Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
diffusers
{"license": "apache-2.0", "library_name": "diffusers"}
DongKyung/Imagic
null
[ "diffusers", "safetensors", "license:apache-2.0", "region:us" ]
null
2024-05-03T14:42:42+00:00
null
null
ASR+Diarization handler that works natively with Inference Endpoints. Example payload: ```python import base64 import requests API_URL = "<your endpoint URL>" filepath = "/path/to/audio" with open(filepath, 'rb') as f: audio_encoded = base64.b64encode(f.read()).decode("utf-8") data = { "inputs": audio_encoded, "parameters": { "batch_size": 24 } } resp = requests.post(API_URL, json=data, headers={"Authorization": "Bearer <your token>"}) print(resp.json()) ```
{}
unclecode/asrdiarization-handler
null
[ "endpoints_compatible", "region:us" ]
null
2024-05-03T14:42:42+00:00
null
null
{}
massimilianowosz/Llama-3-8B-instruct-Japanese-Chef-GGUF
null
[ "gguf", "region:us" ]
null
2024-05-03T14:43:19+00:00
text-generation
transformers
# Anifu-L3-8B-64k Anifu-L3-8B-64k is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B) * [MaziyarPanahi/Llama-3-8B-Instruct-64k](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-64k) ## 🧩 Configuration ```yaml slices: - sources: - model: ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B layer_range: [0, 32] - model: MaziyarPanahi/Llama-3-8B-Instruct-64k layer_range: [0, 32] merge_method: slerp base_model: ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.4 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Darkknight6742/Anifu-L3-8B-64k" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B", "MaziyarPanahi/Llama-3-8B-Instruct-64k"], "base_model": ["ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B", "MaziyarPanahi/Llama-3-8B-Instruct-64k"]}
Darkknight6742/Anifu-L3-8B-64k
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B", "MaziyarPanahi/Llama-3-8B-Instruct-64k", "conversational", "base_model:ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B", "base_model:MaziyarPanahi/Llama-3-8B-Instruct-64k", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:44:18+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ferrazzipietro/LS_Llama-2-7b-hf_adapters_en.layer1_NoQuant_16_32_0.05_2_0.0002
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T14:44:34+00:00
null
null
{}
GGital/KhaiJiaw
null
[ "region:us" ]
null
2024-05-03T14:45:08+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [Meta-llama](https://huggingface.co/meta-llama/) - **Model type:** [Llamm-03](https://huggingface.co/meta-llama/Meta-Llama-3-8B) - **Language(s) (NLP):** en,spa,bn - **License:** [Meta/llama-3-8b](https://huggingface.co/meta-llama/Meta-Llama-3-8B) - **Finetuned from model [optional]:** [Click here](https://huggingface.co/meta-llama/Meta-Llama-3-8B) ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> **As same as Llama-3 ### Direct Use
{"language": ["en"], "license": "mit", "library_name": "transformers", "tags": ["chemistry"]}
ar08/Llama-3-1.7B
null
[ "transformers", "safetensors", "llama", "text-generation", "chemistry", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:46:03+00:00
null
null
{}
raidhon/coven_7b_128k_orpo_alpha
null
[ "region:us" ]
null
2024-05-03T14:48:15+00:00
null
null
{}
sanchit-gandhi/distil-mistral-1.5B-Instruct-v0.2-cosmo-200k-freeze
null
[ "region:us" ]
null
2024-05-03T14:48:21+00:00
feature-extraction
transformers
{}
riccorl/relik-reader-deberta-large-v3-aida
null
[ "transformers", "pytorch", "relik-reader", "feature-extraction", "custom_code", "region:us" ]
null
2024-05-03T14:48:34+00:00
null
null
{}
AliGhiasvand86/my-awesome-model
null
[ "pytorch", "region:us" ]
null
2024-05-03T14:48:55+00:00
null
null
{}
waspop/Amor
null
[ "region:us" ]
null
2024-05-03T14:49:25+00:00
null
null
{}
ttc0000/mistral_HFTrainer_instruct02_Sample1_lora_r64_a128_optim32bit_8bitQuant
null
[ "safetensors", "region:us" ]
null
2024-05-03T14:49:31+00:00
null
null
{}
SZ0/Gary
null
[ "region:us" ]
null
2024-05-03T14:50:02+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-70m_niki-041a_imdb_random-token-1280_10-rounds_seed-3 This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-70m", "model-index": [{"name": "robust_llm_pythia-70m_niki-041a_imdb_random-token-1280_10-rounds_seed-3", "results": []}]}
AlignmentResearch/robust_llm_pythia-70m_niki-041a_imdb_random-token-1280_10-rounds_seed-3
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:50:05+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_1-seqsight_32768_512_43M-L32_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_1](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_1) dataset. It achieves the following results on the evaluation set: - Loss: 0.3299 - F1 Score: 0.8650 - Accuracy: 0.865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.5426 | 0.83 | 200 | 0.5207 | 0.7548 | 0.755 | | 0.4898 | 1.67 | 400 | 0.5121 | 0.7529 | 0.753 | | 0.4795 | 2.5 | 600 | 0.5107 | 0.7487 | 0.749 | | 0.4729 | 3.33 | 800 | 0.4987 | 0.7531 | 0.754 | | 0.4672 | 4.17 | 1000 | 0.5107 | 0.7475 | 0.75 | | 0.4584 | 5.0 | 1200 | 0.5061 | 0.7479 | 0.75 | | 0.4542 | 5.83 | 1400 | 0.4856 | 0.7618 | 0.762 | | 0.4532 | 6.67 | 1600 | 0.5012 | 0.7458 | 0.748 | | 0.4497 | 7.5 | 1800 | 0.4812 | 0.7560 | 0.756 | | 0.44 | 8.33 | 2000 | 0.4899 | 0.7664 | 0.767 | | 0.4437 | 9.17 | 2200 | 0.4879 | 0.7674 | 0.768 | | 0.4366 | 10.0 | 2400 | 0.5086 | 0.7505 | 0.753 | | 0.4342 | 10.83 | 2600 | 0.5080 | 0.7504 | 0.754 | | 0.4328 | 11.67 | 2800 | 0.4901 | 0.7601 | 0.762 | | 0.4214 | 12.5 | 3000 | 0.4984 | 0.7576 | 0.759 | | 0.4301 | 13.33 | 3200 | 0.4965 | 0.7526 | 0.754 | | 0.4209 | 14.17 | 3400 | 0.4845 | 0.7678 | 0.768 | | 0.419 | 15.0 | 3600 | 0.4970 | 0.7512 | 0.753 | | 0.4128 | 15.83 | 3800 | 0.5032 | 0.7519 | 0.754 | | 0.4134 | 16.67 | 4000 | 0.4962 | 0.7599 | 0.761 | | 0.4069 | 17.5 | 4200 | 0.5017 | 0.7547 | 0.757 | | 0.4046 | 18.33 | 4400 | 0.5081 | 0.7597 | 0.761 | | 0.4047 | 19.17 | 4600 | 0.5207 | 0.7535 | 0.756 | | 0.4058 | 20.0 | 4800 | 0.4888 | 0.7605 | 0.761 | | 0.3997 | 20.83 | 5000 | 0.5040 | 0.7511 | 0.753 | | 0.3948 | 21.67 | 5200 | 0.5080 | 0.7520 | 0.754 | | 0.39 | 22.5 | 5400 | 0.5293 | 0.7544 | 0.756 | | 0.3894 | 23.33 | 5600 | 0.5430 | 0.7407 | 0.745 | | 0.391 | 24.17 | 5800 | 0.5250 | 0.7473 | 0.751 | | 0.3871 | 25.0 | 6000 | 0.4991 | 0.7573 | 0.758 | | 0.383 | 25.83 | 6200 | 0.5037 | 0.7620 | 0.763 | | 0.3816 | 26.67 | 6400 | 0.4972 | 0.7696 | 0.77 | | 0.3823 | 27.5 | 6600 | 0.5181 | 0.7692 | 0.77 | | 0.3758 | 28.33 | 6800 | 0.5215 | 0.7571 | 0.758 | | 0.3744 | 29.17 | 7000 | 0.5173 | 0.7549 | 0.756 | | 0.3753 | 30.0 | 7200 | 0.5160 | 0.7581 | 0.759 | | 0.3718 | 30.83 | 7400 | 0.5256 | 0.7541 | 0.756 | | 0.3693 | 31.67 | 7600 | 0.5339 | 0.7508 | 0.752 | | 0.3713 | 32.5 | 7800 | 0.5280 | 0.7515 | 0.753 | | 0.3659 | 33.33 | 8000 | 0.5400 | 0.7570 | 0.759 | | 0.3684 | 34.17 | 8200 | 0.5305 | 0.7573 | 0.759 | | 0.3639 | 35.0 | 8400 | 0.5285 | 0.7558 | 0.757 | | 0.3635 | 35.83 | 8600 | 0.5302 | 0.7504 | 0.752 | | 0.3591 | 36.67 | 8800 | 0.5316 | 0.7483 | 0.75 | | 0.3574 | 37.5 | 9000 | 0.5520 | 0.7394 | 0.743 | | 0.36 | 38.33 | 9200 | 0.5386 | 0.7572 | 0.759 | | 0.3564 | 39.17 | 9400 | 0.5440 | 0.7563 | 0.758 | | 0.3586 | 40.0 | 9600 | 0.5405 | 0.7541 | 0.756 | | 0.3562 | 40.83 | 9800 | 0.5336 | 0.7535 | 0.755 | | 0.3582 | 41.67 | 10000 | 0.5357 | 0.7563 | 0.758 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_1-seqsight_32768_512_43M-L32_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_1-seqsight_32768_512_43M-L32_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T14:50:41+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_4-seqsight_32768_512_43M-L1_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_4](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_4) dataset. It achieves the following results on the evaluation set: - Loss: 0.3525 - F1 Score: 0.8409 - Accuracy: 0.841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.5652 | 1.34 | 200 | 0.5184 | 0.7476 | 0.748 | | 0.4877 | 2.68 | 400 | 0.5041 | 0.7616 | 0.762 | | 0.4799 | 4.03 | 600 | 0.4936 | 0.7639 | 0.764 | | 0.4705 | 5.37 | 800 | 0.5092 | 0.7592 | 0.761 | | 0.4644 | 6.71 | 1000 | 0.4823 | 0.7739 | 0.774 | | 0.4586 | 8.05 | 1200 | 0.4981 | 0.7600 | 0.762 | | 0.4561 | 9.4 | 1400 | 0.4832 | 0.7671 | 0.768 | | 0.4535 | 10.74 | 1600 | 0.4726 | 0.7828 | 0.783 | | 0.4457 | 12.08 | 1800 | 0.4701 | 0.7740 | 0.774 | | 0.4456 | 13.42 | 2000 | 0.4692 | 0.7723 | 0.773 | | 0.4359 | 14.77 | 2200 | 0.4918 | 0.7597 | 0.762 | | 0.4351 | 16.11 | 2400 | 0.4658 | 0.7827 | 0.783 | | 0.4278 | 17.45 | 2600 | 0.4864 | 0.7612 | 0.763 | | 0.43 | 18.79 | 2800 | 0.4717 | 0.7740 | 0.775 | | 0.4299 | 20.13 | 3000 | 0.4732 | 0.7739 | 0.775 | | 0.4232 | 21.48 | 3200 | 0.4721 | 0.7731 | 0.774 | | 0.4235 | 22.82 | 3400 | 0.4691 | 0.7828 | 0.783 | | 0.4209 | 24.16 | 3600 | 0.4699 | 0.7792 | 0.78 | | 0.4215 | 25.5 | 3800 | 0.4663 | 0.7866 | 0.787 | | 0.4187 | 26.85 | 4000 | 0.4742 | 0.7740 | 0.775 | | 0.4209 | 28.19 | 4200 | 0.4767 | 0.7686 | 0.77 | | 0.4122 | 29.53 | 4400 | 0.4799 | 0.7709 | 0.772 | | 0.4148 | 30.87 | 4600 | 0.4647 | 0.7844 | 0.785 | | 0.4128 | 32.21 | 4800 | 0.4668 | 0.7825 | 0.783 | | 0.41 | 33.56 | 5000 | 0.4730 | 0.7845 | 0.785 | | 0.4098 | 34.9 | 5200 | 0.4762 | 0.7771 | 0.778 | | 0.4145 | 36.24 | 5400 | 0.4719 | 0.7718 | 0.773 | | 0.4083 | 37.58 | 5600 | 0.4733 | 0.7811 | 0.782 | | 0.4074 | 38.93 | 5800 | 0.4723 | 0.7812 | 0.782 | | 0.4062 | 40.27 | 6000 | 0.4799 | 0.7729 | 0.774 | | 0.4069 | 41.61 | 6200 | 0.4714 | 0.7782 | 0.779 | | 0.4104 | 42.95 | 6400 | 0.4786 | 0.7704 | 0.772 | | 0.4065 | 44.3 | 6600 | 0.4687 | 0.7802 | 0.781 | | 0.4025 | 45.64 | 6800 | 0.4757 | 0.7718 | 0.773 | | 0.4063 | 46.98 | 7000 | 0.4797 | 0.7716 | 0.773 | | 0.4046 | 48.32 | 7200 | 0.4751 | 0.7727 | 0.774 | | 0.4025 | 49.66 | 7400 | 0.4780 | 0.7704 | 0.772 | | 0.4009 | 51.01 | 7600 | 0.4685 | 0.7752 | 0.776 | | 0.4009 | 52.35 | 7800 | 0.4640 | 0.7845 | 0.785 | | 0.3984 | 53.69 | 8000 | 0.4695 | 0.7793 | 0.78 | | 0.4034 | 55.03 | 8200 | 0.4808 | 0.7712 | 0.773 | | 0.3999 | 56.38 | 8400 | 0.4738 | 0.7718 | 0.773 | | 0.403 | 57.72 | 8600 | 0.4629 | 0.7837 | 0.784 | | 0.3985 | 59.06 | 8800 | 0.4747 | 0.7716 | 0.773 | | 0.3983 | 60.4 | 9000 | 0.4715 | 0.7709 | 0.772 | | 0.3984 | 61.74 | 9200 | 0.4686 | 0.7783 | 0.779 | | 0.3964 | 63.09 | 9400 | 0.4691 | 0.7741 | 0.775 | | 0.4005 | 64.43 | 9600 | 0.4670 | 0.7793 | 0.78 | | 0.3999 | 65.77 | 9800 | 0.4678 | 0.7752 | 0.776 | | 0.3968 | 67.11 | 10000 | 0.4685 | 0.7731 | 0.774 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_4-seqsight_32768_512_43M-L1_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_4-seqsight_32768_512_43M-L1_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T14:50:45+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_4-seqsight_32768_512_43M-L8_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_4](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_4) dataset. It achieves the following results on the evaluation set: - Loss: 0.3664 - F1 Score: 0.8440 - Accuracy: 0.844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.5395 | 1.34 | 200 | 0.5065 | 0.7604 | 0.761 | | 0.473 | 2.68 | 400 | 0.4977 | 0.7742 | 0.775 | | 0.4596 | 4.03 | 600 | 0.4805 | 0.7788 | 0.779 | | 0.446 | 5.37 | 800 | 0.4969 | 0.7695 | 0.771 | | 0.4349 | 6.71 | 1000 | 0.4629 | 0.7830 | 0.783 | | 0.4259 | 8.05 | 1200 | 0.4758 | 0.7771 | 0.778 | | 0.4221 | 9.4 | 1400 | 0.4721 | 0.7762 | 0.777 | | 0.418 | 10.74 | 1600 | 0.4747 | 0.7750 | 0.776 | | 0.4097 | 12.08 | 1800 | 0.4576 | 0.7920 | 0.792 | | 0.4076 | 13.42 | 2000 | 0.4689 | 0.7717 | 0.773 | | 0.3996 | 14.77 | 2200 | 0.4714 | 0.7811 | 0.782 | | 0.3953 | 16.11 | 2400 | 0.4535 | 0.7869 | 0.787 | | 0.3894 | 17.45 | 2600 | 0.4984 | 0.7625 | 0.765 | | 0.3893 | 18.79 | 2800 | 0.4684 | 0.7783 | 0.779 | | 0.3866 | 20.13 | 3000 | 0.4674 | 0.7831 | 0.784 | | 0.3787 | 21.48 | 3200 | 0.4584 | 0.7877 | 0.788 | | 0.3781 | 22.82 | 3400 | 0.4598 | 0.7927 | 0.793 | | 0.37 | 24.16 | 3600 | 0.4506 | 0.7897 | 0.79 | | 0.3713 | 25.5 | 3800 | 0.4447 | 0.7970 | 0.797 | | 0.3674 | 26.85 | 4000 | 0.4572 | 0.7925 | 0.793 | | 0.3667 | 28.19 | 4200 | 0.4565 | 0.7944 | 0.795 | | 0.355 | 29.53 | 4400 | 0.4611 | 0.8008 | 0.801 | | 0.3578 | 30.87 | 4600 | 0.4698 | 0.7824 | 0.784 | | 0.3521 | 32.21 | 4800 | 0.4609 | 0.7994 | 0.8 | | 0.3515 | 33.56 | 5000 | 0.4644 | 0.7924 | 0.793 | | 0.3482 | 34.9 | 5200 | 0.4621 | 0.7974 | 0.798 | | 0.3454 | 36.24 | 5400 | 0.4478 | 0.7977 | 0.798 | | 0.3406 | 37.58 | 5600 | 0.4505 | 0.7986 | 0.799 | | 0.3393 | 38.93 | 5800 | 0.4468 | 0.7996 | 0.8 | | 0.3398 | 40.27 | 6000 | 0.4397 | 0.8089 | 0.809 | | 0.3357 | 41.61 | 6200 | 0.4596 | 0.7963 | 0.797 | | 0.3348 | 42.95 | 6400 | 0.4563 | 0.8005 | 0.801 | | 0.3337 | 44.3 | 6600 | 0.4345 | 0.8039 | 0.804 | | 0.3275 | 45.64 | 6800 | 0.4579 | 0.8004 | 0.801 | | 0.3288 | 46.98 | 7000 | 0.4472 | 0.8006 | 0.801 | | 0.3227 | 48.32 | 7200 | 0.4412 | 0.8078 | 0.808 | | 0.3194 | 49.66 | 7400 | 0.4405 | 0.8098 | 0.81 | | 0.3193 | 51.01 | 7600 | 0.4455 | 0.8118 | 0.812 | | 0.3177 | 52.35 | 7800 | 0.4348 | 0.8109 | 0.811 | | 0.3156 | 53.69 | 8000 | 0.4517 | 0.8016 | 0.802 | | 0.3216 | 55.03 | 8200 | 0.4537 | 0.8034 | 0.804 | | 0.3176 | 56.38 | 8400 | 0.4400 | 0.8129 | 0.813 | | 0.3155 | 57.72 | 8600 | 0.4406 | 0.8098 | 0.81 | | 0.3155 | 59.06 | 8800 | 0.4436 | 0.8067 | 0.807 | | 0.3129 | 60.4 | 9000 | 0.4436 | 0.8108 | 0.811 | | 0.3103 | 61.74 | 9200 | 0.4430 | 0.8129 | 0.813 | | 0.3094 | 63.09 | 9400 | 0.4447 | 0.8088 | 0.809 | | 0.3115 | 64.43 | 9600 | 0.4373 | 0.8069 | 0.807 | | 0.3109 | 65.77 | 9800 | 0.4408 | 0.8119 | 0.812 | | 0.3071 | 67.11 | 10000 | 0.4416 | 0.8108 | 0.811 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_4-seqsight_32768_512_43M-L8_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_4-seqsight_32768_512_43M-L8_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T14:51:02+00:00
text-generation
transformers
{}
ebsmothers/test-peft
null
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:51:02+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_4-seqsight_32768_512_43M-L32_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_4](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_4) dataset. It achieves the following results on the evaluation set: - Loss: 0.5449 - F1 Score: 0.8419 - Accuracy: 0.842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.5249 | 1.34 | 200 | 0.5003 | 0.7613 | 0.762 | | 0.4582 | 2.68 | 400 | 0.5002 | 0.7683 | 0.77 | | 0.4361 | 4.03 | 600 | 0.4676 | 0.7870 | 0.787 | | 0.4227 | 5.37 | 800 | 0.4979 | 0.7600 | 0.762 | | 0.4098 | 6.71 | 1000 | 0.4522 | 0.7960 | 0.796 | | 0.3975 | 8.05 | 1200 | 0.4612 | 0.7835 | 0.784 | | 0.3877 | 9.4 | 1400 | 0.4564 | 0.7857 | 0.786 | | 0.3782 | 10.74 | 1600 | 0.4664 | 0.7852 | 0.786 | | 0.3651 | 12.08 | 1800 | 0.4446 | 0.8029 | 0.803 | | 0.3533 | 13.42 | 2000 | 0.4927 | 0.7778 | 0.78 | | 0.3384 | 14.77 | 2200 | 0.4619 | 0.7994 | 0.8 | | 0.3297 | 16.11 | 2400 | 0.4501 | 0.8110 | 0.811 | | 0.3142 | 17.45 | 2600 | 0.4830 | 0.7909 | 0.792 | | 0.3075 | 18.79 | 2800 | 0.4490 | 0.7987 | 0.799 | | 0.2974 | 20.13 | 3000 | 0.4462 | 0.8067 | 0.807 | | 0.2863 | 21.48 | 3200 | 0.4345 | 0.8190 | 0.819 | | 0.2774 | 22.82 | 3400 | 0.4409 | 0.822 | 0.822 | | 0.2675 | 24.16 | 3600 | 0.4405 | 0.8168 | 0.817 | | 0.2601 | 25.5 | 3800 | 0.4492 | 0.8219 | 0.822 | | 0.2509 | 26.85 | 4000 | 0.4498 | 0.8169 | 0.817 | | 0.2468 | 28.19 | 4200 | 0.4628 | 0.8147 | 0.815 | | 0.2333 | 29.53 | 4400 | 0.4515 | 0.8390 | 0.839 | | 0.2304 | 30.87 | 4600 | 0.4937 | 0.8082 | 0.809 | | 0.2176 | 32.21 | 4800 | 0.4734 | 0.8269 | 0.827 | | 0.2179 | 33.56 | 5000 | 0.4485 | 0.8330 | 0.833 | | 0.2091 | 34.9 | 5200 | 0.4607 | 0.8230 | 0.823 | | 0.2066 | 36.24 | 5400 | 0.4538 | 0.8350 | 0.835 | | 0.1927 | 37.58 | 5600 | 0.4678 | 0.8349 | 0.835 | | 0.1921 | 38.93 | 5800 | 0.4629 | 0.842 | 0.842 | | 0.1926 | 40.27 | 6000 | 0.4551 | 0.8479 | 0.848 | | 0.1822 | 41.61 | 6200 | 0.4667 | 0.8530 | 0.853 | | 0.1803 | 42.95 | 6400 | 0.4500 | 0.8510 | 0.851 | | 0.1806 | 44.3 | 6600 | 0.4580 | 0.8509 | 0.851 | | 0.1754 | 45.64 | 6800 | 0.4692 | 0.8500 | 0.85 | | 0.1735 | 46.98 | 7000 | 0.4669 | 0.852 | 0.852 | | 0.1623 | 48.32 | 7200 | 0.4765 | 0.8489 | 0.849 | | 0.1588 | 49.66 | 7400 | 0.4864 | 0.8529 | 0.853 | | 0.1613 | 51.01 | 7600 | 0.4871 | 0.8480 | 0.848 | | 0.1537 | 52.35 | 7800 | 0.4830 | 0.8549 | 0.855 | | 0.1541 | 53.69 | 8000 | 0.4832 | 0.8490 | 0.849 | | 0.1551 | 55.03 | 8200 | 0.4792 | 0.8580 | 0.858 | | 0.1497 | 56.38 | 8400 | 0.4938 | 0.86 | 0.86 | | 0.1463 | 57.72 | 8600 | 0.4925 | 0.8610 | 0.861 | | 0.1466 | 59.06 | 8800 | 0.4842 | 0.8619 | 0.862 | | 0.148 | 60.4 | 9000 | 0.4896 | 0.8560 | 0.856 | | 0.1443 | 61.74 | 9200 | 0.4828 | 0.8619 | 0.862 | | 0.1419 | 63.09 | 9400 | 0.4857 | 0.8610 | 0.861 | | 0.1434 | 64.43 | 9600 | 0.4859 | 0.8620 | 0.862 | | 0.1379 | 65.77 | 9800 | 0.4873 | 0.8620 | 0.862 | | 0.1406 | 67.11 | 10000 | 0.4871 | 0.8630 | 0.863 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_4-seqsight_32768_512_43M-L32_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_4-seqsight_32768_512_43M-L32_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T14:51:44+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_3-seqsight_32768_512_43M-L1_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_3](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_3) dataset. It achieves the following results on the evaluation set: - Loss: 0.5590 - F1 Score: 0.7071 - Accuracy: 0.709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.6424 | 0.93 | 200 | 0.5880 | 0.6796 | 0.68 | | 0.6058 | 1.87 | 400 | 0.5724 | 0.6941 | 0.694 | | 0.5961 | 2.8 | 600 | 0.5619 | 0.6998 | 0.701 | | 0.5911 | 3.74 | 800 | 0.5639 | 0.7028 | 0.703 | | 0.5891 | 4.67 | 1000 | 0.5618 | 0.6999 | 0.7 | | 0.584 | 5.61 | 1200 | 0.5622 | 0.7 | 0.7 | | 0.5803 | 6.54 | 1400 | 0.5561 | 0.7039 | 0.704 | | 0.5807 | 7.48 | 1600 | 0.5620 | 0.7050 | 0.705 | | 0.5772 | 8.41 | 1800 | 0.5579 | 0.7001 | 0.7 | | 0.58 | 9.35 | 2000 | 0.5559 | 0.7091 | 0.709 | | 0.5729 | 10.28 | 2200 | 0.5700 | 0.6928 | 0.694 | | 0.5733 | 11.21 | 2400 | 0.5502 | 0.7209 | 0.721 | | 0.574 | 12.15 | 2600 | 0.5446 | 0.7208 | 0.721 | | 0.5713 | 13.08 | 2800 | 0.5433 | 0.7225 | 0.723 | | 0.5699 | 14.02 | 3000 | 0.5481 | 0.7130 | 0.713 | | 0.5687 | 14.95 | 3200 | 0.5477 | 0.7111 | 0.711 | | 0.5689 | 15.89 | 3400 | 0.5481 | 0.7110 | 0.711 | | 0.5663 | 16.82 | 3600 | 0.5499 | 0.7101 | 0.71 | | 0.5651 | 17.76 | 3800 | 0.5483 | 0.7111 | 0.711 | | 0.5683 | 18.69 | 4000 | 0.5518 | 0.7021 | 0.702 | | 0.5621 | 19.63 | 4200 | 0.5400 | 0.7168 | 0.718 | | 0.5659 | 20.56 | 4400 | 0.5438 | 0.7139 | 0.714 | | 0.5636 | 21.5 | 4600 | 0.5618 | 0.7047 | 0.706 | | 0.5607 | 22.43 | 4800 | 0.5446 | 0.7109 | 0.711 | | 0.563 | 23.36 | 5000 | 0.5546 | 0.7046 | 0.705 | | 0.5603 | 24.3 | 5200 | 0.5635 | 0.7095 | 0.711 | | 0.5587 | 25.23 | 5400 | 0.5438 | 0.7117 | 0.712 | | 0.5634 | 26.17 | 5600 | 0.5475 | 0.7121 | 0.712 | | 0.5562 | 27.1 | 5800 | 0.5424 | 0.7159 | 0.716 | | 0.5581 | 28.04 | 6000 | 0.5470 | 0.7161 | 0.716 | | 0.5576 | 28.97 | 6200 | 0.5540 | 0.7107 | 0.711 | | 0.5576 | 29.91 | 6400 | 0.5485 | 0.7181 | 0.718 | | 0.5567 | 30.84 | 6600 | 0.5466 | 0.7191 | 0.719 | | 0.557 | 31.78 | 6800 | 0.5508 | 0.7119 | 0.712 | | 0.5539 | 32.71 | 7000 | 0.5468 | 0.7171 | 0.717 | | 0.5608 | 33.64 | 7200 | 0.5444 | 0.7100 | 0.71 | | 0.5512 | 34.58 | 7400 | 0.5589 | 0.7116 | 0.713 | | 0.5578 | 35.51 | 7600 | 0.5512 | 0.7187 | 0.719 | | 0.5569 | 36.45 | 7800 | 0.5495 | 0.7130 | 0.713 | | 0.5562 | 37.38 | 8000 | 0.5482 | 0.7140 | 0.714 | | 0.5522 | 38.32 | 8200 | 0.5459 | 0.7161 | 0.716 | | 0.5539 | 39.25 | 8400 | 0.5457 | 0.7161 | 0.716 | | 0.5536 | 40.19 | 8600 | 0.5479 | 0.7151 | 0.715 | | 0.5542 | 41.12 | 8800 | 0.5476 | 0.7151 | 0.715 | | 0.5548 | 42.06 | 9000 | 0.5474 | 0.7131 | 0.713 | | 0.5555 | 42.99 | 9200 | 0.5503 | 0.7158 | 0.716 | | 0.5533 | 43.93 | 9400 | 0.5524 | 0.7155 | 0.716 | | 0.5524 | 44.86 | 9600 | 0.5489 | 0.7189 | 0.719 | | 0.5567 | 45.79 | 9800 | 0.5482 | 0.7190 | 0.719 | | 0.551 | 46.73 | 10000 | 0.5487 | 0.7190 | 0.719 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_3-seqsight_32768_512_43M-L1_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_3-seqsight_32768_512_43M-L1_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T14:51:44+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ferrazzipietro/LS_Llama-2-7b-hf_adapters_en.layer1_NoQuant_16_32_0.05_4_5e-05
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T14:51:54+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
golf2248/fyc6glu
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:52:22+00:00
text-generation
transformers
Based on Meta-Llama-3-8b-Instruct, and is governed by Meta Llama 3 License agreement: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct DPO fine tuning method using the following datasets: - https://huggingface.co/datasets/Intel/orca_dpo_pairs - https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo - https://huggingface.co/datasets/unalignment/toxic-dpo-v0.2 - https://huggingface.co/datasets/M4-ai/prm_dpo_pairs_cleaned - https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1 We are happy for anyone to try it out and give some feedback and we will have the model up on https://awanllm.com on our LLM API if it is popular. Instruct format: ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` Quants: FP16: https://huggingface.co/AwanLLM/Awanllm-Llama-3-8B-Instruct-DPO-v0.1 GGUF: https://huggingface.co/AwanLLM/Awanllm-Llama-3-8B-Instruct-DPO-v0.1-GGUF
{"license": "llama3"}
AwanLLM/Awanllm-Llama-3-8B-Instruct-DPO-v0.1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:53:47+00:00
text-generation
transformers
# flammenai/flammen15-gutenberg-DPO-v1-7B AWQ - Model creator: [flammenai](https://huggingface.co/flammenai) - Original model: [flammen15-gutenberg-DPO-v1-7B](https://huggingface.co/flammenai/flammen15-gutenberg-DPO-v1-7B) ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/flammen15-gutenberg-DPO-v1-7B-AWQ" system_message = "You are flammen15-gutenberg-DPO-v1-7B, incarnated as a powerful AI. You were created by flammenai." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
{"library_name": "transformers", "tags": ["4-bit", "AWQ", "text-generation", "autotrain_compatible", "endpoints_compatible"], "pipeline_tag": "text-generation", "inference": false, "quantized_by": "Suparious"}
solidrust/flammen15-gutenberg-DPO-v1-7B-AWQ
null
[ "transformers", "safetensors", "mistral", "text-generation", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:54:53+00:00
text-generation
transformers
# Locutusque/Llama-3-Orca-2.0-8B AWQ - Model creator: [Locutusque](https://huggingface.co/Locutusque) - Original model: [Llama-3-Orca-2.0-8B](https://huggingface.co/Locutusque/Llama-3-Orca-2.0-8B) ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/Llama-3-Orca-2.0-8B-AWQ" system_message = "You are Llama-3-Orca-2.0-8B, incarnated as a powerful AI. You were created by Locutusque." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
{"library_name": "transformers", "tags": ["4-bit", "AWQ", "text-generation", "autotrain_compatible", "endpoints_compatible"], "pipeline_tag": "text-generation", "inference": false, "quantized_by": "Suparious"}
solidrust/Llama-3-Orca-2.0-8B-AWQ
null
[ "transformers", "safetensors", "llama", "text-generation", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:55:54+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_3-seqsight_32768_512_43M-L8_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_3](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_3) dataset. It achieves the following results on the evaluation set: - Loss: 0.5497 - F1 Score: 0.7229 - Accuracy: 0.724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.6281 | 0.93 | 200 | 0.5688 | 0.6951 | 0.695 | | 0.5949 | 1.87 | 400 | 0.5826 | 0.6703 | 0.672 | | 0.585 | 2.8 | 600 | 0.5572 | 0.7048 | 0.705 | | 0.5792 | 3.74 | 800 | 0.5626 | 0.6949 | 0.695 | | 0.5762 | 4.67 | 1000 | 0.5562 | 0.7021 | 0.702 | | 0.5695 | 5.61 | 1200 | 0.5461 | 0.7119 | 0.712 | | 0.5649 | 6.54 | 1400 | 0.5500 | 0.7130 | 0.713 | | 0.5631 | 7.48 | 1600 | 0.5447 | 0.7111 | 0.711 | | 0.5608 | 8.41 | 1800 | 0.5496 | 0.7018 | 0.702 | | 0.5639 | 9.35 | 2000 | 0.5401 | 0.7190 | 0.719 | | 0.5537 | 10.28 | 2200 | 0.5468 | 0.7066 | 0.707 | | 0.5519 | 11.21 | 2400 | 0.5395 | 0.7201 | 0.72 | | 0.5524 | 12.15 | 2600 | 0.5341 | 0.7166 | 0.717 | | 0.5481 | 13.08 | 2800 | 0.5306 | 0.7109 | 0.712 | | 0.5482 | 14.02 | 3000 | 0.5349 | 0.7091 | 0.709 | | 0.5444 | 14.95 | 3200 | 0.5333 | 0.7121 | 0.712 | | 0.5442 | 15.89 | 3400 | 0.5393 | 0.7130 | 0.713 | | 0.5419 | 16.82 | 3600 | 0.5386 | 0.7111 | 0.711 | | 0.5389 | 17.76 | 3800 | 0.5367 | 0.7081 | 0.708 | | 0.5403 | 18.69 | 4000 | 0.5463 | 0.7125 | 0.713 | | 0.535 | 19.63 | 4200 | 0.5358 | 0.7188 | 0.719 | | 0.536 | 20.56 | 4400 | 0.5356 | 0.7230 | 0.723 | | 0.5325 | 21.5 | 4600 | 0.5593 | 0.6884 | 0.691 | | 0.5311 | 22.43 | 4800 | 0.5377 | 0.7141 | 0.714 | | 0.532 | 23.36 | 5000 | 0.5556 | 0.7030 | 0.704 | | 0.5294 | 24.3 | 5200 | 0.5668 | 0.6834 | 0.688 | | 0.5263 | 25.23 | 5400 | 0.5383 | 0.7070 | 0.707 | | 0.53 | 26.17 | 5600 | 0.5423 | 0.7090 | 0.709 | | 0.5225 | 27.1 | 5800 | 0.5405 | 0.7069 | 0.707 | | 0.5252 | 28.04 | 6000 | 0.5461 | 0.7118 | 0.712 | | 0.5229 | 28.97 | 6200 | 0.5614 | 0.6913 | 0.693 | | 0.5242 | 29.91 | 6400 | 0.5449 | 0.708 | 0.708 | | 0.5212 | 30.84 | 6600 | 0.5479 | 0.7129 | 0.713 | | 0.5196 | 31.78 | 6800 | 0.5572 | 0.7041 | 0.705 | | 0.5169 | 32.71 | 7000 | 0.5556 | 0.7032 | 0.704 | | 0.5224 | 33.64 | 7200 | 0.5525 | 0.7023 | 0.703 | | 0.5148 | 34.58 | 7400 | 0.5718 | 0.6824 | 0.686 | | 0.5208 | 35.51 | 7600 | 0.5579 | 0.6976 | 0.699 | | 0.5163 | 36.45 | 7800 | 0.5610 | 0.7075 | 0.708 | | 0.5177 | 37.38 | 8000 | 0.5560 | 0.7061 | 0.707 | | 0.5112 | 38.32 | 8200 | 0.5569 | 0.7116 | 0.712 | | 0.5159 | 39.25 | 8400 | 0.5547 | 0.7156 | 0.716 | | 0.5124 | 40.19 | 8600 | 0.5570 | 0.7094 | 0.71 | | 0.5146 | 41.12 | 8800 | 0.5509 | 0.7116 | 0.712 | | 0.5156 | 42.06 | 9000 | 0.5519 | 0.7086 | 0.709 | | 0.5127 | 42.99 | 9200 | 0.5603 | 0.6957 | 0.697 | | 0.5122 | 43.93 | 9400 | 0.5620 | 0.6904 | 0.692 | | 0.5124 | 44.86 | 9600 | 0.5578 | 0.7041 | 0.705 | | 0.5137 | 45.79 | 9800 | 0.5581 | 0.7001 | 0.701 | | 0.5091 | 46.73 | 10000 | 0.5590 | 0.7021 | 0.703 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_3-seqsight_32768_512_43M-L8_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_3-seqsight_32768_512_43M-L8_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T14:55:54+00:00
null
null
{}
bighands23/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2024-05-03T14:56:52+00:00
null
transformers
{}
enchatted/llama-3-8b-oscar-2301-el-finetunned
null
[ "transformers", "gguf", "llama", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:56:57+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
golf2248/e8renp4
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:56:59+00:00
null
null
{}
Nour0707/mistral_7b_222_merged-GGUF
null
[ "gguf", "region:us" ]
null
2024-05-03T14:59:06+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ferrazzipietro/LS_Llama-2-7b-hf_adapters_en.layer1_NoQuant_16_32_0.05_4_0.0002
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T14:59:09+00:00
null
null
{}
mayukhbis/llama3-fine-tuned-1e-gguf
null
[ "region:us" ]
null
2024-05-03T14:59:13+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ar08/llama3-715m
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:59:24+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rloo_zephyr_vllm This model is a fine-tuned version of [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-1b-deduped", "model-index": [{"name": "rloo_zephyr_vllm", "results": []}]}
vwxyzjn/rloo_zephyr_vllm
null
[ "transformers", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "conversational", "base_model:EleutherAI/pythia-1b-deduped", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T14:59:27+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_3-seqsight_32768_512_43M-L32_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_3](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_3) dataset. It achieves the following results on the evaluation set: - Loss: 0.5390 - F1 Score: 0.7352 - Accuracy: 0.737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.6219 | 0.93 | 200 | 0.5615 | 0.7143 | 0.715 | | 0.5901 | 1.87 | 400 | 0.5724 | 0.6862 | 0.687 | | 0.5791 | 2.8 | 600 | 0.5548 | 0.7050 | 0.705 | | 0.5704 | 3.74 | 800 | 0.5660 | 0.7032 | 0.704 | | 0.5659 | 4.67 | 1000 | 0.5491 | 0.7071 | 0.707 | | 0.5563 | 5.61 | 1200 | 0.5409 | 0.7079 | 0.708 | | 0.5516 | 6.54 | 1400 | 0.5450 | 0.7081 | 0.708 | | 0.5471 | 7.48 | 1600 | 0.5324 | 0.722 | 0.722 | | 0.5434 | 8.41 | 1800 | 0.5451 | 0.7050 | 0.705 | | 0.5442 | 9.35 | 2000 | 0.5373 | 0.7082 | 0.709 | | 0.5314 | 10.28 | 2200 | 0.5364 | 0.7180 | 0.718 | | 0.5294 | 11.21 | 2400 | 0.5513 | 0.7211 | 0.721 | | 0.5272 | 12.15 | 2600 | 0.5450 | 0.7078 | 0.709 | | 0.5199 | 13.08 | 2800 | 0.5316 | 0.7111 | 0.714 | | 0.5178 | 14.02 | 3000 | 0.5374 | 0.7060 | 0.706 | | 0.5136 | 14.95 | 3200 | 0.5289 | 0.7191 | 0.719 | | 0.5084 | 15.89 | 3400 | 0.5419 | 0.7151 | 0.715 | | 0.5067 | 16.82 | 3600 | 0.5432 | 0.7286 | 0.729 | | 0.5013 | 17.76 | 3800 | 0.5421 | 0.7167 | 0.717 | | 0.4986 | 18.69 | 4000 | 0.5601 | 0.7081 | 0.709 | | 0.4906 | 19.63 | 4200 | 0.5510 | 0.7041 | 0.704 | | 0.4867 | 20.56 | 4400 | 0.5497 | 0.7131 | 0.713 | | 0.4837 | 21.5 | 4600 | 0.6035 | 0.6896 | 0.692 | | 0.4767 | 22.43 | 4800 | 0.5738 | 0.7091 | 0.709 | | 0.4769 | 23.36 | 5000 | 0.5860 | 0.7065 | 0.707 | | 0.4707 | 24.3 | 5200 | 0.5907 | 0.6815 | 0.685 | | 0.4651 | 25.23 | 5400 | 0.5700 | 0.7000 | 0.7 | | 0.4667 | 26.17 | 5600 | 0.5695 | 0.7011 | 0.701 | | 0.4565 | 27.1 | 5800 | 0.5968 | 0.7100 | 0.71 | | 0.4563 | 28.04 | 6000 | 0.5916 | 0.7038 | 0.704 | | 0.4521 | 28.97 | 6200 | 0.5932 | 0.6945 | 0.695 | | 0.4511 | 29.91 | 6400 | 0.5748 | 0.7040 | 0.704 | | 0.446 | 30.84 | 6600 | 0.5834 | 0.7200 | 0.72 | | 0.4417 | 31.78 | 6800 | 0.6001 | 0.7077 | 0.708 | | 0.4397 | 32.71 | 7000 | 0.5991 | 0.7015 | 0.702 | | 0.4423 | 33.64 | 7200 | 0.6089 | 0.6984 | 0.699 | | 0.4296 | 34.58 | 7400 | 0.6253 | 0.6890 | 0.691 | | 0.4363 | 35.51 | 7600 | 0.6237 | 0.6934 | 0.695 | | 0.4296 | 36.45 | 7800 | 0.6185 | 0.6988 | 0.699 | | 0.4321 | 37.38 | 8000 | 0.6195 | 0.6982 | 0.699 | | 0.423 | 38.32 | 8200 | 0.6266 | 0.7006 | 0.701 | | 0.4243 | 39.25 | 8400 | 0.6307 | 0.6997 | 0.7 | | 0.4201 | 40.19 | 8600 | 0.6291 | 0.6941 | 0.695 | | 0.4204 | 41.12 | 8800 | 0.6387 | 0.6984 | 0.699 | | 0.4233 | 42.06 | 9000 | 0.6235 | 0.6913 | 0.692 | | 0.4202 | 42.99 | 9200 | 0.6303 | 0.6957 | 0.697 | | 0.4168 | 43.93 | 9400 | 0.6351 | 0.6938 | 0.695 | | 0.4173 | 44.86 | 9600 | 0.6347 | 0.6950 | 0.696 | | 0.4161 | 45.79 | 9800 | 0.6304 | 0.6944 | 0.695 | | 0.41 | 46.73 | 10000 | 0.6344 | 0.6922 | 0.693 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_3-seqsight_32768_512_43M-L32_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_3-seqsight_32768_512_43M-L32_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T14:59:33+00:00
null
null
{}
BilelDJ/clip-hugging-face-finetuned
null
[ "region:us" ]
null
2024-05-03T14:59:37+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_2-seqsight_32768_512_43M-L1_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_2](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_2) dataset. It achieves the following results on the evaluation set: - Loss: 0.4635 - F1 Score: 0.7860 - Accuracy: 0.786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.594 | 1.34 | 200 | 0.5423 | 0.7349 | 0.736 | | 0.5384 | 2.68 | 400 | 0.5357 | 0.7269 | 0.727 | | 0.5284 | 4.03 | 600 | 0.5253 | 0.7360 | 0.736 | | 0.5233 | 5.37 | 800 | 0.5274 | 0.7356 | 0.736 | | 0.5197 | 6.71 | 1000 | 0.5153 | 0.7520 | 0.752 | | 0.517 | 8.05 | 1200 | 0.5213 | 0.7474 | 0.748 | | 0.5116 | 9.4 | 1400 | 0.5085 | 0.7528 | 0.753 | | 0.5094 | 10.74 | 1600 | 0.5075 | 0.7489 | 0.749 | | 0.5088 | 12.08 | 1800 | 0.5199 | 0.7482 | 0.749 | | 0.5071 | 13.42 | 2000 | 0.5079 | 0.7510 | 0.751 | | 0.5052 | 14.77 | 2200 | 0.5027 | 0.7479 | 0.748 | | 0.4987 | 16.11 | 2400 | 0.5077 | 0.7490 | 0.749 | | 0.5038 | 17.45 | 2600 | 0.5009 | 0.7539 | 0.754 | | 0.4987 | 18.79 | 2800 | 0.5037 | 0.7490 | 0.749 | | 0.495 | 20.13 | 3000 | 0.5025 | 0.7500 | 0.75 | | 0.4972 | 21.48 | 3200 | 0.5127 | 0.7596 | 0.76 | | 0.4962 | 22.82 | 3400 | 0.5022 | 0.75 | 0.75 | | 0.492 | 24.16 | 3600 | 0.4972 | 0.7539 | 0.754 | | 0.4885 | 25.5 | 3800 | 0.4980 | 0.7498 | 0.75 | | 0.494 | 26.85 | 4000 | 0.4983 | 0.7499 | 0.75 | | 0.4896 | 28.19 | 4200 | 0.4968 | 0.7518 | 0.752 | | 0.4879 | 29.53 | 4400 | 0.5084 | 0.7566 | 0.757 | | 0.4862 | 30.87 | 4600 | 0.5038 | 0.7600 | 0.76 | | 0.4885 | 32.21 | 4800 | 0.4983 | 0.7549 | 0.755 | | 0.4875 | 33.56 | 5000 | 0.5069 | 0.7585 | 0.759 | | 0.4891 | 34.9 | 5200 | 0.4988 | 0.7530 | 0.753 | | 0.482 | 36.24 | 5400 | 0.4966 | 0.7570 | 0.757 | | 0.4855 | 37.58 | 5600 | 0.4969 | 0.7540 | 0.754 | | 0.482 | 38.93 | 5800 | 0.4970 | 0.7489 | 0.749 | | 0.4815 | 40.27 | 6000 | 0.4939 | 0.7489 | 0.749 | | 0.4817 | 41.61 | 6200 | 0.4957 | 0.7450 | 0.745 | | 0.4833 | 42.95 | 6400 | 0.4976 | 0.7530 | 0.753 | | 0.4792 | 44.3 | 6600 | 0.4988 | 0.7540 | 0.754 | | 0.4832 | 45.64 | 6800 | 0.4975 | 0.7550 | 0.755 | | 0.4797 | 46.98 | 7000 | 0.4971 | 0.7510 | 0.751 | | 0.4802 | 48.32 | 7200 | 0.4996 | 0.752 | 0.752 | | 0.4787 | 49.66 | 7400 | 0.4962 | 0.7530 | 0.753 | | 0.4787 | 51.01 | 7600 | 0.4968 | 0.7540 | 0.754 | | 0.4759 | 52.35 | 7800 | 0.4963 | 0.7500 | 0.75 | | 0.4789 | 53.69 | 8000 | 0.4952 | 0.7469 | 0.747 | | 0.4764 | 55.03 | 8200 | 0.4966 | 0.7530 | 0.753 | | 0.4788 | 56.38 | 8400 | 0.4981 | 0.7580 | 0.758 | | 0.4774 | 57.72 | 8600 | 0.4964 | 0.7520 | 0.752 | | 0.4734 | 59.06 | 8800 | 0.4972 | 0.7530 | 0.753 | | 0.4753 | 60.4 | 9000 | 0.4982 | 0.7560 | 0.756 | | 0.4777 | 61.74 | 9200 | 0.4955 | 0.756 | 0.756 | | 0.4783 | 63.09 | 9400 | 0.4959 | 0.7570 | 0.757 | | 0.4743 | 64.43 | 9600 | 0.4957 | 0.7540 | 0.754 | | 0.4795 | 65.77 | 9800 | 0.4971 | 0.7540 | 0.754 | | 0.4749 | 67.11 | 10000 | 0.4960 | 0.754 | 0.754 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_2-seqsight_32768_512_43M-L1_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_2-seqsight_32768_512_43M-L1_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T14:59:38+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_2-seqsight_32768_512_43M-L8_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_2](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_2) dataset. It achieves the following results on the evaluation set: - Loss: 0.4626 - F1 Score: 0.7890 - Accuracy: 0.789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.5751 | 1.34 | 200 | 0.5271 | 0.7484 | 0.749 | | 0.5281 | 2.68 | 400 | 0.5243 | 0.7467 | 0.747 | | 0.5171 | 4.03 | 600 | 0.5162 | 0.7439 | 0.744 | | 0.5097 | 5.37 | 800 | 0.5136 | 0.7549 | 0.755 | | 0.5055 | 6.71 | 1000 | 0.5194 | 0.7512 | 0.752 | | 0.4997 | 8.05 | 1200 | 0.5015 | 0.7509 | 0.751 | | 0.4922 | 9.4 | 1400 | 0.5024 | 0.7560 | 0.756 | | 0.4886 | 10.74 | 1600 | 0.5015 | 0.7520 | 0.752 | | 0.4882 | 12.08 | 1800 | 0.5144 | 0.7531 | 0.754 | | 0.4815 | 13.42 | 2000 | 0.5042 | 0.7599 | 0.76 | | 0.4818 | 14.77 | 2200 | 0.5019 | 0.7563 | 0.757 | | 0.473 | 16.11 | 2400 | 0.5059 | 0.7570 | 0.757 | | 0.4768 | 17.45 | 2600 | 0.4957 | 0.7639 | 0.764 | | 0.4711 | 18.79 | 2800 | 0.5030 | 0.7637 | 0.764 | | 0.4636 | 20.13 | 3000 | 0.5009 | 0.7679 | 0.768 | | 0.4655 | 21.48 | 3200 | 0.5263 | 0.7501 | 0.752 | | 0.4644 | 22.82 | 3400 | 0.5047 | 0.7608 | 0.761 | | 0.4559 | 24.16 | 3600 | 0.4992 | 0.7618 | 0.762 | | 0.4534 | 25.5 | 3800 | 0.5043 | 0.7608 | 0.761 | | 0.4565 | 26.85 | 4000 | 0.4970 | 0.7640 | 0.764 | | 0.4508 | 28.19 | 4200 | 0.5071 | 0.7624 | 0.763 | | 0.4493 | 29.53 | 4400 | 0.5147 | 0.7642 | 0.765 | | 0.4444 | 30.87 | 4600 | 0.5106 | 0.7583 | 0.759 | | 0.4453 | 32.21 | 4800 | 0.5107 | 0.7586 | 0.759 | | 0.4446 | 33.56 | 5000 | 0.5167 | 0.7614 | 0.762 | | 0.4455 | 34.9 | 5200 | 0.5095 | 0.7535 | 0.754 | | 0.4373 | 36.24 | 5400 | 0.5012 | 0.7590 | 0.759 | | 0.4395 | 37.58 | 5600 | 0.5026 | 0.7478 | 0.748 | | 0.4324 | 38.93 | 5800 | 0.5023 | 0.7590 | 0.759 | | 0.4336 | 40.27 | 6000 | 0.4963 | 0.7510 | 0.751 | | 0.4318 | 41.61 | 6200 | 0.5013 | 0.7559 | 0.756 | | 0.4301 | 42.95 | 6400 | 0.5128 | 0.7493 | 0.75 | | 0.4272 | 44.3 | 6600 | 0.5120 | 0.7537 | 0.754 | | 0.4316 | 45.64 | 6800 | 0.5206 | 0.7540 | 0.755 | | 0.4264 | 46.98 | 7000 | 0.5138 | 0.7538 | 0.754 | | 0.4242 | 48.32 | 7200 | 0.5163 | 0.7551 | 0.756 | | 0.423 | 49.66 | 7400 | 0.5117 | 0.7506 | 0.751 | | 0.4239 | 51.01 | 7600 | 0.5220 | 0.7425 | 0.744 | | 0.4193 | 52.35 | 7800 | 0.5163 | 0.7517 | 0.752 | | 0.4226 | 53.69 | 8000 | 0.5121 | 0.7548 | 0.755 | | 0.419 | 55.03 | 8200 | 0.5148 | 0.7504 | 0.751 | | 0.4201 | 56.38 | 8400 | 0.5143 | 0.7504 | 0.751 | | 0.4197 | 57.72 | 8600 | 0.5131 | 0.7535 | 0.754 | | 0.4163 | 59.06 | 8800 | 0.5112 | 0.7495 | 0.75 | | 0.4132 | 60.4 | 9000 | 0.5188 | 0.7485 | 0.749 | | 0.4182 | 61.74 | 9200 | 0.5114 | 0.7516 | 0.752 | | 0.4165 | 63.09 | 9400 | 0.5168 | 0.7493 | 0.75 | | 0.4103 | 64.43 | 9600 | 0.5129 | 0.7567 | 0.757 | | 0.4171 | 65.77 | 9800 | 0.5183 | 0.7483 | 0.749 | | 0.4116 | 67.11 | 10000 | 0.5155 | 0.7525 | 0.753 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_2-seqsight_32768_512_43M-L8_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_2-seqsight_32768_512_43M-L8_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T15:00:14+00:00
text-generation
transformers
{}
vanisus/abiturientSSTU_02
null
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T15:00:16+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_tf_2-seqsight_32768_512_43M-L32_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_tf_2](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_tf_2) dataset. It achieves the following results on the evaluation set: - Loss: 0.4622 - F1 Score: 0.7959 - Accuracy: 0.796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.5617 | 1.34 | 200 | 0.5167 | 0.7500 | 0.751 | | 0.5206 | 2.68 | 400 | 0.5242 | 0.7367 | 0.738 | | 0.5069 | 4.03 | 600 | 0.5101 | 0.7456 | 0.746 | | 0.4965 | 5.37 | 800 | 0.5066 | 0.7537 | 0.754 | | 0.4893 | 6.71 | 1000 | 0.5088 | 0.7533 | 0.754 | | 0.4816 | 8.05 | 1200 | 0.4897 | 0.7556 | 0.756 | | 0.4721 | 9.4 | 1400 | 0.5046 | 0.7609 | 0.761 | | 0.4629 | 10.74 | 1600 | 0.4977 | 0.7720 | 0.772 | | 0.4619 | 12.08 | 1800 | 0.4909 | 0.7620 | 0.762 | | 0.4515 | 13.42 | 2000 | 0.5238 | 0.7467 | 0.748 | | 0.447 | 14.77 | 2200 | 0.5081 | 0.7597 | 0.76 | | 0.4363 | 16.11 | 2400 | 0.5179 | 0.7600 | 0.76 | | 0.4342 | 17.45 | 2600 | 0.5182 | 0.7510 | 0.751 | | 0.4217 | 18.79 | 2800 | 0.5406 | 0.7378 | 0.74 | | 0.4136 | 20.13 | 3000 | 0.5344 | 0.7592 | 0.76 | | 0.4089 | 21.48 | 3200 | 0.5592 | 0.7513 | 0.754 | | 0.4026 | 22.82 | 3400 | 0.5251 | 0.7455 | 0.746 | | 0.3905 | 24.16 | 3600 | 0.5552 | 0.7475 | 0.748 | | 0.3842 | 25.5 | 3800 | 0.5535 | 0.7528 | 0.754 | | 0.379 | 26.85 | 4000 | 0.5383 | 0.7499 | 0.75 | | 0.3731 | 28.19 | 4200 | 0.5806 | 0.7401 | 0.742 | | 0.3637 | 29.53 | 4400 | 0.5965 | 0.7487 | 0.75 | | 0.3579 | 30.87 | 4600 | 0.5704 | 0.7394 | 0.74 | | 0.3512 | 32.21 | 4800 | 0.6344 | 0.7407 | 0.743 | | 0.3492 | 33.56 | 5000 | 0.6245 | 0.7389 | 0.74 | | 0.341 | 34.9 | 5200 | 0.6164 | 0.7378 | 0.739 | | 0.3312 | 36.24 | 5400 | 0.5966 | 0.7425 | 0.743 | | 0.3296 | 37.58 | 5600 | 0.6205 | 0.7388 | 0.739 | | 0.3182 | 38.93 | 5800 | 0.6105 | 0.7376 | 0.738 | | 0.3165 | 40.27 | 6000 | 0.6069 | 0.736 | 0.736 | | 0.3096 | 41.61 | 6200 | 0.6144 | 0.7455 | 0.746 | | 0.309 | 42.95 | 6400 | 0.6497 | 0.7355 | 0.736 | | 0.301 | 44.3 | 6600 | 0.6857 | 0.7393 | 0.74 | | 0.3 | 45.64 | 6800 | 0.6950 | 0.7285 | 0.73 | | 0.3012 | 46.98 | 7000 | 0.6517 | 0.7427 | 0.743 | | 0.2952 | 48.32 | 7200 | 0.6615 | 0.7406 | 0.741 | | 0.2885 | 49.66 | 7400 | 0.6701 | 0.7332 | 0.734 | | 0.2802 | 51.01 | 7600 | 0.6974 | 0.7262 | 0.727 | | 0.2763 | 52.35 | 7800 | 0.6962 | 0.7376 | 0.738 | | 0.279 | 53.69 | 8000 | 0.6812 | 0.7374 | 0.738 | | 0.2739 | 55.03 | 8200 | 0.6958 | 0.7351 | 0.736 | | 0.2743 | 56.38 | 8400 | 0.7221 | 0.7278 | 0.729 | | 0.2674 | 57.72 | 8600 | 0.7086 | 0.7356 | 0.736 | | 0.2677 | 59.06 | 8800 | 0.7129 | 0.7343 | 0.735 | | 0.2646 | 60.4 | 9000 | 0.7246 | 0.7305 | 0.731 | | 0.2654 | 61.74 | 9200 | 0.7072 | 0.7262 | 0.727 | | 0.2601 | 63.09 | 9400 | 0.7179 | 0.7312 | 0.732 | | 0.258 | 64.43 | 9600 | 0.7255 | 0.7323 | 0.733 | | 0.2621 | 65.77 | 9800 | 0.7326 | 0.7280 | 0.729 | | 0.2603 | 67.11 | 10000 | 0.7294 | 0.7292 | 0.73 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_tf_2-seqsight_32768_512_43M-L32_f", "results": []}]}
mahdibaghbanzadeh/GUE_tf_2-seqsight_32768_512_43M-L32_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T15:00:22+00:00
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
quangtqv/tool_learning_cross_encoder_v3
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:00:22+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_virus_covid-seqsight_32768_512_43M-L1_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_virus_covid](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_virus_covid) dataset. It achieves the following results on the evaluation set: - Loss: 1.6354 - F1 Score: 0.3716 - Accuracy: 0.3803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 2.1856 | 0.35 | 200 | 2.1862 | 0.0584 | 0.1231 | | 2.1827 | 0.7 | 400 | 2.1814 | 0.0880 | 0.1368 | | 2.1749 | 1.05 | 600 | 2.1695 | 0.1360 | 0.1556 | | 2.1678 | 1.4 | 800 | 2.1620 | 0.1018 | 0.1578 | | 2.1597 | 1.75 | 1000 | 2.1532 | 0.1245 | 0.1743 | | 2.1497 | 2.09 | 1200 | 2.1463 | 0.1223 | 0.1768 | | 2.1336 | 2.44 | 1400 | 2.1075 | 0.1712 | 0.1947 | | 2.1006 | 2.79 | 1600 | 2.0510 | 0.1868 | 0.2228 | | 2.0648 | 3.14 | 1800 | 2.0248 | 0.1955 | 0.2269 | | 2.0301 | 3.49 | 2000 | 1.9859 | 0.2348 | 0.2523 | | 2.0098 | 3.84 | 2200 | 1.9554 | 0.2532 | 0.2677 | | 1.9882 | 4.19 | 2400 | 1.9165 | 0.2718 | 0.2842 | | 1.9604 | 4.54 | 2600 | 1.8834 | 0.2781 | 0.2914 | | 1.942 | 4.89 | 2800 | 1.8575 | 0.2887 | 0.3025 | | 1.9183 | 5.24 | 3000 | 1.8389 | 0.2878 | 0.3082 | | 1.9027 | 5.58 | 3200 | 1.8136 | 0.3004 | 0.3196 | | 1.8868 | 5.93 | 3400 | 1.8177 | 0.2947 | 0.3131 | | 1.8806 | 6.28 | 3600 | 1.7884 | 0.3190 | 0.3344 | | 1.8632 | 6.63 | 3800 | 1.7800 | 0.3097 | 0.3299 | | 1.8551 | 6.98 | 4000 | 1.7610 | 0.3201 | 0.3394 | | 1.846 | 7.33 | 4200 | 1.7507 | 0.3170 | 0.3379 | | 1.8396 | 7.68 | 4400 | 1.7363 | 0.3258 | 0.3391 | | 1.8348 | 8.03 | 4600 | 1.7578 | 0.3086 | 0.3272 | | 1.8203 | 8.38 | 4800 | 1.7280 | 0.3298 | 0.3478 | | 1.8233 | 8.73 | 5000 | 1.7161 | 0.3312 | 0.3516 | | 1.8117 | 9.08 | 5200 | 1.7093 | 0.3323 | 0.3429 | | 1.8013 | 9.42 | 5400 | 1.6968 | 0.3377 | 0.3573 | | 1.7983 | 9.77 | 5600 | 1.6937 | 0.3354 | 0.3536 | | 1.796 | 10.12 | 5800 | 1.6863 | 0.3478 | 0.3589 | | 1.7942 | 10.47 | 6000 | 1.6781 | 0.3521 | 0.3644 | | 1.7879 | 10.82 | 6200 | 1.6785 | 0.3433 | 0.3540 | | 1.7773 | 11.17 | 6400 | 1.6732 | 0.3494 | 0.3601 | | 1.7728 | 11.52 | 6600 | 1.6701 | 0.3511 | 0.3631 | | 1.776 | 11.87 | 6800 | 1.6609 | 0.3559 | 0.3686 | | 1.7674 | 12.22 | 7000 | 1.6534 | 0.3625 | 0.3745 | | 1.7588 | 12.57 | 7200 | 1.6500 | 0.3622 | 0.3756 | | 1.7692 | 12.91 | 7400 | 1.6559 | 0.3579 | 0.3688 | | 1.7543 | 13.26 | 7600 | 1.6547 | 0.3556 | 0.3673 | | 1.7568 | 13.61 | 7800 | 1.6483 | 0.3649 | 0.3755 | | 1.7573 | 13.96 | 8000 | 1.6423 | 0.3640 | 0.3756 | | 1.7442 | 14.31 | 8200 | 1.6456 | 0.3620 | 0.3746 | | 1.7566 | 14.66 | 8400 | 1.6388 | 0.3726 | 0.3818 | | 1.7466 | 15.01 | 8600 | 1.6458 | 0.3579 | 0.3698 | | 1.7529 | 15.36 | 8800 | 1.6328 | 0.3769 | 0.3863 | | 1.7406 | 15.71 | 9000 | 1.6344 | 0.3714 | 0.3845 | | 1.7376 | 16.06 | 9200 | 1.6312 | 0.3745 | 0.3864 | | 1.7423 | 16.4 | 9400 | 1.6308 | 0.3732 | 0.3861 | | 1.7429 | 16.75 | 9600 | 1.6332 | 0.3713 | 0.3826 | | 1.7435 | 17.1 | 9800 | 1.6332 | 0.3709 | 0.3823 | | 1.7473 | 17.45 | 10000 | 1.6315 | 0.3732 | 0.3842 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_virus_covid-seqsight_32768_512_43M-L1_f", "results": []}]}
mahdibaghbanzadeh/GUE_virus_covid-seqsight_32768_512_43M-L1_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T15:00:45+00:00
text-classification
transformers
{}
gc394/ft_da_distilbert
null
[ "transformers", "safetensors", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:00:45+00:00
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
michaelbenayoun/llama-2-tiny-4kv-heads-8layers-random
null
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T15:00:53+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_virus_covid-seqsight_32768_512_43M-L8_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_virus_covid](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_virus_covid) dataset. It achieves the following results on the evaluation set: - Loss: 1.2253 - F1 Score: 0.5417 - Accuracy: 0.5433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 2.1856 | 0.35 | 200 | 2.1853 | 0.0568 | 0.1219 | | 2.1788 | 0.7 | 400 | 2.1724 | 0.1014 | 0.1494 | | 2.1619 | 1.05 | 600 | 2.1430 | 0.1503 | 0.1768 | | 2.1148 | 1.4 | 800 | 2.0385 | 0.1734 | 0.2172 | | 2.0028 | 1.75 | 1000 | 1.9046 | 0.2631 | 0.2787 | | 1.9152 | 2.09 | 1200 | 1.8482 | 0.2655 | 0.2893 | | 1.852 | 2.44 | 1400 | 1.7498 | 0.3254 | 0.3333 | | 1.8092 | 2.79 | 1600 | 1.6999 | 0.3373 | 0.3568 | | 1.7683 | 3.14 | 1800 | 1.6663 | 0.3424 | 0.3645 | | 1.7302 | 3.49 | 2000 | 1.6432 | 0.3620 | 0.3758 | | 1.7128 | 3.84 | 2200 | 1.6109 | 0.3820 | 0.3966 | | 1.6798 | 4.19 | 2400 | 1.5869 | 0.3928 | 0.3989 | | 1.659 | 4.54 | 2600 | 1.5614 | 0.3969 | 0.4073 | | 1.6491 | 4.89 | 2800 | 1.5399 | 0.4111 | 0.4249 | | 1.6308 | 5.24 | 3000 | 1.5227 | 0.4190 | 0.4286 | | 1.6162 | 5.58 | 3200 | 1.5082 | 0.4266 | 0.4413 | | 1.5969 | 5.93 | 3400 | 1.5042 | 0.4202 | 0.4340 | | 1.5869 | 6.28 | 3600 | 1.4714 | 0.4564 | 0.4627 | | 1.561 | 6.63 | 3800 | 1.4475 | 0.4479 | 0.4614 | | 1.5523 | 6.98 | 4000 | 1.4304 | 0.4622 | 0.4720 | | 1.5363 | 7.33 | 4200 | 1.4157 | 0.4687 | 0.4787 | | 1.5188 | 7.68 | 4400 | 1.4040 | 0.4700 | 0.4752 | | 1.5109 | 8.03 | 4600 | 1.3890 | 0.4809 | 0.4873 | | 1.488 | 8.38 | 4800 | 1.3785 | 0.4747 | 0.4868 | | 1.4927 | 8.73 | 5000 | 1.3663 | 0.4806 | 0.4899 | | 1.4798 | 9.08 | 5200 | 1.3459 | 0.4998 | 0.5048 | | 1.4619 | 9.42 | 5400 | 1.3396 | 0.4902 | 0.5014 | | 1.4528 | 9.77 | 5600 | 1.3264 | 0.5010 | 0.5110 | | 1.4431 | 10.12 | 5800 | 1.3171 | 0.4994 | 0.5096 | | 1.4406 | 10.47 | 6000 | 1.3090 | 0.5127 | 0.5161 | | 1.4252 | 10.82 | 6200 | 1.3047 | 0.5159 | 0.5148 | | 1.4087 | 11.17 | 6400 | 1.2971 | 0.5152 | 0.5154 | | 1.4124 | 11.52 | 6600 | 1.2890 | 0.5257 | 0.5229 | | 1.4147 | 11.87 | 6800 | 1.2846 | 0.5164 | 0.5208 | | 1.3961 | 12.22 | 7000 | 1.2720 | 0.5226 | 0.5232 | | 1.3883 | 12.57 | 7200 | 1.2659 | 0.5313 | 0.5323 | | 1.395 | 12.91 | 7400 | 1.2664 | 0.5366 | 0.5353 | | 1.3821 | 13.26 | 7600 | 1.2610 | 0.5355 | 0.5334 | | 1.3721 | 13.61 | 7800 | 1.2549 | 0.5389 | 0.5348 | | 1.3735 | 13.96 | 8000 | 1.2449 | 0.5382 | 0.5410 | | 1.3594 | 14.31 | 8200 | 1.2458 | 0.5412 | 0.5410 | | 1.3733 | 14.66 | 8400 | 1.2368 | 0.5433 | 0.5422 | | 1.3614 | 15.01 | 8600 | 1.2381 | 0.5445 | 0.5465 | | 1.3687 | 15.36 | 8800 | 1.2334 | 0.5388 | 0.5410 | | 1.3481 | 15.71 | 9000 | 1.2289 | 0.5448 | 0.5473 | | 1.3585 | 16.06 | 9200 | 1.2274 | 0.5503 | 0.5491 | | 1.362 | 16.4 | 9400 | 1.2240 | 0.5443 | 0.5483 | | 1.3525 | 16.75 | 9600 | 1.2242 | 0.5502 | 0.5495 | | 1.35 | 17.1 | 9800 | 1.2247 | 0.5491 | 0.5494 | | 1.3605 | 17.45 | 10000 | 1.2232 | 0.5482 | 0.5488 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_virus_covid-seqsight_32768_512_43M-L8_f", "results": []}]}
mahdibaghbanzadeh/GUE_virus_covid-seqsight_32768_512_43M-L8_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T15:01:18+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_virus_covid-seqsight_32768_512_43M-L32_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_32768_512_43M](https://huggingface.co/mahdibaghbanzadeh/seqsight_32768_512_43M) on the [mahdibaghbanzadeh/GUE_virus_covid](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_virus_covid) dataset. It achieves the following results on the evaluation set: - Loss: 1.0029 - F1 Score: 0.6167 - Accuracy: 0.6178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 2.1853 | 0.35 | 200 | 2.1805 | 0.0843 | 0.1372 | | 2.1768 | 0.7 | 400 | 2.1641 | 0.1214 | 0.1525 | | 2.1212 | 1.05 | 600 | 2.0259 | 0.1938 | 0.2265 | | 1.969 | 1.4 | 800 | 1.8285 | 0.2853 | 0.3041 | | 1.8126 | 1.75 | 1000 | 1.6823 | 0.3570 | 0.3668 | | 1.7124 | 2.09 | 1200 | 1.5757 | 0.4073 | 0.4168 | | 1.6288 | 2.44 | 1400 | 1.5124 | 0.4353 | 0.4345 | | 1.5754 | 2.79 | 1600 | 1.4519 | 0.4393 | 0.4482 | | 1.5289 | 3.14 | 1800 | 1.4078 | 0.4593 | 0.4704 | | 1.4859 | 3.49 | 2000 | 1.3729 | 0.4826 | 0.4772 | | 1.4627 | 3.84 | 2200 | 1.3404 | 0.4993 | 0.4986 | | 1.4266 | 4.19 | 2400 | 1.3065 | 0.5062 | 0.5061 | | 1.4048 | 4.54 | 2600 | 1.2738 | 0.5171 | 0.5223 | | 1.3816 | 4.89 | 2800 | 1.2513 | 0.5304 | 0.5339 | | 1.3649 | 5.24 | 3000 | 1.2371 | 0.5309 | 0.5336 | | 1.3436 | 5.58 | 3200 | 1.2223 | 0.5484 | 0.5464 | | 1.3166 | 5.93 | 3400 | 1.2165 | 0.5484 | 0.5492 | | 1.3061 | 6.28 | 3600 | 1.1944 | 0.5550 | 0.5507 | | 1.2792 | 6.63 | 3800 | 1.1837 | 0.5597 | 0.5550 | | 1.2746 | 6.98 | 4000 | 1.1678 | 0.5583 | 0.5607 | | 1.2552 | 7.33 | 4200 | 1.1544 | 0.5723 | 0.5703 | | 1.2414 | 7.68 | 4400 | 1.1456 | 0.5710 | 0.5699 | | 1.2377 | 8.03 | 4600 | 1.1386 | 0.5743 | 0.5709 | | 1.2159 | 8.38 | 4800 | 1.1237 | 0.5807 | 0.5835 | | 1.222 | 8.73 | 5000 | 1.1138 | 0.5848 | 0.5836 | | 1.1993 | 9.08 | 5200 | 1.1315 | 0.5875 | 0.5787 | | 1.1904 | 9.42 | 5400 | 1.0984 | 0.5867 | 0.5885 | | 1.1684 | 9.77 | 5600 | 1.0853 | 0.5910 | 0.5879 | | 1.1775 | 10.12 | 5800 | 1.0639 | 0.5927 | 0.5922 | | 1.1735 | 10.47 | 6000 | 1.0625 | 0.5994 | 0.5988 | | 1.155 | 10.82 | 6200 | 1.0571 | 0.6021 | 0.5948 | | 1.1379 | 11.17 | 6400 | 1.0743 | 0.5951 | 0.5907 | | 1.1367 | 11.52 | 6600 | 1.0611 | 0.6045 | 0.5984 | | 1.1426 | 11.87 | 6800 | 1.0483 | 0.5977 | 0.5944 | | 1.135 | 12.22 | 7000 | 1.0395 | 0.6083 | 0.6058 | | 1.1153 | 12.57 | 7200 | 1.0375 | 0.6060 | 0.6007 | | 1.1251 | 12.91 | 7400 | 1.0405 | 0.6050 | 0.6004 | | 1.1104 | 13.26 | 7600 | 1.0430 | 0.6094 | 0.6007 | | 1.1089 | 13.61 | 7800 | 1.0323 | 0.6107 | 0.6053 | | 1.1053 | 13.96 | 8000 | 1.0236 | 0.6133 | 0.6066 | | 1.0963 | 14.31 | 8200 | 1.0296 | 0.6088 | 0.6036 | | 1.1049 | 14.66 | 8400 | 1.0208 | 0.6143 | 0.6091 | | 1.0961 | 15.01 | 8600 | 1.0285 | 0.6103 | 0.6048 | | 1.0962 | 15.36 | 8800 | 1.0178 | 0.6140 | 0.6096 | | 1.0789 | 15.71 | 9000 | 1.0094 | 0.6166 | 0.6130 | | 1.0905 | 16.06 | 9200 | 1.0114 | 0.6164 | 0.6116 | | 1.0829 | 16.4 | 9400 | 1.0132 | 0.6112 | 0.6081 | | 1.0924 | 16.75 | 9600 | 1.0119 | 0.6165 | 0.6114 | | 1.0855 | 17.1 | 9800 | 1.0113 | 0.6156 | 0.6110 | | 1.0875 | 17.45 | 10000 | 1.0112 | 0.6153 | 0.6107 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_32768_512_43M", "model-index": [{"name": "GUE_virus_covid-seqsight_32768_512_43M-L32_f", "results": []}]}
mahdibaghbanzadeh/GUE_virus_covid-seqsight_32768_512_43M-L32_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_32768_512_43M", "region:us" ]
null
2024-05-03T15:01:25+00:00
feature-extraction
transformers
{}
MahmoudTaktak/LEGAL_E4
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:01:34+00:00
null
null
{}
chenbingAi/mistral-7b-bnb-4bit-1.0v-law
null
[ "region:us" ]
null
2024-05-03T15:01:37+00:00
reinforcement-learning
null
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jchenmath/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
jchenmath/q-FrozenLake-v1-4x4-noSlippery
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
null
2024-05-03T15:02:26+00:00
text-generation
transformers
# Uploaded model - **Developed by:** chenbingAi - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/mistral-7b-bnb-4bit"}
chenbingAi/mistral-7b-bnb-4bit-1.0v
null
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-03T15:02:31+00:00
text-generation
transformers
# Uploaded model - **Developed by:** rvian - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
rvian/llama3-midjourney-prompt-generator
null
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:03:51+00:00
text-classification
transformers
{}
koheisanno/roberta-large-finetuned-mnli
null
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:04:16+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
dzungPaduahsgs/Vistral7B_mix_v4_adamany_model_batch_32_lr_2e-5_12h40_merged
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:04:27+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # witness_count_mistral_train_run2 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.1", "model-index": [{"name": "witness_count_mistral_train_run2", "results": []}]}
isaaclee/witness_count_mistral_train_run2
null
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-05-03T15:04:30+00:00
text-generation
transformers
# jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP AWQ - Model creator: [jsfs11](https://huggingface.co/jsfs11) - Original model: [WestTemptressTensor-10.7B-v0.2a-SLERP](https://huggingface.co/jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP) ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/WestTemptressTensor-10.7B-v0.2a-SLERP-AWQ" system_message = "You are WestTemptressTensor-10.7B-v0.2a-SLERP, incarnated as a powerful AI. You were created by jsfs11." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
{"library_name": "transformers", "tags": ["4-bit", "AWQ", "text-generation", "autotrain_compatible", "endpoints_compatible"], "pipeline_tag": "text-generation", "inference": false, "quantized_by": "Suparious"}
solidrust/WestTemptressTensor-10.7B-v0.2a-SLERP-AWQ
null
[ "transformers", "safetensors", "mistral", "text-generation", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T15:05:10+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_300_tata-seqsight_65536_512_47M-L1_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_tata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_tata) dataset. It achieves the following results on the evaluation set: - Loss: 0.4868 - F1 Score: 0.7961 - Accuracy: 0.7961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:| | 0.6088 | 5.13 | 200 | 0.5384 | 0.7487 | 0.7520 | | 0.4928 | 10.26 | 400 | 0.5026 | 0.7783 | 0.7781 | | 0.4693 | 15.38 | 600 | 0.4846 | 0.7717 | 0.7716 | | 0.4521 | 20.51 | 800 | 0.4655 | 0.7841 | 0.7847 | | 0.4428 | 25.64 | 1000 | 0.4595 | 0.7961 | 0.7961 | | 0.4323 | 30.77 | 1200 | 0.4505 | 0.8009 | 0.8010 | | 0.4233 | 35.9 | 1400 | 0.4517 | 0.8060 | 0.8059 | | 0.4143 | 41.03 | 1600 | 0.4466 | 0.8039 | 0.8042 | | 0.4078 | 46.15 | 1800 | 0.4488 | 0.8076 | 0.8075 | | 0.401 | 51.28 | 2000 | 0.4429 | 0.8125 | 0.8124 | | 0.3939 | 56.41 | 2200 | 0.4469 | 0.8040 | 0.8042 | | 0.3921 | 61.54 | 2400 | 0.4504 | 0.8093 | 0.8091 | | 0.3851 | 66.67 | 2600 | 0.4505 | 0.8093 | 0.8091 | | 0.3812 | 71.79 | 2800 | 0.4460 | 0.8060 | 0.8059 | | 0.3806 | 76.92 | 3000 | 0.4651 | 0.7993 | 0.7993 | | 0.3745 | 82.05 | 3200 | 0.4532 | 0.8093 | 0.8091 | | 0.3722 | 87.18 | 3400 | 0.4718 | 0.7976 | 0.7977 | | 0.3652 | 92.31 | 3600 | 0.4520 | 0.8142 | 0.8140 | | 0.367 | 97.44 | 3800 | 0.4515 | 0.8109 | 0.8108 | | 0.3615 | 102.56 | 4000 | 0.4595 | 0.8109 | 0.8108 | | 0.3633 | 107.69 | 4200 | 0.4684 | 0.7978 | 0.7977 | | 0.3561 | 112.82 | 4400 | 0.4668 | 0.8093 | 0.8091 | | 0.3533 | 117.95 | 4600 | 0.4705 | 0.8044 | 0.8042 | | 0.351 | 123.08 | 4800 | 0.4721 | 0.8060 | 0.8059 | | 0.3528 | 128.21 | 5000 | 0.4621 | 0.8141 | 0.8140 | | 0.3479 | 133.33 | 5200 | 0.4673 | 0.8092 | 0.8091 | | 0.3466 | 138.46 | 5400 | 0.4637 | 0.8140 | 0.8140 | | 0.3432 | 143.59 | 5600 | 0.4672 | 0.8141 | 0.8140 | | 0.3426 | 148.72 | 5800 | 0.4673 | 0.8158 | 0.8157 | | 0.3417 | 153.85 | 6000 | 0.4708 | 0.8093 | 0.8091 | | 0.3424 | 158.97 | 6200 | 0.4735 | 0.8125 | 0.8124 | | 0.3372 | 164.1 | 6400 | 0.4821 | 0.8076 | 0.8075 | | 0.3379 | 169.23 | 6600 | 0.4719 | 0.8125 | 0.8124 | | 0.3357 | 174.36 | 6800 | 0.4774 | 0.8125 | 0.8124 | | 0.332 | 179.49 | 7000 | 0.4816 | 0.8093 | 0.8091 | | 0.3329 | 184.62 | 7200 | 0.4783 | 0.8124 | 0.8124 | | 0.3318 | 189.74 | 7400 | 0.4833 | 0.8093 | 0.8091 | | 0.3303 | 194.87 | 7600 | 0.4834 | 0.8125 | 0.8124 | | 0.3287 | 200.0 | 7800 | 0.4815 | 0.8108 | 0.8108 | | 0.3285 | 205.13 | 8000 | 0.4822 | 0.8174 | 0.8173 | | 0.3328 | 210.26 | 8200 | 0.4839 | 0.8093 | 0.8091 | | 0.3267 | 215.38 | 8400 | 0.4831 | 0.8125 | 0.8124 | | 0.3287 | 220.51 | 8600 | 0.4837 | 0.8125 | 0.8124 | | 0.3268 | 225.64 | 8800 | 0.4911 | 0.8027 | 0.8026 | | 0.3265 | 230.77 | 9000 | 0.4880 | 0.8076 | 0.8075 | | 0.3275 | 235.9 | 9200 | 0.4868 | 0.8093 | 0.8091 | | 0.3238 | 241.03 | 9400 | 0.4868 | 0.8109 | 0.8108 | | 0.3273 | 246.15 | 9600 | 0.4869 | 0.8093 | 0.8091 | | 0.3274 | 251.28 | 9800 | 0.4875 | 0.8109 | 0.8108 | | 0.3265 | 256.41 | 10000 | 0.4874 | 0.8109 | 0.8108 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_300_tata-seqsight_65536_512_47M-L1_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_300_tata-seqsight_65536_512_47M-L1_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:05:35+00:00
null
null
{}
Acopa/sdxl_turbo_lora_test
null
[ "region:us" ]
null
2024-05-03T15:06:21+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
huntz47/qwenm10
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T15:06:27+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ferrazzipietro/LS_Llama-2-7b-hf_adapters_en.layer1_NoQuant_16_32_0.05_8_5e-05
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:06:30+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cilantro9246/faxebch
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T15:06:40+00:00
null
null
{}
ayoubkirouane/my_awesome_model
null
[ "region:us" ]
null
2024-05-03T15:06:55+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rloo_zephyr_vllm11 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - gradient_accumulation_steps: 32 - total_train_batch_size: 224 - total_eval_batch_size: 56 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
{"tags": ["generated_from_trainer"], "model-index": [{"name": "rloo_zephyr_vllm11", "results": []}]}
vwxyzjn/rloo_zephyr_vllm11
null
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T15:07:17+00:00
null
null
{"license": "openrail"}
saeidebbei/Dub
null
[ "license:openrail", "region:us" ]
null
2024-05-03T15:07:32+00:00
null
transformers
# Uploaded model - **Developed by:** animaRegem - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
animaRegem/llama-3-lora-01-malayalam
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:07:34+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["unsloth"]}
animaRegem/llama-3-lora-01-malayalam-tokenizer
null
[ "transformers", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:07:47+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - eval_loss: 2.4563 - eval_mean_iou: 0.0432 - eval_mean_accuracy: 0.0696 - eval_overall_accuracy: 0.5913 - eval_per_category_iou: [0.4472851919015029, 0.6612097108758626, 0.817339666449671, 0.47928449607416507, 0.5911507360971395, 0.584974453286796, 0.6726074613245039, 0.2589327338580983, 0.022897061669389426, 0.3531389341071555, 0.0009033242331780954, 0.0, 0.38016586218727527, 0.0065494844799213895, 3.5410365901749114e-05, 0.0006227857923162527, 0.1369807957501803, 0.0, 0.0, 0.0, 0.3866305742675126, 0.0, 0.0, 0.0, 0.0, 0.0, 0.15958629131507837, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] - eval_per_category_accuracy: [0.8334025427555467, 0.90546175118556, 0.9576760329344776, 0.9040202679951341, 0.9084813897020947, 0.7543100790506285, 0.924642649916285, 0.6768858942434451, 0.024248627368742136, 0.8855665819147363, 0.0009169818241372258, 0.0, 0.7872266396753254, 0.006739498091427447, 3.561201678944719e-05, 0.0006261997885292518, 0.24443709595222143, 0.0, 0.0, 0.0, 0.6322151772008276, 0.0, 0.0, 0.0, 0.0, 0.0, 0.16159973151359214, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] - eval_runtime: 22.5623 - eval_samples_per_second: 8.864 - eval_steps_per_second: 0.576 - epoch: 4.8 - step: 240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "other", "tags": ["generated_from_trainer"], "datasets": ["scene_parse_150"], "base_model": "nvidia/mit-b0", "model-index": [{"name": "segformer-b0-scene-parse-150", "results": []}]}
ChayawatP/segformer-b0-scene-parse-150
null
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:07:57+00:00
text-classification
transformers
{}
eskayML/interview_classifier
null
[ "transformers", "safetensors", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:08:00+00:00
null
null
{"license": "openrail"}
saeidebbei/Duble
null
[ "license:openrail", "region:us" ]
null
2024-05-03T15:08:04+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_300_tata-seqsight_65536_512_47M-L8_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_tata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_tata) dataset. It achieves the following results on the evaluation set: - Loss: 0.4666 - F1 Score: 0.8026 - Accuracy: 0.8026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:| | 0.5548 | 5.13 | 200 | 0.5050 | 0.7516 | 0.7553 | | 0.4582 | 10.26 | 400 | 0.4638 | 0.7994 | 0.7993 | | 0.4275 | 15.38 | 600 | 0.4521 | 0.8060 | 0.8059 | | 0.4017 | 20.51 | 800 | 0.4511 | 0.7995 | 0.7993 | | 0.3843 | 25.64 | 1000 | 0.4591 | 0.7995 | 0.7993 | | 0.3641 | 30.77 | 1200 | 0.4585 | 0.8107 | 0.8108 | | 0.3522 | 35.9 | 1400 | 0.4668 | 0.8043 | 0.8042 | | 0.3365 | 41.03 | 1600 | 0.4775 | 0.8086 | 0.8091 | | 0.3228 | 46.15 | 1800 | 0.4857 | 0.7962 | 0.7961 | | 0.3121 | 51.28 | 2000 | 0.4890 | 0.8056 | 0.8059 | | 0.303 | 56.41 | 2200 | 0.5310 | 0.7911 | 0.7912 | | 0.2937 | 61.54 | 2400 | 0.5404 | 0.7959 | 0.7961 | | 0.283 | 66.67 | 2600 | 0.5231 | 0.8076 | 0.8075 | | 0.2758 | 71.79 | 2800 | 0.5463 | 0.8026 | 0.8026 | | 0.2732 | 76.92 | 3000 | 0.5306 | 0.7960 | 0.7961 | | 0.2621 | 82.05 | 3200 | 0.5515 | 0.8059 | 0.8059 | | 0.2568 | 87.18 | 3400 | 0.5725 | 0.7977 | 0.7977 | | 0.248 | 92.31 | 3600 | 0.5643 | 0.8060 | 0.8059 | | 0.246 | 97.44 | 3800 | 0.5643 | 0.7942 | 0.7945 | | 0.2372 | 102.56 | 4000 | 0.6019 | 0.7928 | 0.7928 | | 0.2343 | 107.69 | 4200 | 0.5971 | 0.8010 | 0.8010 | | 0.2237 | 112.82 | 4400 | 0.6042 | 0.7962 | 0.7961 | | 0.2207 | 117.95 | 4600 | 0.6285 | 0.7943 | 0.7945 | | 0.2145 | 123.08 | 4800 | 0.6262 | 0.7848 | 0.7847 | | 0.21 | 128.21 | 5000 | 0.6390 | 0.7962 | 0.7961 | | 0.2078 | 133.33 | 5200 | 0.6459 | 0.7897 | 0.7896 | | 0.1989 | 138.46 | 5400 | 0.6421 | 0.7896 | 0.7896 | | 0.1996 | 143.59 | 5600 | 0.6495 | 0.7946 | 0.7945 | | 0.1968 | 148.72 | 5800 | 0.6572 | 0.8011 | 0.8010 | | 0.1925 | 153.85 | 6000 | 0.6692 | 0.8044 | 0.8042 | | 0.1917 | 158.97 | 6200 | 0.6786 | 0.7994 | 0.7993 | | 0.1868 | 164.1 | 6400 | 0.6769 | 0.7995 | 0.7993 | | 0.1846 | 169.23 | 6600 | 0.6911 | 0.7978 | 0.7977 | | 0.1786 | 174.36 | 6800 | 0.6737 | 0.7946 | 0.7945 | | 0.1803 | 179.49 | 7000 | 0.6817 | 0.7995 | 0.7993 | | 0.1777 | 184.62 | 7200 | 0.6831 | 0.7962 | 0.7961 | | 0.1745 | 189.74 | 7400 | 0.7034 | 0.7995 | 0.7993 | | 0.1752 | 194.87 | 7600 | 0.7135 | 0.7896 | 0.7896 | | 0.1703 | 200.0 | 7800 | 0.7156 | 0.7978 | 0.7977 | | 0.1649 | 205.13 | 8000 | 0.7408 | 0.7962 | 0.7961 | | 0.1744 | 210.26 | 8200 | 0.7215 | 0.7946 | 0.7945 | | 0.1698 | 215.38 | 8400 | 0.7257 | 0.7978 | 0.7977 | | 0.1637 | 220.51 | 8600 | 0.7321 | 0.7979 | 0.7977 | | 0.1608 | 225.64 | 8800 | 0.7433 | 0.7979 | 0.7977 | | 0.1613 | 230.77 | 9000 | 0.7391 | 0.8011 | 0.8010 | | 0.1636 | 235.9 | 9200 | 0.7425 | 0.7962 | 0.7961 | | 0.1573 | 241.03 | 9400 | 0.7449 | 0.7979 | 0.7977 | | 0.1632 | 246.15 | 9600 | 0.7407 | 0.7995 | 0.7993 | | 0.1612 | 251.28 | 9800 | 0.7437 | 0.7978 | 0.7977 | | 0.1601 | 256.41 | 10000 | 0.7429 | 0.7978 | 0.7977 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_300_tata-seqsight_65536_512_47M-L8_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_300_tata-seqsight_65536_512_47M-L8_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:08:13+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_300_tata-seqsight_65536_512_47M-L32_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_tata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_tata) dataset. It achieves the following results on the evaluation set: - Loss: 0.5055 - F1 Score: 0.8041 - Accuracy: 0.8042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:| | 0.5307 | 5.13 | 200 | 0.4727 | 0.7787 | 0.7798 | | 0.4297 | 10.26 | 400 | 0.4684 | 0.7909 | 0.7912 | | 0.3842 | 15.38 | 600 | 0.4664 | 0.8026 | 0.8026 | | 0.3458 | 20.51 | 800 | 0.4781 | 0.8040 | 0.8042 | | 0.3183 | 25.64 | 1000 | 0.5174 | 0.8060 | 0.8059 | | 0.2872 | 30.77 | 1200 | 0.5517 | 0.7946 | 0.7945 | | 0.2632 | 35.9 | 1400 | 0.5920 | 0.7912 | 0.7912 | | 0.2357 | 41.03 | 1600 | 0.6452 | 0.7859 | 0.7863 | | 0.2121 | 46.15 | 1800 | 0.7001 | 0.7662 | 0.7667 | | 0.1907 | 51.28 | 2000 | 0.7603 | 0.7797 | 0.7798 | | 0.1756 | 56.41 | 2200 | 0.7975 | 0.7782 | 0.7781 | | 0.1654 | 61.54 | 2400 | 0.8281 | 0.7765 | 0.7765 | | 0.1525 | 66.67 | 2600 | 0.7975 | 0.7831 | 0.7830 | | 0.1402 | 71.79 | 2800 | 0.8550 | 0.7848 | 0.7847 | | 0.1315 | 76.92 | 3000 | 0.8706 | 0.7897 | 0.7896 | | 0.1204 | 82.05 | 3200 | 0.9344 | 0.7881 | 0.7879 | | 0.1086 | 87.18 | 3400 | 0.9829 | 0.7832 | 0.7830 | | 0.1055 | 92.31 | 3600 | 1.0072 | 0.7927 | 0.7928 | | 0.1014 | 97.44 | 3800 | 0.9490 | 0.7798 | 0.7798 | | 0.0915 | 102.56 | 4000 | 1.0467 | 0.7864 | 0.7863 | | 0.0915 | 107.69 | 4200 | 1.0706 | 0.7848 | 0.7847 | | 0.0867 | 112.82 | 4400 | 1.0829 | 0.7832 | 0.7830 | | 0.0787 | 117.95 | 4600 | 1.1589 | 0.7864 | 0.7863 | | 0.0776 | 123.08 | 4800 | 1.1396 | 0.7783 | 0.7781 | | 0.0732 | 128.21 | 5000 | 1.1038 | 0.7864 | 0.7863 | | 0.0689 | 133.33 | 5200 | 1.1479 | 0.7832 | 0.7830 | | 0.0692 | 138.46 | 5400 | 1.1645 | 0.7734 | 0.7732 | | 0.0674 | 143.59 | 5600 | 1.1893 | 0.7815 | 0.7814 | | 0.0658 | 148.72 | 5800 | 1.1625 | 0.7749 | 0.7749 | | 0.0617 | 153.85 | 6000 | 1.2137 | 0.7815 | 0.7814 | | 0.0606 | 158.97 | 6200 | 1.2414 | 0.7799 | 0.7798 | | 0.056 | 164.1 | 6400 | 1.2492 | 0.7782 | 0.7781 | | 0.0598 | 169.23 | 6600 | 1.2057 | 0.7815 | 0.7814 | | 0.0553 | 174.36 | 6800 | 1.2501 | 0.7798 | 0.7798 | | 0.0533 | 179.49 | 7000 | 1.2808 | 0.7767 | 0.7765 | | 0.0532 | 184.62 | 7200 | 1.2510 | 0.7880 | 0.7879 | | 0.0531 | 189.74 | 7400 | 1.2596 | 0.7799 | 0.7798 | | 0.0514 | 194.87 | 7600 | 1.2814 | 0.7816 | 0.7814 | | 0.0496 | 200.0 | 7800 | 1.2637 | 0.7864 | 0.7863 | | 0.0463 | 205.13 | 8000 | 1.3075 | 0.7799 | 0.7798 | | 0.0493 | 210.26 | 8200 | 1.3099 | 0.7816 | 0.7814 | | 0.0471 | 215.38 | 8400 | 1.3130 | 0.7767 | 0.7765 | | 0.0433 | 220.51 | 8600 | 1.3321 | 0.7799 | 0.7798 | | 0.0442 | 225.64 | 8800 | 1.3315 | 0.7815 | 0.7814 | | 0.0437 | 230.77 | 9000 | 1.3364 | 0.7766 | 0.7765 | | 0.0431 | 235.9 | 9200 | 1.3456 | 0.7734 | 0.7732 | | 0.0429 | 241.03 | 9400 | 1.3446 | 0.7799 | 0.7798 | | 0.0439 | 246.15 | 9600 | 1.3338 | 0.7783 | 0.7781 | | 0.0462 | 251.28 | 9800 | 1.3291 | 0.7815 | 0.7814 | | 0.0418 | 256.41 | 10000 | 1.3333 | 0.7832 | 0.7830 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_300_tata-seqsight_65536_512_47M-L32_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_300_tata-seqsight_65536_512_47M-L32_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:09:08+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_300_notata-seqsight_65536_512_47M-L1_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_notata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_notata) dataset. It achieves the following results on the evaluation set: - Loss: 0.1327 - F1 Score: 0.9504 - Accuracy: 0.9504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.3429 | 0.6 | 200 | 0.1803 | 0.9252 | 0.9252 | | 0.1949 | 1.2 | 400 | 0.1537 | 0.9382 | 0.9382 | | 0.1793 | 1.81 | 600 | 0.1431 | 0.9420 | 0.9420 | | 0.168 | 2.41 | 800 | 0.1371 | 0.9440 | 0.9440 | | 0.1618 | 3.01 | 1000 | 0.1396 | 0.9450 | 0.9450 | | 0.1581 | 3.61 | 1200 | 0.1325 | 0.9471 | 0.9471 | | 0.16 | 4.22 | 1400 | 0.1401 | 0.9446 | 0.9446 | | 0.1499 | 4.82 | 1600 | 0.1287 | 0.9482 | 0.9482 | | 0.152 | 5.42 | 1800 | 0.1407 | 0.9452 | 0.9452 | | 0.1425 | 6.02 | 2000 | 0.1363 | 0.9474 | 0.9474 | | 0.1462 | 6.63 | 2200 | 0.1221 | 0.9536 | 0.9536 | | 0.1439 | 7.23 | 2400 | 0.1228 | 0.9508 | 0.9508 | | 0.1375 | 7.83 | 2600 | 0.1223 | 0.9529 | 0.9529 | | 0.1404 | 8.43 | 2800 | 0.1228 | 0.9521 | 0.9521 | | 0.1427 | 9.04 | 3000 | 0.1190 | 0.9517 | 0.9518 | | 0.1372 | 9.64 | 3200 | 0.1286 | 0.9510 | 0.9510 | | 0.1378 | 10.24 | 3400 | 0.1184 | 0.9531 | 0.9531 | | 0.1384 | 10.84 | 3600 | 0.1172 | 0.9536 | 0.9536 | | 0.1333 | 11.45 | 3800 | 0.1242 | 0.9516 | 0.9516 | | 0.1343 | 12.05 | 4000 | 0.1176 | 0.9563 | 0.9563 | | 0.136 | 12.65 | 4200 | 0.1175 | 0.9544 | 0.9544 | | 0.1362 | 13.25 | 4400 | 0.1166 | 0.9552 | 0.9552 | | 0.1319 | 13.86 | 4600 | 0.1147 | 0.9548 | 0.9548 | | 0.1312 | 14.46 | 4800 | 0.1158 | 0.9544 | 0.9544 | | 0.1284 | 15.06 | 5000 | 0.1158 | 0.9538 | 0.9538 | | 0.1296 | 15.66 | 5200 | 0.1147 | 0.9557 | 0.9557 | | 0.1309 | 16.27 | 5400 | 0.1136 | 0.9533 | 0.9533 | | 0.1228 | 16.87 | 5600 | 0.1137 | 0.9540 | 0.9540 | | 0.1289 | 17.47 | 5800 | 0.1125 | 0.9546 | 0.9546 | | 0.131 | 18.07 | 6000 | 0.1135 | 0.9552 | 0.9552 | | 0.1287 | 18.67 | 6200 | 0.1125 | 0.9542 | 0.9542 | | 0.1292 | 19.28 | 6400 | 0.1122 | 0.9535 | 0.9535 | | 0.1254 | 19.88 | 6600 | 0.1129 | 0.9534 | 0.9535 | | 0.1302 | 20.48 | 6800 | 0.1116 | 0.9553 | 0.9553 | | 0.1223 | 21.08 | 7000 | 0.1126 | 0.9557 | 0.9557 | | 0.1245 | 21.69 | 7200 | 0.1152 | 0.9553 | 0.9553 | | 0.1258 | 22.29 | 7400 | 0.1138 | 0.9565 | 0.9565 | | 0.1279 | 22.89 | 7600 | 0.1118 | 0.9565 | 0.9565 | | 0.1227 | 23.49 | 7800 | 0.1128 | 0.9559 | 0.9559 | | 0.1237 | 24.1 | 8000 | 0.1122 | 0.9548 | 0.9548 | | 0.1256 | 24.7 | 8200 | 0.1112 | 0.9546 | 0.9546 | | 0.1238 | 25.3 | 8400 | 0.1098 | 0.9544 | 0.9544 | | 0.1252 | 25.9 | 8600 | 0.1113 | 0.9567 | 0.9567 | | 0.1233 | 26.51 | 8800 | 0.1109 | 0.9557 | 0.9557 | | 0.1253 | 27.11 | 9000 | 0.1102 | 0.9548 | 0.9548 | | 0.1222 | 27.71 | 9200 | 0.1104 | 0.9555 | 0.9555 | | 0.1192 | 28.31 | 9400 | 0.1105 | 0.9555 | 0.9555 | | 0.1282 | 28.92 | 9600 | 0.1108 | 0.9563 | 0.9563 | | 0.1206 | 29.52 | 9800 | 0.1107 | 0.9552 | 0.9552 | | 0.1229 | 30.12 | 10000 | 0.1106 | 0.9555 | 0.9555 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_300_notata-seqsight_65536_512_47M-L1_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_300_notata-seqsight_65536_512_47M-L1_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:09:09+00:00
null
null
Based on Meta-Llama-3-8b-Instruct, and is governed by Meta Llama 3 License agreement: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct DPO fine tuning method using the following datasets: - https://huggingface.co/datasets/Intel/orca_dpo_pairs - https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo - https://huggingface.co/datasets/unalignment/toxic-dpo-v0.2 - https://huggingface.co/datasets/M4-ai/prm_dpo_pairs_cleaned - https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1 We are happy for anyone to try it out and give some feedback and we will have the model up on https://awanllm.com on our LLM API if it is popular. Instruct format: ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` Quants: FP16: https://huggingface.co/AwanLLM/Awanllm-Llama-3-8B-Instruct-DPO-v0.1 GGUF: https://huggingface.co/AwanLLM/Awanllm-Llama-3-8B-Instruct-DPO-v0.1-GGUF
{"license": "llama3"}
AwanLLM/Awanllm-Llama-3-8B-Instruct-DPO-v0.1-GGUF
null
[ "gguf", "license:llama3", "region:us" ]
null
2024-05-03T15:09:21+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GamblerOnTrain/SSNI-367
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:09:39+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GamblerOnTrain/SDNM-448
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:09:42+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_300_notata-seqsight_65536_512_47M-L32_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_notata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_notata) dataset. It achieves the following results on the evaluation set: - Loss: 0.1188 - F1 Score: 0.9561 - Accuracy: 0.9561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.2673 | 0.6 | 200 | 0.1413 | 0.9446 | 0.9446 | | 0.1534 | 1.2 | 400 | 0.1216 | 0.9531 | 0.9531 | | 0.1432 | 1.81 | 600 | 0.1169 | 0.9540 | 0.9540 | | 0.1285 | 2.41 | 800 | 0.1113 | 0.9548 | 0.9548 | | 0.1276 | 3.01 | 1000 | 0.1150 | 0.9550 | 0.9550 | | 0.123 | 3.61 | 1200 | 0.1117 | 0.9549 | 0.9550 | | 0.1236 | 4.22 | 1400 | 0.1043 | 0.9568 | 0.9568 | | 0.1175 | 4.82 | 1600 | 0.1039 | 0.9587 | 0.9587 | | 0.1194 | 5.42 | 1800 | 0.1027 | 0.9583 | 0.9584 | | 0.1102 | 6.02 | 2000 | 0.1048 | 0.9580 | 0.9580 | | 0.1133 | 6.63 | 2200 | 0.1019 | 0.9606 | 0.9606 | | 0.108 | 7.23 | 2400 | 0.1015 | 0.9614 | 0.9614 | | 0.1044 | 7.83 | 2600 | 0.1025 | 0.9608 | 0.9608 | | 0.1069 | 8.43 | 2800 | 0.1215 | 0.9548 | 0.9548 | | 0.1088 | 9.04 | 3000 | 0.1005 | 0.9612 | 0.9612 | | 0.1034 | 9.64 | 3200 | 0.1039 | 0.9593 | 0.9593 | | 0.1027 | 10.24 | 3400 | 0.0999 | 0.9610 | 0.9610 | | 0.104 | 10.84 | 3600 | 0.0982 | 0.9604 | 0.9604 | | 0.0961 | 11.45 | 3800 | 0.1007 | 0.9608 | 0.9608 | | 0.0969 | 12.05 | 4000 | 0.1006 | 0.9619 | 0.9619 | | 0.0976 | 12.65 | 4200 | 0.0973 | 0.9616 | 0.9616 | | 0.0979 | 13.25 | 4400 | 0.1016 | 0.9606 | 0.9606 | | 0.0929 | 13.86 | 4600 | 0.0961 | 0.9614 | 0.9614 | | 0.0915 | 14.46 | 4800 | 0.1039 | 0.9612 | 0.9612 | | 0.0935 | 15.06 | 5000 | 0.1010 | 0.9595 | 0.9595 | | 0.0906 | 15.66 | 5200 | 0.0977 | 0.9621 | 0.9621 | | 0.0909 | 16.27 | 5400 | 0.1007 | 0.9616 | 0.9616 | | 0.0862 | 16.87 | 5600 | 0.1006 | 0.9604 | 0.9604 | | 0.088 | 17.47 | 5800 | 0.0983 | 0.9614 | 0.9614 | | 0.0917 | 18.07 | 6000 | 0.0972 | 0.9625 | 0.9625 | | 0.0871 | 18.67 | 6200 | 0.0982 | 0.9634 | 0.9634 | | 0.0876 | 19.28 | 6400 | 0.1016 | 0.9606 | 0.9606 | | 0.0838 | 19.88 | 6600 | 0.1026 | 0.9617 | 0.9617 | | 0.0886 | 20.48 | 6800 | 0.1015 | 0.9616 | 0.9616 | | 0.0809 | 21.08 | 7000 | 0.1023 | 0.9606 | 0.9606 | | 0.0844 | 21.69 | 7200 | 0.1022 | 0.9616 | 0.9616 | | 0.0818 | 22.29 | 7400 | 0.1043 | 0.9601 | 0.9601 | | 0.0837 | 22.89 | 7600 | 0.1006 | 0.9612 | 0.9612 | | 0.0797 | 23.49 | 7800 | 0.1030 | 0.9621 | 0.9621 | | 0.0802 | 24.1 | 8000 | 0.1003 | 0.9629 | 0.9629 | | 0.0803 | 24.7 | 8200 | 0.1018 | 0.9621 | 0.9621 | | 0.0791 | 25.3 | 8400 | 0.1009 | 0.9617 | 0.9617 | | 0.0789 | 25.9 | 8600 | 0.1010 | 0.9631 | 0.9631 | | 0.0802 | 26.51 | 8800 | 0.1020 | 0.9614 | 0.9614 | | 0.0791 | 27.11 | 9000 | 0.0996 | 0.9623 | 0.9623 | | 0.0772 | 27.71 | 9200 | 0.1006 | 0.9623 | 0.9623 | | 0.075 | 28.31 | 9400 | 0.1024 | 0.9621 | 0.9621 | | 0.0812 | 28.92 | 9600 | 0.1016 | 0.9621 | 0.9621 | | 0.074 | 29.52 | 9800 | 0.1017 | 0.9617 | 0.9617 | | 0.078 | 30.12 | 10000 | 0.1013 | 0.9623 | 0.9623 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_300_notata-seqsight_65536_512_47M-L32_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_300_notata-seqsight_65536_512_47M-L32_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:10:00+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_300_notata-seqsight_65536_512_47M-L8_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_300_notata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_300_notata) dataset. It achieves the following results on the evaluation set: - Loss: 0.1215 - F1 Score: 0.9536 - Accuracy: 0.9536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.2907 | 0.6 | 200 | 0.1476 | 0.9401 | 0.9401 | | 0.1704 | 1.2 | 400 | 0.1310 | 0.9500 | 0.9501 | | 0.1551 | 1.81 | 600 | 0.1234 | 0.9518 | 0.9518 | | 0.1386 | 2.41 | 800 | 0.1177 | 0.9527 | 0.9527 | | 0.1356 | 3.01 | 1000 | 0.1208 | 0.9533 | 0.9533 | | 0.1322 | 3.61 | 1200 | 0.1136 | 0.9538 | 0.9538 | | 0.1342 | 4.22 | 1400 | 0.1152 | 0.9548 | 0.9548 | | 0.1255 | 4.82 | 1600 | 0.1090 | 0.9570 | 0.9570 | | 0.1286 | 5.42 | 1800 | 0.1090 | 0.9563 | 0.9563 | | 0.1202 | 6.02 | 2000 | 0.1089 | 0.9569 | 0.9568 | | 0.1233 | 6.63 | 2200 | 0.1050 | 0.9578 | 0.9578 | | 0.1185 | 7.23 | 2400 | 0.1058 | 0.9585 | 0.9585 | | 0.115 | 7.83 | 2600 | 0.1066 | 0.9585 | 0.9585 | | 0.1179 | 8.43 | 2800 | 0.1076 | 0.9567 | 0.9567 | | 0.1208 | 9.04 | 3000 | 0.1067 | 0.9566 | 0.9567 | | 0.1145 | 9.64 | 3200 | 0.1089 | 0.9584 | 0.9584 | | 0.116 | 10.24 | 3400 | 0.1037 | 0.9602 | 0.9602 | | 0.1157 | 10.84 | 3600 | 0.1020 | 0.9587 | 0.9587 | | 0.1103 | 11.45 | 3800 | 0.1030 | 0.9570 | 0.9570 | | 0.1111 | 12.05 | 4000 | 0.1031 | 0.9585 | 0.9585 | | 0.113 | 12.65 | 4200 | 0.1007 | 0.9593 | 0.9593 | | 0.1121 | 13.25 | 4400 | 0.1026 | 0.9582 | 0.9582 | | 0.1088 | 13.86 | 4600 | 0.1006 | 0.9585 | 0.9585 | | 0.1087 | 14.46 | 4800 | 0.1022 | 0.9584 | 0.9584 | | 0.1068 | 15.06 | 5000 | 0.1024 | 0.9572 | 0.9572 | | 0.1061 | 15.66 | 5200 | 0.1008 | 0.9585 | 0.9585 | | 0.1079 | 16.27 | 5400 | 0.1027 | 0.9593 | 0.9593 | | 0.1017 | 16.87 | 5600 | 0.1010 | 0.9597 | 0.9597 | | 0.1065 | 17.47 | 5800 | 0.0994 | 0.9600 | 0.9601 | | 0.1092 | 18.07 | 6000 | 0.0988 | 0.9600 | 0.9601 | | 0.1059 | 18.67 | 6200 | 0.0993 | 0.9606 | 0.9606 | | 0.1059 | 19.28 | 6400 | 0.1002 | 0.9608 | 0.9608 | | 0.102 | 19.88 | 6600 | 0.1012 | 0.9610 | 0.9610 | | 0.1073 | 20.48 | 6800 | 0.1008 | 0.9595 | 0.9595 | | 0.0999 | 21.08 | 7000 | 0.0996 | 0.9600 | 0.9601 | | 0.1031 | 21.69 | 7200 | 0.1016 | 0.9595 | 0.9595 | | 0.1025 | 22.29 | 7400 | 0.1003 | 0.9593 | 0.9593 | | 0.1042 | 22.89 | 7600 | 0.0990 | 0.9599 | 0.9599 | | 0.1001 | 23.49 | 7800 | 0.0998 | 0.9599 | 0.9599 | | 0.1021 | 24.1 | 8000 | 0.0995 | 0.9608 | 0.9608 | | 0.1017 | 24.7 | 8200 | 0.0989 | 0.9606 | 0.9606 | | 0.1015 | 25.3 | 8400 | 0.0985 | 0.9608 | 0.9608 | | 0.1007 | 25.9 | 8600 | 0.0991 | 0.9608 | 0.9608 | | 0.1007 | 26.51 | 8800 | 0.0989 | 0.9610 | 0.9610 | | 0.1012 | 27.11 | 9000 | 0.0982 | 0.9606 | 0.9606 | | 0.0987 | 27.71 | 9200 | 0.0984 | 0.9608 | 0.9608 | | 0.0965 | 28.31 | 9400 | 0.0987 | 0.9606 | 0.9606 | | 0.1031 | 28.92 | 9600 | 0.0987 | 0.9606 | 0.9606 | | 0.0962 | 29.52 | 9800 | 0.0985 | 0.9602 | 0.9602 | | 0.0993 | 30.12 | 10000 | 0.0984 | 0.9606 | 0.9606 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_300_notata-seqsight_65536_512_47M-L8_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_300_notata-seqsight_65536_512_47M-L8_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:10:00+00:00
null
null
{}
sarahahtee/signwriting-illustration
null
[ "region:us" ]
null
2024-05-03T15:10:20+00:00
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon7binstruct_mentalhealthmodel_oct23 This model is a fine-tuned version of [vilsonrodrigues/falcon-7b-instruct-sharded](https://huggingface.co/vilsonrodrigues/falcon-7b-instruct-sharded) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 180 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.3.0+cu118 - Datasets 2.19.0 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "vilsonrodrigues/falcon-7b-instruct-sharded", "model-index": [{"name": "falcon7binstruct_mentalhealthmodel_oct23", "results": []}]}
KingMidas89/falcon7binstruct_mentalhealthmodel_oct23
null
[ "trl", "sft", "generated_from_trainer", "base_model:vilsonrodrigues/falcon-7b-instruct-sharded", "license:apache-2.0", "region:us" ]
null
2024-05-03T15:10:42+00:00
null
null
{"license": "wtfpl"}
Poomz/pooomz
null
[ "license:wtfpl", "region:us" ]
null
2024-05-03T15:10:57+00:00
null
transformers
# Uploaded model - **Developed by:** rvian - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
rvian/lora-llama3-midjourney-prompt-generator
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:11:31+00:00
null
null
{}
just1nseo/tulu2-13b-cost-tulumix-5e-7
null
[ "safetensors", "region:us" ]
null
2024-05-03T15:11:43+00:00
null
null
{}
just1nseo/tulu2-13b-cost-tulumix-5e-6
null
[ "safetensors", "region:us" ]
null
2024-05-03T15:11:57+00:00
null
null
{}
just1nseo/tulu2-13b-cost-tulumix-1e-6
null
[ "safetensors", "region:us" ]
null
2024-05-03T15:12:35+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["unsloth"]}
Mustfain/News-headline-Generation
null
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:13:32+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GamblerOnTrain/SAN-235
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:13:48+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ferrazzipietro/LS_Llama-2-7b-hf_adapters_en.layer1_NoQuant_16_32_0.05_8_0.0002
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:13:49+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GamblerOnTrain/SAN-236
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:13:51+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["unsloth"]}
mayukhbis/llama3-gguf
null
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:14:38+00:00
null
diffusers
{}
xkronosx/train_prior_celeb_unet
null
[ "diffusers", "safetensors", "diffusers:DDPMPipeline", "region:us" ]
null
2024-05-03T15:14:53+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptneo-TxtToJson-v0.3.1 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9333 | 1.0 | 219 | 0.9018 | | 0.6128 | 2.0 | 438 | 0.5939 | | 0.3284 | 3.0 | 657 | 0.3776 | | 0.1879 | 4.0 | 876 | 0.2272 | | 0.1326 | 5.0 | 1095 | 0.1921 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "gptneo-TxtToJson-v0.3.1", "results": []}]}
AhmedTaha012/gptneo-TxtToJson-v0.3.1
null
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:15:10+00:00
text-generation
transformers
# Uploaded model - **Developed by:** waylandzhang - **License:** apache-2.0 - **Finetuned from model :** Llama-3-8b-Chinese-Novel-4bit-lesson-v2 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "Llama-3-8b-Chinese-Novel-4bit-lesson-v2"}
waylandzhang/Llama-3-8b-Chinese-Novel-4bit-lesson-v2
null
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:Llama-3-8b-Chinese-Novel-4bit-lesson-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-03T15:15:13+00:00
text-classification
transformers
{}
macadeliccc/distilbert-base-uncasedon-off-v2
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:15:34+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
golf2248/9x70bu1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T15:15:34+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_core_all-seqsight_65536_512_47M-L1_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_all](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_all) dataset. It achieves the following results on the evaluation set: - Loss: 0.4257 - F1 Score: 0.8007 - Accuracy: 0.8008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.549 | 0.54 | 200 | 0.4976 | 0.7582 | 0.7595 | | 0.487 | 1.08 | 400 | 0.4718 | 0.7750 | 0.7752 | | 0.4771 | 1.62 | 600 | 0.4630 | 0.7801 | 0.7801 | | 0.4668 | 2.16 | 800 | 0.4605 | 0.7807 | 0.7807 | | 0.4679 | 2.7 | 1000 | 0.4629 | 0.7809 | 0.7812 | | 0.4644 | 3.24 | 1200 | 0.4596 | 0.7829 | 0.7833 | | 0.4585 | 3.78 | 1400 | 0.4593 | 0.7808 | 0.7812 | | 0.4543 | 4.32 | 1600 | 0.4668 | 0.7818 | 0.7826 | | 0.4524 | 4.86 | 1800 | 0.4616 | 0.7837 | 0.7843 | | 0.4524 | 5.41 | 2000 | 0.4568 | 0.7876 | 0.7880 | | 0.4494 | 5.95 | 2200 | 0.4508 | 0.7900 | 0.7900 | | 0.4502 | 6.49 | 2400 | 0.4500 | 0.7899 | 0.7900 | | 0.4417 | 7.03 | 2600 | 0.4465 | 0.7914 | 0.7914 | | 0.4475 | 7.57 | 2800 | 0.4516 | 0.7919 | 0.7921 | | 0.4415 | 8.11 | 3000 | 0.4528 | 0.7868 | 0.7873 | | 0.4412 | 8.65 | 3200 | 0.4449 | 0.7936 | 0.7936 | | 0.4447 | 9.19 | 3400 | 0.4458 | 0.7918 | 0.7919 | | 0.4368 | 9.73 | 3600 | 0.4534 | 0.7882 | 0.7889 | | 0.4416 | 10.27 | 3800 | 0.4480 | 0.7890 | 0.7894 | | 0.4402 | 10.81 | 4000 | 0.4432 | 0.7936 | 0.7936 | | 0.4403 | 11.35 | 4200 | 0.4446 | 0.7922 | 0.7924 | | 0.4375 | 11.89 | 4400 | 0.4480 | 0.7916 | 0.7921 | | 0.4358 | 12.43 | 4600 | 0.4401 | 0.7973 | 0.7973 | | 0.4337 | 12.97 | 4800 | 0.4428 | 0.7934 | 0.7936 | | 0.4349 | 13.51 | 5000 | 0.4518 | 0.7875 | 0.7885 | | 0.433 | 14.05 | 5200 | 0.4425 | 0.7932 | 0.7934 | | 0.4319 | 14.59 | 5400 | 0.4393 | 0.7973 | 0.7973 | | 0.4317 | 15.14 | 5600 | 0.4396 | 0.7976 | 0.7976 | | 0.4326 | 15.68 | 5800 | 0.4442 | 0.7919 | 0.7924 | | 0.4274 | 16.22 | 6000 | 0.4443 | 0.7920 | 0.7924 | | 0.4354 | 16.76 | 6200 | 0.4405 | 0.7941 | 0.7944 | | 0.4318 | 17.3 | 6400 | 0.4427 | 0.7921 | 0.7926 | | 0.4311 | 17.84 | 6600 | 0.4425 | 0.7918 | 0.7922 | | 0.4299 | 18.38 | 6800 | 0.4439 | 0.7905 | 0.7912 | | 0.4295 | 18.92 | 7000 | 0.4402 | 0.7951 | 0.7954 | | 0.423 | 19.46 | 7200 | 0.4400 | 0.7978 | 0.7980 | | 0.434 | 20.0 | 7400 | 0.4384 | 0.7968 | 0.7970 | | 0.4285 | 20.54 | 7600 | 0.4409 | 0.7936 | 0.7939 | | 0.4247 | 21.08 | 7800 | 0.4419 | 0.7958 | 0.7961 | | 0.4277 | 21.62 | 8000 | 0.4382 | 0.7955 | 0.7956 | | 0.4288 | 22.16 | 8200 | 0.4382 | 0.7982 | 0.7983 | | 0.4335 | 22.7 | 8400 | 0.4407 | 0.7933 | 0.7937 | | 0.4244 | 23.24 | 8600 | 0.4383 | 0.7951 | 0.7953 | | 0.4243 | 23.78 | 8800 | 0.4388 | 0.7963 | 0.7965 | | 0.4248 | 24.32 | 9000 | 0.4377 | 0.7982 | 0.7983 | | 0.4276 | 24.86 | 9200 | 0.4377 | 0.7975 | 0.7976 | | 0.4387 | 25.41 | 9400 | 0.4372 | 0.7958 | 0.7959 | | 0.4208 | 25.95 | 9600 | 0.4376 | 0.7968 | 0.7970 | | 0.4303 | 26.49 | 9800 | 0.4389 | 0.7959 | 0.7961 | | 0.4243 | 27.03 | 10000 | 0.4384 | 0.7962 | 0.7965 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_core_all-seqsight_65536_512_47M-L1_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_core_all-seqsight_65536_512_47M-L1_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:16:03+00:00
null
null
{}
just1nseo/tulu2-13b-cost-tulumix-5e-7-nojudge
null
[ "safetensors", "region:us" ]
null
2024-05-03T15:16:24+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_core_all-seqsight_65536_512_47M-L8_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_all](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_all) dataset. It achieves the following results on the evaluation set: - Loss: 0.4193 - F1 Score: 0.8054 - Accuracy: 0.8056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.526 | 0.54 | 200 | 0.4758 | 0.7691 | 0.7698 | | 0.4709 | 1.08 | 400 | 0.4679 | 0.7773 | 0.7779 | | 0.4604 | 1.62 | 600 | 0.4528 | 0.7853 | 0.7853 | | 0.4477 | 2.16 | 800 | 0.4555 | 0.7883 | 0.7885 | | 0.4485 | 2.7 | 1000 | 0.4553 | 0.7842 | 0.7850 | | 0.4449 | 3.24 | 1200 | 0.4446 | 0.7877 | 0.7880 | | 0.4387 | 3.78 | 1400 | 0.4491 | 0.7882 | 0.7890 | | 0.4322 | 4.32 | 1600 | 0.4488 | 0.7902 | 0.7909 | | 0.4316 | 4.86 | 1800 | 0.4496 | 0.7901 | 0.7909 | | 0.4319 | 5.41 | 2000 | 0.4445 | 0.7915 | 0.7921 | | 0.4288 | 5.95 | 2200 | 0.4381 | 0.7986 | 0.7986 | | 0.4292 | 6.49 | 2400 | 0.4365 | 0.7974 | 0.7975 | | 0.4201 | 7.03 | 2600 | 0.4383 | 0.7981 | 0.7981 | | 0.4242 | 7.57 | 2800 | 0.4390 | 0.7993 | 0.7993 | | 0.4205 | 8.11 | 3000 | 0.4402 | 0.7938 | 0.7944 | | 0.4195 | 8.65 | 3200 | 0.4349 | 0.7990 | 0.7992 | | 0.4236 | 9.19 | 3400 | 0.4336 | 0.8013 | 0.8014 | | 0.4177 | 9.73 | 3600 | 0.4404 | 0.7960 | 0.7965 | | 0.4211 | 10.27 | 3800 | 0.4361 | 0.7984 | 0.7986 | | 0.4178 | 10.81 | 4000 | 0.4395 | 0.7978 | 0.7978 | | 0.4184 | 11.35 | 4200 | 0.4357 | 0.8010 | 0.8012 | | 0.416 | 11.89 | 4400 | 0.4357 | 0.7957 | 0.7963 | | 0.4147 | 12.43 | 4600 | 0.4314 | 0.8011 | 0.8012 | | 0.4137 | 12.97 | 4800 | 0.4320 | 0.8023 | 0.8024 | | 0.4148 | 13.51 | 5000 | 0.4417 | 0.7896 | 0.7909 | | 0.4119 | 14.05 | 5200 | 0.4309 | 0.8016 | 0.8017 | | 0.4099 | 14.59 | 5400 | 0.4304 | 0.8017 | 0.8017 | | 0.4126 | 15.14 | 5600 | 0.4311 | 0.8008 | 0.8008 | | 0.411 | 15.68 | 5800 | 0.4394 | 0.7957 | 0.7966 | | 0.4071 | 16.22 | 6000 | 0.4338 | 0.8024 | 0.8029 | | 0.4131 | 16.76 | 6200 | 0.4273 | 0.8024 | 0.8025 | | 0.4118 | 17.3 | 6400 | 0.4299 | 0.8017 | 0.8020 | | 0.4103 | 17.84 | 6600 | 0.4301 | 0.8021 | 0.8024 | | 0.4071 | 18.38 | 6800 | 0.4381 | 0.7940 | 0.7951 | | 0.4084 | 18.92 | 7000 | 0.4289 | 0.8024 | 0.8027 | | 0.4003 | 19.46 | 7200 | 0.4300 | 0.8045 | 0.8047 | | 0.412 | 20.0 | 7400 | 0.4284 | 0.8041 | 0.8042 | | 0.4064 | 20.54 | 7600 | 0.4316 | 0.8042 | 0.8046 | | 0.4029 | 21.08 | 7800 | 0.4307 | 0.8054 | 0.8056 | | 0.4037 | 21.62 | 8000 | 0.4268 | 0.8032 | 0.8032 | | 0.4058 | 22.16 | 8200 | 0.4276 | 0.8044 | 0.8046 | | 0.4105 | 22.7 | 8400 | 0.4313 | 0.8029 | 0.8034 | | 0.401 | 23.24 | 8600 | 0.4283 | 0.8025 | 0.8027 | | 0.4021 | 23.78 | 8800 | 0.4289 | 0.8032 | 0.8034 | | 0.4006 | 24.32 | 9000 | 0.4281 | 0.8038 | 0.8039 | | 0.4035 | 24.86 | 9200 | 0.4288 | 0.8032 | 0.8034 | | 0.4139 | 25.41 | 9400 | 0.4271 | 0.8031 | 0.8032 | | 0.3975 | 25.95 | 9600 | 0.4281 | 0.8038 | 0.8039 | | 0.4074 | 26.49 | 9800 | 0.4291 | 0.8030 | 0.8032 | | 0.4027 | 27.03 | 10000 | 0.4288 | 0.8034 | 0.8035 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_core_all-seqsight_65536_512_47M-L8_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_core_all-seqsight_65536_512_47M-L8_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:18:45+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_core_all-seqsight_65536_512_47M-L32_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_all](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_all) dataset. It achieves the following results on the evaluation set: - Loss: 0.4156 - F1 Score: 0.8109 - Accuracy: 0.8110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.5132 | 0.54 | 200 | 0.4606 | 0.7790 | 0.7791 | | 0.4625 | 1.08 | 400 | 0.4707 | 0.7759 | 0.7772 | | 0.4478 | 1.62 | 600 | 0.4477 | 0.7905 | 0.7907 | | 0.4355 | 2.16 | 800 | 0.4496 | 0.7915 | 0.7919 | | 0.4368 | 2.7 | 1000 | 0.4496 | 0.7880 | 0.7892 | | 0.433 | 3.24 | 1200 | 0.4341 | 0.7970 | 0.7971 | | 0.4274 | 3.78 | 1400 | 0.4410 | 0.7922 | 0.7931 | | 0.4195 | 4.32 | 1600 | 0.4366 | 0.7994 | 0.7997 | | 0.422 | 4.86 | 1800 | 0.4424 | 0.7957 | 0.7965 | | 0.42 | 5.41 | 2000 | 0.4373 | 0.7984 | 0.7990 | | 0.4181 | 5.95 | 2200 | 0.4332 | 0.8020 | 0.8020 | | 0.4171 | 6.49 | 2400 | 0.4306 | 0.8014 | 0.8015 | | 0.4083 | 7.03 | 2600 | 0.4315 | 0.8081 | 0.8081 | | 0.4111 | 7.57 | 2800 | 0.4338 | 0.8024 | 0.8024 | | 0.4086 | 8.11 | 3000 | 0.4315 | 0.8030 | 0.8034 | | 0.4062 | 8.65 | 3200 | 0.4297 | 0.8022 | 0.8025 | | 0.4087 | 9.19 | 3400 | 0.4271 | 0.8037 | 0.8037 | | 0.404 | 9.73 | 3600 | 0.4336 | 0.8026 | 0.8030 | | 0.406 | 10.27 | 3800 | 0.4313 | 0.8051 | 0.8054 | | 0.4013 | 10.81 | 4000 | 0.4364 | 0.8054 | 0.8054 | | 0.4023 | 11.35 | 4200 | 0.4277 | 0.8066 | 0.8068 | | 0.3986 | 11.89 | 4400 | 0.4297 | 0.8014 | 0.8019 | | 0.3979 | 12.43 | 4600 | 0.4287 | 0.8071 | 0.8071 | | 0.3977 | 12.97 | 4800 | 0.4271 | 0.8047 | 0.8047 | | 0.3981 | 13.51 | 5000 | 0.4321 | 0.8036 | 0.8044 | | 0.3933 | 14.05 | 5200 | 0.4248 | 0.8083 | 0.8083 | | 0.3888 | 14.59 | 5400 | 0.4270 | 0.8068 | 0.8069 | | 0.3943 | 15.14 | 5600 | 0.4270 | 0.8072 | 0.8073 | | 0.3905 | 15.68 | 5800 | 0.4352 | 0.8020 | 0.8029 | | 0.3869 | 16.22 | 6000 | 0.4285 | 0.8054 | 0.8057 | | 0.393 | 16.76 | 6200 | 0.4206 | 0.8074 | 0.8076 | | 0.3903 | 17.3 | 6400 | 0.4256 | 0.8080 | 0.8083 | | 0.3896 | 17.84 | 6600 | 0.4255 | 0.8083 | 0.8086 | | 0.3859 | 18.38 | 6800 | 0.4339 | 0.8035 | 0.8044 | | 0.3861 | 18.92 | 7000 | 0.4214 | 0.8095 | 0.8098 | | 0.3767 | 19.46 | 7200 | 0.4267 | 0.8053 | 0.8056 | | 0.3911 | 20.0 | 7400 | 0.4236 | 0.8093 | 0.8095 | | 0.3823 | 20.54 | 7600 | 0.4286 | 0.8060 | 0.8064 | | 0.3793 | 21.08 | 7800 | 0.4268 | 0.8106 | 0.8108 | | 0.3811 | 21.62 | 8000 | 0.4190 | 0.8094 | 0.8095 | | 0.3812 | 22.16 | 8200 | 0.4225 | 0.8069 | 0.8071 | | 0.3844 | 22.7 | 8400 | 0.4288 | 0.8070 | 0.8074 | | 0.3786 | 23.24 | 8600 | 0.4225 | 0.8086 | 0.8088 | | 0.3761 | 23.78 | 8800 | 0.4261 | 0.8088 | 0.8090 | | 0.3754 | 24.32 | 9000 | 0.4253 | 0.8090 | 0.8091 | | 0.3777 | 24.86 | 9200 | 0.4252 | 0.8076 | 0.8078 | | 0.3854 | 25.41 | 9400 | 0.4232 | 0.8078 | 0.8079 | | 0.3738 | 25.95 | 9600 | 0.4243 | 0.8088 | 0.8090 | | 0.3793 | 26.49 | 9800 | 0.4254 | 0.8087 | 0.8090 | | 0.3786 | 27.03 | 10000 | 0.4251 | 0.8084 | 0.8086 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_core_all-seqsight_65536_512_47M-L32_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_core_all-seqsight_65536_512_47M-L32_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:19:37+00:00
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
quangtqv/cross_encoder_tool_learning_v1
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T15:19:56+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GUE_prom_prom_core_notata-seqsight_65536_512_47M-L1_f This model is a fine-tuned version of [mahdibaghbanzadeh/seqsight_65536_512_47M](https://huggingface.co/mahdibaghbanzadeh/seqsight_65536_512_47M) on the [mahdibaghbanzadeh/GUE_prom_prom_core_notata](https://huggingface.co/datasets/mahdibaghbanzadeh/GUE_prom_prom_core_notata) dataset. It achieves the following results on the evaluation set: - Loss: 0.3864 - F1 Score: 0.8244 - Accuracy: 0.8244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.5401 | 0.6 | 200 | 0.4229 | 0.8010 | 0.8012 | | 0.4555 | 1.2 | 400 | 0.4026 | 0.8174 | 0.8174 | | 0.4417 | 1.81 | 600 | 0.3950 | 0.8208 | 0.8208 | | 0.4392 | 2.41 | 800 | 0.3931 | 0.8234 | 0.8234 | | 0.4271 | 3.01 | 1000 | 0.3877 | 0.8263 | 0.8263 | | 0.4232 | 3.61 | 1200 | 0.3867 | 0.8320 | 0.8321 | | 0.4263 | 4.22 | 1400 | 0.3861 | 0.8296 | 0.8297 | | 0.4219 | 4.82 | 1600 | 0.3821 | 0.8308 | 0.8308 | | 0.4145 | 5.42 | 1800 | 0.3790 | 0.8338 | 0.8338 | | 0.4172 | 6.02 | 2000 | 0.3822 | 0.8308 | 0.8312 | | 0.4138 | 6.63 | 2200 | 0.3785 | 0.8304 | 0.8306 | | 0.4095 | 7.23 | 2400 | 0.3788 | 0.8330 | 0.8334 | | 0.408 | 7.83 | 2600 | 0.3765 | 0.8356 | 0.8359 | | 0.4016 | 8.43 | 2800 | 0.3857 | 0.8306 | 0.8314 | | 0.4067 | 9.04 | 3000 | 0.3784 | 0.8337 | 0.8342 | | 0.4005 | 9.64 | 3200 | 0.3701 | 0.8386 | 0.8387 | | 0.4027 | 10.24 | 3400 | 0.3698 | 0.8371 | 0.8372 | | 0.3984 | 10.84 | 3600 | 0.3687 | 0.8366 | 0.8366 | | 0.3998 | 11.45 | 3800 | 0.3714 | 0.8399 | 0.8400 | | 0.3972 | 12.05 | 4000 | 0.3693 | 0.8397 | 0.8398 | | 0.3943 | 12.65 | 4200 | 0.3703 | 0.8397 | 0.8398 | | 0.4001 | 13.25 | 4400 | 0.3704 | 0.8373 | 0.8374 | | 0.3998 | 13.86 | 4600 | 0.3683 | 0.8394 | 0.8395 | | 0.3954 | 14.46 | 4800 | 0.3684 | 0.8396 | 0.8396 | | 0.3926 | 15.06 | 5000 | 0.3705 | 0.8364 | 0.8364 | | 0.3924 | 15.66 | 5200 | 0.3683 | 0.8398 | 0.8398 | | 0.3911 | 16.27 | 5400 | 0.3681 | 0.8392 | 0.8393 | | 0.3924 | 16.87 | 5600 | 0.3793 | 0.8339 | 0.8346 | | 0.3892 | 17.47 | 5800 | 0.3756 | 0.8325 | 0.8331 | | 0.397 | 18.07 | 6000 | 0.3725 | 0.8377 | 0.8381 | | 0.3895 | 18.67 | 6200 | 0.3694 | 0.8389 | 0.8391 | | 0.3988 | 19.28 | 6400 | 0.3660 | 0.8396 | 0.8396 | | 0.3886 | 19.88 | 6600 | 0.3688 | 0.8385 | 0.8387 | | 0.3878 | 20.48 | 6800 | 0.3704 | 0.8387 | 0.8389 | | 0.3956 | 21.08 | 7000 | 0.3712 | 0.8391 | 0.8395 | | 0.392 | 21.69 | 7200 | 0.3669 | 0.8409 | 0.8410 | | 0.3875 | 22.29 | 7400 | 0.3689 | 0.8395 | 0.8396 | | 0.3884 | 22.89 | 7600 | 0.3674 | 0.8399 | 0.8400 | | 0.3894 | 23.49 | 7800 | 0.3684 | 0.8393 | 0.8395 | | 0.3905 | 24.1 | 8000 | 0.3692 | 0.8371 | 0.8374 | | 0.3915 | 24.7 | 8200 | 0.3718 | 0.8374 | 0.8378 | | 0.3847 | 25.3 | 8400 | 0.3688 | 0.8385 | 0.8387 | | 0.392 | 25.9 | 8600 | 0.3667 | 0.8388 | 0.8389 | | 0.3841 | 26.51 | 8800 | 0.3659 | 0.8409 | 0.8410 | | 0.3908 | 27.11 | 9000 | 0.3665 | 0.8401 | 0.8402 | | 0.395 | 27.71 | 9200 | 0.3668 | 0.8399 | 0.8400 | | 0.381 | 28.31 | 9400 | 0.3687 | 0.8379 | 0.8381 | | 0.3861 | 28.92 | 9600 | 0.3671 | 0.8401 | 0.8402 | | 0.389 | 29.52 | 9800 | 0.3668 | 0.8397 | 0.8398 | | 0.3852 | 30.12 | 10000 | 0.3671 | 0.8395 | 0.8396 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "mahdibaghbanzadeh/seqsight_65536_512_47M", "model-index": [{"name": "GUE_prom_prom_core_notata-seqsight_65536_512_47M-L1_f", "results": []}]}
mahdibaghbanzadeh/GUE_prom_prom_core_notata-seqsight_65536_512_47M-L1_f
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mahdibaghbanzadeh/seqsight_65536_512_47M", "region:us" ]
null
2024-05-03T15:20:43+00:00