id
int32
0
27.3k
func
stringlengths
26
142k
target
bool
2 classes
project
stringclasses
2 values
commit_id
stringlengths
40
40
2,688
static int decode_rle(AVCodecContext *avctx, AVFrame *p, GetByteContext *gbc, int step) { int i, j; int offset = avctx->width * step; uint8_t *outdata = p->data[0]; for (i = 0; i < avctx->height; i++) { int size, left, code, pix; uint8_t *out = outdata; int pos = 0; /* size of packed line */ size = left = bytestream2_get_be16(gbc); if (bytestream2_get_bytes_left(gbc) < size) /* decode line */ while (left > 0) { code = bytestream2_get_byte(gbc); if (code & 0x80 ) { /* run */ pix = bytestream2_get_byte(gbc); for (j = 0; j < 257 - code; j++) { out[pos] = pix; pos += step; if (pos >= offset) { pos -= offset; pos++; } } left -= 2; } else { /* copy */ for (j = 0; j < code + 1; j++) { out[pos] = bytestream2_get_byte(gbc); pos += step; if (pos >= offset) { pos -= offset; pos++; } } left -= 2 + code; } } outdata += p->linesize[0]; } return 0; }
true
FFmpeg
1eda55510ae5d15ce3df9f496002508580899045
2,689
uint64_t helper_msub64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, uint32_t r3, uint32_t n) { int64_t t1 = (int64_t)r1; int64_t t2 = sextract64(r2, 0, 32); int64_t t3 = sextract64(r3, 0, 32); int64_t result, mul; int64_t ovf; mul = (t2 * t3) << n; result = t1 - mul; env->PSW_USB_AV = (result ^ result * 2u) >> 32; env->PSW_USB_SAV |= env->PSW_USB_AV; ovf = (result ^ t1) & (t1 ^ mul); /* we do the saturation by hand, since we produce an overflow on the host if the mul before was (0x80000000 * 0x80000000) << 1). If this is the case, we flip the saturated value. */ if (mul == 0x8000000000000000LL) { if (ovf >= 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if (mul >= 0) { result = INT64_MAX; /* ext_ret < MIN_INT */ result = INT64_MIN; } } if (ovf < 0) { env->PSW_USB_V = (1 << 31); env->PSW_USB_SV = (1 << 31); /* ext_ret > MAX_INT */ if (mul < 0) { result = INT64_MAX; /* ext_ret < MIN_INT */ result = INT64_MIN; } } } return (uint64_t)result; }
true
qemu
9029710b9ead9c11649ec142d18581412d8f3e68
2,690
static void mtree_print_mr(fprintf_function mon_printf, void *f, const MemoryRegion *mr, unsigned int level, hwaddr base, MemoryRegionListHead *alias_print_queue) { MemoryRegionList *new_ml, *ml, *next_ml; MemoryRegionListHead submr_print_queue; const MemoryRegion *submr; unsigned int i; if (!mr) { return; } for (i = 0; i < level; i++) { mon_printf(f, MTREE_INDENT); } if (mr->alias) { MemoryRegionList *ml; bool found = false; /* check if the alias is already in the queue */ QTAILQ_FOREACH(ml, alias_print_queue, queue) { if (ml->mr == mr->alias) { found = true; } } if (!found) { ml = g_new(MemoryRegionList, 1); ml->mr = mr->alias; QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue); } mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): alias %s @%s " TARGET_FMT_plx "-" TARGET_FMT_plx "%s\n", base + mr->addr, base + mr->addr + MR_SIZE(mr->size), mr->priority, memory_region_type((MemoryRegion *)mr), memory_region_name(mr), memory_region_name(mr->alias), mr->alias_offset, mr->alias_offset + MR_SIZE(mr->size), mr->enabled ? "" : " [disabled]"); } else { mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n", base + mr->addr, base + mr->addr + MR_SIZE(mr->size), mr->priority, memory_region_type((MemoryRegion *)mr), memory_region_name(mr), mr->enabled ? "" : " [disabled]"); } QTAILQ_INIT(&submr_print_queue); QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) { new_ml = g_new(MemoryRegionList, 1); new_ml->mr = submr; QTAILQ_FOREACH(ml, &submr_print_queue, queue) { if (new_ml->mr->addr < ml->mr->addr || (new_ml->mr->addr == ml->mr->addr && new_ml->mr->priority > ml->mr->priority)) { QTAILQ_INSERT_BEFORE(ml, new_ml, queue); new_ml = NULL; break; } } if (new_ml) { QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue); } } QTAILQ_FOREACH(ml, &submr_print_queue, queue) { mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr, alias_print_queue); } QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) { g_free(ml); } }
true
qemu
b31f84126215e3fd4b8acbc3083ae30d407329e8
2,691
static uint64_t bonito_cop_readl(void *opaque, hwaddr addr, unsigned size) { uint32_t val; PCIBonitoState *s = opaque; val = ((uint32_t *)(&s->boncop))[addr/sizeof(uint32_t)]; return val;
true
qemu
58d479786b11a7e982419c1e0905b8490ef9a787
2,692
static int vmdk_snapshot_create(const char *filename, const char *backing_file) { int snp_fd, p_fd; int ret; uint32_t p_cid; char *p_name, *gd_buf, *rgd_buf; const char *real_filename, *temp_str; VMDK4Header header; uint32_t gde_entries, gd_size; int64_t gd_offset, rgd_offset, capacity, gt_size; char p_desc[DESC_SIZE], s_desc[DESC_SIZE], hdr[HEADER_SIZE]; static const char desc_template[] = "# Disk DescriptorFile\n" "version=1\n" "CID=%x\n" "parentCID=%x\n" "createType=\"monolithicSparse\"\n" "parentFileNameHint=\"%s\"\n" "\n" "# Extent description\n" "RW %u SPARSE \"%s\"\n" "\n" "# The Disk Data Base \n" "#DDB\n" "\n"; snp_fd = open(filename, O_RDWR | O_CREAT | O_TRUNC | O_BINARY | O_LARGEFILE, 0644); if (snp_fd < 0) return -errno; p_fd = open(backing_file, O_RDONLY | O_BINARY | O_LARGEFILE); if (p_fd < 0) { close(snp_fd); return -errno; } /* read the header */ if (lseek(p_fd, 0x0, SEEK_SET) == -1) { ret = -errno; goto fail; } if (read(p_fd, hdr, HEADER_SIZE) != HEADER_SIZE) { ret = -errno; goto fail; } /* write the header */ if (lseek(snp_fd, 0x0, SEEK_SET) == -1) { ret = -errno; goto fail; } if (write(snp_fd, hdr, HEADER_SIZE) == -1) { ret = -errno; goto fail; } memset(&header, 0, sizeof(header)); memcpy(&header,&hdr[4], sizeof(header)); // skip the VMDK4_MAGIC if (ftruncate(snp_fd, header.grain_offset << 9)) { ret = -errno; goto fail; } /* the descriptor offset = 0x200 */ if (lseek(p_fd, 0x200, SEEK_SET) == -1) { ret = -errno; goto fail; } if (read(p_fd, p_desc, DESC_SIZE) != DESC_SIZE) { ret = -errno; goto fail; } if ((p_name = strstr(p_desc,"CID")) != NULL) { p_name += sizeof("CID"); sscanf(p_name,"%x",&p_cid); } real_filename = filename; if ((temp_str = strrchr(real_filename, '\\')) != NULL) real_filename = temp_str + 1; if ((temp_str = strrchr(real_filename, '/')) != NULL) real_filename = temp_str + 1; if ((temp_str = strrchr(real_filename, ':')) != NULL) real_filename = temp_str + 1; snprintf(s_desc, sizeof(s_desc), desc_template, p_cid, p_cid, backing_file, (uint32_t)header.capacity, real_filename); /* write the descriptor */ if (lseek(snp_fd, 0x200, SEEK_SET) == -1) { ret = -errno; goto fail; } if (write(snp_fd, s_desc, strlen(s_desc)) == -1) { ret = -errno; goto fail; } gd_offset = header.gd_offset * SECTOR_SIZE; // offset of GD table rgd_offset = header.rgd_offset * SECTOR_SIZE; // offset of RGD table capacity = header.capacity * SECTOR_SIZE; // Extent size /* * Each GDE span 32M disk, means: * 512 GTE per GT, each GTE points to grain */ gt_size = (int64_t)header.num_gtes_per_gte * header.granularity * SECTOR_SIZE; if (!gt_size) { ret = -EINVAL; goto fail; } gde_entries = (uint32_t)(capacity / gt_size); // number of gde/rgde gd_size = gde_entries * sizeof(uint32_t); /* write RGD */ rgd_buf = qemu_malloc(gd_size); if (lseek(p_fd, rgd_offset, SEEK_SET) == -1) { ret = -errno; goto fail_rgd; } if (read(p_fd, rgd_buf, gd_size) != gd_size) { ret = -errno; goto fail_rgd; } if (lseek(snp_fd, rgd_offset, SEEK_SET) == -1) { ret = -errno; goto fail_rgd; } if (write(snp_fd, rgd_buf, gd_size) == -1) { ret = -errno; goto fail_rgd; } qemu_free(rgd_buf); /* write GD */ gd_buf = qemu_malloc(gd_size); if (lseek(p_fd, gd_offset, SEEK_SET) == -1) { ret = -errno; goto fail_gd; } if (read(p_fd, gd_buf, gd_size) != gd_size) { ret = -errno; goto fail_gd; } if (lseek(snp_fd, gd_offset, SEEK_SET) == -1) { ret = -errno; goto fail_gd; } if (write(snp_fd, gd_buf, gd_size) == -1) { ret = -errno; goto fail_gd; } qemu_free(gd_buf); close(p_fd); close(snp_fd); return 0; fail_gd: qemu_free(gd_buf); fail_rgd: qemu_free(rgd_buf); fail: close(p_fd); close(snp_fd); return ret; }
true
qemu
a161329b61106ab093aab6d3227ac85e0b8251a9
2,693
static void piix3_ide_xen_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = pci_piix_ide_initfn; k->vendor_id = PCI_VENDOR_ID_INTEL; k->device_id = PCI_DEVICE_ID_INTEL_82371SB_1; k->class_id = PCI_CLASS_STORAGE_IDE; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); dc->no_user = 1; dc->unplug = pci_piix3_xen_ide_unplug; }
true
qemu
efec3dd631d94160288392721a5f9c39e50fb2bc
2,694
static int sami_paragraph_to_ass(AVCodecContext *avctx, const char *src) { SAMIContext *sami = avctx->priv_data; int ret = 0; char *tag = NULL; char *dupsrc = av_strdup(src); char *p = dupsrc; AVBPrint *dst_content = &sami->encoded_content; AVBPrint *dst_source = &sami->encoded_source; av_bprint_clear(&sami->encoded_content); av_bprint_clear(&sami->content); av_bprint_clear(&sami->encoded_source); for (;;) { char *saveptr = NULL; int prev_chr_is_space = 0; AVBPrint *dst = &sami->content; /* parse & extract paragraph tag */ p = av_stristr(p, "<P"); if (!p) break; if (p[2] != '>' && !av_isspace(p[2])) { // avoid confusion with tags such as <PRE> p++; continue; } if (dst->len) // add a separator with the previous paragraph if there was one av_bprintf(dst, "\\N"); tag = av_strtok(p, ">", &saveptr); if (!tag || !saveptr) break; p = saveptr; /* check if the current paragraph is the "source" (speaker name) */ if (av_stristr(tag, "ID=Source") || av_stristr(tag, "ID=\"Source\"")) { dst = &sami->source; av_bprint_clear(dst); } /* if empty event -> skip subtitle */ while (av_isspace(*p)) p++; if (!strncmp(p, "&nbsp;", 6)) { ret = -1; goto end; } /* extract the text, stripping most of the tags */ while (*p) { if (*p == '<') { if (!av_strncasecmp(p, "<P", 2) && (p[2] == '>' || av_isspace(p[2]))) break; } if (!av_strncasecmp(p, "<BR", 3)) { av_bprintf(dst, "\\N"); p++; while (*p && *p != '>') p++; if (!*p) break; if (*p == '>') p++; continue; } if (!av_isspace(*p)) av_bprint_chars(dst, *p, 1); else if (!prev_chr_is_space) av_bprint_chars(dst, ' ', 1); prev_chr_is_space = av_isspace(*p); p++; } } av_bprint_clear(&sami->full); if (sami->source.len) { ret = ff_htmlmarkup_to_ass(avctx, dst_source, sami->source.str); if (ret < 0) goto end; av_bprintf(&sami->full, "{\\i1}%s{\\i0}\\N", sami->encoded_source.str); } ret = ff_htmlmarkup_to_ass(avctx, dst_content, sami->content.str); if (ret < 0) goto end; av_bprintf(&sami->full, "%s", sami->encoded_content.str); end: av_free(dupsrc); return ret; }
true
FFmpeg
61bbc537ab2305392bd170a6f404ed6402bee4a8
2,695
static void reset_codec(WmallDecodeCtx *s) { int ich, ilms; s->mclms_recent = s->mclms_order * s->num_channels; for (ich = 0; ich < s->num_channels; ich++) { for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++) s->cdlms[ich][ilms].recent = s->cdlms[ich][ilms].order; /* first sample of a seekable subframe is considered as the starting of a transient area which is samples_per_frame samples long */ s->channel[ich].transient_counter = s->samples_per_frame; s->transient[ich] = 1; } }
true
FFmpeg
be8a0d26dbeec72b8e254e00724f170c28644c98
2,696
static int flv_set_video_codec(AVFormatContext *s, AVStream *vstream, int flv_codecid, int read) { AVCodecContext *vcodec = vstream->codec; switch(flv_codecid) { case FLV_CODECID_H263 : vcodec->codec_id = AV_CODEC_ID_FLV1 ; break; case FLV_CODECID_SCREEN: vcodec->codec_id = AV_CODEC_ID_FLASHSV; break; case FLV_CODECID_SCREEN2: vcodec->codec_id = AV_CODEC_ID_FLASHSV2; break; case FLV_CODECID_VP6 : vcodec->codec_id = AV_CODEC_ID_VP6F ; case FLV_CODECID_VP6A : if(flv_codecid == FLV_CODECID_VP6A) vcodec->codec_id = AV_CODEC_ID_VP6A; if (read) { if (vcodec->extradata_size != 1) { vcodec->extradata_size = 1; vcodec->extradata = av_malloc(1); } vcodec->extradata[0] = avio_r8(s->pb); } return 1; // 1 byte body size adjustment for flv_read_packet() case FLV_CODECID_H264: vcodec->codec_id = AV_CODEC_ID_H264; return 3; // not 4, reading packet type will consume one byte default: av_log(s, AV_LOG_INFO, "Unsupported video codec (%x)\n", flv_codecid); vcodec->codec_tag = flv_codecid; } return 0; }
true
FFmpeg
c5a738ca4e9789b4678b10240777d931e7dc24c9
2,697
float64 float64_scalbn( float64 a, int n STATUS_PARAM ) { flag aSign; int16 aExp; uint64_t aSig; a = float64_squash_input_denormal(a STATUS_VAR); aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); if ( aExp == 0x7FF ) { return a; } if ( aExp != 0 ) aSig |= LIT64( 0x0010000000000000 ); else if ( aSig == 0 ) return a; aExp += n - 1; aSig <<= 10; return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR ); }
true
qemu
326b9e98a391d542cc33c4c91782ff4ba51edfc5
2,698
static int postcopy_start(MigrationState *ms, bool *old_vm_running) { int ret; QIOChannelBuffer *bioc; QEMUFile *fb; int64_t time_at_stop = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); bool restart_block = false; int cur_state = MIGRATION_STATUS_ACTIVE; if (!migrate_pause_before_switchover()) { migrate_set_state(&ms->state, MIGRATION_STATUS_ACTIVE, MIGRATION_STATUS_POSTCOPY_ACTIVE); } trace_postcopy_start(); qemu_mutex_lock_iothread(); trace_postcopy_start_set_run(); qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER); *old_vm_running = runstate_is_running(); global_state_store(); ret = vm_stop_force_state(RUN_STATE_FINISH_MIGRATE); if (ret < 0) { goto fail; } ret = migration_maybe_pause(ms, &cur_state, MIGRATION_STATUS_POSTCOPY_ACTIVE); if (ret < 0) { goto fail; } ret = bdrv_inactivate_all(); if (ret < 0) { goto fail; } restart_block = true; /* * Cause any non-postcopiable, but iterative devices to * send out their final data. */ qemu_savevm_state_complete_precopy(ms->to_dst_file, true, false); /* * in Finish migrate and with the io-lock held everything should * be quiet, but we've potentially still got dirty pages and we * need to tell the destination to throw any pages it's already received * that are dirty */ if (migrate_postcopy_ram()) { if (ram_postcopy_send_discard_bitmap(ms)) { error_report("postcopy send discard bitmap failed"); goto fail; } } /* * send rest of state - note things that are doing postcopy * will notice we're in POSTCOPY_ACTIVE and not actually * wrap their state up here */ qemu_file_set_rate_limit(ms->to_dst_file, INT64_MAX); if (migrate_postcopy_ram()) { /* Ping just for debugging, helps line traces up */ qemu_savevm_send_ping(ms->to_dst_file, 2); } /* * While loading the device state we may trigger page transfer * requests and the fd must be free to process those, and thus * the destination must read the whole device state off the fd before * it starts processing it. Unfortunately the ad-hoc migration format * doesn't allow the destination to know the size to read without fully * parsing it through each devices load-state code (especially the open * coded devices that use get/put). * So we wrap the device state up in a package with a length at the start; * to do this we use a qemu_buf to hold the whole of the device state. */ bioc = qio_channel_buffer_new(4096); qio_channel_set_name(QIO_CHANNEL(bioc), "migration-postcopy-buffer"); fb = qemu_fopen_channel_output(QIO_CHANNEL(bioc)); object_unref(OBJECT(bioc)); /* * Make sure the receiver can get incoming pages before we send the rest * of the state */ qemu_savevm_send_postcopy_listen(fb); qemu_savevm_state_complete_precopy(fb, false, false); if (migrate_postcopy_ram()) { qemu_savevm_send_ping(fb, 3); } qemu_savevm_send_postcopy_run(fb); /* <><> end of stuff going into the package */ /* Last point of recovery; as soon as we send the package the destination * can open devices and potentially start running. * Lets just check again we've not got any errors. */ ret = qemu_file_get_error(ms->to_dst_file); if (ret) { error_report("postcopy_start: Migration stream errored (pre package)"); goto fail_closefb; } restart_block = false; /* Now send that blob */ if (qemu_savevm_send_packaged(ms->to_dst_file, bioc->data, bioc->usage)) { goto fail_closefb; } qemu_fclose(fb); /* Send a notify to give a chance for anything that needs to happen * at the transition to postcopy and after the device state; in particular * spice needs to trigger a transition now */ ms->postcopy_after_devices = true; notifier_list_notify(&migration_state_notifiers, ms); ms->downtime = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - time_at_stop; qemu_mutex_unlock_iothread(); if (migrate_postcopy_ram()) { /* * Although this ping is just for debug, it could potentially be * used for getting a better measurement of downtime at the source. */ qemu_savevm_send_ping(ms->to_dst_file, 4); } if (migrate_release_ram()) { ram_postcopy_migrated_memory_release(ms); } ret = qemu_file_get_error(ms->to_dst_file); if (ret) { error_report("postcopy_start: Migration stream errored"); migrate_set_state(&ms->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, MIGRATION_STATUS_FAILED); } return ret; fail_closefb: qemu_fclose(fb); fail: migrate_set_state(&ms->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, MIGRATION_STATUS_FAILED); if (restart_block) { /* A failure happened early enough that we know the destination hasn't * accessed block devices, so we're safe to recover. */ Error *local_err = NULL; bdrv_invalidate_cache_all(&local_err); if (local_err) { error_report_err(local_err); } } qemu_mutex_unlock_iothread(); return -1; }
true
qemu
7287cbd46e2d6fb582ca78c3cb49b1e53d91a761
2,699
static BusState *qbus_find(const char *path) { DeviceState *dev; BusState *bus; char elem[128]; int pos, len; /* find start element */ if (path[0] == '/') { bus = sysbus_get_default(); pos = 0; } else { if (sscanf(path, "%127[^/]%n", elem, &len) != 1) { assert(!path[0]); elem[0] = len = 0; } bus = qbus_find_recursive(sysbus_get_default(), elem, NULL); if (!bus) { qerror_report(QERR_BUS_NOT_FOUND, elem); return NULL; } else if (qbus_is_full(bus)) { qerror_report(ERROR_CLASS_GENERIC_ERROR, "Bus '%s' is full", elem); return NULL; } pos = len; } for (;;) { assert(path[pos] == '/' || !path[pos]); while (path[pos] == '/') { pos++; } if (path[pos] == '\0') { return bus; } /* find device */ if (sscanf(path+pos, "%127[^/]%n", elem, &len) != 1) { g_assert_not_reached(); elem[0] = len = 0; } pos += len; dev = qbus_find_dev(bus, elem); if (!dev) { qerror_report(QERR_DEVICE_NOT_FOUND, elem); if (!monitor_cur_is_qmp()) { qbus_list_dev(bus); } return NULL; } assert(path[pos] == '/' || !path[pos]); while (path[pos] == '/') { pos++; } if (path[pos] == '\0') { /* last specified element is a device. If it has exactly * one child bus accept it nevertheless */ switch (dev->num_child_bus) { case 0: qerror_report(ERROR_CLASS_GENERIC_ERROR, "Device '%s' has no child bus", elem); return NULL; case 1: return QLIST_FIRST(&dev->child_bus); default: qerror_report(ERROR_CLASS_GENERIC_ERROR, "Device '%s' has multiple child busses", elem); if (!monitor_cur_is_qmp()) { qbus_list_bus(dev); } return NULL; } } /* find bus */ if (sscanf(path+pos, "%127[^/]%n", elem, &len) != 1) { g_assert_not_reached(); elem[0] = len = 0; } pos += len; bus = qbus_find_bus(dev, elem); if (!bus) { qerror_report(QERR_BUS_NOT_FOUND, elem); if (!monitor_cur_is_qmp()) { qbus_list_bus(dev); } return NULL; } } }
true
qemu
ed238ba2a0239368dd0cec9bfaf3300a5bd303ce
2,700
void bdrv_init(void) { bdrv_register(&bdrv_raw); bdrv_register(&bdrv_host_device); bdrv_register(&bdrv_cow); bdrv_register(&bdrv_qcow); bdrv_register(&bdrv_vmdk); bdrv_register(&bdrv_cloop); bdrv_register(&bdrv_dmg); bdrv_register(&bdrv_bochs); bdrv_register(&bdrv_vpc); bdrv_register(&bdrv_vvfat); bdrv_register(&bdrv_qcow2); bdrv_register(&bdrv_parallels); bdrv_register(&bdrv_nbd); }
true
qemu
cd01b4a312248dd4e12c3d389d1a349cea4015d8
2,701
void ff_h264_direct_dist_scale_factor(H264Context * const h){ const int poc = h->cur_pic_ptr->field_poc[h->picture_structure == PICT_BOTTOM_FIELD]; const int poc1 = h->ref_list[1][0].poc; int i, field; if (FRAME_MBAFF(h)) for (field = 0; field < 2; field++){ const int poc = h->cur_pic_ptr->field_poc[field]; const int poc1 = h->ref_list[1][0].field_poc[field]; for (i = 0; i < 2 * h->ref_count[0]; i++) h->dist_scale_factor_field[field][i^field] = get_scale_factor(h, poc, poc1, i+16); } for (i = 0; i < h->ref_count[0]; i++){ h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i); } }
true
FFmpeg
ebd1c505d22ad96e044880755ed9f4cf7cab4f78
2,702
static void virtio_net_handle_tx_bh(VirtIODevice *vdev, VirtQueue *vq) { VirtIONet *n = to_virtio_net(vdev); if (unlikely(n->tx_waiting)) { return; } virtio_queue_set_notification(vq, 0); qemu_bh_schedule(n->tx_bh); n->tx_waiting = 1; }
true
qemu
783e7706937fe15523b609b545587a028a2bdd03
2,703
static int net_dump_init(NetClientState *peer, const char *device, const char *name, const char *filename, int len) { struct pcap_file_hdr hdr; NetClientState *nc; DumpState *s; struct tm tm; int fd; fd = open(filename, O_CREAT | O_TRUNC | O_WRONLY | O_BINARY, 0644); if (fd < 0) { error_report("-net dump: can't open %s", filename); return -1; } hdr.magic = PCAP_MAGIC; hdr.version_major = 2; hdr.version_minor = 4; hdr.thiszone = 0; hdr.sigfigs = 0; hdr.snaplen = len; hdr.linktype = 1; if (write(fd, &hdr, sizeof(hdr)) < sizeof(hdr)) { error_report("-net dump write error: %s", strerror(errno)); close(fd); return -1; } nc = qemu_new_net_client(&net_dump_info, peer, device, name); snprintf(nc->info_str, sizeof(nc->info_str), "dump to %s (len=%d)", filename, len); s = DO_UPCAST(DumpState, nc, nc); s->fd = fd; s->pcap_caplen = len; qemu_get_timedate(&tm, 0); s->start_ts = mktime(&tm); return 0; }
true
qemu
3791f83ca999edc2d11eb2006ccc1091cd712c15
2,705
AVFilterBufferRef *avfilter_default_get_audio_buffer(AVFilterLink *link, int perms, enum AVSampleFormat sample_fmt, int size, int64_t channel_layout, int planar) { AVFilterBuffer *samples = av_mallocz(sizeof(AVFilterBuffer)); AVFilterBufferRef *ref = NULL; int i, sample_size, chans_nb, bufsize, per_channel_size, step_size = 0; char *buf; if (!samples || !(ref = av_mallocz(sizeof(AVFilterBufferRef)))) goto fail; ref->buf = samples; ref->format = sample_fmt; ref->audio = av_mallocz(sizeof(AVFilterBufferRefAudioProps)); if (!ref->audio) goto fail; ref->audio->channel_layout = channel_layout; ref->audio->size = size; ref->audio->planar = planar; /* make sure the buffer gets read permission or it's useless for output */ ref->perms = perms | AV_PERM_READ; samples->refcount = 1; samples->free = ff_avfilter_default_free_buffer; sample_size = av_get_bits_per_sample_fmt(sample_fmt) >>3; chans_nb = av_get_channel_layout_nb_channels(channel_layout); per_channel_size = size/chans_nb; ref->audio->nb_samples = per_channel_size/sample_size; /* Set the number of bytes to traverse to reach next sample of a particular channel: * For planar, this is simply the sample size. * For packed, this is the number of samples * sample_size. */ for (i = 0; i < chans_nb; i++) samples->linesize[i] = planar > 0 ? per_channel_size : sample_size; memset(&samples->linesize[chans_nb], 0, (8-chans_nb) * sizeof(samples->linesize[0])); /* Calculate total buffer size, round to multiple of 16 to be SIMD friendly */ bufsize = (size + 15)&~15; buf = av_malloc(bufsize); if (!buf) goto fail; /* For planar, set the start point of each channel's data within the buffer * For packed, set the start point of the entire buffer only */ samples->data[0] = buf; if (buf && planar) { for (i = 1; i < chans_nb; i++) { step_size += per_channel_size; samples->data[i] = buf + step_size; } } else { for (i = 1; i < chans_nb; i++) samples->data[i] = buf; } memset(&samples->data[chans_nb], 0, (8-chans_nb) * sizeof(samples->data[0])); memcpy(ref->data, samples->data, sizeof(ref->data)); memcpy(ref->linesize, samples->linesize, sizeof(ref->linesize)); return ref; fail: av_free(buf); if (ref && ref->audio) av_free(ref->audio); av_free(ref); av_free(samples); return NULL; }
true
FFmpeg
ecea47a6ed9e9250474e1ef26120ff5dc9e71e8e
2,706
static void test_keyval_visit_any(void) { Visitor *v; QDict *qdict; QObject *any; QList *qlist; QString *qstr; qdict = keyval_parse("a.0=null,a.1=1", NULL, &error_abort); v = qobject_input_visitor_new_keyval(QOBJECT(qdict)); QDECREF(qdict); visit_start_struct(v, NULL, NULL, 0, &error_abort); visit_type_any(v, "a", &any, &error_abort); qlist = qobject_to_qlist(any); g_assert(qlist); qstr = qobject_to_qstring(qlist_pop(qlist)); g_assert_cmpstr(qstring_get_str(qstr), ==, "null"); qstr = qobject_to_qstring(qlist_pop(qlist)); g_assert_cmpstr(qstring_get_str(qstr), ==, "1"); g_assert(qlist_empty(qlist)); visit_check_struct(v, &error_abort); visit_end_struct(v, NULL); visit_free(v); }
true
qemu
cb69166bb8defaaa4b3e0a4e31de693737634a54
2,707
static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n, int coded, int codingset, int mquant) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int i; int16_t *dc_val; int16_t *ac_val, *ac_val2; int dcdiff; int a_avail = v->a_avail, c_avail = v->c_avail; int use_pred = s->ac_pred; int scale; int q1, q2 = 0; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0) { av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (mquant == 1) dcdiff = get_bits(gb, 10); else if (mquant == 2) dcdiff = get_bits(gb, 9); else dcdiff = get_bits(gb, 8); } else { if (mquant == 1) dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3; else if (mquant == 2) dcdiff = (dcdiff << 1) + get_bits1(gb) - 1; } if (get_bits1(gb)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } //AC Decoding i = 1; /* check if AC is needed at all */ if (!a_avail && !c_avail) use_pred = 0; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0); if (dc_pred_dir) // left ac_val -= 16; else // top ac_val -= 16 * s->block_wrap[n]; q1 = s->current_picture.f.qscale_table[mb_pos]; if ( dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.f.qscale_table[mb_pos - 1]; if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride]; if ( dc_pred_dir && n == 1) q2 = q1; if (!dc_pred_dir && n == 2) q2 = q1; if (n == 3) q2 = q1; if (coded) { int last = 0, skip, value; const uint8_t *zz_table; int k; if (v->s.ac_pred) { if (!use_pred && v->fcm == ILACE_FRAME) { zz_table = v->zzi_8x8; } else { if (!dc_pred_dir) // top zz_table = v->zz_8x8[2]; else // left zz_table = v->zz_8x8[3]; } } else { if (v->fcm != ILACE_FRAME) zz_table = v->zz_8x8[1]; else zz_table = v->zzi_8x8; } while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if (i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if (use_pred) { /* scale predictors if needed*/ if (q2 && q1 != q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; if (q1 < 1) return AVERROR_INVALIDDATA; if (dc_pred_dir) { // left for (k = 1; k < 8; k++) block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } else { // top for (k = 1; k < 8; k++) block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } else { if (dc_pred_dir) { //left for (k = 1; k < 8; k++) block[k << v->left_blk_sh] += ac_val[k]; } else { //top for (k = 1; k < 8; k++) block[k << v->top_blk_sh] += ac_val[k + 8]; } } } /* save AC coeffs for further prediction */ for (k = 1; k < 8; k++) { ac_val2[k ] = block[k << v->left_blk_sh]; ac_val2[k + 8] = block[k << v->top_blk_sh]; } /* scale AC coeffs */ for (k = 1; k < 64; k++) if (block[k]) { block[k] *= scale; if (!v->pquantizer) block[k] += (block[k] < 0) ? -mquant : mquant; } if (use_pred) i = 63; } else { // no AC coeffs int k; memset(ac_val2, 0, 16 * 2); if (dc_pred_dir) { // left if (use_pred) { memcpy(ac_val2, ac_val, 8 * 2); if (q2 && q1 != q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; if (q1 < 1) return AVERROR_INVALIDDATA; for (k = 1; k < 8; k++) ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } else { // top if (use_pred) { memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); if (q2 && q1 != q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; if (q1 < 1) return AVERROR_INVALIDDATA; for (k = 1; k < 8; k++) ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } /* apply AC prediction if needed */ if (use_pred) { if (dc_pred_dir) { // left for (k = 1; k < 8; k++) { block[k << v->left_blk_sh] = ac_val2[k] * scale; if (!v->pquantizer && block[k << v->left_blk_sh]) block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant; } } else { // top for (k = 1; k < 8; k++) { block[k << v->top_blk_sh] = ac_val2[k + 8] * scale; if (!v->pquantizer && block[k << v->top_blk_sh]) block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant; } } i = 63; } } s->block_last_index[n] = i; return 0; }
true
FFmpeg
63c61f0be03624fbd9e352d8393122beb3ddcc1a
2,708
static int crc_write_packet(struct AVFormatContext *s, int stream_index, const uint8_t *buf, int size, int64_t pts) { CRCState *crc = s->priv_data; crc->crcval = adler32(crc->crcval, buf, size); return 0; }
false
FFmpeg
ee9f36a88eb3e2706ea659acb0ca80c414fa5d8a
2,709
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) { }
true
qemu
8a0548f94edecb96acb9b7fb9106ccc821c4996f
2,710
static void do_subtitle_out(AVFormatContext *s, OutputStream *ost, InputStream *ist, AVSubtitle *sub) { int subtitle_out_max_size = 1024 * 1024; int subtitle_out_size, nb, i; AVCodecContext *enc; AVPacket pkt; int64_t pts; if (sub->pts == AV_NOPTS_VALUE) { av_log(NULL, AV_LOG_ERROR, "Subtitle packets must have a pts\n"); if (exit_on_error) exit_program(1); return; } enc = ost->enc_ctx; if (!subtitle_out) { subtitle_out = av_malloc(subtitle_out_max_size); } /* Note: DVB subtitle need one packet to draw them and one other packet to clear them */ /* XXX: signal it in the codec context ? */ if (enc->codec_id == AV_CODEC_ID_DVB_SUBTITLE) nb = 2; else nb = 1; /* shift timestamp to honor -ss and make check_recording_time() work with -t */ pts = sub->pts; if (output_files[ost->file_index]->start_time != AV_NOPTS_VALUE) pts -= output_files[ost->file_index]->start_time; for (i = 0; i < nb; i++) { ost->sync_opts = av_rescale_q(pts, AV_TIME_BASE_Q, enc->time_base); if (!check_recording_time(ost)) return; sub->pts = pts; // start_display_time is required to be 0 sub->pts += av_rescale_q(sub->start_display_time, (AVRational){ 1, 1000 }, AV_TIME_BASE_Q); sub->end_display_time -= sub->start_display_time; sub->start_display_time = 0; if (i == 1) sub->num_rects = 0; ost->frames_encoded++; subtitle_out_size = avcodec_encode_subtitle(enc, subtitle_out, subtitle_out_max_size, sub); if (i == 1) sub->num_rects = save_num_rects; if (subtitle_out_size < 0) { av_log(NULL, AV_LOG_FATAL, "Subtitle encoding failed\n"); exit_program(1); } av_init_packet(&pkt); pkt.data = subtitle_out; pkt.size = subtitle_out_size; pkt.pts = av_rescale_q(sub->pts, AV_TIME_BASE_Q, ost->st->time_base); pkt.duration = av_rescale_q(sub->end_display_time, (AVRational){ 1, 1000 }, ost->st->time_base); if (enc->codec_id == AV_CODEC_ID_DVB_SUBTITLE) { /* XXX: the pts correction is handled here. Maybe handling it in the codec would be better */ if (i == 0) pkt.pts += 90 * sub->start_display_time; else pkt.pts += 90 * sub->end_display_time; } pkt.dts = pkt.pts; write_frame(s, &pkt, ost); } }
true
FFmpeg
36393434782b013ebacc8c30dd3c93531e2b197d
2,711
static uint32_t uhci_ioport_readw(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x00: val = s->cmd; break; case 0x02: val = s->status; break; case 0x04: val = s->intr; break; case 0x06: val = s->frnum; break; case 0x10 ... 0x1f: { UHCIPort *port; int n; n = (addr >> 1) & 7; if (n >= NB_PORTS) goto read_default; port = &s->ports[n]; val = port->ctrl; } break; default: read_default: val = 0xff7f; /* disabled port */ break; } #ifdef DEBUG printf("uhci readw port=0x%04x val=0x%04x\n", addr, val); #endif return val; }
false
qemu
54f254f973a1b2ed0f3571390f4de060adfe23e8
2,712
cac_delete_pki_applet_private(VCardAppletPrivate *applet_private) { CACPKIAppletData *pki_applet_data = NULL; if (applet_private == NULL) { return; } pki_applet_data = &(applet_private->u.pki_data); if (pki_applet_data->cert != NULL) { g_free(pki_applet_data->cert); } if (pki_applet_data->sign_buffer != NULL) { g_free(pki_applet_data->sign_buffer); } if (pki_applet_data->key != NULL) { vcard_emul_delete_key(pki_applet_data->key); } g_free(applet_private); }
false
qemu
1687a089f103f9b7a1b4a1555068054cb46ee9e9
2,714
static void cpu_handle_debug_exception(CPUState *env) { CPUWatchpoint *wp; if (!env->watchpoint_hit) TAILQ_FOREACH(wp, &env->watchpoints, entry) wp->flags &= ~BP_WATCHPOINT_HIT; if (debug_excp_handler) debug_excp_handler(env); }
false
qemu
72cf2d4f0e181d0d3a3122e04129c58a95da713e
2,715
static int do_co_pwrite_zeroes(BlockBackend *blk, int64_t offset, int64_t count, int flags, int64_t *total) { Coroutine *co; CoWriteZeroes data = { .blk = blk, .offset = offset, .count = count, .total = total, .flags = flags, .done = false, }; if (count >> BDRV_SECTOR_BITS > INT_MAX) { return -ERANGE; } co = qemu_coroutine_create(co_pwrite_zeroes_entry, &data); qemu_coroutine_enter(co); while (!data.done) { aio_poll(blk_get_aio_context(blk), true); } if (data.ret < 0) { return data.ret; } else { return 1; } }
false
qemu
a367467995d0528fe591d87ca2e437c7b7d7951b
2,716
static inline void cow_set_bits(uint8_t *bitmap, int start, int64_t nb_sectors) { int64_t bitnum = start, last = start + nb_sectors; while (bitnum < last) { if ((bitnum & 7) == 0 && bitnum + 8 <= last) { bitmap[bitnum / 8] = 0xFF; bitnum += 8; continue; } bitmap[bitnum/8] |= (1 << (bitnum % 8)); bitnum++; } }
false
qemu
550830f9351291c585c963204ad9127998b1c1ce
2,717
int bdrv_open2(BlockDriverState *bs, const char *filename, int flags, BlockDriver *drv) { int ret, open_flags; char tmp_filename[PATH_MAX]; char backing_filename[PATH_MAX]; bs->is_temporary = 0; bs->encrypted = 0; bs->valid_key = 0; /* buffer_alignment defaulted to 512, drivers can change this value */ bs->buffer_alignment = 512; if (flags & BDRV_O_SNAPSHOT) { BlockDriverState *bs1; int64_t total_size; int is_protocol = 0; BlockDriver *bdrv_qcow2; QEMUOptionParameter *options; /* if snapshot, we create a temporary backing file and open it instead of opening 'filename' directly */ /* if there is a backing file, use it */ bs1 = bdrv_new(""); ret = bdrv_open2(bs1, filename, 0, drv); if (ret < 0) { bdrv_delete(bs1); return ret; } total_size = bdrv_getlength(bs1) >> BDRV_SECTOR_BITS; if (bs1->drv && bs1->drv->protocol_name) is_protocol = 1; bdrv_delete(bs1); get_tmp_filename(tmp_filename, sizeof(tmp_filename)); /* Real path is meaningless for protocols */ if (is_protocol) snprintf(backing_filename, sizeof(backing_filename), "%s", filename); else if (!realpath(filename, backing_filename)) return -errno; bdrv_qcow2 = bdrv_find_format("qcow2"); options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size * 512); set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); if (drv) { set_option_parameter(options, BLOCK_OPT_BACKING_FMT, drv->format_name); } ret = bdrv_create(bdrv_qcow2, tmp_filename, options); if (ret < 0) { return ret; } filename = tmp_filename; drv = bdrv_qcow2; bs->is_temporary = 1; } pstrcpy(bs->filename, sizeof(bs->filename), filename); if (flags & BDRV_O_FILE) { drv = find_protocol(filename); } else if (!drv) { drv = find_hdev_driver(filename); if (!drv) { drv = find_image_format(filename); } } if (!drv) { ret = -ENOENT; goto unlink_and_fail; } bs->drv = drv; bs->opaque = qemu_mallocz(drv->instance_size); /* * Yes, BDRV_O_NOCACHE aka O_DIRECT means we have to present a * write cache to the guest. We do need the fdatasync to flush * out transactions for block allocations, and we maybe have a * volatile write cache in our backing device to deal with. */ if (flags & (BDRV_O_CACHE_WB|BDRV_O_NOCACHE)) bs->enable_write_cache = 1; bs->read_only = (flags & BDRV_O_RDWR) == 0; if (!(flags & BDRV_O_FILE)) { open_flags = (flags & (BDRV_O_RDWR | BDRV_O_CACHE_MASK|BDRV_O_NATIVE_AIO)); if (bs->is_temporary) { /* snapshot should be writeable */ open_flags |= BDRV_O_RDWR; } } else { open_flags = flags & ~(BDRV_O_FILE | BDRV_O_SNAPSHOT); } if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { ret = -ENOTSUP; } else { ret = drv->bdrv_open(bs, filename, open_flags); } if (ret < 0) { qemu_free(bs->opaque); bs->opaque = NULL; bs->drv = NULL; unlink_and_fail: if (bs->is_temporary) unlink(filename); return ret; } if (drv->bdrv_getlength) { bs->total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; } #ifndef _WIN32 if (bs->is_temporary) { unlink(filename); } #endif if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') { /* if there is a backing file, use it */ BlockDriver *back_drv = NULL; bs->backing_hd = bdrv_new(""); path_combine(backing_filename, sizeof(backing_filename), filename, bs->backing_file); if (bs->backing_format[0] != '\0') back_drv = bdrv_find_format(bs->backing_format); ret = bdrv_open2(bs->backing_hd, backing_filename, open_flags, back_drv); bs->backing_hd->read_only = (open_flags & BDRV_O_RDWR) == 0; if (ret < 0) { bdrv_close(bs); return ret; } } if (!bdrv_key_required(bs)) { /* call the change callback */ bs->media_changed = 1; if (bs->change_cb) bs->change_cb(bs->change_opaque); } return 0; }
false
qemu
6987307ca30aead67e8545934186c92f942710f6
2,718
milkymist_init(QEMUMachineInitArgs *args) { const char *cpu_model = args->cpu_model; const char *kernel_filename = args->kernel_filename; const char *kernel_cmdline = args->kernel_cmdline; const char *initrd_filename = args->initrd_filename; LM32CPU *cpu; CPULM32State *env; int kernel_size; DriveInfo *dinfo; MemoryRegion *address_space_mem = get_system_memory(); MemoryRegion *phys_sdram = g_new(MemoryRegion, 1); qemu_irq irq[32], *cpu_irq; int i; char *bios_filename; ResetInfo *reset_info; /* memory map */ target_phys_addr_t flash_base = 0x00000000; size_t flash_sector_size = 128 * 1024; size_t flash_size = 32 * 1024 * 1024; target_phys_addr_t sdram_base = 0x40000000; size_t sdram_size = 128 * 1024 * 1024; target_phys_addr_t initrd_base = sdram_base + 0x1002000; target_phys_addr_t cmdline_base = sdram_base + 0x1000000; size_t initrd_max = sdram_size - 0x1002000; reset_info = g_malloc0(sizeof(ResetInfo)); if (cpu_model == NULL) { cpu_model = "lm32-full"; } cpu = cpu_lm32_init(cpu_model); env = &cpu->env; reset_info->cpu = cpu; cpu_lm32_set_phys_msb_ignore(env, 1); memory_region_init_ram(phys_sdram, "milkymist.sdram", sdram_size); vmstate_register_ram_global(phys_sdram); memory_region_add_subregion(address_space_mem, sdram_base, phys_sdram); dinfo = drive_get(IF_PFLASH, 0, 0); /* Numonyx JS28F256J3F105 */ pflash_cfi01_register(flash_base, NULL, "milkymist.flash", flash_size, dinfo ? dinfo->bdrv : NULL, flash_sector_size, flash_size / flash_sector_size, 2, 0x00, 0x89, 0x00, 0x1d, 1); /* create irq lines */ cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1); env->pic_state = lm32_pic_init(*cpu_irq); for (i = 0; i < 32; i++) { irq[i] = qdev_get_gpio_in(env->pic_state, i); } /* load bios rom */ if (bios_name == NULL) { bios_name = BIOS_FILENAME; } bios_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (bios_filename) { load_image_targphys(bios_filename, BIOS_OFFSET, BIOS_SIZE); } reset_info->bootstrap_pc = BIOS_OFFSET; /* if no kernel is given no valid bios rom is a fatal error */ if (!kernel_filename && !dinfo && !bios_filename) { fprintf(stderr, "qemu: could not load Milkymist One bios '%s'\n", bios_name); exit(1); } milkymist_uart_create(0x60000000, irq[0]); milkymist_sysctl_create(0x60001000, irq[1], irq[2], irq[3], 80000000, 0x10014d31, 0x0000041f, 0x00000001); milkymist_hpdmc_create(0x60002000); milkymist_vgafb_create(0x60003000, 0x40000000, 0x0fffffff); milkymist_memcard_create(0x60004000); milkymist_ac97_create(0x60005000, irq[4], irq[5], irq[6], irq[7]); milkymist_pfpu_create(0x60006000, irq[8]); milkymist_tmu2_create(0x60007000, irq[9]); milkymist_minimac2_create(0x60008000, 0x30000000, irq[10], irq[11]); milkymist_softusb_create(0x6000f000, irq[15], 0x20000000, 0x1000, 0x20020000, 0x2000); /* make sure juart isn't the first chardev */ env->juart_state = lm32_juart_init(); if (kernel_filename) { uint64_t entry; /* Boots a kernel elf binary. */ kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL, 1, ELF_MACHINE, 0); reset_info->bootstrap_pc = entry; if (kernel_size < 0) { kernel_size = load_image_targphys(kernel_filename, sdram_base, sdram_size); reset_info->bootstrap_pc = sdram_base; } if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } } if (kernel_cmdline && strlen(kernel_cmdline)) { pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE, kernel_cmdline); reset_info->cmdline_base = (uint32_t)cmdline_base; } if (initrd_filename) { size_t initrd_size; initrd_size = load_image_targphys(initrd_filename, initrd_base, initrd_max); reset_info->initrd_base = (uint32_t)initrd_base; reset_info->initrd_size = (uint32_t)initrd_size; } qemu_register_reset(main_cpu_reset, reset_info); }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
2,719
static int aac_decode_frame_int(AVCodecContext *avctx, void *data, int *got_frame_ptr, GetBitContext *gb, AVPacket *avpkt) { AACContext *ac = avctx->priv_data; ChannelElement *che = NULL, *che_prev = NULL; enum RawDataBlockType elem_type, elem_type_prev = TYPE_END; int err, elem_id; int samples = 0, multiplier, audio_found = 0, pce_found = 0; int is_dmono, sce_count = 0; ac->frame = data; if (show_bits(gb, 12) == 0xfff) { if (parse_adts_frame_header(ac, gb) < 0) { av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n"); err = -1; goto fail; } if (ac->oc[1].m4ac.sampling_index > 12) { av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index); err = -1; goto fail; } } if (frame_configure_elements(avctx) < 0) { err = -1; goto fail; } ac->tags_mapped = 0; // parse while ((elem_type = get_bits(gb, 3)) != TYPE_END) { elem_id = get_bits(gb, 4); if (elem_type < TYPE_DSE) { if (!(che=get_che(ac, elem_type, elem_id))) { av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id); err = -1; goto fail; } samples = 1024; } switch (elem_type) { case TYPE_SCE: err = decode_ics(ac, &che->ch[0], gb, 0, 0); audio_found = 1; sce_count++; break; case TYPE_CPE: err = decode_cpe(ac, gb, che); audio_found = 1; break; case TYPE_CCE: err = decode_cce(ac, gb, che); break; case TYPE_LFE: err = decode_ics(ac, &che->ch[0], gb, 0, 0); audio_found = 1; break; case TYPE_DSE: err = skip_data_stream_element(ac, gb); break; case TYPE_PCE: { uint8_t layout_map[MAX_ELEM_ID*4][3]; int tags; push_output_configuration(ac); tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb); if (tags < 0) { err = tags; break; } if (pce_found) { av_log(avctx, AV_LOG_ERROR, "Not evaluating a further program_config_element as this construct is dubious at best.\n"); pop_output_configuration(ac); } else { err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1); if (!err) ac->oc[1].m4ac.chan_config = 0; pce_found = 1; } break; } case TYPE_FIL: if (elem_id == 15) elem_id += get_bits(gb, 8) - 1; if (get_bits_left(gb) < 8 * elem_id) { av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err); err = -1; goto fail; } while (elem_id > 0) elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev); err = 0; /* FIXME */ break; default: err = -1; /* should not happen, but keeps compiler happy */ break; } che_prev = che; elem_type_prev = elem_type; if (err) goto fail; if (get_bits_left(gb) < 3) { av_log(avctx, AV_LOG_ERROR, overread_err); err = -1; goto fail; } } spectral_to_sample(ac); multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0; samples <<= multiplier; /* for dual-mono audio (SCE + SCE) */ is_dmono = ac->dmono_mode && sce_count == 2 && ac->oc[1].channel_layout == (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT); if (samples) ac->frame->nb_samples = samples; *got_frame_ptr = !!samples; if (is_dmono) { if (ac->dmono_mode == 1) ((AVFrame *)data)->data[1] =((AVFrame *)data)->data[0]; else if (ac->dmono_mode == 2) ((AVFrame *)data)->data[0] =((AVFrame *)data)->data[1]; } if (ac->oc[1].status && audio_found) { avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier; avctx->frame_size = samples; ac->oc[1].status = OC_LOCKED; } if (multiplier) { int side_size; uint32_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, &side_size); if (side && side_size>=4) AV_WL32(side, 2*AV_RL32(side)); } return 0; fail: pop_output_configuration(ac); return err; }
false
FFmpeg
21f68528e39db68fd3e22fef8f4783d19034dc1d
2,720
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, const char *boot_device, BusState *idebus0, BusState *idebus1, FDCtrl *floppy_controller, ISADevice *s) { int val, nb; FDriveType fd0, fd1; static pc_cmos_init_late_arg arg; /* various important CMOS locations needed by PC/Bochs bios */ /* memory size */ val = 640; /* base memory in K */ rtc_set_memory(s, 0x15, val); rtc_set_memory(s, 0x16, val >> 8); val = (ram_size / 1024) - 1024; if (val > 65535) val = 65535; rtc_set_memory(s, 0x17, val); rtc_set_memory(s, 0x18, val >> 8); rtc_set_memory(s, 0x30, val); rtc_set_memory(s, 0x31, val >> 8); if (above_4g_mem_size) { rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16); rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24); rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32); } if (ram_size > (16 * 1024 * 1024)) val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536); else val = 0; if (val > 65535) val = 65535; rtc_set_memory(s, 0x34, val); rtc_set_memory(s, 0x35, val >> 8); /* set the number of CPU */ rtc_set_memory(s, 0x5f, smp_cpus - 1); /* set boot devices, and disable floppy signature check if requested */ if (set_boot_dev(s, boot_device, fd_bootchk)) { exit(1); } /* floppy type */ fd0 = fdctrl_get_drive_type(floppy_controller, 0); fd1 = fdctrl_get_drive_type(floppy_controller, 1); val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1); rtc_set_memory(s, 0x10, val); val = 0; nb = 0; if (fd0 < FDRIVE_DRV_NONE) { nb++; } if (fd1 < FDRIVE_DRV_NONE) { nb++; } switch (nb) { case 0: break; case 1: val |= 0x01; /* 1 drive, ready for boot */ break; case 2: val |= 0x41; /* 2 drives, ready for boot */ break; } val |= 0x02; /* FPU is there */ val |= 0x04; /* PS/2 mouse installed */ rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); /* hard drives */ arg.rtc_state = s; arg.idebus0 = idebus0; arg.idebus1 = idebus1; qemu_register_reset(pc_cmos_init_late, &arg); }
false
qemu
63ffb564dca94f8bda01ed6d209784104630a4d2
2,721
START_TEST(unterminated_dict_comma) { QObject *obj = qobject_from_json("{'abc':32,"); fail_unless(obj == NULL); }
false
qemu
ef76dc59fa5203d146a2acf85a0ad5a5971a4824
2,722
void qemu_iovec_concat(QEMUIOVector *dst, QEMUIOVector *src, size_t soffset, size_t sbytes) { int i; size_t done; struct iovec *siov = src->iov; assert(dst->nalloc != -1); assert(src->size >= soffset); for (i = 0, done = 0; done < sbytes && i < src->niov; i++) { if (soffset < siov[i].iov_len) { size_t len = MIN(siov[i].iov_len - soffset, sbytes - done); qemu_iovec_add(dst, siov[i].iov_base + soffset, len); done += len; soffset = 0; } else { soffset -= siov[i].iov_len; } } /* return done; */ }
false
qemu
530c0bbd73e1b658c9266582072847de1fbdff10
2,723
void net_host_device_add(Monitor *mon, const char *device, const char *opts) { if (!net_host_check_device(device)) { monitor_printf(mon, "invalid host network device %s\n", device); return; } if (net_client_init(device, opts ? : "") < 0) { monitor_printf(mon, "adding host network device %s failed\n", device); } }
false
qemu
206ab6e090eeddce71372041454d50d93a63017d
2,724
static void musicpal_register_devices(void) { sysbus_register_dev("mv88w8618_pic", sizeof(mv88w8618_pic_state), mv88w8618_pic_init); sysbus_register_dev("mv88w8618_pit", sizeof(mv88w8618_pit_state), mv88w8618_pit_init); sysbus_register_dev("mv88w8618_flashcfg", sizeof(mv88w8618_flashcfg_state), mv88w8618_flashcfg_init); sysbus_register_dev("mv88w8618_eth", sizeof(mv88w8618_eth_state), mv88w8618_eth_init); sysbus_register_dev("mv88w8618_wlan", sizeof(SysBusDevice), mv88w8618_wlan_init); sysbus_register_dev("musicpal_lcd", sizeof(musicpal_lcd_state), musicpal_lcd_init); sysbus_register_withprop(&musicpal_gpio_info); sysbus_register_dev("musicpal_key", sizeof(musicpal_key_state), musicpal_key_init); }
false
qemu
c88d6bded69804617f412a60c7375cc93f8687a5
2,725
static int qcow2_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVQcowState *s = bs->opaque; int len, i, ret = 0; QCowHeader header; QemuOpts *opts; Error *local_err = NULL; uint64_t ext_end; uint64_t l1_vm_state_index; const char *opt_overlap_check; int overlap_check_template = 0; ret = bdrv_pread(bs->file, 0, &header, sizeof(header)); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read qcow2 header"); goto fail; } be32_to_cpus(&header.magic); be32_to_cpus(&header.version); be64_to_cpus(&header.backing_file_offset); be32_to_cpus(&header.backing_file_size); be64_to_cpus(&header.size); be32_to_cpus(&header.cluster_bits); be32_to_cpus(&header.crypt_method); be64_to_cpus(&header.l1_table_offset); be32_to_cpus(&header.l1_size); be64_to_cpus(&header.refcount_table_offset); be32_to_cpus(&header.refcount_table_clusters); be64_to_cpus(&header.snapshots_offset); be32_to_cpus(&header.nb_snapshots); if (header.magic != QCOW_MAGIC) { error_setg(errp, "Image is not in qcow2 format"); ret = -EMEDIUMTYPE; goto fail; } if (header.version < 2 || header.version > 3) { report_unsupported(bs, errp, "QCOW version %d", header.version); ret = -ENOTSUP; goto fail; } s->qcow_version = header.version; /* Initialise version 3 header fields */ if (header.version == 2) { header.incompatible_features = 0; header.compatible_features = 0; header.autoclear_features = 0; header.refcount_order = 4; header.header_length = 72; } else { be64_to_cpus(&header.incompatible_features); be64_to_cpus(&header.compatible_features); be64_to_cpus(&header.autoclear_features); be32_to_cpus(&header.refcount_order); be32_to_cpus(&header.header_length); } if (header.header_length > sizeof(header)) { s->unknown_header_fields_size = header.header_length - sizeof(header); s->unknown_header_fields = g_malloc(s->unknown_header_fields_size); ret = bdrv_pread(bs->file, sizeof(header), s->unknown_header_fields, s->unknown_header_fields_size); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read unknown qcow2 header " "fields"); goto fail; } } if (header.backing_file_offset) { ext_end = header.backing_file_offset; } else { ext_end = 1 << header.cluster_bits; } /* Handle feature bits */ s->incompatible_features = header.incompatible_features; s->compatible_features = header.compatible_features; s->autoclear_features = header.autoclear_features; if (s->incompatible_features & ~QCOW2_INCOMPAT_MASK) { void *feature_table = NULL; qcow2_read_extensions(bs, header.header_length, ext_end, &feature_table, NULL); report_unsupported_feature(bs, errp, feature_table, s->incompatible_features & ~QCOW2_INCOMPAT_MASK); ret = -ENOTSUP; goto fail; } if (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT) { /* Corrupt images may not be written to unless they are being repaired */ if ((flags & BDRV_O_RDWR) && !(flags & BDRV_O_CHECK)) { error_setg(errp, "qcow2: Image is corrupt; cannot be opened " "read/write"); ret = -EACCES; goto fail; } } /* Check support for various header values */ if (header.refcount_order != 4) { report_unsupported(bs, errp, "%d bit reference counts", 1 << header.refcount_order); ret = -ENOTSUP; goto fail; } s->refcount_order = header.refcount_order; if (header.cluster_bits < MIN_CLUSTER_BITS || header.cluster_bits > MAX_CLUSTER_BITS) { error_setg(errp, "Unsupported cluster size: 2^%i", header.cluster_bits); ret = -EINVAL; goto fail; } if (header.crypt_method > QCOW_CRYPT_AES) { error_setg(errp, "Unsupported encryption method: %i", header.crypt_method); ret = -EINVAL; goto fail; } s->crypt_method_header = header.crypt_method; if (s->crypt_method_header) { bs->encrypted = 1; } s->cluster_bits = header.cluster_bits; s->cluster_size = 1 << s->cluster_bits; s->cluster_sectors = 1 << (s->cluster_bits - 9); s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */ s->l2_size = 1 << s->l2_bits; bs->total_sectors = header.size / 512; s->csize_shift = (62 - (s->cluster_bits - 8)); s->csize_mask = (1 << (s->cluster_bits - 8)) - 1; s->cluster_offset_mask = (1LL << s->csize_shift) - 1; s->refcount_table_offset = header.refcount_table_offset; s->refcount_table_size = header.refcount_table_clusters << (s->cluster_bits - 3); s->snapshots_offset = header.snapshots_offset; s->nb_snapshots = header.nb_snapshots; /* read the level 1 table */ s->l1_size = header.l1_size; l1_vm_state_index = size_to_l1(s, header.size); if (l1_vm_state_index > INT_MAX) { error_setg(errp, "Image is too big"); ret = -EFBIG; goto fail; } s->l1_vm_state_index = l1_vm_state_index; /* the L1 table must contain at least enough entries to put header.size bytes */ if (s->l1_size < s->l1_vm_state_index) { error_setg(errp, "L1 table is too small"); ret = -EINVAL; goto fail; } s->l1_table_offset = header.l1_table_offset; if (s->l1_size > 0) { s->l1_table = g_malloc0( align_offset(s->l1_size * sizeof(uint64_t), 512)); ret = bdrv_pread(bs->file, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read L1 table"); goto fail; } for(i = 0;i < s->l1_size; i++) { be64_to_cpus(&s->l1_table[i]); } } /* alloc L2 table/refcount block cache */ s->l2_table_cache = qcow2_cache_create(bs, L2_CACHE_SIZE); s->refcount_block_cache = qcow2_cache_create(bs, REFCOUNT_CACHE_SIZE); s->cluster_cache = g_malloc(s->cluster_size); /* one more sector for decompressed data alignment */ s->cluster_data = qemu_blockalign(bs, QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512); s->cluster_cache_offset = -1; s->flags = flags; ret = qcow2_refcount_init(bs); if (ret != 0) { error_setg_errno(errp, -ret, "Could not initialize refcount handling"); goto fail; } QLIST_INIT(&s->cluster_allocs); QTAILQ_INIT(&s->discards); /* read qcow2 extensions */ if (qcow2_read_extensions(bs, header.header_length, ext_end, NULL, &local_err)) { error_propagate(errp, local_err); ret = -EINVAL; goto fail; } /* read the backing file name */ if (header.backing_file_offset != 0) { len = header.backing_file_size; if (len > 1023) { len = 1023; } ret = bdrv_pread(bs->file, header.backing_file_offset, bs->backing_file, len); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read backing file name"); goto fail; } bs->backing_file[len] = '\0'; } ret = qcow2_read_snapshots(bs); if (ret < 0) { error_setg_errno(errp, -ret, "Could not read snapshots"); goto fail; } /* Clear unknown autoclear feature bits */ if (!bs->read_only && s->autoclear_features != 0) { s->autoclear_features = 0; ret = qcow2_update_header(bs); if (ret < 0) { error_setg_errno(errp, -ret, "Could not update qcow2 header"); goto fail; } } /* Initialise locks */ qemu_co_mutex_init(&s->lock); /* Repair image if dirty */ if (!(flags & BDRV_O_CHECK) && !bs->read_only && (s->incompatible_features & QCOW2_INCOMPAT_DIRTY)) { BdrvCheckResult result = {0}; ret = qcow2_check(bs, &result, BDRV_FIX_ERRORS); if (ret < 0) { error_setg_errno(errp, -ret, "Could not repair dirty image"); goto fail; } } /* Enable lazy_refcounts according to image and command line options */ opts = qemu_opts_create(&qcow2_runtime_opts, NULL, 0, &error_abort); qemu_opts_absorb_qdict(opts, options, &local_err); if (local_err) { error_propagate(errp, local_err); ret = -EINVAL; goto fail; } s->use_lazy_refcounts = qemu_opt_get_bool(opts, QCOW2_OPT_LAZY_REFCOUNTS, (s->compatible_features & QCOW2_COMPAT_LAZY_REFCOUNTS)); s->discard_passthrough[QCOW2_DISCARD_NEVER] = false; s->discard_passthrough[QCOW2_DISCARD_ALWAYS] = true; s->discard_passthrough[QCOW2_DISCARD_REQUEST] = qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_REQUEST, flags & BDRV_O_UNMAP); s->discard_passthrough[QCOW2_DISCARD_SNAPSHOT] = qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_SNAPSHOT, true); s->discard_passthrough[QCOW2_DISCARD_OTHER] = qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_OTHER, false); opt_overlap_check = qemu_opt_get(opts, "overlap-check") ?: "cached"; if (!strcmp(opt_overlap_check, "none")) { overlap_check_template = 0; } else if (!strcmp(opt_overlap_check, "constant")) { overlap_check_template = QCOW2_OL_CONSTANT; } else if (!strcmp(opt_overlap_check, "cached")) { overlap_check_template = QCOW2_OL_CACHED; } else if (!strcmp(opt_overlap_check, "all")) { overlap_check_template = QCOW2_OL_ALL; } else { error_setg(errp, "Unsupported value '%s' for qcow2 option " "'overlap-check'. Allowed are either of the following: " "none, constant, cached, all", opt_overlap_check); qemu_opts_del(opts); ret = -EINVAL; goto fail; } s->overlap_check = 0; for (i = 0; i < QCOW2_OL_MAX_BITNR; i++) { /* overlap-check defines a template bitmask, but every flag may be * overwritten through the associated boolean option */ s->overlap_check |= qemu_opt_get_bool(opts, overlap_bool_option_names[i], overlap_check_template & (1 << i)) << i; } qemu_opts_del(opts); if (s->use_lazy_refcounts && s->qcow_version < 3) { error_setg(errp, "Lazy refcounts require a qcow2 image with at least " "qemu 1.1 compatibility level"); ret = -EINVAL; goto fail; } #ifdef DEBUG_ALLOC { BdrvCheckResult result = {0}; qcow2_check_refcounts(bs, &result, 0); } #endif return ret; fail: g_free(s->unknown_header_fields); cleanup_unknown_header_ext(bs); qcow2_free_snapshots(bs); qcow2_refcount_close(bs); g_free(s->l1_table); /* else pre-write overlap checks in cache_destroy may crash */ s->l1_table = NULL; if (s->l2_table_cache) { qcow2_cache_destroy(bs, s->l2_table_cache); } g_free(s->cluster_cache); qemu_vfree(s->cluster_data); return ret; }
false
qemu
76abe4071d111a9ca6dcc9b9689a831c39ffa718
2,726
static void vexpress_a9_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env = NULL; MemoryRegion *sysmem = get_system_memory(); MemoryRegion *ram = g_new(MemoryRegion, 1); MemoryRegion *lowram = g_new(MemoryRegion, 1); MemoryRegion *vram = g_new(MemoryRegion, 1); MemoryRegion *sram = g_new(MemoryRegion, 1); MemoryRegion *hackram = g_new(MemoryRegion, 1); DeviceState *dev, *sysctl, *pl041; SysBusDevice *busdev; qemu_irq *irqp; qemu_irq pic[64]; int n; qemu_irq cpu_irq[4]; uint32_t proc_id; uint32_t sys_id; ram_addr_t low_ram_size, vram_size, sram_size; target_phys_addr_t *map = motherboard_legacy_map; if (!cpu_model) { cpu_model = "cortex-a9"; } for (n = 0; n < smp_cpus; n++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } irqp = arm_pic_init_cpu(env); cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ]; } if (ram_size > 0x40000000) { /* 1GB is the maximum the address space permits */ fprintf(stderr, "vexpress: cannot model more than 1GB RAM\n"); exit(1); } memory_region_init_ram(ram, "vexpress.highmem", ram_size); vmstate_register_ram_global(ram); low_ram_size = ram_size; if (low_ram_size > 0x4000000) { low_ram_size = 0x4000000; } /* RAM is from 0x60000000 upwards. The bottom 64MB of the * address space should in theory be remappable to various * things including ROM or RAM; we always map the RAM there. */ memory_region_init_alias(lowram, "vexpress.lowmem", ram, 0, low_ram_size); memory_region_add_subregion(sysmem, 0x0, lowram); memory_region_add_subregion(sysmem, 0x60000000, ram); /* 0x1e000000 A9MPCore (SCU) private memory region */ dev = qdev_create(NULL, "a9mpcore_priv"); qdev_prop_set_uint32(dev, "num-cpu", smp_cpus); qdev_init_nofail(dev); busdev = sysbus_from_qdev(dev); vexpress_binfo.smp_priv_base = 0x1e000000; sysbus_mmio_map(busdev, 0, vexpress_binfo.smp_priv_base); for (n = 0; n < smp_cpus; n++) { sysbus_connect_irq(busdev, n, cpu_irq[n]); } /* Interrupts [42:0] are from the motherboard; * [47:43] are reserved; [63:48] are daughterboard * peripherals. Note that some documentation numbers * external interrupts starting from 32 (because the * A9MP has internal interrupts 0..31). */ for (n = 0; n < 64; n++) { pic[n] = qdev_get_gpio_in(dev, n); } /* Motherboard peripherals: the wiring is the same but the * addresses vary between the legacy and A-Series memory maps. */ sys_id = 0x1190f500; proc_id = 0x0c000191; sysctl = qdev_create(NULL, "realview_sysctl"); qdev_prop_set_uint32(sysctl, "sys_id", sys_id); qdev_prop_set_uint32(sysctl, "proc_id", proc_id); qdev_init_nofail(sysctl); sysbus_mmio_map(sysbus_from_qdev(sysctl), 0, map[VE_SYSREGS]); /* VE_SP810: not modelled */ /* VE_SERIALPCI: not modelled */ pl041 = qdev_create(NULL, "pl041"); qdev_prop_set_uint32(pl041, "nc_fifo_depth", 512); qdev_init_nofail(pl041); sysbus_mmio_map(sysbus_from_qdev(pl041), 0, map[VE_PL041]); sysbus_connect_irq(sysbus_from_qdev(pl041), 0, pic[11]); dev = sysbus_create_varargs("pl181", map[VE_MMCI], pic[9], pic[10], NULL); /* Wire up MMC card detect and read-only signals */ qdev_connect_gpio_out(dev, 0, qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_WPROT)); qdev_connect_gpio_out(dev, 1, qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_CARDIN)); sysbus_create_simple("pl050_keyboard", map[VE_KMI0], pic[12]); sysbus_create_simple("pl050_mouse", map[VE_KMI1], pic[13]); sysbus_create_simple("pl011", map[VE_UART0], pic[5]); sysbus_create_simple("pl011", map[VE_UART1], pic[6]); sysbus_create_simple("pl011", map[VE_UART2], pic[7]); sysbus_create_simple("pl011", map[VE_UART3], pic[8]); sysbus_create_simple("sp804", map[VE_TIMER01], pic[2]); sysbus_create_simple("sp804", map[VE_TIMER23], pic[3]); /* VE_SERIALDVI: not modelled */ sysbus_create_simple("pl031", map[VE_RTC], pic[4]); /* RTC */ /* VE_COMPACTFLASH: not modelled */ /* VE_CLCD: not modelled (we use the daughterboard CLCD only) */ /* Daughterboard peripherals : 0x10020000 .. 0x20000000 */ /* 0x10020000 PL111 CLCD (daughterboard) */ sysbus_create_simple("pl111", 0x10020000, pic[44]); /* 0x10060000 AXI RAM */ /* 0x100e0000 PL341 Dynamic Memory Controller */ /* 0x100e1000 PL354 Static Memory Controller */ /* 0x100e2000 System Configuration Controller */ sysbus_create_simple("sp804", 0x100e4000, pic[48]); /* 0x100e5000 SP805 Watchdog module */ /* 0x100e6000 BP147 TrustZone Protection Controller */ /* 0x100e9000 PL301 'Fast' AXI matrix */ /* 0x100ea000 PL301 'Slow' AXI matrix */ /* 0x100ec000 TrustZone Address Space Controller */ /* 0x10200000 CoreSight debug APB */ /* 0x1e00a000 PL310 L2 Cache Controller */ sysbus_create_varargs("l2x0", 0x1e00a000, NULL); /* VE_NORFLASH0: not modelled */ /* VE_NORFLASH0ALIAS: not modelled */ /* VE_NORFLASH1: not modelled */ sram_size = 0x2000000; memory_region_init_ram(sram, "vexpress.sram", sram_size); vmstate_register_ram_global(sram); memory_region_add_subregion(sysmem, map[VE_SRAM], sram); vram_size = 0x800000; memory_region_init_ram(vram, "vexpress.vram", vram_size); vmstate_register_ram_global(vram); memory_region_add_subregion(sysmem, map[VE_VIDEORAM], vram); /* 0x4e000000 LAN9118 Ethernet */ if (nd_table[0].vlan) { lan9118_init(&nd_table[0], map[VE_ETHERNET], pic[15]); } /* VE_USB: not modelled */ /* VE_DAPROM: not modelled */ /* ??? Hack to map an additional page of ram for the secondary CPU startup code. I guess this works on real hardware because the BootROM happens to be in ROM/flash or in memory that isn't clobbered until after Linux boots the secondary CPUs. */ memory_region_init_ram(hackram, "vexpress.hack", 0x1000); vmstate_register_ram_global(hackram); memory_region_add_subregion(sysmem, SMP_BOOT_ADDR, hackram); vexpress_binfo.ram_size = ram_size; vexpress_binfo.kernel_filename = kernel_filename; vexpress_binfo.kernel_cmdline = kernel_cmdline; vexpress_binfo.initrd_filename = initrd_filename; vexpress_binfo.nb_cpus = smp_cpus; vexpress_binfo.board_id = VEXPRESS_BOARD_ID; vexpress_binfo.loader_start = 0x60000000; vexpress_binfo.smp_bootreg_addr = map[VE_SYSREGS] + 0x30; arm_load_kernel(first_cpu, &vexpress_binfo); }
false
qemu
aac1e02c1d4b6d02f35a199a454fd46416380ff5
2,727
static void gpollfds_to_select(int ret) { int i; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); if (ret <= 0) { return; } for (i = 0; i < gpollfds->len; i++) { int fd = g_array_index(gpollfds, GPollFD, i).fd; int revents = g_array_index(gpollfds, GPollFD, i).revents; if (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR)) { FD_SET(fd, &rfds); } if (revents & (G_IO_OUT | G_IO_ERR)) { FD_SET(fd, &wfds); } if (revents & G_IO_PRI) { FD_SET(fd, &xfds); } } }
false
qemu
9cbaacf999b01b27dc3a22502705178057af66de
2,728
static void cpu_4xx_pit_cb (void *opaque) { CPUState *env; ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; env = opaque; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; env->spr[SPR_40x_TSR] |= 1 << 27; if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) ppc_set_irq(env, PPC_INTERRUPT_PIT, 1); start_stop_pit(env, tb_env, 1); LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " " "%016" PRIx64 "\n", __func__, (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], ppcemb_timer->pit_reload); }
false
qemu
d63cb48db9016328a7a69f3a1c2938cd3dfc9d1a
2,729
CPUArchState *cpu_copy(CPUArchState *env) { CPUState *cpu = ENV_GET_CPU(env); CPUArchState *new_env = cpu_init(cpu_model); CPUState *new_cpu = ENV_GET_CPU(new_env); #if defined(TARGET_HAS_ICE) CPUBreakpoint *bp; CPUWatchpoint *wp; #endif /* Reset non arch specific state */ cpu_reset(new_cpu); memcpy(new_env, env, sizeof(CPUArchState)); /* Clone all break/watchpoints. Note: Once we support ptrace with hw-debug register access, make sure BP_CPU break/watchpoints are handled correctly on clone. */ QTAILQ_INIT(&cpu->breakpoints); QTAILQ_INIT(&cpu->watchpoints); #if defined(TARGET_HAS_ICE) QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); } QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); } #endif return new_env; }
false
qemu
ec53b45bcd1f74f7a4c31331fa6d50b402cd6d26
2,730
static void mdct512(AC3MDCTContext *mdct, float *out, float *in) { mdct->fft.mdct_calc(&mdct->fft, out, in); }
false
FFmpeg
79997def65fd2313b48a5f3c3a884c6149ae9b5d
2,731
static void av_noinline qpeg_decode_inter(QpegContext *qctx, uint8_t *dst, int stride, int width, int height, int delta, const uint8_t *ctable, uint8_t *refdata) { int i, j; int code; int filled = 0; int orig_height; if(!refdata) refdata= dst; /* copy prev frame */ for(i = 0; i < height; i++) memcpy(dst + (i * stride), refdata + (i * stride), width); orig_height = height; height--; dst = dst + height * stride; while ((bytestream2_get_bytes_left(&qctx->buffer) > 0) && (height >= 0)) { code = bytestream2_get_byte(&qctx->buffer); if(delta) { /* motion compensation */ while(bytestream2_get_bytes_left(&qctx->buffer) > 0 && (code & 0xF0) == 0xF0) { if(delta == 1) { int me_idx; int me_w, me_h, me_x, me_y; uint8_t *me_plane; int corr, val; /* get block size by index */ me_idx = code & 0xF; me_w = qpeg_table_w[me_idx]; me_h = qpeg_table_h[me_idx]; /* extract motion vector */ corr = bytestream2_get_byte(&qctx->buffer); val = corr >> 4; if(val > 7) val -= 16; me_x = val; val = corr & 0xF; if(val > 7) val -= 16; me_y = val; /* check motion vector */ if ((me_x + filled < 0) || (me_x + me_w + filled > width) || (height - me_y - me_h < 0) || (height - me_y >= orig_height) || (filled + me_w > width) || (height - me_h < 0)) av_log(NULL, AV_LOG_ERROR, "Bogus motion vector (%i,%i), block size %ix%i at %i,%i\n", me_x, me_y, me_w, me_h, filled, height); else { /* do motion compensation */ me_plane = refdata + (filled + me_x) + (height - me_y) * stride; for(j = 0; j < me_h; j++) { for(i = 0; i < me_w; i++) dst[filled + i - (j * stride)] = me_plane[i - (j * stride)]; } } } code = bytestream2_get_byte(&qctx->buffer); } } if(code == 0xE0) /* end-of-picture code */ break; if(code > 0xE0) { /* run code: 0xE1..0xFF */ int p; code &= 0x1F; p = bytestream2_get_byte(&qctx->buffer); for(i = 0; i <= code; i++) { dst[filled++] = p; if(filled >= width) { filled = 0; dst -= stride; height--; if (height < 0) break; } } } else if(code >= 0xC0) { /* copy code: 0xC0..0xDF */ code &= 0x1F; if(code + 1 > bytestream2_get_bytes_left(&qctx->buffer)) break; for(i = 0; i <= code; i++) { dst[filled++] = bytestream2_get_byte(&qctx->buffer); if(filled >= width) { filled = 0; dst -= stride; height--; if (height < 0) break; } } } else if(code >= 0x80) { /* skip code: 0x80..0xBF */ int skip; code &= 0x3F; /* codes 0x80 and 0x81 are actually escape codes, skip value minus constant is in the next byte */ if(!code) skip = bytestream2_get_byte(&qctx->buffer) + 64; else if(code == 1) skip = bytestream2_get_byte(&qctx->buffer) + 320; else skip = code; filled += skip; while( filled >= width) { filled -= width; dst -= stride; height--; if(height < 0) break; } } else { /* zero code treated as one-pixel skip */ if(code) { dst[filled++] = ctable[code & 0x7F]; } else filled++; if(filled >= width) { filled = 0; dst -= stride; height--; } } } }
false
FFmpeg
921706691a87c3ea5f5b92afd9b423e5f8c6e9d9
2,732
static void block_job_detach_aio_context(void *opaque) { BlockJob *job = opaque; /* In case the job terminates during aio_poll()... */ block_job_ref(job); block_job_pause(job); if (!job->paused) { /* If job is !job->busy this kicks it into the next pause point. */ block_job_enter(job); } while (!job->paused && !job->completed) { aio_poll(block_job_get_aio_context(job), true); } block_job_unref(job); }
false
qemu
bae8196d9f97916de6323e70e3e374362ee16ec4
2,733
void numa_cpu_pre_plug(const CPUArchId *slot, DeviceState *dev, Error **errp) { int mapped_node_id; /* set by -numa option */ int node_id = object_property_get_int(OBJECT(dev), "node-id", &error_abort); /* by default CPUState::numa_node was 0 if it wasn't set explicitly * TODO: make it error when incomplete numa mapping support is removed */ mapped_node_id = slot->props.node_id; if (!slot->props.has_node_id) { mapped_node_id = 0; } if (node_id == CPU_UNSET_NUMA_NODE_ID) { /* due to bug in libvirt, it doesn't pass node-id from props on * device_add as expected, so we have to fix it up here */ object_property_set_int(OBJECT(dev), mapped_node_id, "node-id", errp); } else if (node_id != mapped_node_id) { error_setg(errp, "node-id=%d must match numa node specified " "with -numa option", node_id); } }
false
qemu
d41f3e750d2c06c613cb1b8db7724f0fbc0a2b14
2,734
static void multiwrite_cb(void *opaque, int ret) { MultiwriteCB *mcb = opaque; trace_multiwrite_cb(mcb, ret); if (ret < 0 && !mcb->error) { mcb->error = ret; } mcb->num_requests--; if (mcb->num_requests == 0) { multiwrite_user_cb(mcb); g_free(mcb); } }
false
qemu
61007b316cd71ee7333ff7a0a749a8949527575f
2,735
static void qdict_setup(void) { tests_dict = qdict_new(); fail_unless(tests_dict != NULL); }
false
qemu
ac531cb6e542b1e61d668604adf9dc5306a948c0
2,736
static int parallels_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVParallelsState *s = bs->opaque; int i; ParallelsHeader ph; int ret; ret = bdrv_pread(bs->file, 0, &ph, sizeof(ph)); if (ret < 0) { goto fail; } bs->total_sectors = le64_to_cpu(ph.nb_sectors); if (le32_to_cpu(ph.version) != HEADER_VERSION) { goto fail_format; } if (!memcmp(ph.magic, HEADER_MAGIC, 16)) { s->off_multiplier = 1; bs->total_sectors = 0xffffffff & bs->total_sectors; } else if (!memcmp(ph.magic, HEADER_MAGIC2, 16)) { s->off_multiplier = le32_to_cpu(ph.tracks); } else { goto fail_format; } s->tracks = le32_to_cpu(ph.tracks); if (s->tracks == 0) { error_setg(errp, "Invalid image: Zero sectors per track"); ret = -EINVAL; goto fail; } if (s->tracks > INT32_MAX/513) { error_setg(errp, "Invalid image: Too big cluster"); ret = -EFBIG; goto fail; } s->catalog_size = le32_to_cpu(ph.catalog_entries); if (s->catalog_size > INT_MAX / sizeof(uint32_t)) { error_setg(errp, "Catalog too large"); ret = -EFBIG; goto fail; } s->catalog_bitmap = g_try_new(uint32_t, s->catalog_size); if (s->catalog_size && s->catalog_bitmap == NULL) { ret = -ENOMEM; goto fail; } ret = bdrv_pread(bs->file, sizeof(ParallelsHeader), s->catalog_bitmap, s->catalog_size * sizeof(uint32_t)); if (ret < 0) { goto fail; } for (i = 0; i < s->catalog_size; i++) le32_to_cpus(&s->catalog_bitmap[i]); s->has_truncate = bdrv_has_zero_init(bs->file) && bdrv_truncate(bs->file, bdrv_getlength(bs->file)) == 0; qemu_co_mutex_init(&s->lock); return 0; fail_format: error_setg(errp, "Image not in Parallels format"); ret = -EINVAL; fail: g_free(s->catalog_bitmap); return ret; }
false
qemu
369f7de9d57e4dd2f312255fc12271d5749c0a4e
2,738
void imx_timerp_create(const target_phys_addr_t addr, qemu_irq irq, DeviceState *ccm) { IMXTimerPState *pp; DeviceState *dev; dev = sysbus_create_simple("imx_timerp", addr, irq); pp = container_of(dev, IMXTimerPState, busdev.qdev); pp->ccm = ccm; }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
2,739
if_start(Slirp *slirp) { uint64_t now = qemu_get_clock_ns(rt_clock); int requeued = 0; bool from_batchq = false; struct mbuf *ifm, *ifqt; DEBUG_CALL("if_start"); if (slirp->if_queued == 0) return; /* Nothing to do */ again: /* check if we can really output */ if (!slirp_can_output(slirp->opaque)) return; /* * See which queue to get next packet from * If there's something in the fastq, select it immediately */ if (slirp->if_fastq.ifq_next != &slirp->if_fastq) { ifm = slirp->if_fastq.ifq_next; } else { /* Nothing on fastq, see if next_m is valid */ if (slirp->next_m != &slirp->if_batchq) ifm = slirp->next_m; else ifm = slirp->if_batchq.ifq_next; from_batchq = true; } slirp->if_queued--; /* Try to send packet unless it already expired */ if (ifm->expiration_date >= now && !if_encap(slirp, ifm)) { /* Packet is delayed due to pending ARP resolution */ requeued++; goto out; } if (from_batchq) { /* Set which packet to send on next iteration */ slirp->next_m = ifm->ifq_next; } /* Remove it from the queue */ ifqt = ifm->ifq_prev; remque(ifm); /* If there are more packets for this session, re-queue them */ if (ifm->ifs_next != /* ifm->ifs_prev != */ ifm) { insque(ifm->ifs_next, ifqt); ifs_remque(ifm); } /* Update so_queued */ if (ifm->ifq_so) { if (--ifm->ifq_so->so_queued == 0) /* If there's no more queued, reset nqueued */ ifm->ifq_so->so_nqueued = 0; } m_free(ifm); out: if (slirp->if_queued) goto again; slirp->if_queued = requeued; }
false
qemu
b87ffa163185e339f9f9f1e6dbc561e0f990442d
2,740
e1000_cleanup(NetClientState *nc) { E1000State *s = qemu_get_nic_opaque(nc); s->nic = NULL; }
false
qemu
57407ea44cc0a3d630b9b89a2be011f1955ce5c1
2,741
void ff_vp3_h_loop_filter_mmx(uint8_t *src, int stride, int *bounding_values) { x86_reg tmp; __asm__ volatile( "movd -2(%1), %%mm6 \n\t" "movd -2(%1,%3), %%mm0 \n\t" "movd -2(%1,%3,2), %%mm1 \n\t" "movd -2(%1,%4), %%mm4 \n\t" TRANSPOSE8x4(%%mm6, %%mm0, %%mm1, %%mm4, -2(%2), -2(%2,%3), -2(%2,%3,2), -2(%2,%4), %%mm2) VP3_LOOP_FILTER(%5) SBUTTERFLY(%%mm4, %%mm3, %%mm5, bw, q) STORE_4_WORDS((%1), (%1,%3), (%1,%3,2), (%1,%4), %%mm4) STORE_4_WORDS((%2), (%2,%3), (%2,%3,2), (%2,%4), %%mm5) : "=&r"(tmp) : "r"(src), "r"(src+4*stride), "r"((x86_reg)stride), "r"((x86_reg)3*stride), "m"(*(uint64_t*)(bounding_values+129)) : "memory" ); }
false
FFmpeg
daa1ea049a9445b7bed03963cb789497065dd1eb
2,742
static void sdram_set_bcr (uint32_t *bcrp, uint32_t bcr, int enabled) { if (*bcrp & 0x00000001) { /* Unmap RAM */ #ifdef DEBUG_SDRAM printf("%s: unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n", __func__, sdram_base(*bcrp), sdram_size(*bcrp)); #endif cpu_register_physical_memory(sdram_base(*bcrp), sdram_size(*bcrp), IO_MEM_UNASSIGNED); } *bcrp = bcr & 0xFFDEE001; if (enabled && (bcr & 0x00000001)) { #ifdef DEBUG_SDRAM printf("%s: Map RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n", __func__, sdram_base(bcr), sdram_size(bcr)); #endif cpu_register_physical_memory(sdram_base(bcr), sdram_size(bcr), sdram_base(bcr) | IO_MEM_RAM); } }
false
qemu
b6dcbe086c77ec683f5ff0b693593cda1d61f3a1
2,743
static Suite *qfloat_suite(void) { Suite *s; TCase *qfloat_public_tcase; s = suite_create("QFloat test-suite"); qfloat_public_tcase = tcase_create("Public Interface"); suite_add_tcase(s, qfloat_public_tcase); tcase_add_test(qfloat_public_tcase, qfloat_from_double_test); tcase_add_test(qfloat_public_tcase, qfloat_destroy_test); return s; }
false
qemu
a9e1c28ddaae5a48415fec1f336b5560eb85d3e1
2,744
void qemu_unregister_clock_reset_notifier(QEMUClock *clock, Notifier *notifier) { qemu_clock_unregister_reset_notifier(clock->type, notifier); }
false
qemu
b4049b74b97f30fe944c63b5f158ec9e87bd2593
2,745
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { uint8_t *pde_ptr, *pte_ptr; uint32_t pde, pte, paddr, page_offset, page_size; if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr; page_size = 4096; } else { /* page directory entry */ pde_ptr = phys_ram_base + (((env->cr[3] & ~0xfff) + ((addr >> 20) & ~3)) & a20_mask); pde = ldl_raw(pde_ptr); if (!(pde & PG_PRESENT_MASK)) return -1; if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { pte = pde & ~0x003ff000; /* align to 4MB */ page_size = 4096 * 1024; } else { /* page directory entry */ pte_ptr = phys_ram_base + (((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask); pte = ldl_raw(pte_ptr); if (!(pte & PG_PRESENT_MASK)) return -1; page_size = 4096; } } pte = pte & a20_mask; page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); paddr = (pte & TARGET_PAGE_MASK) + page_offset; return paddr; }
false
qemu
1ac157da77c863b62b1d2f467626a440d57cf17d
2,746
static uint64_t imx_serial_read(void *opaque, target_phys_addr_t offset, unsigned size) { IMXSerialState *s = (IMXSerialState *)opaque; uint32_t c; DPRINTF("read(offset=%x)\n", offset >> 2); switch (offset >> 2) { case 0x0: /* URXD */ c = s->readbuff; if (!(s->uts1 & UTS1_RXEMPTY)) { /* Character is valid */ c |= URXD_CHARRDY; s->usr1 &= ~USR1_RRDY; s->usr2 &= ~USR2_RDR; s->uts1 |= UTS1_RXEMPTY; imx_update(s); qemu_chr_accept_input(s->chr); } return c; case 0x20: /* UCR1 */ return s->ucr1; case 0x21: /* UCR2 */ return s->ucr2; case 0x25: /* USR1 */ return s->usr1; case 0x26: /* USR2 */ return s->usr2; case 0x2A: /* BRM Modulator */ return s->ubmr; case 0x2B: /* Baud Rate Count */ return s->ubrc; case 0x2d: /* Test register */ return s->uts1; case 0x24: /* UFCR */ return s->ufcr; case 0x2c: return s->onems; case 0x22: /* UCR3 */ return s->ucr3; case 0x23: /* UCR4 */ case 0x29: /* BRM Incremental */ return 0x0; /* TODO */ default: IPRINTF("imx_serial_read: bad offset: 0x%x\n", (int)offset); return 0; } }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
2,747
void qemu_del_net_client(NetClientState *nc) { NetClientState *ncs[MAX_QUEUE_NUM]; int queues, i; /* If the NetClientState belongs to a multiqueue backend, we will change all * other NetClientStates also. */ queues = qemu_find_net_clients_except(nc->name, ncs, NET_CLIENT_OPTIONS_KIND_NIC, MAX_QUEUE_NUM); assert(queues != 0); /* If there is a peer NIC, delete and cleanup client, but do not free. */ if (nc->peer && nc->peer->info->type == NET_CLIENT_OPTIONS_KIND_NIC) { NICState *nic = qemu_get_nic(nc->peer); if (nic->peer_deleted) { return; } nic->peer_deleted = true; for (i = 0; i < queues; i++) { ncs[i]->peer->link_down = true; } if (nc->peer->info->link_status_changed) { nc->peer->info->link_status_changed(nc->peer); } for (i = 0; i < queues; i++) { qemu_cleanup_net_client(ncs[i]); } return; } assert(nc->info->type != NET_CLIENT_OPTIONS_KIND_NIC); for (i = 0; i < queues; i++) { qemu_cleanup_net_client(ncs[i]); qemu_free_net_client(ncs[i]); } }
false
qemu
7fb439115de7354b3ac2becf24457acaf828296b
2,748
static inline void omap_gp_timer_trigger(struct omap_gp_timer_s *timer) { if (timer->pt) /* TODO in overflow-and-match mode if the first event to * occurs is the match, don't toggle. */ omap_gp_timer_out(timer, !timer->out_val); else /* TODO inverted pulse on timer->out_val == 1? */ qemu_irq_pulse(timer->out); }
false
qemu
75554a3ca10a7ad295d2a3d2e14ee6ba90f94c8b
2,749
timer_write(void *opaque, target_phys_addr_t addr, uint64_t val64, unsigned int size) { struct etrax_timer *t = opaque; uint32_t value = val64; switch (addr) { case RW_TMR0_DIV: t->rw_tmr0_div = value; break; case RW_TMR0_CTRL: D(printf ("RW_TMR0_CTRL=%x\n", value)); t->rw_tmr0_ctrl = value; update_ctrl(t, 0); break; case RW_TMR1_DIV: t->rw_tmr1_div = value; break; case RW_TMR1_CTRL: D(printf ("RW_TMR1_CTRL=%x\n", value)); t->rw_tmr1_ctrl = value; update_ctrl(t, 1); break; case RW_INTR_MASK: D(printf ("RW_INTR_MASK=%x\n", value)); t->rw_intr_mask = value; timer_update_irq(t); break; case RW_WD_CTRL: timer_watchdog_update(t, value); break; case RW_ACK_INTR: t->rw_ack_intr = value; timer_update_irq(t); t->rw_ack_intr = 0; break; default: printf ("%s " TARGET_FMT_plx " %x\n", __func__, addr, value); break; } }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
2,750
void mpeg1_encode_picture_header(MpegEncContext *s, int picture_number) { mpeg1_encode_sequence_header(s); /* mpeg1 picture header */ put_header(s, PICTURE_START_CODE); /* temporal reference */ // RAL: s->picture_number instead of s->fake_picture_number put_bits(&s->pb, 10, (s->picture_number - s->gop_picture_number) & 0x3ff); s->fake_picture_number++; put_bits(&s->pb, 3, s->pict_type); s->vbv_delay_ptr= s->pb.buf + get_bit_count(&s->pb)/8; put_bits(&s->pb, 16, 0xFFFF); /* vbv_delay */ // RAL: Forward f_code also needed for B frames if (s->pict_type == P_TYPE || s->pict_type == B_TYPE) { put_bits(&s->pb, 1, 0); /* half pel coordinates */ if(s->codec_id == CODEC_ID_MPEG1VIDEO) put_bits(&s->pb, 3, s->f_code); /* forward_f_code */ else put_bits(&s->pb, 3, 7); /* forward_f_code */ } // RAL: Backward f_code necessary for B frames if (s->pict_type == B_TYPE) { put_bits(&s->pb, 1, 0); /* half pel coordinates */ if(s->codec_id == CODEC_ID_MPEG1VIDEO) put_bits(&s->pb, 3, s->b_code); /* backward_f_code */ else put_bits(&s->pb, 3, 7); /* backward_f_code */ } put_bits(&s->pb, 1, 0); /* extra bit picture */ s->frame_pred_frame_dct = 1; if(s->codec_id == CODEC_ID_MPEG2VIDEO){ put_header(s, EXT_START_CODE); put_bits(&s->pb, 4, 8); //pic ext if (s->pict_type == P_TYPE || s->pict_type == B_TYPE) { put_bits(&s->pb, 4, s->f_code); put_bits(&s->pb, 4, s->f_code); }else{ put_bits(&s->pb, 8, 255); } if (s->pict_type == B_TYPE) { put_bits(&s->pb, 4, s->b_code); put_bits(&s->pb, 4, s->b_code); }else{ put_bits(&s->pb, 8, 255); } put_bits(&s->pb, 2, s->intra_dc_precision); put_bits(&s->pb, 2, s->picture_structure= PICT_FRAME); if (s->progressive_sequence) { put_bits(&s->pb, 1, 0); /* no repeat */ } else { put_bits(&s->pb, 1, s->current_picture_ptr->top_field_first); } /* XXX: optimize the generation of this flag with entropy measures */ s->frame_pred_frame_dct = s->progressive_sequence; put_bits(&s->pb, 1, s->frame_pred_frame_dct); put_bits(&s->pb, 1, s->concealment_motion_vectors); put_bits(&s->pb, 1, s->q_scale_type); put_bits(&s->pb, 1, s->intra_vlc_format); put_bits(&s->pb, 1, s->alternate_scan); put_bits(&s->pb, 1, s->repeat_first_field); put_bits(&s->pb, 1, s->chroma_420_type=1); s->progressive_frame = s->progressive_sequence; put_bits(&s->pb, 1, s->progressive_frame); put_bits(&s->pb, 1, 0); //composite_display_flag } if(s->flags & CODEC_FLAG_SVCD_SCAN_OFFSET){ int i; put_header(s, USER_START_CODE); for(i=0; i<sizeof(svcd_scan_offset_placeholder); i++){ put_bits(&s->pb, 8, svcd_scan_offset_placeholder[i]); } } s->mb_y=0; ff_mpeg1_encode_slice_header(s); }
false
FFmpeg
2c492e94fc9d8a5e998b25f4d0390c95f2d4674f
2,751
static inline void gen_op_fcmpd(int fccno, TCGv_i64 r_rs1, TCGv_i64 r_rs2) { gen_helper_fcmpd(cpu_env, r_rs1, r_rs2); }
false
qemu
7385aed20db5d83979f683b9d0048674411e963c
2,752
int pcistb_service_call(S390CPU *cpu, uint8_t r1, uint8_t r3, uint64_t gaddr, uint8_t ar, uintptr_t ra) { CPUS390XState *env = &cpu->env; S390PCIBusDevice *pbdev; MemoryRegion *mr; MemTxResult result; int i; uint32_t fh; uint8_t pcias; uint8_t len; uint8_t buffer[128]; if (env->psw.mask & PSW_MASK_PSTATE) { s390_program_interrupt(env, PGM_PRIVILEGED, 6, ra); return 0; } fh = env->regs[r1] >> 32; pcias = (env->regs[r1] >> 16) & 0xf; len = env->regs[r1] & 0xff; if (pcias > 5) { DPRINTF("pcistb invalid space\n"); setcc(cpu, ZPCI_PCI_LS_ERR); s390_set_status_code(env, r1, ZPCI_PCI_ST_INVAL_AS); return 0; } switch (len) { case 16: case 32: case 64: case 128: break; default: s390_program_interrupt(env, PGM_SPECIFICATION, 6, ra); return 0; } pbdev = s390_pci_find_dev_by_fh(s390_get_phb(), fh); if (!pbdev) { DPRINTF("pcistb no pci dev fh 0x%x\n", fh); setcc(cpu, ZPCI_PCI_LS_INVAL_HANDLE); return 0; } switch (pbdev->state) { case ZPCI_FS_RESERVED: case ZPCI_FS_STANDBY: case ZPCI_FS_DISABLED: case ZPCI_FS_PERMANENT_ERROR: setcc(cpu, ZPCI_PCI_LS_INVAL_HANDLE); return 0; case ZPCI_FS_ERROR: setcc(cpu, ZPCI_PCI_LS_ERR); s390_set_status_code(env, r1, ZPCI_PCI_ST_BLOCKED); return 0; default: break; } mr = pbdev->pdev->io_regions[pcias].memory; if (!memory_region_access_valid(mr, env->regs[r3], len, true)) { s390_program_interrupt(env, PGM_OPERAND, 6, ra); return 0; } if (s390_cpu_virt_mem_read(cpu, gaddr, ar, buffer, len)) { s390_cpu_virt_mem_handle_exc(cpu, ra); return 0; } for (i = 0; i < len / 8; i++) { result = memory_region_dispatch_write(mr, env->regs[r3] + i * 8, ldq_p(buffer + i * 8), 8, MEMTXATTRS_UNSPECIFIED); if (result != MEMTX_OK) { s390_program_interrupt(env, PGM_OPERAND, 6, ra); return 0; } } setcc(cpu, ZPCI_PCI_LS_OK); return 0; }
false
qemu
0e7c259adff7e97f829a08a5f146e7ee03b5ae47
2,754
static void *spapr_create_fdt_skel(const char *cpu_model, target_phys_addr_t rma_size, target_phys_addr_t initrd_base, target_phys_addr_t initrd_size, const char *boot_device, const char *kernel_cmdline, long hash_shift) { void *fdt; CPUState *env; uint64_t mem_reg_property_rma[] = { 0, cpu_to_be64(rma_size) }; uint64_t mem_reg_property_nonrma[] = { cpu_to_be64(rma_size), cpu_to_be64(ram_size - rma_size) }; uint32_t start_prop = cpu_to_be32(initrd_base); uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)}; char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk"; uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; int i; char *modelname; int smt = kvmppc_smt_threads(); #define _FDT(exp) \ do { \ int ret = (exp); \ if (ret < 0) { \ fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ #exp, fdt_strerror(ret)); \ exit(1); \ } \ } while (0) fdt = g_malloc0(FDT_MAX_SIZE); _FDT((fdt_create(fdt, FDT_MAX_SIZE))); _FDT((fdt_finish_reservemap(fdt))); /* Root node */ _FDT((fdt_begin_node(fdt, ""))); _FDT((fdt_property_string(fdt, "device_type", "chrp"))); _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); /* /chosen */ _FDT((fdt_begin_node(fdt, "chosen"))); _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); _FDT((fdt_property(fdt, "linux,initrd-start", &start_prop, sizeof(start_prop)))); _FDT((fdt_property(fdt, "linux,initrd-end", &end_prop, sizeof(end_prop)))); _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); _FDT((fdt_end_node(fdt))); /* memory node(s) */ _FDT((fdt_begin_node(fdt, "memory@0"))); _FDT((fdt_property_string(fdt, "device_type", "memory"))); _FDT((fdt_property(fdt, "reg", mem_reg_property_rma, sizeof(mem_reg_property_rma)))); _FDT((fdt_end_node(fdt))); if (ram_size > rma_size) { char mem_name[32]; sprintf(mem_name, "memory@%" PRIx64, (uint64_t)rma_size); _FDT((fdt_begin_node(fdt, mem_name))); _FDT((fdt_property_string(fdt, "device_type", "memory"))); _FDT((fdt_property(fdt, "reg", mem_reg_property_nonrma, sizeof(mem_reg_property_nonrma)))); _FDT((fdt_end_node(fdt))); } /* cpus */ _FDT((fdt_begin_node(fdt, "cpus"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); modelname = g_strdup(cpu_model); for (i = 0; i < strlen(modelname); i++) { modelname[i] = toupper(modelname[i]); } for (env = first_cpu; env != NULL; env = env->next_cpu) { int index = env->cpu_index; uint32_t servers_prop[smp_threads]; uint32_t gservers_prop[smp_threads * 2]; char *nodename; uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 0xffffffff, 0xffffffff}; uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; uint32_t vmx = kvm_enabled() ? kvmppc_get_vmx() : 0; uint32_t dfp = kvm_enabled() ? kvmppc_get_dfp() : 0; if ((index % smt) != 0) { continue; } if (asprintf(&nodename, "%s@%x", modelname, index) < 0) { fprintf(stderr, "Allocation failure\n"); exit(1); } _FDT((fdt_begin_node(fdt, nodename))); free(nodename); _FDT((fdt_property_cell(fdt, "reg", index))); _FDT((fdt_property_string(fdt, "device_type", "cpu"))); _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); _FDT((fdt_property_cell(fdt, "dcache-block-size", env->dcache_line_size))); _FDT((fdt_property_cell(fdt, "icache-block-size", env->icache_line_size))); _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); _FDT((fdt_property(fdt, "ibm,pft-size", pft_size_prop, sizeof(pft_size_prop)))); _FDT((fdt_property_string(fdt, "status", "okay"))); _FDT((fdt_property(fdt, "64-bit", NULL, 0))); /* Build interrupt servers and gservers properties */ for (i = 0; i < smp_threads; i++) { servers_prop[i] = cpu_to_be32(index + i); /* Hack, direct the group queues back to cpu 0 */ gservers_prop[i*2] = cpu_to_be32(index + i); gservers_prop[i*2 + 1] = 0; } _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", servers_prop, sizeof(servers_prop)))); _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", gservers_prop, sizeof(gservers_prop)))); if (env->mmu_model & POWERPC_MMU_1TSEG) { _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", segs, sizeof(segs)))); } /* Advertise VMX/VSX (vector extensions) if available * 0 / no property == no vector extensions * 1 == VMX / Altivec available * 2 == VSX available */ if (vmx) { _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); } /* Advertise DFP (Decimal Floating Point) if available * 0 / no property == no DFP * 1 == DFP available */ if (dfp) { _FDT((fdt_property_cell(fdt, "ibm,dfp", dfp))); } _FDT((fdt_end_node(fdt))); } g_free(modelname); _FDT((fdt_end_node(fdt))); /* RTAS */ _FDT((fdt_begin_node(fdt, "rtas"))); _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, sizeof(hypertas_prop)))); _FDT((fdt_end_node(fdt))); /* interrupt controller */ _FDT((fdt_begin_node(fdt, "interrupt-controller"))); _FDT((fdt_property_string(fdt, "device_type", "PowerPC-External-Interrupt-Presentation"))); _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", interrupt_server_ranges_prop, sizeof(interrupt_server_ranges_prop)))); _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); _FDT((fdt_end_node(fdt))); /* vdevice */ _FDT((fdt_begin_node(fdt, "vdevice"))); _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); _FDT((fdt_end_node(fdt))); _FDT((fdt_end_node(fdt))); /* close root node */ _FDT((fdt_finish(fdt))); return fdt; }
false
qemu
a7342588c081c7497bc7810431a03fa7b669af40
2,755
static target_phys_addr_t get_offset(target_phys_addr_t phys_addr, DumpState *s) { RAMBlock *block; target_phys_addr_t offset = s->memory_offset; int64_t size_in_block, start; if (s->has_filter) { if (phys_addr < s->begin || phys_addr >= s->begin + s->length) { return -1; } } QLIST_FOREACH(block, &ram_list.blocks, next) { if (s->has_filter) { if (block->offset >= s->begin + s->length || block->offset + block->length <= s->begin) { /* This block is out of the range */ continue; } if (s->begin <= block->offset) { start = block->offset; } else { start = s->begin; } size_in_block = block->length - (start - block->offset); if (s->begin + s->length < block->offset + block->length) { size_in_block -= block->offset + block->length - (s->begin + s->length); } } else { start = block->offset; size_in_block = block->length; } if (phys_addr >= start && phys_addr < start + size_in_block) { return phys_addr - start + offset; } offset += size_in_block; } return -1; }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
2,756
static MegasasCmd *megasas_enqueue_frame(MegasasState *s, target_phys_addr_t frame, uint64_t context, int count) { MegasasCmd *cmd = NULL; int frame_size = MFI_FRAME_SIZE * 16; target_phys_addr_t frame_size_p = frame_size; cmd = megasas_next_frame(s, frame); /* All frames busy */ if (!cmd) { return NULL; } if (!cmd->pa) { cmd->pa = frame; /* Map all possible frames */ cmd->frame = cpu_physical_memory_map(frame, &frame_size_p, 0); if (frame_size_p != frame_size) { trace_megasas_qf_map_failed(cmd->index, (unsigned long)frame); if (cmd->frame) { cpu_physical_memory_unmap(cmd->frame, frame_size_p, 0, 0); cmd->frame = NULL; cmd->pa = 0; } s->event_count++; return NULL; } cmd->pa_size = frame_size_p; cmd->context = context; if (!megasas_use_queue64(s)) { cmd->context &= (uint64_t)0xFFFFFFFF; } } cmd->count = count; s->busy++; trace_megasas_qf_enqueue(cmd->index, cmd->count, cmd->context, s->reply_queue_head, s->busy); return cmd; }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
2,757
void helper_stl_raw(uint64_t t0, uint64_t t1) { stl_raw(t1, t0); }
false
qemu
2374e73edafff0586cbfb67c333c5a7588f81fd5
2,758
static void string_deserialize(void **native_out, void *datap, VisitorFunc visit, Error **errp) { StringSerializeData *d = datap; d->string = string_output_get_string(d->sov); d->siv = string_input_visitor_new(d->string); visit(d->siv, native_out, errp); }
false
qemu
3b098d56979d2f7fd707c5be85555d114353a28d
2,759
static uint16_t mlp_checksum16(const uint8_t *buf, unsigned int buf_size) { uint16_t crc; if (!crc_init) { av_crc_init(crc_2D, 0, 16, 0x002D, sizeof(crc_2D)); crc_init = 1; } crc = av_crc(crc_2D, 0, buf, buf_size - 2); crc ^= AV_RL16(buf + buf_size - 2); return crc; }
false
FFmpeg
ee5b34d56e7fa9c1eb1a2aeb2bf7b55516c99c8a
2,760
static void blkdebug_debug_event(BlockDriverState *bs, BlkDebugEvent event) { BDRVBlkdebugState *s = bs->opaque; struct BlkdebugRule *rule; bool injected; assert((int)event >= 0 && event < BLKDBG_EVENT_MAX); injected = false; s->new_state = s->state; QLIST_FOREACH(rule, &s->rules[event], next) { injected = process_rule(bs, rule, injected); } s->state = s->new_state; }
false
qemu
3c90c65d7adab49a41952ee14e1d65f81355e408
2,761
static int protocol_client_init(VncState *vs, uint8_t *data, size_t len) { char buf[1024]; VncShareMode mode; int size; mode = data[0] ? VNC_SHARE_MODE_SHARED : VNC_SHARE_MODE_EXCLUSIVE; switch (vs->vd->share_policy) { case VNC_SHARE_POLICY_IGNORE: /* * Ignore the shared flag. Nothing to do here. * * Doesn't conform to the rfb spec but is traditional qemu * behavior, thus left here as option for compatibility * reasons. */ break; case VNC_SHARE_POLICY_ALLOW_EXCLUSIVE: /* * Policy: Allow clients ask for exclusive access. * * Implementation: When a client asks for exclusive access, * disconnect all others. Shared connects are allowed as long * as no exclusive connection exists. * * This is how the rfb spec suggests to handle the shared flag. */ if (mode == VNC_SHARE_MODE_EXCLUSIVE) { VncState *client; QTAILQ_FOREACH(client, &vs->vd->clients, next) { if (vs == client) { continue; } if (client->share_mode != VNC_SHARE_MODE_EXCLUSIVE && client->share_mode != VNC_SHARE_MODE_SHARED) { continue; } vnc_disconnect_start(client); } } if (mode == VNC_SHARE_MODE_SHARED) { if (vs->vd->num_exclusive > 0) { vnc_disconnect_start(vs); return 0; } } break; case VNC_SHARE_POLICY_FORCE_SHARED: /* * Policy: Shared connects only. * Implementation: Disallow clients asking for exclusive access. * * Useful for shared desktop sessions where you don't want * someone forgetting to say -shared when running the vnc * client disconnect everybody else. */ if (mode == VNC_SHARE_MODE_EXCLUSIVE) { vnc_disconnect_start(vs); return 0; } break; } vnc_set_share_mode(vs, mode); if (vs->vd->num_shared > vs->vd->connections_limit) { vnc_disconnect_start(vs); return 0; } vs->client_width = pixman_image_get_width(vs->vd->server); vs->client_height = pixman_image_get_height(vs->vd->server); vnc_write_u16(vs, vs->client_width); vnc_write_u16(vs, vs->client_height); pixel_format_message(vs); if (qemu_name) size = snprintf(buf, sizeof(buf), "QEMU (%s)", qemu_name); else size = snprintf(buf, sizeof(buf), "QEMU"); vnc_write_u32(vs, size); vnc_write(vs, buf, size); vnc_flush(vs); vnc_client_cache_auth(vs); vnc_qmp_event(vs, QAPI_EVENT_VNC_INITIALIZED); vnc_read_when(vs, protocol_client_msg, 1); return 0; }
false
qemu
97efe4f961dcf5a0126baa75e8a6bff66d33186f
2,764
static void migration_completion(MigrationState *s, int current_active_state, bool *old_vm_running, int64_t *start_time) { int ret; if (s->state == MIGRATION_STATUS_ACTIVE) { qemu_mutex_lock_iothread(); *start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER); *old_vm_running = runstate_is_running(); ret = global_state_store(); if (!ret) { ret = vm_stop_force_state(RUN_STATE_FINISH_MIGRATE); if (ret >= 0) { ret = bdrv_inactivate_all(); } if (ret >= 0) { qemu_file_set_rate_limit(s->to_dst_file, INT64_MAX); qemu_savevm_state_complete_precopy(s->to_dst_file, false); } } qemu_mutex_unlock_iothread(); if (ret < 0) { goto fail; } } else if (s->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) { trace_migration_completion_postcopy_end(); qemu_savevm_state_complete_postcopy(s->to_dst_file); trace_migration_completion_postcopy_end_after_complete(); } /* * If rp was opened we must clean up the thread before * cleaning everything else up (since if there are no failures * it will wait for the destination to send it's status in * a SHUT command). * Postcopy opens rp if enabled (even if it's not avtivated) */ if (migrate_postcopy_ram()) { int rp_error; trace_migration_completion_postcopy_end_before_rp(); rp_error = await_return_path_close_on_source(s); trace_migration_completion_postcopy_end_after_rp(rp_error); if (rp_error) { goto fail_invalidate; } } if (qemu_file_get_error(s->to_dst_file)) { trace_migration_completion_file_err(); goto fail_invalidate; } migrate_set_state(&s->state, current_active_state, MIGRATION_STATUS_COMPLETED); return; fail_invalidate: /* If not doing postcopy, vm_start() will be called: let's regain * control on images. */ if (s->state == MIGRATION_STATUS_ACTIVE) { Error *local_err = NULL; bdrv_invalidate_cache_all(&local_err); if (local_err) { error_report_err(local_err); } } fail: migrate_set_state(&s->state, current_active_state, MIGRATION_STATUS_FAILED); }
false
qemu
0b827d5e7291193887d22d058bc20c12b423047c
2,765
void replay_read_next_clock(ReplayClockKind kind) { unsigned int read_kind = replay_data_kind - EVENT_CLOCK; assert(read_kind == kind); int64_t clock = replay_get_qword(); replay_check_error(); replay_finish_event(); replay_state.cached_clock[read_kind] = clock; }
false
qemu
f186d64d8fda4bb22c15beb8e45b7814fbd8b51e
2,766
static void exynos4210_gfrc_event(void *opaque) { Exynos4210MCTState *s = (Exynos4210MCTState *)opaque; int i; uint64_t distance; DPRINTF("\n"); s->g_timer.reg.cnt += s->g_timer.count; /* Process all comparators */ for (i = 0; i < MCT_GT_CMP_NUM; i++) { if (s->g_timer.reg.cnt == s->g_timer.reg.comp[i]) { /* reached nearest comparator */ s->g_timer.reg.int_cstat |= G_INT_CSTAT_COMP(i); /* Auto increment */ if (s->g_timer.reg.tcon & G_TCON_AUTO_ICREMENT(i)) { s->g_timer.reg.comp[i] += s->g_timer.reg.comp_add_incr[i]; } /* IRQ */ exynos4210_gcomp_raise_irq(&s->g_timer, i); } } /* Reload FRC to reach nearest comparator */ s->g_timer.curr_comp = exynos4210_gcomp_find(s); distance = exynos4210_gcomp_get_distance(s, s->g_timer.curr_comp); if (distance > MCT_GT_COUNTER_STEP) { distance = MCT_GT_COUNTER_STEP; } exynos4210_gfrc_set_count(&s->g_timer, distance); exynos4210_gfrc_start(&s->g_timer); }
false
qemu
97331270e50f5858c82a0c6d146da81f5b776535
2,767
static void lance_init(NICInfo *nd, target_phys_addr_t leaddr, void *dma_opaque, qemu_irq irq) { DeviceState *dev; SysBusDevice *s; qemu_irq reset; qemu_check_nic_model(&nd_table[0], "lance"); dev = qdev_create(NULL, "lance"); dev->nd = nd; qdev_prop_set_ptr(dev, "dma", dma_opaque); qdev_init(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, leaddr); sysbus_connect_irq(s, 0, irq); reset = qdev_get_gpio_in(dev, 0); qdev_connect_gpio_out(dma_opaque, 0, reset); }
true
qemu
e23a1b33b53d25510320b26d9f154e19c6c99725
2,768
int ff_mpeg_ref_picture(MpegEncContext *s, Picture *dst, Picture *src) { int ret; av_assert0(!dst->f.buf[0]); av_assert0(src->f.buf[0]); src->tf.f = &src->f; dst->tf.f = &dst->f; ret = ff_thread_ref_frame(&dst->tf, &src->tf); if (ret < 0) goto fail; ret = update_picture_tables(dst, src); if (ret < 0) goto fail; if (src->hwaccel_picture_private) { dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf); if (!dst->hwaccel_priv_buf) goto fail; dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data; } dst->field_picture = src->field_picture; dst->mb_var_sum = src->mb_var_sum; dst->mc_mb_var_sum = src->mc_mb_var_sum; dst->b_frame_score = src->b_frame_score; dst->needs_realloc = src->needs_realloc; dst->reference = src->reference; dst->shared = src->shared; return 0; fail: ff_mpeg_unref_picture(s, dst); return ret; }
true
FFmpeg
f6774f905fb3cfdc319523ac640be30b14c1bc55
2,769
static int encode_slices(VC2EncContext *s) { uint8_t *buf; int i, slice_x, slice_y, skip = 0; int bytes_left = 0; SliceArgs *enc_args = s->slice_args; int bytes_top[SLICE_REDIST_TOTAL] = {0}; SliceArgs *top_loc[SLICE_REDIST_TOTAL] = {NULL}; avpriv_align_put_bits(&s->pb); flush_put_bits(&s->pb); buf = put_bits_ptr(&s->pb); for (slice_y = 0; slice_y < s->num_y; slice_y++) { for (slice_x = 0; slice_x < s->num_x; slice_x++) { SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x]; bytes_left += args->bytes_left; for (i = 0; i < FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y); i++) { if (args->bytes > bytes_top[i]) { bytes_top[i] = args->bytes; top_loc[i] = args; break; } } } } while (1) { int distributed = 0; for (i = 0; i < FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y); i++) { SliceArgs *args; int bits, bytes, diff, prev_bytes, new_idx; if (bytes_left <= 0) break; if (!top_loc[i] || !top_loc[i]->quant_idx) break; args = top_loc[i]; prev_bytes = args->bytes; new_idx = av_clip(args->quant_idx - 1, 0, s->q_ceil); bits = count_hq_slice(s, args->cache, args->x, args->y, new_idx); bytes = FFALIGN((bits >> 3), s->size_scaler) + 4 + s->prefix_bytes; diff = bytes - prev_bytes; if ((bytes_left - diff) >= 0) { args->quant_idx = new_idx; args->bytes = bytes; bytes_left -= diff; distributed++; } } if (!distributed) break; } for (slice_y = 0; slice_y < s->num_y; slice_y++) { for (slice_x = 0; slice_x < s->num_x; slice_x++) { SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x]; init_put_bits(&args->pb, buf + skip, args->bytes); s->q_avg = (s->q_avg + args->quant_idx)/2; skip += args->bytes; } } s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y, sizeof(SliceArgs)); skip_put_bytes(&s->pb, skip); return 0; }
true
FFmpeg
b88be742fac7a77a8095e8155ba8790db4b77568
2,770
int64_t parse_time_or_die(const char *context, const char *timestr, int is_duration) { int64_t us; if (av_parse_time(&us, timestr, is_duration) < 0) { av_log(NULL, AV_LOG_FATAL, "Invalid %s specification for %s: %s\n", is_duration ? "duration" : "date", context, timestr); exit(1); } return us; }
true
FFmpeg
636ced8e1dc8248a1353b416240b93d70ad03edb
2,771
PPC_OP(mulhw) { T0 = ((int64_t)Ts0 * (int64_t)Ts1) >> 32; RETURN(); }
true
qemu
d9bce9d99f4656ae0b0127f7472db9067b8f84ab
2,772
static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; cs->halted = 1; qemu_cpu_kick(cs); /* * While stopping a CPU, the guest calls H_CPPR which * effectively disables interrupts on XICS level. * However decrementer interrupts in TCG can still * wake the CPU up so here we disable interrupts in MSR * as well. * As rtas_start_cpu() resets the whole MSR anyway, there is * no need to bother with specific bits, we just clear it. */ env->msr = 0; /* Disable Power-saving mode Exit Cause exceptions for the CPU. * This could deliver an interrupt on a dying CPU and crash the * guest */ env->spr[SPR_LPCR] &= ~pcc->lpcr_pm; }
true
qemu
9a94ee5bb15793ef69692998ef57794a33074134
2,773
static int get_cluster_offset(BlockDriverState *bs, uint64_t offset, int allocate, int compressed_size, int n_start, int n_end, uint64_t *result) { BDRVQcowState *s = bs->opaque; int min_index, i, j, l1_index, l2_index, ret; uint64_t l2_offset, *l2_table, cluster_offset, tmp; uint32_t min_count; int new_l2_table; *result = 0; l1_index = offset >> (s->l2_bits + s->cluster_bits); l2_offset = s->l1_table[l1_index]; new_l2_table = 0; if (!l2_offset) { if (!allocate) return 0; /* allocate a new l2 entry */ l2_offset = bdrv_getlength(bs->file->bs); /* round to cluster size */ l2_offset = (l2_offset + s->cluster_size - 1) & ~(s->cluster_size - 1); /* update the L1 entry */ s->l1_table[l1_index] = l2_offset; tmp = cpu_to_be64(l2_offset); ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + l1_index * sizeof(tmp), &tmp, sizeof(tmp)); if (ret < 0) { return ret; } new_l2_table = 1; } for(i = 0; i < L2_CACHE_SIZE; i++) { if (l2_offset == s->l2_cache_offsets[i]) { /* increment the hit count */ if (++s->l2_cache_counts[i] == 0xffffffff) { for(j = 0; j < L2_CACHE_SIZE; j++) { s->l2_cache_counts[j] >>= 1; } } l2_table = s->l2_cache + (i << s->l2_bits); goto found; } } /* not found: load a new entry in the least used one */ min_index = 0; min_count = 0xffffffff; for(i = 0; i < L2_CACHE_SIZE; i++) { if (s->l2_cache_counts[i] < min_count) { min_count = s->l2_cache_counts[i]; min_index = i; } } l2_table = s->l2_cache + (min_index << s->l2_bits); if (new_l2_table) { memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); ret = bdrv_pwrite_sync(bs->file, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)); if (ret < 0) { return ret; } } else { ret = bdrv_pread(bs->file, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)); if (ret < 0) { return ret; } } s->l2_cache_offsets[min_index] = l2_offset; s->l2_cache_counts[min_index] = 1; found: l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); cluster_offset = be64_to_cpu(l2_table[l2_index]); if (!cluster_offset || ((cluster_offset & QCOW_OFLAG_COMPRESSED) && allocate == 1)) { if (!allocate) return 0; /* allocate a new cluster */ if ((cluster_offset & QCOW_OFLAG_COMPRESSED) && (n_end - n_start) < s->cluster_sectors) { /* if the cluster is already compressed, we must decompress it in the case it is not completely overwritten */ if (decompress_cluster(bs, cluster_offset) < 0) { return -EIO; } cluster_offset = bdrv_getlength(bs->file->bs); cluster_offset = (cluster_offset + s->cluster_size - 1) & ~(s->cluster_size - 1); /* write the cluster content */ ret = bdrv_pwrite(bs->file, cluster_offset, s->cluster_cache, s->cluster_size); if (ret < 0) { return ret; } } else { cluster_offset = bdrv_getlength(bs->file->bs); if (allocate == 1) { /* round to cluster size */ cluster_offset = (cluster_offset + s->cluster_size - 1) & ~(s->cluster_size - 1); bdrv_truncate(bs->file, cluster_offset + s->cluster_size, PREALLOC_MODE_OFF, NULL); /* if encrypted, we must initialize the cluster content which won't be written */ if (bs->encrypted && (n_end - n_start) < s->cluster_sectors) { uint64_t start_sect; assert(s->crypto); start_sect = (offset & ~(s->cluster_size - 1)) >> 9; for(i = 0; i < s->cluster_sectors; i++) { if (i < n_start || i >= n_end) { memset(s->cluster_data, 0x00, 512); if (qcrypto_block_encrypt(s->crypto, start_sect + i, s->cluster_data, BDRV_SECTOR_SIZE, NULL) < 0) { return -EIO; } ret = bdrv_pwrite(bs->file, cluster_offset + i * 512, s->cluster_data, 512); if (ret < 0) { return ret; } } } } } else if (allocate == 2) { cluster_offset |= QCOW_OFLAG_COMPRESSED | (uint64_t)compressed_size << (63 - s->cluster_bits); } } /* update L2 table */ tmp = cpu_to_be64(cluster_offset); l2_table[l2_index] = tmp; ret = bdrv_pwrite_sync(bs->file, l2_offset + l2_index * sizeof(tmp), &tmp, sizeof(tmp)); if (ret < 0) { return ret; } } *result = cluster_offset; return 1; }
true
qemu
d7a753a148d4738eef95a3b193b081a9c905399f
2,774
int av_get_packet(AVIOContext *s, AVPacket *pkt, int size) { int ret; size= ffio_limit(s, size); ret= av_new_packet(pkt, size); if(ret<0) return ret; pkt->pos= avio_tell(s); ret= avio_read(s, pkt->data, size); if(ret<=0) av_free_packet(pkt); else av_shrink_packet(pkt, ret); if (pkt->size < orig_size) pkt->flags |= AV_PKT_FLAG_CORRUPT; return ret; }
true
FFmpeg
7effbee66cf457c62f795d9b9ed3a1110b364b89
2,775
void xtensa_translate_init(void) { static const char * const regnames[] = { "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", "ar8", "ar9", "ar10", "ar11", "ar12", "ar13", "ar14", "ar15", }; static const char * const fregnames[] = { "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", }; int i; cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env"); cpu_pc = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUXtensaState, pc), "pc"); for (i = 0; i < 16; i++) { cpu_R[i] = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUXtensaState, regs[i]), regnames[i]); } for (i = 0; i < 16; i++) { cpu_FR[i] = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUXtensaState, fregs[i]), fregnames[i]); } for (i = 0; i < 256; ++i) { if (sregnames[i]) { cpu_SR[i] = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUXtensaState, sregs[i]), sregnames[i]); } } for (i = 0; i < 256; ++i) { if (uregnames[i]) { cpu_UR[i] = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUXtensaState, uregs[i]), uregnames[i]); } } #define GEN_HELPER 2 #include "helper.h" }
true
qemu
fe0bd475aa31e60674f7f53b85dc293108026202
2,776
float64 HELPER(recpe_f64)(float64 input, void *fpstp) { float_status *fpst = fpstp; float64 f64 = float64_squash_input_denormal(input, fpst); uint64_t f64_val = float64_val(f64); uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; int64_t f64_exp = extract64(f64_val, 52, 11); float64 r64; uint64_t r64_val; int64_t r64_exp; uint64_t r64_frac; /* Deal with any special cases */ if (float64_is_any_nan(f64)) { float64 nan = f64; if (float64_is_signaling_nan(f64)) { float_raise(float_flag_invalid, fpst); nan = float64_maybe_silence_nan(f64); } if (fpst->default_nan_mode) { nan = float64_default_nan; } return nan; } else if (float64_is_infinity(f64)) { return float64_set_sign(float64_zero, float64_is_neg(f64)); } else if (float64_is_zero(f64)) { float_raise(float_flag_divbyzero, fpst); return float64_set_sign(float64_infinity, float64_is_neg(f64)); } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { /* Abs(value) < 2.0^-1024 */ float_raise(float_flag_overflow | float_flag_inexact, fpst); if (round_to_inf(fpst, f64_sbit)) { return float64_set_sign(float64_infinity, float64_is_neg(f64)); } else { return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); } } else if (f64_exp >= 1023 && fpst->flush_to_zero) { float_raise(float_flag_underflow, fpst); return float64_set_sign(float64_zero, float64_is_neg(f64)); } r64 = call_recip_estimate(f64, 2045, fpst); r64_val = float64_val(r64); r64_exp = extract64(r64_val, 52, 11); r64_frac = extract64(r64_val, 0, 52); /* result = sign : result_exp<10:0> : fraction<51:0> */ return make_float64(f64_sbit | ((r64_exp & 0x7ff) << 52) | r64_frac); }
true
qemu
fc1792e9aa36227ee9994757974f9397684e1a48
2,777
static void stm32f2xx_usart_write(void *opaque, hwaddr addr, uint64_t val64, unsigned int size) { STM32F2XXUsartState *s = opaque; uint32_t value = val64; unsigned char ch; DB_PRINT("Write 0x%" PRIx32 ", 0x%"HWADDR_PRIx"\n", value, addr); switch (addr) { case USART_SR: if (value <= 0x3FF) { s->usart_sr = value; } else { s->usart_sr &= value; } if (!(s->usart_sr & USART_SR_RXNE)) { qemu_set_irq(s->irq, 0); } return; case USART_DR: if (value < 0xF000) { ch = value; if (s->chr) { qemu_chr_fe_write_all(s->chr, &ch, 1); } s->usart_sr |= USART_SR_TC; s->usart_sr &= ~USART_SR_TXE; } return; case USART_BRR: s->usart_brr = value; return; case USART_CR1: s->usart_cr1 = value; if (s->usart_cr1 & USART_CR1_RXNEIE && s->usart_sr & USART_SR_RXNE) { qemu_set_irq(s->irq, 1); } return; case USART_CR2: s->usart_cr2 = value; return; case USART_CR3: s->usart_cr3 = value; return; case USART_GTPR: s->usart_gtpr = value; return; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); } }
true
qemu
6ab3fc32ea640026726bc5f9f4db622d0954fb8a
2,778
static void simpleCopy(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]){ int srcStride[3]; uint8_t *src[3]; uint8_t *dst[3]; if(c->srcFormat == IMGFMT_I420){ src[0]= srcParam[0]; src[1]= srcParam[2]; src[2]= srcParam[1]; srcStride[0]= srcStrideParam[0]; srcStride[1]= srcStrideParam[2]; srcStride[2]= srcStrideParam[1]; } else if(c->srcFormat==IMGFMT_YV12){ src[0]= srcParam[0]; src[1]= srcParam[1]; src[2]= srcParam[2]; srcStride[0]= srcStrideParam[0]; srcStride[1]= srcStrideParam[1]; srcStride[2]= srcStrideParam[2]; } else if(isPacked(c->srcFormat) || isGray(c->srcFormat)){ src[0]= srcParam[0]; src[1]= src[2]= NULL; srcStride[0]= srcStrideParam[0]; srcStride[1]= srcStride[2]= 0; } if(c->dstFormat == IMGFMT_I420){ dst[0]= dstParam[0]; dst[1]= dstParam[2]; dst[2]= dstParam[1]; }else{ dst[0]= dstParam[0]; dst[1]= dstParam[1]; dst[2]= dstParam[2]; } if(isPacked(c->srcFormat)) { if(dstStride[0]==srcStride[0]) memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; int length=0; /* universal length finder */ while(length+c->srcW <= dstStride[0] && length+c->srcW <= srcStride[0]) length+= c->srcW; ASSERT(length!=0); for(i=0; i<srcSliceH; i++) { memcpy(dstPtr, srcPtr, length); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } else { /* Planar YUV */ int plane; for(plane=0; plane<3; plane++) { int length= plane==0 ? c->srcW : ((c->srcW+1)>>1); int y= plane==0 ? srcSliceY: ((srcSliceY+1)>>1); int height= plane==0 ? srcSliceH: ((srcSliceH+1)>>1); if(dstStride[plane]==srcStride[plane]) memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]); else { int i; uint8_t *srcPtr= src[plane]; uint8_t *dstPtr= dst[plane] + dstStride[plane]*y; for(i=0; i<height; i++) { memcpy(dstPtr, srcPtr, length); srcPtr+= srcStride[plane]; dstPtr+= dstStride[plane]; } } } } }
true
FFmpeg
9bd8bd1add6be33f5eb7f2645350901ab2a56a6c
2,779
static void free_ahci_device(QPCIDevice *dev) { QPCIBus *pcibus = dev ? dev->bus : NULL; /* libqos doesn't have a function for this, so free it manually */ g_free(dev); qpci_free_pc(pcibus); }
true
qemu
9a75b0a037e3a8030992244353f17b62f6daf2ab
2,780
int av_reduce(int *dst_nom, int *dst_den, int64_t nom, int64_t den, int64_t max){ AVRational a0={0,1}, a1={1,0}; int sign= (nom<0) ^ (den<0); int64_t gcd= ff_gcd(FFABS(nom), FFABS(den)); nom = FFABS(nom)/gcd; den = FFABS(den)/gcd; if(nom<=max && den<=max){ a1= (AVRational){nom, den}; den=0; } while(den){ int64_t x = nom / den; int64_t next_den= nom - den*x; int64_t a2n= x*a1.num + a0.num; int64_t a2d= x*a1.den + a0.den; if(a2n > max || a2d > max){ if(a1.num) x= (max - a0.num) / a1.num; if(a1.den) x= FFMIN(x, (max - a0.den) / a1.den); // Won't overflow, sum == original denominator if (den*(2*x*a1.den + a0.den) > nom*a1.den) a1 = (AVRational){x*a1.num + a0.num, x*a1.den + a0.den}; break; } a0= a1; a1= (AVRational){a2n, a2d}; nom= den; den= next_den; } assert(ff_gcd(a1.num, a1.den) == 1); *dst_nom = sign ? -a1.num : a1.num; *dst_den = a1.den; return den==0; }
true
FFmpeg
62b9fc1571b1354cf596a280b5fe55a9593a7a2f
2,781
PPC_OP(cmpi) { if (Ts0 < SPARAM(1)) { T0 = 0x08; } else if (Ts0 > SPARAM(1)) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); }
true
qemu
d9bce9d99f4656ae0b0127f7472db9067b8f84ab
2,782
static int bdrv_rd_badreq_bytes(BlockDriverState *bs, int64_t offset, int count) { int64_t size = bs->total_sectors << SECTOR_BITS; return count < 0 || size < 0 || count > size || offset > size - count; }
true
qemu
b5eff355460643d09e533024360fe0522f368c07
2,783
static AVStream * parse_media_type(AVFormatContext *s, AVStream *st, int sid, ff_asf_guid mediatype, ff_asf_guid subtype, ff_asf_guid formattype, int size) { WtvContext *wtv = s->priv_data; AVIOContext *pb = wtv->pb; if (!ff_guidcmp(subtype, mediasubtype_cpfilters_processed) && !ff_guidcmp(formattype, format_cpfilters_processed)) { ff_asf_guid actual_subtype; ff_asf_guid actual_formattype; if (size < 32) { av_log(s, AV_LOG_WARNING, "format buffer size underflow\n"); avio_skip(pb, size); return NULL; } avio_skip(pb, size - 32); ff_get_guid(pb, &actual_subtype); ff_get_guid(pb, &actual_formattype); avio_seek(pb, -size, SEEK_CUR); st = parse_media_type(s, st, sid, mediatype, actual_subtype, actual_formattype, size - 32); avio_skip(pb, 32); return st; } else if (!ff_guidcmp(mediatype, mediatype_audio)) { st = new_stream(s, st, sid, AVMEDIA_TYPE_AUDIO); if (!st) return NULL; if (!ff_guidcmp(formattype, format_waveformatex)) { ff_get_wav_header(pb, st->codec, size); } else { if (ff_guidcmp(formattype, format_none)) av_log(s, AV_LOG_WARNING, "unknown formattype:"PRI_GUID"\n", ARG_GUID(formattype)); avio_skip(pb, size); } if (!memcmp(subtype + 4, (const uint8_t[]){MEDIASUBTYPE_BASE_GUID}, 12)) { st->codec->codec_id = ff_wav_codec_get_id(AV_RL32(subtype), st->codec->bits_per_coded_sample); } else if (!ff_guidcmp(subtype, mediasubtype_mpeg1payload)) { if (st->codec->extradata && st->codec->extradata_size >= 22) parse_mpeg1waveformatex(st); else av_log(s, AV_LOG_WARNING, "MPEG1WAVEFORMATEX underflow\n"); } else { st->codec->codec_id = ff_codec_guid_get_id(audio_guids, subtype); if (st->codec->codec_id == CODEC_ID_NONE) av_log(s, AV_LOG_WARNING, "unknown subtype:"PRI_GUID"\n", ARG_GUID(subtype)); } return st; } else if (!ff_guidcmp(mediatype, mediatype_video)) { st = new_stream(s, st, sid, AVMEDIA_TYPE_VIDEO); if (!st) return NULL; if (!ff_guidcmp(formattype, format_videoinfo2)) { int consumed = parse_videoinfoheader2(s, st); avio_skip(pb, FFMAX(size - consumed, 0)); } else if (!ff_guidcmp(formattype, format_mpeg2_video)) { int consumed = parse_videoinfoheader2(s, st); avio_skip(pb, FFMAX(size - consumed, 0)); } else { if (ff_guidcmp(formattype, format_none)) av_log(s, AV_LOG_WARNING, "unknown formattype:"PRI_GUID"\n", ARG_GUID(formattype)); avio_skip(pb, size); } if (!memcmp(subtype + 4, (const uint8_t[]){MEDIASUBTYPE_BASE_GUID}, 12)) { st->codec->codec_id = ff_codec_get_id(ff_codec_bmp_tags, AV_RL32(subtype)); } else { st->codec->codec_id = ff_codec_guid_get_id(video_guids, subtype); } if (st->codec->codec_id == CODEC_ID_NONE) av_log(s, AV_LOG_WARNING, "unknown subtype:"PRI_GUID"\n", ARG_GUID(subtype)); return st; } else if (!ff_guidcmp(mediatype, mediatype_mpeg2_pes) && !ff_guidcmp(subtype, mediasubtype_dvb_subtitle)) { st = new_stream(s, st, sid, AVMEDIA_TYPE_SUBTITLE); if (!st) return NULL; if (ff_guidcmp(formattype, format_none)) av_log(s, AV_LOG_WARNING, "unknown formattype:"PRI_GUID"\n", ARG_GUID(formattype)); avio_skip(pb, size); st->codec->codec_id = CODEC_ID_DVB_SUBTITLE; return st; } else if (!ff_guidcmp(mediatype, mediatype_mstvcaption) && (!ff_guidcmp(subtype, mediasubtype_teletext) || !ff_guidcmp(subtype, mediasubtype_dtvccdata))) { st = new_stream(s, st, sid, AVMEDIA_TYPE_SUBTITLE); if (!st) return NULL; if (ff_guidcmp(formattype, format_none)) av_log(s, AV_LOG_WARNING, "unknown formattype:"PRI_GUID"\n", ARG_GUID(formattype)); avio_skip(pb, size); st->codec->codec_id = CODEC_ID_DVB_TELETEXT; return st; } else if (!ff_guidcmp(mediatype, mediatype_mpeg2_sections) && !ff_guidcmp(subtype, mediasubtype_mpeg2_sections)) { if (ff_guidcmp(formattype, format_none)) av_log(s, AV_LOG_WARNING, "unknown formattype:"PRI_GUID"\n", ARG_GUID(formattype)); avio_skip(pb, size); return NULL; } av_log(s, AV_LOG_WARNING, "unknown media type, mediatype:"PRI_GUID ", subtype:"PRI_GUID", formattype:"PRI_GUID"\n", ARG_GUID(mediatype), ARG_GUID(subtype), ARG_GUID(formattype)); avio_skip(pb, size); return NULL; }
true
FFmpeg
ca402f32e392590a81a1381dab41c4f9c2c2f98a
2,784
static inline void RENAME(hyscale)(uint16_t *dst, long dstWidth, uint8_t *src, int srcW, int xInc, int flags, int canMMX2BeUsed, int16_t *hLumFilter, int16_t *hLumFilterPos, int hLumFilterSize, void *funnyYCode, int srcFormat, uint8_t *formatConvBuffer, int16_t *mmx2Filter, int32_t *mmx2FilterPos) { if(srcFormat==IMGFMT_YUY2) { RENAME(yuy2ToY)(formatConvBuffer, src, srcW); src= formatConvBuffer; } else if(srcFormat==IMGFMT_UYVY) { RENAME(uyvyToY)(formatConvBuffer, src, srcW); src= formatConvBuffer; } else if(srcFormat==IMGFMT_BGR32) { RENAME(bgr32ToY)(formatConvBuffer, src, srcW); src= formatConvBuffer; } else if(srcFormat==IMGFMT_BGR24) { RENAME(bgr24ToY)(formatConvBuffer, src, srcW); src= formatConvBuffer; } else if(srcFormat==IMGFMT_BGR16) { RENAME(bgr16ToY)(formatConvBuffer, src, srcW); src= formatConvBuffer; } else if(srcFormat==IMGFMT_BGR15) { RENAME(bgr15ToY)(formatConvBuffer, src, srcW); src= formatConvBuffer; } else if(srcFormat==IMGFMT_RGB32) { RENAME(rgb32ToY)(formatConvBuffer, src, srcW); src= formatConvBuffer; } else if(srcFormat==IMGFMT_RGB24) { RENAME(rgb24ToY)(formatConvBuffer, src, srcW); src= formatConvBuffer; } #ifdef HAVE_MMX // use the new MMX scaler if the mmx2 can't be used (its faster than the x86asm one) if(!(flags&SWS_FAST_BILINEAR) || (!canMMX2BeUsed)) #else if(!(flags&SWS_FAST_BILINEAR)) #endif { RENAME(hScale)(dst, dstWidth, src, srcW, xInc, hLumFilter, hLumFilterPos, hLumFilterSize); } else // Fast Bilinear upscale / crap downscale { #if defined(ARCH_X86) || defined(ARCH_X86_64) #ifdef HAVE_MMX2 int i; if(canMMX2BeUsed) { asm volatile( "pxor %%mm7, %%mm7 \n\t" "mov %0, %%"REG_c" \n\t" "mov %1, %%"REG_D" \n\t" "mov %2, %%"REG_d" \n\t" "mov %3, %%"REG_b" \n\t" "xor %%"REG_a", %%"REG_a" \n\t" // i PREFETCH" (%%"REG_c") \n\t" PREFETCH" 32(%%"REG_c") \n\t" PREFETCH" 64(%%"REG_c") \n\t" #ifdef ARCH_X86_64 #define FUNNY_Y_CODE \ "movl (%%"REG_b"), %%esi \n\t"\ "call *%4 \n\t"\ "movl (%%"REG_b", %%"REG_a"), %%esi\n\t"\ "add %%"REG_S", %%"REG_c" \n\t"\ "add %%"REG_a", %%"REG_D" \n\t"\ "xor %%"REG_a", %%"REG_a" \n\t"\ #else #define FUNNY_Y_CODE \ "movl (%%"REG_b"), %%esi \n\t"\ "call *%4 \n\t"\ "addl (%%"REG_b", %%"REG_a"), %%"REG_c"\n\t"\ "add %%"REG_a", %%"REG_D" \n\t"\ "xor %%"REG_a", %%"REG_a" \n\t"\ #endif FUNNY_Y_CODE FUNNY_Y_CODE FUNNY_Y_CODE FUNNY_Y_CODE FUNNY_Y_CODE FUNNY_Y_CODE FUNNY_Y_CODE FUNNY_Y_CODE :: "m" (src), "m" (dst), "m" (mmx2Filter), "m" (mmx2FilterPos), "m" (funnyYCode) : "%"REG_a, "%"REG_b, "%"REG_c, "%"REG_d, "%"REG_S, "%"REG_D ); for(i=dstWidth-1; (i*xInc)>>16 >=srcW-1; i--) dst[i] = src[srcW-1]*128; } else { #endif long xInc_shr16 = xInc >> 16; uint16_t xInc_mask = xInc & 0xffff; //NO MMX just normal asm ... asm volatile( "xor %%"REG_a", %%"REG_a" \n\t" // i "xor %%"REG_b", %%"REG_b" \n\t" // xx "xorl %%ecx, %%ecx \n\t" // 2*xalpha ASMALIGN16 "1: \n\t" "movzbl (%0, %%"REG_b"), %%edi \n\t" //src[xx] "movzbl 1(%0, %%"REG_b"), %%esi \n\t" //src[xx+1] "subl %%edi, %%esi \n\t" //src[xx+1] - src[xx] "imull %%ecx, %%esi \n\t" //(src[xx+1] - src[xx])*2*xalpha "shll $16, %%edi \n\t" "addl %%edi, %%esi \n\t" //src[xx+1]*2*xalpha + src[xx]*(1-2*xalpha) "mov %1, %%"REG_D" \n\t" "shrl $9, %%esi \n\t" "movw %%si, (%%"REG_D", %%"REG_a", 2)\n\t" "addw %4, %%cx \n\t" //2*xalpha += xInc&0xFF "adc %3, %%"REG_b" \n\t" //xx+= xInc>>8 + carry "movzbl (%0, %%"REG_b"), %%edi \n\t" //src[xx] "movzbl 1(%0, %%"REG_b"), %%esi \n\t" //src[xx+1] "subl %%edi, %%esi \n\t" //src[xx+1] - src[xx] "imull %%ecx, %%esi \n\t" //(src[xx+1] - src[xx])*2*xalpha "shll $16, %%edi \n\t" "addl %%edi, %%esi \n\t" //src[xx+1]*2*xalpha + src[xx]*(1-2*xalpha) "mov %1, %%"REG_D" \n\t" "shrl $9, %%esi \n\t" "movw %%si, 2(%%"REG_D", %%"REG_a", 2)\n\t" "addw %4, %%cx \n\t" //2*xalpha += xInc&0xFF "adc %3, %%"REG_b" \n\t" //xx+= xInc>>8 + carry "add $2, %%"REG_a" \n\t" "cmp %2, %%"REG_a" \n\t" " jb 1b \n\t" :: "r" (src), "m" (dst), "m" (dstWidth), "m" (xInc_shr16), "m" (xInc_mask) : "%"REG_a, "%"REG_b, "%ecx", "%"REG_D, "%esi" ); #ifdef HAVE_MMX2 } //if MMX2 can't be used #endif #else int i; unsigned int xpos=0; for(i=0;i<dstWidth;i++) { register unsigned int xx=xpos>>16; register unsigned int xalpha=(xpos&0xFFFF)>>9; dst[i]= (src[xx]<<7) + (src[xx+1] - src[xx])*xalpha; xpos+=xInc; } #endif } }
false
FFmpeg
4bff9ef9d0781c4de228bf1f85634d2706fc589b
2,785
static void filter(AVFilterContext *ctx, AVFilterBufferRef *dstpic, int parity, int tff) { YADIFContext *yadif = ctx->priv; int y, i; for (i = 0; i < yadif->csp->nb_components; i++) { int w = dstpic->video->w; int h = dstpic->video->h; int refs = yadif->cur->linesize[i]; int df = (yadif->csp->comp[i].depth_minus1 + 8) / 8; if (i == 1 || i == 2) { /* Why is this not part of the per-plane description thing? */ w >>= yadif->csp->log2_chroma_w; h >>= yadif->csp->log2_chroma_h; } for (y = 0; y < h; y++) { if ((y ^ parity) & 1) { uint8_t *prev = &yadif->prev->data[i][y*refs]; uint8_t *cur = &yadif->cur ->data[i][y*refs]; uint8_t *next = &yadif->next->data[i][y*refs]; uint8_t *dst = &dstpic->data[i][y*dstpic->linesize[i]]; int mode = y==1 || y+2==h ? 2 : yadif->mode; yadif->filter_line(dst, prev, cur, next, w, y+1<h ? refs : -refs, y ? -refs : refs, parity ^ tff, mode); } else { memcpy(&dstpic->data[i][y*dstpic->linesize[i]], &yadif->cur->data[i][y*refs], w*df); } } } emms_c(); }
false
FFmpeg
2f7e8dcf45f11df94f47acbe6825cc93514ea59b
2,786
static void vorbis_free_extradata(PayloadContext * data) { av_free(data); }
false
FFmpeg
202a6697ba54293235ce2d7bd5724f4f461e417f
2,787
static int dxva2_alloc(AVCodecContext *s) { InputStream *ist = s->opaque; int loglevel = (ist->hwaccel_id == HWACCEL_AUTO) ? AV_LOG_VERBOSE : AV_LOG_ERROR; DXVA2Context *ctx; HANDLE device_handle; HRESULT hr; AVHWDeviceContext *device_ctx; AVDXVA2DeviceContext *device_hwctx; int ret; ctx = av_mallocz(sizeof(*ctx)); if (!ctx) return AVERROR(ENOMEM); ist->hwaccel_ctx = ctx; ist->hwaccel_uninit = dxva2_uninit; ist->hwaccel_get_buffer = dxva2_get_buffer; ist->hwaccel_retrieve_data = dxva2_retrieve_data; ret = av_hwdevice_ctx_create(&ctx->hw_device_ctx, AV_HWDEVICE_TYPE_DXVA2, ist->hwaccel_device, NULL, 0); if (ret < 0) goto fail; device_ctx = (AVHWDeviceContext*)ctx->hw_device_ctx->data; device_hwctx = device_ctx->hwctx; hr = IDirect3DDeviceManager9_OpenDeviceHandle(device_hwctx->devmgr, &device_handle); if (FAILED(hr)) { av_log(NULL, loglevel, "Failed to open a device handle\n"); goto fail; } hr = IDirect3DDeviceManager9_GetVideoService(device_hwctx->devmgr, device_handle, &IID_IDirectXVideoDecoderService, (void **)&ctx->decoder_service); IDirect3DDeviceManager9_CloseDeviceHandle(device_hwctx->devmgr, device_handle); if (FAILED(hr)) { av_log(NULL, loglevel, "Failed to create IDirectXVideoDecoderService\n"); goto fail; } ctx->tmp_frame = av_frame_alloc(); if (!ctx->tmp_frame) goto fail; s->hwaccel_context = av_mallocz(sizeof(struct dxva_context)); if (!s->hwaccel_context) goto fail; return 0; fail: dxva2_uninit(s); return AVERROR(EINVAL); }
false
FFmpeg
70143a3954e1c4412efb2bf1a3a818adea2d3abf
2,788
static av_cold int amr_nb_encode_init(AVCodecContext *avctx) { AMRContext *s = avctx->priv_data; if (avctx->sample_rate != 8000) { av_log(avctx, AV_LOG_ERROR, "Only 8000Hz sample rate supported\n"); return AVERROR(ENOSYS); } if (avctx->channels != 1) { av_log(avctx, AV_LOG_ERROR, "Only mono supported\n"); return AVERROR(ENOSYS); } avctx->frame_size = 160; avctx->initial_padding = 50; ff_af_queue_init(avctx, &s->afq); s->enc_state = Encoder_Interface_init(s->enc_dtx); if (!s->enc_state) { av_log(avctx, AV_LOG_ERROR, "Encoder_Interface_init error\n"); av_freep(&avctx->coded_frame); return -1; } s->enc_mode = get_bitrate_mode(avctx->bit_rate, avctx); s->enc_bitrate = avctx->bit_rate; return 0; }
false
FFmpeg
d6604b29ef544793479d7fb4e05ef6622bb3e534
2,790
static void avc_luma_mid_4w_msa(const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, int32_t height) { uint32_t loop_cnt; v16i8 src0, src1, src2, src3, src4; v16i8 mask0, mask1, mask2; v8i16 hz_out0, hz_out1, hz_out2, hz_out3; v8i16 hz_out4, hz_out5, hz_out6, hz_out7, hz_out8; v8i16 dst0, dst1, dst2, dst3; LD_SB3(&luma_mask_arr[48], 16, mask0, mask1, mask2); LD_SB5(src, src_stride, src0, src1, src2, src3, src4); src += (5 * src_stride); XORI_B5_128_SB(src0, src1, src2, src3, src4); hz_out0 = AVC_XOR_VSHF_B_AND_APPLY_6TAP_HORIZ_FILT_SH(src0, src1, mask0, mask1, mask2); hz_out2 = AVC_XOR_VSHF_B_AND_APPLY_6TAP_HORIZ_FILT_SH(src2, src3, mask0, mask1, mask2); PCKOD_D2_SH(hz_out0, hz_out0, hz_out2, hz_out2, hz_out1, hz_out3); hz_out4 = AVC_HORZ_FILTER_SH(src4, src4, mask0, mask1, mask2); for (loop_cnt = (height >> 2); loop_cnt--;) { LD_SB4(src, src_stride, src0, src1, src2, src3); src += (4 * src_stride); XORI_B4_128_SB(src0, src1, src2, src3); hz_out5 = AVC_XOR_VSHF_B_AND_APPLY_6TAP_HORIZ_FILT_SH(src0, src1, mask0, mask1, mask2); hz_out7 = AVC_XOR_VSHF_B_AND_APPLY_6TAP_HORIZ_FILT_SH(src2, src3, mask0, mask1, mask2); PCKOD_D2_SH(hz_out5, hz_out5, hz_out7, hz_out7, hz_out6, hz_out8); dst0 = AVC_CALC_DPADD_H_6PIX_2COEFF_R_SH(hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5); dst1 = AVC_CALC_DPADD_H_6PIX_2COEFF_R_SH(hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6); dst2 = AVC_CALC_DPADD_H_6PIX_2COEFF_R_SH(hz_out2, hz_out3, hz_out4, hz_out5, hz_out6, hz_out7); dst3 = AVC_CALC_DPADD_H_6PIX_2COEFF_R_SH(hz_out3, hz_out4, hz_out5, hz_out6, hz_out7, hz_out8); PCKEV_B2_SB(dst1, dst0, dst3, dst2, src0, src1); XORI_B2_128_SB(src0, src1); ST4x4_UB(src0, src1, 0, 2, 0, 2, dst, dst_stride); dst += (4 * dst_stride); hz_out0 = hz_out4; hz_out1 = hz_out5; hz_out2 = hz_out6; hz_out3 = hz_out7; hz_out4 = hz_out8; } }
false
FFmpeg
e549933a270dd2cfc36f2cf9bb6b29acf3dc6d08
2,791
static int svq1_motion_inter_4v_block(MpegEncContext *s, GetBitContext *bitbuf, uint8_t *current, uint8_t *previous, int pitch, svq1_pmv *motion, int x, int y) { uint8_t *src; uint8_t *dst; svq1_pmv mv; svq1_pmv *pmv[4]; int i, result; /* predict and decode motion vector (0) */ pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } result = svq1_decode_motion_vector(bitbuf, &mv, pmv); if (result != 0) return result; /* predict and decode motion vector (1) */ pmv[0] = &mv; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 3]; } result = svq1_decode_motion_vector(bitbuf, &motion[0], pmv); if (result != 0) return result; /* predict and decode motion vector (2) */ pmv[1] = &motion[0]; pmv[2] = &motion[(x / 8) + 1]; result = svq1_decode_motion_vector(bitbuf, &motion[(x / 8) + 2], pmv); if (result != 0) return result; /* predict and decode motion vector (3) */ pmv[2] = &motion[(x / 8) + 2]; pmv[3] = &motion[(x / 8) + 3]; result = svq1_decode_motion_vector(bitbuf, pmv[3], pmv); if (result != 0) return result; /* form predictions */ for (i = 0; i < 4; i++) { int mvx = pmv[i]->x + (i & 1) * 16; int mvy = pmv[i]->y + (i >> 1) * 16; // FIXME: clipping or padding? if (y + (mvy >> 1) < 0) mvy = 0; if (x + (mvx >> 1) < 0) mvx = 0; src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1)) * pitch]; dst = current; s->dsp.put_pixels_tab[1][((mvy & 1) << 1) | (mvx & 1)](dst, src, pitch, 8); /* select next block */ if (i & 1) current += 8 * (pitch - 1); else current += 8; } return 0; }
false
FFmpeg
7b9fc769e40a7709fa59a54e2a810f76364eee4b
2,792
int ff_avc_parse_nal_units(AVIOContext *pb, const uint8_t *buf_in, int size) { const uint8_t *p = buf_in; const uint8_t *end = p + size; const uint8_t *nal_start, *nal_end; size = 0; nal_start = ff_avc_find_startcode(p, end); while (nal_start < end) { while(!*(nal_start++)); nal_end = ff_avc_find_startcode(nal_start, end); avio_wb32(pb, nal_end - nal_start); avio_write(pb, nal_start, nal_end - nal_start); size += 4 + nal_end - nal_start; nal_start = nal_end; } return size; }
false
FFmpeg
6c643e070584ba7af251d3907e277d2170537b1f
2,794
static int flac_parse(AVCodecParserContext *s, AVCodecContext *avctx, const uint8_t **poutbuf, int *poutbuf_size, const uint8_t *buf, int buf_size) { FLACParseContext *fpc = s->priv_data; FLACHeaderMarker *curr; int nb_headers; int read_size = 0; if (s->flags & PARSER_FLAG_COMPLETE_FRAMES) { FLACFrameInfo fi; if (frame_header_is_valid(avctx, buf, &fi)) avctx->frame_size = fi.blocksize; *poutbuf = buf; *poutbuf_size = buf_size; return buf_size; } fpc->avctx = avctx; if (fpc->best_header_valid) return get_best_header(fpc, poutbuf, poutbuf_size); /* If a best_header was found last call remove it with the buffer data. */ if (fpc->best_header && fpc->best_header->best_child) { FLACHeaderMarker *temp; FLACHeaderMarker *best_child = fpc->best_header->best_child; /* Remove headers in list until the end of the best_header. */ for (curr = fpc->headers; curr != best_child; curr = temp) { if (curr != fpc->best_header) { av_log(avctx, AV_LOG_DEBUG, "dropping low score %i frame header from offset %i to %i\n", curr->max_score, curr->offset, curr->next->offset); } temp = curr->next; av_freep(&curr->link_penalty); av_free(curr); fpc->nb_headers_buffered--; } /* Release returned data from ring buffer. */ av_fifo_drain(fpc->fifo_buf, best_child->offset); /* Fix the offset for the headers remaining to match the new buffer. */ for (curr = best_child->next; curr; curr = curr->next) curr->offset -= best_child->offset; fpc->nb_headers_buffered--; best_child->offset = 0; fpc->headers = best_child; if (fpc->nb_headers_buffered >= FLAC_MIN_HEADERS) { fpc->best_header = best_child; return get_best_header(fpc, poutbuf, poutbuf_size); } fpc->best_header = NULL; } else if (fpc->best_header) { /* No end frame no need to delete the buffer; probably eof */ FLACHeaderMarker *temp; for (curr = fpc->headers; curr != fpc->best_header; curr = temp) { temp = curr->next; av_freep(&curr->link_penalty); av_free(curr); } fpc->headers = fpc->best_header->next; av_freep(&fpc->best_header->link_penalty); av_freep(&fpc->best_header); } /* Find and score new headers. */ if (buf_size || !fpc->end_padded) { int start_offset; /* Pad the end once if EOF, to check the final region for headers. */ if (!buf_size) { fpc->end_padded = 1; buf_size = read_size = MAX_FRAME_HEADER_SIZE; } else { /* The maximum read size is the upper-bound of what the parser needs to have the required number of frames buffered */ int nb_desired = FLAC_MIN_HEADERS - fpc->nb_headers_buffered + 1; read_size = FFMIN(buf_size, nb_desired * FLAC_AVG_FRAME_SIZE); } /* Fill the buffer. */ if (av_fifo_realloc2(fpc->fifo_buf, read_size + av_fifo_size(fpc->fifo_buf)) < 0) { av_log(avctx, AV_LOG_ERROR, "couldn't reallocate buffer of size %d\n", read_size + av_fifo_size(fpc->fifo_buf)); goto handle_error; } if (buf) { av_fifo_generic_write(fpc->fifo_buf, (void*) buf, read_size, NULL); } else { int8_t pad[MAX_FRAME_HEADER_SIZE]; memset(pad, 0, sizeof(pad)); av_fifo_generic_write(fpc->fifo_buf, (void*) pad, sizeof(pad), NULL); } /* Tag headers and update sequences. */ start_offset = av_fifo_size(fpc->fifo_buf) - (read_size + (MAX_FRAME_HEADER_SIZE - 1)); start_offset = FFMAX(0, start_offset); nb_headers = find_new_headers(fpc, start_offset); if (nb_headers < 0) { av_log(avctx, AV_LOG_ERROR, "find_new_headers couldn't allocate FLAC header\n"); goto handle_error; } fpc->nb_headers_buffered = nb_headers; /* Wait till FLAC_MIN_HEADERS to output a valid frame. */ if (!fpc->end_padded && fpc->nb_headers_buffered < FLAC_MIN_HEADERS) goto handle_error; /* If headers found, update the scores since we have longer chains. */ if (fpc->end_padded || fpc->nb_headers_found) score_sequences(fpc); /* restore the state pre-padding */ if (fpc->end_padded) { /* HACK: drain the tail of the fifo */ fpc->fifo_buf->wptr -= MAX_FRAME_HEADER_SIZE; fpc->fifo_buf->wndx -= MAX_FRAME_HEADER_SIZE; if (fpc->fifo_buf->wptr < 0) { fpc->fifo_buf->wptr += fpc->fifo_buf->end - fpc->fifo_buf->buffer; } buf_size = read_size = 0; } } curr = fpc->headers; for (curr = fpc->headers; curr; curr = curr->next) if (!fpc->best_header || curr->max_score > fpc->best_header->max_score) fpc->best_header = curr; if (fpc->best_header) { fpc->best_header_valid = 1; if (fpc->best_header->offset > 0) { /* Output a junk frame. */ av_log(avctx, AV_LOG_DEBUG, "Junk frame till offset %i\n", fpc->best_header->offset); /* Set frame_size to 0. It is unknown or invalid in a junk frame. */ avctx->frame_size = 0; *poutbuf_size = fpc->best_header->offset; *poutbuf = flac_fifo_read_wrap(fpc, 0, *poutbuf_size, &fpc->wrap_buf, &fpc->wrap_buf_allocated_size); return buf_size ? read_size : (fpc->best_header->offset - av_fifo_size(fpc->fifo_buf)); } if (!buf_size) return get_best_header(fpc, poutbuf, poutbuf_size); } handle_error: *poutbuf = NULL; *poutbuf_size = 0; return read_size; }
false
FFmpeg
4b5d4720c1c46e8a80b945854a6dec5f681e11c0
2,796
void qemu_chr_be_write(CharDriverState *s, uint8_t *buf, int len) { if (s->chr_read) { s->chr_read(s->handler_opaque, buf, len); } }
false
qemu
33577b47c64435fcc2a1bc01c7e82534256f1fc3