id
int32
0
27.3k
func
stringlengths
26
142k
target
bool
2 classes
project
stringclasses
2 values
commit_id
stringlengths
40
40
25,633
void cpu_loop(CPUS390XState *env) { CPUState *cs = CPU(s390_env_get_cpu(env)); int trapnr, n, sig; target_siginfo_t info; target_ulong addr; while (1) { cpu_exec_start(cs); trapnr = cpu_s390x_exec(cs); cpu_exec_end(cs); switch (trapnr) { case EXCP_INTERRUPT: /* Just indicate that signals should be handled asap. */ break; case EXCP_SVC: n = env->int_svc_code; if (!n) { /* syscalls > 255 */ n = env->regs[1]; } env->psw.addr += env->int_svc_ilen; env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3], env->regs[4], env->regs[5], env->regs[6], env->regs[7], 0, 0); break; case EXCP_DEBUG: sig = gdb_handlesig(cs, TARGET_SIGTRAP); if (sig) { n = TARGET_TRAP_BRKPT; goto do_signal_pc; } break; case EXCP_PGM: n = env->int_pgm_code; switch (n) { case PGM_OPERATION: case PGM_PRIVILEGED: sig = TARGET_SIGILL; n = TARGET_ILL_ILLOPC; goto do_signal_pc; case PGM_PROTECTION: case PGM_ADDRESSING: sig = TARGET_SIGSEGV; /* XXX: check env->error_code */ n = TARGET_SEGV_MAPERR; addr = env->__excp_addr; goto do_signal; case PGM_EXECUTE: case PGM_SPECIFICATION: case PGM_SPECIAL_OP: case PGM_OPERAND: do_sigill_opn: sig = TARGET_SIGILL; n = TARGET_ILL_ILLOPN; goto do_signal_pc; case PGM_FIXPT_OVERFLOW: sig = TARGET_SIGFPE; n = TARGET_FPE_INTOVF; goto do_signal_pc; case PGM_FIXPT_DIVIDE: sig = TARGET_SIGFPE; n = TARGET_FPE_INTDIV; goto do_signal_pc; case PGM_DATA: n = (env->fpc >> 8) & 0xff; if (n == 0xff) { /* compare-and-trap */ goto do_sigill_opn; } else { /* An IEEE exception, simulated or otherwise. */ if (n & 0x80) { n = TARGET_FPE_FLTINV; } else if (n & 0x40) { n = TARGET_FPE_FLTDIV; } else if (n & 0x20) { n = TARGET_FPE_FLTOVF; } else if (n & 0x10) { n = TARGET_FPE_FLTUND; } else if (n & 0x08) { n = TARGET_FPE_FLTRES; } else { /* ??? Quantum exception; BFP, DFP error. */ goto do_sigill_opn; } sig = TARGET_SIGFPE; goto do_signal_pc; } default: fprintf(stderr, "Unhandled program exception: %#x\n", n); cpu_dump_state(cs, stderr, fprintf, 0); exit(EXIT_FAILURE); } break; do_signal_pc: addr = env->psw.addr; do_signal: info.si_signo = sig; info.si_errno = 0; info.si_code = n; info._sifields._sigfault._addr = addr; queue_signal(env, info.si_signo, &info); break; default: fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); cpu_dump_state(cs, stderr, fprintf, 0); exit(EXIT_FAILURE); } process_pending_signals (env); } }
false
qemu
47405ab642101c8ea0472ae434ab4bd2bc1fa41f
25,634
Object *object_resolve_path_component(Object *parent, const gchar *part) { ObjectProperty *prop = object_property_find(parent, part, NULL); if (prop == NULL) { return NULL; } if (object_property_is_link(prop)) { LinkProperty *lprop = prop->opaque; return *lprop->child; } else if (object_property_is_child(prop)) { return prop->opaque; } else { return NULL; } }
false
qemu
64607d088132abdb25bf30d93e97d0c8df7b364c
25,635
static void *virtio_scsi_load_request(QEMUFile *f, SCSIRequest *sreq) { SCSIBus *bus = sreq->bus; VirtIOSCSI *s = container_of(bus, VirtIOSCSI, bus); VirtIOSCSICommon *vs = VIRTIO_SCSI_COMMON(s); VirtIOSCSIReq *req; uint32_t n; req = g_malloc(sizeof(*req)); qemu_get_be32s(f, &n); assert(n < vs->conf.num_queues); qemu_get_buffer(f, (unsigned char *)&req->elem, sizeof(req->elem)); /* TODO: add a way for SCSIBusInfo's load_request to fail, * and fail migration instead of asserting here. * When we do, we might be able to re-enable NDEBUG below. */ #ifdef NDEBUG #error building with NDEBUG is not supported #endif assert(req->elem.in_num <= ARRAY_SIZE(req->elem.in_sg)); assert(req->elem.out_num <= ARRAY_SIZE(req->elem.out_sg)); virtio_scsi_parse_req(s, vs->cmd_vqs[n], req); scsi_req_ref(sreq); req->sreq = sreq; if (req->sreq->cmd.mode != SCSI_XFER_NONE) { int req_mode = (req->elem.in_num > 1 ? SCSI_XFER_FROM_DEV : SCSI_XFER_TO_DEV); assert(req->sreq->cmd.mode == req_mode); } return req; }
false
qemu
36b15c79aa1bef5fe7543f9f2629b6413720bbfb
25,637
static void phys_sections_free(PhysPageMap *map) { while (map->sections_nb > 0) { MemoryRegionSection *section = &map->sections[--map->sections_nb]; phys_section_destroy(section->mr); } g_free(map->sections); g_free(map->nodes); g_free(map); }
false
qemu
53cb28cbfea038f8ad50132dc8a684e638c7d48b
25,638
static void fill_buffer(ByteIOContext *s) { int len; /* no need to do anything if EOF already reached */ if (s->eof_reached) return; if(s->update_checksum){ if(s->buf_end > s->checksum_ptr) s->checksum= s->update_checksum(s->checksum, s->checksum_ptr, s->buf_end - s->checksum_ptr); s->checksum_ptr= s->buffer; } len = s->read_packet(s->opaque, s->buffer, s->buffer_size); if (len <= 0) { /* do not modify buffer if EOF reached so that a seek back can be done without rereading data */ s->eof_reached = 1; if(len<0) s->error= len; } else { s->pos += len; s->buf_ptr = s->buffer; s->buf_end = s->buffer + len; } }
false
FFmpeg
602dd8f6c4d4f7e1b5f48cc580fd9b694d41d602
25,639
static int adx_encode_frame(AVCodecContext *avctx, uint8_t *frame, int buf_size, void *data) { ADXContext *c = avctx->priv_data; const int16_t *samples = data; uint8_t *dst = frame; int ch; if (!c->header_parsed) { int hdrsize = adx_encode_header(avctx, dst, buf_size); dst += hdrsize; c->header_parsed = 1; } for (ch = 0; ch < avctx->channels; ch++) { adx_encode(c, dst, samples + ch, &c->prev[ch], avctx->channels); dst += BLOCK_SIZE; } return dst - frame; }
false
FFmpeg
754ebd1a5b68dd63ccceb50a8a852fe8d0c94354
25,640
static int bmp_parse(AVCodecParserContext *s, AVCodecContext *avctx, const uint8_t **poutbuf, int *poutbuf_size, const uint8_t *buf, int buf_size) { BMPParseContext *bpc = s->priv_data; uint64_t state = bpc->pc.state64; int next = END_NOT_FOUND; int i = 0; *poutbuf_size = 0; restart: if (bpc->pc.frame_start_found <= 2+4+4) { for (; i < buf_size; i++) { state = (state << 8) | buf[i]; if (bpc->pc.frame_start_found == 0) { if ((state >> 48) == (('B' << 8) | 'M')) { bpc->fsize = av_bswap32(state >> 16); bpc->pc.frame_start_found = 1; } } else if (bpc->pc.frame_start_found == 2+4+4) { // unsigned hsize = av_bswap32(state>>32); unsigned ihsize = av_bswap32(state); if (ihsize < 12 || ihsize > 200) { bpc->pc.frame_start_found = 0; continue; } bpc->pc.frame_start_found++; bpc->remaining_size = bpc->fsize + i - 17; if (bpc->pc.index + i > 17) { next = i - 17; state = 0; break; } else { bpc->pc.state64 = 0; goto restart; } } else if (bpc->pc.frame_start_found) bpc->pc.frame_start_found++; } bpc->pc.state64 = state; } else { if (bpc->remaining_size) { i = FFMIN(bpc->remaining_size, buf_size); bpc->remaining_size -= i; if (bpc->remaining_size) goto flush; bpc->pc.frame_start_found = 0; goto restart; } } flush: if (ff_combine_frame(&bpc->pc, next, &buf, &buf_size) < 0) return buf_size; if (next != END_NOT_FOUND && next < 0) bpc->pc.frame_start_found = FFMAX(bpc->pc.frame_start_found - i - 1, 0); else bpc->pc.frame_start_found = 0; *poutbuf = buf; *poutbuf_size = buf_size; return next; }
false
FFmpeg
43a4276c6964a2ec57e08c3c622bb94d35c0441f
25,641
static int avi_read_seek(AVFormatContext *s, int stream_index, int64_t timestamp, int flags) { AVIContext *avi = s->priv_data; AVStream *st; int i, index; int64_t pos; AVIStream *ast; if (!avi->index_loaded) { /* we only load the index on demand */ avi_load_index(s); avi->index_loaded = 1; } assert(stream_index>= 0); st = s->streams[stream_index]; ast= st->priv_data; index= av_index_search_timestamp(st, timestamp * FFMAX(ast->sample_size, 1), flags); if(index<0) return -1; /* find the position */ pos = st->index_entries[index].pos; timestamp = st->index_entries[index].timestamp / FFMAX(ast->sample_size, 1); av_dlog(s, "XX %"PRId64" %d %"PRId64"\n", timestamp, index, st->index_entries[index].timestamp); if (CONFIG_DV_DEMUXER && avi->dv_demux) { /* One and only one real stream for DV in AVI, and it has video */ /* offsets. Calling with other stream indexes should have failed */ /* the av_index_search_timestamp call above. */ assert(stream_index == 0); /* Feed the DV video stream version of the timestamp to the */ /* DV demux so it can synthesize correct timestamps. */ ff_dv_offset_reset(avi->dv_demux, timestamp); avio_seek(s->pb, pos, SEEK_SET); avi->stream_index= -1; return 0; } for(i = 0; i < s->nb_streams; i++) { AVStream *st2 = s->streams[i]; AVIStream *ast2 = st2->priv_data; ast2->packet_size= ast2->remaining= 0; if (ast2->sub_ctx) { seek_subtitle(st, st2, timestamp); continue; } if (st2->nb_index_entries <= 0) continue; // assert(st2->codec->block_align); assert((int64_t)st2->time_base.num*ast2->rate == (int64_t)st2->time_base.den*ast2->scale); index = av_index_search_timestamp( st2, av_rescale_q(timestamp, st->time_base, st2->time_base) * FFMAX(ast2->sample_size, 1), flags | AVSEEK_FLAG_BACKWARD); if(index<0) index=0; if(!avi->non_interleaved){ while(index>0 && st2->index_entries[index].pos > pos) index--; while(index+1 < st2->nb_index_entries && st2->index_entries[index].pos < pos) index++; } av_dlog(s, "%"PRId64" %d %"PRId64"\n", timestamp, index, st2->index_entries[index].timestamp); /* extract the current frame number */ ast2->frame_offset = st2->index_entries[index].timestamp; } /* do the seek */ avio_seek(s->pb, pos, SEEK_SET); avi->stream_index= -1; return 0; }
false
FFmpeg
570a4a0189946c2c983da41d37fdd67fa13266e7
25,642
static int opt_streamid(const char *opt, const char *arg) { int idx; char *p; char idx_str[16]; av_strlcpy(idx_str, arg, sizeof(idx_str)); p = strchr(idx_str, ':'); if (!p) { fprintf(stderr, "Invalid value '%s' for option '%s', required syntax is 'index:value'\n", arg, opt); ffmpeg_exit(1); } *p++ = '\0'; idx = parse_number_or_die(opt, idx_str, OPT_INT, 0, INT_MAX); streamid_map = grow_array(streamid_map, sizeof(*streamid_map), &nb_streamid_map, idx+1); streamid_map[idx] = parse_number_or_die(opt, p, OPT_INT, 0, INT_MAX); return 0; }
false
FFmpeg
c31a5b23b4cd566724743685e5ea158b0c818647
25,643
static void avc_luma_midv_qrt_16w_msa(const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, int32_t height, uint8_t vert_offset) { uint32_t multiple8_cnt; for (multiple8_cnt = 2; multiple8_cnt--;) { avc_luma_midv_qrt_8w_msa(src, src_stride, dst, dst_stride, height, vert_offset); src += 8; dst += 8; } }
false
FFmpeg
662234a9a22f1cd0f0ac83b8bb1ffadedca90c0a
25,645
static void RENAME(yuv2rgb32_1)(SwsContext *c, const uint16_t *buf0, const uint16_t *ubuf0, const uint16_t *ubuf1, const uint16_t *vbuf0, const uint16_t *vbuf1, const uint16_t *abuf0, uint8_t *dest, int dstW, int uvalpha, enum PixelFormat dstFormat, int flags, int y) { const uint16_t *buf1= buf0; //FIXME needed for RGB1/BGR1 if (uvalpha < 2048) { // note this is not correct (shifts chrominance by 0.5 pixels) but it is a bit faster if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { __asm__ volatile( "mov %%"REG_b", "ESP_OFFSET"(%5) \n\t" "mov %4, %%"REG_b" \n\t" "push %%"REG_BP" \n\t" YSCALEYUV2RGB1(%%REGBP, %5) YSCALEYUV2RGB1_ALPHA(%%REGBP) WRITEBGR32(%%REGb, 8280(%5), %%REGBP, %%mm2, %%mm4, %%mm5, %%mm7, %%mm0, %%mm1, %%mm3, %%mm6) "pop %%"REG_BP" \n\t" "mov "ESP_OFFSET"(%5), %%"REG_b" \n\t" :: "c" (buf0), "d" (abuf0), "S" (ubuf0), "D" (ubuf1), "m" (dest), "a" (&c->redDither) ); } else { __asm__ volatile( "mov %%"REG_b", "ESP_OFFSET"(%5) \n\t" "mov %4, %%"REG_b" \n\t" "push %%"REG_BP" \n\t" YSCALEYUV2RGB1(%%REGBP, %5) "pcmpeqd %%mm7, %%mm7 \n\t" WRITEBGR32(%%REGb, 8280(%5), %%REGBP, %%mm2, %%mm4, %%mm5, %%mm7, %%mm0, %%mm1, %%mm3, %%mm6) "pop %%"REG_BP" \n\t" "mov "ESP_OFFSET"(%5), %%"REG_b" \n\t" :: "c" (buf0), "d" (buf1), "S" (ubuf0), "D" (ubuf1), "m" (dest), "a" (&c->redDither) ); } } else { if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { __asm__ volatile( "mov %%"REG_b", "ESP_OFFSET"(%5) \n\t" "mov %4, %%"REG_b" \n\t" "push %%"REG_BP" \n\t" YSCALEYUV2RGB1b(%%REGBP, %5) YSCALEYUV2RGB1_ALPHA(%%REGBP) WRITEBGR32(%%REGb, 8280(%5), %%REGBP, %%mm2, %%mm4, %%mm5, %%mm7, %%mm0, %%mm1, %%mm3, %%mm6) "pop %%"REG_BP" \n\t" "mov "ESP_OFFSET"(%5), %%"REG_b" \n\t" :: "c" (buf0), "d" (abuf0), "S" (ubuf0), "D" (ubuf1), "m" (dest), "a" (&c->redDither) ); } else { __asm__ volatile( "mov %%"REG_b", "ESP_OFFSET"(%5) \n\t" "mov %4, %%"REG_b" \n\t" "push %%"REG_BP" \n\t" YSCALEYUV2RGB1b(%%REGBP, %5) "pcmpeqd %%mm7, %%mm7 \n\t" WRITEBGR32(%%REGb, 8280(%5), %%REGBP, %%mm2, %%mm4, %%mm5, %%mm7, %%mm0, %%mm1, %%mm3, %%mm6) "pop %%"REG_BP" \n\t" "mov "ESP_OFFSET"(%5), %%"REG_b" \n\t" :: "c" (buf0), "d" (buf1), "S" (ubuf0), "D" (ubuf1), "m" (dest), "a" (&c->redDither) ); } } }
false
FFmpeg
13a099799e89a76eb921ca452e1b04a7a28a9855
25,646
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){ HYuvContext *s = avctx->priv_data; const int width= s->width; const int width2= s->width>>1; const int height= s->height; int fake_ystride, fake_ustride, fake_vstride; AVFrame * const p= &s->picture; AVFrame *picture = data; *data_size = 0; /* no supplementary picture */ if (buf_size == 0) return 0; bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4); init_get_bits(&s->gb, s->bitstream_buffer, buf_size); p->reference= 0; if(avctx->get_buffer(avctx, p) < 0){ fprintf(stderr, "get_buffer() failed\n"); return -1; } fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0]; fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1]; fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2]; s->last_slice_end= 0; if(s->bitstream_bpp<24){ int y, cy; int lefty, leftu, leftv; int lefttopy, lefttopu, lefttopv; if(s->yuy2){ p->data[0][3]= get_bits(&s->gb, 8); p->data[0][2]= get_bits(&s->gb, 8); p->data[0][1]= get_bits(&s->gb, 8); p->data[0][0]= get_bits(&s->gb, 8); fprintf(stderr, "YUY2 output isnt implemenetd yet\n"); return -1; }else{ leftv= p->data[2][0]= get_bits(&s->gb, 8); lefty= p->data[0][1]= get_bits(&s->gb, 8); leftu= p->data[1][0]= get_bits(&s->gb, 8); p->data[0][0]= get_bits(&s->gb, 8); switch(s->predictor){ case LEFT: case PLANE: decode_422_bitstream(s, width-2); lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu); leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv); } for(cy=y=1; y<s->height; y++,cy++){ uint8_t *ydst, *udst, *vdst; if(s->bitstream_bpp==12){ decode_gray_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; lefty= add_left_prediction(ydst, s->temp[0], width, lefty); if(s->predictor == PLANE){ if(y>s->interlaced) s->dsp.add_bytes(ydst, ydst - fake_ystride, width); } y++; if(y>=s->height) break; } draw_slice(s, y); ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; decode_422_bitstream(s, width); lefty= add_left_prediction(ydst, s->temp[0], width, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(udst, s->temp[1], width2, leftu); leftv= add_left_prediction(vdst, s->temp[2], width2, leftv); } if(s->predictor == PLANE){ if(cy>s->interlaced){ s->dsp.add_bytes(ydst, ydst - fake_ystride, width); if(!(s->flags&CODEC_FLAG_GRAY)){ s->dsp.add_bytes(udst, udst - fake_ustride, width2); s->dsp.add_bytes(vdst, vdst - fake_vstride, width2); } } } } draw_slice(s, height); break; case MEDIAN: /* first line except first 2 pixels is left predicted */ decode_422_bitstream(s, width-2); lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu); leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv); } cy=y=1; /* second line is left predicted for interlaced case */ if(s->interlaced){ decode_422_bitstream(s, width); lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu); leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv); } y++; cy++; } /* next 4 pixels are left predicted too */ decode_422_bitstream(s, 4); lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu); leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv); } /* next line except the first 4 pixels is median predicted */ lefttopy= p->data[0][3]; decode_422_bitstream(s, width-4); add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy); if(!(s->flags&CODEC_FLAG_GRAY)){ lefttopu= p->data[1][1]; lefttopv= p->data[2][1]; add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu); add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv); } y++; cy++; for(; y<height; y++,cy++){ uint8_t *ydst, *udst, *vdst; if(s->bitstream_bpp==12){ while(2*cy > y){ decode_gray_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); y++; } if(y>=height) break; } draw_slice(s, y); decode_422_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); if(!(s->flags&CODEC_FLAG_GRAY)){ add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu); add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv); } } draw_slice(s, height); break; } } }else{ int y; int leftr, leftg, leftb; const int last_line= (height-1)*p->linesize[0]; if(s->bitstream_bpp==32){ p->data[0][last_line+3]= get_bits(&s->gb, 8); leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8); leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8); leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8); }else{ leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8); leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8); leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8); skip_bits(&s->gb, 8); } if(s->bgr32){ switch(s->predictor){ case LEFT: case PLANE: decode_bgr_bitstream(s, width-1); add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb); for(y=s->height-2; y>=0; y--){ //yes its stored upside down decode_bgr_bitstream(s, width); add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb); if(s->predictor == PLANE){ if((y&s->interlaced)==0){ s->dsp.add_bytes(p->data[0] + p->linesize[0]*y, p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride); } } } draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order break; default: fprintf(stderr, "prediction type not supported!\n"); } }else{ fprintf(stderr, "BGR24 output isnt implemenetd yet\n"); return -1; } } emms_c(); *picture= *p; avctx->release_buffer(avctx, p); *data_size = sizeof(AVFrame); return (get_bits_count(&s->gb)+7)>>3; }
false
FFmpeg
68f593b48433842f3407586679fe07f3e5199ab9
25,647
static QemuOpts *opts_parse(QemuOptsList *list, const char *params, int permit_abbrev, bool defaults) { const char *firstname; char value[1024], *id = NULL; const char *p; QemuOpts *opts; Error *local_err = NULL; assert(!permit_abbrev || list->implied_opt_name); firstname = permit_abbrev ? list->implied_opt_name : NULL; if (strncmp(params, "id=", 3) == 0) { get_opt_value(value, sizeof(value), params+3); id = value; } else if ((p = strstr(params, ",id=")) != NULL) { get_opt_value(value, sizeof(value), p+4); id = value; } opts = qemu_opts_create(list, id, !defaults, &local_err); if (opts == NULL) { if (error_is_set(&local_err)) { qerror_report_err(local_err); error_free(local_err); } return NULL; } if (opts_do_parse(opts, params, firstname, defaults) != 0) { qemu_opts_del(opts); return NULL; } return opts; }
true
qemu
cb77d1925ac4d673e19be58aa39fc53c5d2fed10
25,648
static int get_bool(QEMUFile *f, void *pv, size_t size) { bool *v = pv; *v = qemu_get_byte(f); return 0; }
true
qemu
60fe637bf0e4d7989e21e50f52526444765c63b4
25,649
int attribute_align_arg avcodec_decode_audio4(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt) { int planar, channels; int ret = 0; *got_frame_ptr = 0; avctx->pkt = avpkt; if (!avpkt->data && avpkt->size) { av_log(avctx, AV_LOG_ERROR, "invalid packet: NULL data, size != 0\n"); return AVERROR(EINVAL); } apply_param_change(avctx, avpkt); if ((avctx->codec->capabilities & CODEC_CAP_DELAY) || avpkt->size) { ret = avctx->codec->decode(avctx, frame, got_frame_ptr, avpkt); if (ret >= 0 && *got_frame_ptr) { avctx->frame_number++; frame->pkt_dts = avpkt->dts; if (frame->format == AV_SAMPLE_FMT_NONE) frame->format = avctx->sample_fmt; } } /* many decoders assign whole AVFrames, thus overwriting extended_data; * make sure it's set correctly; assume decoders that actually use * extended_data are doing it correctly */ planar = av_sample_fmt_is_planar(frame->format); channels = av_get_channel_layout_nb_channels(frame->channel_layout); if (!(planar && channels > AV_NUM_DATA_POINTERS)) frame->extended_data = frame->data; return ret; }
true
FFmpeg
1bc64c2814d409d3cc129c27c493ee915bebdc4a
25,650
int ff_j2k_init_component(Jpeg2000Component *comp, Jpeg2000CodingStyle *codsty, Jpeg2000QuantStyle *qntsty, int cbps, int dx, int dy) { int reslevelno, bandno, gbandno = 0, ret, i, j, csize = 1; if (ret=ff_j2k_dwt_init(&comp->dwt, comp->coord, codsty->nreslevels-1, codsty->transform)) return ret; for (i = 0; i < 2; i++) csize *= comp->coord[i][1] - comp->coord[i][0]; comp->data = av_malloc(csize * sizeof(int)); if (!comp->data) return AVERROR(ENOMEM); comp->reslevel = av_malloc(codsty->nreslevels * sizeof(Jpeg2000ResLevel)); if (!comp->reslevel) return AVERROR(ENOMEM); for (reslevelno = 0; reslevelno < codsty->nreslevels; reslevelno++) { int declvl = codsty->nreslevels - reslevelno; Jpeg2000ResLevel *reslevel = comp->reslevel + reslevelno; for (i = 0; i < 2; i++) for (j = 0; j < 2; j++) reslevel->coord[i][j] = ff_jpeg2000_ceildivpow2(comp->coord[i][j], declvl - 1); if (reslevelno == 0) reslevel->nbands = 1; else reslevel->nbands = 3; if (reslevel->coord[0][1] == reslevel->coord[0][0]) reslevel->num_precincts_x = 0; else reslevel->num_precincts_x = ff_jpeg2000_ceildivpow2(reslevel->coord[0][1], codsty->log2_prec_width) - (reslevel->coord[0][0] >> codsty->log2_prec_width); if (reslevel->coord[1][1] == reslevel->coord[1][0]) reslevel->num_precincts_y = 0; else reslevel->num_precincts_y = ff_jpeg2000_ceildivpow2(reslevel->coord[1][1], codsty->log2_prec_height) - (reslevel->coord[1][0] >> codsty->log2_prec_height); reslevel->band = av_malloc(reslevel->nbands * sizeof(Jpeg2000Band)); if (!reslevel->band) return AVERROR(ENOMEM); for (bandno = 0; bandno < reslevel->nbands; bandno++, gbandno++) { Jpeg2000Band *band = reslevel->band + bandno; int cblkno, precx, precy, precno; int x0, y0, x1, y1; int xi0, yi0, xi1, yi1; int cblkperprecw, cblkperprech; if (qntsty->quantsty != JPEG2000_QSTY_NONE) { static const uint8_t lut_gain[2][4] = {{0, 0, 0, 0}, {0, 1, 1, 2}}; int numbps; numbps = cbps + lut_gain[codsty->transform][bandno + reslevelno>0]; band->stepsize = SHL(2048 + qntsty->mant[gbandno], 2 + numbps - qntsty->expn[gbandno]); } else band->stepsize = 1 << 13; if (reslevelno == 0) { // the same everywhere band->codeblock_width = 1 << FFMIN(codsty->log2_cblk_width, codsty->log2_prec_width-1); band->codeblock_height = 1 << FFMIN(codsty->log2_cblk_height, codsty->log2_prec_height-1); for (i = 0; i < 2; i++) for (j = 0; j < 2; j++) band->coord[i][j] = ff_jpeg2000_ceildivpow2(comp->coord[i][j], declvl-1); } else{ band->codeblock_width = 1 << FFMIN(codsty->log2_cblk_width, codsty->log2_prec_width); band->codeblock_height = 1 << FFMIN(codsty->log2_cblk_height, codsty->log2_prec_height); for (i = 0; i < 2; i++) for (j = 0; j < 2; j++) band->coord[i][j] = ff_jpeg2000_ceildivpow2(comp->coord[i][j] - (((bandno+1>>i)&1) << declvl-1), declvl); } band->cblknx = ff_jpeg2000_ceildiv(band->coord[0][1], band->codeblock_width) - band->coord[0][0] / band->codeblock_width; band->cblkny = ff_jpeg2000_ceildiv(band->coord[1][1], band->codeblock_height) - band->coord[1][0] / band->codeblock_height; for (j = 0; j < 2; j++) band->coord[0][j] = ff_jpeg2000_ceildiv(band->coord[0][j], dx); for (j = 0; j < 2; j++) band->coord[1][j] = ff_jpeg2000_ceildiv(band->coord[1][j], dy); band->cblknx = ff_jpeg2000_ceildiv(band->cblknx, dx); band->cblkny = ff_jpeg2000_ceildiv(band->cblkny, dy); band->cblk = av_malloc(sizeof(Jpeg2000Cblk) * band->cblknx * band->cblkny); if (!band->cblk) return AVERROR(ENOMEM); band->prec = av_malloc(sizeof(Jpeg2000Cblk) * reslevel->num_precincts_x * reslevel->num_precincts_y); if (!band->prec) return AVERROR(ENOMEM); for (cblkno = 0; cblkno < band->cblknx * band->cblkny; cblkno++) { Jpeg2000Cblk *cblk = band->cblk + cblkno; cblk->zero = 0; cblk->lblock = 3; cblk->length = 0; cblk->lengthinc = 0; cblk->npasses = 0; } y0 = band->coord[1][0]; y1 = ((band->coord[1][0] + (1<<codsty->log2_prec_height)) & ~((1<<codsty->log2_prec_height)-1)) - y0; yi0 = 0; yi1 = ff_jpeg2000_ceildivpow2(y1 - y0, codsty->log2_cblk_height) << codsty->log2_cblk_height; yi1 = FFMIN(yi1, band->cblkny); cblkperprech = 1<<(codsty->log2_prec_height - codsty->log2_cblk_height); for (precy = 0, precno = 0; precy < reslevel->num_precincts_y; precy++) { for (precx = 0; precx < reslevel->num_precincts_x; precx++, precno++) { band->prec[precno].yi0 = yi0; band->prec[precno].yi1 = yi1; } yi1 += cblkperprech; yi0 = yi1 - cblkperprech; yi1 = FFMIN(yi1, band->cblkny); } x0 = band->coord[0][0]; x1 = ((band->coord[0][0] + (1<<codsty->log2_prec_width)) & ~((1<<codsty->log2_prec_width)-1)) - x0; xi0 = 0; xi1 = ff_jpeg2000_ceildivpow2(x1 - x0, codsty->log2_cblk_width) << codsty->log2_cblk_width; xi1 = FFMIN(xi1, band->cblknx); cblkperprecw = 1<<(codsty->log2_prec_width - codsty->log2_cblk_width); for (precx = 0, precno = 0; precx < reslevel->num_precincts_x; precx++) { for (precy = 0; precy < reslevel->num_precincts_y; precy++, precno = 0) { Jpeg2000Prec *prec = band->prec + precno; prec->xi0 = xi0; prec->xi1 = xi1; prec->cblkincl = ff_j2k_tag_tree_init(prec->xi1 - prec->xi0, prec->yi1 - prec->yi0); prec->zerobits = ff_j2k_tag_tree_init(prec->xi1 - prec->xi0, prec->yi1 - prec->yi0); if (!prec->cblkincl || !prec->zerobits) return AVERROR(ENOMEM); } xi1 += cblkperprecw; xi0 = xi1 - cblkperprecw; xi1 = FFMIN(xi1, band->cblknx); } } } return 0; }
true
FFmpeg
9ea242962c4093a5523deef124a98193bbb36730
25,651
static int disas_cp_insn(CPUState *env, DisasContext *s, uint32_t insn) { TCGv tmp, tmp2; uint32_t rd = (insn >> 12) & 0xf; uint32_t cp = (insn >> 8) & 0xf; if (IS_USER(s)) { return 1; } if (insn & ARM_CP_RW_BIT) { if (!env->cp[cp].cp_read) return 1; gen_set_pc_im(s->pc); tmp = new_tmp(); tmp2 = tcg_const_i32(insn); gen_helper_get_cp(tmp, cpu_env, tmp2); tcg_temp_free(tmp2); store_reg(s, rd, tmp); } else { if (!env->cp[cp].cp_write) return 1; gen_set_pc_im(s->pc); tmp = load_reg(s, rd); tmp2 = tcg_const_i32(insn); gen_helper_set_cp(cpu_env, tmp2, tmp); tcg_temp_free(tmp2); dead_tmp(tmp); } return 0; }
true
qemu
7d1b0095bff7157e856d1d0e6c4295641ced2752
25,652
static int read_frame_internal(AVFormatContext *s, AVPacket *pkt) { AVStream *st; int len, ret, i; av_init_packet(pkt); for(;;) { /* select current input stream component */ st = s->cur_st; if (st) { if (!st->need_parsing || !st->parser) { /* no parsing needed: we just output the packet as is */ /* raw data support */ *pkt = st->cur_pkt; st->cur_pkt.data= NULL; compute_pkt_fields(s, st, NULL, pkt); s->cur_st = NULL; if ((s->iformat->flags & AVFMT_GENERIC_INDEX) && (pkt->flags & AV_PKT_FLAG_KEY) && pkt->dts != AV_NOPTS_VALUE) { ff_reduce_index(s, st->index); av_add_index_entry(st, pkt->pos, pkt->dts, 0, 0, AVINDEX_KEYFRAME); } break; } else if (st->cur_len > 0 && st->discard < AVDISCARD_ALL) { len = av_parser_parse2(st->parser, st->codec, &pkt->data, &pkt->size, st->cur_ptr, st->cur_len, st->cur_pkt.pts, st->cur_pkt.dts, st->cur_pkt.pos); st->cur_pkt.pts = AV_NOPTS_VALUE; st->cur_pkt.dts = AV_NOPTS_VALUE; /* increment read pointer */ st->cur_ptr += len; st->cur_len -= len; /* return packet if any */ if (pkt->size) { got_packet: pkt->duration = 0; pkt->stream_index = st->index; pkt->pts = st->parser->pts; pkt->dts = st->parser->dts; pkt->pos = st->parser->pos; if(pkt->data == st->cur_pkt.data && pkt->size == st->cur_pkt.size){ s->cur_st = NULL; pkt->destruct= st->cur_pkt.destruct; st->cur_pkt.destruct= NULL; st->cur_pkt.data = NULL; assert(st->cur_len == 0); }else{ pkt->destruct = NULL; } compute_pkt_fields(s, st, st->parser, pkt); if((s->iformat->flags & AVFMT_GENERIC_INDEX) && pkt->flags & AV_PKT_FLAG_KEY){ int64_t pos= (st->parser->flags & PARSER_FLAG_COMPLETE_FRAMES) ? pkt->pos : st->parser->frame_offset; ff_reduce_index(s, st->index); av_add_index_entry(st, pos, pkt->dts, 0, 0, AVINDEX_KEYFRAME); } break; } } else { /* free packet */ av_free_packet(&st->cur_pkt); s->cur_st = NULL; } } else { AVPacket cur_pkt; /* read next packet */ ret = av_read_packet(s, &cur_pkt); if (ret < 0) { if (ret == AVERROR(EAGAIN)) return ret; /* return the last frames, if any */ for(i = 0; i < s->nb_streams; i++) { st = s->streams[i]; if (st->parser && st->need_parsing) { av_parser_parse2(st->parser, st->codec, &pkt->data, &pkt->size, NULL, 0, AV_NOPTS_VALUE, AV_NOPTS_VALUE, AV_NOPTS_VALUE); if (pkt->size) goto got_packet; } } /* no more packets: really terminate parsing */ return ret; } st = s->streams[cur_pkt.stream_index]; st->cur_pkt= cur_pkt; if(st->cur_pkt.pts != AV_NOPTS_VALUE && st->cur_pkt.dts != AV_NOPTS_VALUE && st->cur_pkt.pts < st->cur_pkt.dts){ av_log(s, AV_LOG_WARNING, "Invalid timestamps stream=%d, pts=%"PRId64", dts=%"PRId64", size=%d\n", st->cur_pkt.stream_index, st->cur_pkt.pts, st->cur_pkt.dts, st->cur_pkt.size); // av_free_packet(&st->cur_pkt); // return -1; } if(s->debug & FF_FDEBUG_TS) av_log(s, AV_LOG_DEBUG, "av_read_packet stream=%d, pts=%"PRId64", dts=%"PRId64", size=%d, duration=%d, flags=%d\n", st->cur_pkt.stream_index, st->cur_pkt.pts, st->cur_pkt.dts, st->cur_pkt.size, st->cur_pkt.duration, st->cur_pkt.flags); s->cur_st = st; st->cur_ptr = st->cur_pkt.data; st->cur_len = st->cur_pkt.size; if (st->need_parsing && !st->parser && !(s->flags & AVFMT_FLAG_NOPARSE)) { st->parser = av_parser_init(st->codec->codec_id); if (!st->parser) { av_log(s, AV_LOG_WARNING, "parser not found for codec " "%s, packets or times may be invalid.\n", avcodec_get_name(st->codec->codec_id)); /* no parser available: just output the raw packets */ st->need_parsing = AVSTREAM_PARSE_NONE; }else if(st->need_parsing == AVSTREAM_PARSE_HEADERS){ st->parser->flags |= PARSER_FLAG_COMPLETE_FRAMES; }else if(st->need_parsing == AVSTREAM_PARSE_FULL_ONCE){ st->parser->flags |= PARSER_FLAG_ONCE; } } } } if(s->debug & FF_FDEBUG_TS) av_log(s, AV_LOG_DEBUG, "read_frame_internal stream=%d, pts=%"PRId64", dts=%"PRId64", size=%d, duration=%d, flags=%d\n", pkt->stream_index, pkt->pts, pkt->dts, pkt->size, pkt->duration, pkt->flags); return 0; }
true
FFmpeg
d64066f6e88c827e33002b2c7740efd62cd5ba7f
25,653
void qemu_co_rwlock_unlock(CoRwlock *lock) { assert(qemu_in_coroutine()); if (lock->writer) { lock->writer = false; qemu_co_queue_restart_all(&lock->queue); } else { lock->reader--; assert(lock->reader >= 0); /* Wakeup only one waiting writer */ if (!lock->reader) { qemu_co_queue_next(&lock->queue); } } }
true
qemu
1b7f01d966f97b7820f3cdd471461cf0799a93cc
25,654
void do_addzeo (void) { T1 = T0; T0 += xer_ca; if (likely(!((T1 ^ (-1)) & (T1 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T0 >= T1)) { xer_ca = 0; } else { xer_ca = 1; } }
true
qemu
d9bce9d99f4656ae0b0127f7472db9067b8f84ab
25,655
void ide_atapi_cmd_reply_end(IDEState *s) { int byte_count_limit, size, ret; #ifdef DEBUG_IDE_ATAPI printf("reply: tx_size=%d elem_tx_size=%d index=%d\n", s->packet_transfer_size, s->elementary_transfer_size, s->io_buffer_index); #endif if (s->packet_transfer_size <= 0) { /* end of transfer */ ide_atapi_cmd_ok(s); ide_set_irq(s->bus); #ifdef DEBUG_IDE_ATAPI printf("status=0x%x\n", s->status); #endif } else { /* see if a new sector must be read */ if (s->lba != -1 && s->io_buffer_index >= s->cd_sector_size) { ret = cd_read_sector(s, s->lba, s->io_buffer, s->cd_sector_size); if (ret < 0) { ide_atapi_io_error(s, ret); return; } s->lba++; s->io_buffer_index = 0; } if (s->elementary_transfer_size > 0) { /* there are some data left to transmit in this elementary transfer */ size = s->cd_sector_size - s->io_buffer_index; if (size > s->elementary_transfer_size) size = s->elementary_transfer_size; s->packet_transfer_size -= size; s->elementary_transfer_size -= size; s->io_buffer_index += size; ide_transfer_start(s, s->io_buffer + s->io_buffer_index - size, size, ide_atapi_cmd_reply_end); } else { /* a new transfer is needed */ s->nsector = (s->nsector & ~7) | ATAPI_INT_REASON_IO; byte_count_limit = atapi_byte_count_limit(s); #ifdef DEBUG_IDE_ATAPI printf("byte_count_limit=%d\n", byte_count_limit); #endif size = s->packet_transfer_size; if (size > byte_count_limit) { /* byte count limit must be even if this case */ if (byte_count_limit & 1) byte_count_limit--; size = byte_count_limit; } s->lcyl = size; s->hcyl = size >> 8; s->elementary_transfer_size = size; /* we cannot transmit more than one sector at a time */ if (s->lba != -1) { if (size > (s->cd_sector_size - s->io_buffer_index)) size = (s->cd_sector_size - s->io_buffer_index); } s->packet_transfer_size -= size; s->elementary_transfer_size -= size; s->io_buffer_index += size; ide_transfer_start(s, s->io_buffer + s->io_buffer_index - size, size, ide_atapi_cmd_reply_end); ide_set_irq(s->bus); #ifdef DEBUG_IDE_ATAPI printf("status=0x%x\n", s->status); #endif } } }
true
qemu
5f81724d80a1492c73d329242663962139db739b
25,656
static int read_filter_params(MLPDecodeContext *m, GetBitContext *gbp, unsigned int substr, unsigned int channel, unsigned int filter) { SubStream *s = &m->substream[substr]; FilterParams *fp = &s->channel_params[channel].filter_params[filter]; const int max_order = filter ? MAX_IIR_ORDER : MAX_FIR_ORDER; const char fchar = filter ? 'I' : 'F'; int i, order; // Filter is 0 for FIR, 1 for IIR. av_assert0(filter < 2); if (m->filter_changed[channel][filter]++ > 1) { av_log(m->avctx, AV_LOG_ERROR, "Filters may change only once per access unit.\n"); return AVERROR_INVALIDDATA; } order = get_bits(gbp, 4); if (order > max_order) { av_log(m->avctx, AV_LOG_ERROR, "%cIR filter order %d is greater than maximum %d.\n", fchar, order, max_order); return AVERROR_INVALIDDATA; } fp->order = order; if (order > 0) { int32_t *fcoeff = s->channel_params[channel].coeff[filter]; int coeff_bits, coeff_shift; fp->shift = get_bits(gbp, 4); coeff_bits = get_bits(gbp, 5); coeff_shift = get_bits(gbp, 3); if (coeff_bits < 1 || coeff_bits > 16) { av_log(m->avctx, AV_LOG_ERROR, "%cIR filter coeff_bits must be between 1 and 16.\n", fchar); return AVERROR_INVALIDDATA; } if (coeff_bits + coeff_shift > 16) { av_log(m->avctx, AV_LOG_ERROR, "Sum of coeff_bits and coeff_shift for %cIR filter must be 16 or less.\n", fchar); return AVERROR_INVALIDDATA; } for (i = 0; i < order; i++) fcoeff[i] = get_sbits(gbp, coeff_bits) * (1 << coeff_shift); if (get_bits1(gbp)) { int state_bits, state_shift; if (filter == FIR) { av_log(m->avctx, AV_LOG_ERROR, "FIR filter has state data specified.\n"); return AVERROR_INVALIDDATA; } state_bits = get_bits(gbp, 4); state_shift = get_bits(gbp, 4); /* TODO: Check validity of state data. */ for (i = 0; i < order; i++) fp->state[i] = state_bits ? get_sbits(gbp, state_bits) << state_shift : 0; } } return 0; }
true
FFmpeg
552adf1dd3a38fb7a1a6109dd2b517d63290f20e
25,657
static int filter_frame(AVFilterLink *inlink, AVFilterBufferRef *inpicref) { IlContext *il = inlink->dst->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFilterBufferRef *out; int ret; out = ff_get_video_buffer(outlink, AV_PERM_WRITE, outlink->w, outlink->h); if (!out) { avfilter_unref_bufferp(&inpicref); return AVERROR(ENOMEM); } avfilter_copy_buffer_ref_props(out, inpicref); interleave(out->data[0], inpicref->data[0], il->width, inlink->h, out->linesize[0], inpicref->linesize[0], il->luma_mode, il->luma_swap); if (il->nb_planes > 2) { interleave(out->data[1], inpicref->data[1], il->chroma_width, il->chroma_height, out->linesize[1], inpicref->linesize[1], il->chroma_mode, il->chroma_swap); interleave(out->data[2], inpicref->data[2], il->chroma_width, il->chroma_height, out->linesize[2], inpicref->linesize[2], il->chroma_mode, il->chroma_swap); } if (il->nb_planes == 2 && il->nb_planes == 4) { int comp = il->nb_planes - 1; interleave(out->data[comp], inpicref->data[comp], il->width, inlink->h, out->linesize[comp], inpicref->linesize[comp], il->alpha_mode, il->alpha_swap); } ret = ff_filter_frame(outlink, out); avfilter_unref_bufferp(&inpicref); return ret; }
true
FFmpeg
63a99622876ff79a07862167f243a7d3823b7315
25,658
decode_lpc(WmallDecodeCtx *s) { int ch, i, cbits; s->lpc_order = get_bits(&s->gb, 5) + 1; s->lpc_scaling = get_bits(&s->gb, 4); s->lpc_intbits = get_bits(&s->gb, 3) + 1; cbits = s->lpc_scaling + s->lpc_intbits; for(ch = 0; ch < s->num_channels; ch++) { for(i = 0; i < s->lpc_order; i++) { s->lpc_coefs[ch][i] = get_sbits(&s->gb, cbits); } } }
true
FFmpeg
dae7ff04160901a30a35af05f2f149b289c4f0b1
25,659
static double get_scene_score(AVFilterContext *ctx, AVFrame *crnt, AVFrame *next) { FrameRateContext *s = ctx->priv; double ret = 0; ff_dlog(ctx, "get_scene_score()\n"); if (crnt->height == next->height && crnt->width == next->width) { int64_t sad; double mafd, diff; ff_dlog(ctx, "get_scene_score() process\n"); if (s->bitdepth == 8) sad = scene_sad8(s, crnt->data[0], crnt->linesize[0], next->data[0], next->linesize[0], crnt->height); else sad = scene_sad16(s, (const uint16_t*)crnt->data[0], crnt->linesize[0] >> 1, (const uint16_t*)next->data[0], next->linesize[0] >> 1, crnt->height); mafd = (double)sad * 100.0 / (crnt->height * crnt->width) / (1 << s->bitdepth); diff = fabs(mafd - s->prev_mafd); ret = av_clipf(FFMIN(mafd, diff), 0, 100.0); s->prev_mafd = mafd; } ff_dlog(ctx, "get_scene_score() result is:%f\n", ret); return ret; }
true
FFmpeg
e403e4bdbea08af0c4a068eb560b577d1b64cf7a
25,660
int main(int argc,char* argv[]){ int i, j; uint64_t sse=0; uint64_t dev; FILE *f[2]; uint8_t buf[2][SIZE]; uint64_t psnr; int len= argc<4 ? 1 : atoi(argv[3]); int64_t max= (1<<(8*len))-1; int shift= argc<5 ? 0 : atoi(argv[4]); int skip_bytes = argc<6 ? 0 : atoi(argv[5]); if(argc<3){ printf("tiny_psnr <file1> <file2> [<elem size> [<shift> [<skip bytes>]]]\n"); printf("For WAV files use the following:\n"); printf("./tiny_psnr file1.wav file2.wav 2 0 44 to skip the header.\n"); return -1; } f[0]= fopen(argv[1], "rb"); f[1]= fopen(argv[2], "rb"); if(!f[0] || !f[1]){ fprintf(stderr, "Could not open input files.\n"); return -1; } fseek(f[shift<0], shift < 0 ? -shift : shift, SEEK_SET); fseek(f[0],skip_bytes,SEEK_CUR); fseek(f[1],skip_bytes,SEEK_CUR); for(i=0;;){ if( fread(buf[0], SIZE, 1, f[0]) != 1) break; if( fread(buf[1], SIZE, 1, f[1]) != 1) break; for(j=0; j<SIZE; i++,j++){ int64_t a= buf[0][j]; int64_t b= buf[1][j]; if(len==2){ a= (int16_t)(a | (buf[0][++j]<<8)); b= (int16_t)(b | (buf[1][ j]<<8)); } sse += (a-b) * (a-b); } } if(!i) i=1; dev= int_sqrt( ((sse/i)*F*F) + (((sse%i)*F*F) + i/2)/i ); if(sse) psnr= ((2*log16(max<<16) + log16(i) - log16(sse))*284619LL*F + (1<<31)) / (1LL<<32); else psnr= 100*F-1; //floating point free infinity :) printf("stddev:%3d.%02d PSNR:%2d.%02d bytes:%d\n", (int)(dev/F), (int)(dev%F), (int)(psnr/F), (int)(psnr%F), i*len); return 0; }
false
FFmpeg
1e90317b655699a2877478e335e998fb5e4b79d8
25,661
StrongARMState *sa1110_init(MemoryRegion *sysmem, unsigned int sdram_size, const char *rev) { StrongARMState *s; int i; s = g_new0(StrongARMState, 1); if (!rev) { rev = "sa1110-b5"; } if (strncmp(rev, "sa1110", 6)) { error_report("Machine requires a SA1110 processor."); exit(1); } s->cpu = ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, rev)); if (!s->cpu) { error_report("Unable to find CPU definition"); exit(1); } memory_region_allocate_system_memory(&s->sdram, NULL, "strongarm.sdram", sdram_size); memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram); s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000, qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ), qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ), NULL); sysbus_create_varargs("pxa25x-timer", 0x90000000, qdev_get_gpio_in(s->pic, SA_PIC_OSTC0), qdev_get_gpio_in(s->pic, SA_PIC_OSTC1), qdev_get_gpio_in(s->pic, SA_PIC_OSTC2), qdev_get_gpio_in(s->pic, SA_PIC_OSTC3), NULL); sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000, qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM)); s->gpio = strongarm_gpio_init(0x90040000, s->pic); s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL); for (i = 0; sa_serial[i].io_base; i++) { DeviceState *dev = qdev_create(NULL, TYPE_STRONGARM_UART); qdev_prop_set_chr(dev, "chardev", serial_hds[i]); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sa_serial[i].io_base); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(s->pic, sa_serial[i].irq)); } s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000, qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL); s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi"); return s; }
true
qemu
4482e05cbbb7e50e476f6a9500cf0b38913bd939
25,662
static int celt_header(AVFormatContext *s, int idx) { struct ogg *ogg = s->priv_data; struct ogg_stream *os = ogg->streams + idx; AVStream *st = s->streams[idx]; struct oggcelt_private *priv = os->private; uint8_t *p = os->buf + os->pstart; if (os->psize == 60 && !memcmp(p, ff_celt_codec.magic, ff_celt_codec.magicsize)) { /* Main header */ uint32_t version, sample_rate, nb_channels; uint32_t overlap, extra_headers; priv = av_malloc(sizeof(struct oggcelt_private)); if (!priv) return AVERROR(ENOMEM); if (ff_alloc_extradata(st->codecpar, 2 * sizeof(uint32_t)) < 0) { av_free(priv); return AVERROR(ENOMEM); } version = AV_RL32(p + 28); /* unused header size field skipped */ sample_rate = AV_RL32(p + 36); nb_channels = AV_RL32(p + 40); overlap = AV_RL32(p + 48); /* unused bytes per packet field skipped */ extra_headers = AV_RL32(p + 56); st->codecpar->codec_type = AVMEDIA_TYPE_AUDIO; st->codecpar->codec_id = AV_CODEC_ID_CELT; st->codecpar->sample_rate = sample_rate; st->codecpar->channels = nb_channels; if (sample_rate) avpriv_set_pts_info(st, 64, 1, sample_rate); priv->extra_headers_left = 1 + extra_headers; av_free(os->private); os->private = priv; AV_WL32(st->codecpar->extradata + 0, overlap); AV_WL32(st->codecpar->extradata + 4, version); return 1; } else if (priv && priv->extra_headers_left) { /* Extra headers (vorbiscomment) */ ff_vorbis_stream_comment(s, st, p, os->psize); priv->extra_headers_left--; return 1; } else { return 0; } }
true
FFmpeg
7140761481e4296723a592019a0244ebe6c1a8cf
25,663
static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, int flags, int send) { abi_long ret, len; struct msghdr msg; int count; struct iovec *vec; abi_ulong target_vec; if (msgp->msg_name) { msg.msg_namelen = tswap32(msgp->msg_namelen); msg.msg_name = alloca(msg.msg_namelen+1); ret = target_to_host_sockaddr(fd, msg.msg_name, tswapal(msgp->msg_name), msg.msg_namelen); if (ret) { goto out2; } } else { msg.msg_name = NULL; msg.msg_namelen = 0; } msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); msg.msg_control = alloca(msg.msg_controllen); msg.msg_flags = tswap32(msgp->msg_flags); count = tswapal(msgp->msg_iovlen); target_vec = tswapal(msgp->msg_iov); vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, target_vec, count, send); if (vec == NULL) { ret = -host_to_target_errno(errno); goto out2; } msg.msg_iovlen = count; msg.msg_iov = vec; if (send) { if (fd_trans_target_to_host_data(fd)) { ret = fd_trans_target_to_host_data(fd)(msg.msg_iov->iov_base, msg.msg_iov->iov_len); } else { ret = target_to_host_cmsg(&msg, msgp); } if (ret == 0) { ret = get_errno(safe_sendmsg(fd, &msg, flags)); } } else { ret = get_errno(safe_recvmsg(fd, &msg, flags)); if (!is_error(ret)) { len = ret; if (fd_trans_host_to_target_data(fd)) { ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, len); } else { ret = host_to_target_cmsg(msgp, &msg); } if (!is_error(ret)) { msgp->msg_namelen = tswap32(msg.msg_namelen); if (msg.msg_name != NULL) { ret = host_to_target_sockaddr(tswapal(msgp->msg_name), msg.msg_name, msg.msg_namelen); if (ret) { goto out; } } ret = len; } } } out: unlock_iovec(vec, target_vec, count, !send); out2: return ret; }
true
qemu
7d61d892327d803ae43d14500601e48031b4632c
25,664
static int decode_group3_1d_line(AVCodecContext *avctx, GetBitContext *gb, int pix_left, int *runs) { int mode = 0, run = 0; unsigned int t; for(;;){ t = get_vlc2(gb, ccitt_vlc[mode].table, 9, 2); run += t; if(t < 64){ pix_left -= run; *runs++ = run; if(pix_left <= 0){ if(!pix_left) break; runs[-1] = 0; av_log(avctx, AV_LOG_ERROR, "Run went out of bounds\n"); return -1; } run = 0; mode = !mode; }else if((int)t == -1){ av_log(avctx, AV_LOG_ERROR, "Incorrect code\n"); return -1; } } *runs++ = 0; return 0; }
false
FFmpeg
d68542f019c89e7938297a18da282e3a892718aa
25,665
static int get_qcx(Jpeg2000DecoderContext *s, int n, Jpeg2000QuantStyle *q) { int i, x; if (s->buf_end - s->buf < 1) return AVERROR(EINVAL); x = bytestream_get_byte(&s->buf); // Sqcd q->nguardbits = x >> 5; q->quantsty = x & 0x1f; if (q->quantsty == JPEG2000_QSTY_NONE) { n -= 3; if (s->buf_end - s->buf < n || 32*3 < n) return AVERROR(EINVAL); for (i = 0; i < n; i++) q->expn[i] = bytestream_get_byte(&s->buf) >> 3; } else if (q->quantsty == JPEG2000_QSTY_SI) { if (s->buf_end - s->buf < 2) return AVERROR(EINVAL); x = bytestream_get_be16(&s->buf); q->expn[0] = x >> 11; q->mant[0] = x & 0x7ff; for (i = 1; i < 32 * 3; i++) { int curexpn = FFMAX(0, q->expn[0] - (i - 1) / 3); q->expn[i] = curexpn; q->mant[i] = q->mant[0]; } } else { n = (n - 3) >> 1; if (s->buf_end - s->buf < 2 * n || 32*3 < n) return AVERROR(EINVAL); for (i = 0; i < n; i++) { x = bytestream_get_be16(&s->buf); q->expn[i] = x >> 11; q->mant[i] = x & 0x7ff; } } return 0; }
false
FFmpeg
0b42631641d998e509cde6fa344edc6ab5cb4ac8
25,666
void do_compare_and_swap32(void *cpu_env, int num) { #ifdef TARGET_I386 uint32_t old = ((CPUX86State*)cpu_env)->regs[R_EAX]; uint32_t *value = (uint32_t*)((CPUX86State*)cpu_env)->regs[R_ECX]; DPRINTF("commpage: compare_and_swap32(%x,new,%p)\n", old, value); if(value && old == tswap32(*value)) { uint32_t new = ((CPUX86State*)cpu_env)->regs[R_EDX]; *value = tswap32(new); /* set zf flag */ ((CPUX86State*)cpu_env)->eflags |= 0x40; } else { ((CPUX86State*)cpu_env)->regs[R_EAX] = tswap32(*value); /* unset zf flag */ ((CPUX86State*)cpu_env)->eflags &= ~0x40; } #else qerror("do_compare_and_swap32 unimplemented"); #endif }
true
qemu
70afb8ff90e9d922ed729e6dbabaff6d67c461aa
25,667
static void ready_residue(vorbis_enc_residue *rc, vorbis_enc_context *venc) { int i; assert(rc->type == 2); rc->maxes = av_mallocz(sizeof(float[2]) * rc->classifications); for (i = 0; i < rc->classifications; i++) { int j; vorbis_enc_codebook * cb; for (j = 0; j < 8; j++) if (rc->books[i][j] != -1) break; if (j == 8) // zero continue; cb = &venc->codebooks[rc->books[i][j]]; assert(cb->ndimentions >= 2); assert(cb->lookup); for (j = 0; j < cb->nentries; j++) { float a; if (!cb->lens[j]) continue; a = fabs(cb->dimentions[j * cb->ndimentions]); if (a > rc->maxes[i][0]) rc->maxes[i][0] = a; a = fabs(cb->dimentions[j * cb->ndimentions + 1]); if (a > rc->maxes[i][1]) rc->maxes[i][1] = a; } } // small bias for (i = 0; i < rc->classifications; i++) { rc->maxes[i][0] += 0.8; rc->maxes[i][1] += 0.8; } }
true
FFmpeg
be8d812c9635f31f69c30dff9ebf565a07a7dab7
25,668
BlockDriverState *bdrv_all_find_vmstate_bs(void) { bool not_found = true; BlockDriverState *bs; BdrvNextIterator *it = NULL; while (not_found && (it = bdrv_next(it, &bs))) { AioContext *ctx = bdrv_get_aio_context(bs); aio_context_acquire(ctx); not_found = !bdrv_can_snapshot(bs); aio_context_release(ctx); } return bs; }
true
qemu
88be7b4be4aa17c88247e162bdd7577ea79db94f
25,671
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int is_horizontal) { int i; int filterSize; int filter2Size; int minFilterSize; int64_t *filter = NULL; int64_t *filter2 = NULL; const int64_t fone = 1LL << 54; int ret = -1; emms_c(); // FIXME should not be required but IS (even for non-MMX versions) // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail); if (FFABS(xInc - 0x10000) < 10) { // unscaled int i; filterSize = 1; FF_ALLOCZ_OR_GOTO(NULL, filter, dstW * sizeof(*filter) * filterSize, fail); for (i = 0; i < dstW; i++) { filter[i * filterSize] = fone; (*filterPos)[i] = i; } } else if (flags & SWS_POINT) { // lame looking point sampling mode int i; int xDstInSrc; filterSize = 1; FF_ALLOC_OR_GOTO(NULL, filter, dstW * sizeof(*filter) * filterSize, fail); xDstInSrc = xInc / 2 - 0x8000; for (i = 0; i < dstW; i++) { int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16; (*filterPos)[i] = xx; filter[i] = fone; xDstInSrc += xInc; } } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) || (flags & SWS_FAST_BILINEAR)) { // bilinear upscale int i; int xDstInSrc; filterSize = 2; FF_ALLOC_OR_GOTO(NULL, filter, dstW * sizeof(*filter) * filterSize, fail); xDstInSrc = xInc / 2 - 0x8000; for (i = 0; i < dstW; i++) { int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16; int j; (*filterPos)[i] = xx; // bilinear upscale / linear interpolate / area averaging for (j = 0; j < filterSize; j++) { int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) * (fone >> 16); if (coeff < 0) coeff = 0; filter[i * filterSize + j] = coeff; xx++; } xDstInSrc += xInc; } } else { int64_t xDstInSrc; int sizeFactor; if (flags & SWS_BICUBIC) sizeFactor = 4; else if (flags & SWS_X) sizeFactor = 8; else if (flags & SWS_AREA) sizeFactor = 1; // downscale only, for upscale it is bilinear else if (flags & SWS_GAUSS) sizeFactor = 8; // infinite ;) else if (flags & SWS_LANCZOS) sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6; else if (flags & SWS_SINC) sizeFactor = 20; // infinite ;) else if (flags & SWS_SPLINE) sizeFactor = 20; // infinite ;) else if (flags & SWS_BILINEAR) sizeFactor = 2; else { sizeFactor = 0; // GCC warning killer assert(0); } if (xInc <= 1 << 16) filterSize = 1 + sizeFactor; // upscale else filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW; filterSize = FFMIN(filterSize, srcW - 2); filterSize = FFMAX(filterSize, 1); FF_ALLOC_OR_GOTO(NULL, filter, dstW * sizeof(*filter) * filterSize, fail); xDstInSrc = xInc - 0x10000; for (i = 0; i < dstW; i++) { int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17); int j; (*filterPos)[i] = xx; for (j = 0; j < filterSize; j++) { int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13; double floatd; int64_t coeff; if (xInc > 1 << 16) d = d * dstW / srcW; floatd = d * (1.0 / (1 << 30)); if (flags & SWS_BICUBIC) { int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24); int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24); if (d >= 1LL << 31) { coeff = 0.0; } else { int64_t dd = (d * d) >> 30; int64_t ddd = (dd * d) >> 30; if (d < 1LL << 30) coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd + (-18 * (1 << 24) + 12 * B + 6 * C) * dd + (6 * (1 << 24) - 2 * B) * (1 << 30); else coeff = (-B - 6 * C) * ddd + (6 * B + 30 * C) * dd + (-12 * B - 48 * C) * d + (8 * B + 24 * C) * (1 << 30); } coeff *= fone >> (30 + 24); } #if 0 else if (flags & SWS_X) { double p = param ? param * 0.01 : 0.3; coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0; coeff *= pow(2.0, -p * d * d); } #endif else if (flags & SWS_X) { double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0; double c; if (floatd < 1.0) c = cos(floatd * M_PI); else c = -1.0; if (c < 0.0) c = -pow(-c, A); else c = pow(c, A); coeff = (c * 0.5 + 0.5) * fone; } else if (flags & SWS_AREA) { int64_t d2 = d - (1 << 29); if (d2 * xInc < -(1LL << (29 + 16))) coeff = 1.0 * (1LL << (30 + 16)); else if (d2 * xInc < (1LL << (29 + 16))) coeff = -d2 * xInc + (1LL << (29 + 16)); else coeff = 0.0; coeff *= fone >> (30 + 16); } else if (flags & SWS_GAUSS) { double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; coeff = (pow(2.0, -p * floatd * floatd)) * fone; } else if (flags & SWS_SINC) { coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone; } else if (flags & SWS_LANCZOS) { double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) / (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone; if (floatd > p) coeff = 0; } else if (flags & SWS_BILINEAR) { coeff = (1 << 30) - d; if (coeff < 0) coeff = 0; coeff *= fone >> 30; } else if (flags & SWS_SPLINE) { double p = -2.196152422706632; coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone; } else { coeff = 0.0; // GCC warning killer assert(0); } filter[i * filterSize + j] = coeff; xx++; } xDstInSrc += 2 * xInc; } } /* apply src & dst Filter to filter -> filter2 * av_free(filter); */ assert(filterSize > 0); filter2Size = filterSize; if (srcFilter) filter2Size += srcFilter->length - 1; if (dstFilter) filter2Size += dstFilter->length - 1; assert(filter2Size > 0); FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail); for (i = 0; i < dstW; i++) { int j, k; if (srcFilter) { for (k = 0; k < srcFilter->length; k++) { for (j = 0; j < filterSize; j++) filter2[i * filter2Size + k + j] += srcFilter->coeff[k] * filter[i * filterSize + j]; } } else { for (j = 0; j < filterSize; j++) filter2[i * filter2Size + j] = filter[i * filterSize + j]; } // FIXME dstFilter (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2; } av_freep(&filter); /* try to reduce the filter-size (step1 find size and shift left) */ // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not). minFilterSize = 0; for (i = dstW - 1; i >= 0; i--) { int min = filter2Size; int j; int64_t cutOff = 0.0; /* get rid of near zero elements on the left by shifting left */ for (j = 0; j < filter2Size; j++) { int k; cutOff += FFABS(filter2[i * filter2Size]); if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone) break; /* preserve monotonicity because the core can't handle the * filter otherwise */ if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1]) break; // move filter coefficients left for (k = 1; k < filter2Size; k++) filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k]; filter2[i * filter2Size + k - 1] = 0; (*filterPos)[i]++; } cutOff = 0; /* count near zeros on the right */ for (j = filter2Size - 1; j > 0; j--) { cutOff += FFABS(filter2[i * filter2Size + j]); if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone) break; min--; } if (min > minFilterSize) minFilterSize = min; } if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) { // we can handle the special case 4, so we don't want to go the full 8 if (minFilterSize < 5) filterAlign = 4; /* We really don't want to waste our time doing useless computation, so * fall back on the scalar C code for very small filters. * Vectorizing is worth it only if you have a decent-sized vector. */ if (minFilterSize < 3) filterAlign = 1; } if (INLINE_MMX(cpu_flags)) { // special case for unscaled vertical filtering if (minFilterSize == 1 && filterAlign == 2) filterAlign = 1; } assert(minFilterSize > 0); filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1)); assert(filterSize > 0); filter = av_malloc(filterSize * dstW * sizeof(*filter)); if (filterSize >= MAX_FILTER_SIZE * 16 / ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) goto fail; *outFilterSize = filterSize; if (flags & SWS_PRINT_INFO) av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize); /* try to reduce the filter-size (step2 reduce it) */ for (i = 0; i < dstW; i++) { int j; for (j = 0; j < filterSize; j++) { if (j >= filter2Size) filter[i * filterSize + j] = 0; else filter[i * filterSize + j] = filter2[i * filter2Size + j]; if ((flags & SWS_BITEXACT) && j >= minFilterSize) filter[i * filterSize + j] = 0; } } // FIXME try to align filterPos if possible // fix borders if (is_horizontal) { for (i = 0; i < dstW; i++) { int j; if ((*filterPos)[i] < 0) { // move filter coefficients left to compensate for filterPos for (j = 1; j < filterSize; j++) { int left = FFMAX(j + (*filterPos)[i], 0); filter[i * filterSize + left] += filter[i * filterSize + j]; filter[i * filterSize + j] = 0; } (*filterPos)[i] = 0; } if ((*filterPos)[i] + filterSize > srcW) { int shift = (*filterPos)[i] + filterSize - srcW; // move filter coefficients right to compensate for filterPos for (j = filterSize - 2; j >= 0; j--) { int right = FFMIN(j + shift, filterSize - 1); filter[i * filterSize + right] += filter[i * filterSize + j]; filter[i * filterSize + j] = 0; } (*filterPos)[i] = srcW - filterSize; } } } // Note the +1 is for the MMX scaler which reads over the end /* align at 16 for AltiVec (needed by hScale_altivec_real) */ FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize * (dstW + 3) * sizeof(int16_t), fail); /* normalize & store in outFilter */ for (i = 0; i < dstW; i++) { int j; int64_t error = 0; int64_t sum = 0; for (j = 0; j < filterSize; j++) { sum += filter[i * filterSize + j]; } sum = (sum + one / 2) / one; for (j = 0; j < *outFilterSize; j++) { int64_t v = filter[i * filterSize + j] + error; int intV = ROUNDED_DIV(v, sum); (*outFilter)[i * (*outFilterSize) + j] = intV; error = v - intV * sum; } } (*filterPos)[dstW + 0] = (*filterPos)[dstW + 1] = (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will * read over the end */ for (i = 0; i < *outFilterSize; i++) { int k = (dstW - 1) * (*outFilterSize) + i; (*outFilter)[k + 1 * (*outFilterSize)] = (*outFilter)[k + 2 * (*outFilterSize)] = (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k]; } ret = 0; fail: av_free(filter); av_free(filter2); return ret; }
false
FFmpeg
f61bece684d9685b07895508e6c1c733b5564ccf
25,673
int ff_init_vlc_sparse(VLC *vlc, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags) { VLCcode *buf; int i, j, ret; vlc->bits = nb_bits; if (flags & INIT_VLC_USE_NEW_STATIC) { VLC dyn_vlc = *vlc; if (vlc->table_size) return 0; ret = ff_init_vlc_sparse(&dyn_vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, symbols, symbols_wrap, symbols_size, flags & ~INIT_VLC_USE_NEW_STATIC); av_assert0(ret >= 0); av_assert0(dyn_vlc.table_size <= vlc->table_allocated); if (dyn_vlc.table_size < vlc->table_allocated) av_log(NULL, AV_LOG_ERROR, "needed %d had %d\n", dyn_vlc.table_size, vlc->table_allocated); memcpy(vlc->table, dyn_vlc.table, dyn_vlc.table_size * sizeof(*vlc->table)); vlc->table_size = dyn_vlc.table_size; ff_free_vlc(&dyn_vlc); return 0; } else { vlc->table = NULL; vlc->table_allocated = 0; vlc->table_size = 0; } av_dlog(NULL, "build table nb_codes=%d\n", nb_codes); buf = av_malloc((nb_codes + 1) * sizeof(VLCcode)); av_assert0(symbols_size <= 2 || !symbols); j = 0; #define COPY(condition)\ for (i = 0; i < nb_codes; i++) { \ GET_DATA(buf[j].bits, bits, i, bits_wrap, bits_size); \ if (!(condition)) \ continue; \ if (buf[j].bits > 3*nb_bits || buf[j].bits>32) { \ av_log(NULL, AV_LOG_ERROR, "Too long VLC (%d) in init_vlc\n", buf[j].bits);\ av_free(buf); \ return -1; \ } \ GET_DATA(buf[j].code, codes, i, codes_wrap, codes_size); \ if (buf[j].code >= (1LL<<buf[j].bits)) { \ av_log(NULL, AV_LOG_ERROR, "Invalid code in init_vlc\n"); \ av_free(buf); \ return -1; \ } \ if (flags & INIT_VLC_LE) \ buf[j].code = bitswap_32(buf[j].code); \ else \ buf[j].code <<= 32 - buf[j].bits; \ if (symbols) \ GET_DATA(buf[j].symbol, symbols, i, symbols_wrap, symbols_size) \ else \ buf[j].symbol = i; \ j++; \ } COPY(buf[j].bits > nb_bits); // qsort is the slowest part of init_vlc, and could probably be improved or avoided qsort(buf, j, sizeof(VLCcode), compare_vlcspec); COPY(buf[j].bits && buf[j].bits <= nb_bits); nb_codes = j; ret = build_table(vlc, nb_bits, nb_codes, buf, flags); av_free(buf); if (ret < 0) { av_freep(&vlc->table); return ret; } return 0; }
true
FFmpeg
aa74810fc6b9afe21c9be3725e3d078d10633670
25,674
static uint64_t macio_nvram_readb(void *opaque, hwaddr addr, unsigned size) { MacIONVRAMState *s = opaque; uint32_t value; addr = (addr >> s->it_shift) & (s->size - 1); value = s->data[addr]; NVR_DPRINTF("readb addr %04x val %x\n", (int)addr, value); return value; }
true
qemu
2f448e415f364d0ec4c5556993e44ca183e31c5c
25,675
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) { ARMCPU *cpu = arm_env_get_cpu(env); switch (reg) { case 0: /* APSR */ xpsr_write(env, val, 0xf8000000); break; case 1: /* IAPSR */ xpsr_write(env, val, 0xf8000000); break; case 2: /* EAPSR */ xpsr_write(env, val, 0xfe00fc00); break; case 3: /* xPSR */ xpsr_write(env, val, 0xfe00fc00); break; case 5: /* IPSR */ /* IPSR bits are readonly. */ break; case 6: /* EPSR */ xpsr_write(env, val, 0x0600fc00); break; case 7: /* IEPSR */ xpsr_write(env, val, 0x0600fc00); break; case 8: /* MSP */ if (env->v7m.current_sp) env->v7m.other_sp = val; else env->regs[13] = val; break; case 9: /* PSP */ if (env->v7m.current_sp) env->regs[13] = val; else env->v7m.other_sp = val; break; case 16: /* PRIMASK */ if (val & 1) { env->daif |= PSTATE_I; } else { env->daif &= ~PSTATE_I; } break; case 17: /* BASEPRI */ env->v7m.basepri = val & 0xff; break; case 18: /* BASEPRI_MAX */ val &= 0xff; if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) env->v7m.basepri = val; break; case 19: /* FAULTMASK */ if (val & 1) { env->daif |= PSTATE_F; } else { env->daif &= ~PSTATE_F; } break; case 20: /* CONTROL */ env->v7m.control = val & 3; switch_v7m_sp(env, (val & 2) != 0); break; default: /* ??? For debugging only. */ cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); return; } }
true
qemu
58117c9bb429cd9552d998687aa99088eb1d8528
25,677
AVRational av_d2q(double d, int max) { AVRational a; int exponent; int64_t den; if (isnan(d)) return (AVRational) { 0,0 }; if (fabs(d) > INT_MAX + 3LL) return (AVRational) { d < 0 ? -1 : 1, 0 }; frexp(d, &exponent); exponent = FFMAX(exponent-1, 0); den = 1LL << (61 - exponent); // (int64_t)rint() and llrint() do not work with gcc on ia64 and sparc64 av_reduce(&a.num, &a.den, floor(d * den + 0.5), den, max); if ((!a.num || !a.den) && d && max>0 && max<INT_MAX) av_reduce(&a.num, &a.den, floor(d * den + 0.5), den, INT_MAX); return a; }
false
FFmpeg
7dabc78ce13e3baa37292f42df2364b4ccd2aa78
25,678
static unsigned tget(GetByteContext *gb, int type, int le) { switch (type) { case TIFF_BYTE : return bytestream2_get_byteu(gb); case TIFF_SHORT: return tget_short(gb, le); case TIFF_LONG : return tget_long(gb, le); default : return UINT_MAX; } }
false
FFmpeg
ce1ebb31a9a0e556a89cd7681082af19fbc1cced
25,679
PCIDevice *pci_pcnet_init(PCIBus *bus, NICInfo *nd, int devfn) { PCNetState *d; uint8_t *pci_conf; #if 0 printf("sizeof(RMD)=%d, sizeof(TMD)=%d\n", sizeof(struct pcnet_RMD), sizeof(struct pcnet_TMD)); #endif d = (PCNetState *)pci_register_device(bus, "PCNet", sizeof(PCNetState), devfn, NULL, NULL); pci_conf = d->dev.config; pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_AMD); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_AMD_LANCE); *(uint16_t *)&pci_conf[0x04] = cpu_to_le16(0x0007); *(uint16_t *)&pci_conf[0x06] = cpu_to_le16(0x0280); pci_conf[0x08] = 0x10; pci_conf[0x09] = 0x00; pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET); pci_conf[0x0e] = 0x00; // header_type *(uint32_t *)&pci_conf[0x10] = cpu_to_le32(0x00000001); *(uint32_t *)&pci_conf[0x14] = cpu_to_le32(0x00000000); pci_conf[0x3d] = 1; // interrupt pin 0 pci_conf[0x3e] = 0x06; pci_conf[0x3f] = 0xff; /* Handler for memory-mapped I/O */ d->mmio_index = cpu_register_io_memory(0, pcnet_mmio_read, pcnet_mmio_write, d); pci_register_io_region((PCIDevice *)d, 0, PCNET_IOPORT_SIZE, PCI_ADDRESS_SPACE_IO, pcnet_ioport_map); pci_register_io_region((PCIDevice *)d, 1, PCNET_PNPMMIO_SIZE, PCI_ADDRESS_SPACE_MEM, pcnet_mmio_map); d->irq = d->dev.irq[0]; d->phys_mem_read = pci_physical_memory_read; d->phys_mem_write = pci_physical_memory_write; d->pci_dev = &d->dev; pcnet_common_init(d, nd); return (PCIDevice *)d; }
true
qemu
b946a1533209f61a93e34898aebb5b43154b99c3
25,680
void aio_notify(AioContext *ctx) { /* Write e.g. bh->scheduled before reading ctx->dispatching. */ smp_mb(); if (!ctx->dispatching) { event_notifier_set(&ctx->notifier); } }
true
qemu
eabc977973103527bbb8fed69c91cfaa6691f8ab
25,681
static void tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc, void *puc) { TranslationBlock *tb; PageDesc *p; int n; #ifdef TARGET_HAS_PRECISE_SMC TranslationBlock *current_tb = NULL; CPUState *cpu = current_cpu; CPUArchState *env = NULL; int current_tb_modified = 0; target_ulong current_pc = 0; target_ulong current_cs_base = 0; int current_flags = 0; #endif addr &= TARGET_PAGE_MASK; p = page_find(addr >> TARGET_PAGE_BITS); if (!p) { return; } tb = p->first_tb; #ifdef TARGET_HAS_PRECISE_SMC if (tb && pc != 0) { current_tb = tb_find_pc(pc); } if (cpu != NULL) { env = cpu->env_ptr; } #endif while (tb != NULL) { n = (uintptr_t)tb & 3; tb = (TranslationBlock *)((uintptr_t)tb & ~3); #ifdef TARGET_HAS_PRECISE_SMC if (current_tb == tb && (current_tb->cflags & CF_COUNT_MASK) != 1) { /* If we are modifying the current TB, we must stop its execution. We could be more precise by checking that the modification is after the current PC, but it would require a specialized function to partially restore the CPU state */ current_tb_modified = 1; cpu_restore_state_from_tb(current_tb, env, pc); cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base, &current_flags); } #endif /* TARGET_HAS_PRECISE_SMC */ tb_phys_invalidate(tb, addr); tb = tb->page_next[n]; } p->first_tb = NULL; #ifdef TARGET_HAS_PRECISE_SMC if (current_tb_modified) { /* we generate a block containing just the instruction modifying the memory. It will ensure that it cannot modify itself */ cpu->current_tb = NULL; tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); cpu_resume_from_signal(env, puc); } #endif }
true
qemu
d02532f08e207419e412ea7cd4eb8b36f04f426d
25,683
static int rtp_parse_mp4_au(PayloadContext *data, const uint8_t *buf) { int au_headers_length, au_header_size, i; GetBitContext getbitcontext; /* decode the first 2 bytes where the AUHeader sections are stored length in bits */ au_headers_length = AV_RB16(buf); if (au_headers_length > RTP_MAX_PACKET_LENGTH) return -1; data->au_headers_length_bytes = (au_headers_length + 7) / 8; /* skip AU headers length section (2 bytes) */ buf += 2; init_get_bits(&getbitcontext, buf, data->au_headers_length_bytes * 8); /* XXX: Wrong if optionnal additional sections are present (cts, dts etc...) */ au_header_size = data->sizelength + data->indexlength; if (au_header_size <= 0 || (au_headers_length % au_header_size != 0)) return -1; data->nb_au_headers = au_headers_length / au_header_size; if (!data->au_headers || data->au_headers_allocated < data->nb_au_headers) { av_free(data->au_headers); data->au_headers = av_malloc(sizeof(struct AUHeaders) * data->nb_au_headers); if (!data->au_headers) return AVERROR(ENOMEM); data->au_headers_allocated = data->nb_au_headers; } /* XXX: We handle multiple AU Section as only one (need to fix this for interleaving) In my test, the FAAD decoder does not behave correctly when sending each AU one by one but does when sending the whole as one big packet... */ data->au_headers[0].size = 0; data->au_headers[0].index = 0; for (i = 0; i < data->nb_au_headers; ++i) { data->au_headers[0].size += get_bits_long(&getbitcontext, data->sizelength); data->au_headers[0].index = get_bits_long(&getbitcontext, data->indexlength); } data->nb_au_headers = 1; return 0; }
true
FFmpeg
a7ba3244131d96d9ab7a99ef30dc7276efd05cc7
25,684
static inline void RENAME(palToUV)(uint8_t *dstU, uint8_t *dstV, uint8_t *src1, uint8_t *src2, int width, uint32_t *pal) { int i; assert(src1 == src2); for(i=0; i<width; i++) { int p= pal[src1[i]]; dstU[i]= p>>8; dstV[i]= p>>16; } }
true
FFmpeg
2da0d70d5eebe42f9fcd27ee554419ebe2a5da06
25,685
static uint64_t pl011_read(void *opaque, target_phys_addr_t offset, unsigned size) { pl011_state *s = (pl011_state *)opaque; uint32_t c; if (offset >= 0xfe0 && offset < 0x1000) { return s->id[(offset - 0xfe0) >> 2]; } switch (offset >> 2) { case 0: /* UARTDR */ s->flags &= ~PL011_FLAG_RXFF; c = s->read_fifo[s->read_pos]; if (s->read_count > 0) { s->read_count--; if (++s->read_pos == 16) s->read_pos = 0; } if (s->read_count == 0) { s->flags |= PL011_FLAG_RXFE; } if (s->read_count == s->read_trigger - 1) s->int_level &= ~ PL011_INT_RX; pl011_update(s); qemu_chr_accept_input(s->chr); return c; case 1: /* UARTCR */ return 0; case 6: /* UARTFR */ return s->flags; case 8: /* UARTILPR */ return s->ilpr; case 9: /* UARTIBRD */ return s->ibrd; case 10: /* UARTFBRD */ return s->fbrd; case 11: /* UARTLCR_H */ return s->lcr; case 12: /* UARTCR */ return s->cr; case 13: /* UARTIFLS */ return s->ifl; case 14: /* UARTIMSC */ return s->int_enabled; case 15: /* UARTRIS */ return s->int_level; case 16: /* UARTMIS */ return s->int_level & s->int_enabled; case 18: /* UARTDMACR */ return s->dmacr; default: hw_error("pl011_read: Bad offset %x\n", (int)offset); return 0; } }
true
qemu
0d4abda8f7328c8911c1d020bb6961650eaf7801
25,688
static void icp_pit_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { icp_pit_state *s = (icp_pit_state *)opaque; int n; n = offset >> 8; if (n > 2) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n); } arm_timer_write(s->timer[n], offset & 0xff, value); }
true
qemu
cba933b2257ef0ad241756a0ff86bc0acda685ca
25,689
static void targa_decode_rle(AVCodecContext *avctx, TargaContext *s, const uint8_t *src, uint8_t *dst, int w, int h, int stride, int bpp) { int i, x, y; int depth = (bpp + 1) >> 3; int type, count; int diff; diff = stride - w * depth; x = y = 0; while(y < h){ type = *src++; count = (type & 0x7F) + 1; type &= 0x80; if((x + count > w) && (x + count + 1 > (h - y) * w)){ av_log(avctx, AV_LOG_ERROR, "Packet went out of bounds: position (%i,%i) size %i\n", x, y, count); return; } for(i = 0; i < count; i++){ switch(depth){ case 1: *dst = *src; break; case 2: *((uint16_t*)dst) = AV_RL16(src); break; case 3: dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; break; case 4: *((uint32_t*)dst) = AV_RL32(src); break; } dst += depth; if(!type) src += depth; x++; if(x == w){ x = 0; y++; dst += diff; } } if(type) src += depth; } }
true
FFmpeg
7782cb207a09f4acf0b2a935ca81076b117660a2
25,690
static int aasc_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; AascContext *s = avctx->priv_data; int compr, i, stride, psize; s->frame.reference = 3; s->frame.buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE; if (avctx->reget_buffer(avctx, &s->frame)) { av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return -1; compr = AV_RL32(buf); buf += 4; buf_size -= 4; psize = avctx->bits_per_coded_sample / 8; switch (avctx->codec_tag) { case MKTAG('A', 'A', 'S', '4'): bytestream2_init(&s->gb, buf - 4, buf_size + 4); ff_msrle_decode(avctx, (AVPicture*)&s->frame, 8, &s->gb); break; case MKTAG('A', 'A', 'S', 'C'): switch(compr){ case 0: stride = (avctx->width * psize + psize) & ~psize; for(i = avctx->height - 1; i >= 0; i--){ if(avctx->width * psize > buf_size){ av_log(avctx, AV_LOG_ERROR, "Next line is beyond buffer bounds\n"); break; memcpy(s->frame.data[0] + i*s->frame.linesize[0], buf, avctx->width * psize); buf += stride; buf_size -= stride; break; case 1: bytestream2_init(&s->gb, buf, buf_size); ff_msrle_decode(avctx, (AVPicture*)&s->frame, 8, &s->gb); break; default: av_log(avctx, AV_LOG_ERROR, "Unknown compression type %d\n", compr); return -1; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown FourCC: %X\n", avctx->codec_tag); return -1; if (avctx->pix_fmt == AV_PIX_FMT_PAL8) memcpy(s->frame.data[1], s->palette, s->palette_size); *data_size = sizeof(AVFrame); *(AVFrame*)data = s->frame; /* report that the buffer was completely consumed */ return buf_size;
true
FFmpeg
e1631f8ebe9a8f2a9cca85d60160b9be94eb63f3
25,691
int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset, int64_t size) { int ret = qcow2_check_metadata_overlap(bs, ign, offset, size); if (ret < 0) { return ret; } else if (ret > 0) { int metadata_ol_bitnr = ffs(ret) - 1; char *message; assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR); fprintf(stderr, "qcow2: Preventing invalid write on metadata (overlaps " "with %s); image marked as corrupt.\n", metadata_ol_names[metadata_ol_bitnr]); message = g_strdup_printf("Prevented %s overwrite", metadata_ol_names[metadata_ol_bitnr]); qapi_event_send_block_image_corrupted(bdrv_get_device_name(bs), message, true, offset, true, size, true, &error_abort); g_free(message); qcow2_mark_corrupt(bs); bs->drv = NULL; /* make BDS unusable */ return -EIO; } return 0; }
true
qemu
adb435522b86b3fca2324cb8c94e17b55ae071f1
25,692
static int dmg_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVDMGState *s = bs->opaque; uint64_t info_begin, info_end, last_in_offset, last_out_offset; uint32_t count, tmp; uint32_t max_compressed_size = 1, max_sectors_per_chunk = 1, i; int64_t offset; int ret; bs->read_only = 1; s->n_chunks = 0; s->offsets = s->lengths = s->sectors = s->sectorcounts = NULL; /* read offset of info blocks */ offset = bdrv_getlength(bs->file); if (offset < 0) { ret = offset; offset -= 0x1d8; ret = read_uint64(bs, offset, &info_begin); if (ret < 0) { } else if (info_begin == 0) { ret = read_uint32(bs, info_begin, &tmp); if (ret < 0) { } else if (tmp != 0x100) { ret = read_uint32(bs, info_begin + 4, &count); if (ret < 0) { } else if (count == 0) { info_end = info_begin + count; offset = info_begin + 0x100; /* read offsets */ last_in_offset = last_out_offset = 0; while (offset < info_end) { uint32_t type; ret = read_uint32(bs, offset, &count); if (ret < 0) { } else if (count == 0) { offset += 4; ret = read_uint32(bs, offset, &type); if (ret < 0) { if (type == 0x6d697368 && count >= 244) { size_t new_size; uint32_t chunk_count; offset += 4; offset += 200; chunk_count = (count - 204) / 40; new_size = sizeof(uint64_t) * (s->n_chunks + chunk_count); s->types = g_realloc(s->types, new_size / 2); s->offsets = g_realloc(s->offsets, new_size); s->lengths = g_realloc(s->lengths, new_size); s->sectors = g_realloc(s->sectors, new_size); s->sectorcounts = g_realloc(s->sectorcounts, new_size); for (i = s->n_chunks; i < s->n_chunks + chunk_count; i++) { ret = read_uint32(bs, offset, &s->types[i]); if (ret < 0) { offset += 4; if (s->types[i] != 0x80000005 && s->types[i] != 1 && s->types[i] != 2) { if (s->types[i] == 0xffffffff && i > 0) { last_in_offset = s->offsets[i - 1] + s->lengths[i - 1]; last_out_offset = s->sectors[i - 1] + s->sectorcounts[i - 1]; chunk_count--; i--; offset += 36; continue; offset += 4; ret = read_uint64(bs, offset, &s->sectors[i]); if (ret < 0) { s->sectors[i] += last_out_offset; offset += 8; ret = read_uint64(bs, offset, &s->sectorcounts[i]); if (ret < 0) { offset += 8; if (s->sectorcounts[i] > DMG_SECTORCOUNTS_MAX) { error_report("sector count %" PRIu64 " for chunk %u is " "larger than max (%u)", s->sectorcounts[i], i, DMG_SECTORCOUNTS_MAX); ret = read_uint64(bs, offset, &s->offsets[i]); if (ret < 0) { s->offsets[i] += last_in_offset; offset += 8; ret = read_uint64(bs, offset, &s->lengths[i]); if (ret < 0) { offset += 8; if (s->lengths[i] > max_compressed_size) { max_compressed_size = s->lengths[i]; if (s->sectorcounts[i] > max_sectors_per_chunk) { max_sectors_per_chunk = s->sectorcounts[i]; s->n_chunks += chunk_count; /* initialize zlib engine */ s->compressed_chunk = g_malloc(max_compressed_size + 1); s->uncompressed_chunk = g_malloc(512 * max_sectors_per_chunk); if (inflateInit(&s->zstream) != Z_OK) { s->current_chunk = s->n_chunks; qemu_co_mutex_init(&s->lock); return 0; fail: g_free(s->types); g_free(s->offsets); g_free(s->lengths); g_free(s->sectors); g_free(s->sectorcounts); g_free(s->compressed_chunk); g_free(s->uncompressed_chunk); return ret;
true
qemu
c165f7758009a4f793c1fc19ebb69cf55313450b
25,695
int ff_mjpeg_decode_sof(MJpegDecodeContext *s) { int len, nb_components, i, width, height, pix_fmt_id; s->cur_scan = 0; s->upscale_h = s->upscale_v = 0; /* XXX: verify len field validity */ len = get_bits(&s->gb, 16); s->bits = get_bits(&s->gb, 8); if (s->pegasus_rct) s->bits = 9; if (s->bits == 9 && !s->pegasus_rct) s->rct = 1; // FIXME ugly if (s->bits != 8 && !s->lossless) { av_log(s->avctx, AV_LOG_ERROR, "only 8 bits/component accepted\n"); return -1; } if(s->lossless && s->avctx->lowres){ av_log(s->avctx, AV_LOG_ERROR, "lowres is not possible with lossless jpeg\n"); return -1; } height = get_bits(&s->gb, 16); width = get_bits(&s->gb, 16); // HACK for odd_height.mov if (s->interlaced && s->width == width && s->height == height + 1) height= s->height; av_log(s->avctx, AV_LOG_DEBUG, "sof0: picture: %dx%d\n", width, height); if (av_image_check_size(width, height, 0, s->avctx)) return AVERROR_INVALIDDATA; nb_components = get_bits(&s->gb, 8); if (nb_components <= 0 || nb_components > MAX_COMPONENTS) return -1; if (s->interlaced && (s->bottom_field == !s->interlace_polarity)) { if (nb_components != s->nb_components) { av_log(s->avctx, AV_LOG_ERROR, "nb_components changing in interlaced picture\n"); return AVERROR_INVALIDDATA; } } if (s->ls && !(s->bits <= 8 || nb_components == 1)) { av_log_missing_feature(s->avctx, "For JPEG-LS anything except <= 8 bits/component" " or 16-bit gray", 0); return AVERROR_PATCHWELCOME; } s->nb_components = nb_components; s->h_max = 1; s->v_max = 1; memset(s->h_count, 0, sizeof(s->h_count)); memset(s->v_count, 0, sizeof(s->v_count)); for (i = 0; i < nb_components; i++) { /* component id */ s->component_id[i] = get_bits(&s->gb, 8) - 1; s->h_count[i] = get_bits(&s->gb, 4); s->v_count[i] = get_bits(&s->gb, 4); /* compute hmax and vmax (only used in interleaved case) */ if (s->h_count[i] > s->h_max) s->h_max = s->h_count[i]; if (s->v_count[i] > s->v_max) s->v_max = s->v_count[i]; if (!s->h_count[i] || !s->v_count[i]) { av_log(s->avctx, AV_LOG_ERROR, "h/v_count is 0\n"); return -1; } s->quant_index[i] = get_bits(&s->gb, 8); if (s->quant_index[i] >= 4) return AVERROR_INVALIDDATA; av_log(s->avctx, AV_LOG_DEBUG, "component %d %d:%d id: %d quant:%d\n", i, s->h_count[i], s->v_count[i], s->component_id[i], s->quant_index[i]); } if (s->ls && (s->h_max > 1 || s->v_max > 1)) { av_log_missing_feature(s->avctx, "Subsampling in JPEG-LS", 0); return AVERROR_PATCHWELCOME; } if (s->v_max == 1 && s->h_max == 1 && s->lossless==1 && nb_components==3) s->rgb = 1; /* if different size, realloc/alloc picture */ /* XXX: also check h_count and v_count */ if (width != s->width || height != s->height) { av_freep(&s->qscale_table); s->width = width; s->height = height; s->interlaced = 0; /* test interlaced mode */ if (s->first_picture && s->org_height != 0 && s->height < ((s->org_height * 3) / 4)) { s->interlaced = 1; s->bottom_field = s->interlace_polarity; s->picture_ptr->interlaced_frame = 1; s->picture_ptr->top_field_first = !s->interlace_polarity; height *= 2; } avcodec_set_dimensions(s->avctx, width, height); s->qscale_table = av_mallocz((s->width + 15) / 16); s->first_picture = 0; } if (s->interlaced && (s->bottom_field == !s->interlace_polarity)) { if (s->progressive) { av_log_ask_for_sample(s->avctx, "progressively coded interlaced pictures not supported\n"); return AVERROR_INVALIDDATA; } } else{ /* XXX: not complete test ! */ pix_fmt_id = (s->h_count[0] << 28) | (s->v_count[0] << 24) | (s->h_count[1] << 20) | (s->v_count[1] << 16) | (s->h_count[2] << 12) | (s->v_count[2] << 8) | (s->h_count[3] << 4) | s->v_count[3]; av_log(s->avctx, AV_LOG_DEBUG, "pix fmt id %x\n", pix_fmt_id); /* NOTE we do not allocate pictures large enough for the possible * padding of h/v_count being 4 */ if (!(pix_fmt_id & 0xD0D0D0D0)) pix_fmt_id -= (pix_fmt_id & 0xF0F0F0F0) >> 1; if (!(pix_fmt_id & 0x0D0D0D0D)) pix_fmt_id -= (pix_fmt_id & 0x0F0F0F0F) >> 1; switch (pix_fmt_id) { case 0x11111100: if (s->rgb) s->avctx->pix_fmt = AV_PIX_FMT_BGR24; else { if (s->component_id[0] == 'Q' && s->component_id[1] == 'F' && s->component_id[2] == 'A') { s->avctx->pix_fmt = AV_PIX_FMT_GBR24P; } else { s->avctx->pix_fmt = s->cs_itu601 ? AV_PIX_FMT_YUV444P : AV_PIX_FMT_YUVJ444P; s->avctx->color_range = s->cs_itu601 ? AVCOL_RANGE_MPEG : AVCOL_RANGE_JPEG; } } av_assert0(s->nb_components == 3); break; case 0x12121100: case 0x22122100: s->avctx->pix_fmt = s->cs_itu601 ? AV_PIX_FMT_YUV444P : AV_PIX_FMT_YUVJ444P; s->avctx->color_range = s->cs_itu601 ? AVCOL_RANGE_MPEG : AVCOL_RANGE_JPEG; s->upscale_v = 2; s->upscale_h = (pix_fmt_id == 0x22122100); s->chroma_height = s->height; break; case 0x21211100: case 0x22211200: s->avctx->pix_fmt = s->cs_itu601 ? AV_PIX_FMT_YUV444P : AV_PIX_FMT_YUVJ444P; s->avctx->color_range = s->cs_itu601 ? AVCOL_RANGE_MPEG : AVCOL_RANGE_JPEG; s->upscale_v = (pix_fmt_id == 0x22211200); s->upscale_h = 2; s->chroma_height = s->height; break; case 0x22221100: s->avctx->pix_fmt = s->cs_itu601 ? AV_PIX_FMT_YUV444P : AV_PIX_FMT_YUVJ444P; s->avctx->color_range = s->cs_itu601 ? AVCOL_RANGE_MPEG : AVCOL_RANGE_JPEG; s->upscale_v = 2; s->upscale_h = 2; s->chroma_height = s->height / 2; break; case 0x11000000: if(s->bits <= 8) s->avctx->pix_fmt = AV_PIX_FMT_GRAY8; else s->avctx->pix_fmt = AV_PIX_FMT_GRAY16; break; case 0x12111100: case 0x22211100: case 0x22112100: s->avctx->pix_fmt = s->cs_itu601 ? AV_PIX_FMT_YUV440P : AV_PIX_FMT_YUVJ440P; s->avctx->color_range = s->cs_itu601 ? AVCOL_RANGE_MPEG : AVCOL_RANGE_JPEG; s->upscale_h = (pix_fmt_id == 0x22211100) * 2 + (pix_fmt_id == 0x22112100); s->chroma_height = s->height / 2; break; case 0x21111100: s->avctx->pix_fmt = s->cs_itu601 ? AV_PIX_FMT_YUV422P : AV_PIX_FMT_YUVJ422P; s->avctx->color_range = s->cs_itu601 ? AVCOL_RANGE_MPEG : AVCOL_RANGE_JPEG; break; case 0x22121100: case 0x22111200: s->avctx->pix_fmt = s->cs_itu601 ? AV_PIX_FMT_YUV422P : AV_PIX_FMT_YUVJ422P; s->avctx->color_range = s->cs_itu601 ? AVCOL_RANGE_MPEG : AVCOL_RANGE_JPEG; s->upscale_v = (pix_fmt_id == 0x22121100) + 1; break; case 0x22111100: s->avctx->pix_fmt = s->cs_itu601 ? AV_PIX_FMT_YUV420P : AV_PIX_FMT_YUVJ420P; s->avctx->color_range = s->cs_itu601 ? AVCOL_RANGE_MPEG : AVCOL_RANGE_JPEG; break; default: av_log(s->avctx, AV_LOG_ERROR, "Unhandled pixel format 0x%x\n", pix_fmt_id); return AVERROR_PATCHWELCOME; } if ((s->upscale_h || s->upscale_v) && s->avctx->lowres) { av_log(s->avctx, AV_LOG_ERROR, "lowres not supported for weird subsampling\n"); return AVERROR_PATCHWELCOME; } if (s->ls) { s->upscale_h = s->upscale_v = 0; if (s->nb_components > 1) s->avctx->pix_fmt = AV_PIX_FMT_RGB24; else if (s->bits <= 8) s->avctx->pix_fmt = AV_PIX_FMT_GRAY8; else s->avctx->pix_fmt = AV_PIX_FMT_GRAY16; } if (s->picture_ptr->data[0]) s->avctx->release_buffer(s->avctx, s->picture_ptr); if (s->avctx->get_buffer(s->avctx, s->picture_ptr) < 0) { av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } s->picture_ptr->pict_type = AV_PICTURE_TYPE_I; s->picture_ptr->key_frame = 1; s->got_picture = 1; for (i = 0; i < 3; i++) s->linesize[i] = s->picture_ptr->linesize[i] << s->interlaced; av_dlog(s->avctx, "%d %d %d %d %d %d\n", s->width, s->height, s->linesize[0], s->linesize[1], s->interlaced, s->avctx->height); if (len != (8 + (3 * nb_components))) av_log(s->avctx, AV_LOG_DEBUG, "decode_sof0: error, len(%d) mismatch\n", len); } /* totally blank picture as progressive JPEG will only add details to it */ if (s->progressive) { int bw = (width + s->h_max * 8 - 1) / (s->h_max * 8); int bh = (height + s->v_max * 8 - 1) / (s->v_max * 8); for (i = 0; i < s->nb_components; i++) { int size = bw * bh * s->h_count[i] * s->v_count[i]; av_freep(&s->blocks[i]); av_freep(&s->last_nnz[i]); s->blocks[i] = av_malloc(size * sizeof(**s->blocks)); s->last_nnz[i] = av_mallocz(size * sizeof(**s->last_nnz)); s->block_stride[i] = bw * s->h_count[i]; } memset(s->coefs_finished, 0, sizeof(s->coefs_finished)); } return 0; }
false
FFmpeg
a2f680c7bc7642c687aeb4e14d00ac74833c7a09
25,696
void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, BlockdevOnError on_write_error) { bs->on_read_error = on_read_error; bs->on_write_error = on_write_error; }
false
qemu
61007b316cd71ee7333ff7a0a749a8949527575f
25,697
static void test_acpi_one(const char *params, test_data *data) { char *args; uint8_t signature_low; uint8_t signature_high; uint16_t signature; int i; const char *device = ""; if (!g_strcmp0(data->machine, MACHINE_Q35)) { device = ",id=hd -device ide-hd,drive=hd"; } args = g_strdup_printf("-net none -display none %s -drive file=%s%s,", params ? params : "", disk, device); qtest_start(args); /* Wait at most 1 minute */ #define TEST_DELAY (1 * G_USEC_PER_SEC / 10) #define TEST_CYCLES MAX((60 * G_USEC_PER_SEC / TEST_DELAY), 1) /* Poll until code has run and modified memory. Once it has we know BIOS * initialization is done. TODO: check that IP reached the halt * instruction. */ for (i = 0; i < TEST_CYCLES; ++i) { signature_low = readb(BOOT_SECTOR_ADDRESS + SIGNATURE_OFFSET); signature_high = readb(BOOT_SECTOR_ADDRESS + SIGNATURE_OFFSET + 1); signature = (signature_high << 8) | signature_low; if (signature == SIGNATURE) { break; } g_usleep(TEST_DELAY); } g_assert_cmphex(signature, ==, SIGNATURE); test_acpi_rsdp_address(data); test_acpi_rsdp_table(data); test_acpi_rsdt_table(data); test_acpi_fadt_table(data); test_acpi_facs_table(data); test_acpi_dsdt_table(data); test_acpi_ssdt_tables(data); if (iasl) { test_acpi_asl(data); } qtest_quit(global_qtest); g_free(args); }
false
qemu
4500bc98a6aab1734d865afaeade3509eb65b560
25,698
static void rocker_io_writel(void *opaque, hwaddr addr, uint32_t val) { Rocker *r = opaque; if (rocker_addr_is_desc_reg(r, addr)) { unsigned index = ROCKER_RING_INDEX(addr); unsigned offset = addr & ROCKER_DMA_DESC_MASK; switch (offset) { case ROCKER_DMA_DESC_ADDR_OFFSET: r->lower32 = (uint64_t)val; break; case ROCKER_DMA_DESC_ADDR_OFFSET + 4: desc_ring_set_base_addr(r->rings[index], ((uint64_t)val) << 32 | r->lower32); r->lower32 = 0; break; case ROCKER_DMA_DESC_SIZE_OFFSET: desc_ring_set_size(r->rings[index], val); break; case ROCKER_DMA_DESC_HEAD_OFFSET: if (desc_ring_set_head(r->rings[index], val)) { rocker_msix_irq(r, desc_ring_get_msix_vector(r->rings[index])); } break; case ROCKER_DMA_DESC_CTRL_OFFSET: desc_ring_set_ctrl(r->rings[index], val); break; case ROCKER_DMA_DESC_CREDITS_OFFSET: if (desc_ring_ret_credits(r->rings[index], val)) { rocker_msix_irq(r, desc_ring_get_msix_vector(r->rings[index])); } break; default: DPRINTF("not implemented dma reg write(l) addr=0x" TARGET_FMT_plx " val=0x%08x (ring %d, addr=0x%02x)\n", addr, val, index, offset); break; } return; } switch (addr) { case ROCKER_TEST_REG: r->test_reg = val; break; case ROCKER_TEST_REG64: case ROCKER_TEST_DMA_ADDR: case ROCKER_PORT_PHYS_ENABLE: r->lower32 = (uint64_t)val; break; case ROCKER_TEST_REG64 + 4: r->test_reg64 = ((uint64_t)val) << 32 | r->lower32; r->lower32 = 0; break; case ROCKER_TEST_IRQ: rocker_msix_irq(r, val); break; case ROCKER_TEST_DMA_SIZE: r->test_dma_size = val; break; case ROCKER_TEST_DMA_ADDR + 4: r->test_dma_addr = ((uint64_t)val) << 32 | r->lower32; r->lower32 = 0; break; case ROCKER_TEST_DMA_CTRL: rocker_test_dma_ctrl(r, val); break; case ROCKER_CONTROL: rocker_control(r, val); break; case ROCKER_PORT_PHYS_ENABLE + 4: rocker_port_phys_enable_write(r, ((uint64_t)val) << 32 | r->lower32); r->lower32 = 0; break; default: DPRINTF("not implemented write(l) addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, val); break; } }
false
qemu
8caed3d564672e8bc6d2e4c6a35228afd01f4723
25,699
build_rsdt(GArray *table_data, GArray *linker, GArray *table_offsets) { AcpiRsdtDescriptorRev1 *rsdt; size_t rsdt_len; int i; const int table_data_len = (sizeof(uint32_t) * table_offsets->len); rsdt_len = sizeof(*rsdt) + table_data_len; rsdt = acpi_data_push(table_data, rsdt_len); memcpy(rsdt->table_offset_entry, table_offsets->data, table_data_len); for (i = 0; i < table_offsets->len; ++i) { /* rsdt->table_offset_entry to be filled by Guest linker */ bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE, ACPI_BUILD_TABLE_FILE, table_data, &rsdt->table_offset_entry[i], sizeof(uint32_t)); } build_header(linker, table_data, (void *)rsdt, "RSDT", rsdt_len, 1, NULL, NULL); }
false
qemu
5151355898699eb66fad0a710b8b6011690a0dfc
25,700
int nbd_client_session_co_writev(NbdClientSession *client, int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) { int offset = 0; int ret; while (nb_sectors > NBD_MAX_SECTORS) { ret = nbd_co_writev_1(client, sector_num, NBD_MAX_SECTORS, qiov, offset); if (ret < 0) { return ret; } offset += NBD_MAX_SECTORS * 512; sector_num += NBD_MAX_SECTORS; nb_sectors -= NBD_MAX_SECTORS; } return nbd_co_writev_1(client, sector_num, nb_sectors, qiov, offset); }
false
qemu
f53a829bb9ef14be800556cbc02d8b20fc1050a7
25,701
static int scsi_disk_emulate_mode_sense(SCSIDiskReq *r, uint8_t *outbuf) { SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, r->req.dev); uint64_t nb_sectors; bool dbd; int page, buflen, ret, page_control; uint8_t *p; uint8_t dev_specific_param; dbd = (r->req.cmd.buf[1] & 0x8) != 0; page = r->req.cmd.buf[2] & 0x3f; page_control = (r->req.cmd.buf[2] & 0xc0) >> 6; DPRINTF("Mode Sense(%d) (page %d, xfer %zd, page_control %d)\n", (r->req.cmd.buf[0] == MODE_SENSE) ? 6 : 10, page, r->req.cmd.xfer, page_control); memset(outbuf, 0, r->req.cmd.xfer); p = outbuf; if (s->qdev.type == TYPE_DISK) { dev_specific_param = s->features & (1 << SCSI_DISK_F_DPOFUA) ? 0x10 : 0; if (bdrv_is_read_only(s->qdev.conf.bs)) { dev_specific_param |= 0x80; /* Readonly. */ } } else { /* MMC prescribes that CD/DVD drives have no block descriptors, * and defines no device-specific parameter. */ dev_specific_param = 0x00; dbd = true; } if (r->req.cmd.buf[0] == MODE_SENSE) { p[1] = 0; /* Default media type. */ p[2] = dev_specific_param; p[3] = 0; /* Block descriptor length. */ p += 4; } else { /* MODE_SENSE_10 */ p[2] = 0; /* Default media type. */ p[3] = dev_specific_param; p[6] = p[7] = 0; /* Block descriptor length. */ p += 8; } bdrv_get_geometry(s->qdev.conf.bs, &nb_sectors); if (!dbd && nb_sectors) { if (r->req.cmd.buf[0] == MODE_SENSE) { outbuf[3] = 8; /* Block descriptor length */ } else { /* MODE_SENSE_10 */ outbuf[7] = 8; /* Block descriptor length */ } nb_sectors /= (s->qdev.blocksize / 512); if (nb_sectors > 0xffffff) { nb_sectors = 0; } p[0] = 0; /* media density code */ p[1] = (nb_sectors >> 16) & 0xff; p[2] = (nb_sectors >> 8) & 0xff; p[3] = nb_sectors & 0xff; p[4] = 0; /* reserved */ p[5] = 0; /* bytes 5-7 are the sector size in bytes */ p[6] = s->qdev.blocksize >> 8; p[7] = 0; p += 8; } if (page_control == 3) { /* Saved Values */ scsi_check_condition(r, SENSE_CODE(SAVING_PARAMS_NOT_SUPPORTED)); return -1; } if (page == 0x3f) { for (page = 0; page <= 0x3e; page++) { mode_sense_page(s, page, &p, page_control); } } else { ret = mode_sense_page(s, page, &p, page_control); if (ret == -1) { return -1; } } buflen = p - outbuf; /* * The mode data length field specifies the length in bytes of the * following data that is available to be transferred. The mode data * length does not include itself. */ if (r->req.cmd.buf[0] == MODE_SENSE) { outbuf[0] = buflen - 1; } else { /* MODE_SENSE_10 */ outbuf[0] = ((buflen - 2) >> 8) & 0xff; outbuf[1] = (buflen - 2) & 0xff; } return buflen; }
false
qemu
4be746345f13e99e468c60acbd3a355e8183e3ce
25,702
static void qemu_chr_parse_pipe(QemuOpts *opts, ChardevBackend *backend, Error **errp) { const char *device = qemu_opt_get(opts, "path"); ChardevHostdev *dev; if (device == NULL) { error_setg(errp, "chardev: pipe: no device path given"); return; } dev = backend->u.pipe = g_new0(ChardevHostdev, 1); qemu_chr_parse_common(opts, qapi_ChardevHostdev_base(dev)); dev->device = g_strdup(device); }
false
qemu
32bafa8fdd098d52fbf1102d5a5e48d29398c0aa
25,703
static int mov_read_stts(MOVContext *c, ByteIOContext *pb, MOVAtom atom) { AVStream *st = c->fc->streams[c->fc->nb_streams-1]; MOVStreamContext *sc = st->priv_data; unsigned int i, entries; int64_t duration=0; int64_t total_sample_count=0; get_byte(pb); /* version */ get_be24(pb); /* flags */ entries = get_be32(pb); dprintf(c->fc, "track[%i].stts.entries = %i\n", c->fc->nb_streams-1, entries); if(entries >= UINT_MAX / sizeof(*sc->stts_data)) return -1; sc->stts_data = av_malloc(entries * sizeof(*sc->stts_data)); if (!sc->stts_data) return AVERROR(ENOMEM); sc->stts_count = entries; for(i=0; i<entries; i++) { int sample_duration; int sample_count; sample_count=get_be32(pb); sample_duration = get_be32(pb); sc->stts_data[i].count= sample_count; sc->stts_data[i].duration= sample_duration; dprintf(c->fc, "sample_count=%d, sample_duration=%d\n",sample_count,sample_duration); duration+=(int64_t)sample_duration*sample_count; total_sample_count+=sample_count; } st->nb_frames= total_sample_count; if(duration) st->duration= duration; return 0; }
false
FFmpeg
6a63ff19b6a7fe3bc32c7fb4a62fca8f65786432
25,705
static void bt_submit_sco(struct HCIInfo *info, const uint8_t *data, int length) { struct bt_hci_s *hci = hci_from_info(info); uint16_t handle; int datalen; if (length < 3) return; handle = acl_handle((data[1] << 8) | data[0]); datalen = data[2]; length -= 3; if (bt_hci_handle_bad(hci, handle)) { fprintf(stderr, "%s: invalid SCO handle %03x\n", __FUNCTION__, handle); return; } if (datalen > length) { fprintf(stderr, "%s: SCO packet too short (%iB < %iB)\n", __FUNCTION__, length, datalen); return; } /* TODO */ /* TODO: increase counter and send EVT_NUM_COMP_PKTS if synchronous * Flow Control is enabled. * (See Read/Write_Synchronous_Flow_Control_Enable on page 513 and * page 514.) */ }
false
qemu
a89f364ae8740dfc31b321eed9ee454e996dc3c1
25,707
static void do_v7m_exception_exit(ARMCPU *cpu) { CPUARMState *env = &cpu->env; uint32_t type; uint32_t xpsr; bool ufault = false; bool return_to_sp_process = false; bool return_to_handler = false; bool rettobase = false; /* We can only get here from an EXCP_EXCEPTION_EXIT, and * gen_bx_excret() enforces the architectural rule * that jumps to magic addresses don't have magic behaviour unless * we're in Handler mode (compare pseudocode BXWritePC()). */ assert(arm_v7m_is_handler_mode(env)); /* In the spec pseudocode ExceptionReturn() is called directly * from BXWritePC() and gets the full target PC value including * bit zero. In QEMU's implementation we treat it as a normal * jump-to-register (which is then caught later on), and so split * the target value up between env->regs[15] and env->thumb in * gen_bx(). Reconstitute it. */ type = env->regs[15]; if (env->thumb) { type |= 1; } qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 " previous exception %d\n", type, env->v7m.exception); if (extract32(type, 5, 23) != extract32(-1, 5, 23)) { qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type); } if (env->v7m.exception != ARMV7M_EXCP_NMI) { /* Auto-clear FAULTMASK on return from other than NMI. * If the security extension is implemented then this only * happens if the raw execution priority is >= 0; the * value of the ES bit in the exception return value indicates * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) */ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { int es = type & 1; if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { env->v7m.faultmask[es] = 0; } } else { env->v7m.faultmask[M_REG_NS] = 0; } } switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) { case -1: /* attempt to exit an exception that isn't active */ ufault = true; break; case 0: /* still an irq active now */ break; case 1: /* we returned to base exception level, no nesting. * (In the pseudocode this is written using "NestedActivation != 1" * where we have 'rettobase == false'.) */ rettobase = true; break; default: g_assert_not_reached(); } switch (type & 0xf) { case 1: /* Return to Handler */ return_to_handler = true; break; case 13: /* Return to Thread using Process stack */ return_to_sp_process = true; /* fall through */ case 9: /* Return to Thread using Main stack */ if (!rettobase && !(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_NONBASETHRDENA_MASK)) { ufault = true; } break; default: ufault = true; } if (ufault) { /* Bad exception return: instead of popping the exception * stack, directly take a usage fault on the current stack. */ env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); v7m_exception_taken(cpu, type | 0xf0000000); qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " "stackframe: failed exception return integrity check\n"); return; } /* Switch to the target stack. */ switch_v7m_sp(env, return_to_sp_process); /* Pop registers. */ env->regs[0] = v7m_pop(env); env->regs[1] = v7m_pop(env); env->regs[2] = v7m_pop(env); env->regs[3] = v7m_pop(env); env->regs[12] = v7m_pop(env); env->regs[14] = v7m_pop(env); env->regs[15] = v7m_pop(env); if (env->regs[15] & 1) { qemu_log_mask(LOG_GUEST_ERROR, "M profile return from interrupt with misaligned " "PC is UNPREDICTABLE\n"); /* Actual hardware seems to ignore the lsbit, and there are several * RTOSes out there which incorrectly assume the r15 in the stack * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. */ env->regs[15] &= ~1U; } xpsr = v7m_pop(env); xpsr_write(env, xpsr, ~XPSR_SPREALIGN); /* Undo stack alignment. */ if (xpsr & XPSR_SPREALIGN) { env->regs[13] |= 4; } /* The restored xPSR exception field will be zero if we're * resuming in Thread mode. If that doesn't match what the * exception return type specified then this is a UsageFault. */ if (return_to_handler != arm_v7m_is_handler_mode(env)) { /* Take an INVPC UsageFault by pushing the stack again. */ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK; v7m_push_stack(cpu); v7m_exception_taken(cpu, type | 0xf0000000); qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " "failed exception return integrity check\n"); return; } /* Otherwise, we have a successful exception exit. */ qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); }
false
qemu
334e8dad7a109d15cb20b090131374ae98682a50
25,708
static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res, uint16_t *refcount_table, int refcount_table_size, int64_t l2_offset, int flags) { BDRVQcowState *s = bs->opaque; uint64_t *l2_table, l2_entry; uint64_t next_contiguous_offset = 0; int i, l2_size, nb_csectors; /* Read L2 table from disk */ l2_size = s->l2_size * sizeof(uint64_t); l2_table = g_malloc(l2_size); if (bdrv_pread(bs->file, l2_offset, l2_table, l2_size) != l2_size) goto fail; /* Do the actual checks */ for(i = 0; i < s->l2_size; i++) { l2_entry = be64_to_cpu(l2_table[i]); switch (qcow2_get_cluster_type(l2_entry)) { case QCOW2_CLUSTER_COMPRESSED: /* Compressed clusters don't have QCOW_OFLAG_COPIED */ if (l2_entry & QCOW_OFLAG_COPIED) { fprintf(stderr, "ERROR: cluster %" PRId64 ": " "copied flag must never be set for compressed " "clusters\n", l2_entry >> s->cluster_bits); l2_entry &= ~QCOW_OFLAG_COPIED; res->corruptions++; } /* Mark cluster as used */ nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1; l2_entry &= s->cluster_offset_mask; inc_refcounts(bs, res, refcount_table, refcount_table_size, l2_entry & ~511, nb_csectors * 512); if (flags & CHECK_FRAG_INFO) { res->bfi.allocated_clusters++; res->bfi.compressed_clusters++; /* Compressed clusters are fragmented by nature. Since they * take up sub-sector space but we only have sector granularity * I/O we need to re-read the same sectors even for adjacent * compressed clusters. */ res->bfi.fragmented_clusters++; } break; case QCOW2_CLUSTER_ZERO: if ((l2_entry & L2E_OFFSET_MASK) == 0) { break; } /* fall through */ case QCOW2_CLUSTER_NORMAL: { uint64_t offset = l2_entry & L2E_OFFSET_MASK; if (flags & CHECK_FRAG_INFO) { res->bfi.allocated_clusters++; if (next_contiguous_offset && offset != next_contiguous_offset) { res->bfi.fragmented_clusters++; } next_contiguous_offset = offset + s->cluster_size; } /* Mark cluster as used */ inc_refcounts(bs, res, refcount_table,refcount_table_size, offset, s->cluster_size); /* Correct offsets are cluster aligned */ if (offset_into_cluster(s, offset)) { fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not " "properly aligned; L2 entry corrupted.\n", offset); res->corruptions++; } break; } case QCOW2_CLUSTER_UNALLOCATED: break; default: abort(); } } g_free(l2_table); return 0; fail: fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n"); g_free(l2_table); return -EIO; }
false
qemu
713d9675e0e31c627d08b6a33d3a92e4b8505b40
25,709
static inline void gen_op_fcmpq(int fccno) { switch (fccno) { case 0: gen_helper_fcmpq(cpu_env); break; case 1: gen_helper_fcmpq_fcc1(cpu_env); break; case 2: gen_helper_fcmpq_fcc2(cpu_env); break; case 3: gen_helper_fcmpq_fcc3(cpu_env); break; } }
false
qemu
7385aed20db5d83979f683b9d0048674411e963c
25,712
static int proxy_closedir(FsContext *ctx, V9fsFidOpenState *fs) { return closedir(fs->dir); }
false
qemu
494a8ebe713055d3946183f4b395f85a18b43e9e
25,715
static int ne2000_can_receive(void *opaque) { NE2000State *s = opaque; int avail, index, boundary; if (s->cmd & E8390_STOP) return 0; index = s->curpag << 8; boundary = s->boundary << 8; if (index < boundary) avail = boundary - index; else avail = (s->stop - s->start) - (index - boundary); if (avail < (MAX_ETH_FRAME_SIZE + 4)) return 0; return MAX_ETH_FRAME_SIZE; }
true
qemu
d861b05ea30e6ac177de9b679da96194ebe21afc
25,716
static void test_qemu_strtoll_invalid(void) { const char *str = " xxxx \t abc"; char f = 'X'; const char *endptr = &f; int64_t res = 999; int err; err = qemu_strtoll(str, &endptr, 0, &res); g_assert_cmpint(err, ==, 0); g_assert(endptr == str); }
true
qemu
47d4be12c3997343e436c6cca89aefbbbeb70863
25,718
static int decode_i_picture_secondary_header(VC9Context *v) { int status; #if HAS_ADVANCED_PROFILE if (v->profile > PROFILE_MAIN) { v->s.ac_pred = get_bits(&v->s.gb, 1); if (v->postprocflag) v->postproc = get_bits(&v->s.gb, 1); /* 7.1.1.34 + 8.5.2 */ if (v->overlap && v->pq<9) { v->condover = get_bits(&v->s.gb, 1); if (v->condover) { v->condover = 2+get_bits(&v->s.gb, 1); if (v->condover == 3) { status = bitplane_decoding(&v->over_flags_plane, v); if (status < 0) return -1; # if TRACE av_log(v->s.avctx, AV_LOG_DEBUG, "Overflags plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); # endif } } } } #endif /* Epilog (AC/DC syntax) should be done in caller */ return 0; }
true
FFmpeg
7cc84d241ba6ef8e27e4d057176a4ad385ad3d59
25,719
void visit_type_enum(Visitor *v, int *obj, const char *strings[], const char *kind, const char *name, Error **errp) { if (!error_is_set(errp)) { v->type_enum(v, obj, strings, kind, name, errp); } }
true
qemu
297a3646c2947ee64a6d42ca264039732c6218e0
25,720
static AVStream *get_subtitle_pkt(AVFormatContext *s, AVStream *next_st, AVPacket *pkt) { AVIStream *ast, *next_ast = next_st->priv_data; int64_t ts, next_ts, ts_min = INT64_MAX; AVStream *st, *sub_st = NULL; int i; next_ts = av_rescale_q(next_ast->frame_offset, next_st->time_base, AV_TIME_BASE_Q); for (i=0; i<s->nb_streams; i++) { st = s->streams[i]; ast = st->priv_data; if (st->discard < AVDISCARD_ALL && ast->sub_pkt.data) { ts = av_rescale_q(ast->sub_pkt.dts, st->time_base, AV_TIME_BASE_Q); if (ts <= next_ts && ts < ts_min) { ts_min = ts; sub_st = st; } } } if (sub_st) { ast = sub_st->priv_data; *pkt = ast->sub_pkt; pkt->stream_index = sub_st->index; if (av_read_packet(ast->sub_ctx, &ast->sub_pkt) < 0) ast->sub_pkt.data = NULL; } return sub_st; }
true
FFmpeg
4ed899f2c5848b75b61d13ad42942ecc2a4386f9
25,721
static void adb_keyboard_event(DeviceState *dev, QemuConsole *src, InputEvent *evt) { KBDState *s = (KBDState *)dev; int qcode, keycode; qcode = qemu_input_key_value_to_qcode(evt->u.key.data->key); if (qcode >= ARRAY_SIZE(qcode_to_adb_keycode)) { return; } /* FIXME: take handler into account when translating qcode */ keycode = qcode_to_adb_keycode[qcode]; if (keycode == NO_KEY) { /* We don't want to send this to the guest */ ADB_DPRINTF("Ignoring NO_KEY\n"); return; } if (evt->u.key.data->down == false) { /* if key release event */ keycode = keycode | 0x80; /* create keyboard break code */ } adb_kbd_put_keycode(s, keycode); }
true
qemu
77cb0f5aafc8e6d0c6d3c339f381c9b7921648e0
25,722
void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx) { mm_flags = mm_support(); if (avctx->dsp_mask) { if (avctx->dsp_mask & FF_MM_FORCE) mm_flags |= (avctx->dsp_mask & 0xffff); else mm_flags &= ~(avctx->dsp_mask & 0xffff); } #if 0 av_log(avctx, AV_LOG_INFO, "libavcodec: CPU flags:"); if (mm_flags & MM_MMX) av_log(avctx, AV_LOG_INFO, " mmx"); if (mm_flags & MM_MMXEXT) av_log(avctx, AV_LOG_INFO, " mmxext"); if (mm_flags & MM_3DNOW) av_log(avctx, AV_LOG_INFO, " 3dnow"); if (mm_flags & MM_SSE) av_log(avctx, AV_LOG_INFO, " sse"); if (mm_flags & MM_SSE2) av_log(avctx, AV_LOG_INFO, " sse2"); av_log(avctx, AV_LOG_INFO, "\n"); #endif if (mm_flags & MM_MMX) { const int idct_algo= avctx->idct_algo; if(avctx->lowres==0){ if(idct_algo==FF_IDCT_AUTO || idct_algo==FF_IDCT_SIMPLEMMX){ c->idct_put= ff_simple_idct_put_mmx; c->idct_add= ff_simple_idct_add_mmx; c->idct = ff_simple_idct_mmx; c->idct_permutation_type= FF_SIMPLE_IDCT_PERM; #ifdef CONFIG_GPL }else if(idct_algo==FF_IDCT_LIBMPEG2MMX){ if(mm_flags & MM_MMXEXT){ c->idct_put= ff_libmpeg2mmx2_idct_put; c->idct_add= ff_libmpeg2mmx2_idct_add; c->idct = ff_mmxext_idct; }else{ c->idct_put= ff_libmpeg2mmx_idct_put; c->idct_add= ff_libmpeg2mmx_idct_add; c->idct = ff_mmx_idct; } c->idct_permutation_type= FF_LIBMPEG2_IDCT_PERM; #endif }else if((ENABLE_VP3_DECODER || ENABLE_VP5_DECODER || ENABLE_VP6_DECODER || ENABLE_THEORA_DECODER) && idct_algo==FF_IDCT_VP3){ if(mm_flags & MM_SSE2){ c->idct_put= ff_vp3_idct_put_sse2; c->idct_add= ff_vp3_idct_add_sse2; c->idct = ff_vp3_idct_sse2; c->idct_permutation_type= FF_TRANSPOSE_IDCT_PERM; }else{ c->idct_put= ff_vp3_idct_put_mmx; c->idct_add= ff_vp3_idct_add_mmx; c->idct = ff_vp3_idct_mmx; c->idct_permutation_type= FF_PARTTRANS_IDCT_PERM; } }else if(idct_algo==FF_IDCT_CAVS){ c->idct_permutation_type= FF_TRANSPOSE_IDCT_PERM; }else if(idct_algo==FF_IDCT_XVIDMMX){ if(mm_flags & MM_SSE2){ c->idct_put= ff_idct_xvid_sse2_put; c->idct_add= ff_idct_xvid_sse2_add; c->idct = ff_idct_xvid_sse2; c->idct_permutation_type= FF_SSE2_IDCT_PERM; }else if(mm_flags & MM_MMXEXT){ c->idct_put= ff_idct_xvid_mmx2_put; c->idct_add= ff_idct_xvid_mmx2_add; c->idct = ff_idct_xvid_mmx2; }else{ c->idct_put= ff_idct_xvid_mmx_put; c->idct_add= ff_idct_xvid_mmx_add; c->idct = ff_idct_xvid_mmx; } } } c->put_pixels_clamped = put_pixels_clamped_mmx; c->put_signed_pixels_clamped = put_signed_pixels_clamped_mmx; c->add_pixels_clamped = add_pixels_clamped_mmx; c->clear_blocks = clear_blocks_mmx; #define SET_HPEL_FUNCS(PFX, IDX, SIZE, CPU) \ c->PFX ## _pixels_tab[IDX][0] = PFX ## _pixels ## SIZE ## _ ## CPU; \ c->PFX ## _pixels_tab[IDX][1] = PFX ## _pixels ## SIZE ## _x2_ ## CPU; \ c->PFX ## _pixels_tab[IDX][2] = PFX ## _pixels ## SIZE ## _y2_ ## CPU; \ c->PFX ## _pixels_tab[IDX][3] = PFX ## _pixels ## SIZE ## _xy2_ ## CPU SET_HPEL_FUNCS(put, 0, 16, mmx); SET_HPEL_FUNCS(put_no_rnd, 0, 16, mmx); SET_HPEL_FUNCS(avg, 0, 16, mmx); SET_HPEL_FUNCS(avg_no_rnd, 0, 16, mmx); SET_HPEL_FUNCS(put, 1, 8, mmx); SET_HPEL_FUNCS(put_no_rnd, 1, 8, mmx); SET_HPEL_FUNCS(avg, 1, 8, mmx); SET_HPEL_FUNCS(avg_no_rnd, 1, 8, mmx); c->gmc= gmc_mmx; c->add_bytes= add_bytes_mmx; c->add_bytes_l2= add_bytes_l2_mmx; c->draw_edges = draw_edges_mmx; if (ENABLE_ANY_H263) { c->h263_v_loop_filter= h263_v_loop_filter_mmx; c->h263_h_loop_filter= h263_h_loop_filter_mmx; } if ((ENABLE_VP3_DECODER || ENABLE_THEORA_DECODER) && !(avctx->flags & CODEC_FLAG_BITEXACT)) { c->vp3_v_loop_filter= ff_vp3_v_loop_filter_mmx; c->vp3_h_loop_filter= ff_vp3_h_loop_filter_mmx; } c->put_h264_chroma_pixels_tab[0]= put_h264_chroma_mc8_mmx_rnd; c->put_h264_chroma_pixels_tab[1]= put_h264_chroma_mc4_mmx; c->put_no_rnd_h264_chroma_pixels_tab[0]= put_h264_chroma_mc8_mmx_nornd; c->h264_idct_dc_add= c->h264_idct_add= ff_h264_idct_add_mmx; c->h264_idct8_dc_add= c->h264_idct8_add= ff_h264_idct8_add_mmx; if (mm_flags & MM_SSE2) c->h264_idct8_add= ff_h264_idct8_add_sse2; if (mm_flags & MM_MMXEXT) { c->prefetch = prefetch_mmx2; c->put_pixels_tab[0][1] = put_pixels16_x2_mmx2; c->put_pixels_tab[0][2] = put_pixels16_y2_mmx2; c->avg_pixels_tab[0][0] = avg_pixels16_mmx2; c->avg_pixels_tab[0][1] = avg_pixels16_x2_mmx2; c->avg_pixels_tab[0][2] = avg_pixels16_y2_mmx2; c->put_pixels_tab[1][1] = put_pixels8_x2_mmx2; c->put_pixels_tab[1][2] = put_pixels8_y2_mmx2; c->avg_pixels_tab[1][0] = avg_pixels8_mmx2; c->avg_pixels_tab[1][1] = avg_pixels8_x2_mmx2; c->avg_pixels_tab[1][2] = avg_pixels8_y2_mmx2; c->h264_idct_dc_add= ff_h264_idct_dc_add_mmx2; c->h264_idct8_dc_add= ff_h264_idct8_dc_add_mmx2; if(!(avctx->flags & CODEC_FLAG_BITEXACT)){ c->put_no_rnd_pixels_tab[0][1] = put_no_rnd_pixels16_x2_mmx2; c->put_no_rnd_pixels_tab[0][2] = put_no_rnd_pixels16_y2_mmx2; c->put_no_rnd_pixels_tab[1][1] = put_no_rnd_pixels8_x2_mmx2; c->put_no_rnd_pixels_tab[1][2] = put_no_rnd_pixels8_y2_mmx2; c->avg_pixels_tab[0][3] = avg_pixels16_xy2_mmx2; c->avg_pixels_tab[1][3] = avg_pixels8_xy2_mmx2; } #define SET_QPEL_FUNCS(PFX, IDX, SIZE, CPU) \ c->PFX ## _pixels_tab[IDX][ 0] = PFX ## SIZE ## _mc00_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 1] = PFX ## SIZE ## _mc10_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 2] = PFX ## SIZE ## _mc20_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 3] = PFX ## SIZE ## _mc30_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 4] = PFX ## SIZE ## _mc01_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 5] = PFX ## SIZE ## _mc11_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 6] = PFX ## SIZE ## _mc21_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 7] = PFX ## SIZE ## _mc31_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 8] = PFX ## SIZE ## _mc02_ ## CPU; \ c->PFX ## _pixels_tab[IDX][ 9] = PFX ## SIZE ## _mc12_ ## CPU; \ c->PFX ## _pixels_tab[IDX][10] = PFX ## SIZE ## _mc22_ ## CPU; \ c->PFX ## _pixels_tab[IDX][11] = PFX ## SIZE ## _mc32_ ## CPU; \ c->PFX ## _pixels_tab[IDX][12] = PFX ## SIZE ## _mc03_ ## CPU; \ c->PFX ## _pixels_tab[IDX][13] = PFX ## SIZE ## _mc13_ ## CPU; \ c->PFX ## _pixels_tab[IDX][14] = PFX ## SIZE ## _mc23_ ## CPU; \ c->PFX ## _pixels_tab[IDX][15] = PFX ## SIZE ## _mc33_ ## CPU SET_QPEL_FUNCS(put_qpel, 0, 16, mmx2); SET_QPEL_FUNCS(put_qpel, 1, 8, mmx2); SET_QPEL_FUNCS(put_no_rnd_qpel, 0, 16, mmx2); SET_QPEL_FUNCS(put_no_rnd_qpel, 1, 8, mmx2); SET_QPEL_FUNCS(avg_qpel, 0, 16, mmx2); SET_QPEL_FUNCS(avg_qpel, 1, 8, mmx2); SET_QPEL_FUNCS(put_h264_qpel, 0, 16, mmx2); SET_QPEL_FUNCS(put_h264_qpel, 1, 8, mmx2); SET_QPEL_FUNCS(put_h264_qpel, 2, 4, mmx2); SET_QPEL_FUNCS(avg_h264_qpel, 0, 16, mmx2); SET_QPEL_FUNCS(avg_h264_qpel, 1, 8, mmx2); SET_QPEL_FUNCS(avg_h264_qpel, 2, 4, mmx2); SET_QPEL_FUNCS(put_2tap_qpel, 0, 16, mmx2); SET_QPEL_FUNCS(put_2tap_qpel, 1, 8, mmx2); SET_QPEL_FUNCS(avg_2tap_qpel, 0, 16, mmx2); SET_QPEL_FUNCS(avg_2tap_qpel, 1, 8, mmx2); c->avg_h264_chroma_pixels_tab[0]= avg_h264_chroma_mc8_mmx2_rnd; c->avg_h264_chroma_pixels_tab[1]= avg_h264_chroma_mc4_mmx2; c->avg_h264_chroma_pixels_tab[2]= avg_h264_chroma_mc2_mmx2; c->put_h264_chroma_pixels_tab[2]= put_h264_chroma_mc2_mmx2; c->h264_v_loop_filter_luma= h264_v_loop_filter_luma_mmx2; c->h264_h_loop_filter_luma= h264_h_loop_filter_luma_mmx2; c->h264_v_loop_filter_chroma= h264_v_loop_filter_chroma_mmx2; c->h264_h_loop_filter_chroma= h264_h_loop_filter_chroma_mmx2; c->h264_v_loop_filter_chroma_intra= h264_v_loop_filter_chroma_intra_mmx2; c->h264_h_loop_filter_chroma_intra= h264_h_loop_filter_chroma_intra_mmx2; c->h264_loop_filter_strength= h264_loop_filter_strength_mmx2; c->weight_h264_pixels_tab[0]= ff_h264_weight_16x16_mmx2; c->weight_h264_pixels_tab[1]= ff_h264_weight_16x8_mmx2; c->weight_h264_pixels_tab[2]= ff_h264_weight_8x16_mmx2; c->weight_h264_pixels_tab[3]= ff_h264_weight_8x8_mmx2; c->weight_h264_pixels_tab[4]= ff_h264_weight_8x4_mmx2; c->weight_h264_pixels_tab[5]= ff_h264_weight_4x8_mmx2; c->weight_h264_pixels_tab[6]= ff_h264_weight_4x4_mmx2; c->weight_h264_pixels_tab[7]= ff_h264_weight_4x2_mmx2; c->biweight_h264_pixels_tab[0]= ff_h264_biweight_16x16_mmx2; c->biweight_h264_pixels_tab[1]= ff_h264_biweight_16x8_mmx2; c->biweight_h264_pixels_tab[2]= ff_h264_biweight_8x16_mmx2; c->biweight_h264_pixels_tab[3]= ff_h264_biweight_8x8_mmx2; c->biweight_h264_pixels_tab[4]= ff_h264_biweight_8x4_mmx2; c->biweight_h264_pixels_tab[5]= ff_h264_biweight_4x8_mmx2; c->biweight_h264_pixels_tab[6]= ff_h264_biweight_4x4_mmx2; c->biweight_h264_pixels_tab[7]= ff_h264_biweight_4x2_mmx2; if (ENABLE_CAVS_DECODER) ff_cavsdsp_init_mmx2(c, avctx); if (ENABLE_VC1_DECODER || ENABLE_WMV3_DECODER) ff_vc1dsp_init_mmx(c, avctx); c->add_png_paeth_prediction= add_png_paeth_prediction_mmx2; } else if (mm_flags & MM_3DNOW) { c->prefetch = prefetch_3dnow; c->put_pixels_tab[0][1] = put_pixels16_x2_3dnow; c->put_pixels_tab[0][2] = put_pixels16_y2_3dnow; c->avg_pixels_tab[0][0] = avg_pixels16_3dnow; c->avg_pixels_tab[0][1] = avg_pixels16_x2_3dnow; c->avg_pixels_tab[0][2] = avg_pixels16_y2_3dnow; c->put_pixels_tab[1][1] = put_pixels8_x2_3dnow; c->put_pixels_tab[1][2] = put_pixels8_y2_3dnow; c->avg_pixels_tab[1][0] = avg_pixels8_3dnow; c->avg_pixels_tab[1][1] = avg_pixels8_x2_3dnow; c->avg_pixels_tab[1][2] = avg_pixels8_y2_3dnow; if(!(avctx->flags & CODEC_FLAG_BITEXACT)){ c->put_no_rnd_pixels_tab[0][1] = put_no_rnd_pixels16_x2_3dnow; c->put_no_rnd_pixels_tab[0][2] = put_no_rnd_pixels16_y2_3dnow; c->put_no_rnd_pixels_tab[1][1] = put_no_rnd_pixels8_x2_3dnow; c->put_no_rnd_pixels_tab[1][2] = put_no_rnd_pixels8_y2_3dnow; c->avg_pixels_tab[0][3] = avg_pixels16_xy2_3dnow; c->avg_pixels_tab[1][3] = avg_pixels8_xy2_3dnow; } SET_QPEL_FUNCS(put_qpel, 0, 16, 3dnow); SET_QPEL_FUNCS(put_qpel, 1, 8, 3dnow); SET_QPEL_FUNCS(put_no_rnd_qpel, 0, 16, 3dnow); SET_QPEL_FUNCS(put_no_rnd_qpel, 1, 8, 3dnow); SET_QPEL_FUNCS(avg_qpel, 0, 16, 3dnow); SET_QPEL_FUNCS(avg_qpel, 1, 8, 3dnow); SET_QPEL_FUNCS(put_h264_qpel, 0, 16, 3dnow); SET_QPEL_FUNCS(put_h264_qpel, 1, 8, 3dnow); SET_QPEL_FUNCS(put_h264_qpel, 2, 4, 3dnow); SET_QPEL_FUNCS(avg_h264_qpel, 0, 16, 3dnow); SET_QPEL_FUNCS(avg_h264_qpel, 1, 8, 3dnow); SET_QPEL_FUNCS(avg_h264_qpel, 2, 4, 3dnow); SET_QPEL_FUNCS(put_2tap_qpel, 0, 16, 3dnow); SET_QPEL_FUNCS(put_2tap_qpel, 1, 8, 3dnow); SET_QPEL_FUNCS(avg_2tap_qpel, 0, 16, 3dnow); SET_QPEL_FUNCS(avg_2tap_qpel, 1, 8, 3dnow); c->avg_h264_chroma_pixels_tab[0]= avg_h264_chroma_mc8_3dnow_rnd; c->avg_h264_chroma_pixels_tab[1]= avg_h264_chroma_mc4_3dnow; if (ENABLE_CAVS_DECODER) ff_cavsdsp_init_3dnow(c, avctx); } #define H264_QPEL_FUNCS(x, y, CPU)\ c->put_h264_qpel_pixels_tab[0][x+y*4] = put_h264_qpel16_mc##x##y##_##CPU;\ c->put_h264_qpel_pixels_tab[1][x+y*4] = put_h264_qpel8_mc##x##y##_##CPU;\ c->avg_h264_qpel_pixels_tab[0][x+y*4] = avg_h264_qpel16_mc##x##y##_##CPU;\ c->avg_h264_qpel_pixels_tab[1][x+y*4] = avg_h264_qpel8_mc##x##y##_##CPU; if((mm_flags & MM_SSE2) && !(mm_flags & MM_3DNOW)){ // these functions are slower than mmx on AMD, but faster on Intel /* FIXME works in most codecs, but crashes svq1 due to unaligned chroma c->put_pixels_tab[0][0] = put_pixels16_sse2; c->avg_pixels_tab[0][0] = avg_pixels16_sse2; */ H264_QPEL_FUNCS(0, 0, sse2); } if(mm_flags & MM_SSE2){ H264_QPEL_FUNCS(0, 1, sse2); H264_QPEL_FUNCS(0, 2, sse2); H264_QPEL_FUNCS(0, 3, sse2); H264_QPEL_FUNCS(1, 1, sse2); H264_QPEL_FUNCS(1, 2, sse2); H264_QPEL_FUNCS(1, 3, sse2); H264_QPEL_FUNCS(2, 1, sse2); H264_QPEL_FUNCS(2, 2, sse2); H264_QPEL_FUNCS(2, 3, sse2); H264_QPEL_FUNCS(3, 1, sse2); H264_QPEL_FUNCS(3, 2, sse2); H264_QPEL_FUNCS(3, 3, sse2); } #ifdef HAVE_SSSE3 if(mm_flags & MM_SSSE3){ H264_QPEL_FUNCS(1, 0, ssse3); H264_QPEL_FUNCS(1, 1, ssse3); H264_QPEL_FUNCS(1, 2, ssse3); H264_QPEL_FUNCS(1, 3, ssse3); H264_QPEL_FUNCS(2, 0, ssse3); H264_QPEL_FUNCS(2, 1, ssse3); H264_QPEL_FUNCS(2, 2, ssse3); H264_QPEL_FUNCS(2, 3, ssse3); H264_QPEL_FUNCS(3, 0, ssse3); H264_QPEL_FUNCS(3, 1, ssse3); H264_QPEL_FUNCS(3, 2, ssse3); H264_QPEL_FUNCS(3, 3, ssse3); c->put_no_rnd_h264_chroma_pixels_tab[0]= put_h264_chroma_mc8_ssse3_nornd; c->put_h264_chroma_pixels_tab[0]= put_h264_chroma_mc8_ssse3_rnd; c->avg_h264_chroma_pixels_tab[0]= avg_h264_chroma_mc8_ssse3_rnd; c->put_h264_chroma_pixels_tab[1]= put_h264_chroma_mc4_ssse3; c->avg_h264_chroma_pixels_tab[1]= avg_h264_chroma_mc4_ssse3; c->add_png_paeth_prediction= add_png_paeth_prediction_ssse3; } #endif #ifdef CONFIG_SNOW_DECODER if(mm_flags & MM_SSE2 & 0){ c->horizontal_compose97i = ff_snow_horizontal_compose97i_sse2; #ifdef HAVE_7REGS c->vertical_compose97i = ff_snow_vertical_compose97i_sse2; #endif c->inner_add_yblock = ff_snow_inner_add_yblock_sse2; } else{ if(mm_flags & MM_MMXEXT){ c->horizontal_compose97i = ff_snow_horizontal_compose97i_mmx; #ifdef HAVE_7REGS c->vertical_compose97i = ff_snow_vertical_compose97i_mmx; #endif } c->inner_add_yblock = ff_snow_inner_add_yblock_mmx; } #endif if(mm_flags & MM_3DNOW){ c->vorbis_inverse_coupling = vorbis_inverse_coupling_3dnow; c->vector_fmul = vector_fmul_3dnow; if(!(avctx->flags & CODEC_FLAG_BITEXACT)){ c->float_to_int16 = float_to_int16_3dnow; c->float_to_int16_interleave = float_to_int16_interleave_3dnow; } } if(mm_flags & MM_3DNOWEXT){ c->vector_fmul_reverse = vector_fmul_reverse_3dnow2; c->vector_fmul_window = vector_fmul_window_3dnow2; if(!(avctx->flags & CODEC_FLAG_BITEXACT)){ c->float_to_int16_interleave = float_to_int16_interleave_3dn2; } } if(mm_flags & MM_SSE){ c->vorbis_inverse_coupling = vorbis_inverse_coupling_sse; c->ac3_downmix = ac3_downmix_sse; c->vector_fmul = vector_fmul_sse; c->vector_fmul_reverse = vector_fmul_reverse_sse; c->vector_fmul_add_add = vector_fmul_add_add_sse; c->vector_fmul_window = vector_fmul_window_sse; c->int32_to_float_fmul_scalar = int32_to_float_fmul_scalar_sse; c->float_to_int16 = float_to_int16_sse; c->float_to_int16_interleave = float_to_int16_interleave_sse; } if(mm_flags & MM_3DNOW) c->vector_fmul_add_add = vector_fmul_add_add_3dnow; // faster than sse if(mm_flags & MM_SSE2){ c->int32_to_float_fmul_scalar = int32_to_float_fmul_scalar_sse2; c->float_to_int16 = float_to_int16_sse2; c->float_to_int16_interleave = float_to_int16_interleave_sse2; c->add_int16 = add_int16_sse2; c->sub_int16 = sub_int16_sse2; c->scalarproduct_int16 = scalarproduct_int16_sse2; } } if (ENABLE_ENCODERS) dsputilenc_init_mmx(c, avctx); #if 0 // for speed testing get_pixels = just_return; put_pixels_clamped = just_return; add_pixels_clamped = just_return; pix_abs16x16 = just_return; pix_abs16x16_x2 = just_return; pix_abs16x16_y2 = just_return; pix_abs16x16_xy2 = just_return; put_pixels_tab[0] = just_return; put_pixels_tab[1] = just_return; put_pixels_tab[2] = just_return; put_pixels_tab[3] = just_return; put_no_rnd_pixels_tab[0] = just_return; put_no_rnd_pixels_tab[1] = just_return; put_no_rnd_pixels_tab[2] = just_return; put_no_rnd_pixels_tab[3] = just_return; avg_pixels_tab[0] = just_return; avg_pixels_tab[1] = just_return; avg_pixels_tab[2] = just_return; avg_pixels_tab[3] = just_return; avg_no_rnd_pixels_tab[0] = just_return; avg_no_rnd_pixels_tab[1] = just_return; avg_no_rnd_pixels_tab[2] = just_return; avg_no_rnd_pixels_tab[3] = just_return; //av_fdct = just_return; //ff_idct = just_return; #endif }
false
FFmpeg
daa1ea049a9445b7bed03963cb789497065dd1eb
25,723
static void iscsi_retry_timer_expired(void *opaque) { struct IscsiTask *iTask = opaque; iTask->complete = 1; if (iTask->co) { qemu_coroutine_enter(iTask->co, NULL); } }
true
qemu
0b8b8753e4d94901627b3e86431230f2319215c4
25,725
int qemu_shutdown_requested_get(void) { return shutdown_requested; }
true
qemu
aedbe19297907143f17b733a7ff0e0534377bed1
25,727
static inline void RENAME(rgb15ToY)(uint8_t *dst, uint8_t *src, int width) { int i; for(i=0; i<width; i++) { int d= ((uint16_t*)src)[i]; int r= d&0x1F; int g= (d>>5)&0x1F; int b= (d>>10)&0x1F; dst[i]= ((RY*r + GY*g + BY*b)>>(RGB2YUV_SHIFT-3)) + 16; } }
true
FFmpeg
2da0d70d5eebe42f9fcd27ee554419ebe2a5da06
25,728
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, target_phys_addr_t end_addr, unsigned flags, unsigned mask) { KVMState *s = kvm_state; KVMSlot *mem = kvm_lookup_slot(s, phys_addr); if (mem == NULL) { dprintf("invalid parameters %llx-%llx\n", phys_addr, end_addr); return -EINVAL; } flags = (mem->flags & ~mask) | flags; /* Nothing changed, no need to issue ioctl */ if (flags == mem->flags) return 0; mem->flags = flags; return kvm_set_user_memory_region(s, mem); }
true
qemu
d3f8d37fe2d0c24ec8bac9c94d5b0e2dc09c0d2a
25,730
static void RENAME(uyvytoyuv420)(uint8_t *ydst, uint8_t *udst, uint8_t *vdst, const uint8_t *src, long width, long height, long lumStride, long chromStride, long srcStride) { long y; const long chromWidth= -((-width)>>1); for (y=0; y<height; y++) { RENAME(extract_even)(src+1, ydst, width); if(y&1) { RENAME(extract_even2avg)(src-srcStride, src, udst, vdst, chromWidth); udst+= chromStride; vdst+= chromStride; } src += srcStride; ydst+= lumStride; } #if COMPILE_TEMPLATE_MMX __asm__( EMMS" \n\t" SFENCE" \n\t" ::: "memory" ); #endif }
false
FFmpeg
d1adad3cca407f493c3637e20ecd4f7124e69212
25,731
static int bayer_to_yv12_wrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) { const uint8_t *srcPtr= src[0]; uint8_t *dstY= dst[0]; uint8_t *dstU= dst[1]; uint8_t *dstV= dst[2]; int i; void (*copy) (const uint8_t *src, int src_stride, uint8_t *dstY, uint8_t *dstU, uint8_t *dstV, int luma_stride, int width, int32_t *rgb2yuv); void (*interpolate)(const uint8_t *src, int src_stride, uint8_t *dstY, uint8_t *dstU, uint8_t *dstV, int luma_stride, int width, int32_t *rgb2yuv); switch(c->srcFormat) { #define CASE(pixfmt, prefix) \ case pixfmt: copy = bayer_##prefix##_to_yv12_copy; \ interpolate = bayer_##prefix##_to_yv12_interpolate; \ break; CASE(AV_PIX_FMT_BAYER_BGGR8, bggr8) CASE(AV_PIX_FMT_BAYER_BGGR16LE, bggr16le) CASE(AV_PIX_FMT_BAYER_BGGR16BE, bggr16be) CASE(AV_PIX_FMT_BAYER_RGGB8, rggb8) CASE(AV_PIX_FMT_BAYER_RGGB16LE, rggb16le) CASE(AV_PIX_FMT_BAYER_RGGB16BE, rggb16be) CASE(AV_PIX_FMT_BAYER_GBRG8, gbrg8) CASE(AV_PIX_FMT_BAYER_GBRG16LE, gbrg16le) CASE(AV_PIX_FMT_BAYER_GBRG16BE, gbrg16be) CASE(AV_PIX_FMT_BAYER_GRBG8, grbg8) CASE(AV_PIX_FMT_BAYER_GRBG16LE, grbg16le) CASE(AV_PIX_FMT_BAYER_GRBG16BE, grbg16be) #undef CASE default: return 0; } copy(srcPtr, srcStride[0], dstY, dstU, dstV, dstStride[0], c->srcW, c->input_rgb2yuv_table); srcPtr += 2 * srcStride[0]; dstY += 2 * dstStride[0]; dstU += dstStride[1]; dstV += dstStride[1]; for (i = 2; i < srcSliceH - 2; i += 2) { interpolate(srcPtr, srcStride[0], dstY, dstU, dstV, dstStride[0], c->srcW, c->input_rgb2yuv_table); srcPtr += 2 * srcStride[0]; dstY += 2 * dstStride[0]; dstU += dstStride[1]; dstV += dstStride[1]; } copy(srcPtr, srcStride[0], dstY, dstU, dstV, dstStride[0], c->srcW, c->input_rgb2yuv_table); return srcSliceH; }
false
FFmpeg
757248ea3cd917a7755cb15f817a9b1f15578718
25,733
static int vaapi_encode_h264_init_picture_params(AVCodecContext *avctx, VAAPIEncodePicture *pic) { VAAPIEncodeContext *ctx = avctx->priv_data; VAEncSequenceParameterBufferH264 *vseq = ctx->codec_sequence_params; VAEncPictureParameterBufferH264 *vpic = pic->codec_picture_params; VAAPIEncodeH264Context *priv = ctx->priv_data; int i; if (pic->type == PICTURE_TYPE_IDR) { av_assert0(pic->display_order == pic->encode_order); vpic->frame_num = 0; priv->next_frame_num = 1; priv->cpb_delay = 0; } else { vpic->frame_num = priv->next_frame_num; if (pic->type != PICTURE_TYPE_B) { // nal_ref_idc != 0 ++priv->next_frame_num; } ++priv->cpb_delay; } priv->dpb_delay = pic->display_order - pic->encode_order + 1; vpic->frame_num = vpic->frame_num & ((1 << (4 + vseq->seq_fields.bits.log2_max_frame_num_minus4)) - 1); vpic->CurrPic.picture_id = pic->recon_surface; vpic->CurrPic.frame_idx = vpic->frame_num; vpic->CurrPic.flags = 0; vpic->CurrPic.TopFieldOrderCnt = pic->display_order; vpic->CurrPic.BottomFieldOrderCnt = pic->display_order; for (i = 0; i < pic->nb_refs; i++) { VAAPIEncodePicture *ref = pic->refs[i]; av_assert0(ref && ref->encode_order < pic->encode_order); vpic->ReferenceFrames[i].picture_id = ref->recon_surface; vpic->ReferenceFrames[i].frame_idx = ref->encode_order; vpic->ReferenceFrames[i].flags = VA_PICTURE_H264_SHORT_TERM_REFERENCE; vpic->ReferenceFrames[i].TopFieldOrderCnt = ref->display_order; vpic->ReferenceFrames[i].BottomFieldOrderCnt = ref->display_order; } for (; i < FF_ARRAY_ELEMS(vpic->ReferenceFrames); i++) { vpic->ReferenceFrames[i].picture_id = VA_INVALID_ID; vpic->ReferenceFrames[i].flags = VA_PICTURE_H264_INVALID; } vpic->coded_buf = pic->output_buffer; vpic->pic_fields.bits.idr_pic_flag = (pic->type == PICTURE_TYPE_IDR); vpic->pic_fields.bits.reference_pic_flag = (pic->type != PICTURE_TYPE_B); pic->nb_slices = 1; return 0; }
false
FFmpeg
e72662e131e5099e34d5a7519c5690d2fff7b83f
25,735
static inline int is_bit_set(BlockDriverState *bs, int64_t bitnum) { uint64_t offset = sizeof(struct cow_header_v2) + bitnum / 8; uint8_t bitmap; if (bdrv_pread(bs->file, offset, &bitmap, sizeof(bitmap)) != sizeof(bitmap)) { return -errno; } return !!(bitmap & (1 << (bitnum % 8))); }
true
qemu
b0ad5a455d7e5352d4c86ba945112011dbeadfb8
25,736
bool st_init(const char *file) { pthread_t thread; pthread_attr_t attr; sigset_t set, oldset; int ret; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); sigfillset(&set); pthread_sigmask(SIG_SETMASK, &set, &oldset); ret = pthread_create(&thread, &attr, writeout_thread, NULL); pthread_sigmask(SIG_SETMASK, &oldset, NULL); if (ret != 0) { return false; } atexit(st_flush_trace_buffer); st_set_trace_file(file); return true; }
true
qemu
e4858974ec36afd8a6b3a9e2b0ad8f357f28efc7
25,739
static int libquvi_close(AVFormatContext *s) { LibQuviContext *qc = s->priv_data; if (qc->fmtctx) avformat_close_input(&qc->fmtctx); return 0; }
true
FFmpeg
2d40a09b6e73230b160a505f01ed1acf169e1d9f
25,740
static void aspeed_soc_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); AspeedSoCClass *sc = ASPEED_SOC_CLASS(oc); sc->info = (AspeedSoCInfo *) data; dc->realize = aspeed_soc_realize; }
true
qemu
469f3da42ef4af347fa7831e1cc0bd35d17f5b83
25,742
static int prepare_sdp_description(FFStream *stream, uint8_t **pbuffer, struct in_addr my_ip) { AVFormatContext *avc; AVStream avs[MAX_STREAMS]; int i; avc = avformat_alloc_context(); if (avc == NULL) { return -1; } av_metadata_set2(&avc->metadata, "title", stream->title[0] ? stream->title : "No Title", 0); avc->nb_streams = stream->nb_streams; if (stream->is_multicast) { snprintf(avc->filename, 1024, "rtp://%s:%d?multicast=1?ttl=%d", inet_ntoa(stream->multicast_ip), stream->multicast_port, stream->multicast_ttl); } else { snprintf(avc->filename, 1024, "rtp://0.0.0.0"); } for(i = 0; i < stream->nb_streams; i++) { avc->streams[i] = &avs[i]; avc->streams[i]->codec = stream->streams[i]->codec; } *pbuffer = av_mallocz(2048); avf_sdp_create(&avc, 1, *pbuffer, 2048); av_free(avc); return strlen(*pbuffer); }
true
FFmpeg
ea4f8aabab2a5a7ebd232b45557c11c4c59c332b
25,745
static int dvdsub_decode(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { DVDSubContext *ctx = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; AVSubtitle *sub = data; int is_menu; if (ctx->buf) { int ret = append_to_cached_buf(avctx, buf, buf_size); if (ret < 0) { *data_size = 0; return ret; } buf = ctx->buf; buf_size = ctx->buf_size; } is_menu = decode_dvd_subtitles(ctx, sub, buf, buf_size); if (is_menu == AVERROR(EAGAIN)) { *data_size = 0; return append_to_cached_buf(avctx, buf, buf_size); } if (is_menu < 0) { no_subtitle: reset_rects(sub); *data_size = 0; return buf_size; } if (!is_menu && find_smallest_bounding_rectangle(sub) == 0) goto no_subtitle; if (ctx->forced_subs_only && !(sub->rects[0]->flags & AV_SUBTITLE_FLAG_FORCED)) goto no_subtitle; #if defined(DEBUG) { char ppm_name[32]; snprintf(ppm_name, sizeof(ppm_name), "/tmp/%05d.ppm", ctx->sub_id++); av_dlog(NULL, "start=%d ms end =%d ms\n", sub->start_display_time, sub->end_display_time); ppm_save(ppm_name, sub->rects[0]->pict.data[0], sub->rects[0]->w, sub->rects[0]->h, (uint32_t*) sub->rects[0]->pict.data[1]); } #endif av_freep(&ctx->buf); ctx->buf_size = 0; *data_size = 1; return buf_size; }
true
FFmpeg
816577716bc6170bccfea3b9e865618b69a4b426
25,746
static void ibm_40p_init(MachineState *machine) { CPUPPCState *env = NULL; uint16_t cmos_checksum; PowerPCCPU *cpu; DeviceState *dev; SysBusDevice *pcihost; Nvram *m48t59 = NULL; PCIBus *pci_bus; ISABus *isa_bus; void *fw_cfg; int i; uint32_t kernel_base = 0, initrd_base = 0; long kernel_size = 0, initrd_size = 0; char boot_device; /* init CPU */ if (!machine->cpu_model) { machine->cpu_model = "604"; } cpu = POWERPC_CPU(cpu_generic_init(TYPE_POWERPC_CPU, machine->cpu_model)); if (!cpu) { error_report("could not initialize CPU '%s'", machine->cpu_model); exit(1); } env = &cpu->env; if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) { error_report("only 6xx bus is supported on this machine"); exit(1); } if (env->flags & POWERPC_FLAG_RTC_CLK) { /* POWER / PowerPC 601 RTC clock frequency is 7.8125 MHz */ cpu_ppc_tb_init(env, 7812500UL); } else { /* Set time-base frequency to 100 Mhz */ cpu_ppc_tb_init(env, 100UL * 1000UL * 1000UL); } qemu_register_reset(ppc_prep_reset, cpu); /* PCI host */ dev = qdev_create(NULL, "raven-pcihost"); if (!bios_name) { bios_name = BIOS_FILENAME; } qdev_prop_set_string(dev, "bios-name", bios_name); qdev_prop_set_uint32(dev, "elf-machine", PPC_ELF_MACHINE); pcihost = SYS_BUS_DEVICE(dev); object_property_add_child(qdev_get_machine(), "raven", OBJECT(dev), NULL); qdev_init_nofail(dev); pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci.0")); if (!pci_bus) { error_report("could not create PCI host controller"); exit(1); } /* PCI -> ISA bridge */ dev = DEVICE(pci_create_simple(pci_bus, PCI_DEVFN(11, 0), "i82378")); qdev_connect_gpio_out(dev, 0, cpu->env.irq_inputs[PPC6xx_INPUT_INT]); sysbus_connect_irq(pcihost, 0, qdev_get_gpio_in(dev, 15)); sysbus_connect_irq(pcihost, 1, qdev_get_gpio_in(dev, 13)); sysbus_connect_irq(pcihost, 2, qdev_get_gpio_in(dev, 15)); sysbus_connect_irq(pcihost, 3, qdev_get_gpio_in(dev, 13)); isa_bus = ISA_BUS(qdev_get_child_bus(dev, "isa.0")); /* Memory controller */ dev = DEVICE(isa_create(isa_bus, "rs6000-mc")); qdev_prop_set_uint32(dev, "ram-size", machine->ram_size); qdev_init_nofail(dev); /* initialize CMOS checksums */ cmos_checksum = 0x6aa9; qbus_walk_children(BUS(isa_bus), prep_set_cmos_checksum, NULL, NULL, NULL, &cmos_checksum); /* add some more devices */ if (defaults_enabled()) { isa_create_simple(isa_bus, "i8042"); m48t59 = NVRAM(isa_create_simple(isa_bus, "isa-m48t59")); dev = DEVICE(isa_create(isa_bus, "cs4231a")); qdev_prop_set_uint32(dev, "iobase", 0x830); qdev_prop_set_uint32(dev, "irq", 10); qdev_init_nofail(dev); dev = DEVICE(isa_create(isa_bus, "pc87312")); qdev_prop_set_uint32(dev, "config", 12); qdev_init_nofail(dev); dev = DEVICE(isa_create(isa_bus, "prep-systemio")); qdev_prop_set_uint32(dev, "ibm-planar-id", 0xfc); qdev_prop_set_uint32(dev, "equipment", 0xc0); qdev_init_nofail(dev); pci_create_simple(pci_bus, PCI_DEVFN(1, 0), "lsi53c810"); /* XXX: s3-trio at PCI_DEVFN(2, 0) */ pci_vga_init(pci_bus); for (i = 0; i < nb_nics; i++) { pci_nic_init_nofail(&nd_table[i], pci_bus, "pcnet", i == 0 ? "3" : NULL); } } /* Prepare firmware configuration for OpenBIOS */ fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2); if (machine->kernel_filename) { /* load kernel */ kernel_base = KERNEL_LOAD_ADDR; kernel_size = load_image_targphys(machine->kernel_filename, kernel_base, machine->ram_size - kernel_base); if (kernel_size < 0) { error_report("could not load kernel '%s'", machine->kernel_filename); exit(1); } fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_base); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); /* load initrd */ if (machine->initrd_filename) { initrd_base = INITRD_LOAD_ADDR; initrd_size = load_image_targphys(machine->initrd_filename, initrd_base, machine->ram_size - initrd_base); if (initrd_size < 0) { error_report("could not load initial ram disk '%s'", machine->initrd_filename); exit(1); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_base); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); } if (machine->kernel_cmdline && *machine->kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, machine->kernel_cmdline); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(machine->kernel_cmdline) + 1); } boot_device = 'm'; } else { boot_device = machine->boot_order[0]; } fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, ARCH_PREP); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_WIDTH, graphic_width); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_HEIGHT, graphic_height); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_IS_KVM, kvm_enabled()); if (kvm_enabled()) { #ifdef CONFIG_KVM uint8_t *hypercall; fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, kvmppc_get_tbfreq()); hypercall = g_malloc(16); kvmppc_get_hypercall(env, hypercall, 16); fw_cfg_add_bytes(fw_cfg, FW_CFG_PPC_KVM_HC, hypercall, 16); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_KVM_PID, getpid()); #endif } else { fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, NANOSECONDS_PER_SECOND); } fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); /* Prepare firmware configuration for Open Hack'Ware */ if (m48t59) { PPC_NVRAM_set_params(m48t59, NVRAM_SIZE, "PREP", ram_size, boot_device, kernel_base, kernel_size, machine->kernel_cmdline, initrd_base, initrd_size, /* XXX: need an option to load a NVRAM image */ 0, graphic_width, graphic_height, graphic_depth); } }
true
qemu
4482e05cbbb7e50e476f6a9500cf0b38913bd939
25,747
static void *iommu_init(target_phys_addr_t addr, uint32_t version, qemu_irq irq) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "iommu"); qdev_prop_set_uint32(dev, "version", version); qdev_init(dev); s = sysbus_from_qdev(dev); sysbus_connect_irq(s, 0, irq); sysbus_mmio_map(s, 0, addr); return s; }
true
qemu
e23a1b33b53d25510320b26d9f154e19c6c99725
25,749
static void test_qemu_strtoull_full_empty(void) { const char *str = ""; uint64_t res = 999; int err; err = qemu_strtoull(str, NULL, 0, &res); g_assert_cmpint(err, ==, 0); g_assert_cmpint(res, ==, 0); }
true
qemu
47d4be12c3997343e436c6cca89aefbbbeb70863
25,750
static inline void RENAME(hcscale_fast)(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc) { int32_t *filterPos = c->hChrFilterPos; int16_t *filter = c->hChrFilter; void *mmx2FilterCode= c->chrMmx2FilterCode; int i; #if defined(PIC) DECLARE_ALIGNED(8, uint64_t, ebxsave); #endif __asm__ volatile( #if defined(PIC) "mov %%"REG_b", %7 \n\t" #endif "pxor %%mm7, %%mm7 \n\t" "mov %0, %%"REG_c" \n\t" "mov %1, %%"REG_D" \n\t" "mov %2, %%"REG_d" \n\t" "mov %3, %%"REG_b" \n\t" "xor %%"REG_a", %%"REG_a" \n\t" // i PREFETCH" (%%"REG_c") \n\t" PREFETCH" 32(%%"REG_c") \n\t" PREFETCH" 64(%%"REG_c") \n\t" CALL_MMX2_FILTER_CODE CALL_MMX2_FILTER_CODE CALL_MMX2_FILTER_CODE CALL_MMX2_FILTER_CODE "xor %%"REG_a", %%"REG_a" \n\t" // i "mov %5, %%"REG_c" \n\t" // src "mov %6, %%"REG_D" \n\t" // buf2 PREFETCH" (%%"REG_c") \n\t" PREFETCH" 32(%%"REG_c") \n\t" PREFETCH" 64(%%"REG_c") \n\t" CALL_MMX2_FILTER_CODE CALL_MMX2_FILTER_CODE CALL_MMX2_FILTER_CODE CALL_MMX2_FILTER_CODE #if defined(PIC) "mov %7, %%"REG_b" \n\t" #endif :: "m" (src1), "m" (dst1), "m" (filter), "m" (filterPos), "m" (mmx2FilterCode), "m" (src2), "m"(dst2) #if defined(PIC) ,"m" (ebxsave) #endif : "%"REG_a, "%"REG_c, "%"REG_d, "%"REG_S, "%"REG_D #if !defined(PIC) ,"%"REG_b #endif ); for (i=dstWidth-1; (i*xInc)>>16 >=srcW-1; i--) { dst1[i] = src1[srcW-1]*128; dst2[i] = src2[srcW-1]*128; } }
false
FFmpeg
9bcbb250e23959075765edd3cb4c1fcb46736d7d
25,751
static void get_pointer(Object *obj, Visitor *v, Property *prop, const char *(*print)(void *ptr), const char *name, Error **errp) { DeviceState *dev = DEVICE(obj); void **ptr = qdev_get_prop_ptr(dev, prop); char *p; p = (char *) (*ptr ? print(*ptr) : ""); visit_type_str(v, &p, name, errp); }
false
qemu
d4d34b0d3f5af5c8e09980da0de2eebe9a27dc71
25,752
static uint64_t jazz_led_read(void *opaque, target_phys_addr_t addr, unsigned int size) { LedState *s = opaque; uint8_t val; val = s->segments; trace_jazz_led_read(addr, val); return val; }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
25,754
float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env) { return float32_div(a, b, &env->ucf64.fp_status); }
false
qemu
e8ede0a8bb5298a6979bcf7ed84ef64a64a4e3fe
25,755
static void scsi_generic_class_initfn(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SCSIDeviceClass *sc = SCSI_DEVICE_CLASS(klass); sc->realize = scsi_generic_realize; sc->unrealize = scsi_unrealize; sc->alloc_req = scsi_new_request; sc->parse_cdb = scsi_generic_parse_cdb; dc->fw_name = "disk"; dc->desc = "pass through generic scsi device (/dev/sg*)"; dc->reset = scsi_generic_reset; dc->props = scsi_generic_properties; dc->vmsd = &vmstate_scsi_device; }
false
qemu
fb7b5c0df6e3c501973ce4d57eb2b1d4344a519d
25,756
START_TEST(qlist_destroy_test) { int i; QList *qlist; qlist = qlist_new(); for (i = 0; i < 42; i++) qlist_append(qlist, qint_from_int(i)); QDECREF(qlist); }
false
qemu
91479dd0b5bd3b087b92ddd7bc3f2c54982cfe17
25,757
static void vnc_client_read(void *opaque) { VncState *vs = opaque; long ret; buffer_reserve(&vs->input, 4096); #ifdef CONFIG_VNC_TLS if (vs->tls_session) { ret = gnutls_read(vs->tls_session, buffer_end(&vs->input), 4096); if (ret < 0) { if (ret == GNUTLS_E_AGAIN) errno = EAGAIN; else errno = EIO; ret = -1; } } else #endif /* CONFIG_VNC_TLS */ ret = recv(vs->csock, buffer_end(&vs->input), 4096, 0); ret = vnc_client_io_error(vs, ret, socket_error()); if (!ret) return; vs->input.offset += ret; while (vs->read_handler && vs->input.offset >= vs->read_handler_expect) { size_t len = vs->read_handler_expect; int ret; ret = vs->read_handler(vs, vs->input.buffer, len); if (vs->csock == -1) return; if (!ret) { memmove(vs->input.buffer, vs->input.buffer + len, (vs->input.offset - len)); vs->input.offset -= len; } else { vs->read_handler_expect = ret; } } }
false
qemu
5fb6c7a8b26eab1a22207d24b4784bd2b39ab54b
25,758
POWERPC_FAMILY(e5500)(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); dc->desc = "e5500 core"; pcc->init_proc = init_proc_e5500; pcc->check_pow = check_pow_none; pcc->insns_flags = PPC_INSNS_BASE | PPC_ISEL | PPC_WRTEE | PPC_RFDI | PPC_RFMCI | PPC_CACHE | PPC_CACHE_LOCK | PPC_CACHE_ICBI | PPC_CACHE_DCBZ | PPC_CACHE_DCBA | PPC_FLOAT | PPC_FLOAT_FRES | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FSEL | PPC_FLOAT_STFIWX | PPC_WAIT | PPC_MEM_TLBSYNC | PPC_TLBIVAX | PPC_MEM_SYNC | PPC_64B | PPC_POPCNTB | PPC_POPCNTWD; pcc->insns_flags2 = PPC2_BOOKE206 | PPC2_PRCNTL | PPC2_PERM_ISA206; pcc->msr_mask = (1ull << MSR_CM) | (1ull << MSR_GS) | (1ull << MSR_UCLE) | (1ull << MSR_CE) | (1ull << MSR_EE) | (1ull << MSR_PR) | (1ull << MSR_FP) | (1ull << MSR_ME) | (1ull << MSR_FE0) | (1ull << MSR_DE) | (1ull << MSR_FE1) | (1ull << MSR_IR) | (1ull << MSR_DR) | (1ull << MSR_PX) | (1ull << MSR_RI); pcc->mmu_model = POWERPC_MMU_BOOKE206; pcc->excp_model = POWERPC_EXCP_BOOKE; pcc->bus_model = PPC_FLAGS_INPUT_BookE; /* FIXME: figure out the correct flag for e5500 */ pcc->bfd_mach = bfd_mach_ppc_e500; pcc->flags = POWERPC_FLAG_CE | POWERPC_FLAG_DE | POWERPC_FLAG_PMM | POWERPC_FLAG_BUS_CLK; }
false
qemu
4171853cf4dfb88da93bf77a4c9d319d6ba2bdc6
25,759
void av_md5_update(AVMD5 *ctx, const uint8_t *src, int len) { const uint8_t *end; int j; j = ctx->len & 63; ctx->len += len; if (j) { int cnt = FFMIN(len, 64 - j); memcpy(ctx->block + j, src, cnt); src += cnt; len -= cnt; if (j + cnt < 64) return; body(ctx->ABCD, (uint32_t *)ctx->block); } end = src + (len & ~63); if (HAVE_BIGENDIAN || (!HAVE_FAST_UNALIGNED && ((intptr_t)src & 3))) { while (src < end) { memcpy(ctx->block, src, 64); body(ctx->ABCD, (uint32_t *) ctx->block); src += 64; } } else { while (src < end) { body(ctx->ABCD, (uint32_t *)src); src += 64; } } len &= 63; if (len > 0) memcpy(ctx->block, src, len); }
false
FFmpeg
a67304d05f11b2377bf157a356d7ebb00f3e06dd
25,760
int main() { int rt, rs; int achi, acli; int dsp; int acho, aclo; int resulth, resultl; int resdsp; achi = 0x05; acli = 0xB4CB; rs = 0xFF06; rt = 0xCB00; resulth = 0x04; resultl = 0x947438CB; __asm ("mthi %2, $ac1\n\t" "mtlo %3, $ac1\n\t" "maq_s.w.phr $ac1, %4, %5\n\t" "mfhi %0, $ac1\n\t" "mflo %1, $ac1\n\t" : "=r"(acho), "=r"(aclo) : "r"(achi), "r"(acli), "r"(rs), "r"(rt) ); assert(resulth == acho); assert(resultl == aclo); achi = 0x06; acli = 0xB4CB; rs = 0x8000; rt = 0x8000; resulth = 0x6; resultl = 0x8000b4ca; resdsp = 1; __asm ("mthi %3, $ac1\n\t" "mtlo %4, $ac1\n\t" "maq_s.w.phr $ac1, %5, %6\n\t" "mfhi %0, $ac1\n\t" "mflo %1, $ac1\n\t" "rddsp %2\n\t" : "=r"(acho), "=r"(aclo), "=r"(dsp) : "r"(achi), "r"(acli), "r"(rs), "r"(rt) ); assert(resulth == acho); assert(resultl == aclo); assert(((dsp >> 17) & 0x01) == resdsp); return 0; }
false
qemu
beb3faaa0027c114e37317fdba38a8a7facf3f9b
25,761
int ide_init_drive(IDEState *s, BlockDriverState *bs, IDEDriveKind kind, const char *version, const char *serial) { int cylinders, heads, secs; uint64_t nb_sectors; s->bs = bs; s->drive_kind = kind; bdrv_get_geometry(bs, &nb_sectors); bdrv_guess_geometry(bs, &cylinders, &heads, &secs); if (cylinders < 1 || cylinders > 16383) { error_report("cyls must be between 1 and 16383"); return -1; } if (heads < 1 || heads > 16) { error_report("heads must be between 1 and 16"); return -1; } if (secs < 1 || secs > 63) { error_report("secs must be between 1 and 63"); return -1; } s->cylinders = cylinders; s->heads = heads; s->sectors = secs; s->nb_sectors = nb_sectors; /* The SMART values should be preserved across power cycles but they aren't. */ s->smart_enabled = 1; s->smart_autosave = 1; s->smart_errors = 0; s->smart_selftest_count = 0; if (kind == IDE_CD) { bdrv_set_dev_ops(bs, &ide_cd_block_ops, s); bdrv_set_buffer_alignment(bs, 2048); } else { if (!bdrv_is_inserted(s->bs)) { error_report("Device needs media, but drive is empty"); return -1; } if (bdrv_is_read_only(bs)) { error_report("Can't use a read-only drive"); return -1; } } if (serial) { strncpy(s->drive_serial_str, serial, sizeof(s->drive_serial_str)); } else { snprintf(s->drive_serial_str, sizeof(s->drive_serial_str), "QM%05d", s->drive_serial); } if (version) { pstrcpy(s->version, sizeof(s->version), version); } else { pstrcpy(s->version, sizeof(s->version), QEMU_VERSION); } ide_reset(s); bdrv_iostatus_enable(bs); return 0; }
false
qemu
27e0c9a1bbd166a67c16291016fba298a8e47140
25,762
int subch_device_load(SubchDev *s, QEMUFile *f) { SubchDev *old_s; Error *err = NULL; uint16_t old_schid = s->schid; uint16_t old_devno = s->devno; int i; s->cssid = qemu_get_byte(f); s->ssid = qemu_get_byte(f); s->schid = qemu_get_be16(f); s->devno = qemu_get_be16(f); if (s->devno != old_devno) { /* Only possible if machine < 2.7 (no css_dev_path) */ error_setg(&err, "%x != %x", old_devno, s->devno); error_append_hint(&err, "Devno mismatch, tried to load wrong section!" " Likely reason: some sequences of plug and unplug" " can break migration for machine versions prior to" " 2.7 (known design flaw).\n"); error_report_err(err); return -EINVAL; } /* Re-assign subch. */ if (old_schid != s->schid) { old_s = channel_subsys.css[s->cssid]->sch_set[s->ssid]->sch[old_schid]; /* * (old_s != s) means that some other device has its correct * subchannel already assigned (in load). */ if (old_s == s) { css_subch_assign(s->cssid, s->ssid, old_schid, s->devno, NULL); } /* It's OK to re-assign without a prior de-assign. */ css_subch_assign(s->cssid, s->ssid, s->schid, s->devno, s); } s->thinint_active = qemu_get_byte(f); /* SCHIB */ /* PMCW */ s->curr_status.pmcw.intparm = qemu_get_be32(f); s->curr_status.pmcw.flags = qemu_get_be16(f); s->curr_status.pmcw.devno = qemu_get_be16(f); s->curr_status.pmcw.lpm = qemu_get_byte(f); s->curr_status.pmcw.pnom = qemu_get_byte(f); s->curr_status.pmcw.lpum = qemu_get_byte(f); s->curr_status.pmcw.pim = qemu_get_byte(f); s->curr_status.pmcw.mbi = qemu_get_be16(f); s->curr_status.pmcw.pom = qemu_get_byte(f); s->curr_status.pmcw.pam = qemu_get_byte(f); qemu_get_buffer(f, s->curr_status.pmcw.chpid, 8); s->curr_status.pmcw.chars = qemu_get_be32(f); /* SCSW */ s->curr_status.scsw.flags = qemu_get_be16(f); s->curr_status.scsw.ctrl = qemu_get_be16(f); s->curr_status.scsw.cpa = qemu_get_be32(f); s->curr_status.scsw.dstat = qemu_get_byte(f); s->curr_status.scsw.cstat = qemu_get_byte(f); s->curr_status.scsw.count = qemu_get_be16(f); s->curr_status.mba = qemu_get_be64(f); qemu_get_buffer(f, s->curr_status.mda, 4); /* end SCHIB */ qemu_get_buffer(f, s->sense_data, 32); s->channel_prog = qemu_get_be64(f); /* last cmd */ s->last_cmd.cmd_code = qemu_get_byte(f); s->last_cmd.flags = qemu_get_byte(f); s->last_cmd.count = qemu_get_be16(f); s->last_cmd.cda = qemu_get_be32(f); s->last_cmd_valid = qemu_get_byte(f); s->id.reserved = qemu_get_byte(f); s->id.cu_type = qemu_get_be16(f); s->id.cu_model = qemu_get_byte(f); s->id.dev_type = qemu_get_be16(f); s->id.dev_model = qemu_get_byte(f); s->id.unused = qemu_get_byte(f); for (i = 0; i < ARRAY_SIZE(s->id.ciw); i++) { s->id.ciw[i].type = qemu_get_byte(f); s->id.ciw[i].command = qemu_get_byte(f); s->id.ciw[i].count = qemu_get_be16(f); } s->ccw_fmt_1 = qemu_get_byte(f); s->ccw_no_data_cnt = qemu_get_byte(f); /* * Hack alert. We don't migrate the channel subsystem status (no * device!), but we need to find out if the guest enabled mss/mcss-e. * If the subchannel is enabled, it certainly was able to access it, * so adjust the max_ssid/max_cssid values for relevant ssid/cssid * values. This is not watertight, but better than nothing. */ if (s->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ENA) { if (s->ssid) { channel_subsys.max_ssid = MAX_SSID; } if (s->cssid != channel_subsys.default_cssid) { channel_subsys.max_cssid = MAX_CSSID; } } return 0; }
false
qemu
517ff12c7d000fa1f5b1e989b22fb86a286f9cc2