion vectors to the correct fragments */ for (k = 0; k < 4; k++) { current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X; if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { s->all_fragments[current_fragment].motion_x = motion_x[k]; s->all_fragments[current_fragment].motion_y = motion_y[k]; } else { s->all_fragments[current_fragment].motion_x = motion_x[0]; s->all_fragments[current_fragment].motion_y = motion_y[0]; } } for (k = 0; k < 2; k++) { current_fragment = s->fragment_start[k+1] + mb_y*(s->fragment_width>>1) + mb_x; if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { s->all_fragments[current_fragment].motion_x = motion_x[k+4]; s->all_fragments[current_fragment].motion_y = motion_y[k+4]; } else { s->all_fragments[current_fragment].motion_x = motion_x[0]; s->all_fragments[current_fragment].motion_y = motion_y[0]; } } } } } return 0; }
false
FFmpeg
eb691ef219860fa6432d460cdd8edc9dff4886db
6,268
void visit_type_int32(Visitor *v, int32_t *obj, const char *name, Error **errp) { int64_t value; if (!error_is_set(errp)) { if (v->type_int32) { v->type_int32(v, obj, name, errp); } else { value = *obj; v->type_int(v, &value, name, errp); if (value < INT32_MIN || value > INT32_MAX) { error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null", "int32_t"); return; } *obj = value; } } }
true
qemu
297a3646c2947ee64a6d42ca264039732c6218e0
6,270
static inline void gen_bx_im(DisasContext *s, uint32_t addr) { TCGv tmp; s->is_jmp = DISAS_UPDATE; if (s->thumb != (addr & 1)) { tmp = new_tmp(); tcg_gen_movi_i32(tmp, addr & 1); tcg_gen_st_i32(tmp, cpu_env, offsetof(CPUState, thumb)); dead_tmp(tmp); } tcg_gen_movi_i32(cpu_R[15], addr & ~1); }
true
qemu
7d1b0095bff7157e856d1d0e6c4295641ced2752
6,271
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size) { int pending = size; int done = 0; while (pending > 0) { int res; res = qemu_peek_buffer(f, buf, pending, 0); if (res == 0) { return done; } qemu_file_skip(f, res); buf += res; pending -= res; done += res; } return done; }
true
qemu
548f52ea06951c20f0b91cae6cde0512ec073c83
6,273
static void buffer_append(Buffer *buffer, const void *data, size_t len) { memcpy(buffer->buffer + buffer->offset, data, len); buffer->offset += len; }
true
qemu
2f9606b3736c3be4dbd606c46525c7b770ced119
6,276
void av_dump_format(AVFormatContext *ic, int index, const char *url, int is_output) { int i; uint8_t *printed = av_mallocz(ic->nb_streams); if (ic->nb_streams && !printed) return; av_log(NULL, AV_LOG_INFO, "%s #%d, %s, %s '%s':\n", is_output ? "Output" : "Input", index, is_output ? ic->oformat->name : ic->iformat->name, is_output ? "to" : "from", url); dump_metadata(NULL, ic->metadata, " "); if (!is_output) { av_log(NULL, AV_LOG_INFO, " Duration: "); if (ic->duration != AV_NOPTS_VALUE) { int hours, mins, secs, us; secs = ic->duration / AV_TIME_BASE; us = ic->duration % AV_TIME_BASE; mins = secs / 60; secs %= 60; hours = mins / 60; mins %= 60; av_log(NULL, AV_LOG_INFO, "%02d:%02d:%02d.%02d", hours, mins, secs, (100 * us) / AV_TIME_BASE); } else { av_log(NULL, AV_LOG_INFO, "N/A"); } if (ic->start_time != AV_NOPTS_VALUE) { int secs, us; av_log(NULL, AV_LOG_INFO, ", start: "); secs = ic->start_time / AV_TIME_BASE; us = abs(ic->start_time % AV_TIME_BASE); av_log(NULL, AV_LOG_INFO, "%d.%06d", secs, (int)av_rescale(us, 1000000, AV_TIME_BASE)); } av_log(NULL, AV_LOG_INFO, ", bitrate: "); if (ic->bit_rate) { av_log(NULL, AV_LOG_INFO,"%d kb/s", ic->bit_rate / 1000); } else { av_log(NULL, AV_LOG_INFO, "N/A"); } av_log(NULL, AV_LOG_INFO, "\n"); } for (i = 0; i < ic->nb_chapters; i++) { AVChapter *ch = ic->chapters[i]; av_log(NULL, AV_LOG_INFO, " Chapter #%d.%d: ", index, i); av_log(NULL, AV_LOG_INFO, "start %f, ", ch->start * av_q2d(ch->time_base)); av_log(NULL, AV_LOG_INFO, "end %f\n", ch->end * av_q2d(ch->time_base)); dump_metadata(NULL, ch->metadata, " "); } if(ic->nb_programs) { int j, k, total = 0; for(j=0; j<ic->nb_programs; j++) { AVDictionaryEntry *name = av_dict_get(ic->programs[j]->metadata, "name", NULL, 0); av_log(NULL, AV_LOG_INFO, " Program %d %s\n", ic->programs[j]->id, name ? name->value : ""); dump_metadata(NULL, ic->programs[j]->metadata, " "); for(k=0; k<ic->programs[j]->nb_stream_indexes; k++) { dump_stream_format(ic, ic->programs[j]->stream_index[k], index, is_output); printed[ic->programs[j]->stream_index[k]] = 1; } total += ic->programs[j]->nb_stream_indexes; } if (total < ic->nb_streams) av_log(NULL, AV_LOG_INFO, " No Program\n"); } for(i=0;i<ic->nb_streams;i++) if (!printed[i]) dump_stream_format(ic, i, index, is_output); av_free(printed); }
true
FFmpeg
e81e5e8ad2bb5746df0c343c396019aca165cf66
6,278
static int r3d_read_redv(AVFormatContext *s, AVPacket *pkt, Atom *atom) { AVStream *st = s->streams[0]; int tmp; int av_unused tmp2; uint64_t pos = avio_tell(s->pb); unsigned dts; int ret; dts = avio_rb32(s->pb); tmp = avio_rb32(s->pb); av_dlog(s, "frame num %d\n", tmp); tmp = avio_r8(s->pb); // major version tmp2 = avio_r8(s->pb); // minor version av_dlog(s, "version %d.%d\n", tmp, tmp2); tmp = avio_rb16(s->pb); // unknown av_dlog(s, "unknown %d\n", tmp); if (tmp > 4) { tmp = avio_rb16(s->pb); // unknown av_dlog(s, "unknown %d\n", tmp); tmp = avio_rb16(s->pb); // unknown av_dlog(s, "unknown %d\n", tmp); tmp = avio_rb32(s->pb); av_dlog(s, "width %d\n", tmp); tmp = avio_rb32(s->pb); av_dlog(s, "height %d\n", tmp); tmp = avio_rb32(s->pb); av_dlog(s, "metadata len %d\n", tmp); } tmp = atom->size - 8 - (avio_tell(s->pb) - pos); if (tmp < 0) return -1; ret = av_get_packet(s->pb, pkt, tmp); if (ret < 0) { av_log(s, AV_LOG_ERROR, "error reading video packet\n"); return -1; } pkt->stream_index = 0; pkt->dts = dts; if (st->avg_frame_rate.num) pkt->duration = (uint64_t)st->time_base.den* st->avg_frame_rate.den/st->avg_frame_rate.num; av_dlog(s, "pkt dts %"PRId64" duration %d\n", pkt->dts, pkt->duration); return 0; }
false
FFmpeg
898276c16b1683ac77723e97574a3bfdb29507fd
6,279
void vnc_sent_lossy_rect(VncState *vs, int x, int y, int w, int h) { int i, j; w = (x + w) / VNC_STAT_RECT; h = (y + h) / VNC_STAT_RECT; x /= VNC_STAT_RECT; y /= VNC_STAT_RECT; for (j = y; j <= y + h; j++) { for (i = x; i <= x + w; i++) { vs->lossy_rect[j][i] = 1; } } }
false
qemu
207f328afc2137d422f59293ba37b8be5d3e1617
6,280
static void slow_bar_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { AssignedDevRegion *d = opaque; uint8_t *out = d->u.r_virtbase + addr; DEBUG("slow_bar_writeb addr=0x" TARGET_FMT_plx " val=0x%02x\n", addr, val); *out = val; }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
6,281
static void exynos4210_i2c_write(void *opaque, target_phys_addr_t offset, uint64_t value, unsigned size) { Exynos4210I2CState *s = (Exynos4210I2CState *)opaque; uint8_t v = value & 0xff; DPRINT("write %s [0x%02x] <- 0x%02x\n", exynos4_i2c_get_regname(offset), (unsigned int)offset, v); switch (offset) { case I2CCON_ADDR: s->i2ccon = (v & ~I2CCON_INT_PEND) | (s->i2ccon & I2CCON_INT_PEND); if ((s->i2ccon & I2CCON_INT_PEND) && !(v & I2CCON_INT_PEND)) { s->i2ccon &= ~I2CCON_INT_PEND; qemu_irq_lower(s->irq); if (!(s->i2ccon & I2CCON_INTRS_EN)) { s->i2cstat &= ~I2CSTAT_START_BUSY; } if (s->i2cstat & I2CSTAT_START_BUSY) { if (s->scl_free) { if (EXYNOS4_I2C_MODE(s->i2cstat) == I2CMODE_MASTER_Tx) { exynos4210_i2c_data_send(s); } else if (EXYNOS4_I2C_MODE(s->i2cstat) == I2CMODE_MASTER_Rx) { exynos4210_i2c_data_receive(s); } } else { s->i2ccon |= I2CCON_INT_PEND; qemu_irq_raise(s->irq); } } } break; case I2CSTAT_ADDR: s->i2cstat = (s->i2cstat & I2CSTAT_START_BUSY) | (v & ~I2CSTAT_START_BUSY); if (!(s->i2cstat & I2CSTAT_OUTPUT_EN)) { s->i2cstat &= ~I2CSTAT_START_BUSY; s->scl_free = true; qemu_irq_lower(s->irq); break; } /* Nothing to do if in i2c slave mode */ if (!I2C_IN_MASTER_MODE(s->i2cstat)) { break; } if (v & I2CSTAT_START_BUSY) { s->i2cstat &= ~I2CSTAT_LAST_BIT; s->i2cstat |= I2CSTAT_START_BUSY; /* Line is busy */ s->scl_free = false; /* Generate start bit and send slave address */ if (i2c_start_transfer(s->bus, s->i2cds >> 1, s->i2cds & 0x1) && (s->i2ccon & I2CCON_ACK_GEN)) { s->i2cstat |= I2CSTAT_LAST_BIT; } else if (EXYNOS4_I2C_MODE(s->i2cstat) == I2CMODE_MASTER_Rx) { exynos4210_i2c_data_receive(s); } exynos4210_i2c_raise_interrupt(s); } else { i2c_end_transfer(s->bus); if (!(s->i2ccon & I2CCON_INT_PEND)) { s->i2cstat &= ~I2CSTAT_START_BUSY; } s->scl_free = true; } break; case I2CADD_ADDR: if ((s->i2cstat & I2CSTAT_OUTPUT_EN) == 0) { s->i2cadd = v; } break; case I2CDS_ADDR: if (s->i2cstat & I2CSTAT_OUTPUT_EN) { s->i2cds = v; s->scl_free = true; if (EXYNOS4_I2C_MODE(s->i2cstat) == I2CMODE_MASTER_Tx && (s->i2cstat & I2CSTAT_START_BUSY) && !(s->i2ccon & I2CCON_INT_PEND)) { exynos4210_i2c_data_send(s); } } break; case I2CLC_ADDR: s->i2clc = v; break; default: DPRINT("ERROR: Bad write offset 0x%x\n", (unsigned int)offset); break; } }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
6,283
static void virtio_net_apply_guest_offloads(VirtIONet *n) { qemu_peer_set_offload(qemu_get_subqueue(n->nic, 0), !!(n->curr_guest_offloads & (1ULL << VIRTIO_NET_F_GUEST_CSUM)), !!(n->curr_guest_offloads & (1ULL << VIRTIO_NET_F_GUEST_TSO4)), !!(n->curr_guest_offloads & (1ULL << VIRTIO_NET_F_GUEST_TSO6)), !!(n->curr_guest_offloads & (1ULL << VIRTIO_NET_F_GUEST_ECN)), !!(n->curr_guest_offloads & (1ULL << VIRTIO_NET_F_GUEST_UFO))); }
false
qemu
d6085e3ace20bc9b0fa625d8d79b22668710e217
6,284
static int xen_pt_msixctrl_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry, uint16_t *val, uint16_t dev_value, uint16_t valid_mask) { XenPTRegInfo *reg = cfg_entry->reg; uint16_t writable_mask = 0; uint16_t throughable_mask = get_throughable_mask(s, reg, valid_mask); int debug_msix_enabled_old; /* modify emulate register */ writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask; cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask); /* create value for writing to I/O device register */ *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask); /* update MSI-X */ if ((*val & PCI_MSIX_FLAGS_ENABLE) && !(*val & PCI_MSIX_FLAGS_MASKALL)) { xen_pt_msix_update(s); } else if (!(*val & PCI_MSIX_FLAGS_ENABLE) && s->msix->enabled) { xen_pt_msix_disable(s); } debug_msix_enabled_old = s->msix->enabled; s->msix->enabled = !!(*val & PCI_MSIX_FLAGS_ENABLE); if (s->msix->enabled != debug_msix_enabled_old) { XEN_PT_LOG(&s->dev, "%s MSI-X\n", s->msix->enabled ? "enable" : "disable"); } return 0; }
false
qemu
e2779de053b64f023de382fd87b3596613d47d1e
6,285
int v9fs_co_mknod(V9fsState *s, V9fsString *path, uid_t uid, gid_t gid, dev_t dev, mode_t mode) { int err; FsCred cred; cred_init(&cred); cred.fc_uid = uid; cred.fc_gid = gid; cred.fc_mode = mode; cred.fc_rdev = dev; v9fs_co_run_in_worker( { err = s->ops->mknod(&s->ctx, path->data, &cred); if (err < 0) { err = -errno; } }); return err; }
false
qemu
02cb7f3a256517cbf3136caff2863fbafc57b540
6,288
static uint64_t icp_control_read(void *opaque, target_phys_addr_t offset, unsigned size) { switch (offset >> 2) { case 0: /* CP_IDFIELD */ return 0x41034003; case 1: /* CP_FLASHPROG */ return 0; case 2: /* CP_INTREG */ return 0; case 3: /* CP_DECODE */ return 0x11; default: hw_error("icp_control_read: Bad offset %x\n", (int)offset); return 0; } }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
6,289
int64_t bdrv_get_block_status_above(BlockDriverState *bs, BlockDriverState *base, int64_t sector_num, int nb_sectors, int *pnum, BlockDriverState **file) { Coroutine *co; BdrvCoGetBlockStatusData data = { .bs = bs, .base = base, .file = file, .sector_num = sector_num, .nb_sectors = nb_sectors, .pnum = pnum, .done = false, }; if (qemu_in_coroutine()) { /* Fast-path if already in coroutine context */ bdrv_get_block_status_above_co_entry(&data); } else { AioContext *aio_context = bdrv_get_aio_context(bs); co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, &data); qemu_coroutine_enter(co); while (!data.done) { aio_poll(aio_context, true); } } return data.ret; }
false
qemu
88b062c2036cfd05b5111147736a08ba05ea05a9
6,290
static int block_save_complete(QEMUFile *f, void *opaque) { int ret; DPRINTF("Enter save live complete submitted %d transferred %d\n", block_mig_state.submitted, block_mig_state.transferred); ret = flush_blks(f); if (ret) { blk_mig_cleanup(); return ret; } blk_mig_reset_dirty_cursor(); /* we know for sure that save bulk is completed and all async read completed */ assert(block_mig_state.submitted == 0); do { ret = blk_mig_save_dirty_block(f, 0); } while (ret == 0); blk_mig_cleanup(); if (ret) { return ret; } /* report completion */ qemu_put_be64(f, (100 << BDRV_SECTOR_BITS) | BLK_MIG_FLAG_PROGRESS); DPRINTF("Block migration completed\n"); qemu_put_be64(f, BLK_MIG_FLAG_EOS); return 0; }
false
qemu
9ee0cb201e6bfe03549a649fd165a85cfed34d05
6,291
static void omap_pwl_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { struct omap_pwl_s *s = (struct omap_pwl_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; if (size != 1) { return omap_badwidth_write8(opaque, addr, value); } switch (offset) { case 0x00: /* PWL_LEVEL */ s->level = value; omap_pwl_update(s); break; case 0x04: /* PWL_CTRL */ s->enable = value & 1; omap_pwl_update(s); break; default: OMAP_BAD_REG(addr); return; } }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
6,292
static int id_wellformed(const char *id) { int i; if (!qemu_isalpha(id[0])) { return 0; } for (i = 1; id[i]; i++) { if (!qemu_isalnum(id[i]) && !strchr("-._", id[i])) { return 0; } } return 1; }
false
qemu
9aebf3b89281a173d2dfeee379b800be5e3f363e
6,294
static void memory_region_iorange_destructor(IORange *iorange) { g_free(container_of(iorange, MemoryRegionIORange, iorange)); }
false
qemu
b40acf99bef69fa8ab0f9092ff162fde945eec12
6,295
static int qemu_rbd_open(BlockDriverState *bs, const char *filename, int flags) { BDRVRBDState *s = bs->opaque; char pool[RBD_MAX_POOL_NAME_SIZE]; char snap_buf[RBD_MAX_SNAP_NAME_SIZE]; char conf[RBD_MAX_CONF_SIZE]; int r; if (qemu_rbd_parsename(filename, pool, sizeof(pool), snap_buf, sizeof(snap_buf), s->name, sizeof(s->name), conf, sizeof(conf)) < 0) { return -EINVAL; } s->snap = NULL; if (snap_buf[0] != '\0') { s->snap = g_strdup(snap_buf); } r = rados_create(&s->cluster, NULL); if (r < 0) { error_report("error initializing"); return r; } if (strstr(conf, "conf=") == NULL) { r = rados_conf_read_file(s->cluster, NULL); if (r < 0) { error_report("error reading config file"); rados_shutdown(s->cluster); return r; } } if (conf[0] != '\0') { r = qemu_rbd_set_conf(s->cluster, conf); if (r < 0) { error_report("error setting config options"); rados_shutdown(s->cluster); return r; } } r = rados_connect(s->cluster); if (r < 0) { error_report("error connecting"); rados_shutdown(s->cluster); return r; } r = rados_ioctx_create(s->cluster, pool, &s->io_ctx); if (r < 0) { error_report("error opening pool %s", pool); rados_shutdown(s->cluster); return r; } r = rbd_open(s->io_ctx, s->name, &s->image, s->snap); if (r < 0) { error_report("error reading header from %s", s->name); rados_ioctx_destroy(s->io_ctx); rados_shutdown(s->cluster); return r; } bs->read_only = (s->snap != NULL); s->event_reader_pos = 0; r = qemu_pipe(s->fds); if (r < 0) { error_report("error opening eventfd"); goto failed; } fcntl(s->fds[0], F_SETFL, O_NONBLOCK); fcntl(s->fds[1], F_SETFL, O_NONBLOCK); qemu_aio_set_fd_handler(s->fds[RBD_FD_READ], qemu_rbd_aio_event_reader, NULL, qemu_rbd_aio_flush_cb, NULL, s); return 0; failed: rbd_close(s->image); rados_ioctx_destroy(s->io_ctx); rados_shutdown(s->cluster); return r; }
false
qemu
7c7e9df0232a1ce5c411f0f348038d2e72097ae1
6,296
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, size_t size) { NetSocketState *s = opaque; sendto(s->fd, buf, size, 0, (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst)); }
false
qemu
e3f5ec2b5e92706e3b807059f79b1fb5d936e567
6,297
int cpu_ppc_register (CPUPPCState *env, ppc_def_t *def) { env->msr_mask = def->msr_mask; env->mmu_model = def->mmu_model; env->excp_model = def->excp_model; env->bus_model = def->bus_model; env->bfd_mach = def->bfd_mach; if (create_ppc_opcodes(env, def) < 0) return -1; init_ppc_proc(env, def); #if defined(PPC_DUMP_CPU) { const unsigned char *mmu_model, *excp_model, *bus_model; switch (env->mmu_model) { case POWERPC_MMU_32B: mmu_model = "PowerPC 32"; break; case POWERPC_MMU_64B: mmu_model = "PowerPC 64"; break; case POWERPC_MMU_601: mmu_model = "PowerPC 601"; break; case POWERPC_MMU_SOFT_6xx: mmu_model = "PowerPC 6xx/7xx with software driven TLBs"; break; case POWERPC_MMU_SOFT_74xx: mmu_model = "PowerPC 74xx with software driven TLBs"; break; case POWERPC_MMU_SOFT_4xx: mmu_model = "PowerPC 4xx with software driven TLBs"; break; case POWERPC_MMU_SOFT_4xx_Z: mmu_model = "PowerPC 4xx with software driven TLBs " "and zones protections"; break; case POWERPC_MMU_REAL_4xx: mmu_model = "PowerPC 4xx real mode only"; break; case POWERPC_MMU_BOOKE: mmu_model = "PowerPC BookE"; break; case POWERPC_MMU_BOOKE_FSL: mmu_model = "PowerPC BookE FSL"; break; case POWERPC_MMU_64BRIDGE: mmu_model = "PowerPC 64 bridge"; break; default: mmu_model = "Unknown or invalid"; break; } switch (env->excp_model) { case POWERPC_EXCP_STD: excp_model = "PowerPC"; break; case POWERPC_EXCP_40x: excp_model = "PowerPC 40x"; break; case POWERPC_EXCP_601: excp_model = "PowerPC 601"; break; case POWERPC_EXCP_602: excp_model = "PowerPC 602"; break; case POWERPC_EXCP_603: excp_model = "PowerPC 603"; break; case POWERPC_EXCP_603E: excp_model = "PowerPC 603e"; break; case POWERPC_EXCP_604: excp_model = "PowerPC 604"; break; case POWERPC_EXCP_7x0: excp_model = "PowerPC 740/750"; break; case POWERPC_EXCP_7x5: excp_model = "PowerPC 745/755"; break; case POWERPC_EXCP_74xx: excp_model = "PowerPC 74xx"; break; case POWERPC_EXCP_970: excp_model = "PowerPC 970"; break; case POWERPC_EXCP_BOOKE: excp_model = "PowerPC BookE"; break; default: excp_model = "Unknown or invalid"; break; } switch (env->bus_model) { case PPC_FLAGS_INPUT_6xx: bus_model = "PowerPC 6xx"; break; case PPC_FLAGS_INPUT_BookE: bus_model = "PowerPC BookE"; break; case PPC_FLAGS_INPUT_405: bus_model = "PowerPC 405"; break; case PPC_FLAGS_INPUT_970: bus_model = "PowerPC 970"; break; case PPC_FLAGS_INPUT_401: bus_model = "PowerPC 401/403"; break; default: bus_model = "Unknown or invalid"; break; } printf("PowerPC %-12s : PVR %08x MSR %016" PRIx64 "\n" " MMU model : %s\n", def->name, def->pvr, def->msr_mask, mmu_model); if (env->tlb != NULL) { printf(" %d %s TLB in %d ways\n", env->nb_tlb, env->id_tlbs ? "splitted" : "merged", env->nb_ways); } printf(" Exceptions model : %s\n" " Bus model : %s\n", excp_model, bus_model); } dump_ppc_insns(env); dump_ppc_sprs(env); fflush(stdout); #endif return 0; }
false
qemu
00af685fc974e4941ef2d309a2e8818d311a370c
6,298
static char *get_human_readable_size(char *buf, int buf_size, int64_t size) { static const char suffixes[NB_SUFFIXES] = "KMGT"; int64_t base; int i; if (size <= 999) { snprintf(buf, buf_size, "%" PRId64, size); } else { base = 1024; for (i = 0; i < NB_SUFFIXES; i++) { if (size < (10 * base)) { snprintf(buf, buf_size, "%0.1f%c", (double)size / base, suffixes[i]); break; } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { snprintf(buf, buf_size, "%" PRId64 "%c", ((size + (base >> 1)) / base), suffixes[i]); break; } base = base * 1024; } } return buf; }
false
qemu
2c20fa2cc26fd203a1260bb5251a523320faa905
6,299
static coroutine_fn int cloop_co_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors) { int ret; BDRVCloopState *s = bs->opaque; qemu_co_mutex_lock(&s->lock); ret = cloop_read(bs, sector_num, buf, nb_sectors); qemu_co_mutex_unlock(&s->lock); return ret; }
false
qemu
5cd230819ec26caf199bf73d38cf2407344e4443
6,300
static void disas_sparc_insn(DisasContext * dc, unsigned int insn) { unsigned int opc, rs1, rs2, rd; TCGv cpu_src1, cpu_src2; TCGv_i32 cpu_src1_32, cpu_src2_32, cpu_dst_32; TCGv_i64 cpu_src1_64, cpu_src2_64, cpu_dst_64; target_long simm; if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT))) { tcg_gen_debug_insn_start(dc->pc); } opc = GET_FIELD(insn, 0, 1); rd = GET_FIELD(insn, 2, 6); switch (opc) { case 0: /* branches/sethi */ { unsigned int xop = GET_FIELD(insn, 7, 9); int32_t target; switch (xop) { #ifdef TARGET_SPARC64 case 0x1: /* V9 BPcc */ { int cc; target = GET_FIELD_SP(insn, 0, 18); target = sign_extend(target, 19); target <<= 2; cc = GET_FIELD_SP(insn, 20, 21); if (cc == 0) do_branch(dc, target, insn, 0); else if (cc == 2) do_branch(dc, target, insn, 1); else goto illegal_insn; goto jmp_insn; } case 0x3: /* V9 BPr */ { target = GET_FIELD_SP(insn, 0, 13) | (GET_FIELD_SP(insn, 20, 21) << 14); target = sign_extend(target, 16); target <<= 2; cpu_src1 = get_src1(dc, insn); do_branch_reg(dc, target, insn, cpu_src1); goto jmp_insn; } case 0x5: /* V9 FBPcc */ { int cc = GET_FIELD_SP(insn, 20, 21); if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } target = GET_FIELD_SP(insn, 0, 18); target = sign_extend(target, 19); target <<= 2; do_fbranch(dc, target, insn, cc); goto jmp_insn; } #else case 0x7: /* CBN+x */ { goto ncp_insn; } #endif case 0x2: /* BN+x */ { target = GET_FIELD(insn, 10, 31); target = sign_extend(target, 22); target <<= 2; do_branch(dc, target, insn, 0); goto jmp_insn; } case 0x6: /* FBN+x */ { if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } target = GET_FIELD(insn, 10, 31); target = sign_extend(target, 22); target <<= 2; do_fbranch(dc, target, insn, 0); goto jmp_insn; } case 0x4: /* SETHI */ /* Special-case %g0 because that's the canonical nop. */ if (rd) { uint32_t value = GET_FIELD(insn, 10, 31); TCGv t = gen_dest_gpr(dc, rd); tcg_gen_movi_tl(t, value << 10); gen_store_gpr(dc, rd, t); } break; case 0x0: /* UNIMPL */ default: goto illegal_insn; } break; } break; case 1: /*CALL*/ { target_long target = GET_FIELDs(insn, 2, 31) << 2; TCGv o7 = gen_dest_gpr(dc, 15); tcg_gen_movi_tl(o7, dc->pc); gen_store_gpr(dc, 15, o7); target += dc->pc; gen_mov_pc_npc(dc); #ifdef TARGET_SPARC64 if (unlikely(AM_CHECK(dc))) { target &= 0xffffffffULL; } #endif dc->npc = target; } goto jmp_insn; case 2: /* FPU & Logical Operations */ { unsigned int xop = GET_FIELD(insn, 7, 12); if (xop == 0x3a) { /* generate trap */ int cond = GET_FIELD(insn, 3, 6); TCGv_i32 trap; int l1 = -1, mask; if (cond == 0) { /* Trap never. */ break; } save_state(dc); if (cond != 8) { /* Conditional trap. */ DisasCompare cmp; #ifdef TARGET_SPARC64 /* V9 icc/xcc */ int cc = GET_FIELD_SP(insn, 11, 12); if (cc == 0) { gen_compare(&cmp, 0, cond, dc); } else if (cc == 2) { gen_compare(&cmp, 1, cond, dc); } else { goto illegal_insn; } #else gen_compare(&cmp, 0, cond, dc); #endif l1 = gen_new_label(); tcg_gen_brcond_tl(tcg_invert_cond(cmp.cond), cmp.c1, cmp.c2, l1); free_compare(&cmp); } mask = ((dc->def->features & CPU_FEATURE_HYPV) && supervisor(dc) ? UA2005_HTRAP_MASK : V8_TRAP_MASK); /* Don't use the normal temporaries, as they may well have gone out of scope with the branch above. While we're doing that we might as well pre-truncate to 32-bit. */ trap = tcg_temp_new_i32(); rs1 = GET_FIELD_SP(insn, 14, 18); if (IS_IMM) { rs2 = GET_FIELD_SP(insn, 0, 6); if (rs1 == 0) { tcg_gen_movi_i32(trap, (rs2 & mask) + TT_TRAP); /* Signal that the trap value is fully constant. */ mask = 0; } else { TCGv t1 = gen_load_gpr(dc, rs1); tcg_gen_trunc_tl_i32(trap, t1); tcg_gen_addi_i32(trap, trap, rs2); } } else { TCGv t1, t2; rs2 = GET_FIELD_SP(insn, 0, 4); t1 = gen_load_gpr(dc, rs1); t2 = gen_load_gpr(dc, rs2); tcg_gen_add_tl(t1, t1, t2); tcg_gen_trunc_tl_i32(trap, t1); } if (mask != 0) { tcg_gen_andi_i32(trap, trap, mask); tcg_gen_addi_i32(trap, trap, TT_TRAP); } gen_helper_raise_exception(cpu_env, trap); tcg_temp_free_i32(trap); if (cond == 8) { /* An unconditional trap ends the TB. */ dc->is_br = 1; goto jmp_insn; } else { /* A conditional trap falls through to the next insn. */ gen_set_label(l1); break; } } else if (xop == 0x28) { rs1 = GET_FIELD(insn, 13, 17); switch(rs1) { case 0: /* rdy */ #ifndef TARGET_SPARC64 case 0x01 ... 0x0e: /* undefined in the SPARCv8 manual, rdy on the microSPARC II */ case 0x0f: /* stbar in the SPARCv8 manual, rdy on the microSPARC II */ case 0x10 ... 0x1f: /* implementation-dependent in the SPARCv8 manual, rdy on the microSPARC II */ /* Read Asr17 */ if (rs1 == 0x11 && dc->def->features & CPU_FEATURE_ASR17) { TCGv t = gen_dest_gpr(dc, rd); /* Read Asr17 for a Leon3 monoprocessor */ tcg_gen_movi_tl(t, (1 << 8) | (dc->def->nwindows - 1)); gen_store_gpr(dc, rd, t); break; } #endif gen_store_gpr(dc, rd, cpu_y); break; #ifdef TARGET_SPARC64 case 0x2: /* V9 rdccr */ update_psr(dc); gen_helper_rdccr(cpu_dst, cpu_env); gen_store_gpr(dc, rd, cpu_dst); break; case 0x3: /* V9 rdasi */ tcg_gen_ext_i32_tl(cpu_dst, cpu_asi); gen_store_gpr(dc, rd, cpu_dst); break; case 0x4: /* V9 rdtick */ { TCGv_ptr r_tickptr; r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, cpu_env, offsetof(CPUSPARCState, tick)); gen_helper_tick_get_count(cpu_dst, r_tickptr); tcg_temp_free_ptr(r_tickptr); gen_store_gpr(dc, rd, cpu_dst); } break; case 0x5: /* V9 rdpc */ { TCGv t = gen_dest_gpr(dc, rd); if (unlikely(AM_CHECK(dc))) { tcg_gen_movi_tl(t, dc->pc & 0xffffffffULL); } else { tcg_gen_movi_tl(t, dc->pc); } gen_store_gpr(dc, rd, t); } break; case 0x6: /* V9 rdfprs */ tcg_gen_ext_i32_tl(cpu_dst, cpu_fprs); gen_store_gpr(dc, rd, cpu_dst); break; case 0xf: /* V9 membar */ break; /* no effect */ case 0x13: /* Graphics Status */ if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } gen_store_gpr(dc, rd, cpu_gsr); break; case 0x16: /* Softint */ tcg_gen_ext_i32_tl(cpu_dst, cpu_softint); gen_store_gpr(dc, rd, cpu_dst); break; case 0x17: /* Tick compare */ gen_store_gpr(dc, rd, cpu_tick_cmpr); break; case 0x18: /* System tick */ { TCGv_ptr r_tickptr; r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, cpu_env, offsetof(CPUSPARCState, stick)); gen_helper_tick_get_count(cpu_dst, r_tickptr); tcg_temp_free_ptr(r_tickptr); gen_store_gpr(dc, rd, cpu_dst); } break; case 0x19: /* System tick compare */ gen_store_gpr(dc, rd, cpu_stick_cmpr); break; case 0x10: /* Performance Control */ case 0x11: /* Performance Instrumentation Counter */ case 0x12: /* Dispatch Control */ case 0x14: /* Softint set, WO */ case 0x15: /* Softint clear, WO */ #endif default: goto illegal_insn; } #if !defined(CONFIG_USER_ONLY) } else if (xop == 0x29) { /* rdpsr / UA2005 rdhpr */ #ifndef TARGET_SPARC64 if (!supervisor(dc)) { goto priv_insn; } update_psr(dc); gen_helper_rdpsr(cpu_dst, cpu_env); #else CHECK_IU_FEATURE(dc, HYPV); if (!hypervisor(dc)) goto priv_insn; rs1 = GET_FIELD(insn, 13, 17); switch (rs1) { case 0: // hpstate // gen_op_rdhpstate(); break; case 1: // htstate // gen_op_rdhtstate(); break; case 3: // hintp tcg_gen_mov_tl(cpu_dst, cpu_hintp); break; case 5: // htba tcg_gen_mov_tl(cpu_dst, cpu_htba); break; case 6: // hver tcg_gen_mov_tl(cpu_dst, cpu_hver); break; case 31: // hstick_cmpr tcg_gen_mov_tl(cpu_dst, cpu_hstick_cmpr); break; default: goto illegal_insn; } #endif gen_store_gpr(dc, rd, cpu_dst); break; } else if (xop == 0x2a) { /* rdwim / V9 rdpr */ if (!supervisor(dc)) goto priv_insn; #ifdef TARGET_SPARC64 rs1 = GET_FIELD(insn, 13, 17); switch (rs1) { case 0: // tpc { TCGv_ptr r_tsptr; r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr, cpu_env); tcg_gen_ld_tl(cpu_tmp0, r_tsptr, offsetof(trap_state, tpc)); tcg_temp_free_ptr(r_tsptr); } break; case 1: // tnpc { TCGv_ptr r_tsptr; r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr, cpu_env); tcg_gen_ld_tl(cpu_tmp0, r_tsptr, offsetof(trap_state, tnpc)); tcg_temp_free_ptr(r_tsptr); } break; case 2: // tstate { TCGv_ptr r_tsptr; r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr, cpu_env); tcg_gen_ld_tl(cpu_tmp0, r_tsptr, offsetof(trap_state, tstate)); tcg_temp_free_ptr(r_tsptr); } break; case 3: // tt { TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr, cpu_env); tcg_gen_ld32s_tl(cpu_tmp0, r_tsptr, offsetof(trap_state, tt)); tcg_temp_free_ptr(r_tsptr); } break; case 4: // tick { TCGv_ptr r_tickptr; r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, cpu_env, offsetof(CPUSPARCState, tick)); gen_helper_tick_get_count(cpu_tmp0, r_tickptr); tcg_temp_free_ptr(r_tickptr); } break; case 5: // tba tcg_gen_mov_tl(cpu_tmp0, cpu_tbr); break; case 6: // pstate tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, pstate)); break; case 7: // tl tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, tl)); break; case 8: // pil tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, psrpil)); break; case 9: // cwp gen_helper_rdcwp(cpu_tmp0, cpu_env); break; case 10: // cansave tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, cansave)); break; case 11: // canrestore tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, canrestore)); break; case 12: // cleanwin tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, cleanwin)); break; case 13: // otherwin tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, otherwin)); break; case 14: // wstate tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, wstate)); break; case 16: // UA2005 gl CHECK_IU_FEATURE(dc, GL); tcg_gen_ld32s_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, gl)); break; case 26: // UA2005 strand status CHECK_IU_FEATURE(dc, HYPV); if (!hypervisor(dc)) goto priv_insn; tcg_gen_mov_tl(cpu_tmp0, cpu_ssr); break; case 31: // ver tcg_gen_mov_tl(cpu_tmp0, cpu_ver); break; case 15: // fq default: goto illegal_insn; } #else tcg_gen_ext_i32_tl(cpu_tmp0, cpu_wim); #endif gen_store_gpr(dc, rd, cpu_tmp0); break; } else if (xop == 0x2b) { /* rdtbr / V9 flushw */ #ifdef TARGET_SPARC64 save_state(dc); gen_helper_flushw(cpu_env); #else if (!supervisor(dc)) goto priv_insn; gen_store_gpr(dc, rd, cpu_tbr); #endif break; #endif } else if (xop == 0x34) { /* FPU Operations */ if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } gen_op_clear_ieee_excp_and_FTT(); rs1 = GET_FIELD(insn, 13, 17); rs2 = GET_FIELD(insn, 27, 31); xop = GET_FIELD(insn, 18, 26); save_state(dc); switch (xop) { case 0x1: /* fmovs */ cpu_src1_32 = gen_load_fpr_F(dc, rs2); gen_store_fpr_F(dc, rd, cpu_src1_32); break; case 0x5: /* fnegs */ gen_ne_fop_FF(dc, rd, rs2, gen_helper_fnegs); break; case 0x9: /* fabss */ gen_ne_fop_FF(dc, rd, rs2, gen_helper_fabss); break; case 0x29: /* fsqrts */ CHECK_FPU_FEATURE(dc, FSQRT); gen_fop_FF(dc, rd, rs2, gen_helper_fsqrts); break; case 0x2a: /* fsqrtd */ CHECK_FPU_FEATURE(dc, FSQRT); gen_fop_DD(dc, rd, rs2, gen_helper_fsqrtd); break; case 0x2b: /* fsqrtq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_QQ(dc, rd, rs2, gen_helper_fsqrtq); break; case 0x41: /* fadds */ gen_fop_FFF(dc, rd, rs1, rs2, gen_helper_fadds); break; case 0x42: /* faddd */ gen_fop_DDD(dc, rd, rs1, rs2, gen_helper_faddd); break; case 0x43: /* faddq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_QQQ(dc, rd, rs1, rs2, gen_helper_faddq); break; case 0x45: /* fsubs */ gen_fop_FFF(dc, rd, rs1, rs2, gen_helper_fsubs); break; case 0x46: /* fsubd */ gen_fop_DDD(dc, rd, rs1, rs2, gen_helper_fsubd); break; case 0x47: /* fsubq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_QQQ(dc, rd, rs1, rs2, gen_helper_fsubq); break; case 0x49: /* fmuls */ CHECK_FPU_FEATURE(dc, FMUL); gen_fop_FFF(dc, rd, rs1, rs2, gen_helper_fmuls); break; case 0x4a: /* fmuld */ CHECK_FPU_FEATURE(dc, FMUL); gen_fop_DDD(dc, rd, rs1, rs2, gen_helper_fmuld); break; case 0x4b: /* fmulq */ CHECK_FPU_FEATURE(dc, FLOAT128); CHECK_FPU_FEATURE(dc, FMUL); gen_fop_QQQ(dc, rd, rs1, rs2, gen_helper_fmulq); break; case 0x4d: /* fdivs */ gen_fop_FFF(dc, rd, rs1, rs2, gen_helper_fdivs); break; case 0x4e: /* fdivd */ gen_fop_DDD(dc, rd, rs1, rs2, gen_helper_fdivd); break; case 0x4f: /* fdivq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_QQQ(dc, rd, rs1, rs2, gen_helper_fdivq); break; case 0x69: /* fsmuld */ CHECK_FPU_FEATURE(dc, FSMULD); gen_fop_DFF(dc, rd, rs1, rs2, gen_helper_fsmuld); break; case 0x6e: /* fdmulq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_QDD(dc, rd, rs1, rs2, gen_helper_fdmulq); break; case 0xc4: /* fitos */ gen_fop_FF(dc, rd, rs2, gen_helper_fitos); break; case 0xc6: /* fdtos */ gen_fop_FD(dc, rd, rs2, gen_helper_fdtos); break; case 0xc7: /* fqtos */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_FQ(dc, rd, rs2, gen_helper_fqtos); break; case 0xc8: /* fitod */ gen_ne_fop_DF(dc, rd, rs2, gen_helper_fitod); break; case 0xc9: /* fstod */ gen_ne_fop_DF(dc, rd, rs2, gen_helper_fstod); break; case 0xcb: /* fqtod */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_DQ(dc, rd, rs2, gen_helper_fqtod); break; case 0xcc: /* fitoq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_ne_fop_QF(dc, rd, rs2, gen_helper_fitoq); break; case 0xcd: /* fstoq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_ne_fop_QF(dc, rd, rs2, gen_helper_fstoq); break; case 0xce: /* fdtoq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_ne_fop_QD(dc, rd, rs2, gen_helper_fdtoq); break; case 0xd1: /* fstoi */ gen_fop_FF(dc, rd, rs2, gen_helper_fstoi); break; case 0xd2: /* fdtoi */ gen_fop_FD(dc, rd, rs2, gen_helper_fdtoi); break; case 0xd3: /* fqtoi */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_FQ(dc, rd, rs2, gen_helper_fqtoi); break; #ifdef TARGET_SPARC64 case 0x2: /* V9 fmovd */ cpu_src1_64 = gen_load_fpr_D(dc, rs2); gen_store_fpr_D(dc, rd, cpu_src1_64); break; case 0x3: /* V9 fmovq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_move_Q(rd, rs2); break; case 0x6: /* V9 fnegd */ gen_ne_fop_DD(dc, rd, rs2, gen_helper_fnegd); break; case 0x7: /* V9 fnegq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_ne_fop_QQ(dc, rd, rs2, gen_helper_fnegq); break; case 0xa: /* V9 fabsd */ gen_ne_fop_DD(dc, rd, rs2, gen_helper_fabsd); break; case 0xb: /* V9 fabsq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_ne_fop_QQ(dc, rd, rs2, gen_helper_fabsq); break; case 0x81: /* V9 fstox */ gen_fop_DF(dc, rd, rs2, gen_helper_fstox); break; case 0x82: /* V9 fdtox */ gen_fop_DD(dc, rd, rs2, gen_helper_fdtox); break; case 0x83: /* V9 fqtox */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_fop_DQ(dc, rd, rs2, gen_helper_fqtox); break; case 0x84: /* V9 fxtos */ gen_fop_FD(dc, rd, rs2, gen_helper_fxtos); break; case 0x88: /* V9 fxtod */ gen_fop_DD(dc, rd, rs2, gen_helper_fxtod); break; case 0x8c: /* V9 fxtoq */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_ne_fop_QD(dc, rd, rs2, gen_helper_fxtoq); break; #endif default: goto illegal_insn; } } else if (xop == 0x35) { /* FPU Operations */ #ifdef TARGET_SPARC64 int cond; #endif if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } gen_op_clear_ieee_excp_and_FTT(); rs1 = GET_FIELD(insn, 13, 17); rs2 = GET_FIELD(insn, 27, 31); xop = GET_FIELD(insn, 18, 26); save_state(dc); #ifdef TARGET_SPARC64 #define FMOVR(sz) \ do { \ DisasCompare cmp; \ cond = GET_FIELD_SP(insn, 14, 17); \ cpu_src1 = get_src1(dc, insn); \ gen_compare_reg(&cmp, cond, cpu_src1); \ gen_fmov##sz(dc, &cmp, rd, rs2); \ free_compare(&cmp); \ } while (0) if ((xop & 0x11f) == 0x005) { /* V9 fmovsr */ FMOVR(s); break; } else if ((xop & 0x11f) == 0x006) { // V9 fmovdr FMOVR(d); break; } else if ((xop & 0x11f) == 0x007) { // V9 fmovqr CHECK_FPU_FEATURE(dc, FLOAT128); FMOVR(q); break; } #undef FMOVR #endif switch (xop) { #ifdef TARGET_SPARC64 #define FMOVCC(fcc, sz) \ do { \ DisasCompare cmp; \ cond = GET_FIELD_SP(insn, 14, 17); \ gen_fcompare(&cmp, fcc, cond); \ gen_fmov##sz(dc, &cmp, rd, rs2); \ free_compare(&cmp); \ } while (0) case 0x001: /* V9 fmovscc %fcc0 */ FMOVCC(0, s); break; case 0x002: /* V9 fmovdcc %fcc0 */ FMOVCC(0, d); break; case 0x003: /* V9 fmovqcc %fcc0 */ CHECK_FPU_FEATURE(dc, FLOAT128); FMOVCC(0, q); break; case 0x041: /* V9 fmovscc %fcc1 */ FMOVCC(1, s); break; case 0x042: /* V9 fmovdcc %fcc1 */ FMOVCC(1, d); break; case 0x043: /* V9 fmovqcc %fcc1 */ CHECK_FPU_FEATURE(dc, FLOAT128); FMOVCC(1, q); break; case 0x081: /* V9 fmovscc %fcc2 */ FMOVCC(2, s); break; case 0x082: /* V9 fmovdcc %fcc2 */ FMOVCC(2, d); break; case 0x083: /* V9 fmovqcc %fcc2 */ CHECK_FPU_FEATURE(dc, FLOAT128); FMOVCC(2, q); break; case 0x0c1: /* V9 fmovscc %fcc3 */ FMOVCC(3, s); break; case 0x0c2: /* V9 fmovdcc %fcc3 */ FMOVCC(3, d); break; case 0x0c3: /* V9 fmovqcc %fcc3 */ CHECK_FPU_FEATURE(dc, FLOAT128); FMOVCC(3, q); break; #undef FMOVCC #define FMOVCC(xcc, sz) \ do { \ DisasCompare cmp; \ cond = GET_FIELD_SP(insn, 14, 17); \ gen_compare(&cmp, xcc, cond, dc); \ gen_fmov##sz(dc, &cmp, rd, rs2); \ free_compare(&cmp); \ } while (0) case 0x101: /* V9 fmovscc %icc */ FMOVCC(0, s); break; case 0x102: /* V9 fmovdcc %icc */ FMOVCC(0, d); break; case 0x103: /* V9 fmovqcc %icc */ CHECK_FPU_FEATURE(dc, FLOAT128); FMOVCC(0, q); break; case 0x181: /* V9 fmovscc %xcc */ FMOVCC(1, s); break; case 0x182: /* V9 fmovdcc %xcc */ FMOVCC(1, d); break; case 0x183: /* V9 fmovqcc %xcc */ CHECK_FPU_FEATURE(dc, FLOAT128); FMOVCC(1, q); break; #undef FMOVCC #endif case 0x51: /* fcmps, V9 %fcc */ cpu_src1_32 = gen_load_fpr_F(dc, rs1); cpu_src2_32 = gen_load_fpr_F(dc, rs2); gen_op_fcmps(rd & 3, cpu_src1_32, cpu_src2_32); break; case 0x52: /* fcmpd, V9 %fcc */ cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_op_fcmpd(rd & 3, cpu_src1_64, cpu_src2_64); break; case 0x53: /* fcmpq, V9 %fcc */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_op_load_fpr_QT0(QFPREG(rs1)); gen_op_load_fpr_QT1(QFPREG(rs2)); gen_op_fcmpq(rd & 3); break; case 0x55: /* fcmpes, V9 %fcc */ cpu_src1_32 = gen_load_fpr_F(dc, rs1); cpu_src2_32 = gen_load_fpr_F(dc, rs2); gen_op_fcmpes(rd & 3, cpu_src1_32, cpu_src2_32); break; case 0x56: /* fcmped, V9 %fcc */ cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_op_fcmped(rd & 3, cpu_src1_64, cpu_src2_64); break; case 0x57: /* fcmpeq, V9 %fcc */ CHECK_FPU_FEATURE(dc, FLOAT128); gen_op_load_fpr_QT0(QFPREG(rs1)); gen_op_load_fpr_QT1(QFPREG(rs2)); gen_op_fcmpeq(rd & 3); break; default: goto illegal_insn; } } else if (xop == 0x2) { TCGv dst = gen_dest_gpr(dc, rd); rs1 = GET_FIELD(insn, 13, 17); if (rs1 == 0) { /* clr/mov shortcut : or %g0, x, y -> mov x, y */ if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 19, 31); tcg_gen_movi_tl(dst, simm); gen_store_gpr(dc, rd, dst); } else { /* register */ rs2 = GET_FIELD(insn, 27, 31); if (rs2 == 0) { tcg_gen_movi_tl(dst, 0); gen_store_gpr(dc, rd, dst); } else { cpu_src2 = gen_load_gpr(dc, rs2); gen_store_gpr(dc, rd, cpu_src2); } } } else { cpu_src1 = get_src1(dc, insn); if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 19, 31); tcg_gen_ori_tl(dst, cpu_src1, simm); gen_store_gpr(dc, rd, dst); } else { /* register */ rs2 = GET_FIELD(insn, 27, 31); if (rs2 == 0) { /* mov shortcut: or x, %g0, y -> mov x, y */ gen_store_gpr(dc, rd, cpu_src1); } else { cpu_src2 = gen_load_gpr(dc, rs2); tcg_gen_or_tl(dst, cpu_src1, cpu_src2); gen_store_gpr(dc, rd, dst); } } } #ifdef TARGET_SPARC64 } else if (xop == 0x25) { /* sll, V9 sllx */ cpu_src1 = get_src1(dc, insn); if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 20, 31); if (insn & (1 << 12)) { tcg_gen_shli_i64(cpu_dst, cpu_src1, simm & 0x3f); } else { tcg_gen_shli_i64(cpu_dst, cpu_src1, simm & 0x1f); } } else { /* register */ rs2 = GET_FIELD(insn, 27, 31); cpu_src2 = gen_load_gpr(dc, rs2); if (insn & (1 << 12)) { tcg_gen_andi_i64(cpu_tmp0, cpu_src2, 0x3f); } else { tcg_gen_andi_i64(cpu_tmp0, cpu_src2, 0x1f); } tcg_gen_shl_i64(cpu_dst, cpu_src1, cpu_tmp0); } gen_store_gpr(dc, rd, cpu_dst); } else if (xop == 0x26) { /* srl, V9 srlx */ cpu_src1 = get_src1(dc, insn); if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 20, 31); if (insn & (1 << 12)) { tcg_gen_shri_i64(cpu_dst, cpu_src1, simm & 0x3f); } else { tcg_gen_andi_i64(cpu_dst, cpu_src1, 0xffffffffULL); tcg_gen_shri_i64(cpu_dst, cpu_dst, simm & 0x1f); } } else { /* register */ rs2 = GET_FIELD(insn, 27, 31); cpu_src2 = gen_load_gpr(dc, rs2); if (insn & (1 << 12)) { tcg_gen_andi_i64(cpu_tmp0, cpu_src2, 0x3f); tcg_gen_shr_i64(cpu_dst, cpu_src1, cpu_tmp0); } else { tcg_gen_andi_i64(cpu_tmp0, cpu_src2, 0x1f); tcg_gen_andi_i64(cpu_dst, cpu_src1, 0xffffffffULL); tcg_gen_shr_i64(cpu_dst, cpu_dst, cpu_tmp0); } } gen_store_gpr(dc, rd, cpu_dst); } else if (xop == 0x27) { /* sra, V9 srax */ cpu_src1 = get_src1(dc, insn); if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 20, 31); if (insn & (1 << 12)) { tcg_gen_sari_i64(cpu_dst, cpu_src1, simm & 0x3f); } else { tcg_gen_ext32s_i64(cpu_dst, cpu_src1); tcg_gen_sari_i64(cpu_dst, cpu_dst, simm & 0x1f); } } else { /* register */ rs2 = GET_FIELD(insn, 27, 31); cpu_src2 = gen_load_gpr(dc, rs2); if (insn & (1 << 12)) { tcg_gen_andi_i64(cpu_tmp0, cpu_src2, 0x3f); tcg_gen_sar_i64(cpu_dst, cpu_src1, cpu_tmp0); } else { tcg_gen_andi_i64(cpu_tmp0, cpu_src2, 0x1f); tcg_gen_ext32s_i64(cpu_dst, cpu_src1); tcg_gen_sar_i64(cpu_dst, cpu_dst, cpu_tmp0); } } gen_store_gpr(dc, rd, cpu_dst); #endif } else if (xop < 0x36) { if (xop < 0x20) { cpu_src1 = get_src1(dc, insn); cpu_src2 = get_src2(dc, insn); switch (xop & ~0x10) { case 0x0: /* add */ if (xop & 0x10) { gen_op_add_cc(cpu_dst, cpu_src1, cpu_src2); tcg_gen_movi_i32(cpu_cc_op, CC_OP_ADD); dc->cc_op = CC_OP_ADD; } else { tcg_gen_add_tl(cpu_dst, cpu_src1, cpu_src2); } break; case 0x1: /* and */ tcg_gen_and_tl(cpu_dst, cpu_src1, cpu_src2); if (xop & 0x10) { tcg_gen_mov_tl(cpu_cc_dst, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_LOGIC); dc->cc_op = CC_OP_LOGIC; } break; case 0x2: /* or */ tcg_gen_or_tl(cpu_dst, cpu_src1, cpu_src2); if (xop & 0x10) { tcg_gen_mov_tl(cpu_cc_dst, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_LOGIC); dc->cc_op = CC_OP_LOGIC; } break; case 0x3: /* xor */ tcg_gen_xor_tl(cpu_dst, cpu_src1, cpu_src2); if (xop & 0x10) { tcg_gen_mov_tl(cpu_cc_dst, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_LOGIC); dc->cc_op = CC_OP_LOGIC; } break; case 0x4: /* sub */ if (xop & 0x10) { gen_op_sub_cc(cpu_dst, cpu_src1, cpu_src2); tcg_gen_movi_i32(cpu_cc_op, CC_OP_SUB); dc->cc_op = CC_OP_SUB; } else { tcg_gen_sub_tl(cpu_dst, cpu_src1, cpu_src2); } break; case 0x5: /* andn */ tcg_gen_andc_tl(cpu_dst, cpu_src1, cpu_src2); if (xop & 0x10) { tcg_gen_mov_tl(cpu_cc_dst, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_LOGIC); dc->cc_op = CC_OP_LOGIC; } break; case 0x6: /* orn */ tcg_gen_orc_tl(cpu_dst, cpu_src1, cpu_src2); if (xop & 0x10) { tcg_gen_mov_tl(cpu_cc_dst, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_LOGIC); dc->cc_op = CC_OP_LOGIC; } break; case 0x7: /* xorn */ tcg_gen_eqv_tl(cpu_dst, cpu_src1, cpu_src2); if (xop & 0x10) { tcg_gen_mov_tl(cpu_cc_dst, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_LOGIC); dc->cc_op = CC_OP_LOGIC; } break; case 0x8: /* addx, V9 addc */ gen_op_addx_int(dc, cpu_dst, cpu_src1, cpu_src2, (xop & 0x10)); break; #ifdef TARGET_SPARC64 case 0x9: /* V9 mulx */ tcg_gen_mul_i64(cpu_dst, cpu_src1, cpu_src2); break; #endif case 0xa: /* umul */ CHECK_IU_FEATURE(dc, MUL); gen_op_umul(cpu_dst, cpu_src1, cpu_src2); if (xop & 0x10) { tcg_gen_mov_tl(cpu_cc_dst, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_LOGIC); dc->cc_op = CC_OP_LOGIC; } break; case 0xb: /* smul */ CHECK_IU_FEATURE(dc, MUL); gen_op_smul(cpu_dst, cpu_src1, cpu_src2); if (xop & 0x10) { tcg_gen_mov_tl(cpu_cc_dst, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_LOGIC); dc->cc_op = CC_OP_LOGIC; } break; case 0xc: /* subx, V9 subc */ gen_op_subx_int(dc, cpu_dst, cpu_src1, cpu_src2, (xop & 0x10)); break; #ifdef TARGET_SPARC64 case 0xd: /* V9 udivx */ gen_helper_udivx(cpu_dst, cpu_env, cpu_src1, cpu_src2); break; #endif case 0xe: /* udiv */ CHECK_IU_FEATURE(dc, DIV); if (xop & 0x10) { gen_helper_udiv_cc(cpu_dst, cpu_env, cpu_src1, cpu_src2); dc->cc_op = CC_OP_DIV; } else { gen_helper_udiv(cpu_dst, cpu_env, cpu_src1, cpu_src2); } break; case 0xf: /* sdiv */ CHECK_IU_FEATURE(dc, DIV); if (xop & 0x10) { gen_helper_sdiv_cc(cpu_dst, cpu_env, cpu_src1, cpu_src2); dc->cc_op = CC_OP_DIV; } else { gen_helper_sdiv(cpu_dst, cpu_env, cpu_src1, cpu_src2); } break; default: goto illegal_insn; } gen_store_gpr(dc, rd, cpu_dst); } else { cpu_src1 = get_src1(dc, insn); cpu_src2 = get_src2(dc, insn); switch (xop) { case 0x20: /* taddcc */ gen_op_add_cc(cpu_dst, cpu_src1, cpu_src2); gen_store_gpr(dc, rd, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_TADD); dc->cc_op = CC_OP_TADD; break; case 0x21: /* tsubcc */ gen_op_sub_cc(cpu_dst, cpu_src1, cpu_src2); gen_store_gpr(dc, rd, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_TSUB); dc->cc_op = CC_OP_TSUB; break; case 0x22: /* taddcctv */ gen_helper_taddcctv(cpu_dst, cpu_env, cpu_src1, cpu_src2); gen_store_gpr(dc, rd, cpu_dst); dc->cc_op = CC_OP_TADDTV; break; case 0x23: /* tsubcctv */ gen_helper_tsubcctv(cpu_dst, cpu_env, cpu_src1, cpu_src2); gen_store_gpr(dc, rd, cpu_dst); dc->cc_op = CC_OP_TSUBTV; break; case 0x24: /* mulscc */ update_psr(dc); gen_op_mulscc(cpu_dst, cpu_src1, cpu_src2); gen_store_gpr(dc, rd, cpu_dst); tcg_gen_movi_i32(cpu_cc_op, CC_OP_ADD); dc->cc_op = CC_OP_ADD; break; #ifndef TARGET_SPARC64 case 0x25: /* sll */ if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 20, 31); tcg_gen_shli_tl(cpu_dst, cpu_src1, simm & 0x1f); } else { /* register */ tcg_gen_andi_tl(cpu_tmp0, cpu_src2, 0x1f); tcg_gen_shl_tl(cpu_dst, cpu_src1, cpu_tmp0); } gen_store_gpr(dc, rd, cpu_dst); break; case 0x26: /* srl */ if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 20, 31); tcg_gen_shri_tl(cpu_dst, cpu_src1, simm & 0x1f); } else { /* register */ tcg_gen_andi_tl(cpu_tmp0, cpu_src2, 0x1f); tcg_gen_shr_tl(cpu_dst, cpu_src1, cpu_tmp0); } gen_store_gpr(dc, rd, cpu_dst); break; case 0x27: /* sra */ if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 20, 31); tcg_gen_sari_tl(cpu_dst, cpu_src1, simm & 0x1f); } else { /* register */ tcg_gen_andi_tl(cpu_tmp0, cpu_src2, 0x1f); tcg_gen_sar_tl(cpu_dst, cpu_src1, cpu_tmp0); } gen_store_gpr(dc, rd, cpu_dst); break; #endif case 0x30: { switch(rd) { case 0: /* wry */ tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); tcg_gen_andi_tl(cpu_y, cpu_tmp0, 0xffffffff); break; #ifndef TARGET_SPARC64 case 0x01 ... 0x0f: /* undefined in the SPARCv8 manual, nop on the microSPARC II */ case 0x10 ... 0x1f: /* implementation-dependent in the SPARCv8 manual, nop on the microSPARC II */ break; #else case 0x2: /* V9 wrccr */ tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); gen_helper_wrccr(cpu_env, cpu_tmp0); tcg_gen_movi_i32(cpu_cc_op, CC_OP_FLAGS); dc->cc_op = CC_OP_FLAGS; break; case 0x3: /* V9 wrasi */ tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); tcg_gen_andi_tl(cpu_tmp0, cpu_tmp0, 0xff); tcg_gen_trunc_tl_i32(cpu_asi, cpu_tmp0); break; case 0x6: /* V9 wrfprs */ tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); tcg_gen_trunc_tl_i32(cpu_fprs, cpu_tmp0); save_state(dc); gen_op_next_insn(); tcg_gen_exit_tb(0); dc->is_br = 1; break; case 0xf: /* V9 sir, nop if user */ #if !defined(CONFIG_USER_ONLY) if (supervisor(dc)) { ; // XXX } #endif break; case 0x13: /* Graphics Status */ if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } tcg_gen_xor_tl(cpu_gsr, cpu_src1, cpu_src2); break; case 0x14: /* Softint set */ if (!supervisor(dc)) goto illegal_insn; tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); gen_helper_set_softint(cpu_env, cpu_tmp0); break; case 0x15: /* Softint clear */ if (!supervisor(dc)) goto illegal_insn; tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); gen_helper_clear_softint(cpu_env, cpu_tmp0); break; case 0x16: /* Softint write */ if (!supervisor(dc)) goto illegal_insn; tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); gen_helper_write_softint(cpu_env, cpu_tmp0); break; case 0x17: /* Tick compare */ #if !defined(CONFIG_USER_ONLY) if (!supervisor(dc)) goto illegal_insn; #endif { TCGv_ptr r_tickptr; tcg_gen_xor_tl(cpu_tick_cmpr, cpu_src1, cpu_src2); r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, cpu_env, offsetof(CPUSPARCState, tick)); gen_helper_tick_set_limit(r_tickptr, cpu_tick_cmpr); tcg_temp_free_ptr(r_tickptr); } break; case 0x18: /* System tick */ #if !defined(CONFIG_USER_ONLY) if (!supervisor(dc)) goto illegal_insn; #endif { TCGv_ptr r_tickptr; tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, cpu_env, offsetof(CPUSPARCState, stick)); gen_helper_tick_set_count(r_tickptr, cpu_tmp0); tcg_temp_free_ptr(r_tickptr); } break; case 0x19: /* System tick compare */ #if !defined(CONFIG_USER_ONLY) if (!supervisor(dc)) goto illegal_insn; #endif { TCGv_ptr r_tickptr; tcg_gen_xor_tl(cpu_stick_cmpr, cpu_src1, cpu_src2); r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, cpu_env, offsetof(CPUSPARCState, stick)); gen_helper_tick_set_limit(r_tickptr, cpu_stick_cmpr); tcg_temp_free_ptr(r_tickptr); } break; case 0x10: /* Performance Control */ case 0x11: /* Performance Instrumentation Counter */ case 0x12: /* Dispatch Control */ #endif default: goto illegal_insn; } } break; #if !defined(CONFIG_USER_ONLY) case 0x31: /* wrpsr, V9 saved, restored */ { if (!supervisor(dc)) goto priv_insn; #ifdef TARGET_SPARC64 switch (rd) { case 0: gen_helper_saved(cpu_env); break; case 1: gen_helper_restored(cpu_env); break; case 2: /* UA2005 allclean */ case 3: /* UA2005 otherw */ case 4: /* UA2005 normalw */ case 5: /* UA2005 invalw */ // XXX default: goto illegal_insn; } #else tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); gen_helper_wrpsr(cpu_env, cpu_tmp0); tcg_gen_movi_i32(cpu_cc_op, CC_OP_FLAGS); dc->cc_op = CC_OP_FLAGS; save_state(dc); gen_op_next_insn(); tcg_gen_exit_tb(0); dc->is_br = 1; #endif } break; case 0x32: /* wrwim, V9 wrpr */ { if (!supervisor(dc)) goto priv_insn; tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); #ifdef TARGET_SPARC64 switch (rd) { case 0: // tpc { TCGv_ptr r_tsptr; r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr, cpu_env); tcg_gen_st_tl(cpu_tmp0, r_tsptr, offsetof(trap_state, tpc)); tcg_temp_free_ptr(r_tsptr); } break; case 1: // tnpc { TCGv_ptr r_tsptr; r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr, cpu_env); tcg_gen_st_tl(cpu_tmp0, r_tsptr, offsetof(trap_state, tnpc)); tcg_temp_free_ptr(r_tsptr); } break; case 2: // tstate { TCGv_ptr r_tsptr; r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr, cpu_env); tcg_gen_st_tl(cpu_tmp0, r_tsptr, offsetof(trap_state, tstate)); tcg_temp_free_ptr(r_tsptr); } break; case 3: // tt { TCGv_ptr r_tsptr; r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr, cpu_env); tcg_gen_st32_tl(cpu_tmp0, r_tsptr, offsetof(trap_state, tt)); tcg_temp_free_ptr(r_tsptr); } break; case 4: // tick { TCGv_ptr r_tickptr; r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, cpu_env, offsetof(CPUSPARCState, tick)); gen_helper_tick_set_count(r_tickptr, cpu_tmp0); tcg_temp_free_ptr(r_tickptr); } break; case 5: // tba tcg_gen_mov_tl(cpu_tbr, cpu_tmp0); break; case 6: // pstate save_state(dc); gen_helper_wrpstate(cpu_env, cpu_tmp0); dc->npc = DYNAMIC_PC; break; case 7: // tl save_state(dc); tcg_gen_st32_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, tl)); dc->npc = DYNAMIC_PC; break; case 8: // pil gen_helper_wrpil(cpu_env, cpu_tmp0); break; case 9: // cwp gen_helper_wrcwp(cpu_env, cpu_tmp0); break; case 10: // cansave tcg_gen_st32_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, cansave)); break; case 11: // canrestore tcg_gen_st32_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, canrestore)); break; case 12: // cleanwin tcg_gen_st32_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, cleanwin)); break; case 13: // otherwin tcg_gen_st32_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, otherwin)); break; case 14: // wstate tcg_gen_st32_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, wstate)); break; case 16: // UA2005 gl CHECK_IU_FEATURE(dc, GL); tcg_gen_st32_tl(cpu_tmp0, cpu_env, offsetof(CPUSPARCState, gl)); break; case 26: // UA2005 strand status CHECK_IU_FEATURE(dc, HYPV); if (!hypervisor(dc)) goto priv_insn; tcg_gen_mov_tl(cpu_ssr, cpu_tmp0); break; default: goto illegal_insn; } #else tcg_gen_trunc_tl_i32(cpu_wim, cpu_tmp0); if (dc->def->nwindows != 32) { tcg_gen_andi_tl(cpu_wim, cpu_wim, (1 << dc->def->nwindows) - 1); } #endif } break; case 0x33: /* wrtbr, UA2005 wrhpr */ { #ifndef TARGET_SPARC64 if (!supervisor(dc)) goto priv_insn; tcg_gen_xor_tl(cpu_tbr, cpu_src1, cpu_src2); #else CHECK_IU_FEATURE(dc, HYPV); if (!hypervisor(dc)) goto priv_insn; tcg_gen_xor_tl(cpu_tmp0, cpu_src1, cpu_src2); switch (rd) { case 0: // hpstate // XXX gen_op_wrhpstate(); save_state(dc); gen_op_next_insn(); tcg_gen_exit_tb(0); dc->is_br = 1; break; case 1: // htstate // XXX gen_op_wrhtstate(); break; case 3: // hintp tcg_gen_mov_tl(cpu_hintp, cpu_tmp0); break; case 5: // htba tcg_gen_mov_tl(cpu_htba, cpu_tmp0); break; case 31: // hstick_cmpr { TCGv_ptr r_tickptr; tcg_gen_mov_tl(cpu_hstick_cmpr, cpu_tmp0); r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, cpu_env, offsetof(CPUSPARCState, hstick)); gen_helper_tick_set_limit(r_tickptr, cpu_hstick_cmpr); tcg_temp_free_ptr(r_tickptr); } break; case 6: // hver readonly default: goto illegal_insn; } #endif } break; #endif #ifdef TARGET_SPARC64 case 0x2c: /* V9 movcc */ { int cc = GET_FIELD_SP(insn, 11, 12); int cond = GET_FIELD_SP(insn, 14, 17); DisasCompare cmp; TCGv dst; if (insn & (1 << 18)) { if (cc == 0) { gen_compare(&cmp, 0, cond, dc); } else if (cc == 2) { gen_compare(&cmp, 1, cond, dc); } else { goto illegal_insn; } } else { gen_fcompare(&cmp, cc, cond); } /* The get_src2 above loaded the normal 13-bit immediate field, not the 11-bit field we have in movcc. But it did handle the reg case. */ if (IS_IMM) { simm = GET_FIELD_SPs(insn, 0, 10); tcg_gen_movi_tl(cpu_src2, simm); } dst = gen_load_gpr(dc, rd); tcg_gen_movcond_tl(cmp.cond, dst, cmp.c1, cmp.c2, cpu_src2, dst); free_compare(&cmp); gen_store_gpr(dc, rd, dst); break; } case 0x2d: /* V9 sdivx */ gen_helper_sdivx(cpu_dst, cpu_env, cpu_src1, cpu_src2); gen_store_gpr(dc, rd, cpu_dst); break; case 0x2e: /* V9 popc */ gen_helper_popc(cpu_dst, cpu_src2); gen_store_gpr(dc, rd, cpu_dst); break; case 0x2f: /* V9 movr */ { int cond = GET_FIELD_SP(insn, 10, 12); DisasCompare cmp; TCGv dst; gen_compare_reg(&cmp, cond, cpu_src1); /* The get_src2 above loaded the normal 13-bit immediate field, not the 10-bit field we have in movr. But it did handle the reg case. */ if (IS_IMM) { simm = GET_FIELD_SPs(insn, 0, 9); tcg_gen_movi_tl(cpu_src2, simm); } dst = gen_load_gpr(dc, rd); tcg_gen_movcond_tl(cmp.cond, dst, cmp.c1, cmp.c2, cpu_src2, dst); free_compare(&cmp); gen_store_gpr(dc, rd, dst); break; } #endif default: goto illegal_insn; } } } else if (xop == 0x36) { /* UltraSparc shutdown, VIS, V8 CPop1 */ #ifdef TARGET_SPARC64 int opf = GET_FIELD_SP(insn, 5, 13); rs1 = GET_FIELD(insn, 13, 17); rs2 = GET_FIELD(insn, 27, 31); if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } switch (opf) { case 0x000: /* VIS I edge8cc */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 8, 1, 0); gen_store_gpr(dc, rd, cpu_dst); break; case 0x001: /* VIS II edge8n */ CHECK_FPU_FEATURE(dc, VIS2); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 8, 0, 0); gen_store_gpr(dc, rd, cpu_dst); break; case 0x002: /* VIS I edge8lcc */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 8, 1, 1); gen_store_gpr(dc, rd, cpu_dst); break; case 0x003: /* VIS II edge8ln */ CHECK_FPU_FEATURE(dc, VIS2); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 8, 0, 1); gen_store_gpr(dc, rd, cpu_dst); break; case 0x004: /* VIS I edge16cc */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 16, 1, 0); gen_store_gpr(dc, rd, cpu_dst); break; case 0x005: /* VIS II edge16n */ CHECK_FPU_FEATURE(dc, VIS2); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 16, 0, 0); gen_store_gpr(dc, rd, cpu_dst); break; case 0x006: /* VIS I edge16lcc */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 16, 1, 1); gen_store_gpr(dc, rd, cpu_dst); break; case 0x007: /* VIS II edge16ln */ CHECK_FPU_FEATURE(dc, VIS2); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 16, 0, 1); gen_store_gpr(dc, rd, cpu_dst); break; case 0x008: /* VIS I edge32cc */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 32, 1, 0); gen_store_gpr(dc, rd, cpu_dst); break; case 0x009: /* VIS II edge32n */ CHECK_FPU_FEATURE(dc, VIS2); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 32, 0, 0); gen_store_gpr(dc, rd, cpu_dst); break; case 0x00a: /* VIS I edge32lcc */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 32, 1, 1); gen_store_gpr(dc, rd, cpu_dst); break; case 0x00b: /* VIS II edge32ln */ CHECK_FPU_FEATURE(dc, VIS2); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_edge(dc, cpu_dst, cpu_src1, cpu_src2, 32, 0, 1); gen_store_gpr(dc, rd, cpu_dst); break; case 0x010: /* VIS I array8 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_helper_array8(cpu_dst, cpu_src1, cpu_src2); gen_store_gpr(dc, rd, cpu_dst); break; case 0x012: /* VIS I array16 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_helper_array8(cpu_dst, cpu_src1, cpu_src2); tcg_gen_shli_i64(cpu_dst, cpu_dst, 1); gen_store_gpr(dc, rd, cpu_dst); break; case 0x014: /* VIS I array32 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_helper_array8(cpu_dst, cpu_src1, cpu_src2); tcg_gen_shli_i64(cpu_dst, cpu_dst, 2); gen_store_gpr(dc, rd, cpu_dst); break; case 0x018: /* VIS I alignaddr */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_alignaddr(cpu_dst, cpu_src1, cpu_src2, 0); gen_store_gpr(dc, rd, cpu_dst); break; case 0x01a: /* VIS I alignaddrl */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); gen_alignaddr(cpu_dst, cpu_src1, cpu_src2, 1); gen_store_gpr(dc, rd, cpu_dst); break; case 0x019: /* VIS II bmask */ CHECK_FPU_FEATURE(dc, VIS2); cpu_src1 = gen_load_gpr(dc, rs1); cpu_src2 = gen_load_gpr(dc, rs2); tcg_gen_add_tl(cpu_dst, cpu_src1, cpu_src2); tcg_gen_deposit_tl(cpu_gsr, cpu_gsr, cpu_dst, 32, 32); gen_store_gpr(dc, rd, cpu_dst); break; case 0x020: /* VIS I fcmple16 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_helper_fcmple16(cpu_dst, cpu_src1_64, cpu_src2_64); gen_store_gpr(dc, rd, cpu_dst); break; case 0x022: /* VIS I fcmpne16 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_helper_fcmpne16(cpu_dst, cpu_src1_64, cpu_src2_64); gen_store_gpr(dc, rd, cpu_dst); break; case 0x024: /* VIS I fcmple32 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_helper_fcmple32(cpu_dst, cpu_src1_64, cpu_src2_64); gen_store_gpr(dc, rd, cpu_dst); break; case 0x026: /* VIS I fcmpne32 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_helper_fcmpne32(cpu_dst, cpu_src1_64, cpu_src2_64); gen_store_gpr(dc, rd, cpu_dst); break; case 0x028: /* VIS I fcmpgt16 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_helper_fcmpgt16(cpu_dst, cpu_src1_64, cpu_src2_64); gen_store_gpr(dc, rd, cpu_dst); break; case 0x02a: /* VIS I fcmpeq16 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_helper_fcmpeq16(cpu_dst, cpu_src1_64, cpu_src2_64); gen_store_gpr(dc, rd, cpu_dst); break; case 0x02c: /* VIS I fcmpgt32 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_helper_fcmpgt32(cpu_dst, cpu_src1_64, cpu_src2_64); gen_store_gpr(dc, rd, cpu_dst); break; case 0x02e: /* VIS I fcmpeq32 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); cpu_src2_64 = gen_load_fpr_D(dc, rs2); gen_helper_fcmpeq32(cpu_dst, cpu_src1_64, cpu_src2_64); gen_store_gpr(dc, rd, cpu_dst); break; case 0x031: /* VIS I fmul8x16 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fmul8x16); break; case 0x033: /* VIS I fmul8x16au */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fmul8x16au); break; case 0x035: /* VIS I fmul8x16al */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fmul8x16al); break; case 0x036: /* VIS I fmul8sux16 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fmul8sux16); break; case 0x037: /* VIS I fmul8ulx16 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fmul8ulx16); break; case 0x038: /* VIS I fmuld8sux16 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fmuld8sux16); break; case 0x039: /* VIS I fmuld8ulx16 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fmuld8ulx16); break; case 0x03a: /* VIS I fpack32 */ CHECK_FPU_FEATURE(dc, VIS1); gen_gsr_fop_DDD(dc, rd, rs1, rs2, gen_helper_fpack32); break; case 0x03b: /* VIS I fpack16 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs2); cpu_dst_32 = gen_dest_fpr_F(dc); gen_helper_fpack16(cpu_dst_32, cpu_gsr, cpu_src1_64); gen_store_fpr_F(dc, rd, cpu_dst_32); break; case 0x03d: /* VIS I fpackfix */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs2); cpu_dst_32 = gen_dest_fpr_F(dc); gen_helper_fpackfix(cpu_dst_32, cpu_gsr, cpu_src1_64); gen_store_fpr_F(dc, rd, cpu_dst_32); break; case 0x03e: /* VIS I pdist */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDDD(dc, rd, rs1, rs2, gen_helper_pdist); break; case 0x048: /* VIS I faligndata */ CHECK_FPU_FEATURE(dc, VIS1); gen_gsr_fop_DDD(dc, rd, rs1, rs2, gen_faligndata); break; case 0x04b: /* VIS I fpmerge */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fpmerge); break; case 0x04c: /* VIS II bshuffle */ CHECK_FPU_FEATURE(dc, VIS2); gen_gsr_fop_DDD(dc, rd, rs1, rs2, gen_helper_bshuffle); break; case 0x04d: /* VIS I fexpand */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fexpand); break; case 0x050: /* VIS I fpadd16 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fpadd16); break; case 0x051: /* VIS I fpadd16s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, gen_helper_fpadd16s); break; case 0x052: /* VIS I fpadd32 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fpadd32); break; case 0x053: /* VIS I fpadd32s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_add_i32); break; case 0x054: /* VIS I fpsub16 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fpsub16); break; case 0x055: /* VIS I fpsub16s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, gen_helper_fpsub16s); break; case 0x056: /* VIS I fpsub32 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, gen_helper_fpsub32); break; case 0x057: /* VIS I fpsub32s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_sub_i32); break; case 0x060: /* VIS I fzero */ CHECK_FPU_FEATURE(dc, VIS1); cpu_dst_64 = gen_dest_fpr_D(dc, rd); tcg_gen_movi_i64(cpu_dst_64, 0); gen_store_fpr_D(dc, rd, cpu_dst_64); break; case 0x061: /* VIS I fzeros */ CHECK_FPU_FEATURE(dc, VIS1); cpu_dst_32 = gen_dest_fpr_F(dc); tcg_gen_movi_i32(cpu_dst_32, 0); gen_store_fpr_F(dc, rd, cpu_dst_32); break; case 0x062: /* VIS I fnor */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, tcg_gen_nor_i64); break; case 0x063: /* VIS I fnors */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_nor_i32); break; case 0x064: /* VIS I fandnot2 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, tcg_gen_andc_i64); break; case 0x065: /* VIS I fandnot2s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_andc_i32); break; case 0x066: /* VIS I fnot2 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DD(dc, rd, rs2, tcg_gen_not_i64); break; case 0x067: /* VIS I fnot2s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FF(dc, rd, rs2, tcg_gen_not_i32); break; case 0x068: /* VIS I fandnot1 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs2, rs1, tcg_gen_andc_i64); break; case 0x069: /* VIS I fandnot1s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs2, rs1, tcg_gen_andc_i32); break; case 0x06a: /* VIS I fnot1 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DD(dc, rd, rs1, tcg_gen_not_i64); break; case 0x06b: /* VIS I fnot1s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FF(dc, rd, rs1, tcg_gen_not_i32); break; case 0x06c: /* VIS I fxor */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, tcg_gen_xor_i64); break; case 0x06d: /* VIS I fxors */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_xor_i32); break; case 0x06e: /* VIS I fnand */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, tcg_gen_nand_i64); break; case 0x06f: /* VIS I fnands */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_nand_i32); break; case 0x070: /* VIS I fand */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, tcg_gen_and_i64); break; case 0x071: /* VIS I fands */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_and_i32); break; case 0x072: /* VIS I fxnor */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, tcg_gen_eqv_i64); break; case 0x073: /* VIS I fxnors */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_eqv_i32); break; case 0x074: /* VIS I fsrc1 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs1); gen_store_fpr_D(dc, rd, cpu_src1_64); break; case 0x075: /* VIS I fsrc1s */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_32 = gen_load_fpr_F(dc, rs1); gen_store_fpr_F(dc, rd, cpu_src1_32); break; case 0x076: /* VIS I fornot2 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, tcg_gen_orc_i64); break; case 0x077: /* VIS I fornot2s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_orc_i32); break; case 0x078: /* VIS I fsrc2 */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_64 = gen_load_fpr_D(dc, rs2); gen_store_fpr_D(dc, rd, cpu_src1_64); break; case 0x079: /* VIS I fsrc2s */ CHECK_FPU_FEATURE(dc, VIS1); cpu_src1_32 = gen_load_fpr_F(dc, rs2); gen_store_fpr_F(dc, rd, cpu_src1_32); break; case 0x07a: /* VIS I fornot1 */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs2, rs1, tcg_gen_orc_i64); break; case 0x07b: /* VIS I fornot1s */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs2, rs1, tcg_gen_orc_i32); break; case 0x07c: /* VIS I for */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_DDD(dc, rd, rs1, rs2, tcg_gen_or_i64); break; case 0x07d: /* VIS I fors */ CHECK_FPU_FEATURE(dc, VIS1); gen_ne_fop_FFF(dc, rd, rs1, rs2, tcg_gen_or_i32); break; case 0x07e: /* VIS I fone */ CHECK_FPU_FEATURE(dc, VIS1); cpu_dst_64 = gen_dest_fpr_D(dc, rd); tcg_gen_movi_i64(cpu_dst_64, -1); gen_store_fpr_D(dc, rd, cpu_dst_64); break; case 0x07f: /* VIS I fones */ CHECK_FPU_FEATURE(dc, VIS1); cpu_dst_32 = gen_dest_fpr_F(dc); tcg_gen_movi_i32(cpu_dst_32, -1); gen_store_fpr_F(dc, rd, cpu_dst_32); break; case 0x080: /* VIS I shutdown */ case 0x081: /* VIS II siam */ // XXX goto illegal_insn; default: goto illegal_insn; } #else goto ncp_insn; #endif } else if (xop == 0x37) { /* V8 CPop2, V9 impdep2 */ #ifdef TARGET_SPARC64 goto illegal_insn; #else goto ncp_insn; #endif #ifdef TARGET_SPARC64 } else if (xop == 0x39) { /* V9 return */ TCGv_i32 r_const; save_state(dc); cpu_src1 = get_src1(dc, insn); if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 19, 31); tcg_gen_addi_tl(cpu_tmp0, cpu_src1, simm); } else { /* register */ rs2 = GET_FIELD(insn, 27, 31); if (rs2) { cpu_src2 = gen_load_gpr(dc, rs2); tcg_gen_add_tl(cpu_tmp0, cpu_src1, cpu_src2); } else { tcg_gen_mov_tl(cpu_tmp0, cpu_src1); } } gen_helper_restore(cpu_env); gen_mov_pc_npc(dc); r_const = tcg_const_i32(3); gen_helper_check_align(cpu_env, cpu_tmp0, r_const); tcg_temp_free_i32(r_const); tcg_gen_mov_tl(cpu_npc, cpu_tmp0); dc->npc = DYNAMIC_PC; goto jmp_insn; #endif } else { cpu_src1 = get_src1(dc, insn); if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 19, 31); tcg_gen_addi_tl(cpu_tmp0, cpu_src1, simm); } else { /* register */ rs2 = GET_FIELD(insn, 27, 31); if (rs2) { cpu_src2 = gen_load_gpr(dc, rs2); tcg_gen_add_tl(cpu_tmp0, cpu_src1, cpu_src2); } else { tcg_gen_mov_tl(cpu_tmp0, cpu_src1); } } switch (xop) { case 0x38: /* jmpl */ { TCGv t; TCGv_i32 r_const; t = gen_dest_gpr(dc, rd); tcg_gen_movi_tl(t, dc->pc); gen_store_gpr(dc, rd, t); gen_mov_pc_npc(dc); r_const = tcg_const_i32(3); gen_helper_check_align(cpu_env, cpu_tmp0, r_const); tcg_temp_free_i32(r_const); gen_address_mask(dc, cpu_tmp0); tcg_gen_mov_tl(cpu_npc, cpu_tmp0); dc->npc = DYNAMIC_PC; } goto jmp_insn; #if !defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64) case 0x39: /* rett, V9 return */ { TCGv_i32 r_const; if (!supervisor(dc)) goto priv_insn; gen_mov_pc_npc(dc); r_const = tcg_const_i32(3); gen_helper_check_align(cpu_env, cpu_tmp0, r_const); tcg_temp_free_i32(r_const); tcg_gen_mov_tl(cpu_npc, cpu_tmp0); dc->npc = DYNAMIC_PC; gen_helper_rett(cpu_env); } goto jmp_insn; #endif case 0x3b: /* flush */ if (!((dc)->def->features & CPU_FEATURE_FLUSH)) goto unimp_flush; /* nop */ break; case 0x3c: /* save */ save_state(dc); gen_helper_save(cpu_env); gen_store_gpr(dc, rd, cpu_tmp0); break; case 0x3d: /* restore */ save_state(dc); gen_helper_restore(cpu_env); gen_store_gpr(dc, rd, cpu_tmp0); break; #if !defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64) case 0x3e: /* V9 done/retry */ { switch (rd) { case 0: if (!supervisor(dc)) goto priv_insn; dc->npc = DYNAMIC_PC; dc->pc = DYNAMIC_PC; gen_helper_done(cpu_env); goto jmp_insn; case 1: if (!supervisor(dc)) goto priv_insn; dc->npc = DYNAMIC_PC; dc->pc = DYNAMIC_PC; gen_helper_retry(cpu_env); goto jmp_insn; default: goto illegal_insn; } } break; #endif default: goto illegal_insn; } } break; } break; case 3: /* load/store instructions */ { unsigned int xop = GET_FIELD(insn, 7, 12); /* ??? gen_address_mask prevents us from using a source register directly. Always generate a temporary. */ TCGv cpu_addr = get_temp_tl(dc); tcg_gen_mov_tl(cpu_addr, get_src1(dc, insn)); if (xop == 0x3c || xop == 0x3e) { /* V9 casa/casxa : no offset */ } else if (IS_IMM) { /* immediate */ simm = GET_FIELDs(insn, 19, 31); if (simm != 0) { tcg_gen_addi_tl(cpu_addr, cpu_addr, simm); } } else { /* register */ rs2 = GET_FIELD(insn, 27, 31); if (rs2 != 0) { tcg_gen_add_tl(cpu_addr, cpu_addr, gen_load_gpr(dc, rs2)); } } if (xop < 4 || (xop > 7 && xop < 0x14 && xop != 0x0e) || (xop > 0x17 && xop <= 0x1d ) || (xop > 0x2c && xop <= 0x33) || xop == 0x1f || xop == 0x3d) { TCGv cpu_val = gen_dest_gpr(dc, rd); switch (xop) { case 0x0: /* ld, V9 lduw, load unsigned word */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld32u(cpu_val, cpu_addr, dc->mem_idx); break; case 0x1: /* ldub, load unsigned byte */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld8u(cpu_val, cpu_addr, dc->mem_idx); break; case 0x2: /* lduh, load unsigned halfword */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld16u(cpu_val, cpu_addr, dc->mem_idx); break; case 0x3: /* ldd, load double word */ if (rd & 1) goto illegal_insn; else { TCGv_i32 r_const; TCGv_i64 t64; save_state(dc); r_const = tcg_const_i32(7); /* XXX remove alignment check */ gen_helper_check_align(cpu_env, cpu_addr, r_const); tcg_temp_free_i32(r_const); gen_address_mask(dc, cpu_addr); t64 = tcg_temp_new_i64(); tcg_gen_qemu_ld64(t64, cpu_addr, dc->mem_idx); tcg_gen_trunc_i64_tl(cpu_tmp0, t64); tcg_gen_andi_tl(cpu_tmp0, cpu_tmp0, 0xffffffffULL); gen_store_gpr(dc, rd + 1, cpu_tmp0); tcg_gen_shri_i64(t64, t64, 32); tcg_gen_trunc_i64_tl(cpu_val, t64); tcg_temp_free_i64(t64); tcg_gen_andi_tl(cpu_val, cpu_val, 0xffffffffULL); } break; case 0x9: /* ldsb, load signed byte */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld8s(cpu_val, cpu_addr, dc->mem_idx); break; case 0xa: /* ldsh, load signed halfword */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld16s(cpu_val, cpu_addr, dc->mem_idx); break; case 0xd: /* ldstub -- XXX: should be atomically */ { TCGv r_const; gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld8s(cpu_val, cpu_addr, dc->mem_idx); r_const = tcg_const_tl(0xff); tcg_gen_qemu_st8(r_const, cpu_addr, dc->mem_idx); tcg_temp_free(r_const); } break; case 0x0f: /* swap, swap register with memory. Also atomically */ CHECK_IU_FEATURE(dc, SWAP); cpu_src1 = gen_load_gpr(dc, rd); gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld32u(cpu_tmp0, cpu_addr, dc->mem_idx); tcg_gen_qemu_st32(cpu_src1, cpu_addr, dc->mem_idx); tcg_gen_mov_tl(cpu_val, cpu_tmp0); break; #if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) case 0x10: /* lda, V9 lduwa, load word alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_ld_asi(cpu_val, cpu_addr, insn, 4, 0); break; case 0x11: /* lduba, load unsigned byte alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_ld_asi(cpu_val, cpu_addr, insn, 1, 0); break; case 0x12: /* lduha, load unsigned halfword alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_ld_asi(cpu_val, cpu_addr, insn, 2, 0); break; case 0x13: /* ldda, load double word alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif if (rd & 1) goto illegal_insn; save_state(dc); gen_ldda_asi(dc, cpu_val, cpu_addr, insn, rd); goto skip_move; case 0x19: /* ldsba, load signed byte alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_ld_asi(cpu_val, cpu_addr, insn, 1, 1); break; case 0x1a: /* ldsha, load signed halfword alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_ld_asi(cpu_val, cpu_addr, insn, 2, 1); break; case 0x1d: /* ldstuba -- XXX: should be atomically */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_ldstub_asi(cpu_val, cpu_addr, insn); break; case 0x1f: /* swapa, swap reg with alt. memory. Also atomically */ CHECK_IU_FEATURE(dc, SWAP); #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); cpu_src1 = gen_load_gpr(dc, rd); gen_swap_asi(cpu_val, cpu_src1, cpu_addr, insn); break; #ifndef TARGET_SPARC64 case 0x30: /* ldc */ case 0x31: /* ldcsr */ case 0x33: /* lddc */ goto ncp_insn; #endif #endif #ifdef TARGET_SPARC64 case 0x08: /* V9 ldsw */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld32s(cpu_val, cpu_addr, dc->mem_idx); break; case 0x0b: /* V9 ldx */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld64(cpu_val, cpu_addr, dc->mem_idx); break; case 0x18: /* V9 ldswa */ save_state(dc); gen_ld_asi(cpu_val, cpu_addr, insn, 4, 1); break; case 0x1b: /* V9 ldxa */ save_state(dc); gen_ld_asi(cpu_val, cpu_addr, insn, 8, 0); break; case 0x2d: /* V9 prefetch, no effect */ goto skip_move; case 0x30: /* V9 ldfa */ if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } save_state(dc); gen_ldf_asi(cpu_addr, insn, 4, rd); gen_update_fprs_dirty(rd); goto skip_move; case 0x33: /* V9 lddfa */ if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } save_state(dc); gen_ldf_asi(cpu_addr, insn, 8, DFPREG(rd)); gen_update_fprs_dirty(DFPREG(rd)); goto skip_move; case 0x3d: /* V9 prefetcha, no effect */ goto skip_move; case 0x32: /* V9 ldqfa */ CHECK_FPU_FEATURE(dc, FLOAT128); if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } save_state(dc); gen_ldf_asi(cpu_addr, insn, 16, QFPREG(rd)); gen_update_fprs_dirty(QFPREG(rd)); goto skip_move; #endif default: goto illegal_insn; } gen_store_gpr(dc, rd, cpu_val); #if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) skip_move: ; #endif } else if (xop >= 0x20 && xop < 0x24) { if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } save_state(dc); switch (xop) { case 0x20: /* ldf, load fpreg */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_ld32u(cpu_tmp0, cpu_addr, dc->mem_idx); cpu_dst_32 = gen_dest_fpr_F(dc); tcg_gen_trunc_tl_i32(cpu_dst_32, cpu_tmp0); gen_store_fpr_F(dc, rd, cpu_dst_32); break; case 0x21: /* ldfsr, V9 ldxfsr */ #ifdef TARGET_SPARC64 gen_address_mask(dc, cpu_addr); if (rd == 1) { TCGv_i64 t64 = tcg_temp_new_i64(); tcg_gen_qemu_ld64(t64, cpu_addr, dc->mem_idx); gen_helper_ldxfsr(cpu_env, t64); tcg_temp_free_i64(t64); break; } #endif { TCGv_i32 t32 = get_temp_i32(dc); tcg_gen_qemu_ld32u(cpu_tmp0, cpu_addr, dc->mem_idx); tcg_gen_trunc_tl_i32(t32, cpu_tmp0); gen_helper_ldfsr(cpu_env, t32); } break; case 0x22: /* ldqf, load quad fpreg */ { TCGv_i32 r_const; CHECK_FPU_FEATURE(dc, FLOAT128); r_const = tcg_const_i32(dc->mem_idx); gen_address_mask(dc, cpu_addr); gen_helper_ldqf(cpu_env, cpu_addr, r_const); tcg_temp_free_i32(r_const); gen_op_store_QT0_fpr(QFPREG(rd)); gen_update_fprs_dirty(QFPREG(rd)); } break; case 0x23: /* lddf, load double fpreg */ gen_address_mask(dc, cpu_addr); cpu_dst_64 = gen_dest_fpr_D(dc, rd); tcg_gen_qemu_ld64(cpu_dst_64, cpu_addr, dc->mem_idx); gen_store_fpr_D(dc, rd, cpu_dst_64); break; default: goto illegal_insn; } } else if (xop < 8 || (xop >= 0x14 && xop < 0x18) || xop == 0xe || xop == 0x1e) { TCGv cpu_val = gen_load_gpr(dc, rd); switch (xop) { case 0x4: /* st, store word */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_st32(cpu_val, cpu_addr, dc->mem_idx); break; case 0x5: /* stb, store byte */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_st8(cpu_val, cpu_addr, dc->mem_idx); break; case 0x6: /* sth, store halfword */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_st16(cpu_val, cpu_addr, dc->mem_idx); break; case 0x7: /* std, store double word */ if (rd & 1) goto illegal_insn; else { TCGv_i32 r_const; TCGv_i64 t64; TCGv lo; save_state(dc); gen_address_mask(dc, cpu_addr); r_const = tcg_const_i32(7); /* XXX remove alignment check */ gen_helper_check_align(cpu_env, cpu_addr, r_const); tcg_temp_free_i32(r_const); lo = gen_load_gpr(dc, rd + 1); t64 = tcg_temp_new_i64(); tcg_gen_concat_tl_i64(t64, lo, cpu_val); tcg_gen_qemu_st64(t64, cpu_addr, dc->mem_idx); tcg_temp_free_i64(t64); } break; #if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) case 0x14: /* sta, V9 stwa, store word alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_st_asi(cpu_val, cpu_addr, insn, 4); dc->npc = DYNAMIC_PC; break; case 0x15: /* stba, store byte alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_st_asi(cpu_val, cpu_addr, insn, 1); dc->npc = DYNAMIC_PC; break; case 0x16: /* stha, store halfword alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif save_state(dc); gen_st_asi(cpu_val, cpu_addr, insn, 2); dc->npc = DYNAMIC_PC; break; case 0x17: /* stda, store double word alternate */ #ifndef TARGET_SPARC64 if (IS_IMM) goto illegal_insn; if (!supervisor(dc)) goto priv_insn; #endif if (rd & 1) goto illegal_insn; else { save_state(dc); gen_stda_asi(dc, cpu_val, cpu_addr, insn, rd); } break; #endif #ifdef TARGET_SPARC64 case 0x0e: /* V9 stx */ gen_address_mask(dc, cpu_addr); tcg_gen_qemu_st64(cpu_val, cpu_addr, dc->mem_idx); break; case 0x1e: /* V9 stxa */ save_state(dc); gen_st_asi(cpu_val, cpu_addr, insn, 8); dc->npc = DYNAMIC_PC; break; #endif default: goto illegal_insn; } } else if (xop > 0x23 && xop < 0x28) { if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } save_state(dc); switch (xop) { case 0x24: /* stf, store fpreg */ gen_address_mask(dc, cpu_addr); cpu_src1_32 = gen_load_fpr_F(dc, rd); tcg_gen_ext_i32_tl(cpu_tmp0, cpu_src1_32); tcg_gen_qemu_st32(cpu_tmp0, cpu_addr, dc->mem_idx); break; case 0x25: /* stfsr, V9 stxfsr */ { TCGv t = get_temp_tl(dc); tcg_gen_ld_tl(t, cpu_env, offsetof(CPUSPARCState, fsr)); #ifdef TARGET_SPARC64 gen_address_mask(dc, cpu_addr); if (rd == 1) { tcg_gen_qemu_st64(t, cpu_addr, dc->mem_idx); break; } #endif tcg_gen_qemu_st32(t, cpu_addr, dc->mem_idx); } break; case 0x26: #ifdef TARGET_SPARC64 /* V9 stqf, store quad fpreg */ { TCGv_i32 r_const; CHECK_FPU_FEATURE(dc, FLOAT128); gen_op_load_fpr_QT0(QFPREG(rd)); r_const = tcg_const_i32(dc->mem_idx); gen_address_mask(dc, cpu_addr); gen_helper_stqf(cpu_env, cpu_addr, r_const); tcg_temp_free_i32(r_const); } break; #else /* !TARGET_SPARC64 */ /* stdfq, store floating point queue */ #if defined(CONFIG_USER_ONLY) goto illegal_insn; #else if (!supervisor(dc)) goto priv_insn; if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } goto nfq_insn; #endif #endif case 0x27: /* stdf, store double fpreg */ gen_address_mask(dc, cpu_addr); cpu_src1_64 = gen_load_fpr_D(dc, rd); tcg_gen_qemu_st64(cpu_src1_64, cpu_addr, dc->mem_idx); break; default: goto illegal_insn; } } else if (xop > 0x33 && xop < 0x3f) { save_state(dc); switch (xop) { #ifdef TARGET_SPARC64 case 0x34: /* V9 stfa */ if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } gen_stf_asi(cpu_addr, insn, 4, rd); break; case 0x36: /* V9 stqfa */ { TCGv_i32 r_const; CHECK_FPU_FEATURE(dc, FLOAT128); if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } r_const = tcg_const_i32(7); gen_helper_check_align(cpu_env, cpu_addr, r_const); tcg_temp_free_i32(r_const); gen_stf_asi(cpu_addr, insn, 16, QFPREG(rd)); } break; case 0x37: /* V9 stdfa */ if (gen_trap_ifnofpu(dc)) { goto jmp_insn; } gen_stf_asi(cpu_addr, insn, 8, DFPREG(rd)); break; case 0x3c: /* V9 casa */ rs2 = GET_FIELD(insn, 27, 31); cpu_src2 = gen_load_gpr(dc, rs2); gen_cas_asi(dc, cpu_addr, cpu_src2, insn, rd); break; case 0x3e: /* V9 casxa */ rs2 = GET_FIELD(insn, 27, 31); cpu_src2 = gen_load_gpr(dc, rs2); gen_casx_asi(dc, cpu_addr, cpu_src2, insn, rd); break; #else case 0x34: /* stc */ case 0x35: /* stcsr */ case 0x36: /* stdcq */ case 0x37: /* stdc */ goto ncp_insn; #endif default: goto illegal_insn; } } else { goto illegal_insn; } } break; } /* default case for non jump instructions */ if (dc->npc == DYNAMIC_PC) { dc->pc = DYNAMIC_PC; gen_op_next_insn(); } else if (dc->npc == JUMP_PC) { /* we can do a static jump */ gen_branch2(dc, dc->jump_pc[0], dc->jump_pc[1], cpu_cond); dc->is_br = 1; } else { dc->pc = dc->npc; dc->npc = dc->npc + 4; } jmp_insn: goto egress; illegal_insn: { TCGv_i32 r_const; save_state(dc); r_const = tcg_const_i32(TT_ILL_INSN); gen_helper_raise_exception(cpu_env, r_const); tcg_temp_free_i32(r_const); dc->is_br = 1; } goto egress; unimp_flush: { TCGv_i32 r_const; save_state(dc); r_const = tcg_const_i32(TT_UNIMP_FLUSH); gen_helper_raise_exception(cpu_env, r_const); tcg_temp_free_i32(r_const); dc->is_br = 1; } goto egress; #if !defined(CONFIG_USER_ONLY) priv_insn: { TCGv_i32 r_const; save_state(dc); r_const = tcg_const_i32(TT_PRIV_INSN); gen_helper_raise_exception(cpu_env, r_const); tcg_temp_free_i32(r_const); dc->is_br = 1; } goto egress; #endif nfpu_insn: save_state(dc); gen_op_fpexception_im(FSR_FTT_UNIMPFPOP); dc->is_br = 1; goto egress; #if !defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64) nfq_insn: save_state(dc); gen_op_fpexception_im(FSR_FTT_SEQ_ERROR); dc->is_br = 1; goto egress; #endif #ifndef TARGET_SPARC64 ncp_insn: { TCGv r_const; save_state(dc); r_const = tcg_const_i32(TT_NCP_INSN); gen_helper_raise_exception(cpu_env, r_const); tcg_temp_free(r_const); dc->is_br = 1; } goto egress; #endif egress: if (dc->n_t32 != 0) { int i; for (i = dc->n_t32 - 1; i >= 0; --i) { tcg_temp_free_i32(dc->t32[i]); } dc->n_t32 = 0; } if (dc->n_ttl != 0) { int i; for (i = dc->n_ttl - 1; i >= 0; --i) { tcg_temp_free(dc->ttl[i]); } dc->n_ttl = 0; } }
false
qemu
5793f2a47e201d251856c7956d6f7907ec0d9f1f
6,301
int use_gdb_syscalls(void) { if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED : GDB_SYS_DISABLED); } return gdb_syscall_mode == GDB_SYS_ENABLED; }
false
qemu
880a7578381d1c7ed4d41c7599ae3cc06567a824
6,302
static void s390_hot_add_cpu(const int64_t id, Error **errp) { MachineState *machine = MACHINE(qdev_get_machine()); s390x_new_cpu(machine->cpu_model, id, errp); }
false
qemu
524d18d8bd463431b120eeb5f9f3d1064a1c19e4
6,303
static bool virtio_pci_modern_state_needed(void *opaque) { VirtIOPCIProxy *proxy = opaque; return !(proxy->flags & VIRTIO_PCI_FLAG_DISABLE_MODERN); }
false
qemu
9a4c0e220d8a4f82b5665d0ee95ef94d8e1509d5
6,304
static int on2avc_decode_band_types(On2AVCContext *c, GetBitContext *gb) { int bits_per_sect = c->is_long ? 5 : 3; int esc_val = (1 << bits_per_sect) - 1; int num_bands = c->num_bands * c->num_windows; int band = 0, i, band_type, run_len, run; while (band < num_bands) { band_type = get_bits(gb, 4); run_len = 1; do { run = get_bits(gb, bits_per_sect); run_len += run; } while (run == esc_val); if (band + run_len > num_bands) { av_log(c->avctx, AV_LOG_ERROR, "Invalid band type run\n"); return AVERROR_INVALIDDATA; } for (i = band; i < band + run_len; i++) { c->band_type[i] = band_type; c->band_run_end[i] = band + run_len; } band += run_len; } return 0; }
false
FFmpeg
22f15f5735389e992ec9aed43b0680e75746b3a1
6,305
static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band, float *bits, float lambda) { int i, b = 0; uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; const int band_size = ff_celt_freq_range[band] << f->size; float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176]; float dist, cost, err_x = 0.0f, err_y = 0.0f; float *X = buf; float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size); float *Y = (f->channels == 2) ? &buf[176] : NULL; float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size); OPUS_RC_CHECKPOINT_SPAWN(rc); memcpy(X, X_orig, band_size*sizeof(float)); if (Y) memcpy(Y, Y_orig, band_size*sizeof(float)); f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1; if (band <= f->coded_bands - 1) { int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band); b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14); } if (f->dual_stereo) { pvq->quant_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL, f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]); pvq->quant_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL, f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]); } else { pvq->quant_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size, norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]); } for (i = 0; i < band_size; i++) { err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]); if (Y) err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]); } dist = sqrtf(err_x) + sqrtf(err_y); cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f; *bits += cost; OPUS_RC_CHECKPOINT_ROLLBACK(rc); return lambda*dist*cost; }
false
FFmpeg
7b46add7257628bffac96d3002308d1f9e1ed172
6,306
static int mpegts_read_header(AVFormatContext *s) { MpegTSContext *ts = s->priv_data; AVIOContext *pb = s->pb; uint8_t buf[8 * 1024] = {0}; int len; int64_t pos, probesize = #if AV_HAVE_INCOMPATIBLE_LIBAV_ABI s->probesize ? s->probesize : s->probesize2; #else s->probesize; #endif if (ffio_ensure_seekback(pb, probesize) < 0) av_log(s, AV_LOG_WARNING, "Failed to allocate buffers for seekback\n"); /* read the first 8192 bytes to get packet size */ pos = avio_tell(pb); len = avio_read(pb, buf, sizeof(buf)); ts->raw_packet_size = get_packet_size(buf, len); if (ts->raw_packet_size <= 0) { av_log(s, AV_LOG_WARNING, "Could not detect TS packet size, defaulting to non-FEC/DVHS\n"); ts->raw_packet_size = TS_PACKET_SIZE; } ts->stream = s; ts->auto_guess = 0; if (s->iformat == &ff_mpegts_demuxer) { /* normal demux */ /* first do a scan to get all the services */ seek_back(s, pb, pos); mpegts_open_section_filter(ts, SDT_PID, sdt_cb, ts, 1); mpegts_open_section_filter(ts, PAT_PID, pat_cb, ts, 1); handle_packets(ts, probesize / ts->raw_packet_size); /* if could not find service, enable auto_guess */ ts->auto_guess = 1; av_log(ts->stream, AV_LOG_TRACE, "tuning done\n"); s->ctx_flags |= AVFMTCTX_NOHEADER; } else { AVStream *st; int pcr_pid, pid, nb_packets, nb_pcrs, ret, pcr_l; int64_t pcrs[2], pcr_h; int packet_count[2]; uint8_t packet[TS_PACKET_SIZE]; const uint8_t *data; /* only read packets */ st = avformat_new_stream(s, NULL); if (!st) return AVERROR(ENOMEM); avpriv_set_pts_info(st, 60, 1, 27000000); st->codec->codec_type = AVMEDIA_TYPE_DATA; st->codec->codec_id = AV_CODEC_ID_MPEG2TS; /* we iterate until we find two PCRs to estimate the bitrate */ pcr_pid = -1; nb_pcrs = 0; nb_packets = 0; for (;;) { ret = read_packet(s, packet, ts->raw_packet_size, &data); if (ret < 0) return ret; pid = AV_RB16(data + 1) & 0x1fff; if ((pcr_pid == -1 || pcr_pid == pid) && parse_pcr(&pcr_h, &pcr_l, data) == 0) { finished_reading_packet(s, ts->raw_packet_size); pcr_pid = pid; packet_count[nb_pcrs] = nb_packets; pcrs[nb_pcrs] = pcr_h * 300 + pcr_l; nb_pcrs++; if (nb_pcrs >= 2) break; } else { finished_reading_packet(s, ts->raw_packet_size); } nb_packets++; } /* NOTE1: the bitrate is computed without the FEC */ /* NOTE2: it is only the bitrate of the start of the stream */ ts->pcr_incr = (pcrs[1] - pcrs[0]) / (packet_count[1] - packet_count[0]); ts->cur_pcr = pcrs[0] - ts->pcr_incr * packet_count[0]; s->bit_rate = TS_PACKET_SIZE * 8 * 27000000LL / ts->pcr_incr; st->codec->bit_rate = s->bit_rate; st->start_time = ts->cur_pcr; av_log(ts->stream, AV_LOG_TRACE, "start=%0.3f pcr=%0.3f incr=%d\n", st->start_time / 1000000.0, pcrs[0] / 27e6, ts->pcr_incr); } seek_back(s, pb, pos); return 0; }
false
FFmpeg
655b6dcb34b25d591e15ede17673ea6cb8074711
6,309
static void apply_tns(float coef[1024], TemporalNoiseShaping *tns, IndividualChannelStream *ics, int decode) { const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); int w, filt, m, i; int bottom, top, order, start, end, size, inc; float lpc[TNS_MAX_ORDER]; float tmp[TNS_MAX_ORDER]; for (w = 0; w < ics->num_windows; w++) { bottom = ics->num_swb; for (filt = 0; filt < tns->n_filt[w]; filt++) { top = bottom; bottom = FFMAX(0, top - tns->length[w][filt]); order = tns->order[w][filt]; if (order == 0) continue; // tns_decode_coef compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0); start = ics->swb_offset[FFMIN(bottom, mmm)]; end = ics->swb_offset[FFMIN( top, mmm)]; if ((size = end - start) <= 0) continue; if (tns->direction[w][filt]) { inc = -1; start = end - 1; } else { inc = 1; } start += w * 128; if (decode) { // ar filter for (m = 0; m < size; m++, start += inc) for (i = 1; i <= FFMIN(m, order); i++) coef[start] -= coef[start - i * inc] * lpc[i - 1]; } else { // ma filter for (m = 0; m < size; m++, start += inc) { tmp[0] = coef[start]; for (i = 1; i <= FFMIN(m, order); i++) coef[start] += tmp[i] * lpc[i - 1]; for (i = order; i > 0; i--) tmp[i] = tmp[i - 1]; } } } } }
true
FFmpeg
6d5b0092678b2a95dfe209a207550bd2fe9ef646
6,310
void do_info_snapshots(Monitor *mon) { DriveInfo *dinfo; BlockDriverState *bs, *bs1; QEMUSnapshotInfo *sn_tab, *sn; int nb_sns, i; char buf[256]; bs = get_bs_snapshots(); if (!bs) { monitor_printf(mon, "No available block device supports snapshots\n"); return; } monitor_printf(mon, "Snapshot devices:"); QTAILQ_FOREACH(dinfo, &drives, next) { bs1 = dinfo->bdrv; if (bdrv_has_snapshot(bs1)) { if (bs == bs1) monitor_printf(mon, " %s", bdrv_get_device_name(bs1)); } } monitor_printf(mon, "\n"); nb_sns = bdrv_snapshot_list(bs, &sn_tab); if (nb_sns < 0) { monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); return; } monitor_printf(mon, "Snapshot list (from %s):\n", bdrv_get_device_name(bs)); monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL)); for(i = 0; i < nb_sns; i++) { sn = &sn_tab[i]; monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn)); } qemu_free(sn_tab); }
true
qemu
feeee5aca765606818e00f5a19d19f141f4ae365
6,311
static int activate(AVFilterContext *ctx) { PreMultiplyContext *s = ctx->priv; if (s->inplace) { AVFrame *frame = NULL; AVFrame *out = NULL; int ret, status; int64_t pts; if ((ret = ff_inlink_consume_frame(ctx->inputs[0], &frame)) > 0) { if ((ret = filter_frame(ctx, &out, frame, frame)) < 0) return ret; av_frame_free(&frame); ret = ff_filter_frame(ctx->outputs[0], out); } if (ret < 0) { return ret; } else if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) { ff_outlink_set_status(ctx->outputs[0], status, pts); return 0; } else { if (ff_outlink_frame_wanted(ctx->outputs[0])) ff_inlink_request_frame(ctx->inputs[0]); return 0; } } else { return ff_framesync_activate(&s->fs); } }
true
FFmpeg
c7ded42d5dfc0124008b5b9b13a1a342324885ed
6,312
int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp) { return -EINVAL; }
true
qemu
8a0548f94edecb96acb9b7fb9106ccc821c4996f
6,313
static int unix_open(URLContext *h, const char *filename, int flags) { UnixContext *s = h->priv_data; int fd, ret; av_strstart(filename, "unix:", &filename); s->addr.sun_family = AF_UNIX; av_strlcpy(s->addr.sun_path, filename, sizeof(s->addr.sun_path)); if ((fd = ff_socket(AF_UNIX, s->type, 0)) < 0) return ff_neterrno(); if (s->listen) { fd = ff_listen_bind(fd, (struct sockaddr *)&s->addr, sizeof(s->addr), s->timeout, h); if (fd < 0) { ret = fd; goto fail; } } else { ret = ff_listen_connect(fd, (struct sockaddr *)&s->addr, sizeof(s->addr), s->timeout, h, 0); if (ret < 0) goto fail; } s->fd = fd; return 0; fail: if (s->listen && AVUNERROR(ret) != EADDRINUSE) unlink(s->addr.sun_path); if (fd >= 0) closesocket(fd); return ret; }
true
FFmpeg
27852f2f1dec3749ea79883b70484c841169f747
6,315
static void gen_rfe(DisasContext *s, TCGv pc, TCGv cpsr) { gen_set_cpsr(cpsr, 0xffffffff); dead_tmp(cpsr); store_reg(s, 15, pc); s->is_jmp = DISAS_UPDATE; }
true
qemu
7d1b0095bff7157e856d1d0e6c4295641ced2752
6,316
static inline void RENAME(rgb16ToUV)(uint8_t *dstU, uint8_t *dstV, uint8_t *src1, uint8_t *src2, int width) { int i; assert(src1 == src2); for(i=0; i<width; i++) { int d0= ((uint32_t*)src1)[i]; int dl= (d0&0x07E0F81F); int dh= ((d0>>5)&0x07C0F83F); int dh2= (dh>>11) + (dh<<21); int d= dh2 + dl; int r= d&0x7F; int b= (d>>11)&0x7F; int g= d>>21; dstU[i]= ((2*RU*r + GU*g + 2*BU*b)>>(RGB2YUV_SHIFT+1-2)) + 128; dstV[i]= ((2*RV*r + GV*g + 2*BV*b)>>(RGB2YUV_SHIFT+1-2)) + 128; } }
true
FFmpeg
2da0d70d5eebe42f9fcd27ee554419ebe2a5da06
6,317
static int rtl8139_cplus_transmit_one(RTL8139State *s) { if (!rtl8139_transmitter_enabled(s)) { DPRINTF("+++ C+ mode: transmitter disabled\n"); return 0; } if (!rtl8139_cp_transmitter_enabled(s)) { DPRINTF("+++ C+ mode: C+ transmitter disabled\n"); return 0 ; } int descriptor = s->currCPlusTxDesc; dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]); /* Normal priority ring */ cplus_tx_ring_desc += 16 * descriptor; DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at " "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1], s->TxAddr[0], cplus_tx_ring_desc); uint32_t val, txdw0,txdw1,txbufLO,txbufHI; pci_dma_read(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4); txdw0 = le32_to_cpu(val); pci_dma_read(&s->dev, cplus_tx_ring_desc+4, (uint8_t *)&val, 4); txdw1 = le32_to_cpu(val); pci_dma_read(&s->dev, cplus_tx_ring_desc+8, (uint8_t *)&val, 4); txbufLO = le32_to_cpu(val); pci_dma_read(&s->dev, cplus_tx_ring_desc+12, (uint8_t *)&val, 4); txbufHI = le32_to_cpu(val); DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor, txdw0, txdw1, txbufLO, txbufHI); /* w0 ownership flag */ #define CP_TX_OWN (1<<31) /* w0 end of ring flag */ #define CP_TX_EOR (1<<30) /* first segment of received packet flag */ #define CP_TX_FS (1<<29) /* last segment of received packet flag */ #define CP_TX_LS (1<<28) /* large send packet flag */ #define CP_TX_LGSEN (1<<27) /* large send MSS mask, bits 16...25 */ #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1) /* IP checksum offload flag */ #define CP_TX_IPCS (1<<18) /* UDP checksum offload flag */ #define CP_TX_UDPCS (1<<17) /* TCP checksum offload flag */ #define CP_TX_TCPCS (1<<16) /* w0 bits 0...15 : buffer size */ #define CP_TX_BUFFER_SIZE (1<<16) #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1) /* w1 add tag flag */ #define CP_TX_TAGC (1<<17) /* w1 bits 0...15 : VLAN tag (big endian) */ #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1) /* w2 low 32bit of Rx buffer ptr */ /* w3 high 32bit of Rx buffer ptr */ /* set after transmission */ /* FIFO underrun flag */ #define CP_TX_STATUS_UNF (1<<25) /* transmit error summary flag, valid if set any of three below */ #define CP_TX_STATUS_TES (1<<23) /* out-of-window collision flag */ #define CP_TX_STATUS_OWC (1<<22) /* link failure flag */ #define CP_TX_STATUS_LNKF (1<<21) /* excessive collisions flag */ #define CP_TX_STATUS_EXC (1<<20) if (!(txdw0 & CP_TX_OWN)) { DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor); return 0 ; } DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor); if (txdw0 & CP_TX_FS) { DPRINTF("+++ C+ Tx mode : descriptor %d is first segment " "descriptor\n", descriptor); /* reset internal buffer offset */ s->cplus_txbuffer_offset = 0; } int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK; dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI); /* make sure we have enough space to assemble the packet */ if (!s->cplus_txbuffer) { s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE; s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len); s->cplus_txbuffer_offset = 0; DPRINTF("+++ C+ mode transmission buffer allocated space %d\n", s->cplus_txbuffer_len); } while (s->cplus_txbuffer && s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len) { s->cplus_txbuffer_len += CP_TX_BUFFER_SIZE; s->cplus_txbuffer = g_realloc(s->cplus_txbuffer, s->cplus_txbuffer_len); DPRINTF("+++ C+ mode transmission buffer space changed to %d\n", s->cplus_txbuffer_len); } if (!s->cplus_txbuffer) { /* out of memory */ DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n", s->cplus_txbuffer_len); /* update tally counter */ ++s->tally_counters.TxERR; ++s->tally_counters.TxAbt; return 0; } /* append more data to the packet */ DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at " DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr, s->cplus_txbuffer_offset); pci_dma_read(&s->dev, tx_addr, s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize); s->cplus_txbuffer_offset += txsize; /* seek to next Rx descriptor */ if (txdw0 & CP_TX_EOR) { s->currCPlusTxDesc = 0; } else { ++s->currCPlusTxDesc; if (s->currCPlusTxDesc >= 64) s->currCPlusTxDesc = 0; } /* transfer ownership to target */ txdw0 &= ~CP_RX_OWN; /* reset error indicator bits */ txdw0 &= ~CP_TX_STATUS_UNF; txdw0 &= ~CP_TX_STATUS_TES; txdw0 &= ~CP_TX_STATUS_OWC; txdw0 &= ~CP_TX_STATUS_LNKF; txdw0 &= ~CP_TX_STATUS_EXC; /* update ring data */ val = cpu_to_le32(txdw0); pci_dma_write(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4); /* Now decide if descriptor being processed is holding the last segment of packet */ if (txdw0 & CP_TX_LS) { uint8_t dot1q_buffer_space[VLAN_HLEN]; uint16_t *dot1q_buffer; DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n", descriptor); /* can transfer fully assembled packet */ uint8_t *saved_buffer = s->cplus_txbuffer; int saved_size = s->cplus_txbuffer_offset; int saved_buffer_len = s->cplus_txbuffer_len; /* create vlan tag */ if (txdw1 & CP_TX_TAGC) { /* the vlan tag is in BE byte order in the descriptor * BE + le_to_cpu() + ~swap()~ = cpu */ DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n", bswap16(txdw1 & CP_TX_VLAN_TAG_MASK)); dot1q_buffer = (uint16_t *) dot1q_buffer_space; dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q); /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */ dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK); } else { dot1q_buffer = NULL; } /* reset the card space to protect from recursive call */ s->cplus_txbuffer = NULL; s->cplus_txbuffer_offset = 0; s->cplus_txbuffer_len = 0; if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN)) { DPRINTF("+++ C+ mode offloaded task checksum\n"); /* ip packet header */ ip_header *ip = NULL; int hlen = 0; uint8_t ip_protocol = 0; uint16_t ip_data_len = 0; uint8_t *eth_payload_data = NULL; size_t eth_payload_len = 0; int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12)); if (proto == ETH_P_IP) { DPRINTF("+++ C+ mode has IP packet\n"); /* not aligned */ eth_payload_data = saved_buffer + ETH_HLEN; eth_payload_len = saved_size - ETH_HLEN; ip = (ip_header*)eth_payload_data; if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) { DPRINTF("+++ C+ mode packet has bad IP version %d " "expected %d\n", IP_HEADER_VERSION(ip), IP_HEADER_VERSION_4); ip = NULL; } else { hlen = IP_HEADER_LENGTH(ip); ip_protocol = ip->ip_p; ip_data_len = be16_to_cpu(ip->ip_len) - hlen; } } if (ip) { if (txdw0 & CP_TX_IPCS) { DPRINTF("+++ C+ mode need IP checksum\n"); if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */ /* bad packet header len */ /* or packet too short */ } else { ip->ip_sum = 0; ip->ip_sum = ip_checksum(ip, hlen); DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n", hlen, ip->ip_sum); } } if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP) { int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK; DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d " "frame data %d specified MSS=%d\n", ETH_MTU, ip_data_len, saved_size - ETH_HLEN, large_send_mss); int tcp_send_offset = 0; int send_count = 0; /* maximum IP header length is 60 bytes */ uint8_t saved_ip_header[60]; /* save IP header template; data area is used in tcp checksum calculation */ memcpy(saved_ip_header, eth_payload_data, hlen); /* a placeholder for checksum calculation routine in tcp case */ uint8_t *data_to_checksum = eth_payload_data + hlen - 12; // size_t data_to_checksum_len = eth_payload_len - hlen + 12; /* pointer to TCP header */ tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen); int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr); /* ETH_MTU = ip header len + tcp header len + payload */ int tcp_data_len = ip_data_len - tcp_hlen; int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen; DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP " "data len %d TCP chunk size %d\n", ip_data_len, tcp_hlen, tcp_data_len, tcp_chunk_size); /* note the cycle below overwrites IP header data, but restores it from saved_ip_header before sending packet */ int is_last_frame = 0; for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size) { uint16_t chunk_size = tcp_chunk_size; /* check if this is the last frame */ if (tcp_send_offset + tcp_chunk_size >= tcp_data_len) { is_last_frame = 1; chunk_size = tcp_data_len - tcp_send_offset; } DPRINTF("+++ C+ mode TSO TCP seqno %08x\n", be32_to_cpu(p_tcp_hdr->th_seq)); /* add 4 TCP pseudoheader fields */ /* copy IP source and destination fields */ memcpy(data_to_checksum, saved_ip_header + 12, 8); DPRINTF("+++ C+ mode TSO calculating TCP checksum for " "packet with %d bytes data\n", tcp_hlen + chunk_size); if (tcp_send_offset) { memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size); } /* keep PUSH and FIN flags only for the last frame */ if (!is_last_frame) { TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN); } /* recalculate TCP checksum */ ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum; p_tcpip_hdr->zeros = 0; p_tcpip_hdr->ip_proto = IP_PROTO_TCP; p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size); p_tcp_hdr->th_sum = 0; int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12); DPRINTF("+++ C+ mode TSO TCP checksum %04x\n", tcp_checksum); p_tcp_hdr->th_sum = tcp_checksum; /* restore IP header */ memcpy(eth_payload_data, saved_ip_header, hlen); /* set IP data length and recalculate IP checksum */ ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size); /* increment IP id for subsequent frames */ ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id)); ip->ip_sum = 0; ip->ip_sum = ip_checksum(eth_payload_data, hlen); DPRINTF("+++ C+ mode TSO IP header len=%d " "checksum=%04x\n", hlen, ip->ip_sum); int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size; DPRINTF("+++ C+ mode TSO transferring packet size " "%d\n", tso_send_size); rtl8139_transfer_frame(s, saved_buffer, tso_send_size, 0, (uint8_t *) dot1q_buffer); /* add transferred count to TCP sequence number */ p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq)); ++send_count; } /* Stop sending this frame */ saved_size = 0; } else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS)) { DPRINTF("+++ C+ mode need TCP or UDP checksum\n"); /* maximum IP header length is 60 bytes */ uint8_t saved_ip_header[60]; memcpy(saved_ip_header, eth_payload_data, hlen); uint8_t *data_to_checksum = eth_payload_data + hlen - 12; // size_t data_to_checksum_len = eth_payload_len - hlen + 12; /* add 4 TCP pseudoheader fields */ /* copy IP source and destination fields */ memcpy(data_to_checksum, saved_ip_header + 12, 8); if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP) { DPRINTF("+++ C+ mode calculating TCP checksum for " "packet with %d bytes data\n", ip_data_len); ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum; p_tcpip_hdr->zeros = 0; p_tcpip_hdr->ip_proto = IP_PROTO_TCP; p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len); tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12); p_tcp_hdr->th_sum = 0; int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12); DPRINTF("+++ C+ mode TCP checksum %04x\n", tcp_checksum); p_tcp_hdr->th_sum = tcp_checksum; } else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP) { DPRINTF("+++ C+ mode calculating UDP checksum for " "packet with %d bytes data\n", ip_data_len); ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum; p_udpip_hdr->zeros = 0; p_udpip_hdr->ip_proto = IP_PROTO_UDP; p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len); udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12); p_udp_hdr->uh_sum = 0; int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12); DPRINTF("+++ C+ mode UDP checksum %04x\n", udp_checksum); p_udp_hdr->uh_sum = udp_checksum; } /* restore IP header */ memcpy(eth_payload_data, saved_ip_header, hlen); } } } /* update tally counter */ ++s->tally_counters.TxOk; DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size); rtl8139_transfer_frame(s, saved_buffer, saved_size, 1, (uint8_t *) dot1q_buffer); /* restore card space if there was no recursion and reset offset */ if (!s->cplus_txbuffer) { s->cplus_txbuffer = saved_buffer; s->cplus_txbuffer_len = saved_buffer_len; s->cplus_txbuffer_offset = 0; } else { g_free(saved_buffer); } } else { DPRINTF("+++ C+ mode transmission continue to next descriptor\n"); } return 1; }
true
qemu
cde31a0e3dc0e4ac83e454d6096350cec584adf1
6,318
static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; ADPCMDecodeContext *c = avctx->priv_data; ADPCMChannelStatus *cs; int n, m, channel, i; int block_predictor[2]; short *samples; short *samples_end; const uint8_t *src; int st; /* stereo */ /* DK3 ADPCM accounting variables */ unsigned char last_byte = 0; unsigned char nibble; int decode_top_nibble_next = 0; int diff_channel; /* EA ADPCM state variables */ uint32_t samples_in_chunk; int32_t previous_left_sample, previous_right_sample; int32_t current_left_sample, current_right_sample; int32_t next_left_sample, next_right_sample; int32_t coeff1l, coeff2l, coeff1r, coeff2r; uint8_t shift_left, shift_right; int count1, count2; int coeff[2][2], shift[2];//used in EA MAXIS ADPCM if (!buf_size) return 0; //should protect all 4bit ADPCM variants //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels // if(*data_size/4 < buf_size + 8) return -1; samples = data; samples_end= samples + *data_size/2; *data_size= 0; src = buf; st = avctx->channels == 2 ? 1 : 0; switch(avctx->codec->id) { case CODEC_ID_ADPCM_IMA_QT: n = buf_size - 2*avctx->channels; for (channel = 0; channel < avctx->channels; channel++) { int16_t predictor; int step_index; cs = &(c->status[channel]); /* (pppppp) (piiiiiii) */ /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ predictor = AV_RB16(src); step_index = predictor & 0x7F; predictor &= 0xFF80; src += 2; if (cs->step_index == step_index) { int diff = (int)predictor - cs->predictor; if (diff < 0) diff = - diff; if (diff > 0x7f) goto update; } else { update: cs->step_index = step_index; cs->predictor = predictor; } if (cs->step_index > 88){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); cs->step_index = 88; } samples = (short*)data + channel; for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3); samples += avctx->channels; *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3); samples += avctx->channels; src ++; } } if (st) samples--; break; case CODEC_ID_ADPCM_IMA_WAV: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1; for(i=0; i<avctx->channels; i++){ cs = &(c->status[i]); cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src); cs->step_index = *src++; if (cs->step_index > 88){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); cs->step_index = 88; } if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ } while(src < buf + buf_size){ for(m=0; m<4; m++){ for(i=0; i<=st; i++) *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3); for(i=0; i<=st; i++) *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3); src++; } src += 4*st; } break; case CODEC_ID_ADPCM_4XM: cs = &(c->status[0]); c->status[0].predictor= (int16_t)bytestream_get_le16(&src); if(st){ c->status[1].predictor= (int16_t)bytestream_get_le16(&src); } c->status[0].step_index= (int16_t)bytestream_get_le16(&src); if(st){ c->status[1].step_index= (int16_t)bytestream_get_le16(&src); } if (cs->step_index < 0) cs->step_index = 0; if (cs->step_index > 88) cs->step_index = 88; m= (buf_size - (src - buf))>>st; for(i=0; i<m; i++) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4); if (st) *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4); *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4); if (st) *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4); } src += m<<st; break; case CODEC_ID_ADPCM_MS: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; n = buf_size - 7 * avctx->channels; if (n < 0) return -1; block_predictor[0] = av_clip(*src++, 0, 6); block_predictor[1] = 0; if (st) block_predictor[1] = av_clip(*src++, 0, 6); c->status[0].idelta = (int16_t)bytestream_get_le16(&src); if (st){ c->status[1].idelta = (int16_t)bytestream_get_le16(&src); } c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor[0]]; c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor[0]]; c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor[1]]; c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor[1]]; c->status[0].sample1 = bytestream_get_le16(&src); if (st) c->status[1].sample1 = bytestream_get_le16(&src); c->status[0].sample2 = bytestream_get_le16(&src); if (st) c->status[1].sample2 = bytestream_get_le16(&src); *samples++ = c->status[0].sample2; if (st) *samples++ = c->status[1].sample2; *samples++ = c->status[0].sample1; if (st) *samples++ = c->status[1].sample1; for(;n>0;n--) { *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 ); *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); src ++; } break; case CODEC_ID_ADPCM_IMA_DK4: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; c->status[0].predictor = (int16_t)bytestream_get_le16(&src); c->status[0].step_index = *src++; src++; *samples++ = c->status[0].predictor; if (st) { c->status[1].predictor = (int16_t)bytestream_get_le16(&src); c->status[1].step_index = *src++; src++; *samples++ = c->status[1].predictor; } while (src < buf + buf_size) { /* take care of the top nibble (always left or mono channel) */ *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 3); /* take care of the bottom nibble, which is right sample for * stereo, or another mono sample */ if (st) *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[0] & 0x0F, 3); else *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3); src++; } break; case CODEC_ID_ADPCM_IMA_DK3: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; if(buf_size + 16 > (samples_end - samples)*3/8) return -1; c->status[0].predictor = (int16_t)AV_RL16(src + 10); c->status[1].predictor = (int16_t)AV_RL16(src + 12); c->status[0].step_index = src[14]; c->status[1].step_index = src[15]; /* sign extend the predictors */ src += 16; diff_channel = c->status[1].predictor; /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when * the buffer is consumed */ while (1) { /* for this algorithm, c->status[0] is the sum channel and * c->status[1] is the diff channel */ /* process the first predictor of the sum channel */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[0], nibble, 3); /* process the diff channel predictor */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[1], nibble, 3); /* process the first pair of stereo PCM samples */ diff_channel = (diff_channel + c->status[1].predictor) / 2; *samples++ = c->status[0].predictor + c->status[1].predictor; *samples++ = c->status[0].predictor - c->status[1].predictor; /* process the second predictor of the sum channel */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[0], nibble, 3); /* process the second pair of stereo PCM samples */ diff_channel = (diff_channel + c->status[1].predictor) / 2; *samples++ = c->status[0].predictor + c->status[1].predictor; *samples++ = c->status[0].predictor - c->status[1].predictor; } break; case CODEC_ID_ADPCM_IMA_ISS: c->status[0].predictor = (int16_t)AV_RL16(src + 0); c->status[0].step_index = src[2]; src += 4; if(st) { c->status[1].predictor = (int16_t)AV_RL16(src + 0); c->status[1].step_index = src[2]; src += 4; } while (src < buf + buf_size) { if (st) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[0] & 0x0F, 3); } else { *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4 , 3); } src++; } break; case CODEC_ID_ADPCM_IMA_WS: /* no per-block initialization; just start decoding the data */ while (src < buf + buf_size) { if (st) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[0] & 0x0F, 3); } else { *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3); } src++; } break; case CODEC_ID_ADPCM_XA: while (buf_size >= 128) { xa_decode(samples, src, &c->status[0], &c->status[1], avctx->channels); src += 128; samples += 28 * 8; buf_size -= 128; } break; case CODEC_ID_ADPCM_IMA_EA_EACS: samples_in_chunk = bytestream_get_le32(&src) >> (1-st); if (samples_in_chunk > buf_size-4-(8<<st)) { src += buf_size - 4; break; } for (i=0; i<=st; i++) c->status[i].step_index = bytestream_get_le32(&src); for (i=0; i<=st; i++) c->status[i].predictor = bytestream_get_le32(&src); for (; samples_in_chunk; samples_in_chunk--, src++) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3); } break; case CODEC_ID_ADPCM_IMA_EA_SEAD: for (; src < buf+buf_size; src++) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6); *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6); } break; case CODEC_ID_ADPCM_EA: /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces, each coding 28 stereo samples. */ if (buf_size < 12) { av_log(avctx, AV_LOG_ERROR, "frame too small\n"); return AVERROR(EINVAL); } samples_in_chunk = AV_RL32(src); if (samples_in_chunk / 28 > (buf_size - 12) / 30) { av_log(avctx, AV_LOG_ERROR, "invalid frame\n"); return AVERROR(EINVAL); } src += 4; current_left_sample = (int16_t)bytestream_get_le16(&src); previous_left_sample = (int16_t)bytestream_get_le16(&src); current_right_sample = (int16_t)bytestream_get_le16(&src); previous_right_sample = (int16_t)bytestream_get_le16(&src); for (count1 = 0; count1 < samples_in_chunk/28;count1++) { coeff1l = ea_adpcm_table[ *src >> 4 ]; coeff2l = ea_adpcm_table[(*src >> 4 ) + 4]; coeff1r = ea_adpcm_table[*src & 0x0F]; coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; src++; shift_left = (*src >> 4 ) + 8; shift_right = (*src & 0x0F) + 8; src++; for (count2 = 0; count2 < 28; count2++) { next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left; next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right; src++; next_left_sample = (next_left_sample + (current_left_sample * coeff1l) + (previous_left_sample * coeff2l) + 0x80) >> 8; next_right_sample = (next_right_sample + (current_right_sample * coeff1r) + (previous_right_sample * coeff2r) + 0x80) >> 8; previous_left_sample = current_left_sample; current_left_sample = av_clip_int16(next_left_sample); previous_right_sample = current_right_sample; current_right_sample = av_clip_int16(next_right_sample); *samples++ = (unsigned short)current_left_sample; *samples++ = (unsigned short)current_right_sample; } } if (src - buf == buf_size - 2) src += 2; // Skip terminating 0x0000 break; case CODEC_ID_ADPCM_EA_MAXIS_XA: for(channel = 0; channel < avctx->channels; channel++) { for (i=0; i<2; i++) coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i]; shift[channel] = (*src & 0x0F) + 8; src++; } for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) { for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ for(channel = 0; channel < avctx->channels; channel++) { int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel]; sample = (sample + c->status[channel].sample1 * coeff[channel][0] + c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; c->status[channel].sample2 = c->status[channel].sample1; c->status[channel].sample1 = av_clip_int16(sample); *samples++ = c->status[channel].sample1; } } src+=avctx->channels; } break; case CODEC_ID_ADPCM_EA_R1: case CODEC_ID_ADPCM_EA_R2: case CODEC_ID_ADPCM_EA_R3: { /* channel numbering 2chan: 0=fl, 1=fr 4chan: 0=fl, 1=rl, 2=fr, 3=rr 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3; int32_t previous_sample, current_sample, next_sample; int32_t coeff1, coeff2; uint8_t shift; unsigned int channel; uint16_t *samplesC; const uint8_t *srcC; const uint8_t *src_end = buf + buf_size; samples_in_chunk = (big_endian ? bytestream_get_be32(&src) : bytestream_get_le32(&src)) / 28; if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) || 28*samples_in_chunk*avctx->channels > samples_end-samples) { src += buf_size - 4; break; } for (channel=0; channel<avctx->channels; channel++) { int32_t offset = (big_endian ? bytestream_get_be32(&src) : bytestream_get_le32(&src)) + (avctx->channels-channel-1) * 4; if ((offset < 0) || (offset >= src_end - src - 4)) break; srcC = src + offset; samplesC = samples + channel; if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) { current_sample = (int16_t)bytestream_get_le16(&srcC); previous_sample = (int16_t)bytestream_get_le16(&srcC); } else { current_sample = c->status[channel].predictor; previous_sample = c->status[channel].prev_sample; } for (count1=0; count1<samples_in_chunk; count1++) { if (*srcC == 0xEE) { /* only seen in R2 and R3 */ srcC++; if (srcC > src_end - 30*2) break; current_sample = (int16_t)bytestream_get_be16(&srcC); previous_sample = (int16_t)bytestream_get_be16(&srcC); for (count2=0; count2<28; count2++) { *samplesC = (int16_t)bytestream_get_be16(&srcC); samplesC += avctx->channels; } } else { coeff1 = ea_adpcm_table[ *srcC>>4 ]; coeff2 = ea_adpcm_table[(*srcC>>4) + 4]; shift = (*srcC++ & 0x0F) + 8; if (srcC > src_end - 14) break; for (count2=0; count2<28; count2++) { if (count2 & 1) next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift; else next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift; next_sample += (current_sample * coeff1) + (previous_sample * coeff2); next_sample = av_clip_int16(next_sample >> 8); previous_sample = current_sample; current_sample = next_sample; *samplesC = current_sample; samplesC += avctx->channels; } } } if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) { c->status[channel].predictor = current_sample; c->status[channel].prev_sample = previous_sample; } } src = src + buf_size - (4 + 4*avctx->channels); samples += 28 * samples_in_chunk * avctx->channels; break; } case CODEC_ID_ADPCM_EA_XAS: if (samples_end-samples < 32*4*avctx->channels || buf_size < (4+15)*4*avctx->channels) { src += buf_size; break; } for (channel=0; channel<avctx->channels; channel++) { int coeff[2][4], shift[4]; short *s2, *s = &samples[channel]; for (n=0; n<4; n++, s+=32*avctx->channels) { for (i=0; i<2; i++) coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i]; shift[n] = (src[2]&0x0F) + 8; for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels) s2[0] = (src[0]&0xF0) + (src[1]<<8); } for (m=2; m<32; m+=2) { s = &samples[m*avctx->channels + channel]; for (n=0; n<4; n++, src++, s+=32*avctx->channels) { for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) { int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n]; int pred = s2[-1*avctx->channels] * coeff[0][n] + s2[-2*avctx->channels] * coeff[1][n]; s2[0] = av_clip_int16((level + pred + 0x80) >> 8); } } } } samples += 32*4*avctx->channels; break; case CODEC_ID_ADPCM_IMA_AMV: case CODEC_ID_ADPCM_IMA_SMJPEG: c->status[0].predictor = (int16_t)bytestream_get_le16(&src); c->status[0].step_index = bytestream_get_le16(&src); if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) src+=4; while (src < buf + buf_size) { char hi, lo; lo = *src & 0x0F; hi = *src >> 4; if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) FFSWAP(char, hi, lo); *samples++ = adpcm_ima_expand_nibble(&c->status[0], lo, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[0], hi, 3); src++; } break; case CODEC_ID_ADPCM_CT: while (src < buf + buf_size) { if (st) { *samples++ = adpcm_ct_expand_nibble(&c->status[0], src[0] >> 4); *samples++ = adpcm_ct_expand_nibble(&c->status[1], src[0] & 0x0F); } else { *samples++ = adpcm_ct_expand_nibble(&c->status[0], src[0] >> 4); *samples++ = adpcm_ct_expand_nibble(&c->status[0], src[0] & 0x0F); } src++; } break; case CODEC_ID_ADPCM_SBPRO_4: case CODEC_ID_ADPCM_SBPRO_3: case CODEC_ID_ADPCM_SBPRO_2: if (!c->status[0].step_index) { /* the first byte is a raw sample */ *samples++ = 128 * (*src++ - 0x80); if (st) *samples++ = 128 * (*src++ - 0x80); c->status[0].step_index = 1; } if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) { while (src < buf + buf_size) { *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], src[0] >> 4, 4, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], src[0] & 0x0F, 4, 0); src++; } } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { while (src < buf + buf_size && samples + 2 < samples_end) { *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], src[0] >> 5 , 3, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], (src[0] >> 2) & 0x07, 3, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], src[0] & 0x03, 2, 0); src++; } } else { while (src < buf + buf_size && samples + 3 < samples_end) { *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], src[0] >> 6 , 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], (src[0] >> 4) & 0x03, 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], (src[0] >> 2) & 0x03, 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], src[0] & 0x03, 2, 2); src++; } } break; case CODEC_ID_ADPCM_SWF: { GetBitContext gb; const int *table; int k0, signmask, nb_bits, count; int size = buf_size*8; init_get_bits(&gb, buf, size); //read bits & initial values nb_bits = get_bits(&gb, 2)+2; //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits); table = swf_index_tables[nb_bits-2]; k0 = 1 << (nb_bits-2); signmask = 1 << (nb_bits-1); while (get_bits_count(&gb) <= size - 22*avctx->channels) { for (i = 0; i < avctx->channels; i++) { *samples++ = c->status[i].predictor = get_sbits(&gb, 16); c->status[i].step_index = get_bits(&gb, 6); } for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { int i; for (i = 0; i < avctx->channels; i++) { // similar to IMA adpcm int delta = get_bits(&gb, nb_bits); int step = ff_adpcm_step_table[c->status[i].step_index]; long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 int k = k0; do { if (delta & k) vpdiff += step; step >>= 1; k >>= 1; } while(k); vpdiff += step; if (delta & signmask) c->status[i].predictor -= vpdiff; else c->status[i].predictor += vpdiff; c->status[i].step_index += table[delta & (~signmask)]; c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); c->status[i].predictor = av_clip_int16(c->status[i].predictor); *samples++ = c->status[i].predictor; if (samples >= samples_end) { av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); return -1; } } } } src += buf_size; break; } case CODEC_ID_ADPCM_YAMAHA: while (src < buf + buf_size) { if (st) { *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], src[0] & 0x0F); *samples++ = adpcm_yamaha_expand_nibble(&c->status[1], src[0] >> 4 ); } else { *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], src[0] & 0x0F); *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], src[0] >> 4 ); } src++; } break; case CODEC_ID_ADPCM_THP: { int table[2][16]; unsigned int samplecnt; int prev[2][2]; int ch; if (buf_size < 80) { av_log(avctx, AV_LOG_ERROR, "frame too small\n"); return -1; } src+=4; samplecnt = bytestream_get_be32(&src); for (i = 0; i < 32; i++) table[0][i] = (int16_t)bytestream_get_be16(&src); /* Initialize the previous sample. */ for (i = 0; i < 4; i++) prev[0][i] = (int16_t)bytestream_get_be16(&src); if (samplecnt >= (samples_end - samples) / (st + 1)) { av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); return -1; } for (ch = 0; ch <= st; ch++) { samples = (unsigned short *) data + ch; /* Read in every sample for this channel. */ for (i = 0; i < samplecnt / 14; i++) { int index = (*src >> 4) & 7; unsigned int exp = 28 - (*src++ & 15); int factor1 = table[ch][index * 2]; int factor2 = table[ch][index * 2 + 1]; /* Decode 14 samples. */ for (n = 0; n < 14; n++) { int32_t sampledat; if(n&1) sampledat= *src++ <<28; else sampledat= (*src&0xF0)<<24; sampledat = ((prev[ch][0]*factor1 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp); *samples = av_clip_int16(sampledat); prev[ch][1] = prev[ch][0]; prev[ch][0] = *samples++; /* In case of stereo, skip one sample, this sample is for the other channel. */ samples += st; } } } /* In the previous loop, in case stereo is used, samples is increased exactly one time too often. */ samples -= st; break; } default: return -1; } *data_size = (uint8_t *)samples - (uint8_t *)data; return src - buf; }
true
FFmpeg
346876ec168affe7c21be88d8f1acf1a75cc8409
6,319
int DCT_common_init(MpegEncContext *s) { int i; ff_put_pixels_clamped = s->dsp.put_pixels_clamped; ff_add_pixels_clamped = s->dsp.add_pixels_clamped; s->dct_unquantize_h263 = dct_unquantize_h263_c; s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_c; s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_c; s->dct_quantize= dct_quantize_c; if(s->avctx->dct_algo==FF_DCT_FASTINT) s->fdct = fdct_ifast; else s->fdct = ff_jpeg_fdct_islow; //slow/accurate/default if(s->avctx->idct_algo==FF_IDCT_INT){ s->idct_put= ff_jref_idct_put; s->idct_add= ff_jref_idct_add; s->idct_permutation_type= FF_LIBMPEG2_IDCT_PERM; }else{ //accurate/default s->idct_put= simple_idct_put; s->idct_add= simple_idct_add; s->idct_permutation_type= FF_NO_IDCT_PERM; } #ifdef HAVE_MMX MPV_common_init_mmx(s); #endif #ifdef ARCH_ALPHA MPV_common_init_axp(s); #endif #ifdef HAVE_MLIB MPV_common_init_mlib(s); #endif #ifdef HAVE_MMI MPV_common_init_mmi(s); #endif #ifdef ARCH_ARMV4L MPV_common_init_armv4l(); #endif #ifdef ARCH_POWERPC MPV_common_init_ppc(s); #endif switch(s->idct_permutation_type){ case FF_NO_IDCT_PERM: for(i=0; i<64; i++) s->idct_permutation[i]= i; break; case FF_LIBMPEG2_IDCT_PERM: for(i=0; i<64; i++) s->idct_permutation[i]= (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2); break; case FF_SIMPLE_IDCT_PERM: for(i=0; i<64; i++) s->idct_permutation[i]= simple_mmx_permutation[i]; break; case FF_TRANSPOSE_IDCT_PERM: for(i=0; i<64; i++) s->idct_permutation[i]= ((i&7)<<3) | (i>>3); break; default: fprintf(stderr, "Internal error, IDCT permutation not set\n"); return -1; } /* load & permutate scantables note: only wmv uses differnt ones */ ff_init_scantable(s, &s->inter_scantable , ff_zigzag_direct); ff_init_scantable(s, &s->intra_scantable , ff_zigzag_direct); ff_init_scantable(s, &s->intra_h_scantable, ff_alternate_horizontal_scan); ff_init_scantable(s, &s->intra_v_scantable, ff_alternate_vertical_scan); return 0; }
false
FFmpeg
83f238cbf0c038245d2b2dffa5beb0916e7c36d2
6,320
static void yuv2yuvX_c(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW) { //FIXME Optimize (just quickly written not optimized..) int i; for (i=0; i<dstW; i++) { int val=1<<18; int j; for (j=0; j<lumFilterSize; j++) val += lumSrc[j][i] * lumFilter[j]; dest[i]= av_clip_uint8(val>>19); } if (uDest) for (i=0; i<chrDstW; i++) { int u=1<<18; int v=1<<18; int j; for (j=0; j<chrFilterSize; j++) { u += chrUSrc[j][i] * chrFilter[j]; v += chrVSrc[j][i] * chrFilter[j]; } uDest[i]= av_clip_uint8(u>>19); vDest[i]= av_clip_uint8(v>>19); } if (CONFIG_SWSCALE_ALPHA && aDest) for (i=0; i<dstW; i++) { int val=1<<18; int j; for (j=0; j<lumFilterSize; j++) val += alpSrc[j][i] * lumFilter[j]; aDest[i]= av_clip_uint8(val>>19); } }
false
FFmpeg
13a099799e89a76eb921ca452e1b04a7a28a9855
6,321
static int dxva2_mpeg2_start_frame(AVCodecContext *avctx, av_unused const uint8_t *buffer, av_unused uint32_t size) { const struct MpegEncContext *s = avctx->priv_data; AVDXVAContext *ctx = avctx->hwaccel_context; struct dxva2_picture_context *ctx_pic = s->current_picture_ptr->hwaccel_picture_private; if (!DXVA_CONTEXT_VALID(avctx, ctx)) return -1; assert(ctx_pic); fill_picture_parameters(avctx, ctx, s, &ctx_pic->pp); fill_quantization_matrices(avctx, ctx, s, &ctx_pic->qm); ctx_pic->slice_count = 0; ctx_pic->bitstream_size = 0; ctx_pic->bitstream = NULL; return 0; }
false
FFmpeg
ab28108a361196134704071b7b34c42fc7d747c7
6,323
static void avc_luma_vt_and_aver_dst_4x4_msa(const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride) { int16_t filt_const0 = 0xfb01; int16_t filt_const1 = 0x1414; int16_t filt_const2 = 0x1fb; v16u8 dst0, dst1, dst2, dst3; v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; v16i8 src10_r, src32_r, src54_r, src76_r, src21_r, src43_r, src65_r; v16i8 src87_r, src2110, src4332, src6554, src8776; v8i16 out10, out32; v16i8 filt0, filt1, filt2; v16u8 res; filt0 = (v16i8) __msa_fill_h(filt_const0); filt1 = (v16i8) __msa_fill_h(filt_const1); filt2 = (v16i8) __msa_fill_h(filt_const2); LD_SB5(src, src_stride, src0, src1, src2, src3, src4); src += (5 * src_stride); ILVR_B4_SB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, src32_r, src43_r); ILVR_D2_SB(src21_r, src10_r, src43_r, src32_r, src2110, src4332); XORI_B2_128_SB(src2110, src4332); LD_SB4(src, src_stride, src5, src6, src7, src8); ILVR_B4_SB(src5, src4, src6, src5, src7, src6, src8, src7, src54_r, src65_r, src76_r, src87_r); ILVR_D2_SB(src65_r, src54_r, src87_r, src76_r, src6554, src8776); XORI_B2_128_SB(src6554, src8776); out10 = DPADD_SH3_SH(src2110, src4332, src6554, filt0, filt1, filt2); out32 = DPADD_SH3_SH(src4332, src6554, src8776, filt0, filt1, filt2); SRARI_H2_SH(out10, out32, 5); SAT_SH2_SH(out10, out32, 7); LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); res = PCKEV_XORI128_UB(out10, out32); ILVR_W2_UB(dst1, dst0, dst3, dst2, dst0, dst1); dst0 = (v16u8) __msa_pckev_d((v2i64) dst1, (v2i64) dst0); dst0 = __msa_aver_u_b(res, dst0); ST4x4_UB(dst0, dst0, 0, 1, 2, 3, dst, dst_stride); }
false
FFmpeg
72dbc610be3272ba36603f78a39cc2d2d8fe0cc3
6,324
static int decode_frame_mp3on4(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; MP3On4DecodeContext *s = avctx->priv_data; MPADecodeContext *m; int fsize, len = buf_size, out_size = 0; uint32_t header; OUT_INT **out_samples; OUT_INT *outptr[2]; int fr, ch, ret; /* get output buffer */ frame->nb_samples = MPA_FRAME_SIZE; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } out_samples = (OUT_INT **)frame->extended_data; // Discard too short frames if (buf_size < HEADER_SIZE) return AVERROR_INVALIDDATA; avctx->bit_rate = 0; ch = 0; for (fr = 0; fr < s->frames; fr++) { fsize = AV_RB16(buf) >> 4; fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE); m = s->mp3decctx[fr]; assert(m != NULL); if (fsize < HEADER_SIZE) { av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n"); return AVERROR_INVALIDDATA; } header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header if (ff_mpa_check_header(header) < 0) // Bad header, discard block break; avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header); if (ch + m->nb_channels > avctx->channels || s->coff[fr] + m->nb_channels > avctx->channels) { av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec " "channel count\n"); return AVERROR_INVALIDDATA; } ch += m->nb_channels; outptr[0] = out_samples[s->coff[fr]]; if (m->nb_channels > 1) outptr[1] = out_samples[s->coff[fr] + 1]; if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0) return ret; out_size += ret; buf += fsize; len -= fsize; avctx->bit_rate += m->bit_rate; } /* update codec info */ avctx->sample_rate = s->mp3decctx[0]->sample_rate; frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT)); *got_frame_ptr = 1; return buf_size; }
false
FFmpeg
955aec3c7c7be39b659197e1ec379a09f2b7c41c
6,325
static int dxva2_h264_start_frame(AVCodecContext *avctx, av_unused const uint8_t *buffer, av_unused uint32_t size) { const H264Context *h = avctx->priv_data; AVDXVAContext *ctx = avctx->hwaccel_context; struct dxva2_picture_context *ctx_pic = h->cur_pic_ptr->hwaccel_picture_private; if (DXVA_CONTEXT_DECODER(avctx, ctx) == NULL || DXVA_CONTEXT_CFG(avctx, ctx) == NULL || DXVA_CONTEXT_COUNT(avctx, ctx) <= 0) return -1; assert(ctx_pic); /* Fill up DXVA_PicParams_H264 */ fill_picture_parameters(avctx, ctx, h, &ctx_pic->pp); /* Fill up DXVA_Qmatrix_H264 */ fill_scaling_lists(avctx, ctx, h, &ctx_pic->qm); ctx_pic->slice_count = 0; ctx_pic->bitstream_size = 0; ctx_pic->bitstream = NULL; return 0; }
false
FFmpeg
0ac2d86c4758e1419934905b6c092910296aa16a
6,326
static inline void RENAME(yuv2yuvX)(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, long dstW, long chrDstW) { #ifdef HAVE_MMX if(uDest != NULL) { asm volatile( YSCALEYUV2YV12X(0, CHR_MMX_FILTER_OFFSET) :: "r" (&c->redDither), "r" (uDest), "p" (chrDstW) : "%"REG_a, "%"REG_d, "%"REG_S ); asm volatile( YSCALEYUV2YV12X(4096, CHR_MMX_FILTER_OFFSET) :: "r" (&c->redDither), "r" (vDest), "p" (chrDstW) : "%"REG_a, "%"REG_d, "%"REG_S ); } asm volatile( YSCALEYUV2YV12X(0, LUM_MMX_FILTER_OFFSET) :: "r" (&c->redDither), "r" (dest), "p" (dstW) : "%"REG_a, "%"REG_d, "%"REG_S ); #else #ifdef HAVE_ALTIVEC yuv2yuvX_altivec_real(lumFilter, lumSrc, lumFilterSize, chrFilter, chrSrc, chrFilterSize, dest, uDest, vDest, dstW, chrDstW); #else //HAVE_ALTIVEC yuv2yuvXinC(lumFilter, lumSrc, lumFilterSize, chrFilter, chrSrc, chrFilterSize, dest, uDest, vDest, dstW, chrDstW); #endif //!HAVE_ALTIVEC #endif }
false
FFmpeg
bca11e75fbc6b922438670733c6cb418c70433b4
6,327
static inline void dv_encode_video_segment(DVVideoContext *s, uint8_t *dif, const uint16_t *mb_pos_ptr) { int mb_index, i, j, v; int mb_x, mb_y, c_offset, linesize; uint8_t* y_ptr; uint8_t* data; uint8_t* ptr; int do_edge_wrap; DCTELEM block[64] __align8; DCTELEM sblock[5*6][64] __align8; EncBlockInfo enc_blks[5*6]; PutBitContext pbs[5*6]; PutBitContext* pb; EncBlockInfo* enc_blk; int vs_bit_size = 0; int qnos[5]; enc_blk = &enc_blks[0]; pb = &pbs[0]; for(mb_index = 0; mb_index < 5; mb_index++) { v = *mb_pos_ptr++; mb_x = v & 0xff; mb_y = v >> 8; y_ptr = s->picture.data[0] + (mb_y * s->picture.linesize[0] * 8) + (mb_x * 8); c_offset = (s->sys->pix_fmt == PIX_FMT_YUV411P) ? ((mb_y * s->picture.linesize[1] * 8) + ((mb_x >> 2) * 8)) : (((mb_y >> 1) * s->picture.linesize[1] * 8) + ((mb_x >> 1) * 8)); do_edge_wrap = 0; qnos[mb_index] = 15; /* No quantization */ ptr = dif + mb_index*80 + 4; for(j = 0;j < 6; j++) { if (j < 4) { /* Four Y blocks */ /* NOTE: at end of line, the macroblock is handled as 420 */ if (s->sys->pix_fmt == PIX_FMT_YUV411P && mb_x < (704 / 8)) { data = y_ptr + (j * 8); } else { data = y_ptr + ((j & 1) * 8) + ((j >> 1) * 8 * s->picture.linesize[0]); } linesize = s->picture.linesize[0]; } else { /* Cr and Cb blocks */ /* don't ask Fabrice why they inverted Cb and Cr ! */ data = s->picture.data[6 - j] + c_offset; linesize = s->picture.linesize[6 - j]; if (s->sys->pix_fmt == PIX_FMT_YUV411P && mb_x >= (704 / 8)) do_edge_wrap = 1; } /* Everything is set up -- now just copy data -> DCT block */ if (do_edge_wrap) { /* Edge wrap copy: 4x16 -> 8x8 */ uint8_t* d; DCTELEM *b = block; for (i=0;i<8;i++) { d = data + 8 * linesize; b[0] = data[0]; b[1] = data[1]; b[2] = data[2]; b[3] = data[3]; b[4] = d[0]; b[5] = d[1]; b[6] = d[2]; b[7] = d[3]; data += linesize; b += 8; } } else { /* Simple copy: 8x8 -> 8x8 */ s->get_pixels(block, data, linesize); } enc_blk->dct_mode = dv_guess_dct_mode(block); enc_blk->mb = &sblock[mb_index*6+j][0]; enc_blk->area_q[0] = enc_blk->area_q[1] = enc_blk->area_q[2] = enc_blk->area_q[3] = 0; enc_blk->partial_bit_count = 0; enc_blk->partial_bit_buffer = 0; enc_blk->cur_ac = 1; s->fdct[enc_blk->dct_mode](block); dv_set_class_number(block, enc_blk, enc_blk->dct_mode ? ff_zigzag248_direct : ff_zigzag_direct, j/4*(j%2)); init_put_bits(pb, ptr, block_sizes[j]/8); put_bits(pb, 9, (uint16_t)(((enc_blk->mb[0] >> 3) - 1024) >> 2)); put_bits(pb, 1, enc_blk->dct_mode); put_bits(pb, 2, enc_blk->cno); vs_bit_size += enc_blk->bit_size[0] + enc_blk->bit_size[1] + enc_blk->bit_size[2] + enc_blk->bit_size[3]; ++enc_blk; ++pb; ptr += block_sizes[j]/8; } } if (vs_total_ac_bits < vs_bit_size) dv_guess_qnos(&enc_blks[0], &qnos[0]); for (i=0; i<5; i++) { dif[i*80 + 3] = qnos[i]; } /* First pass over individual cells only */ for (j=0; j<5*6; j++) dv_encode_ac(&enc_blks[j], &pbs[j], 1); /* Second pass over each MB space */ for (j=0; j<5*6; j++) { if (enc_blks[j].cur_ac < 65 || enc_blks[j].partial_bit_count) dv_encode_ac(&enc_blks[j], &pbs[(j/6)*6], 6); } /* Third and final pass over the whole vides segment space */ for (j=0; j<5*6; j++) { if (enc_blks[j].cur_ac < 65 || enc_blks[j].partial_bit_count) dv_encode_ac(&enc_blks[j], &pbs[0], 6*5); } for (j=0; j<5*6; j++) flush_put_bits(&pbs[j]); }
false
FFmpeg
c619ff6daf93a8f3c03decf2d3345d2474c3db91
6,328
static double fade_gain(int curve, int64_t index, int range) { double gain; gain = av_clipd(1.0 * index / range, 0, 1.0); switch (curve) { case QSIN: gain = sin(gain * M_PI / 2.0); break; case IQSIN: gain = 0.636943 * asin(gain); break; case ESIN: gain = 1.0 - cos(M_PI / 4.0 * (pow(2.0*gain - 1, 3) + 1)); break; case HSIN: gain = (1.0 - cos(gain * M_PI)) / 2.0; break; case IHSIN: gain = 0.318471 * acos(1 - 2 * gain); break; case EXP: gain = pow(0.1, (1 - gain) * 5.0); break; case LOG: gain = av_clipd(0.0868589 * log(100000 * gain), 0, 1.0); break; case PAR: gain = 1 - sqrt(1 - gain); break; case IPAR: gain = (1 - (1 - gain) * (1 - gain)); break; case QUA: gain *= gain; break; case CUB: gain = gain * gain * gain; break; case SQU: gain = sqrt(gain); break; case CBR: gain = cbrt(gain); break; case DESE: gain = gain <= 0.5 ? pow(2 * gain, 1/3.) / 2: 1 - pow(2 * (1 - gain), 1/3.) / 2; break; case DESI: gain = gain <= 0.5 ? pow(2 * gain, 3) / 2: 1 - pow(2 * (1 - gain), 3) / 2; break; } return gain; }
false
FFmpeg
9ee1feaa7c2822240b93d4640ec6e8d3e5b6139b
6,329
static int get_cv_ycbcr_matrix(AVCodecContext *avctx, CFStringRef *matrix) { switch(avctx->colorspace) { case AVCOL_SPC_BT709: *matrix = kCVImageBufferYCbCrMatrix_ITU_R_709_2; break; case AVCOL_SPC_UNSPECIFIED: *matrix = NULL; break; case AVCOL_SPC_BT470BG: case AVCOL_SPC_SMPTE170M: *matrix = kCVImageBufferYCbCrMatrix_ITU_R_601_4; break; case AVCOL_SPC_SMPTE240M: *matrix = kCVImageBufferYCbCrMatrix_SMPTE_240M_1995; break; case AVCOL_SPC_BT2020_NCL: *matrix = kCVImageBufferYCbCrMatrix_ITU_R_2020; break; default: av_log(avctx, AV_LOG_ERROR, "Color space %s is not supported.\n", av_color_space_name(avctx->colorspace)); return -1; } return 0; }
false
FFmpeg
dcd3418a35aab7ef283b68ed9997ce4ac204094e
6,330
static AVStream *add_av_stream1(FFStream *stream, AVCodecContext *codec, int copy) { AVStream *fst; fst = av_mallocz(sizeof(AVStream)); if (!fst) return NULL; if (copy) { fst->codec= avcodec_alloc_context(); memcpy(fst->codec, codec, sizeof(AVCodecContext)); if (codec->extradata_size) { fst->codec->extradata = av_malloc(codec->extradata_size); memcpy(fst->codec->extradata, codec->extradata, codec->extradata_size); } } else { /* live streams must use the actual feed's codec since it may be * updated later to carry extradata needed by the streams. */ fst->codec = codec; } fst->priv_data = av_mallocz(sizeof(FeedData)); fst->index = stream->nb_streams; av_set_pts_info(fst, 33, 1, 90000); fst->sample_aspect_ratio = (AVRational){0,1}; stream->streams[stream->nb_streams++] = fst; return fst; }
false
FFmpeg
34c340d49f2e6ca5190f16ced82da32561a7bef2
6,331
static void buffer_reserve(Buffer *buffer, size_t len) { if ((buffer->capacity - buffer->offset) < len) { buffer->capacity += (len + 1024); buffer->buffer = qemu_realloc(buffer->buffer, buffer->capacity); if (buffer->buffer == NULL) { fprintf(stderr, "vnc: out of memory\n"); exit(1); } } }
true
qemu
2f9606b3736c3be4dbd606c46525c7b770ced119
6,332
static void qmp_input_end_struct(Visitor *v, Error **errp) { QmpInputVisitor *qiv = to_qiv(v); qmp_input_pop(qiv, errp); }
true
qemu
15c2f669e3fb2bc97f7b42d1871f595c0ac24af8