Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_core_all-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_all](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_all) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4181
- F1 Score: 0.8048
- Accuracy: 0.8049
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.5559 | 0.54 | 200 | 0.4704 | 0.7803 | 0.7804 |
| 0.4687 | 1.08 | 400 | 0.4646 | 0.7875 | 0.7878 |
| 0.4525 | 1.62 | 600 | 0.4497 | 0.7929 | 0.7931 |
| 0.4437 | 2.16 | 800 | 0.4473 | 0.7944 | 0.7944 |
| 0.4405 | 2.7 | 1000 | 0.4449 | 0.7921 | 0.7922 |
| 0.4363 | 3.24 | 1200 | 0.4399 | 0.7961 | 0.7963 |
| 0.4331 | 3.78 | 1400 | 0.4419 | 0.7909 | 0.7912 |
| 0.4313 | 4.32 | 1600 | 0.4438 | 0.7967 | 0.7968 |
| 0.4309 | 4.86 | 1800 | 0.4419 | 0.7937 | 0.7941 |
| 0.4266 | 5.41 | 2000 | 0.4388 | 0.7927 | 0.7929 |
| 0.4243 | 5.95 | 2200 | 0.4391 | 0.7981 | 0.7981 |
| 0.4279 | 6.49 | 2400 | 0.4341 | 0.7965 | 0.7965 |
| 0.4206 | 7.03 | 2600 | 0.4416 | 0.7977 | 0.7981 |
| 0.4231 | 7.57 | 2800 | 0.4348 | 0.7976 | 0.7976 |
| 0.4171 | 8.11 | 3000 | 0.4362 | 0.7944 | 0.7946 |
| 0.419 | 8.65 | 3200 | 0.4297 | 0.8017 | 0.8017 |
| 0.4207 | 9.19 | 3400 | 0.4331 | 0.7992 | 0.7992 |
| 0.418 | 9.73 | 3600 | 0.4378 | 0.7949 | 0.7954 |
| 0.4182 | 10.27 | 3800 | 0.4330 | 0.7982 | 0.7983 |
| 0.4164 | 10.81 | 4000 | 0.4360 | 0.7977 | 0.7978 |
| 0.414 | 11.35 | 4200 | 0.4330 | 0.7973 | 0.7975 |
| 0.4143 | 11.89 | 4400 | 0.4336 | 0.7964 | 0.7966 |
| 0.4115 | 12.43 | 4600 | 0.4335 | 0.8025 | 0.8025 |
| 0.4108 | 12.97 | 4800 | 0.4331 | 0.7990 | 0.7992 |
| 0.4133 | 13.51 | 5000 | 0.4407 | 0.7934 | 0.7943 |
| 0.4114 | 14.05 | 5200 | 0.4303 | 0.8029 | 0.8029 |
| 0.4085 | 14.59 | 5400 | 0.4288 | 0.8022 | 0.8022 |
| 0.4081 | 15.14 | 5600 | 0.4326 | 0.8021 | 0.8022 |
| 0.4096 | 15.68 | 5800 | 0.4334 | 0.7985 | 0.7988 |
| 0.4037 | 16.22 | 6000 | 0.4312 | 0.8023 | 0.8025 |
| 0.4114 | 16.76 | 6200 | 0.4254 | 0.8015 | 0.8015 |
| 0.4119 | 17.3 | 6400 | 0.4278 | 0.8046 | 0.8047 |
| 0.4072 | 17.84 | 6600 | 0.4294 | 0.8014 | 0.8015 |
| 0.4035 | 18.38 | 6800 | 0.4337 | 0.7972 | 0.7978 |
| 0.4047 | 18.92 | 7000 | 0.4277 | 0.8021 | 0.8022 |
| 0.4011 | 19.46 | 7200 | 0.4286 | 0.8035 | 0.8035 |
| 0.4118 | 20.0 | 7400 | 0.4264 | 0.8045 | 0.8046 |
| 0.4066 | 20.54 | 7600 | 0.4286 | 0.8025 | 0.8027 |
| 0.4031 | 21.08 | 7800 | 0.4275 | 0.8038 | 0.8039 |
| 0.4044 | 21.62 | 8000 | 0.4255 | 0.8037 | 0.8037 |
| 0.402 | 22.16 | 8200 | 0.4259 | 0.8040 | 0.8041 |
| 0.4101 | 22.7 | 8400 | 0.4265 | 0.8027 | 0.8029 |
| 0.4006 | 23.24 | 8600 | 0.4249 | 0.8047 | 0.8047 |
| 0.4005 | 23.78 | 8800 | 0.4271 | 0.8038 | 0.8039 |
| 0.3983 | 24.32 | 9000 | 0.4269 | 0.8045 | 0.8046 |
| 0.4017 | 24.86 | 9200 | 0.4259 | 0.8038 | 0.8039 |
| 0.4117 | 25.41 | 9400 | 0.4257 | 0.8043 | 0.8044 |
| 0.3956 | 25.95 | 9600 | 0.4271 | 0.8048 | 0.8049 |
| 0.4029 | 26.49 | 9800 | 0.4272 | 0.8050 | 0.8051 |
| 0.4004 | 27.03 | 10000 | 0.4271 | 0.8046 | 0.8047 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_core_all-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_core_all-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:22:07+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_core_notata-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_notata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_notata) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3823
- F1 Score: 0.8291
- Accuracy: 0.8291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.5574 | 0.6 | 200 | 0.4140 | 0.8126 | 0.8127 |
| 0.4313 | 1.2 | 400 | 0.3888 | 0.8259 | 0.8259 |
| 0.4159 | 1.81 | 600 | 0.3816 | 0.8268 | 0.8268 |
| 0.4102 | 2.41 | 800 | 0.3759 | 0.8310 | 0.8310 |
| 0.4006 | 3.01 | 1000 | 0.3744 | 0.8299 | 0.8298 |
| 0.3973 | 3.61 | 1200 | 0.3701 | 0.8379 | 0.8379 |
| 0.3992 | 4.22 | 1400 | 0.3703 | 0.8355 | 0.8355 |
| 0.396 | 4.82 | 1600 | 0.3687 | 0.8381 | 0.8381 |
| 0.3877 | 5.42 | 1800 | 0.3757 | 0.8292 | 0.8293 |
| 0.3935 | 6.02 | 2000 | 0.3690 | 0.8383 | 0.8383 |
| 0.3911 | 6.63 | 2200 | 0.3674 | 0.8381 | 0.8381 |
| 0.3879 | 7.23 | 2400 | 0.3679 | 0.8380 | 0.8381 |
| 0.3887 | 7.83 | 2600 | 0.3662 | 0.8396 | 0.8396 |
| 0.3825 | 8.43 | 2800 | 0.3721 | 0.8344 | 0.8349 |
| 0.3879 | 9.04 | 3000 | 0.3663 | 0.8402 | 0.8402 |
| 0.3812 | 9.64 | 3200 | 0.3637 | 0.8397 | 0.8396 |
| 0.3823 | 10.24 | 3400 | 0.3647 | 0.8406 | 0.8406 |
| 0.383 | 10.84 | 3600 | 0.3643 | 0.8400 | 0.8400 |
| 0.3815 | 11.45 | 3800 | 0.3640 | 0.8382 | 0.8381 |
| 0.3804 | 12.05 | 4000 | 0.3629 | 0.8381 | 0.8381 |
| 0.3746 | 12.65 | 4200 | 0.3634 | 0.8382 | 0.8383 |
| 0.3799 | 13.25 | 4400 | 0.3635 | 0.8376 | 0.8376 |
| 0.378 | 13.86 | 4600 | 0.3636 | 0.8400 | 0.8400 |
| 0.3771 | 14.46 | 4800 | 0.3633 | 0.8415 | 0.8415 |
| 0.3741 | 15.06 | 5000 | 0.3615 | 0.8415 | 0.8415 |
| 0.371 | 15.66 | 5200 | 0.3612 | 0.8412 | 0.8412 |
| 0.3728 | 16.27 | 5400 | 0.3642 | 0.8400 | 0.8400 |
| 0.3718 | 16.87 | 5600 | 0.3679 | 0.8361 | 0.8364 |
| 0.3698 | 17.47 | 5800 | 0.3664 | 0.8369 | 0.8372 |
| 0.3758 | 18.07 | 6000 | 0.3624 | 0.8393 | 0.8395 |
| 0.3725 | 18.67 | 6200 | 0.3605 | 0.8412 | 0.8413 |
| 0.3716 | 19.28 | 6400 | 0.3618 | 0.8408 | 0.8408 |
| 0.3703 | 19.88 | 6600 | 0.3613 | 0.8388 | 0.8389 |
| 0.3658 | 20.48 | 6800 | 0.3606 | 0.8409 | 0.8410 |
| 0.3759 | 21.08 | 7000 | 0.3640 | 0.8363 | 0.8366 |
| 0.3748 | 21.69 | 7200 | 0.3612 | 0.8415 | 0.8415 |
| 0.3651 | 22.29 | 7400 | 0.3610 | 0.8399 | 0.8400 |
| 0.3673 | 22.89 | 7600 | 0.3609 | 0.8424 | 0.8425 |
| 0.3681 | 23.49 | 7800 | 0.3622 | 0.8380 | 0.8381 |
| 0.3688 | 24.1 | 8000 | 0.3629 | 0.8393 | 0.8395 |
| 0.3692 | 24.7 | 8200 | 0.3639 | 0.8388 | 0.8391 |
| 0.3645 | 25.3 | 8400 | 0.3642 | 0.8396 | 0.8398 |
| 0.3692 | 25.9 | 8600 | 0.3609 | 0.8422 | 0.8423 |
| 0.3687 | 26.51 | 8800 | 0.3615 | 0.8415 | 0.8415 |
| 0.3671 | 27.11 | 9000 | 0.3610 | 0.8409 | 0.8410 |
| 0.3726 | 27.71 | 9200 | 0.3617 | 0.8399 | 0.8400 |
| 0.3626 | 28.31 | 9400 | 0.3631 | 0.8387 | 0.8389 |
| 0.3658 | 28.92 | 9600 | 0.3618 | 0.8396 | 0.8396 |
| 0.3724 | 29.52 | 9800 | 0.3614 | 0.8392 | 0.8393 |
| 0.3612 | 30.12 | 10000 | 0.3615 | 0.8395 | 0.8396 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_core_notata-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_core_notata-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:22:07+00:00 |
null | null | {} | joebamnasoda69/CheckardsArrVeeSeeStuff2 | null | [
"region:us"
] | null | 2024-05-03T17:22:22+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | hrangel/Mistral_7B_qlora_CoT_Matematicals | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:23:34+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_core_notata-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_notata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_notata) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3910
- F1 Score: 0.8233
- Accuracy: 0.8233
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6131 | 0.6 | 200 | 0.4693 | 0.7777 | 0.7777 |
| 0.4721 | 1.2 | 400 | 0.4169 | 0.8106 | 0.8106 |
| 0.4443 | 1.81 | 600 | 0.4046 | 0.8150 | 0.8150 |
| 0.4403 | 2.41 | 800 | 0.3968 | 0.8210 | 0.8210 |
| 0.4255 | 3.01 | 1000 | 0.3953 | 0.8213 | 0.8214 |
| 0.4233 | 3.61 | 1200 | 0.3889 | 0.8217 | 0.8217 |
| 0.4223 | 4.22 | 1400 | 0.3869 | 0.8225 | 0.8225 |
| 0.4197 | 4.82 | 1600 | 0.3844 | 0.8223 | 0.8223 |
| 0.4106 | 5.42 | 1800 | 0.3869 | 0.8248 | 0.8249 |
| 0.4124 | 6.02 | 2000 | 0.3819 | 0.8262 | 0.8263 |
| 0.4112 | 6.63 | 2200 | 0.3791 | 0.8285 | 0.8285 |
| 0.407 | 7.23 | 2400 | 0.3801 | 0.8313 | 0.8314 |
| 0.4063 | 7.83 | 2600 | 0.3787 | 0.8288 | 0.8289 |
| 0.4012 | 8.43 | 2800 | 0.3808 | 0.8296 | 0.8298 |
| 0.406 | 9.04 | 3000 | 0.3761 | 0.8322 | 0.8323 |
| 0.3994 | 9.64 | 3200 | 0.3734 | 0.8312 | 0.8312 |
| 0.4003 | 10.24 | 3400 | 0.3750 | 0.8323 | 0.8323 |
| 0.4008 | 10.84 | 3600 | 0.3741 | 0.8336 | 0.8336 |
| 0.3994 | 11.45 | 3800 | 0.3736 | 0.8327 | 0.8327 |
| 0.3982 | 12.05 | 4000 | 0.3729 | 0.8340 | 0.8340 |
| 0.3933 | 12.65 | 4200 | 0.3739 | 0.8342 | 0.8342 |
| 0.3995 | 13.25 | 4400 | 0.3707 | 0.8349 | 0.8349 |
| 0.3967 | 13.86 | 4600 | 0.3721 | 0.8355 | 0.8355 |
| 0.3951 | 14.46 | 4800 | 0.3723 | 0.8351 | 0.8351 |
| 0.3916 | 15.06 | 5000 | 0.3705 | 0.8336 | 0.8336 |
| 0.3907 | 15.66 | 5200 | 0.3703 | 0.8376 | 0.8376 |
| 0.3905 | 16.27 | 5400 | 0.3728 | 0.8355 | 0.8355 |
| 0.3917 | 16.87 | 5600 | 0.3738 | 0.8364 | 0.8366 |
| 0.39 | 17.47 | 5800 | 0.3720 | 0.8365 | 0.8366 |
| 0.3961 | 18.07 | 6000 | 0.3706 | 0.8377 | 0.8378 |
| 0.3917 | 18.67 | 6200 | 0.3694 | 0.8379 | 0.8379 |
| 0.3923 | 19.28 | 6400 | 0.3711 | 0.8374 | 0.8374 |
| 0.389 | 19.88 | 6600 | 0.3690 | 0.8377 | 0.8378 |
| 0.3847 | 20.48 | 6800 | 0.3701 | 0.8371 | 0.8372 |
| 0.3949 | 21.08 | 7000 | 0.3710 | 0.8359 | 0.8361 |
| 0.3961 | 21.69 | 7200 | 0.3680 | 0.8379 | 0.8379 |
| 0.386 | 22.29 | 7400 | 0.3684 | 0.8393 | 0.8393 |
| 0.387 | 22.89 | 7600 | 0.3698 | 0.8378 | 0.8378 |
| 0.388 | 23.49 | 7800 | 0.3683 | 0.8391 | 0.8391 |
| 0.3887 | 24.1 | 8000 | 0.3689 | 0.8381 | 0.8381 |
| 0.3889 | 24.7 | 8200 | 0.3693 | 0.8360 | 0.8361 |
| 0.3844 | 25.3 | 8400 | 0.3699 | 0.8389 | 0.8389 |
| 0.3902 | 25.9 | 8600 | 0.3678 | 0.8398 | 0.8398 |
| 0.3906 | 26.51 | 8800 | 0.3681 | 0.8383 | 0.8383 |
| 0.3874 | 27.11 | 9000 | 0.3682 | 0.8389 | 0.8389 |
| 0.3929 | 27.71 | 9200 | 0.3682 | 0.8393 | 0.8393 |
| 0.3847 | 28.31 | 9400 | 0.3689 | 0.8396 | 0.8396 |
| 0.3874 | 28.92 | 9600 | 0.3684 | 0.8393 | 0.8393 |
| 0.3929 | 29.52 | 9800 | 0.3680 | 0.8391 | 0.8391 |
| 0.3819 | 30.12 | 10000 | 0.3682 | 0.8391 | 0.8391 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_core_notata-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_core_notata-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:24:03+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | OwOpeepeepoopoo/herewegoagain18 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:24:38+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_core_notata-seqsight_4096_512_15M-L32_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_notata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_notata) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3783
- F1 Score: 0.8328
- Accuracy: 0.8329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.5299 | 0.6 | 200 | 0.4006 | 0.8167 | 0.8168 |
| 0.4157 | 1.2 | 400 | 0.3794 | 0.8336 | 0.8336 |
| 0.4031 | 1.81 | 600 | 0.3786 | 0.8307 | 0.8308 |
| 0.399 | 2.41 | 800 | 0.3696 | 0.8336 | 0.8336 |
| 0.3916 | 3.01 | 1000 | 0.3681 | 0.8352 | 0.8353 |
| 0.387 | 3.61 | 1200 | 0.3638 | 0.8390 | 0.8391 |
| 0.3907 | 4.22 | 1400 | 0.3662 | 0.8395 | 0.8395 |
| 0.386 | 4.82 | 1600 | 0.3624 | 0.8418 | 0.8419 |
| 0.377 | 5.42 | 1800 | 0.3715 | 0.8339 | 0.8340 |
| 0.3833 | 6.02 | 2000 | 0.3665 | 0.8392 | 0.8393 |
| 0.3794 | 6.63 | 2200 | 0.3616 | 0.8398 | 0.8398 |
| 0.3765 | 7.23 | 2400 | 0.3654 | 0.8416 | 0.8417 |
| 0.3776 | 7.83 | 2600 | 0.3619 | 0.8391 | 0.8391 |
| 0.3695 | 8.43 | 2800 | 0.3655 | 0.8373 | 0.8378 |
| 0.3752 | 9.04 | 3000 | 0.3597 | 0.8442 | 0.8442 |
| 0.368 | 9.64 | 3200 | 0.3595 | 0.8425 | 0.8425 |
| 0.3675 | 10.24 | 3400 | 0.3602 | 0.8417 | 0.8417 |
| 0.3692 | 10.84 | 3600 | 0.3594 | 0.8407 | 0.8408 |
| 0.3657 | 11.45 | 3800 | 0.3580 | 0.8440 | 0.8440 |
| 0.3651 | 12.05 | 4000 | 0.3583 | 0.8419 | 0.8419 |
| 0.3594 | 12.65 | 4200 | 0.3580 | 0.8431 | 0.8432 |
| 0.3633 | 13.25 | 4400 | 0.3588 | 0.8428 | 0.8428 |
| 0.361 | 13.86 | 4600 | 0.3606 | 0.8413 | 0.8413 |
| 0.359 | 14.46 | 4800 | 0.3588 | 0.8434 | 0.8434 |
| 0.3573 | 15.06 | 5000 | 0.3560 | 0.8452 | 0.8453 |
| 0.3505 | 15.66 | 5200 | 0.3603 | 0.8428 | 0.8428 |
| 0.3549 | 16.27 | 5400 | 0.3618 | 0.8434 | 0.8434 |
| 0.3528 | 16.87 | 5600 | 0.3677 | 0.8386 | 0.8391 |
| 0.3501 | 17.47 | 5800 | 0.3639 | 0.8427 | 0.8430 |
| 0.3573 | 18.07 | 6000 | 0.3615 | 0.8446 | 0.8447 |
| 0.3517 | 18.67 | 6200 | 0.3582 | 0.8442 | 0.8444 |
| 0.3509 | 19.28 | 6400 | 0.3615 | 0.8432 | 0.8432 |
| 0.3489 | 19.88 | 6600 | 0.3584 | 0.8425 | 0.8427 |
| 0.3444 | 20.48 | 6800 | 0.3580 | 0.8447 | 0.8447 |
| 0.3544 | 21.08 | 7000 | 0.3644 | 0.8404 | 0.8408 |
| 0.3525 | 21.69 | 7200 | 0.3604 | 0.8423 | 0.8423 |
| 0.3441 | 22.29 | 7400 | 0.3598 | 0.8448 | 0.8449 |
| 0.346 | 22.89 | 7600 | 0.3610 | 0.8424 | 0.8425 |
| 0.346 | 23.49 | 7800 | 0.3613 | 0.8412 | 0.8413 |
| 0.347 | 24.1 | 8000 | 0.3645 | 0.8417 | 0.8419 |
| 0.3462 | 24.7 | 8200 | 0.3650 | 0.8416 | 0.8419 |
| 0.3401 | 25.3 | 8400 | 0.3669 | 0.8421 | 0.8423 |
| 0.3471 | 25.9 | 8600 | 0.3612 | 0.8428 | 0.8428 |
| 0.3451 | 26.51 | 8800 | 0.3618 | 0.8432 | 0.8432 |
| 0.3456 | 27.11 | 9000 | 0.3604 | 0.8432 | 0.8432 |
| 0.3485 | 27.71 | 9200 | 0.3626 | 0.8425 | 0.8427 |
| 0.3388 | 28.31 | 9400 | 0.3632 | 0.8442 | 0.8444 |
| 0.3412 | 28.92 | 9600 | 0.3632 | 0.8420 | 0.8421 |
| 0.3492 | 29.52 | 9800 | 0.3614 | 0.8422 | 0.8423 |
| 0.3355 | 30.12 | 10000 | 0.3620 | 0.8431 | 0.8432 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_core_notata-seqsight_4096_512_15M-L32_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_core_notata-seqsight_4096_512_15M-L32_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:24:39+00:00 |
text-classification | transformers | {"license": "mit"} | wantuta/roberta_classifier_ancient2 | null | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:24:42+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_core_tata-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_tata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_tata) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4439
- F1 Score: 0.8286
- Accuracy: 0.8287
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|
| 0.629 | 5.13 | 200 | 0.5857 | 0.7072 | 0.7080 |
| 0.5743 | 10.26 | 400 | 0.5824 | 0.6910 | 0.6949 |
| 0.5505 | 15.38 | 600 | 0.5729 | 0.7040 | 0.7096 |
| 0.53 | 20.51 | 800 | 0.5425 | 0.7238 | 0.7243 |
| 0.5137 | 25.64 | 1000 | 0.5271 | 0.7352 | 0.7357 |
| 0.4924 | 30.77 | 1200 | 0.4966 | 0.7730 | 0.7732 |
| 0.466 | 35.9 | 1400 | 0.4742 | 0.7879 | 0.7879 |
| 0.4452 | 41.03 | 1600 | 0.4655 | 0.7808 | 0.7814 |
| 0.4341 | 46.15 | 1800 | 0.4457 | 0.8010 | 0.8010 |
| 0.4182 | 51.28 | 2000 | 0.4385 | 0.8042 | 0.8042 |
| 0.4107 | 56.41 | 2200 | 0.4363 | 0.8075 | 0.8075 |
| 0.4042 | 61.54 | 2400 | 0.4199 | 0.8074 | 0.8075 |
| 0.3981 | 66.67 | 2600 | 0.4153 | 0.8108 | 0.8108 |
| 0.3883 | 71.79 | 2800 | 0.4141 | 0.8075 | 0.8075 |
| 0.383 | 76.92 | 3000 | 0.4142 | 0.8140 | 0.8140 |
| 0.3755 | 82.05 | 3200 | 0.4044 | 0.8205 | 0.8206 |
| 0.3734 | 87.18 | 3400 | 0.4064 | 0.8222 | 0.8222 |
| 0.3695 | 92.31 | 3600 | 0.4026 | 0.8238 | 0.8238 |
| 0.3625 | 97.44 | 3800 | 0.3999 | 0.8352 | 0.8352 |
| 0.3664 | 102.56 | 4000 | 0.3976 | 0.8303 | 0.8303 |
| 0.3595 | 107.69 | 4200 | 0.3992 | 0.8303 | 0.8303 |
| 0.352 | 112.82 | 4400 | 0.3970 | 0.8303 | 0.8303 |
| 0.347 | 117.95 | 4600 | 0.3906 | 0.8303 | 0.8303 |
| 0.3497 | 123.08 | 4800 | 0.3944 | 0.8351 | 0.8352 |
| 0.3398 | 128.21 | 5000 | 0.3941 | 0.8352 | 0.8352 |
| 0.3432 | 133.33 | 5200 | 0.3897 | 0.8352 | 0.8352 |
| 0.3371 | 138.46 | 5400 | 0.3878 | 0.8369 | 0.8369 |
| 0.3331 | 143.59 | 5600 | 0.3882 | 0.8352 | 0.8352 |
| 0.3377 | 148.72 | 5800 | 0.3883 | 0.8352 | 0.8352 |
| 0.3288 | 153.85 | 6000 | 0.3889 | 0.8352 | 0.8352 |
| 0.3261 | 158.97 | 6200 | 0.3843 | 0.8401 | 0.8401 |
| 0.3284 | 164.1 | 6400 | 0.3902 | 0.8335 | 0.8336 |
| 0.3293 | 169.23 | 6600 | 0.3837 | 0.8384 | 0.8385 |
| 0.3242 | 174.36 | 6800 | 0.3899 | 0.8385 | 0.8385 |
| 0.3263 | 179.49 | 7000 | 0.3861 | 0.8352 | 0.8352 |
| 0.3193 | 184.62 | 7200 | 0.3874 | 0.8434 | 0.8434 |
| 0.3187 | 189.74 | 7400 | 0.3903 | 0.8385 | 0.8385 |
| 0.3201 | 194.87 | 7600 | 0.3908 | 0.8385 | 0.8385 |
| 0.3194 | 200.0 | 7800 | 0.3860 | 0.8466 | 0.8467 |
| 0.3187 | 205.13 | 8000 | 0.3869 | 0.8449 | 0.8450 |
| 0.3163 | 210.26 | 8200 | 0.3877 | 0.8401 | 0.8401 |
| 0.313 | 215.38 | 8400 | 0.3892 | 0.8417 | 0.8418 |
| 0.316 | 220.51 | 8600 | 0.3888 | 0.8385 | 0.8385 |
| 0.3144 | 225.64 | 8800 | 0.3886 | 0.8417 | 0.8418 |
| 0.3124 | 230.77 | 9000 | 0.3866 | 0.8449 | 0.8450 |
| 0.3119 | 235.9 | 9200 | 0.3874 | 0.8417 | 0.8418 |
| 0.3125 | 241.03 | 9400 | 0.3884 | 0.8450 | 0.8450 |
| 0.3151 | 246.15 | 9600 | 0.3868 | 0.8417 | 0.8418 |
| 0.3084 | 251.28 | 9800 | 0.3879 | 0.8417 | 0.8418 |
| 0.3116 | 256.41 | 10000 | 0.3878 | 0.8450 | 0.8450 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_core_tata-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_core_tata-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:25:18+00:00 |
image-segmentation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-raw_img_ready2train_patches
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the raw_img_ready2train_patches dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6829
- Mean Iou: 0.4110
- Mean Accuracy: 0.7629
- Overall Accuracy: 0.7631
- Accuracy Unlabeled: nan
- Accuracy Eczema: 0.7673
- Accuracy Background: 0.7585
- Iou Unlabeled: 0.0
- Iou Eczema: 0.6284
- Iou Background: 0.6047
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Eczema | Accuracy Background | Iou Unlabeled | Iou Eczema | Iou Background |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:-------------:|:----------:|:--------------:|
| 1.0753 | 0.0312 | 5 | 1.0925 | 0.2358 | 0.4682 | 0.4698 | nan | 0.5042 | 0.4322 | 0.0 | 0.3705 | 0.3367 |
| 0.9863 | 0.0625 | 10 | 1.0697 | 0.2994 | 0.6182 | 0.6306 | nan | 0.8979 | 0.3385 | 0.0 | 0.5784 | 0.3198 |
| 1.0056 | 0.0938 | 15 | 1.0377 | 0.3303 | 0.6678 | 0.6792 | nan | 0.9236 | 0.4121 | 0.0 | 0.6064 | 0.3844 |
| 1.0133 | 0.125 | 20 | 1.0006 | 0.3478 | 0.6869 | 0.6950 | nan | 0.8710 | 0.5027 | 0.0 | 0.6008 | 0.4425 |
| 0.9748 | 0.1562 | 25 | 0.9689 | 0.3543 | 0.6947 | 0.7022 | nan | 0.8647 | 0.5246 | 0.0 | 0.6043 | 0.4586 |
| 0.9367 | 0.1875 | 30 | 0.9417 | 0.3566 | 0.6950 | 0.6965 | nan | 0.7290 | 0.6610 | 0.0 | 0.5583 | 0.5114 |
| 0.8363 | 0.2188 | 35 | 0.9118 | 0.3557 | 0.6940 | 0.6959 | nan | 0.7366 | 0.6514 | 0.0 | 0.5600 | 0.5069 |
| 1.1431 | 0.25 | 40 | 0.8830 | 0.3575 | 0.6963 | 0.6989 | nan | 0.7556 | 0.6370 | 0.0 | 0.5686 | 0.5039 |
| 0.7312 | 0.2812 | 45 | 0.8592 | 0.3680 | 0.7098 | 0.7133 | nan | 0.7888 | 0.6307 | 0.0 | 0.5907 | 0.5133 |
| 0.8135 | 0.3125 | 50 | 0.8268 | 0.3559 | 0.6994 | 0.7083 | nan | 0.8992 | 0.4997 | 0.0 | 0.6173 | 0.4505 |
| 0.7528 | 0.3438 | 55 | 0.8110 | 0.3525 | 0.6960 | 0.7053 | nan | 0.9055 | 0.4866 | 0.0 | 0.6162 | 0.4412 |
| 0.8405 | 0.375 | 60 | 0.7967 | 0.3518 | 0.6950 | 0.7041 | nan | 0.9008 | 0.4893 | 0.0 | 0.6140 | 0.4415 |
| 0.7865 | 0.4062 | 65 | 0.7791 | 0.3561 | 0.6992 | 0.7075 | nan | 0.8869 | 0.5116 | 0.0 | 0.6130 | 0.4553 |
| 0.8309 | 0.4375 | 70 | 0.7650 | 0.3652 | 0.7083 | 0.7147 | nan | 0.8512 | 0.5655 | 0.0 | 0.6090 | 0.4864 |
| 0.6775 | 0.4688 | 75 | 0.7615 | 0.3613 | 0.7044 | 0.7115 | nan | 0.8651 | 0.5437 | 0.0 | 0.6102 | 0.4738 |
| 0.7033 | 0.5 | 80 | 0.7498 | 0.3737 | 0.7179 | 0.7227 | nan | 0.8260 | 0.6099 | 0.0 | 0.6087 | 0.5125 |
| 0.8377 | 0.5312 | 85 | 0.7443 | 0.3790 | 0.7243 | 0.7290 | nan | 0.8303 | 0.6184 | 0.0 | 0.6154 | 0.5217 |
| 0.825 | 0.5625 | 90 | 0.7547 | 0.3676 | 0.7125 | 0.7201 | nan | 0.8840 | 0.5411 | 0.0 | 0.6225 | 0.4802 |
| 0.7408 | 0.5938 | 95 | 0.7415 | 0.3767 | 0.7228 | 0.7295 | nan | 0.8747 | 0.5708 | 0.0 | 0.6281 | 0.5021 |
| 0.8087 | 0.625 | 100 | 0.7201 | 0.3926 | 0.7404 | 0.7445 | nan | 0.8318 | 0.6491 | 0.0 | 0.6296 | 0.5483 |
| 0.7146 | 0.6562 | 105 | 0.7096 | 0.4002 | 0.7493 | 0.7520 | nan | 0.8109 | 0.6877 | 0.0 | 0.6307 | 0.5699 |
| 0.6875 | 0.6875 | 110 | 0.7047 | 0.4010 | 0.7502 | 0.7541 | nan | 0.8398 | 0.6606 | 0.0 | 0.6407 | 0.5621 |
| 0.6382 | 0.7188 | 115 | 0.7031 | 0.3982 | 0.7471 | 0.7519 | nan | 0.8543 | 0.6400 | 0.0 | 0.6426 | 0.5521 |
| 0.6551 | 0.75 | 120 | 0.6953 | 0.4018 | 0.7512 | 0.7553 | nan | 0.8450 | 0.6573 | 0.0 | 0.6433 | 0.5621 |
| 0.7074 | 0.7812 | 125 | 0.6912 | 0.4054 | 0.7553 | 0.7583 | nan | 0.8236 | 0.6871 | 0.0 | 0.6402 | 0.5760 |
| 0.768 | 0.8125 | 130 | 0.6866 | 0.4048 | 0.7546 | 0.7579 | nan | 0.8278 | 0.6814 | 0.0 | 0.6410 | 0.5736 |
| 0.7543 | 0.8438 | 135 | 0.6851 | 0.4031 | 0.7526 | 0.7564 | nan | 0.8374 | 0.6679 | 0.0 | 0.6422 | 0.5671 |
| 0.7107 | 0.875 | 140 | 0.6803 | 0.6122 | 0.7586 | 0.7608 | nan | 0.8071 | 0.7101 | nan | 0.6379 | 0.5865 |
| 0.7054 | 0.9062 | 145 | 0.6799 | 0.4098 | 0.7608 | 0.7622 | nan | 0.7924 | 0.7292 | 0.0 | 0.6350 | 0.5943 |
| 1.1302 | 0.9375 | 150 | 0.6801 | 0.4103 | 0.7616 | 0.7626 | nan | 0.7840 | 0.7393 | 0.0 | 0.6330 | 0.5981 |
| 0.6037 | 0.9688 | 155 | 0.6827 | 0.4111 | 0.7628 | 0.7632 | nan | 0.7721 | 0.7534 | 0.0 | 0.6300 | 0.6032 |
| 0.8577 | 1.0 | 160 | 0.6829 | 0.4110 | 0.7629 | 0.7631 | nan | 0.7673 | 0.7585 | 0.0 | 0.6284 | 0.6047 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "other", "tags": ["vision", "image-segmentation", "generated_from_trainer"], "base_model": "nvidia/mit-b0", "model-index": [{"name": "segformer-b0-finetuned-raw_img_ready2train_patches", "results": []}]} | ruisusanofi/segformer-b0-finetuned-raw_img_ready2train_patches | null | [
"transformers",
"safetensors",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"base_model:nvidia/mit-b0",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:27:04+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_core_tata-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_tata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_tata) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4594
- F1 Score: 0.8271
- Accuracy: 0.8271
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|
| 0.6032 | 5.13 | 200 | 0.5634 | 0.7185 | 0.7194 |
| 0.5278 | 10.26 | 400 | 0.5256 | 0.7344 | 0.7357 |
| 0.4699 | 15.38 | 600 | 0.4605 | 0.7856 | 0.7863 |
| 0.4245 | 20.51 | 800 | 0.4272 | 0.7976 | 0.7977 |
| 0.3889 | 25.64 | 1000 | 0.4069 | 0.8155 | 0.8157 |
| 0.3665 | 30.77 | 1200 | 0.3898 | 0.8236 | 0.8238 |
| 0.3478 | 35.9 | 1400 | 0.3919 | 0.8320 | 0.8320 |
| 0.3314 | 41.03 | 1600 | 0.3985 | 0.8265 | 0.8271 |
| 0.3178 | 46.15 | 1800 | 0.3865 | 0.8352 | 0.8352 |
| 0.3045 | 51.28 | 2000 | 0.3880 | 0.8319 | 0.8320 |
| 0.2962 | 56.41 | 2200 | 0.3923 | 0.8434 | 0.8434 |
| 0.2901 | 61.54 | 2400 | 0.3825 | 0.8401 | 0.8401 |
| 0.2789 | 66.67 | 2600 | 0.3828 | 0.8352 | 0.8352 |
| 0.2688 | 71.79 | 2800 | 0.3823 | 0.8367 | 0.8369 |
| 0.2668 | 76.92 | 3000 | 0.3948 | 0.8352 | 0.8352 |
| 0.2553 | 82.05 | 3200 | 0.3873 | 0.8385 | 0.8385 |
| 0.25 | 87.18 | 3400 | 0.3933 | 0.8385 | 0.8385 |
| 0.2466 | 92.31 | 3600 | 0.3986 | 0.8466 | 0.8467 |
| 0.2419 | 97.44 | 3800 | 0.3981 | 0.8465 | 0.8467 |
| 0.2396 | 102.56 | 4000 | 0.3904 | 0.8596 | 0.8597 |
| 0.2347 | 107.69 | 4200 | 0.4066 | 0.8548 | 0.8548 |
| 0.2237 | 112.82 | 4400 | 0.4169 | 0.8548 | 0.8548 |
| 0.2197 | 117.95 | 4600 | 0.4028 | 0.8613 | 0.8613 |
| 0.2178 | 123.08 | 4800 | 0.4289 | 0.8483 | 0.8483 |
| 0.2117 | 128.21 | 5000 | 0.4253 | 0.8499 | 0.8499 |
| 0.2147 | 133.33 | 5200 | 0.4187 | 0.8596 | 0.8597 |
| 0.2068 | 138.46 | 5400 | 0.4218 | 0.8611 | 0.8613 |
| 0.2019 | 143.59 | 5600 | 0.4296 | 0.8466 | 0.8467 |
| 0.2023 | 148.72 | 5800 | 0.4374 | 0.8548 | 0.8548 |
| 0.1959 | 153.85 | 6000 | 0.4354 | 0.8515 | 0.8515 |
| 0.1974 | 158.97 | 6200 | 0.4282 | 0.8564 | 0.8564 |
| 0.1983 | 164.1 | 6400 | 0.4305 | 0.8515 | 0.8515 |
| 0.1928 | 169.23 | 6600 | 0.4352 | 0.8581 | 0.8581 |
| 0.1889 | 174.36 | 6800 | 0.4507 | 0.8532 | 0.8532 |
| 0.1909 | 179.49 | 7000 | 0.4417 | 0.8450 | 0.8450 |
| 0.1855 | 184.62 | 7200 | 0.4481 | 0.8548 | 0.8548 |
| 0.1824 | 189.74 | 7400 | 0.4513 | 0.8564 | 0.8564 |
| 0.1837 | 194.87 | 7600 | 0.4567 | 0.8515 | 0.8515 |
| 0.1841 | 200.0 | 7800 | 0.4383 | 0.8630 | 0.8630 |
| 0.1819 | 205.13 | 8000 | 0.4506 | 0.8532 | 0.8532 |
| 0.1809 | 210.26 | 8200 | 0.4516 | 0.8499 | 0.8499 |
| 0.1753 | 215.38 | 8400 | 0.4639 | 0.8467 | 0.8467 |
| 0.1771 | 220.51 | 8600 | 0.4612 | 0.8548 | 0.8548 |
| 0.1777 | 225.64 | 8800 | 0.4593 | 0.8483 | 0.8483 |
| 0.1723 | 230.77 | 9000 | 0.4591 | 0.8499 | 0.8499 |
| 0.1727 | 235.9 | 9200 | 0.4602 | 0.8467 | 0.8467 |
| 0.1714 | 241.03 | 9400 | 0.4662 | 0.8548 | 0.8548 |
| 0.1739 | 246.15 | 9600 | 0.4643 | 0.8450 | 0.8450 |
| 0.1721 | 251.28 | 9800 | 0.4632 | 0.8532 | 0.8532 |
| 0.1689 | 256.41 | 10000 | 0.4628 | 0.8532 | 0.8532 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_core_tata-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_core_tata-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:28:17+00:00 |
null | null | {} | HarshitSheoran/solafune_fields | null | [
"region:us"
] | null | 2024-05-03T17:28:18+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_core_tata-seqsight_4096_512_15M-L32_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_tata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_tata) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4640
- F1 Score: 0.8320
- Accuracy: 0.8320
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|
| 0.5782 | 5.13 | 200 | 0.5315 | 0.7406 | 0.7406 |
| 0.4665 | 10.26 | 400 | 0.4535 | 0.7895 | 0.7896 |
| 0.3912 | 15.38 | 600 | 0.3940 | 0.8189 | 0.8189 |
| 0.3406 | 20.51 | 800 | 0.3676 | 0.8482 | 0.8483 |
| 0.301 | 25.64 | 1000 | 0.3680 | 0.8676 | 0.8679 |
| 0.2781 | 30.77 | 1200 | 0.3465 | 0.8596 | 0.8597 |
| 0.2586 | 35.9 | 1400 | 0.3497 | 0.8662 | 0.8662 |
| 0.2365 | 41.03 | 1600 | 0.3888 | 0.8575 | 0.8581 |
| 0.2231 | 46.15 | 1800 | 0.3801 | 0.8547 | 0.8548 |
| 0.2111 | 51.28 | 2000 | 0.3956 | 0.8612 | 0.8613 |
| 0.1949 | 56.41 | 2200 | 0.4369 | 0.8532 | 0.8532 |
| 0.1843 | 61.54 | 2400 | 0.4161 | 0.8611 | 0.8613 |
| 0.1706 | 66.67 | 2600 | 0.4586 | 0.8659 | 0.8662 |
| 0.1597 | 71.79 | 2800 | 0.4525 | 0.8679 | 0.8679 |
| 0.1529 | 76.92 | 3000 | 0.4764 | 0.8449 | 0.8450 |
| 0.1405 | 82.05 | 3200 | 0.5161 | 0.8547 | 0.8548 |
| 0.1323 | 87.18 | 3400 | 0.5201 | 0.8662 | 0.8662 |
| 0.1275 | 92.31 | 3600 | 0.5121 | 0.8628 | 0.8630 |
| 0.1212 | 97.44 | 3800 | 0.5360 | 0.8645 | 0.8646 |
| 0.1135 | 102.56 | 4000 | 0.5797 | 0.8595 | 0.8597 |
| 0.11 | 107.69 | 4200 | 0.5665 | 0.8613 | 0.8613 |
| 0.1041 | 112.82 | 4400 | 0.5754 | 0.8597 | 0.8597 |
| 0.1008 | 117.95 | 4600 | 0.5795 | 0.8547 | 0.8548 |
| 0.093 | 123.08 | 4800 | 0.6056 | 0.8630 | 0.8630 |
| 0.0896 | 128.21 | 5000 | 0.6137 | 0.8564 | 0.8564 |
| 0.0883 | 133.33 | 5200 | 0.6119 | 0.8564 | 0.8564 |
| 0.0813 | 138.46 | 5400 | 0.6257 | 0.8629 | 0.8630 |
| 0.0794 | 143.59 | 5600 | 0.6374 | 0.8630 | 0.8630 |
| 0.0781 | 148.72 | 5800 | 0.6801 | 0.8597 | 0.8597 |
| 0.0753 | 153.85 | 6000 | 0.6478 | 0.8580 | 0.8581 |
| 0.0709 | 158.97 | 6200 | 0.6664 | 0.8630 | 0.8630 |
| 0.0725 | 164.1 | 6400 | 0.6262 | 0.8564 | 0.8564 |
| 0.067 | 169.23 | 6600 | 0.6659 | 0.8581 | 0.8581 |
| 0.0632 | 174.36 | 6800 | 0.6947 | 0.8564 | 0.8564 |
| 0.067 | 179.49 | 7000 | 0.6948 | 0.8564 | 0.8564 |
| 0.0627 | 184.62 | 7200 | 0.7080 | 0.8564 | 0.8564 |
| 0.0611 | 189.74 | 7400 | 0.7102 | 0.8548 | 0.8548 |
| 0.0595 | 194.87 | 7600 | 0.7069 | 0.8629 | 0.8630 |
| 0.062 | 200.0 | 7800 | 0.6852 | 0.8646 | 0.8646 |
| 0.0554 | 205.13 | 8000 | 0.7127 | 0.8613 | 0.8613 |
| 0.0596 | 210.26 | 8200 | 0.6846 | 0.8548 | 0.8548 |
| 0.0534 | 215.38 | 8400 | 0.7266 | 0.8597 | 0.8597 |
| 0.0561 | 220.51 | 8600 | 0.7142 | 0.8532 | 0.8532 |
| 0.0517 | 225.64 | 8800 | 0.7146 | 0.8532 | 0.8532 |
| 0.0512 | 230.77 | 9000 | 0.7151 | 0.8564 | 0.8564 |
| 0.0523 | 235.9 | 9200 | 0.6998 | 0.8581 | 0.8581 |
| 0.053 | 241.03 | 9400 | 0.7092 | 0.8662 | 0.8662 |
| 0.0495 | 246.15 | 9600 | 0.7234 | 0.8613 | 0.8613 |
| 0.0514 | 251.28 | 9800 | 0.7236 | 0.8613 | 0.8613 |
| 0.0514 | 256.41 | 10000 | 0.7248 | 0.8597 | 0.8597 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_core_tata-seqsight_4096_512_15M-L32_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_core_tata-seqsight_4096_512_15M-L32_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:28:21+00:00 |
null | null | {} | Aryan0310/bart-small-finetuned-xsum | null | [
"region:us"
] | null | 2024-05-03T17:28:40+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# question_classifier
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0621
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 15 | 0.1063 | 1.0 |
| No log | 2.0 | 30 | 0.0621 | 1.0 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.1.0
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert/distilbert-base-uncased", "model-index": [{"name": "question_classifier", "results": []}]} | philgrey/question_classifier | null | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:29:08+00:00 |
null | null | {} | PauloSeze/teste | null | [
"region:us"
] | null | 2024-05-03T17:29:18+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_300_all-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_all](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_all) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2156
- F1 Score: 0.9135
- Accuracy: 0.9135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.4293 | 0.54 | 200 | 0.2948 | 0.8828 | 0.8828 |
| 0.3066 | 1.08 | 400 | 0.2688 | 0.8919 | 0.8919 |
| 0.2856 | 1.62 | 600 | 0.2528 | 0.8953 | 0.8953 |
| 0.2612 | 2.16 | 800 | 0.2449 | 0.9021 | 0.9022 |
| 0.2536 | 2.7 | 1000 | 0.2343 | 0.9061 | 0.9061 |
| 0.2466 | 3.24 | 1200 | 0.2309 | 0.9101 | 0.9101 |
| 0.2442 | 3.78 | 1400 | 0.2255 | 0.9123 | 0.9123 |
| 0.2415 | 4.32 | 1600 | 0.2236 | 0.9142 | 0.9142 |
| 0.2313 | 4.86 | 1800 | 0.2214 | 0.9160 | 0.9160 |
| 0.232 | 5.41 | 2000 | 0.2196 | 0.9165 | 0.9166 |
| 0.2312 | 5.95 | 2200 | 0.2174 | 0.9179 | 0.9179 |
| 0.2288 | 6.49 | 2400 | 0.2151 | 0.9184 | 0.9184 |
| 0.2271 | 7.03 | 2600 | 0.2132 | 0.9179 | 0.9179 |
| 0.2222 | 7.57 | 2800 | 0.2103 | 0.9199 | 0.9199 |
| 0.2241 | 8.11 | 3000 | 0.2105 | 0.9206 | 0.9206 |
| 0.2221 | 8.65 | 3200 | 0.2076 | 0.9218 | 0.9218 |
| 0.2162 | 9.19 | 3400 | 0.2091 | 0.9213 | 0.9213 |
| 0.2148 | 9.73 | 3600 | 0.2041 | 0.9235 | 0.9235 |
| 0.2211 | 10.27 | 3800 | 0.2025 | 0.9233 | 0.9233 |
| 0.2149 | 10.81 | 4000 | 0.2022 | 0.9243 | 0.9243 |
| 0.2168 | 11.35 | 4200 | 0.2010 | 0.9241 | 0.9242 |
| 0.2128 | 11.89 | 4400 | 0.2016 | 0.9270 | 0.9270 |
| 0.2117 | 12.43 | 4600 | 0.1994 | 0.9223 | 0.9223 |
| 0.2135 | 12.97 | 4800 | 0.1967 | 0.9280 | 0.9280 |
| 0.2084 | 13.51 | 5000 | 0.1976 | 0.9262 | 0.9262 |
| 0.2139 | 14.05 | 5200 | 0.1957 | 0.9265 | 0.9265 |
| 0.2089 | 14.59 | 5400 | 0.1966 | 0.9260 | 0.9260 |
| 0.2067 | 15.14 | 5600 | 0.1960 | 0.9255 | 0.9255 |
| 0.2062 | 15.68 | 5800 | 0.1948 | 0.9284 | 0.9284 |
| 0.2084 | 16.22 | 6000 | 0.1950 | 0.9253 | 0.9253 |
| 0.2052 | 16.76 | 6200 | 0.1935 | 0.9285 | 0.9285 |
| 0.2056 | 17.3 | 6400 | 0.1949 | 0.9260 | 0.9260 |
| 0.2074 | 17.84 | 6600 | 0.1934 | 0.9258 | 0.9258 |
| 0.2021 | 18.38 | 6800 | 0.1926 | 0.9277 | 0.9277 |
| 0.2082 | 18.92 | 7000 | 0.1913 | 0.9284 | 0.9284 |
| 0.2074 | 19.46 | 7200 | 0.1923 | 0.9282 | 0.9282 |
| 0.2013 | 20.0 | 7400 | 0.1917 | 0.9282 | 0.9282 |
| 0.2033 | 20.54 | 7600 | 0.1910 | 0.9284 | 0.9284 |
| 0.2014 | 21.08 | 7800 | 0.1903 | 0.9294 | 0.9294 |
| 0.2051 | 21.62 | 8000 | 0.1904 | 0.9287 | 0.9287 |
| 0.2025 | 22.16 | 8200 | 0.1903 | 0.9291 | 0.9291 |
| 0.1986 | 22.7 | 8400 | 0.1903 | 0.9282 | 0.9282 |
| 0.2057 | 23.24 | 8600 | 0.1898 | 0.9289 | 0.9289 |
| 0.2012 | 23.78 | 8800 | 0.1893 | 0.9289 | 0.9289 |
| 0.2033 | 24.32 | 9000 | 0.1896 | 0.9294 | 0.9294 |
| 0.2009 | 24.86 | 9200 | 0.1898 | 0.9291 | 0.9291 |
| 0.2009 | 25.41 | 9400 | 0.1902 | 0.9291 | 0.9291 |
| 0.1996 | 25.95 | 9600 | 0.1899 | 0.9289 | 0.9289 |
| 0.2019 | 26.49 | 9800 | 0.1894 | 0.9296 | 0.9296 |
| 0.2001 | 27.03 | 10000 | 0.1895 | 0.9287 | 0.9287 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_300_all-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_300_all-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:29:51+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_300_all-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_all](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_all) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1974
- F1 Score: 0.9209
- Accuracy: 0.9209
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.3768 | 0.54 | 200 | 0.2589 | 0.8973 | 0.8973 |
| 0.2631 | 1.08 | 400 | 0.2351 | 0.9071 | 0.9071 |
| 0.2483 | 1.62 | 600 | 0.2179 | 0.9130 | 0.9130 |
| 0.2279 | 2.16 | 800 | 0.2134 | 0.9146 | 0.9147 |
| 0.2247 | 2.7 | 1000 | 0.2063 | 0.9203 | 0.9203 |
| 0.2187 | 3.24 | 1200 | 0.2048 | 0.9182 | 0.9182 |
| 0.2199 | 3.78 | 1400 | 0.1983 | 0.9216 | 0.9216 |
| 0.2136 | 4.32 | 1600 | 0.1935 | 0.9238 | 0.9238 |
| 0.2055 | 4.86 | 1800 | 0.1926 | 0.9250 | 0.925 |
| 0.2062 | 5.41 | 2000 | 0.1902 | 0.9292 | 0.9292 |
| 0.2048 | 5.95 | 2200 | 0.1900 | 0.9240 | 0.9240 |
| 0.2034 | 6.49 | 2400 | 0.1868 | 0.9270 | 0.9270 |
| 0.2024 | 7.03 | 2600 | 0.1869 | 0.9284 | 0.9284 |
| 0.194 | 7.57 | 2800 | 0.1862 | 0.9287 | 0.9287 |
| 0.2 | 8.11 | 3000 | 0.1853 | 0.9302 | 0.9302 |
| 0.1959 | 8.65 | 3200 | 0.1851 | 0.9292 | 0.9292 |
| 0.1885 | 9.19 | 3400 | 0.1864 | 0.9296 | 0.9296 |
| 0.1888 | 9.73 | 3600 | 0.1827 | 0.9280 | 0.9280 |
| 0.1944 | 10.27 | 3800 | 0.1824 | 0.9292 | 0.9292 |
| 0.1895 | 10.81 | 4000 | 0.1819 | 0.9304 | 0.9304 |
| 0.1917 | 11.35 | 4200 | 0.1797 | 0.9306 | 0.9306 |
| 0.1854 | 11.89 | 4400 | 0.1828 | 0.9307 | 0.9307 |
| 0.1873 | 12.43 | 4600 | 0.1790 | 0.9296 | 0.9296 |
| 0.1861 | 12.97 | 4800 | 0.1771 | 0.9314 | 0.9314 |
| 0.1823 | 13.51 | 5000 | 0.1789 | 0.9289 | 0.9289 |
| 0.187 | 14.05 | 5200 | 0.1809 | 0.9280 | 0.9280 |
| 0.1817 | 14.59 | 5400 | 0.1778 | 0.9323 | 0.9323 |
| 0.1801 | 15.14 | 5600 | 0.1776 | 0.9316 | 0.9316 |
| 0.1801 | 15.68 | 5800 | 0.1781 | 0.9304 | 0.9304 |
| 0.179 | 16.22 | 6000 | 0.1787 | 0.9316 | 0.9316 |
| 0.1784 | 16.76 | 6200 | 0.1779 | 0.9296 | 0.9296 |
| 0.1787 | 17.3 | 6400 | 0.1792 | 0.9277 | 0.9277 |
| 0.1794 | 17.84 | 6600 | 0.1755 | 0.9328 | 0.9328 |
| 0.1748 | 18.38 | 6800 | 0.1776 | 0.9294 | 0.9294 |
| 0.1804 | 18.92 | 7000 | 0.1763 | 0.9292 | 0.9292 |
| 0.1802 | 19.46 | 7200 | 0.1765 | 0.9316 | 0.9316 |
| 0.1741 | 20.0 | 7400 | 0.1755 | 0.9326 | 0.9326 |
| 0.1767 | 20.54 | 7600 | 0.1752 | 0.9309 | 0.9309 |
| 0.1739 | 21.08 | 7800 | 0.1747 | 0.9312 | 0.9313 |
| 0.1747 | 21.62 | 8000 | 0.1748 | 0.9311 | 0.9311 |
| 0.1758 | 22.16 | 8200 | 0.1758 | 0.9319 | 0.9319 |
| 0.1724 | 22.7 | 8400 | 0.1738 | 0.9336 | 0.9336 |
| 0.1762 | 23.24 | 8600 | 0.1753 | 0.9306 | 0.9306 |
| 0.1759 | 23.78 | 8800 | 0.1744 | 0.9312 | 0.9313 |
| 0.1751 | 24.32 | 9000 | 0.1756 | 0.9307 | 0.9307 |
| 0.1727 | 24.86 | 9200 | 0.1742 | 0.9318 | 0.9318 |
| 0.1718 | 25.41 | 9400 | 0.1766 | 0.9309 | 0.9309 |
| 0.1719 | 25.95 | 9600 | 0.1750 | 0.9321 | 0.9321 |
| 0.173 | 26.49 | 9800 | 0.1745 | 0.9311 | 0.9311 |
| 0.1729 | 27.03 | 10000 | 0.1746 | 0.9311 | 0.9311 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_300_all-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_300_all-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:30:16+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_prom_prom_300_all-seqsight_4096_512_15M-L32_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_all](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_all) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1996
- F1 Score: 0.9221
- Accuracy: 0.9221
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.3384 | 0.54 | 200 | 0.2347 | 0.9054 | 0.9054 |
| 0.238 | 1.08 | 400 | 0.2090 | 0.9182 | 0.9182 |
| 0.2278 | 1.62 | 600 | 0.1982 | 0.9226 | 0.9226 |
| 0.2116 | 2.16 | 800 | 0.1958 | 0.9222 | 0.9223 |
| 0.2086 | 2.7 | 1000 | 0.1936 | 0.9238 | 0.9238 |
| 0.2038 | 3.24 | 1200 | 0.1907 | 0.9248 | 0.9248 |
| 0.2055 | 3.78 | 1400 | 0.1871 | 0.9264 | 0.9264 |
| 0.1993 | 4.32 | 1600 | 0.1862 | 0.9258 | 0.9258 |
| 0.1938 | 4.86 | 1800 | 0.1810 | 0.9292 | 0.9292 |
| 0.1914 | 5.41 | 2000 | 0.1831 | 0.9319 | 0.9319 |
| 0.1908 | 5.95 | 2200 | 0.1822 | 0.9272 | 0.9272 |
| 0.1883 | 6.49 | 2400 | 0.1779 | 0.9301 | 0.9301 |
| 0.1878 | 7.03 | 2600 | 0.1818 | 0.9321 | 0.9321 |
| 0.1787 | 7.57 | 2800 | 0.1776 | 0.9321 | 0.9321 |
| 0.1846 | 8.11 | 3000 | 0.1798 | 0.9304 | 0.9304 |
| 0.1792 | 8.65 | 3200 | 0.1748 | 0.9321 | 0.9321 |
| 0.1713 | 9.19 | 3400 | 0.1808 | 0.9311 | 0.9311 |
| 0.1723 | 9.73 | 3600 | 0.1742 | 0.9307 | 0.9307 |
| 0.1774 | 10.27 | 3800 | 0.1742 | 0.9311 | 0.9311 |
| 0.1732 | 10.81 | 4000 | 0.1763 | 0.9346 | 0.9346 |
| 0.1724 | 11.35 | 4200 | 0.1725 | 0.9345 | 0.9345 |
| 0.167 | 11.89 | 4400 | 0.1760 | 0.9346 | 0.9346 |
| 0.1691 | 12.43 | 4600 | 0.1716 | 0.9333 | 0.9333 |
| 0.1638 | 12.97 | 4800 | 0.1699 | 0.9311 | 0.9311 |
| 0.1619 | 13.51 | 5000 | 0.1736 | 0.9302 | 0.9302 |
| 0.1661 | 14.05 | 5200 | 0.1766 | 0.9273 | 0.9274 |
| 0.16 | 14.59 | 5400 | 0.1720 | 0.9309 | 0.9309 |
| 0.1591 | 15.14 | 5600 | 0.1725 | 0.9323 | 0.9323 |
| 0.1584 | 15.68 | 5800 | 0.1710 | 0.9318 | 0.9318 |
| 0.1562 | 16.22 | 6000 | 0.1739 | 0.9309 | 0.9309 |
| 0.1552 | 16.76 | 6200 | 0.1748 | 0.9321 | 0.9321 |
| 0.1551 | 17.3 | 6400 | 0.1751 | 0.9309 | 0.9309 |
| 0.1566 | 17.84 | 6600 | 0.1718 | 0.9331 | 0.9331 |
| 0.1509 | 18.38 | 6800 | 0.1730 | 0.9314 | 0.9314 |
| 0.1546 | 18.92 | 7000 | 0.1714 | 0.9331 | 0.9331 |
| 0.1538 | 19.46 | 7200 | 0.1716 | 0.9334 | 0.9334 |
| 0.15 | 20.0 | 7400 | 0.1728 | 0.9339 | 0.9340 |
| 0.1513 | 20.54 | 7600 | 0.1715 | 0.9328 | 0.9328 |
| 0.1485 | 21.08 | 7800 | 0.1698 | 0.9326 | 0.9326 |
| 0.1484 | 21.62 | 8000 | 0.1706 | 0.9326 | 0.9326 |
| 0.1494 | 22.16 | 8200 | 0.1711 | 0.9331 | 0.9331 |
| 0.1448 | 22.7 | 8400 | 0.1689 | 0.9333 | 0.9333 |
| 0.1468 | 23.24 | 8600 | 0.1715 | 0.9323 | 0.9323 |
| 0.1478 | 23.78 | 8800 | 0.1719 | 0.9317 | 0.9318 |
| 0.1448 | 24.32 | 9000 | 0.1721 | 0.9317 | 0.9318 |
| 0.1454 | 24.86 | 9200 | 0.1707 | 0.9331 | 0.9331 |
| 0.1432 | 25.41 | 9400 | 0.1746 | 0.9328 | 0.9328 |
| 0.1437 | 25.95 | 9600 | 0.1727 | 0.9326 | 0.9326 |
| 0.1448 | 26.49 | 9800 | 0.1718 | 0.9328 | 0.9328 |
| 0.1434 | 27.03 | 10000 | 0.1715 | 0.9331 | 0.9331 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_prom_prom_300_all-seqsight_4096_512_15M-L32_f", "results": []}]} | mahdibaghbanzadeh/GUE_prom_prom_300_all-seqsight_4096_512_15M-L32_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:30:56+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K14ac-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K14ac](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K14ac) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5179
- F1 Score: 0.7401
- Accuracy: 0.7398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.621 | 0.97 | 200 | 0.5813 | 0.7034 | 0.7014 |
| 0.5829 | 1.93 | 400 | 0.5649 | 0.7244 | 0.7234 |
| 0.5699 | 2.9 | 600 | 0.5881 | 0.7000 | 0.6989 |
| 0.5629 | 3.86 | 800 | 0.5478 | 0.7259 | 0.7277 |
| 0.5513 | 4.83 | 1000 | 0.5659 | 0.7205 | 0.7189 |
| 0.5467 | 5.8 | 1200 | 0.5586 | 0.7257 | 0.7241 |
| 0.5421 | 6.76 | 1400 | 0.5415 | 0.7344 | 0.7325 |
| 0.54 | 7.73 | 1600 | 0.5395 | 0.7347 | 0.7328 |
| 0.5343 | 8.7 | 1800 | 0.5408 | 0.7313 | 0.7295 |
| 0.5335 | 9.66 | 2000 | 0.5432 | 0.7340 | 0.7322 |
| 0.5333 | 10.63 | 2200 | 0.5558 | 0.7252 | 0.7241 |
| 0.5269 | 11.59 | 2400 | 0.5283 | 0.7408 | 0.7392 |
| 0.5308 | 12.56 | 2600 | 0.5436 | 0.7342 | 0.7325 |
| 0.5281 | 13.53 | 2800 | 0.5438 | 0.7280 | 0.7265 |
| 0.5271 | 14.49 | 3000 | 0.5531 | 0.7231 | 0.7222 |
| 0.5225 | 15.46 | 3200 | 0.5235 | 0.7473 | 0.7461 |
| 0.5232 | 16.43 | 3400 | 0.5536 | 0.7240 | 0.7231 |
| 0.5238 | 17.39 | 3600 | 0.5289 | 0.7389 | 0.7371 |
| 0.52 | 18.36 | 3800 | 0.5192 | 0.7531 | 0.7525 |
| 0.5196 | 19.32 | 4000 | 0.5257 | 0.7443 | 0.7425 |
| 0.5165 | 20.29 | 4200 | 0.5332 | 0.7413 | 0.7395 |
| 0.5193 | 21.26 | 4400 | 0.5360 | 0.7372 | 0.7356 |
| 0.5184 | 22.22 | 4600 | 0.5446 | 0.7270 | 0.7259 |
| 0.5189 | 23.19 | 4800 | 0.5232 | 0.7500 | 0.7483 |
| 0.5167 | 24.15 | 5000 | 0.5251 | 0.7461 | 0.7443 |
| 0.5142 | 25.12 | 5200 | 0.5545 | 0.7270 | 0.7262 |
| 0.5155 | 26.09 | 5400 | 0.5322 | 0.7387 | 0.7371 |
| 0.5159 | 27.05 | 5600 | 0.5536 | 0.7217 | 0.7213 |
| 0.5137 | 28.02 | 5800 | 0.5214 | 0.7500 | 0.7483 |
| 0.514 | 28.99 | 6000 | 0.5382 | 0.7318 | 0.7304 |
| 0.5121 | 29.95 | 6200 | 0.5395 | 0.7333 | 0.7319 |
| 0.5146 | 30.92 | 6400 | 0.5213 | 0.7512 | 0.7495 |
| 0.5135 | 31.88 | 6600 | 0.5305 | 0.7396 | 0.7380 |
| 0.509 | 32.85 | 6800 | 0.5327 | 0.7377 | 0.7362 |
| 0.5134 | 33.82 | 7000 | 0.5423 | 0.7309 | 0.7298 |
| 0.51 | 34.78 | 7200 | 0.5412 | 0.7326 | 0.7313 |
| 0.5122 | 35.75 | 7400 | 0.5335 | 0.7362 | 0.7346 |
| 0.508 | 36.71 | 7600 | 0.5288 | 0.7417 | 0.7401 |
| 0.509 | 37.68 | 7800 | 0.5311 | 0.7423 | 0.7407 |
| 0.5105 | 38.65 | 8000 | 0.5237 | 0.7482 | 0.7464 |
| 0.5139 | 39.61 | 8200 | 0.5312 | 0.7398 | 0.7383 |
| 0.5052 | 40.58 | 8400 | 0.5363 | 0.7345 | 0.7331 |
| 0.5068 | 41.55 | 8600 | 0.5293 | 0.7438 | 0.7422 |
| 0.5084 | 42.51 | 8800 | 0.5338 | 0.7380 | 0.7365 |
| 0.5113 | 43.48 | 9000 | 0.5397 | 0.7341 | 0.7328 |
| 0.5068 | 44.44 | 9200 | 0.5338 | 0.7383 | 0.7368 |
| 0.5112 | 45.41 | 9400 | 0.5303 | 0.7402 | 0.7386 |
| 0.504 | 46.38 | 9600 | 0.5351 | 0.7373 | 0.7359 |
| 0.5109 | 47.34 | 9800 | 0.5327 | 0.7380 | 0.7365 |
| 0.5066 | 48.31 | 10000 | 0.5302 | 0.7408 | 0.7392 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K14ac-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K14ac-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:30:56+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | amuseix/w2v-bert-2.0-bulgarian-CV17.0-FLEURS | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:31:10+00:00 |
text-generation | transformers | {} | RyotaKadoya1993/Llama-3-JPN-MoE2 | null | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:31:12+00:00 |
|
null | null | {} | Ketansomewhere/sdxl-pokemon-model | null | [
"region:us"
] | null | 2024-05-03T17:31:18+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** eugeniosegala
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | eugeniosegala/model | null | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:33:07+00:00 |
null | null | {} | Anoop03031988/Code-Llama-2-7B-instruct-text2sql-GGUF | null | [
"gguf",
"region:us"
] | null | 2024-05-03T17:33:17+00:00 |
|
null | null | {} | d-d-o-s/g1 | null | [
"region:us"
] | null | 2024-05-03T17:33:37+00:00 |
|
null | null | {} | d-d-o-s/g2 | null | [
"region:us"
] | null | 2024-05-03T17:33:45+00:00 |
|
text-generation | transformers |
<br/><br/>
8bpw/h8 exl2 quantization of [NeverSleep/Llama-3-Lumimaid-8B-v0.1](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) using default exllamav2 calibration dataset.
---
**ORIGINAL CARD:**
## Lumimaid 0.1
<center><div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;">
</div></center>
This model uses the Llama3 **prompting format**
Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough.
We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data.
This model includes the new Luminae dataset from Ikari.
If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY).
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of Lumimaid-8B-v0.1.
Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
- Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset
- [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly)
- [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly)
- [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly)
- Airoboros (reduced)
- [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced)
## Models used (only for 8B)
- Initial LumiMaid 8B Finetune
- Undi95/Llama-3-Unholy-8B-e4
- Undi95/Llama-3-LewdPlay-8B
## Prompt template: Llama3
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | JayhC/Llama-3-Lumimaid-8B-v0.1-8bpw-h8-exl2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-03T17:33:49+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K14ac-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K14ac](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K14ac) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5143
- F1 Score: 0.7518
- Accuracy: 0.7507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6069 | 0.97 | 200 | 0.5639 | 0.7202 | 0.7189 |
| 0.5659 | 1.93 | 400 | 0.5476 | 0.7285 | 0.7271 |
| 0.5461 | 2.9 | 600 | 0.5649 | 0.7130 | 0.7123 |
| 0.5404 | 3.86 | 800 | 0.5287 | 0.7451 | 0.7440 |
| 0.5311 | 4.83 | 1000 | 0.5559 | 0.7271 | 0.7259 |
| 0.5299 | 5.8 | 1200 | 0.5429 | 0.7335 | 0.7319 |
| 0.5247 | 6.76 | 1400 | 0.5236 | 0.7494 | 0.7477 |
| 0.5209 | 7.73 | 1600 | 0.5307 | 0.7500 | 0.7483 |
| 0.5164 | 8.7 | 1800 | 0.5279 | 0.7429 | 0.7413 |
| 0.5144 | 9.66 | 2000 | 0.5352 | 0.7374 | 0.7359 |
| 0.5133 | 10.63 | 2200 | 0.5353 | 0.7373 | 0.7359 |
| 0.5063 | 11.59 | 2400 | 0.5131 | 0.7591 | 0.7576 |
| 0.5103 | 12.56 | 2600 | 0.5332 | 0.7430 | 0.7416 |
| 0.5067 | 13.53 | 2800 | 0.5274 | 0.7448 | 0.7434 |
| 0.5053 | 14.49 | 3000 | 0.5314 | 0.7414 | 0.7401 |
| 0.4984 | 15.46 | 3200 | 0.5152 | 0.7564 | 0.7549 |
| 0.5017 | 16.43 | 3400 | 0.5355 | 0.7398 | 0.7386 |
| 0.5011 | 17.39 | 3600 | 0.5153 | 0.7557 | 0.7540 |
| 0.4956 | 18.36 | 3800 | 0.5074 | 0.7642 | 0.7634 |
| 0.4947 | 19.32 | 4000 | 0.5103 | 0.7619 | 0.7604 |
| 0.4904 | 20.29 | 4200 | 0.5248 | 0.7575 | 0.7558 |
| 0.4948 | 21.26 | 4400 | 0.5249 | 0.7508 | 0.7492 |
| 0.4924 | 22.22 | 4600 | 0.5366 | 0.7369 | 0.7359 |
| 0.4933 | 23.19 | 4800 | 0.5116 | 0.7598 | 0.7582 |
| 0.4892 | 24.15 | 5000 | 0.5158 | 0.7530 | 0.7513 |
| 0.4868 | 25.12 | 5200 | 0.5430 | 0.7402 | 0.7392 |
| 0.4865 | 26.09 | 5400 | 0.5305 | 0.7469 | 0.7455 |
| 0.4888 | 27.05 | 5600 | 0.5468 | 0.7348 | 0.7340 |
| 0.4838 | 28.02 | 5800 | 0.5166 | 0.7548 | 0.7531 |
| 0.4852 | 28.99 | 6000 | 0.5230 | 0.7511 | 0.7495 |
| 0.4821 | 29.95 | 6200 | 0.5328 | 0.7448 | 0.7434 |
| 0.4827 | 30.92 | 6400 | 0.5079 | 0.7651 | 0.7637 |
| 0.4839 | 31.88 | 6600 | 0.5158 | 0.7536 | 0.7519 |
| 0.4765 | 32.85 | 6800 | 0.5259 | 0.7498 | 0.7483 |
| 0.4826 | 33.82 | 7000 | 0.5297 | 0.7448 | 0.7434 |
| 0.4768 | 34.78 | 7200 | 0.5302 | 0.7472 | 0.7458 |
| 0.481 | 35.75 | 7400 | 0.5245 | 0.7505 | 0.7489 |
| 0.4745 | 36.71 | 7600 | 0.5234 | 0.7523 | 0.7507 |
| 0.4762 | 37.68 | 7800 | 0.5197 | 0.7526 | 0.7510 |
| 0.4771 | 38.65 | 8000 | 0.5158 | 0.7521 | 0.7504 |
| 0.4792 | 39.61 | 8200 | 0.5203 | 0.7526 | 0.7510 |
| 0.4711 | 40.58 | 8400 | 0.5316 | 0.7458 | 0.7443 |
| 0.4719 | 41.55 | 8600 | 0.5230 | 0.7523 | 0.7507 |
| 0.4748 | 42.51 | 8800 | 0.5263 | 0.7511 | 0.7495 |
| 0.4772 | 43.48 | 9000 | 0.5299 | 0.7468 | 0.7452 |
| 0.4734 | 44.44 | 9200 | 0.5273 | 0.7502 | 0.7486 |
| 0.478 | 45.41 | 9400 | 0.5242 | 0.7502 | 0.7486 |
| 0.4673 | 46.38 | 9600 | 0.5285 | 0.7480 | 0.7464 |
| 0.4758 | 47.34 | 9800 | 0.5244 | 0.7505 | 0.7489 |
| 0.4699 | 48.31 | 10000 | 0.5224 | 0.7511 | 0.7495 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K14ac-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K14ac-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:33:59+00:00 |
text-generation | transformers |


# Llama-3-Giraffe-70B-Instruct
Abacus.AI presents our longer-necked variant of Llama 3 70B - now with the instruct variant!
This model has an effective context length of approximately 128k.
We have currently trained on ~1.5B tokens.
There are our Needle-in-a-Haystack heatmap results. We are conducting further evals of model efficacy and will update our model card as these come in:

## Training Methodology
The methodology for training uses [PoSE](https://arxiv.org/abs/2309.10400) and dynamic-NTK interpolation.
### NTK-scaling
The scale factor for NTK is 4. Note that we also tried theta-scaling but this did not work as well as NTK scaling in our experiments.
### PoSE
We utilise Positional Skip-wise Training (PoSE) with the following parameters:
- **Number of Chunks**: 5
- **Max position ID**: 32768
### Data
We use on average ~8K long samples from [RedPajama](https://github.com/togethercomputer/RedPajama-Data).
### Hardware
We train on 8xH100 GPUs with Deepspeed Zero Stage 3.
## Evaluation Methodology
We use the [EasyContext](https://github.com/abacusai/EasyContext/blob/eval_runs/eval_needle.py) implementation of Needle-in-a-Haystack to evaluate Llama-3-Giraffe-70B.
We evaluate with the following parameters:
- **Min context length**: 2000
- **Max context length**: 128000
- **Context interval**: 4000
- **Depth interval**: 0.1
- **Num samples**: 2
- **Rnd number digits**: 7
- **Haystack dir**: PaulGrahamEssays
### Adapter Transfer
We apply the above techniques first to Llama-3-70B-Base, using LoRA on the Q and K weights only. This adapter is then applied to Llama-3-70B-Instruct, and we
release the merged version here. | {"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation"} | abacusai/Llama-3-Giraffe-70B-Instruct | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"meta",
"llama-3",
"conversational",
"en",
"arxiv:2309.10400",
"license:llama3",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:34:02+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K4me2-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K4me2](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K4me2) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6021
- F1 Score: 0.6656
- Accuracy: 0.6667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6627 | 1.04 | 200 | 0.6377 | 0.5711 | 0.6331 |
| 0.6293 | 2.08 | 400 | 0.6279 | 0.6475 | 0.6471 |
| 0.6201 | 3.12 | 600 | 0.6184 | 0.6407 | 0.6641 |
| 0.6192 | 4.17 | 800 | 0.6200 | 0.6465 | 0.6536 |
| 0.6176 | 5.21 | 1000 | 0.6203 | 0.6515 | 0.6540 |
| 0.6144 | 6.25 | 1200 | 0.6163 | 0.6488 | 0.6543 |
| 0.609 | 7.29 | 1400 | 0.6247 | 0.6541 | 0.6533 |
| 0.6101 | 8.33 | 1600 | 0.6215 | 0.6542 | 0.6543 |
| 0.6095 | 9.38 | 1800 | 0.6298 | 0.6494 | 0.6471 |
| 0.6088 | 10.42 | 2000 | 0.6181 | 0.6592 | 0.6598 |
| 0.6097 | 11.46 | 2200 | 0.6094 | 0.6533 | 0.6628 |
| 0.6028 | 12.5 | 2400 | 0.6121 | 0.6578 | 0.6621 |
| 0.6016 | 13.54 | 2600 | 0.6112 | 0.6534 | 0.6611 |
| 0.6037 | 14.58 | 2800 | 0.6100 | 0.6536 | 0.6605 |
| 0.6058 | 15.62 | 3000 | 0.6102 | 0.6558 | 0.6621 |
| 0.6011 | 16.67 | 3200 | 0.6148 | 0.6607 | 0.6621 |
| 0.6004 | 17.71 | 3400 | 0.6086 | 0.6574 | 0.6644 |
| 0.6031 | 18.75 | 3600 | 0.6099 | 0.6617 | 0.6660 |
| 0.6016 | 19.79 | 3800 | 0.6130 | 0.6658 | 0.6680 |
| 0.5948 | 20.83 | 4000 | 0.6156 | 0.6632 | 0.6637 |
| 0.6 | 21.88 | 4200 | 0.6166 | 0.6623 | 0.6631 |
| 0.5969 | 22.92 | 4400 | 0.6148 | 0.6644 | 0.6657 |
| 0.5979 | 23.96 | 4600 | 0.6176 | 0.6650 | 0.6650 |
| 0.5961 | 25.0 | 4800 | 0.6084 | 0.6649 | 0.6699 |
| 0.594 | 26.04 | 5000 | 0.6150 | 0.6680 | 0.6689 |
| 0.5947 | 27.08 | 5200 | 0.6137 | 0.6665 | 0.6676 |
| 0.5937 | 28.12 | 5400 | 0.6101 | 0.6647 | 0.6676 |
| 0.5947 | 29.17 | 5600 | 0.6156 | 0.6682 | 0.6683 |
| 0.5904 | 30.21 | 5800 | 0.6164 | 0.6698 | 0.6699 |
| 0.5929 | 31.25 | 6000 | 0.6136 | 0.6693 | 0.6699 |
| 0.5924 | 32.29 | 6200 | 0.6135 | 0.6682 | 0.6689 |
| 0.5925 | 33.33 | 6400 | 0.6170 | 0.6693 | 0.6693 |
| 0.5933 | 34.38 | 6600 | 0.6090 | 0.6683 | 0.6719 |
| 0.5905 | 35.42 | 6800 | 0.6095 | 0.6691 | 0.6722 |
| 0.5904 | 36.46 | 7000 | 0.6083 | 0.6705 | 0.6742 |
| 0.5866 | 37.5 | 7200 | 0.6134 | 0.6711 | 0.6719 |
| 0.5887 | 38.54 | 7400 | 0.6110 | 0.6729 | 0.6748 |
| 0.5927 | 39.58 | 7600 | 0.6105 | 0.6705 | 0.6725 |
| 0.5898 | 40.62 | 7800 | 0.6198 | 0.6666 | 0.6654 |
| 0.5882 | 41.67 | 8000 | 0.6124 | 0.6703 | 0.6709 |
| 0.5878 | 42.71 | 8200 | 0.6088 | 0.6686 | 0.6729 |
| 0.5902 | 43.75 | 8400 | 0.6109 | 0.6714 | 0.6729 |
| 0.5885 | 44.79 | 8600 | 0.6156 | 0.6702 | 0.6699 |
| 0.5862 | 45.83 | 8800 | 0.6122 | 0.6709 | 0.6722 |
| 0.5905 | 46.88 | 9000 | 0.6144 | 0.6695 | 0.6696 |
| 0.5869 | 47.92 | 9200 | 0.6138 | 0.6689 | 0.6693 |
| 0.5888 | 48.96 | 9400 | 0.6124 | 0.6695 | 0.6706 |
| 0.5884 | 50.0 | 9600 | 0.6128 | 0.6682 | 0.6689 |
| 0.5867 | 51.04 | 9800 | 0.6131 | 0.6699 | 0.6706 |
| 0.5862 | 52.08 | 10000 | 0.6128 | 0.6678 | 0.6686 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K4me2-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K4me2-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:34:02+00:00 |
null | null | {} | Aryan0310/bert-small-finetuned-xsum | null | [
"region:us"
] | null | 2024-05-03T17:34:09+00:00 |
|
text-generation | transformers | {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "llama"], "base_model": "meta-llama/Meta-Llama-3-70B"} | predibase/Meta-Llama-3-70B-dequantized | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"en",
"base_model:meta-llama/Meta-Llama-3-70B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:35:02+00:00 |
|
multiple-choice | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine_tuned_copa_croslo
This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Accuracy: 0.51
- F1: 0.4857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7257 | 1.0 | 50 | 0.6931 | 0.49 | 0.4838 |
| 0.7001 | 2.0 | 100 | 0.6931 | 0.48 | 0.48 |
| 0.7196 | 3.0 | 150 | 0.6931 | 0.52 | 0.4603 |
| 0.6895 | 4.0 | 200 | 0.6931 | 0.5 | 0.4926 |
| 0.745 | 5.0 | 250 | 0.6931 | 0.46 | 0.4244 |
| 0.7102 | 6.0 | 300 | 0.6931 | 0.5 | 0.4861 |
| 0.7245 | 7.0 | 350 | 0.6931 | 0.55 | 0.5391 |
| 0.7283 | 8.0 | 400 | 0.6931 | 0.51 | 0.4857 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "EMBEDDIA/crosloengual-bert", "model-index": [{"name": "fine_tuned_copa_croslo", "results": []}]} | lenatr99/fine_tuned_copa_croslo | null | [
"transformers",
"safetensors",
"bert",
"multiple-choice",
"generated_from_trainer",
"base_model:EMBEDDIA/crosloengual-bert",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:35:12+00:00 |
null | null | <!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/Steelskull/L3-Arcania-4x8b
| {} | mradermacher/L3-Arcania-4x8b-GGUF | null | [
"gguf",
"region:us"
] | null | 2024-05-03T17:36:03+00:00 |
null | null | {} | d-d-o-s/g3 | null | [
"region:us"
] | null | 2024-05-03T17:36:50+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loha_fine_tuned_croslo
This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6890
- Accuracy: 0.52
- F1: 0.5212
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7072 | 1.0 | 50 | 0.6896 | 0.52 | 0.5212 |
| 0.6973 | 2.0 | 100 | 0.6894 | 0.53 | 0.5312 |
| 0.6988 | 3.0 | 150 | 0.6892 | 0.54 | 0.5411 |
| 0.7016 | 4.0 | 200 | 0.6891 | 0.53 | 0.5312 |
| 0.7034 | 5.0 | 250 | 0.6890 | 0.52 | 0.5212 |
| 0.6978 | 6.0 | 300 | 0.6890 | 0.51 | 0.5112 |
| 0.6965 | 7.0 | 350 | 0.6890 | 0.51 | 0.5112 |
| 0.6907 | 8.0 | 400 | 0.6890 | 0.52 | 0.5212 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "cc-by-4.0", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "EMBEDDIA/crosloengual-bert", "model-index": [{"name": "loha_fine_tuned_croslo", "results": []}]} | lenatr99/loha_fine_tuned_croslo | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/crosloengual-bert",
"license:cc-by-4.0",
"region:us"
] | null | 2024-05-03T17:36:50+00:00 |
robotics | null |
# Introduction
This model is currently being tested, further details to be added in future for now see [robot_learning_baselines](https://github.com/peterdavidfagan/robot_learning_baselines). | {"license": "apache-2.0", "datasets": ["peterdavidfagan/transporter_networks"], "pipeline_tag": "robotics"} | peterdavidfagan/transporter_networks | null | [
"tflite",
"robotics",
"dataset:peterdavidfagan/transporter_networks",
"license:apache-2.0",
"region:us"
] | null | 2024-05-03T17:38:29+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth"]} | sparvekar/critique_lora_model | null | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:38:51+00:00 |
null | null | {"license": "openrail"} | enescakircali/Melis-Fis | null | [
"license:openrail",
"region:us"
] | null | 2024-05-03T17:39:01+00:00 |
|
text-generation | transformers |
# PULI LlumiX 32K instruct (6.74B billion parameter)
Intruct finetuned version of NYTK/PULI-LlumiX-32K.
## Training platform
[Lightning AI Studio](https://lightning.ai/studios) L4 GPU
## Hyper parameters
- Epoch: 3
- LoRA rank (r): 16
- LoRA alpha: 16
- Lr: 2e-4
- Lr scheduler: cosine
- Optimizer: adamw_8bit
- Weight decay: 0.01
## Dataset
boapps/szurkemarha
In total ~30k instructions were selected.
## Prompt template: ChatML
```
<|im_start|>system
Az alábbiakban egy feladatot leíró utasítás található. Írjál olyan választ, amely megfelelően teljesíti a kérést.<|im_end|>
<|im_start|>user
Ki a legerősebb szuperhős?<|im_end|>
<|im_start|>assistant
A legerősebb szuperhős a Marvel univerzumában Hulk.<|im_end|>
```
## Base model
- Trained with OpenChatKit [github](https://github.com/togethercomputer/OpenChatKit)
- The [LLaMA-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) model were continuously pretrained on Hungarian dataset
- The model has been extended to a context length of 32K with position interpolation
- Checkpoint: 100 000 steps
## Dataset for continued pretraining
- Hungarian: 7.9 billion words, documents (763K) that exceed 5000 words in length
- English: Long Context QA (2 billion words), BookSum (78 million words)
## Limitations
- max_seq_length = 32 768
- float16
- vocab size: 32 000 | {"language": ["hu", "en"], "license": "llama2", "tags": ["puli", "text-generation-inference", "transformers", "unsloth", "llama", "trl", "finetuned"], "datasets": ["boapps/szurkemarha"], "base_model": "NYTK/PULI-LlumiX-32K", "pipeline_tag": "text-generation"} | ariel-ml/PULI-LlumiX-32K-instruct-lora | null | [
"transformers",
"safetensors",
"puli",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"finetuned",
"text-generation",
"conversational",
"hu",
"en",
"dataset:boapps/szurkemarha",
"base_model:NYTK/PULI-LlumiX-32K",
"license:llama2",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:39:54+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | golf2248/g2rr5al | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:40:20+00:00 |
text-generation | transformers |
# PULI LlumiX 32K instruct (6.74B billion parameter)
Intruct finetuned version of NYTK/PULI-LlumiX-32K.
## Training platform
[Lightning AI Studio](https://lightning.ai/studios) L4 GPU
## Hyper parameters
- Epoch: 3
- LoRA rank (r): 16
- LoRA alpha: 16
- Lr: 2e-4
- Lr scheduler: cosine
- Optimizer: adamw_8bit
- Weight decay: 0.01
## Dataset
boapps/szurkemarha
In total ~30k instructions were selected.
## Prompt template: ChatML
```
<|im_start|>system
Az alábbiakban egy feladatot leíró utasítás található. Írjál olyan választ, amely megfelelően teljesíti a kérést.<|im_end|>
<|im_start|>user
Ki a legerősebb szuperhős?<|im_end|>
<|im_start|>assistant
A legerősebb szuperhős a Marvel univerzumában Hulk.<|im_end|>
```
## Base model
- Trained with OpenChatKit [github](https://github.com/togethercomputer/OpenChatKit)
- The [LLaMA-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) model were continuously pretrained on Hungarian dataset
- The model has been extended to a context length of 32K with position interpolation
- Checkpoint: 100 000 steps
## Dataset for continued pretraining
- Hungarian: 7.9 billion words, documents (763K) that exceed 5000 words in length
- English: Long Context QA (2 billion words), BookSum (78 million words)
## Limitations
- max_seq_length = 32 768
- float16
- vocab size: 32 000 | {"language": ["hu", "en"], "license": "llama2", "tags": ["puli", "text-generation-inference", "transformers", "unsloth", "llama", "trl", "finetuned"], "datasets": ["boapps/szurkemarha"], "base_model": "NYTK/PULI-LlumiX-32K", "pipeline_tag": "text-generation"} | ariel-ml/PULI-LlumiX-32K-instruct-f16 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"puli",
"text-generation-inference",
"unsloth",
"trl",
"finetuned",
"conversational",
"custom_code",
"hu",
"en",
"dataset:boapps/szurkemarha",
"base_model:NYTK/PULI-LlumiX-32K",
"license:llama2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:40:22+00:00 |
text-generation | transformers | # merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [Jayant9928/orpo_med_v3](https://huggingface.co/Jayant9928/orpo_med_v3) as a base.
### Models Merged
The following models were included in the merge:
* [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Jayant9928/orpo_med_v3
parameters:
density: 0.53
weight: 0.4
- model: meta-llama/Meta-Llama-3-8B-Instruct
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: Jayant9928/orpo_med_v3
tokenizer_source: union
parameters:
int8_mask: true
dtype: float16
```
| {"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["Jayant9928/orpo_med_v3", "meta-llama/Meta-Llama-3-8B-Instruct"]} | Muhammad2003/Dmitry69 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"arxiv:2306.01708",
"base_model:Jayant9928/orpo_med_v3",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:40:29+00:00 |
text-generation | transformers | {} | dgonier/Llama-3-8B-ORPO-Debate-Card-Cutting | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:41:36+00:00 |
|
null | null | {} | terry69/llama2-poison-50p | null | [
"tensorboard",
"safetensors",
"region:us"
] | null | 2024-05-03T17:42:35+00:00 |
|
null | null | {} | bwjc117/motomura | null | [
"region:us"
] | null | 2024-05-03T17:43:32+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K14ac-seqsight_4096_512_15M-L32_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K14ac](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K14ac) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5137
- F1 Score: 0.7465
- Accuracy: 0.7452
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.5962 | 0.97 | 200 | 0.5550 | 0.7252 | 0.7241 |
| 0.5522 | 1.93 | 400 | 0.5384 | 0.7392 | 0.7377 |
| 0.5347 | 2.9 | 600 | 0.5523 | 0.7224 | 0.7213 |
| 0.5295 | 3.86 | 800 | 0.5225 | 0.7510 | 0.7495 |
| 0.5188 | 4.83 | 1000 | 0.5540 | 0.7280 | 0.7271 |
| 0.5171 | 5.8 | 1200 | 0.5321 | 0.7383 | 0.7368 |
| 0.5098 | 6.76 | 1400 | 0.5174 | 0.7512 | 0.7495 |
| 0.5041 | 7.73 | 1600 | 0.5242 | 0.7454 | 0.7437 |
| 0.499 | 8.7 | 1800 | 0.5289 | 0.7457 | 0.7443 |
| 0.4945 | 9.66 | 2000 | 0.5280 | 0.7488 | 0.7474 |
| 0.4928 | 10.63 | 2200 | 0.5247 | 0.7495 | 0.7480 |
| 0.4843 | 11.59 | 2400 | 0.5053 | 0.7654 | 0.7640 |
| 0.4847 | 12.56 | 2600 | 0.5261 | 0.7461 | 0.7446 |
| 0.4807 | 13.53 | 2800 | 0.5256 | 0.7504 | 0.7489 |
| 0.478 | 14.49 | 3000 | 0.5253 | 0.7434 | 0.7419 |
| 0.4683 | 15.46 | 3200 | 0.5126 | 0.7638 | 0.7622 |
| 0.4695 | 16.43 | 3400 | 0.5248 | 0.7485 | 0.7470 |
| 0.4665 | 17.39 | 3600 | 0.5196 | 0.7578 | 0.7561 |
| 0.4595 | 18.36 | 3800 | 0.5050 | 0.7626 | 0.7619 |
| 0.4571 | 19.32 | 4000 | 0.5115 | 0.7579 | 0.7564 |
| 0.4522 | 20.29 | 4200 | 0.5346 | 0.7557 | 0.7540 |
| 0.4557 | 21.26 | 4400 | 0.5250 | 0.7566 | 0.7549 |
| 0.449 | 22.22 | 4600 | 0.5417 | 0.7443 | 0.7431 |
| 0.4484 | 23.19 | 4800 | 0.5210 | 0.7545 | 0.7528 |
| 0.4437 | 24.15 | 5000 | 0.5327 | 0.7544 | 0.7528 |
| 0.4398 | 25.12 | 5200 | 0.5487 | 0.7435 | 0.7425 |
| 0.4388 | 26.09 | 5400 | 0.5419 | 0.7453 | 0.7440 |
| 0.4372 | 27.05 | 5600 | 0.5656 | 0.7427 | 0.7416 |
| 0.4307 | 28.02 | 5800 | 0.5400 | 0.7533 | 0.7516 |
| 0.429 | 28.99 | 6000 | 0.5285 | 0.7539 | 0.7522 |
| 0.4243 | 29.95 | 6200 | 0.5554 | 0.7452 | 0.7437 |
| 0.4249 | 30.92 | 6400 | 0.5254 | 0.7546 | 0.7534 |
| 0.426 | 31.88 | 6600 | 0.5293 | 0.7494 | 0.7477 |
| 0.4144 | 32.85 | 6800 | 0.5486 | 0.7502 | 0.7486 |
| 0.4206 | 33.82 | 7000 | 0.5444 | 0.7498 | 0.7483 |
| 0.4113 | 34.78 | 7200 | 0.5544 | 0.7529 | 0.7513 |
| 0.4185 | 35.75 | 7400 | 0.5436 | 0.7481 | 0.7464 |
| 0.4096 | 36.71 | 7600 | 0.5489 | 0.7499 | 0.7483 |
| 0.4124 | 37.68 | 7800 | 0.5416 | 0.7554 | 0.7537 |
| 0.4109 | 38.65 | 8000 | 0.5439 | 0.7488 | 0.7470 |
| 0.4081 | 39.61 | 8200 | 0.5420 | 0.7506 | 0.7489 |
| 0.4018 | 40.58 | 8400 | 0.5606 | 0.7492 | 0.7477 |
| 0.4028 | 41.55 | 8600 | 0.5520 | 0.7524 | 0.7507 |
| 0.4059 | 42.51 | 8800 | 0.5511 | 0.7539 | 0.7522 |
| 0.4061 | 43.48 | 9000 | 0.5581 | 0.7514 | 0.7498 |
| 0.4036 | 44.44 | 9200 | 0.5532 | 0.7521 | 0.7504 |
| 0.408 | 45.41 | 9400 | 0.5504 | 0.7551 | 0.7534 |
| 0.3953 | 46.38 | 9600 | 0.5564 | 0.7517 | 0.7501 |
| 0.4054 | 47.34 | 9800 | 0.5496 | 0.7512 | 0.7495 |
| 0.3949 | 48.31 | 10000 | 0.5515 | 0.7527 | 0.7510 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K14ac-seqsight_4096_512_15M-L32_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K14ac-seqsight_4096_512_15M-L32_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:44:41+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | BotCuddles/gemma-2b-it-ft-mental | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:44:46+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K4me2-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K4me2](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K4me2) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5973
- F1 Score: 0.6642
- Accuracy: 0.6693
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6513 | 1.04 | 200 | 0.6213 | 0.6317 | 0.6549 |
| 0.6199 | 2.08 | 400 | 0.6293 | 0.6443 | 0.6426 |
| 0.6123 | 3.12 | 600 | 0.6108 | 0.6493 | 0.6680 |
| 0.6106 | 4.17 | 800 | 0.6176 | 0.6585 | 0.6588 |
| 0.6064 | 5.21 | 1000 | 0.6064 | 0.6673 | 0.6758 |
| 0.6033 | 6.25 | 1200 | 0.6056 | 0.6679 | 0.6738 |
| 0.5957 | 7.29 | 1400 | 0.6180 | 0.6640 | 0.6624 |
| 0.5959 | 8.33 | 1600 | 0.6186 | 0.6685 | 0.6667 |
| 0.5932 | 9.38 | 1800 | 0.6305 | 0.6574 | 0.6549 |
| 0.5919 | 10.42 | 2000 | 0.6082 | 0.6766 | 0.6774 |
| 0.593 | 11.46 | 2200 | 0.6020 | 0.6772 | 0.6826 |
| 0.5848 | 12.5 | 2400 | 0.6121 | 0.6768 | 0.6758 |
| 0.5841 | 13.54 | 2600 | 0.6098 | 0.6725 | 0.6729 |
| 0.5834 | 14.58 | 2800 | 0.6081 | 0.6715 | 0.6719 |
| 0.5864 | 15.62 | 3000 | 0.6126 | 0.6760 | 0.6751 |
| 0.5818 | 16.67 | 3200 | 0.6155 | 0.6718 | 0.6699 |
| 0.5802 | 17.71 | 3400 | 0.6068 | 0.6744 | 0.6751 |
| 0.5828 | 18.75 | 3600 | 0.6077 | 0.6713 | 0.6719 |
| 0.5803 | 19.79 | 3800 | 0.6130 | 0.6742 | 0.6735 |
| 0.5743 | 20.83 | 4000 | 0.6197 | 0.6699 | 0.6680 |
| 0.5769 | 21.88 | 4200 | 0.6318 | 0.6626 | 0.6601 |
| 0.5746 | 22.92 | 4400 | 0.6185 | 0.6679 | 0.6663 |
| 0.5741 | 23.96 | 4600 | 0.6256 | 0.6661 | 0.6637 |
| 0.5728 | 25.0 | 4800 | 0.6091 | 0.6691 | 0.6693 |
| 0.5694 | 26.04 | 5000 | 0.6206 | 0.6678 | 0.6660 |
| 0.5706 | 27.08 | 5200 | 0.6181 | 0.6659 | 0.6644 |
| 0.5682 | 28.12 | 5400 | 0.6203 | 0.6699 | 0.6680 |
| 0.5684 | 29.17 | 5600 | 0.6188 | 0.6727 | 0.6716 |
| 0.5626 | 30.21 | 5800 | 0.6244 | 0.6680 | 0.6663 |
| 0.5659 | 31.25 | 6000 | 0.6298 | 0.6645 | 0.6621 |
| 0.5652 | 32.29 | 6200 | 0.6119 | 0.6672 | 0.6667 |
| 0.565 | 33.33 | 6400 | 0.6228 | 0.6646 | 0.6628 |
| 0.5636 | 34.38 | 6600 | 0.6187 | 0.6672 | 0.6663 |
| 0.5624 | 35.42 | 6800 | 0.6183 | 0.6671 | 0.6660 |
| 0.5631 | 36.46 | 7000 | 0.6131 | 0.6729 | 0.6729 |
| 0.5575 | 37.5 | 7200 | 0.6277 | 0.6620 | 0.6601 |
| 0.5588 | 38.54 | 7400 | 0.6218 | 0.6689 | 0.6680 |
| 0.5624 | 39.58 | 7600 | 0.6139 | 0.6722 | 0.6722 |
| 0.56 | 40.62 | 7800 | 0.6328 | 0.6586 | 0.6562 |
| 0.5583 | 41.67 | 8000 | 0.6191 | 0.6650 | 0.6634 |
| 0.5563 | 42.71 | 8200 | 0.6189 | 0.6708 | 0.6706 |
| 0.5599 | 43.75 | 8400 | 0.6180 | 0.6674 | 0.6663 |
| 0.5572 | 44.79 | 8600 | 0.6239 | 0.6643 | 0.6624 |
| 0.5543 | 45.83 | 8800 | 0.6204 | 0.6676 | 0.6670 |
| 0.5576 | 46.88 | 9000 | 0.6294 | 0.6597 | 0.6575 |
| 0.5544 | 47.92 | 9200 | 0.6281 | 0.6599 | 0.6579 |
| 0.555 | 48.96 | 9400 | 0.6271 | 0.6637 | 0.6621 |
| 0.555 | 50.0 | 9600 | 0.6273 | 0.6652 | 0.6634 |
| 0.5544 | 51.04 | 9800 | 0.6263 | 0.6641 | 0.6624 |
| 0.5523 | 52.08 | 10000 | 0.6264 | 0.6642 | 0.6624 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K4me2-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K4me2-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:44:48+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | golf2248/ox9od86 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:44:59+00:00 |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sft-fsi-masked-loss
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 17.1473 | 0.5333 | 1 | 18.7762 |
| 17.1473 | 1.6 | 3 | 9.0847 |
| 11.7791 | 2.6667 | 5 | 3.0550 |
| 11.7791 | 3.7333 | 7 | 0.6706 |
| 11.7791 | 4.8 | 9 | 0.6697 |
| 1.4045 | 5.8667 | 11 | 0.5653 |
| 1.4045 | 6.9333 | 13 | 0.4982 |
| 0.6622 | 8.0 | 15 | 0.4756 |
| 0.6622 | 8.5333 | 16 | 0.4777 |
| 0.6622 | 9.6 | 18 | 0.4338 |
| 0.5586 | 10.6667 | 20 | 0.3788 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"tags": ["trl", "sft", "generated_from_trainer"], "model-index": [{"name": "sft-fsi-masked-loss", "results": []}]} | jamesoneill12/sft-fsi-masked-loss | null | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:45:22+00:00 |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Ragab167/m2m_translation_v2 | null | [
"transformers",
"safetensors",
"m2m_100",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:45:31+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | cilantro9246/vlrcskl | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:45:32+00:00 |
text-classification | transformers | {} | philgrey/question | null | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:45:40+00:00 |
|
text-generation | transformers |
<br/><br/>
3bpw/h6 exl2 quantization of [NeverSleep/Llama-3-Lumimaid-70B-v0.1](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) using default exllamav2 calibration dataset.
---
**ORIGINAL CARD:**
## Lumimaid 0.1
<center><div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;">
</div></center>
This model uses the Llama3 **prompting format**
Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough.
We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data.
This model includes the new Luminae dataset from Ikari.
If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY).
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of Lumimaid-70B-v0.1.
Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
- Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset
- [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly)
- [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly)
- [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly)
- Airoboros (reduced)
- [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced)
## Models used (only for 8B)
- Initial LumiMaid 8B Finetune
- Undi95/Llama-3-Unholy-8B-e4
- Undi95/Llama-3-LewdPlay-8B
## Prompt template: Llama3
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | JayhC/Llama-3-Lumimaid-70B-v0.1-3bpw-h6-exl2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"3-bit",
"region:us"
] | null | 2024-05-03T17:45:41+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K4me2-seqsight_4096_512_15M-L32_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K4me2](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K4me2) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6006
- F1 Score: 0.6727
- Accuracy: 0.6748
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6452 | 1.04 | 200 | 0.6178 | 0.6311 | 0.6566 |
| 0.6153 | 2.08 | 400 | 0.6301 | 0.6434 | 0.6409 |
| 0.6065 | 3.12 | 600 | 0.6049 | 0.6694 | 0.6804 |
| 0.603 | 4.17 | 800 | 0.6251 | 0.6584 | 0.6559 |
| 0.5966 | 5.21 | 1000 | 0.6064 | 0.6686 | 0.6755 |
| 0.5941 | 6.25 | 1200 | 0.6047 | 0.6722 | 0.6745 |
| 0.5852 | 7.29 | 1400 | 0.6158 | 0.6688 | 0.6673 |
| 0.5845 | 8.33 | 1600 | 0.6197 | 0.6646 | 0.6624 |
| 0.5814 | 9.38 | 1800 | 0.6251 | 0.6585 | 0.6559 |
| 0.5764 | 10.42 | 2000 | 0.6045 | 0.6777 | 0.6804 |
| 0.5778 | 11.46 | 2200 | 0.6041 | 0.6711 | 0.6758 |
| 0.5668 | 12.5 | 2400 | 0.6185 | 0.6726 | 0.6722 |
| 0.5644 | 13.54 | 2600 | 0.6260 | 0.6671 | 0.6657 |
| 0.5642 | 14.58 | 2800 | 0.6139 | 0.6665 | 0.6670 |
| 0.5637 | 15.62 | 3000 | 0.6193 | 0.6636 | 0.6631 |
| 0.5576 | 16.67 | 3200 | 0.6239 | 0.6590 | 0.6579 |
| 0.5523 | 17.71 | 3400 | 0.6274 | 0.6560 | 0.6546 |
| 0.556 | 18.75 | 3600 | 0.6327 | 0.6570 | 0.6553 |
| 0.5516 | 19.79 | 3800 | 0.6394 | 0.6645 | 0.6628 |
| 0.5438 | 20.83 | 4000 | 0.6292 | 0.6633 | 0.6621 |
| 0.5438 | 21.88 | 4200 | 0.6535 | 0.6475 | 0.6448 |
| 0.5386 | 22.92 | 4400 | 0.6413 | 0.6594 | 0.6579 |
| 0.5357 | 23.96 | 4600 | 0.6465 | 0.6519 | 0.6497 |
| 0.5325 | 25.0 | 4800 | 0.6459 | 0.6539 | 0.6517 |
| 0.5274 | 26.04 | 5000 | 0.6459 | 0.6504 | 0.6484 |
| 0.526 | 27.08 | 5200 | 0.6466 | 0.6535 | 0.6520 |
| 0.523 | 28.12 | 5400 | 0.6561 | 0.6495 | 0.6471 |
| 0.5191 | 29.17 | 5600 | 0.6623 | 0.6535 | 0.6514 |
| 0.5115 | 30.21 | 5800 | 0.6637 | 0.6552 | 0.6533 |
| 0.5137 | 31.25 | 6000 | 0.6703 | 0.6423 | 0.6396 |
| 0.5119 | 32.29 | 6200 | 0.6508 | 0.6502 | 0.6487 |
| 0.5088 | 33.33 | 6400 | 0.6721 | 0.6439 | 0.6413 |
| 0.5057 | 34.38 | 6600 | 0.6668 | 0.6495 | 0.6491 |
| 0.5043 | 35.42 | 6800 | 0.6701 | 0.6503 | 0.6481 |
| 0.506 | 36.46 | 7000 | 0.6517 | 0.6510 | 0.6497 |
| 0.4961 | 37.5 | 7200 | 0.6784 | 0.6473 | 0.6452 |
| 0.4929 | 38.54 | 7400 | 0.6843 | 0.6489 | 0.6471 |
| 0.4942 | 39.58 | 7600 | 0.6631 | 0.6505 | 0.6510 |
| 0.4938 | 40.62 | 7800 | 0.6954 | 0.6413 | 0.6386 |
| 0.4898 | 41.67 | 8000 | 0.6708 | 0.6492 | 0.6474 |
| 0.4866 | 42.71 | 8200 | 0.6798 | 0.6518 | 0.6504 |
| 0.4901 | 43.75 | 8400 | 0.6709 | 0.6427 | 0.6413 |
| 0.4866 | 44.79 | 8600 | 0.6799 | 0.6513 | 0.6494 |
| 0.4819 | 45.83 | 8800 | 0.6798 | 0.6502 | 0.6494 |
| 0.4847 | 46.88 | 9000 | 0.6948 | 0.6396 | 0.6370 |
| 0.4809 | 47.92 | 9200 | 0.6960 | 0.6417 | 0.6393 |
| 0.4816 | 48.96 | 9400 | 0.6919 | 0.6486 | 0.6468 |
| 0.482 | 50.0 | 9600 | 0.6903 | 0.6467 | 0.6445 |
| 0.4792 | 51.04 | 9800 | 0.6937 | 0.6468 | 0.6445 |
| 0.4762 | 52.08 | 10000 | 0.6930 | 0.6458 | 0.6435 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K4me2-seqsight_4096_512_15M-L32_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K4me2-seqsight_4096_512_15M-L32_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:45:43+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K9ac-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K9ac](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K9ac) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4994
- F1 Score: 0.7632
- Accuracy: 0.7625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6178 | 1.15 | 200 | 0.5812 | 0.7080 | 0.7074 |
| 0.5678 | 2.3 | 400 | 0.6382 | 0.6436 | 0.6582 |
| 0.5459 | 3.45 | 600 | 0.5881 | 0.7031 | 0.7071 |
| 0.5401 | 4.6 | 800 | 0.5820 | 0.7005 | 0.7046 |
| 0.5342 | 5.75 | 1000 | 0.5525 | 0.7202 | 0.7200 |
| 0.5258 | 6.9 | 1200 | 0.5593 | 0.7173 | 0.7179 |
| 0.5225 | 8.05 | 1400 | 0.5496 | 0.7250 | 0.7247 |
| 0.5197 | 9.2 | 1600 | 0.5916 | 0.6860 | 0.6923 |
| 0.5155 | 10.34 | 1800 | 0.5553 | 0.7197 | 0.7200 |
| 0.5146 | 11.49 | 2000 | 0.5560 | 0.7191 | 0.7200 |
| 0.508 | 12.64 | 2200 | 0.5824 | 0.7011 | 0.7053 |
| 0.5132 | 13.79 | 2400 | 0.5530 | 0.7193 | 0.7211 |
| 0.506 | 14.94 | 2600 | 0.5556 | 0.7127 | 0.7143 |
| 0.504 | 16.09 | 2800 | 0.5451 | 0.7312 | 0.7316 |
| 0.503 | 17.24 | 3000 | 0.5652 | 0.7205 | 0.7222 |
| 0.4994 | 18.39 | 3200 | 0.5591 | 0.7246 | 0.7262 |
| 0.5011 | 19.54 | 3400 | 0.5456 | 0.7289 | 0.7298 |
| 0.497 | 20.69 | 3600 | 0.5430 | 0.7267 | 0.7269 |
| 0.4967 | 21.84 | 3800 | 0.5407 | 0.7314 | 0.7319 |
| 0.4947 | 22.99 | 4000 | 0.5471 | 0.7285 | 0.7290 |
| 0.4959 | 24.14 | 4200 | 0.5297 | 0.7354 | 0.7352 |
| 0.4894 | 25.29 | 4400 | 0.5519 | 0.7314 | 0.7319 |
| 0.4965 | 26.44 | 4600 | 0.5460 | 0.7324 | 0.7326 |
| 0.4902 | 27.59 | 4800 | 0.5525 | 0.7269 | 0.7280 |
| 0.487 | 28.74 | 5000 | 0.5480 | 0.7240 | 0.7251 |
| 0.4945 | 29.89 | 5200 | 0.5410 | 0.7337 | 0.7341 |
| 0.4869 | 31.03 | 5400 | 0.5507 | 0.7291 | 0.7301 |
| 0.4896 | 32.18 | 5600 | 0.5256 | 0.7396 | 0.7391 |
| 0.4832 | 33.33 | 5800 | 0.5439 | 0.7342 | 0.7344 |
| 0.4921 | 34.48 | 6000 | 0.5405 | 0.7330 | 0.7337 |
| 0.4814 | 35.63 | 6200 | 0.5309 | 0.7376 | 0.7373 |
| 0.4888 | 36.78 | 6400 | 0.5390 | 0.7330 | 0.7334 |
| 0.4837 | 37.93 | 6600 | 0.5416 | 0.7329 | 0.7330 |
| 0.4815 | 39.08 | 6800 | 0.5345 | 0.7384 | 0.7384 |
| 0.4833 | 40.23 | 7000 | 0.5349 | 0.7385 | 0.7384 |
| 0.486 | 41.38 | 7200 | 0.5310 | 0.7382 | 0.7380 |
| 0.483 | 42.53 | 7400 | 0.5359 | 0.7330 | 0.7334 |
| 0.4805 | 43.68 | 7600 | 0.5332 | 0.7385 | 0.7384 |
| 0.4801 | 44.83 | 7800 | 0.5450 | 0.7309 | 0.7316 |
| 0.4821 | 45.98 | 8000 | 0.5359 | 0.7349 | 0.7352 |
| 0.4806 | 47.13 | 8200 | 0.5407 | 0.7325 | 0.7330 |
| 0.4819 | 48.28 | 8400 | 0.5387 | 0.7352 | 0.7355 |
| 0.4829 | 49.43 | 8600 | 0.5323 | 0.7389 | 0.7388 |
| 0.4819 | 50.57 | 8800 | 0.5356 | 0.7366 | 0.7366 |
| 0.48 | 51.72 | 9000 | 0.5423 | 0.7321 | 0.7326 |
| 0.4766 | 52.87 | 9200 | 0.5446 | 0.7321 | 0.7326 |
| 0.4815 | 54.02 | 9400 | 0.5420 | 0.7328 | 0.7334 |
| 0.48 | 55.17 | 9600 | 0.5405 | 0.7329 | 0.7334 |
| 0.476 | 56.32 | 9800 | 0.5379 | 0.7349 | 0.7352 |
| 0.4808 | 57.47 | 10000 | 0.5386 | 0.7342 | 0.7344 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K9ac-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K9ac-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:45:55+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K9ac-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K9ac](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K9ac) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4829
- F1 Score: 0.7825
- Accuracy: 0.7819
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.5985 | 1.15 | 200 | 0.5713 | 0.7153 | 0.7154 |
| 0.5469 | 2.3 | 400 | 0.6351 | 0.6395 | 0.6564 |
| 0.5227 | 3.45 | 600 | 0.5475 | 0.7292 | 0.7294 |
| 0.5141 | 4.6 | 800 | 0.5387 | 0.7369 | 0.7373 |
| 0.5053 | 5.75 | 1000 | 0.5242 | 0.7497 | 0.7492 |
| 0.4998 | 6.9 | 1200 | 0.5305 | 0.7395 | 0.7391 |
| 0.4963 | 8.05 | 1400 | 0.5248 | 0.7393 | 0.7388 |
| 0.4931 | 9.2 | 1600 | 0.5473 | 0.7262 | 0.7283 |
| 0.4876 | 10.34 | 1800 | 0.5194 | 0.7439 | 0.7434 |
| 0.4872 | 11.49 | 2000 | 0.5172 | 0.7510 | 0.7506 |
| 0.4807 | 12.64 | 2200 | 0.5475 | 0.7303 | 0.7319 |
| 0.4855 | 13.79 | 2400 | 0.5089 | 0.7587 | 0.7582 |
| 0.4776 | 14.94 | 2600 | 0.5157 | 0.7514 | 0.7510 |
| 0.4752 | 16.09 | 2800 | 0.5177 | 0.7500 | 0.7499 |
| 0.4758 | 17.24 | 3000 | 0.5201 | 0.7531 | 0.7528 |
| 0.4699 | 18.39 | 3200 | 0.5240 | 0.7504 | 0.7503 |
| 0.4728 | 19.54 | 3400 | 0.5102 | 0.7498 | 0.7496 |
| 0.4662 | 20.69 | 3600 | 0.5063 | 0.7545 | 0.7542 |
| 0.4668 | 21.84 | 3800 | 0.5230 | 0.7458 | 0.7460 |
| 0.4627 | 22.99 | 4000 | 0.5297 | 0.7412 | 0.7416 |
| 0.4655 | 24.14 | 4200 | 0.5121 | 0.7515 | 0.7510 |
| 0.4565 | 25.29 | 4400 | 0.5336 | 0.7506 | 0.7506 |
| 0.463 | 26.44 | 4600 | 0.5167 | 0.7540 | 0.7535 |
| 0.4583 | 27.59 | 4800 | 0.5223 | 0.7470 | 0.7474 |
| 0.4553 | 28.74 | 5000 | 0.5166 | 0.7515 | 0.7513 |
| 0.4595 | 29.89 | 5200 | 0.5159 | 0.7546 | 0.7542 |
| 0.4532 | 31.03 | 5400 | 0.5204 | 0.7508 | 0.7506 |
| 0.4546 | 32.18 | 5600 | 0.5063 | 0.7537 | 0.7531 |
| 0.4474 | 33.33 | 5800 | 0.5128 | 0.7562 | 0.7557 |
| 0.4565 | 34.48 | 6000 | 0.5174 | 0.7511 | 0.7506 |
| 0.4419 | 35.63 | 6200 | 0.5137 | 0.7540 | 0.7535 |
| 0.4492 | 36.78 | 6400 | 0.5112 | 0.7576 | 0.7571 |
| 0.4456 | 37.93 | 6600 | 0.5413 | 0.7403 | 0.7402 |
| 0.4434 | 39.08 | 6800 | 0.5180 | 0.7519 | 0.7513 |
| 0.4448 | 40.23 | 7000 | 0.5249 | 0.7538 | 0.7535 |
| 0.4468 | 41.38 | 7200 | 0.5210 | 0.7503 | 0.7499 |
| 0.444 | 42.53 | 7400 | 0.5156 | 0.7479 | 0.7474 |
| 0.4406 | 43.68 | 7600 | 0.5162 | 0.7490 | 0.7485 |
| 0.4386 | 44.83 | 7800 | 0.5258 | 0.7495 | 0.7492 |
| 0.443 | 45.98 | 8000 | 0.5153 | 0.7486 | 0.7481 |
| 0.4409 | 47.13 | 8200 | 0.5243 | 0.7488 | 0.7485 |
| 0.4412 | 48.28 | 8400 | 0.5204 | 0.7493 | 0.7488 |
| 0.4385 | 49.43 | 8600 | 0.5198 | 0.7501 | 0.7496 |
| 0.4406 | 50.57 | 8800 | 0.5227 | 0.7521 | 0.7517 |
| 0.4391 | 51.72 | 9000 | 0.5283 | 0.7511 | 0.7510 |
| 0.4376 | 52.87 | 9200 | 0.5288 | 0.7484 | 0.7481 |
| 0.4383 | 54.02 | 9400 | 0.5270 | 0.7479 | 0.7478 |
| 0.4378 | 55.17 | 9600 | 0.5240 | 0.7488 | 0.7485 |
| 0.4332 | 56.32 | 9800 | 0.5228 | 0.7514 | 0.7510 |
| 0.4382 | 57.47 | 10000 | 0.5228 | 0.7503 | 0.7499 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K9ac-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K9ac-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:46:02+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K9ac-seqsight_4096_512_15M-L32_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K9ac](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K9ac) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4683
- F1 Score: 0.7846
- Accuracy: 0.7841
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.5805 | 1.15 | 200 | 0.5699 | 0.7096 | 0.7121 |
| 0.5311 | 2.3 | 400 | 0.6196 | 0.6574 | 0.6711 |
| 0.5054 | 3.45 | 600 | 0.5329 | 0.7385 | 0.7384 |
| 0.4987 | 4.6 | 800 | 0.5223 | 0.7407 | 0.7406 |
| 0.4901 | 5.75 | 1000 | 0.5191 | 0.7511 | 0.7506 |
| 0.4858 | 6.9 | 1200 | 0.5215 | 0.7479 | 0.7478 |
| 0.4814 | 8.05 | 1400 | 0.5293 | 0.7434 | 0.7431 |
| 0.4752 | 9.2 | 1600 | 0.5324 | 0.7414 | 0.7427 |
| 0.4677 | 10.34 | 1800 | 0.5228 | 0.7472 | 0.7467 |
| 0.4686 | 11.49 | 2000 | 0.5185 | 0.7565 | 0.7560 |
| 0.4585 | 12.64 | 2200 | 0.5343 | 0.7408 | 0.7409 |
| 0.4611 | 13.79 | 2400 | 0.5132 | 0.7546 | 0.7542 |
| 0.4551 | 14.94 | 2600 | 0.5177 | 0.7486 | 0.7481 |
| 0.45 | 16.09 | 2800 | 0.5290 | 0.7467 | 0.7470 |
| 0.4485 | 17.24 | 3000 | 0.5097 | 0.7583 | 0.7578 |
| 0.4414 | 18.39 | 3200 | 0.5293 | 0.7483 | 0.7481 |
| 0.4412 | 19.54 | 3400 | 0.5122 | 0.7461 | 0.7456 |
| 0.4354 | 20.69 | 3600 | 0.5108 | 0.7502 | 0.7499 |
| 0.4326 | 21.84 | 3800 | 0.5305 | 0.7444 | 0.7445 |
| 0.4262 | 22.99 | 4000 | 0.5570 | 0.7396 | 0.7406 |
| 0.4284 | 24.14 | 4200 | 0.5263 | 0.7511 | 0.7506 |
| 0.4186 | 25.29 | 4400 | 0.5468 | 0.7512 | 0.7510 |
| 0.4232 | 26.44 | 4600 | 0.5302 | 0.7490 | 0.7485 |
| 0.4159 | 27.59 | 4800 | 0.5412 | 0.7507 | 0.7506 |
| 0.4109 | 28.74 | 5000 | 0.5274 | 0.7464 | 0.7460 |
| 0.4147 | 29.89 | 5200 | 0.5354 | 0.7479 | 0.7481 |
| 0.4047 | 31.03 | 5400 | 0.5491 | 0.7428 | 0.7427 |
| 0.4047 | 32.18 | 5600 | 0.5310 | 0.7433 | 0.7427 |
| 0.3938 | 33.33 | 5800 | 0.5478 | 0.7511 | 0.7506 |
| 0.4018 | 34.48 | 6000 | 0.5339 | 0.7508 | 0.7503 |
| 0.3872 | 35.63 | 6200 | 0.5474 | 0.7439 | 0.7434 |
| 0.3911 | 36.78 | 6400 | 0.5366 | 0.7428 | 0.7424 |
| 0.3877 | 37.93 | 6600 | 0.5748 | 0.7417 | 0.7413 |
| 0.3853 | 39.08 | 6800 | 0.5557 | 0.7392 | 0.7388 |
| 0.3846 | 40.23 | 7000 | 0.5654 | 0.7439 | 0.7434 |
| 0.3872 | 41.38 | 7200 | 0.5705 | 0.7375 | 0.7373 |
| 0.3829 | 42.53 | 7400 | 0.5605 | 0.7393 | 0.7388 |
| 0.3754 | 43.68 | 7600 | 0.5542 | 0.7450 | 0.7445 |
| 0.3755 | 44.83 | 7800 | 0.5678 | 0.7403 | 0.7398 |
| 0.3758 | 45.98 | 8000 | 0.5571 | 0.7418 | 0.7413 |
| 0.3735 | 47.13 | 8200 | 0.5867 | 0.7398 | 0.7395 |
| 0.3728 | 48.28 | 8400 | 0.5711 | 0.7382 | 0.7377 |
| 0.371 | 49.43 | 8600 | 0.5742 | 0.7407 | 0.7402 |
| 0.3695 | 50.57 | 8800 | 0.5821 | 0.7402 | 0.7398 |
| 0.368 | 51.72 | 9000 | 0.5897 | 0.7393 | 0.7391 |
| 0.3675 | 52.87 | 9200 | 0.5823 | 0.7362 | 0.7359 |
| 0.3668 | 54.02 | 9400 | 0.5857 | 0.7365 | 0.7362 |
| 0.3671 | 55.17 | 9600 | 0.5799 | 0.7396 | 0.7391 |
| 0.3637 | 56.32 | 9800 | 0.5779 | 0.7410 | 0.7406 |
| 0.3655 | 57.47 | 10000 | 0.5769 | 0.7406 | 0.7402 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K9ac-seqsight_4096_512_15M-L32_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K9ac-seqsight_4096_512_15M-L32_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:46:07+00:00 |
text-classification | transformers | {} | philgrey/question_classification | null | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:46:22+00:00 |
|
null | null | {"license": "apache-2.0"} | MarkLogic/marklogic-connect | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-03T17:48:04+00:00 |
|
null | null | {} | LongDaHo/finetuned-gemma-2b | null | [
"region:us"
] | null | 2024-05-03T17:48:14+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prompt_fine_tuned_CB_bert
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1636
- Accuracy: 0.3182
- F1: 0.1536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "google-bert/bert-base-uncased", "model-index": [{"name": "prompt_fine_tuned_CB_bert", "results": []}]} | lenatr99/prompt_fine_tuned_CB_bert | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"license:apache-2.0",
"region:us"
] | null | 2024-05-03T17:48:19+00:00 |
null | null | {} | vinven7/Llama2-ft-BandGap | null | [
"region:us"
] | null | 2024-05-03T17:49:11+00:00 |
|
null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi0503B1
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0800
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.5697 | 0.09 | 10 | 0.7185 |
| 0.345 | 0.18 | 20 | 0.1655 |
| 0.1552 | 0.27 | 30 | 0.1343 |
| 0.1345 | 0.36 | 40 | 0.1175 |
| 0.121 | 0.45 | 50 | 0.1152 |
| 0.1088 | 0.54 | 60 | 0.0861 |
| 0.0923 | 0.63 | 70 | 0.0942 |
| 0.0773 | 0.73 | 80 | 0.0681 |
| 0.0606 | 0.82 | 90 | 0.0686 |
| 0.0647 | 0.91 | 100 | 0.0624 |
| 0.062 | 1.0 | 110 | 0.0663 |
| 0.0434 | 1.09 | 120 | 0.0687 |
| 0.042 | 1.18 | 130 | 0.0675 |
| 0.0503 | 1.27 | 140 | 0.0681 |
| 0.0445 | 1.36 | 150 | 0.0654 |
| 0.0511 | 1.45 | 160 | 0.0593 |
| 0.0462 | 1.54 | 170 | 0.0687 |
| 0.0498 | 1.63 | 180 | 0.0651 |
| 0.0448 | 1.72 | 190 | 0.0640 |
| 0.043 | 1.81 | 200 | 0.0636 |
| 0.04 | 1.9 | 210 | 0.0617 |
| 0.043 | 1.99 | 220 | 0.0613 |
| 0.0226 | 2.08 | 230 | 0.0657 |
| 0.0165 | 2.18 | 240 | 0.0788 |
| 0.011 | 2.27 | 250 | 0.0943 |
| 0.0097 | 2.36 | 260 | 0.0946 |
| 0.0167 | 2.45 | 270 | 0.0864 |
| 0.0105 | 2.54 | 280 | 0.0827 |
| 0.0118 | 2.63 | 290 | 0.0819 |
| 0.0156 | 2.72 | 300 | 0.0802 |
| 0.0137 | 2.81 | 310 | 0.0800 |
| 0.013 | 2.9 | 320 | 0.0800 |
| 0.0098 | 2.99 | 330 | 0.0800 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "microsoft/Phi-3-mini-4k-instruct", "model-index": [{"name": "Phi0503B1", "results": []}]} | Litzy619/Phi0503B1 | null | [
"safetensors",
"generated_from_trainer",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] | null | 2024-05-03T17:49:24+00:00 |
null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi0503B2
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0690
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.4837 | 0.09 | 10 | 5.4342 |
| 5.4537 | 0.18 | 20 | 5.2266 |
| 4.774 | 0.27 | 30 | 3.6419 |
| 2.4745 | 0.36 | 40 | 1.0488 |
| 0.5621 | 0.45 | 50 | 0.2015 |
| 0.1739 | 0.54 | 60 | 0.1465 |
| 0.1373 | 0.63 | 70 | 0.1350 |
| 0.1328 | 0.73 | 80 | 0.1258 |
| 0.1091 | 0.82 | 90 | 0.1152 |
| 0.1142 | 0.91 | 100 | 0.0968 |
| 0.0918 | 1.0 | 110 | 0.1021 |
| 0.0773 | 1.09 | 120 | 0.0807 |
| 0.0711 | 1.18 | 130 | 0.0793 |
| 0.0751 | 1.27 | 140 | 0.0661 |
| 0.06 | 1.36 | 150 | 0.0651 |
| 0.0647 | 1.45 | 160 | 0.0658 |
| 0.0577 | 1.54 | 170 | 0.0657 |
| 0.0575 | 1.63 | 180 | 0.0644 |
| 0.0534 | 1.72 | 190 | 0.0661 |
| 0.0594 | 1.81 | 200 | 0.0622 |
| 0.0473 | 1.9 | 210 | 0.0628 |
| 0.0522 | 1.99 | 220 | 0.0643 |
| 0.0402 | 2.08 | 230 | 0.0644 |
| 0.0436 | 2.18 | 240 | 0.0674 |
| 0.0343 | 2.27 | 250 | 0.0708 |
| 0.0358 | 2.36 | 260 | 0.0724 |
| 0.0411 | 2.45 | 270 | 0.0720 |
| 0.0359 | 2.54 | 280 | 0.0706 |
| 0.0366 | 2.63 | 290 | 0.0702 |
| 0.0397 | 2.72 | 300 | 0.0697 |
| 0.044 | 2.81 | 310 | 0.0692 |
| 0.0415 | 2.9 | 320 | 0.0688 |
| 0.037 | 2.99 | 330 | 0.0690 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "microsoft/Phi-3-mini-4k-instruct", "model-index": [{"name": "Phi0503B2", "results": []}]} | Litzy619/Phi0503B2 | null | [
"safetensors",
"generated_from_trainer",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] | null | 2024-05-03T17:49:39+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K4me3-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K4me3](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K4me3) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6104
- F1 Score: 0.6754
- Accuracy: 0.6755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6748 | 0.87 | 200 | 0.6571 | 0.6173 | 0.6188 |
| 0.6536 | 1.74 | 400 | 0.6488 | 0.6324 | 0.6323 |
| 0.6479 | 2.61 | 600 | 0.6438 | 0.6414 | 0.6410 |
| 0.6365 | 3.48 | 800 | 0.6347 | 0.6385 | 0.6397 |
| 0.6346 | 4.35 | 1000 | 0.6307 | 0.6387 | 0.6416 |
| 0.6286 | 5.22 | 1200 | 0.6395 | 0.6339 | 0.6391 |
| 0.6242 | 6.09 | 1400 | 0.6266 | 0.6497 | 0.6511 |
| 0.6186 | 6.96 | 1600 | 0.6242 | 0.6600 | 0.6606 |
| 0.6171 | 7.83 | 1800 | 0.6186 | 0.6623 | 0.6630 |
| 0.6159 | 8.7 | 2000 | 0.6171 | 0.6646 | 0.6644 |
| 0.6094 | 9.57 | 2200 | 0.6146 | 0.6613 | 0.6611 |
| 0.6144 | 10.43 | 2400 | 0.6139 | 0.6648 | 0.6647 |
| 0.6105 | 11.3 | 2600 | 0.6175 | 0.6571 | 0.6584 |
| 0.6118 | 12.17 | 2800 | 0.6119 | 0.6676 | 0.6674 |
| 0.6086 | 13.04 | 3000 | 0.6103 | 0.6679 | 0.6677 |
| 0.6053 | 13.91 | 3200 | 0.6114 | 0.6620 | 0.6625 |
| 0.6039 | 14.78 | 3400 | 0.6115 | 0.6615 | 0.6628 |
| 0.606 | 15.65 | 3600 | 0.6125 | 0.6653 | 0.6660 |
| 0.6002 | 16.52 | 3800 | 0.6121 | 0.6665 | 0.6668 |
| 0.6016 | 17.39 | 4000 | 0.6084 | 0.6693 | 0.6696 |
| 0.603 | 18.26 | 4200 | 0.6086 | 0.6690 | 0.6690 |
| 0.597 | 19.13 | 4400 | 0.6072 | 0.6692 | 0.6693 |
| 0.5983 | 20.0 | 4600 | 0.6074 | 0.6661 | 0.6666 |
| 0.5986 | 20.87 | 4800 | 0.6091 | 0.6645 | 0.6649 |
| 0.5976 | 21.74 | 5000 | 0.6116 | 0.6619 | 0.6630 |
| 0.5976 | 22.61 | 5200 | 0.6068 | 0.6666 | 0.6677 |
| 0.5978 | 23.48 | 5400 | 0.6129 | 0.6573 | 0.6611 |
| 0.5943 | 24.35 | 5600 | 0.6047 | 0.6673 | 0.6674 |
| 0.5966 | 25.22 | 5800 | 0.6116 | 0.6578 | 0.6617 |
| 0.5934 | 26.09 | 6000 | 0.6113 | 0.6585 | 0.6614 |
| 0.5951 | 26.96 | 6200 | 0.6116 | 0.6622 | 0.6652 |
| 0.5948 | 27.83 | 6400 | 0.6180 | 0.6534 | 0.6592 |
| 0.5914 | 28.7 | 6600 | 0.6068 | 0.6609 | 0.6628 |
| 0.5915 | 29.57 | 6800 | 0.6048 | 0.6677 | 0.6690 |
| 0.5893 | 30.43 | 7000 | 0.6109 | 0.6600 | 0.6633 |
| 0.5974 | 31.3 | 7200 | 0.6085 | 0.6625 | 0.6652 |
| 0.5923 | 32.17 | 7400 | 0.6108 | 0.6596 | 0.6639 |
| 0.5891 | 33.04 | 7600 | 0.6036 | 0.6659 | 0.6671 |
| 0.5919 | 33.91 | 7800 | 0.6048 | 0.6618 | 0.6633 |
| 0.5906 | 34.78 | 8000 | 0.6055 | 0.6651 | 0.6666 |
| 0.5927 | 35.65 | 8200 | 0.6027 | 0.6657 | 0.6668 |
| 0.5891 | 36.52 | 8400 | 0.6069 | 0.6614 | 0.6639 |
| 0.5908 | 37.39 | 8600 | 0.6063 | 0.6635 | 0.6655 |
| 0.5857 | 38.26 | 8800 | 0.6095 | 0.6630 | 0.6660 |
| 0.5921 | 39.13 | 9000 | 0.6070 | 0.6622 | 0.6649 |
| 0.5895 | 40.0 | 9200 | 0.6047 | 0.6643 | 0.6660 |
| 0.5884 | 40.87 | 9400 | 0.6029 | 0.6672 | 0.6679 |
| 0.5909 | 41.74 | 9600 | 0.6040 | 0.6656 | 0.6668 |
| 0.5906 | 42.61 | 9800 | 0.6042 | 0.6650 | 0.6666 |
| 0.5892 | 43.48 | 10000 | 0.6047 | 0.6640 | 0.6658 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K4me3-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K4me3-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:51:35+00:00 |
text-generation | transformers | {} | PB7-DUT-2023/finetuned_Bloomz_1b1_v5 | null | [
"transformers",
"pytorch",
"bloom",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:51:49+00:00 |
|
null | null | {} | UC3M-LCPM/Bart_large_mnli_task1a_en_normal | null | [
"region:us"
] | null | 2024-05-03T17:52:50+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | ferrazzipietro/LS_Llama-2-7b-hf_adapters_en.layer1_NoQuant_16_64_0.05_2_5e-05 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:53:04+00:00 |
null | null |
# LlamaJarvis-7B
LlamaJarvis-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration.
* [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
* [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B)
## 🧩 Configuration
```yaml
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
density: 0.6
weight: 0.5
- model: mlabonne/OrpoLlama-3-8B
parameters:
density: 0.55
weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "automerger/LlamaJarvis-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "automerger"], "base_model": ["NousResearch/Meta-Llama-3-8B-Instruct", "mlabonne/OrpoLlama-3-8B"]} | automerger/LlamaJarvis-7B | null | [
"merge",
"mergekit",
"lazymergekit",
"automerger",
"base_model:NousResearch/Meta-Llama-3-8B-Instruct",
"base_model:mlabonne/OrpoLlama-3-8B",
"license:apache-2.0",
"region:us"
] | null | 2024-05-03T17:53:49+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K4me3-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K4me3](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K4me3) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6053
- F1 Score: 0.6811
- Accuracy: 0.6823
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6682 | 0.87 | 200 | 0.6471 | 0.6349 | 0.6359 |
| 0.6393 | 1.74 | 400 | 0.6363 | 0.6456 | 0.6457 |
| 0.6281 | 2.61 | 600 | 0.6212 | 0.6612 | 0.6609 |
| 0.6181 | 3.48 | 800 | 0.6148 | 0.6642 | 0.6641 |
| 0.6148 | 4.35 | 1000 | 0.6139 | 0.6601 | 0.6603 |
| 0.6098 | 5.22 | 1200 | 0.6154 | 0.6526 | 0.6552 |
| 0.6042 | 6.09 | 1400 | 0.6202 | 0.6480 | 0.6527 |
| 0.5989 | 6.96 | 1600 | 0.6141 | 0.6615 | 0.6639 |
| 0.5962 | 7.83 | 1800 | 0.6078 | 0.6712 | 0.6709 |
| 0.5953 | 8.7 | 2000 | 0.6030 | 0.6731 | 0.6731 |
| 0.5864 | 9.57 | 2200 | 0.5979 | 0.6767 | 0.6766 |
| 0.5919 | 10.43 | 2400 | 0.6012 | 0.6721 | 0.6723 |
| 0.5862 | 11.3 | 2600 | 0.6009 | 0.6692 | 0.6715 |
| 0.5893 | 12.17 | 2800 | 0.5981 | 0.6709 | 0.6717 |
| 0.5824 | 13.04 | 3000 | 0.5966 | 0.6752 | 0.6758 |
| 0.5807 | 13.91 | 3200 | 0.5975 | 0.6735 | 0.6747 |
| 0.5772 | 14.78 | 3400 | 0.6008 | 0.6742 | 0.6766 |
| 0.5799 | 15.65 | 3600 | 0.6016 | 0.6730 | 0.6758 |
| 0.5746 | 16.52 | 3800 | 0.5983 | 0.6759 | 0.6764 |
| 0.5731 | 17.39 | 4000 | 0.5999 | 0.6770 | 0.6777 |
| 0.5756 | 18.26 | 4200 | 0.5986 | 0.6797 | 0.6815 |
| 0.5684 | 19.13 | 4400 | 0.5978 | 0.6775 | 0.6780 |
| 0.5707 | 20.0 | 4600 | 0.5995 | 0.6755 | 0.6769 |
| 0.5702 | 20.87 | 4800 | 0.5974 | 0.6778 | 0.6791 |
| 0.5675 | 21.74 | 5000 | 0.6075 | 0.6707 | 0.6720 |
| 0.569 | 22.61 | 5200 | 0.5955 | 0.6776 | 0.6785 |
| 0.5645 | 23.48 | 5400 | 0.6137 | 0.6672 | 0.6723 |
| 0.5628 | 24.35 | 5600 | 0.6011 | 0.6756 | 0.6769 |
| 0.5664 | 25.22 | 5800 | 0.6027 | 0.6728 | 0.6764 |
| 0.5609 | 26.09 | 6000 | 0.6073 | 0.6746 | 0.6772 |
| 0.5618 | 26.96 | 6200 | 0.6067 | 0.6739 | 0.6769 |
| 0.5603 | 27.83 | 6400 | 0.6151 | 0.6679 | 0.6728 |
| 0.5578 | 28.7 | 6600 | 0.5997 | 0.6778 | 0.6796 |
| 0.559 | 29.57 | 6800 | 0.5980 | 0.6795 | 0.6807 |
| 0.5551 | 30.43 | 7000 | 0.6067 | 0.6740 | 0.6772 |
| 0.5636 | 31.3 | 7200 | 0.6002 | 0.6794 | 0.6810 |
| 0.5549 | 32.17 | 7400 | 0.6016 | 0.6790 | 0.6807 |
| 0.5543 | 33.04 | 7600 | 0.5994 | 0.6770 | 0.6783 |
| 0.5558 | 33.91 | 7800 | 0.5993 | 0.6776 | 0.6793 |
| 0.5546 | 34.78 | 8000 | 0.6022 | 0.6781 | 0.6793 |
| 0.5567 | 35.65 | 8200 | 0.5980 | 0.6793 | 0.6807 |
| 0.553 | 36.52 | 8400 | 0.6025 | 0.6756 | 0.6783 |
| 0.5553 | 37.39 | 8600 | 0.6016 | 0.6774 | 0.6788 |
| 0.5478 | 38.26 | 8800 | 0.6096 | 0.6733 | 0.6764 |
| 0.5536 | 39.13 | 9000 | 0.6045 | 0.6756 | 0.6777 |
| 0.5508 | 40.0 | 9200 | 0.6035 | 0.6800 | 0.6818 |
| 0.5521 | 40.87 | 9400 | 0.6018 | 0.6760 | 0.6769 |
| 0.5512 | 41.74 | 9600 | 0.6028 | 0.6758 | 0.6772 |
| 0.552 | 42.61 | 9800 | 0.6021 | 0.6789 | 0.6802 |
| 0.5521 | 43.48 | 10000 | 0.6031 | 0.6783 | 0.6799 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K4me3-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K4me3-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:54:40+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3K4me3-seqsight_4096_512_15M-L32_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3K4me3](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3K4me3) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6214
- F1 Score: 0.6871
- Accuracy: 0.6872
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.6604 | 0.87 | 200 | 0.6356 | 0.6419 | 0.6446 |
| 0.6283 | 1.74 | 400 | 0.6323 | 0.6420 | 0.6451 |
| 0.6159 | 2.61 | 600 | 0.6089 | 0.6698 | 0.6696 |
| 0.6064 | 3.48 | 800 | 0.6044 | 0.6734 | 0.6731 |
| 0.6011 | 4.35 | 1000 | 0.6067 | 0.6681 | 0.6679 |
| 0.5945 | 5.22 | 1200 | 0.6015 | 0.6739 | 0.6742 |
| 0.5889 | 6.09 | 1400 | 0.6102 | 0.6588 | 0.6630 |
| 0.5839 | 6.96 | 1600 | 0.6055 | 0.6744 | 0.6764 |
| 0.5777 | 7.83 | 1800 | 0.6038 | 0.6778 | 0.6777 |
| 0.5768 | 8.7 | 2000 | 0.6082 | 0.6716 | 0.6717 |
| 0.5664 | 9.57 | 2200 | 0.5990 | 0.6784 | 0.6785 |
| 0.5693 | 10.43 | 2400 | 0.6050 | 0.6708 | 0.6726 |
| 0.5635 | 11.3 | 2600 | 0.5996 | 0.6714 | 0.675 |
| 0.566 | 12.17 | 2800 | 0.5940 | 0.6735 | 0.6747 |
| 0.556 | 13.04 | 3000 | 0.5968 | 0.6770 | 0.6780 |
| 0.553 | 13.91 | 3200 | 0.6026 | 0.6703 | 0.6720 |
| 0.5486 | 14.78 | 3400 | 0.6150 | 0.6675 | 0.6709 |
| 0.5497 | 15.65 | 3600 | 0.6032 | 0.6709 | 0.6731 |
| 0.5432 | 16.52 | 3800 | 0.6059 | 0.6764 | 0.6766 |
| 0.5393 | 17.39 | 4000 | 0.6131 | 0.6752 | 0.6772 |
| 0.5427 | 18.26 | 4200 | 0.6093 | 0.6747 | 0.6785 |
| 0.5304 | 19.13 | 4400 | 0.6131 | 0.6716 | 0.6739 |
| 0.5329 | 20.0 | 4600 | 0.6077 | 0.6777 | 0.6793 |
| 0.531 | 20.87 | 4800 | 0.6070 | 0.6769 | 0.6783 |
| 0.5239 | 21.74 | 5000 | 0.6174 | 0.6708 | 0.6723 |
| 0.5272 | 22.61 | 5200 | 0.6096 | 0.6799 | 0.6813 |
| 0.5188 | 23.48 | 5400 | 0.6364 | 0.6696 | 0.6731 |
| 0.5177 | 24.35 | 5600 | 0.6255 | 0.6697 | 0.6736 |
| 0.5185 | 25.22 | 5800 | 0.6251 | 0.6740 | 0.6777 |
| 0.513 | 26.09 | 6000 | 0.6339 | 0.6707 | 0.6742 |
| 0.5119 | 26.96 | 6200 | 0.6245 | 0.6742 | 0.6777 |
| 0.5078 | 27.83 | 6400 | 0.6367 | 0.6723 | 0.6766 |
| 0.504 | 28.7 | 6600 | 0.6171 | 0.6765 | 0.6772 |
| 0.5056 | 29.57 | 6800 | 0.6165 | 0.6755 | 0.6769 |
| 0.5021 | 30.43 | 7000 | 0.6280 | 0.6777 | 0.6804 |
| 0.5093 | 31.3 | 7200 | 0.6212 | 0.6818 | 0.6826 |
| 0.4991 | 32.17 | 7400 | 0.6257 | 0.6770 | 0.6783 |
| 0.4968 | 33.04 | 7600 | 0.6238 | 0.6776 | 0.6791 |
| 0.4957 | 33.91 | 7800 | 0.6232 | 0.6764 | 0.6785 |
| 0.4945 | 34.78 | 8000 | 0.6249 | 0.6765 | 0.6780 |
| 0.4986 | 35.65 | 8200 | 0.6241 | 0.6784 | 0.6802 |
| 0.4907 | 36.52 | 8400 | 0.6303 | 0.6738 | 0.6761 |
| 0.495 | 37.39 | 8600 | 0.6312 | 0.6758 | 0.6769 |
| 0.4868 | 38.26 | 8800 | 0.6352 | 0.6774 | 0.6793 |
| 0.4894 | 39.13 | 9000 | 0.6343 | 0.6773 | 0.6791 |
| 0.4875 | 40.0 | 9200 | 0.6298 | 0.6787 | 0.6802 |
| 0.4871 | 40.87 | 9400 | 0.6313 | 0.6760 | 0.6769 |
| 0.4861 | 41.74 | 9600 | 0.6330 | 0.6773 | 0.6791 |
| 0.4892 | 42.61 | 9800 | 0.6306 | 0.6777 | 0.6791 |
| 0.4891 | 43.48 | 10000 | 0.6317 | 0.6775 | 0.6791 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3K4me3-seqsight_4096_512_15M-L32_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3K4me3-seqsight_4096_512_15M-L32_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T17:55:10+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | LongDHo/finetuned-gemma-2b | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:55:44+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cosmosDPO_CodeTest2
This model is a fine-tuned version of [ytu-ce-cosmos/turkish-gpt2-large-750m-instruct-v0.1](https://huggingface.co/ytu-ce-cosmos/turkish-gpt2-large-750m-instruct-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5356
- Rewards/chosen: -1.3639
- Rewards/rejected: -3.6411
- Rewards/accuracies: 0.2640
- Rewards/margins: 2.2772
- Logps/rejected: -477.7171
- Logps/chosen: -224.9044
- Logits/rejected: -4.1447
- Logits/chosen: -3.7114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6915 | 0.0524 | 8 | 0.6855 | -0.0225 | -0.0387 | 0.2171 | 0.0162 | -117.4774 | -90.7611 | -2.7135 | -2.4688 |
| 0.6639 | 0.1047 | 16 | 0.6480 | -0.2509 | -0.4015 | 0.2189 | 0.1506 | -153.7584 | -113.6010 | -3.2208 | -2.9343 |
| 0.6251 | 0.1571 | 24 | 0.6436 | -0.7453 | -1.1570 | 0.2217 | 0.4117 | -229.3032 | -163.0413 | -3.8702 | -3.5589 |
| 0.6238 | 0.2095 | 32 | 0.6047 | -0.7237 | -1.2597 | 0.2355 | 0.5360 | -239.5777 | -160.8856 | -3.7913 | -3.4555 |
| 0.5586 | 0.2619 | 40 | 0.5789 | -1.0590 | -1.9755 | 0.2474 | 0.9164 | -311.1551 | -194.4169 | -3.9560 | -3.5940 |
| 0.5389 | 0.3142 | 48 | 0.5577 | -1.0922 | -2.3486 | 0.2548 | 1.2564 | -348.4677 | -197.7312 | -3.9027 | -3.5251 |
| 0.5102 | 0.3666 | 56 | 0.5606 | -1.4904 | -3.3229 | 0.2548 | 1.8325 | -445.8979 | -237.5522 | -4.0088 | -3.6310 |
| 0.5506 | 0.4190 | 64 | 0.5529 | -1.4084 | -3.4076 | 0.2585 | 1.9992 | -454.3663 | -229.3532 | -3.9314 | -3.5543 |
| 0.5696 | 0.4714 | 72 | 0.5365 | -0.7411 | -2.1788 | 0.2621 | 1.4377 | -331.4860 | -162.6252 | -3.6733 | -3.2798 |
| 0.5265 | 0.5237 | 80 | 0.5355 | -0.8770 | -2.4950 | 0.2612 | 1.6180 | -363.1028 | -176.2112 | -3.7304 | -3.3452 |
| 0.5199 | 0.5761 | 88 | 0.5482 | -1.5559 | -3.7745 | 0.2585 | 2.2186 | -491.0597 | -244.1054 | -3.9633 | -3.5958 |
| 0.5163 | 0.6285 | 96 | 0.5464 | -1.5899 | -3.8545 | 0.2594 | 2.2646 | -499.0518 | -247.5011 | -4.0472 | -3.6688 |
| 0.5421 | 0.6809 | 104 | 0.5408 | -1.4973 | -3.8002 | 0.2631 | 2.3029 | -493.6231 | -238.2402 | -4.1221 | -3.7151 |
| 0.5416 | 0.7332 | 112 | 0.5356 | -1.2811 | -3.4299 | 0.2640 | 2.1488 | -456.5994 | -216.6231 | -4.0861 | -3.6611 |
| 0.4967 | 0.7856 | 120 | 0.5347 | -1.2626 | -3.4278 | 0.2640 | 2.1653 | -456.3912 | -214.7687 | -4.1048 | -3.6705 |
| 0.4783 | 0.8380 | 128 | 0.5345 | -1.2666 | -3.4477 | 0.2640 | 2.1811 | -458.3748 | -215.1744 | -4.1066 | -3.6704 |
| 0.508 | 0.8903 | 136 | 0.5352 | -1.3287 | -3.5746 | 0.2640 | 2.2459 | -471.0667 | -221.3868 | -4.1311 | -3.6966 |
| 0.5417 | 0.9427 | 144 | 0.5356 | -1.3619 | -3.6366 | 0.2640 | 2.2746 | -477.2621 | -224.7045 | -4.1435 | -3.7103 |
| 0.5414 | 0.9951 | 152 | 0.5356 | -1.3639 | -3.6411 | 0.2640 | 2.2772 | -477.7171 | -224.9044 | -4.1447 | -3.7114 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "ytu-ce-cosmos/turkish-gpt2-large-750m-instruct-v0.1", "model-index": [{"name": "cosmosDPO_CodeTest2", "results": []}]} | meguzn/cosmosDPO_CodeTest2 | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:ytu-ce-cosmos/turkish-gpt2-large-750m-instruct-v0.1",
"license:mit",
"region:us"
] | null | 2024-05-03T17:55:54+00:00 |
null | null | {} | lanzv/model_output_dir | null | [
"region:us"
] | null | 2024-05-03T17:56:00+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth", "trl", "sft"]} | MohamedSaeed-dev/gemma7b-unsloth | null | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:56:25+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth", "trl", "sft"]} | MohamedSaeed-dev/phi-unsloth | null | [
"transformers",
"pytorch",
"mistral",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T17:56:38+00:00 |
null | null | {} | UC3M-LCPM/Bart_large_task1a_en_normal | null | [
"region:us"
] | null | 2024-05-03T17:56:40+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loha_fine_tuned_cb_croslo
This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2436
- Accuracy: 0.3182
- F1: 0.1536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.9874 | 3.5714 | 50 | 1.1351 | 0.3182 | 0.1591 |
| 0.8665 | 7.1429 | 100 | 1.1589 | 0.3182 | 0.1536 |
| 0.8359 | 10.7143 | 150 | 1.1890 | 0.3182 | 0.1536 |
| 0.7662 | 14.2857 | 200 | 1.2116 | 0.3182 | 0.1536 |
| 0.769 | 17.8571 | 250 | 1.2287 | 0.3182 | 0.1536 |
| 0.7534 | 21.4286 | 300 | 1.2380 | 0.3182 | 0.1536 |
| 0.7359 | 25.0 | 350 | 1.2421 | 0.3182 | 0.1536 |
| 0.7449 | 28.5714 | 400 | 1.2436 | 0.3182 | 0.1536 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "cc-by-4.0", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "EMBEDDIA/crosloengual-bert", "model-index": [{"name": "loha_fine_tuned_cb_croslo", "results": []}]} | lenatr99/loha_fine_tuned_cb_croslo | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/crosloengual-bert",
"license:cc-by-4.0",
"region:us"
] | null | 2024-05-03T17:56:45+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora_fine_tuned_cb_croslo
This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3172
- Accuracy: 0.3182
- F1: 0.1536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 1.0956 | 3.5714 | 50 | 1.1024 | 0.3636 | 0.3027 |
| 0.8669 | 7.1429 | 100 | 1.1540 | 0.3182 | 0.1536 |
| 0.7634 | 10.7143 | 150 | 1.2351 | 0.3182 | 0.1536 |
| 0.7 | 14.2857 | 200 | 1.2885 | 0.3182 | 0.1536 |
| 0.6951 | 17.8571 | 250 | 1.3121 | 0.3182 | 0.1536 |
| 0.7047 | 21.4286 | 300 | 1.3145 | 0.3182 | 0.1536 |
| 0.6769 | 25.0 | 350 | 1.3154 | 0.3182 | 0.1536 |
| 0.6886 | 28.5714 | 400 | 1.3172 | 0.3182 | 0.1536 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "cc-by-4.0", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "EMBEDDIA/crosloengual-bert", "model-index": [{"name": "lora_fine_tuned_cb_croslo", "results": []}]} | lenatr99/lora_fine_tuned_cb_croslo | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/crosloengual-bert",
"license:cc-by-4.0",
"region:us"
] | null | 2024-05-03T17:56:45+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prompt_fine_tuned_CB_croslo
This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2046
- Accuracy: 0.3182
- F1: 0.1536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 1.0278 | 0.4545 | 50 | 1.1158 | 0.3182 | 0.2306 |
| 0.9865 | 0.9091 | 100 | 1.1195 | 0.3636 | 0.2430 |
| 0.8601 | 1.3636 | 150 | 1.1357 | 0.3182 | 0.1536 |
| 0.8769 | 1.8182 | 200 | 1.1595 | 0.3182 | 0.1536 |
| 0.9026 | 2.2727 | 250 | 1.1733 | 0.3182 | 0.1536 |
| 0.8002 | 2.7273 | 300 | 1.1885 | 0.3182 | 0.1536 |
| 0.8093 | 3.1818 | 350 | 1.1996 | 0.3182 | 0.1536 |
| 0.7259 | 3.6364 | 400 | 1.2046 | 0.3182 | 0.1536 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "cc-by-4.0", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "EMBEDDIA/crosloengual-bert", "model-index": [{"name": "prompt_fine_tuned_CB_croslo", "results": []}]} | lenatr99/prompt_fine_tuned_CB_croslo | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:EMBEDDIA/crosloengual-bert",
"license:cc-by-4.0",
"region:us"
] | null | 2024-05-03T17:57:06+00:00 |
null | null | {} | mvera/my-awesome-model | null | [
"region:us"
] | null | 2024-05-03T17:57:27+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | ferrazzipietro/LS_Llama-2-7b-hf_adapters_en.layer1_NoQuant_16_64_0.05_2_0.0002 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T17:59:42+00:00 |
null | null | {} | Aryan0310/bart-large-cnn-finetuned-xsum | null | [
"region:us"
] | null | 2024-05-03T17:59:49+00:00 |
|
null | null | {} | GeronimoYeah/Harvester_v2 | null | [
"region:us"
] | null | 2024-05-03T18:00:20+00:00 |
|
null | null | {"license": "mit"} | omarques/testgb | null | [
"license:mit",
"region:us"
] | null | 2024-05-03T18:02:07+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | Pruz0/Len2GPT | null | [
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T18:02:18+00:00 |
null | diffusers | {"license": "wtfpl"} | Poomz/loreitup | null | [
"diffusers",
"safetensors",
"license:wtfpl",
"diffusers:DiTPipeline",
"region:us"
] | null | 2024-05-03T18:02:37+00:00 |
|
null | null | {} | HarshitSheoran/birdclef24_comp_data | null | [
"region:us"
] | null | 2024-05-03T18:03:31+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base_bedtype
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0771
- Accuracy: 0.7143
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 27
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6124 | 1.67 | 10 | 1.6887 | 0.2857 |
| 1.1698 | 3.33 | 20 | 1.6470 | 0.2571 |
| 0.9559 | 5.0 | 30 | 1.3456 | 0.5429 |
| 0.765 | 6.67 | 40 | 1.3860 | 0.4571 |
| 0.5258 | 8.33 | 50 | 1.0184 | 0.5714 |
| 0.2822 | 10.0 | 60 | 0.7994 | 0.6571 |
| 0.1576 | 11.67 | 70 | 0.8624 | 0.7429 |
| 0.0648 | 13.33 | 80 | 0.6489 | 0.8 |
| 0.0483 | 15.0 | 90 | 0.7762 | 0.7429 |
| 0.0148 | 16.67 | 100 | 0.7915 | 0.7714 |
| 0.0086 | 18.33 | 110 | 1.0589 | 0.7429 |
| 0.0058 | 20.0 | 120 | 0.8353 | 0.8 |
| 0.005 | 21.67 | 130 | 0.8960 | 0.8 |
| 0.0042 | 23.33 | 140 | 0.9228 | 0.7429 |
| 0.0036 | 25.0 | 150 | 0.9461 | 0.7429 |
| 0.0032 | 26.67 | 160 | 0.9904 | 0.7714 |
| 0.003 | 28.33 | 170 | 0.9968 | 0.7429 |
| 0.0029 | 30.0 | 180 | 0.9978 | 0.7429 |
| 0.0026 | 31.67 | 190 | 1.0043 | 0.7429 |
| 0.0029 | 33.33 | 200 | 1.0712 | 0.7143 |
| 0.0423 | 35.0 | 210 | 1.0914 | 0.7429 |
| 0.0187 | 36.67 | 220 | 0.9988 | 0.7714 |
| 0.0025 | 38.33 | 230 | 1.0863 | 0.7143 |
| 0.0023 | 40.0 | 240 | 1.1078 | 0.7143 |
| 0.0022 | 41.67 | 250 | 1.1058 | 0.7143 |
| 0.0023 | 43.33 | 260 | 1.0903 | 0.7143 |
| 0.0021 | 45.0 | 270 | 1.0833 | 0.7143 |
| 0.0021 | 46.67 | 280 | 1.0805 | 0.7143 |
| 0.0021 | 48.33 | 290 | 1.0777 | 0.7143 |
| 0.0021 | 50.0 | 300 | 1.0771 | 0.7143 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "roberta-base", "model-index": [{"name": "roberta-base_bedtype", "results": []}]} | JBhug/roberta-base_bedtype | null | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T18:03:58+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | golf2248/qkuzzuz | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T18:04:11+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | abc88767/model57 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T18:05:08+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H4-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H4](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H4) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2686
- F1 Score: 0.8975
- Accuracy: 0.8973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|
| 0.4376 | 2.17 | 200 | 0.3131 | 0.8777 | 0.8775 |
| 0.3136 | 4.35 | 400 | 0.3095 | 0.8718 | 0.8713 |
| 0.2965 | 6.52 | 600 | 0.2957 | 0.8853 | 0.8850 |
| 0.2931 | 8.7 | 800 | 0.2967 | 0.8853 | 0.8850 |
| 0.2855 | 10.87 | 1000 | 0.2915 | 0.8921 | 0.8919 |
| 0.279 | 13.04 | 1200 | 0.2921 | 0.8921 | 0.8919 |
| 0.2774 | 15.22 | 1400 | 0.2821 | 0.8941 | 0.8939 |
| 0.2731 | 17.39 | 1600 | 0.2847 | 0.8935 | 0.8932 |
| 0.2726 | 19.57 | 1800 | 0.2780 | 0.8891 | 0.8891 |
| 0.2711 | 21.74 | 2000 | 0.2868 | 0.8908 | 0.8905 |
| 0.2622 | 23.91 | 2200 | 0.2883 | 0.8949 | 0.8946 |
| 0.2659 | 26.09 | 2400 | 0.2896 | 0.8908 | 0.8905 |
| 0.2646 | 28.26 | 2600 | 0.2777 | 0.8928 | 0.8925 |
| 0.2609 | 30.43 | 2800 | 0.2813 | 0.8942 | 0.8939 |
| 0.2605 | 32.61 | 3000 | 0.2823 | 0.8963 | 0.8960 |
| 0.2589 | 34.78 | 3200 | 0.2771 | 0.8990 | 0.8987 |
| 0.2556 | 36.96 | 3400 | 0.2850 | 0.8942 | 0.8939 |
| 0.2551 | 39.13 | 3600 | 0.2833 | 0.8970 | 0.8966 |
| 0.2518 | 41.3 | 3800 | 0.2831 | 0.8963 | 0.8960 |
| 0.2515 | 43.48 | 4000 | 0.2820 | 0.8963 | 0.8960 |
| 0.255 | 45.65 | 4200 | 0.2756 | 0.8969 | 0.8966 |
| 0.248 | 47.83 | 4400 | 0.2804 | 0.8956 | 0.8953 |
| 0.2508 | 50.0 | 4600 | 0.2736 | 0.8969 | 0.8966 |
| 0.2465 | 52.17 | 4800 | 0.2755 | 0.8942 | 0.8939 |
| 0.2485 | 54.35 | 5000 | 0.2929 | 0.8855 | 0.8850 |
| 0.2436 | 56.52 | 5200 | 0.2922 | 0.8855 | 0.8850 |
| 0.2435 | 58.7 | 5400 | 0.2806 | 0.8881 | 0.8877 |
| 0.2428 | 60.87 | 5600 | 0.2852 | 0.8888 | 0.8884 |
| 0.2452 | 63.04 | 5800 | 0.2816 | 0.8881 | 0.8877 |
| 0.2428 | 65.22 | 6000 | 0.2777 | 0.8915 | 0.8912 |
| 0.242 | 67.39 | 6200 | 0.2873 | 0.8841 | 0.8836 |
| 0.2387 | 69.57 | 6400 | 0.2821 | 0.8861 | 0.8857 |
| 0.2393 | 71.74 | 6600 | 0.2894 | 0.8854 | 0.8850 |
| 0.2409 | 73.91 | 6800 | 0.2829 | 0.8888 | 0.8884 |
| 0.236 | 76.09 | 7000 | 0.2819 | 0.8881 | 0.8877 |
| 0.2364 | 78.26 | 7200 | 0.2800 | 0.8908 | 0.8905 |
| 0.2363 | 80.43 | 7400 | 0.2764 | 0.8915 | 0.8912 |
| 0.2361 | 82.61 | 7600 | 0.2743 | 0.8935 | 0.8932 |
| 0.2391 | 84.78 | 7800 | 0.2879 | 0.8875 | 0.8871 |
| 0.2357 | 86.96 | 8000 | 0.2767 | 0.8922 | 0.8919 |
| 0.237 | 89.13 | 8200 | 0.2769 | 0.8915 | 0.8912 |
| 0.2348 | 91.3 | 8400 | 0.2780 | 0.8915 | 0.8912 |
| 0.2338 | 93.48 | 8600 | 0.2758 | 0.8935 | 0.8932 |
| 0.2339 | 95.65 | 8800 | 0.2753 | 0.8935 | 0.8932 |
| 0.2358 | 97.83 | 9000 | 0.2763 | 0.8929 | 0.8925 |
| 0.2353 | 100.0 | 9200 | 0.2829 | 0.8888 | 0.8884 |
| 0.2349 | 102.17 | 9400 | 0.2784 | 0.8915 | 0.8912 |
| 0.2346 | 104.35 | 9600 | 0.2794 | 0.8908 | 0.8905 |
| 0.2327 | 106.52 | 9800 | 0.2779 | 0.8929 | 0.8925 |
| 0.2332 | 108.7 | 10000 | 0.2783 | 0.8929 | 0.8925 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H4-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H4-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T18:05:36+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H4-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H4](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H4) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2787
- F1 Score: 0.9048
- Accuracy: 0.9049
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|
| 0.3874 | 2.17 | 200 | 0.2947 | 0.8811 | 0.8809 |
| 0.2921 | 4.35 | 400 | 0.2955 | 0.8888 | 0.8884 |
| 0.2805 | 6.52 | 600 | 0.2811 | 0.8927 | 0.8925 |
| 0.2752 | 8.7 | 800 | 0.2907 | 0.8888 | 0.8884 |
| 0.2682 | 10.87 | 1000 | 0.2885 | 0.8874 | 0.8871 |
| 0.2612 | 13.04 | 1200 | 0.2793 | 0.8962 | 0.8960 |
| 0.2565 | 15.22 | 1400 | 0.2839 | 0.8902 | 0.8898 |
| 0.2495 | 17.39 | 1600 | 0.2838 | 0.8949 | 0.8946 |
| 0.2489 | 19.57 | 1800 | 0.2698 | 0.9030 | 0.9028 |
| 0.2432 | 21.74 | 2000 | 0.2757 | 0.8942 | 0.8939 |
| 0.2346 | 23.91 | 2200 | 0.2817 | 0.8929 | 0.8925 |
| 0.234 | 26.09 | 2400 | 0.2747 | 0.8935 | 0.8932 |
| 0.2307 | 28.26 | 2600 | 0.2722 | 0.9043 | 0.9042 |
| 0.2248 | 30.43 | 2800 | 0.2782 | 0.8874 | 0.8871 |
| 0.224 | 32.61 | 3000 | 0.2796 | 0.8989 | 0.8987 |
| 0.2198 | 34.78 | 3200 | 0.2762 | 0.9017 | 0.9014 |
| 0.2167 | 36.96 | 3400 | 0.2808 | 0.8983 | 0.8980 |
| 0.2139 | 39.13 | 3600 | 0.2760 | 0.8982 | 0.8980 |
| 0.2062 | 41.3 | 3800 | 0.2803 | 0.8983 | 0.8980 |
| 0.2082 | 43.48 | 4000 | 0.2833 | 0.8976 | 0.8973 |
| 0.2089 | 45.65 | 4200 | 0.2781 | 0.9030 | 0.9028 |
| 0.2016 | 47.83 | 4400 | 0.2828 | 0.9056 | 0.9055 |
| 0.2043 | 50.0 | 4600 | 0.2781 | 0.8962 | 0.8960 |
| 0.1996 | 52.17 | 4800 | 0.2825 | 0.8969 | 0.8966 |
| 0.1967 | 54.35 | 5000 | 0.2907 | 0.8977 | 0.8973 |
| 0.1945 | 56.52 | 5200 | 0.3027 | 0.8841 | 0.8836 |
| 0.1929 | 58.7 | 5400 | 0.2808 | 0.8990 | 0.8987 |
| 0.1909 | 60.87 | 5600 | 0.2814 | 0.8990 | 0.8987 |
| 0.1904 | 63.04 | 5800 | 0.2880 | 0.8915 | 0.8912 |
| 0.19 | 65.22 | 6000 | 0.2885 | 0.8970 | 0.8966 |
| 0.187 | 67.39 | 6200 | 0.2886 | 0.8963 | 0.8960 |
| 0.1834 | 69.57 | 6400 | 0.2960 | 0.8922 | 0.8919 |
| 0.1855 | 71.74 | 6600 | 0.2953 | 0.8983 | 0.8980 |
| 0.1826 | 73.91 | 6800 | 0.2914 | 0.8956 | 0.8953 |
| 0.1796 | 76.09 | 7000 | 0.2983 | 0.8929 | 0.8925 |
| 0.1791 | 78.26 | 7200 | 0.2885 | 0.9010 | 0.9008 |
| 0.1798 | 80.43 | 7400 | 0.2929 | 0.8963 | 0.8960 |
| 0.178 | 82.61 | 7600 | 0.2925 | 0.9044 | 0.9042 |
| 0.1767 | 84.78 | 7800 | 0.3021 | 0.8909 | 0.8905 |
| 0.1783 | 86.96 | 8000 | 0.2919 | 0.8989 | 0.8987 |
| 0.1754 | 89.13 | 8200 | 0.2978 | 0.8949 | 0.8946 |
| 0.1753 | 91.3 | 8400 | 0.2952 | 0.8942 | 0.8939 |
| 0.1735 | 93.48 | 8600 | 0.2969 | 0.8996 | 0.8994 |
| 0.1745 | 95.65 | 8800 | 0.2928 | 0.9037 | 0.9035 |
| 0.1725 | 97.83 | 9000 | 0.2929 | 0.9030 | 0.9028 |
| 0.1732 | 100.0 | 9200 | 0.3001 | 0.8915 | 0.8912 |
| 0.1718 | 102.17 | 9400 | 0.2951 | 0.9003 | 0.9001 |
| 0.1729 | 104.35 | 9600 | 0.2937 | 0.8996 | 0.8994 |
| 0.1718 | 106.52 | 9800 | 0.2948 | 0.8996 | 0.8994 |
| 0.1713 | 108.7 | 10000 | 0.2957 | 0.8996 | 0.8994 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H4-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H4-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T18:05:39+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | ferrazzipietro/LS_Llama-2-7b-hf_adapters_en.layer1_NoQuant_16_64_0.05_4_5e-05 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T18:06:11+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3-seqsight_4096_512_15M-L1_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3157
- F1 Score: 0.8771
- Accuracy: 0.8771
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|
| 0.5141 | 2.13 | 200 | 0.4359 | 0.7886 | 0.7902 |
| 0.3998 | 4.26 | 400 | 0.3945 | 0.8303 | 0.8303 |
| 0.3759 | 6.38 | 600 | 0.3907 | 0.8321 | 0.8323 |
| 0.3625 | 8.51 | 800 | 0.3761 | 0.8377 | 0.8377 |
| 0.3542 | 10.64 | 1000 | 0.3715 | 0.8382 | 0.8383 |
| 0.3365 | 12.77 | 1200 | 0.3685 | 0.8462 | 0.8464 |
| 0.3269 | 14.89 | 1400 | 0.3503 | 0.8470 | 0.8470 |
| 0.3101 | 17.02 | 1600 | 0.3486 | 0.8503 | 0.8504 |
| 0.3011 | 19.15 | 1800 | 0.3602 | 0.8527 | 0.8530 |
| 0.2962 | 21.28 | 2000 | 0.3519 | 0.8593 | 0.8597 |
| 0.2926 | 23.4 | 2200 | 0.3292 | 0.8570 | 0.8570 |
| 0.284 | 25.53 | 2400 | 0.3457 | 0.8575 | 0.8577 |
| 0.2853 | 27.66 | 2600 | 0.3263 | 0.8590 | 0.8591 |
| 0.284 | 29.79 | 2800 | 0.3354 | 0.8582 | 0.8584 |
| 0.2801 | 31.91 | 3000 | 0.3358 | 0.8622 | 0.8624 |
| 0.2764 | 34.04 | 3200 | 0.3264 | 0.8656 | 0.8657 |
| 0.2755 | 36.17 | 3400 | 0.3383 | 0.8622 | 0.8624 |
| 0.2724 | 38.3 | 3600 | 0.3252 | 0.8663 | 0.8664 |
| 0.2728 | 40.43 | 3800 | 0.3269 | 0.8676 | 0.8677 |
| 0.2718 | 42.55 | 4000 | 0.3340 | 0.8676 | 0.8677 |
| 0.2695 | 44.68 | 4200 | 0.3235 | 0.8657 | 0.8657 |
| 0.2667 | 46.81 | 4400 | 0.3381 | 0.8655 | 0.8657 |
| 0.2664 | 48.94 | 4600 | 0.3301 | 0.8689 | 0.8691 |
| 0.2654 | 51.06 | 4800 | 0.3266 | 0.8697 | 0.8697 |
| 0.2641 | 53.19 | 5000 | 0.3489 | 0.8607 | 0.8611 |
| 0.2677 | 55.32 | 5200 | 0.3200 | 0.8677 | 0.8677 |
| 0.2607 | 57.45 | 5400 | 0.3333 | 0.8683 | 0.8684 |
| 0.2581 | 59.57 | 5600 | 0.3247 | 0.8690 | 0.8691 |
| 0.2612 | 61.7 | 5800 | 0.3181 | 0.8677 | 0.8677 |
| 0.2565 | 63.83 | 6000 | 0.3443 | 0.8682 | 0.8684 |
| 0.2626 | 65.96 | 6200 | 0.3354 | 0.8676 | 0.8677 |
| 0.2579 | 68.09 | 6400 | 0.3338 | 0.8663 | 0.8664 |
| 0.2546 | 70.21 | 6600 | 0.3380 | 0.8683 | 0.8684 |
| 0.2562 | 72.34 | 6800 | 0.3305 | 0.8683 | 0.8684 |
| 0.2545 | 74.47 | 7000 | 0.3513 | 0.8600 | 0.8604 |
| 0.2507 | 76.6 | 7200 | 0.3392 | 0.8670 | 0.8671 |
| 0.2568 | 78.72 | 7400 | 0.3329 | 0.8676 | 0.8677 |
| 0.2515 | 80.85 | 7600 | 0.3307 | 0.8670 | 0.8671 |
| 0.2494 | 82.98 | 7800 | 0.3388 | 0.8649 | 0.8651 |
| 0.2537 | 85.11 | 8000 | 0.3287 | 0.8663 | 0.8664 |
| 0.2535 | 87.23 | 8200 | 0.3317 | 0.8663 | 0.8664 |
| 0.25 | 89.36 | 8400 | 0.3356 | 0.8663 | 0.8664 |
| 0.2493 | 91.49 | 8600 | 0.3397 | 0.8649 | 0.8651 |
| 0.2504 | 93.62 | 8800 | 0.3360 | 0.8656 | 0.8657 |
| 0.2532 | 95.74 | 9000 | 0.3389 | 0.8649 | 0.8651 |
| 0.2502 | 97.87 | 9200 | 0.3313 | 0.8676 | 0.8677 |
| 0.2497 | 100.0 | 9400 | 0.3302 | 0.8683 | 0.8684 |
| 0.2516 | 102.13 | 9600 | 0.3324 | 0.8676 | 0.8677 |
| 0.2499 | 104.26 | 9800 | 0.3338 | 0.8663 | 0.8664 |
| 0.2503 | 106.38 | 10000 | 0.3336 | 0.8663 | 0.8664 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3-seqsight_4096_512_15M-L1_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3-seqsight_4096_512_15M-L1_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T18:06:35+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H3-seqsight_4096_512_15M-L8_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H3](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H3) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3240
- F1 Score: 0.8737
- Accuracy: 0.8737
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|
| 0.4577 | 2.13 | 200 | 0.3877 | 0.8286 | 0.8290 |
| 0.3469 | 4.26 | 400 | 0.3609 | 0.8490 | 0.8490 |
| 0.3103 | 6.38 | 600 | 0.3633 | 0.8493 | 0.8497 |
| 0.2955 | 8.51 | 800 | 0.3413 | 0.8589 | 0.8591 |
| 0.2851 | 10.64 | 1000 | 0.3289 | 0.8663 | 0.8664 |
| 0.2766 | 12.77 | 1200 | 0.3486 | 0.8540 | 0.8544 |
| 0.2727 | 14.89 | 1400 | 0.3322 | 0.8649 | 0.8651 |
| 0.2675 | 17.02 | 1600 | 0.3172 | 0.8731 | 0.8731 |
| 0.2608 | 19.15 | 1800 | 0.3377 | 0.8601 | 0.8604 |
| 0.2563 | 21.28 | 2000 | 0.3345 | 0.8643 | 0.8644 |
| 0.2561 | 23.4 | 2200 | 0.3228 | 0.8751 | 0.8751 |
| 0.2447 | 25.53 | 2400 | 0.3772 | 0.8566 | 0.8570 |
| 0.2497 | 27.66 | 2600 | 0.3324 | 0.8663 | 0.8664 |
| 0.2466 | 29.79 | 2800 | 0.3237 | 0.8744 | 0.8744 |
| 0.2406 | 31.91 | 3000 | 0.3300 | 0.8730 | 0.8731 |
| 0.2368 | 34.04 | 3200 | 0.3247 | 0.8737 | 0.8737 |
| 0.2362 | 36.17 | 3400 | 0.3424 | 0.8696 | 0.8697 |
| 0.2321 | 38.3 | 3600 | 0.3380 | 0.8730 | 0.8731 |
| 0.2306 | 40.43 | 3800 | 0.3357 | 0.8750 | 0.8751 |
| 0.2297 | 42.55 | 4000 | 0.3661 | 0.8669 | 0.8671 |
| 0.2267 | 44.68 | 4200 | 0.3540 | 0.8730 | 0.8731 |
| 0.2239 | 46.81 | 4400 | 0.3621 | 0.8722 | 0.8724 |
| 0.2206 | 48.94 | 4600 | 0.3667 | 0.8668 | 0.8671 |
| 0.2184 | 51.06 | 4800 | 0.3429 | 0.8751 | 0.8751 |
| 0.2186 | 53.19 | 5000 | 0.3682 | 0.8695 | 0.8697 |
| 0.2168 | 55.32 | 5200 | 0.3536 | 0.8717 | 0.8717 |
| 0.2109 | 57.45 | 5400 | 0.3656 | 0.8696 | 0.8697 |
| 0.2103 | 59.57 | 5600 | 0.3503 | 0.8764 | 0.8764 |
| 0.2118 | 61.7 | 5800 | 0.3421 | 0.8784 | 0.8784 |
| 0.2059 | 63.83 | 6000 | 0.3849 | 0.8716 | 0.8717 |
| 0.2099 | 65.96 | 6200 | 0.3856 | 0.8654 | 0.8657 |
| 0.2062 | 68.09 | 6400 | 0.3654 | 0.8737 | 0.8737 |
| 0.2016 | 70.21 | 6600 | 0.3694 | 0.8730 | 0.8731 |
| 0.2023 | 72.34 | 6800 | 0.3634 | 0.8770 | 0.8771 |
| 0.2009 | 74.47 | 7000 | 0.4164 | 0.8619 | 0.8624 |
| 0.1965 | 76.6 | 7200 | 0.3775 | 0.8696 | 0.8697 |
| 0.2008 | 78.72 | 7400 | 0.3728 | 0.8730 | 0.8731 |
| 0.1949 | 80.85 | 7600 | 0.3727 | 0.8723 | 0.8724 |
| 0.1923 | 82.98 | 7800 | 0.3806 | 0.8722 | 0.8724 |
| 0.195 | 85.11 | 8000 | 0.3777 | 0.8702 | 0.8704 |
| 0.1949 | 87.23 | 8200 | 0.3796 | 0.8736 | 0.8737 |
| 0.1924 | 89.36 | 8400 | 0.3854 | 0.8709 | 0.8711 |
| 0.1899 | 91.49 | 8600 | 0.4060 | 0.8688 | 0.8691 |
| 0.1873 | 93.62 | 8800 | 0.3931 | 0.8722 | 0.8724 |
| 0.1945 | 95.74 | 9000 | 0.3907 | 0.8716 | 0.8717 |
| 0.1907 | 97.87 | 9200 | 0.3828 | 0.8716 | 0.8717 |
| 0.1898 | 100.0 | 9400 | 0.3809 | 0.8737 | 0.8737 |
| 0.1906 | 102.13 | 9600 | 0.3861 | 0.8729 | 0.8731 |
| 0.1884 | 104.26 | 9800 | 0.3847 | 0.8716 | 0.8717 |
| 0.1891 | 106.38 | 10000 | 0.3846 | 0.8710 | 0.8711 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H3-seqsight_4096_512_15M-L8_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H3-seqsight_4096_512_15M-L8_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T18:06:45+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GUE_EMP_H4-seqsight_4096_512_15M-L32_f
This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_4096_512_15M](https://huggingface.co/mahdibaghbanzadeh/seqsight_4096_512_15M) on the [mahdibaghbanzadeh/GUE_EMP_H4](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_EMP_H4) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2642
- F1 Score: 0.9023
- Accuracy: 0.9021
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|
| 0.3648 | 2.17 | 200 | 0.2892 | 0.8852 | 0.8850 |
| 0.2836 | 4.35 | 400 | 0.2803 | 0.8954 | 0.8953 |
| 0.2716 | 6.52 | 600 | 0.2752 | 0.9001 | 0.9001 |
| 0.2644 | 8.7 | 800 | 0.2867 | 0.8874 | 0.8871 |
| 0.2542 | 10.87 | 1000 | 0.2844 | 0.8936 | 0.8932 |
| 0.2455 | 13.04 | 1200 | 0.2891 | 0.8875 | 0.8871 |
| 0.2348 | 15.22 | 1400 | 0.2901 | 0.8889 | 0.8884 |
| 0.226 | 17.39 | 1600 | 0.2846 | 0.8949 | 0.8946 |
| 0.2204 | 19.57 | 1800 | 0.2804 | 0.9037 | 0.9035 |
| 0.2127 | 21.74 | 2000 | 0.2843 | 0.8963 | 0.8960 |
| 0.1998 | 23.91 | 2200 | 0.2911 | 0.8935 | 0.8932 |
| 0.1956 | 26.09 | 2400 | 0.2842 | 0.8982 | 0.8980 |
| 0.1909 | 28.26 | 2600 | 0.2996 | 0.9016 | 0.9014 |
| 0.1785 | 30.43 | 2800 | 0.3167 | 0.8847 | 0.8843 |
| 0.1761 | 32.61 | 3000 | 0.3012 | 0.8974 | 0.8973 |
| 0.1675 | 34.78 | 3200 | 0.3298 | 0.8820 | 0.8816 |
| 0.158 | 36.96 | 3400 | 0.3107 | 0.8934 | 0.8932 |
| 0.1546 | 39.13 | 3600 | 0.3235 | 0.8893 | 0.8891 |
| 0.1427 | 41.3 | 3800 | 0.3383 | 0.8827 | 0.8823 |
| 0.1421 | 43.48 | 4000 | 0.3797 | 0.8739 | 0.8734 |
| 0.1371 | 45.65 | 4200 | 0.3425 | 0.8907 | 0.8905 |
| 0.1291 | 47.83 | 4400 | 0.3497 | 0.8819 | 0.8816 |
| 0.1265 | 50.0 | 4600 | 0.3615 | 0.8866 | 0.8864 |
| 0.1208 | 52.17 | 4800 | 0.3905 | 0.8752 | 0.8747 |
| 0.1148 | 54.35 | 5000 | 0.3784 | 0.8839 | 0.8836 |
| 0.115 | 56.52 | 5200 | 0.3857 | 0.8732 | 0.8727 |
| 0.1046 | 58.7 | 5400 | 0.3877 | 0.8786 | 0.8782 |
| 0.1019 | 60.87 | 5600 | 0.3844 | 0.8772 | 0.8768 |
| 0.1023 | 63.04 | 5800 | 0.3925 | 0.8790 | 0.8789 |
| 0.0957 | 65.22 | 6000 | 0.4220 | 0.8797 | 0.8795 |
| 0.095 | 67.39 | 6200 | 0.4142 | 0.8765 | 0.8761 |
| 0.0902 | 69.57 | 6400 | 0.4613 | 0.8739 | 0.8734 |
| 0.0899 | 71.74 | 6600 | 0.4272 | 0.8812 | 0.8809 |
| 0.0829 | 73.91 | 6800 | 0.4464 | 0.8690 | 0.8686 |
| 0.0841 | 76.09 | 7000 | 0.4438 | 0.8764 | 0.8761 |
| 0.0817 | 78.26 | 7200 | 0.4425 | 0.8751 | 0.8747 |
| 0.0782 | 80.43 | 7400 | 0.4576 | 0.8785 | 0.8782 |
| 0.0765 | 82.61 | 7600 | 0.4707 | 0.8744 | 0.8741 |
| 0.0689 | 84.78 | 7800 | 0.5113 | 0.8704 | 0.8700 |
| 0.0742 | 86.96 | 8000 | 0.4925 | 0.8738 | 0.8734 |
| 0.0721 | 89.13 | 8200 | 0.4897 | 0.8758 | 0.8754 |
| 0.0746 | 91.3 | 8400 | 0.4792 | 0.8717 | 0.8713 |
| 0.0713 | 93.48 | 8600 | 0.4866 | 0.8738 | 0.8734 |
| 0.0695 | 95.65 | 8800 | 0.4749 | 0.8791 | 0.8789 |
| 0.0676 | 97.83 | 9000 | 0.4816 | 0.8757 | 0.8754 |
| 0.0684 | 100.0 | 9200 | 0.5062 | 0.8725 | 0.8720 |
| 0.0661 | 102.17 | 9400 | 0.4917 | 0.8730 | 0.8727 |
| 0.0642 | 104.35 | 9600 | 0.4921 | 0.8751 | 0.8747 |
| 0.0628 | 106.52 | 9800 | 0.4966 | 0.8751 | 0.8747 |
| 0.062 | 108.7 | 10000 | 0.5035 | 0.8744 | 0.8741 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_4096_512_15M", "model-index": [{"name": "GUE_EMP_H4-seqsight_4096_512_15M-L32_f", "results": []}]} | mahdibaghbanzadeh/GUE_EMP_H4-seqsight_4096_512_15M-L32_f | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:mahdibaghbanzadeh/seqsight_4096_512_15M",
"region:us"
] | null | 2024-05-03T18:06:50+00:00 |
Subsets and Splits