Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | golf2248/r6ed8ef | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:28:58+00:00 |
text-generation | transformers |
## Lumimaid 0.1
<center><div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;">
</div></center>
This model uses the Llama3 **prompting format**
Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough.
We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data.
This model includes the new Luminae dataset from Ikari.
If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY).
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of Lumimaid-8B-v0.1.
Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
- Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset
- [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly)
- [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly)
- [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly)
- Airoboros (reduced)
- [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced)
## Models used (only for 8B)
- Initial LumiMaid 8B Finetune
- Undi95/Llama-3-Unholy-8B-e4
- Undi95/Llama-3-LewdPlay-8B
## Prompt template: Llama3
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw2.25-exl2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:30:43+00:00 |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.1.dev0 | {"library_name": "peft", "base_model": "baffo32/decapoda-research-llama-7B-hf"} | Yuki20/capstone-llama7B-lora | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:baffo32/decapoda-research-llama-7B-hf",
"region:us"
] | null | 2024-05-03T02:31:18+00:00 |
text-generation | transformers |
# Llama-3-RPMerge-8B-SLERP
Llama-3-RPMerge-8B-SLERP is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Undi95/Llama-3-LewdPlay-8B-evo](https://huggingface.co/Undi95/Llama-3-LewdPlay-8B-evo)
* [cgato/L3-TheSpice-8b-v0.8.3](https://huggingface.co/cgato/L3-TheSpice-8b-v0.8.3)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: Undi95/Llama-3-LewdPlay-8B-evo
layer_range: [0, 32]
- model: cgato/L3-TheSpice-8b-v0.8.3
layer_range: [0, 32]
merge_method: slerp
base_model: Undi95/Llama-3-LewdPlay-8B-evo
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: float16
random_seed: 0
int8_mask: true
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsfs11/Llama-3-RPMerge-8B-SLERP"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"tags": ["merge", "mergekit", "lazymergekit", "Undi95/Llama-3-LewdPlay-8B-evo", "cgato/L3-TheSpice-8b-v0.8.3"], "base_model": ["Undi95/Llama-3-LewdPlay-8B-evo", "cgato/L3-TheSpice-8b-v0.8.3"]} | jsfs11/Llama-3-RPMerge-8B-SLERP | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"Undi95/Llama-3-LewdPlay-8B-evo",
"cgato/L3-TheSpice-8b-v0.8.3",
"conversational",
"base_model:Undi95/Llama-3-LewdPlay-8B-evo",
"base_model:cgato/L3-TheSpice-8b-v0.8.3",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:31:33+00:00 |
null | null | {} | std50218/vivit-b-16x2-kinetics400-finetuned-temp-original | null | [
"region:us"
] | null | 2024-05-03T02:32:23+00:00 |
|
text-generation | transformers | {"license": "mit"} | migueldeguzmandev/GPT2XL_RLLMv18-9 | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:33:05+00:00 |
|
text2text-generation | transformers | {} | ngl18/longt5-large-16384-pubmed-lora-biolaysumm | null | [
"transformers",
"safetensors",
"longt5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:33:12+00:00 |
|
text-generation | transformers | {} | luizlzg/CaLLMe-2_8b | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:33:27+00:00 |
|
null | null | {"license": "mit"} | pukiwawa/llama3 | null | [
"license:mit",
"region:us"
] | null | 2024-05-03T02:33:36+00:00 |
|
text-generation | transformers | {} | luizlzg/CaLLMe-2_8b_awq | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-03T02:33:46+00:00 |
|
null | keras | {"license": "mit"} | rohanth/tensor-forest | null | [
"keras",
"tflite",
"tensorboard",
"onnx",
"license:mit",
"region:us"
] | null | 2024-05-03T02:36:28+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | devkya/custom-peft-whiper-large | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:36:39+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | shallow6414/qyvbuo1 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:37:02+00:00 |
null | null | {"tags": ["mteb"], "model-index": [{"name": "e5-small-v2", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 76.65671641791046}, {"type": "ap", "value": 40.16054083847425}, {"type": "f1", "value": 70.73805260085523}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 46.431999999999995}, {"type": "f1", "value": 44.4239364840113}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 24.182000000000002}, {"type": "map_at_10", "value": 38.53}, {"type": "map_at_100", "value": 39.574999999999996}, {"type": "map_at_1000", "value": 39.593}, {"type": "map_at_3", "value": 33.796}, {"type": "map_at_5", "value": 36.406}, {"type": "mrr_at_1", "value": 24.964}, {"type": "mrr_at_10", "value": 38.829}, {"type": "mrr_at_100", "value": 39.867000000000004}, {"type": "mrr_at_1000", "value": 39.885999999999996}, {"type": "mrr_at_3", "value": 34.092}, {"type": "mrr_at_5", "value": 36.713}, {"type": "ndcg_at_1", "value": 24.182000000000002}, {"type": "ndcg_at_10", "value": 46.865}, {"type": "ndcg_at_100", "value": 51.611}, {"type": "ndcg_at_1000", "value": 52.137}, {"type": "ndcg_at_3", "value": 37.036}, {"type": "ndcg_at_5", "value": 41.715999999999994}, {"type": "precision_at_1", "value": 24.182000000000002}, {"type": "precision_at_10", "value": 7.367999999999999}, {"type": "precision_at_100", "value": 0.951}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_3", "value": 15.481}, {"type": "precision_at_5", "value": 11.55}, {"type": "recall_at_1", "value": 24.182000000000002}, {"type": "recall_at_10", "value": 73.68400000000001}, {"type": "recall_at_100", "value": 95.092}, {"type": "recall_at_1000", "value": 99.289}, {"type": "recall_at_3", "value": 46.444}, {"type": "recall_at_5", "value": 57.752}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 43.243157093430476}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 36.48617956618108}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 57.6915668741631}, {"type": "mrr", "value": 70.97832300048366}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.25177125617765}, {"type": "cos_sim_spearman", "value": 82.19042698150236}, {"type": "euclidean_pearson", "value": 81.39677961271671}, {"type": "euclidean_spearman", "value": 82.19042698150236}, {"type": "manhattan_pearson", "value": 81.83582953195571}, {"type": "manhattan_spearman", "value": 82.20127060207557}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 73.73701298701299}, {"type": "f1", "value": 72.68295178070956}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 35.55562814544096}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 31.024495399036073}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "mteb/cqadupstack-android", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 31.356}, {"type": "map_at_10", "value": 41.583}, {"type": "map_at_100", "value": 42.931999999999995}, {"type": "map_at_1000", "value": 43.059999999999995}, {"type": "map_at_3", "value": 38.572}, {"type": "map_at_5", "value": 40.184999999999995}, {"type": "mrr_at_1", "value": 39.485}, {"type": "mrr_at_10", "value": 48.325}, {"type": "mrr_at_100", "value": 49.044}, {"type": "mrr_at_1000", "value": 49.095}, {"type": "mrr_at_3", "value": 45.97}, {"type": "mrr_at_5", "value": 47.38}, {"type": "ndcg_at_1", "value": 39.485}, {"type": "ndcg_at_10", "value": 47.689}, {"type": "ndcg_at_100", "value": 52.611}, {"type": "ndcg_at_1000", "value": 54.75600000000001}, {"type": "ndcg_at_3", "value": 43.675000000000004}, {"type": "ndcg_at_5", "value": 45.305}, {"type": "precision_at_1", "value": 39.485}, {"type": "precision_at_10", "value": 9.142}, {"type": "precision_at_100", "value": 1.4460000000000002}, {"type": "precision_at_1000", "value": 0.19}, {"type": "precision_at_3", "value": 21.364}, {"type": "precision_at_5", "value": 15.021}, {"type": "recall_at_1", "value": 31.356}, {"type": "recall_at_10", "value": 58.338}, {"type": "recall_at_100", "value": 79.23400000000001}, {"type": "recall_at_1000", "value": 93.4}, {"type": "recall_at_3", "value": 45.224}, {"type": "recall_at_5", "value": 50.719}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "mteb/cqadupstack-english", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 25.988}, {"type": "map_at_10", "value": 34.314}, {"type": "map_at_100", "value": 35.323}, {"type": "map_at_1000", "value": 35.453}, {"type": "map_at_3", "value": 31.855}, {"type": "map_at_5", "value": 33.317}, {"type": "mrr_at_1", "value": 32.675}, {"type": "mrr_at_10", "value": 40.199}, {"type": "mrr_at_100", "value": 40.912}, {"type": "mrr_at_1000", "value": 40.964}, {"type": "mrr_at_3", "value": 38.132}, {"type": "mrr_at_5", "value": 39.421}, {"type": "ndcg_at_1", "value": 32.675}, {"type": "ndcg_at_10", "value": 39.346}, {"type": "ndcg_at_100", "value": 43.578}, {"type": "ndcg_at_1000", "value": 45.975}, {"type": "ndcg_at_3", "value": 35.75}, {"type": "ndcg_at_5", "value": 37.578}, {"type": "precision_at_1", "value": 32.675}, {"type": "precision_at_10", "value": 7.228999999999999}, {"type": "precision_at_100", "value": 1.204}, {"type": "precision_at_1000", "value": 0.172}, {"type": "precision_at_3", "value": 17.113}, {"type": "precision_at_5", "value": 12.166}, {"type": "recall_at_1", "value": 25.988}, {"type": "recall_at_10", "value": 47.943000000000005}, {"type": "recall_at_100", "value": 66.326}, {"type": "recall_at_1000", "value": 82.02000000000001}, {"type": "recall_at_3", "value": 37.169999999999995}, {"type": "recall_at_5", "value": 42.356}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "mteb/cqadupstack-gaming", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 38.536}, {"type": "map_at_10", "value": 49.514}, {"type": "map_at_100", "value": 50.55500000000001}, {"type": "map_at_1000", "value": 50.615}, {"type": "map_at_3", "value": 46.329}, {"type": "map_at_5", "value": 48.278}, {"type": "mrr_at_1", "value": 43.887}, {"type": "mrr_at_10", "value": 52.900999999999996}, {"type": "mrr_at_100", "value": 53.63099999999999}, {"type": "mrr_at_1000", "value": 53.664}, {"type": "mrr_at_3", "value": 50.502}, {"type": "mrr_at_5", "value": 52.063}, {"type": "ndcg_at_1", "value": 43.887}, {"type": "ndcg_at_10", "value": 54.847}, {"type": "ndcg_at_100", "value": 59.163}, {"type": "ndcg_at_1000", "value": 60.44199999999999}, {"type": "ndcg_at_3", "value": 49.6}, {"type": "ndcg_at_5", "value": 52.493}, {"type": "precision_at_1", "value": 43.887}, {"type": "precision_at_10", "value": 8.677}, {"type": "precision_at_100", "value": 1.176}, {"type": "precision_at_1000", "value": 0.133}, {"type": "precision_at_3", "value": 21.797}, {"type": "precision_at_5", "value": 15.146999999999998}, {"type": "recall_at_1", "value": 38.536}, {"type": "recall_at_10", "value": 67.23}, {"type": "recall_at_100", "value": 86.095}, {"type": "recall_at_1000", "value": 95.26400000000001}, {"type": "recall_at_3", "value": 53.388000000000005}, {"type": "recall_at_5", "value": 60.4}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "mteb/cqadupstack-gis", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 23.488}, {"type": "map_at_10", "value": 30.375000000000004}, {"type": "map_at_100", "value": 31.343}, {"type": "map_at_1000", "value": 31.447999999999997}, {"type": "map_at_3", "value": 28.017999999999997}, {"type": "map_at_5", "value": 29.415999999999997}, {"type": "mrr_at_1", "value": 25.085}, {"type": "mrr_at_10", "value": 31.935000000000002}, {"type": "mrr_at_100", "value": 32.843}, {"type": "mrr_at_1000", "value": 32.929}, {"type": "mrr_at_3", "value": 29.548000000000002}, {"type": "mrr_at_5", "value": 31.04}, {"type": "ndcg_at_1", "value": 25.085}, {"type": "ndcg_at_10", "value": 34.48}, {"type": "ndcg_at_100", "value": 39.501}, {"type": "ndcg_at_1000", "value": 42.141}, {"type": "ndcg_at_3", "value": 29.831000000000003}, {"type": "ndcg_at_5", "value": 32.312999999999995}, {"type": "precision_at_1", "value": 25.085}, {"type": "precision_at_10", "value": 5.153}, {"type": "precision_at_100", "value": 0.815}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 12.09}, {"type": "precision_at_5", "value": 8.701}, {"type": "recall_at_1", "value": 23.488}, {"type": "recall_at_10", "value": 45.671}, {"type": "recall_at_100", "value": 69.062}, {"type": "recall_at_1000", "value": 88.82}, {"type": "recall_at_3", "value": 33.376}, {"type": "recall_at_5", "value": 39.311}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "mteb/cqadupstack-mathematica", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 12.879999999999999}, {"type": "map_at_10", "value": 18.873}, {"type": "map_at_100", "value": 20.097}, {"type": "map_at_1000", "value": 20.222}, {"type": "map_at_3", "value": 16.982}, {"type": "map_at_5", "value": 17.902}, {"type": "mrr_at_1", "value": 15.920000000000002}, {"type": "mrr_at_10", "value": 22.71}, {"type": "mrr_at_100", "value": 23.818}, {"type": "mrr_at_1000", "value": 23.898}, {"type": "mrr_at_3", "value": 20.626}, {"type": "mrr_at_5", "value": 21.733}, {"type": "ndcg_at_1", "value": 15.920000000000002}, {"type": "ndcg_at_10", "value": 22.959}, {"type": "ndcg_at_100", "value": 29.270000000000003}, {"type": "ndcg_at_1000", "value": 32.448}, {"type": "ndcg_at_3", "value": 19.356}, {"type": "ndcg_at_5", "value": 20.816000000000003}, {"type": "precision_at_1", "value": 15.920000000000002}, {"type": "precision_at_10", "value": 4.328}, {"type": "precision_at_100", "value": 0.8710000000000001}, {"type": "precision_at_1000", "value": 0.127}, {"type": "precision_at_3", "value": 9.203999999999999}, {"type": "precision_at_5", "value": 6.5920000000000005}, {"type": "recall_at_1", "value": 12.879999999999999}, {"type": "recall_at_10", "value": 31.724999999999998}, {"type": "recall_at_100", "value": 60.049}, {"type": "recall_at_1000", "value": 83.133}, {"type": "recall_at_3", "value": 21.981}, {"type": "recall_at_5", "value": 25.668999999999997}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "mteb/cqadupstack-physics", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 22.774}, {"type": "map_at_10", "value": 31.312}, {"type": "map_at_100", "value": 32.487}, {"type": "map_at_1000", "value": 32.609}, {"type": "map_at_3", "value": 28.589}, {"type": "map_at_5", "value": 30.142999999999997}, {"type": "mrr_at_1", "value": 28.393}, {"type": "mrr_at_10", "value": 36.813}, {"type": "mrr_at_100", "value": 37.724999999999994}, {"type": "mrr_at_1000", "value": 37.789}, {"type": "mrr_at_3", "value": 34.392}, {"type": "mrr_at_5", "value": 35.893}, {"type": "ndcg_at_1", "value": 28.393}, {"type": "ndcg_at_10", "value": 36.835}, {"type": "ndcg_at_100", "value": 42.192}, {"type": "ndcg_at_1000", "value": 44.812000000000005}, {"type": "ndcg_at_3", "value": 32.268}, {"type": "ndcg_at_5", "value": 34.515}, {"type": "precision_at_1", "value": 28.393}, {"type": "precision_at_10", "value": 6.737}, {"type": "precision_at_100", "value": 1.114}, {"type": "precision_at_1000", "value": 0.154}, {"type": "precision_at_3", "value": 15.399}, {"type": "precision_at_5", "value": 10.991}, {"type": "recall_at_1", "value": 22.774}, {"type": "recall_at_10", "value": 48.136}, {"type": "recall_at_100", "value": 71.0}, {"type": "recall_at_1000", "value": 88.74}, {"type": "recall_at_3", "value": 35.098}, {"type": "recall_at_5", "value": 41.134}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "mteb/cqadupstack-programmers", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 23.669}, {"type": "map_at_10", "value": 32.554}, {"type": "map_at_100", "value": 33.886}, {"type": "map_at_1000", "value": 34.004}, {"type": "map_at_3", "value": 29.944}, {"type": "map_at_5", "value": 31.330999999999996}, {"type": "mrr_at_1", "value": 29.110000000000003}, {"type": "mrr_at_10", "value": 37.234}, {"type": "mrr_at_100", "value": 38.151}, {"type": "mrr_at_1000", "value": 38.218999999999994}, {"type": "mrr_at_3", "value": 35.046}, {"type": "mrr_at_5", "value": 36.056}, {"type": "ndcg_at_1", "value": 29.110000000000003}, {"type": "ndcg_at_10", "value": 37.743}, {"type": "ndcg_at_100", "value": 43.413000000000004}, {"type": "ndcg_at_1000", "value": 46.06}, {"type": "ndcg_at_3", "value": 33.501999999999995}, {"type": "ndcg_at_5", "value": 35.175}, {"type": "precision_at_1", "value": 29.110000000000003}, {"type": "precision_at_10", "value": 6.872}, {"type": "precision_at_100", "value": 1.129}, {"type": "precision_at_1000", "value": 0.154}, {"type": "precision_at_3", "value": 16.02}, {"type": "precision_at_5", "value": 11.21}, {"type": "recall_at_1", "value": 23.669}, {"type": "recall_at_10", "value": 48.615}, {"type": "recall_at_100", "value": 72.708}, {"type": "recall_at_1000", "value": 90.96300000000001}, {"type": "recall_at_3", "value": 36.373}, {"type": "recall_at_5", "value": 41.06}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "mteb/cqadupstack-stats", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 21.364}, {"type": "map_at_10", "value": 27.208}, {"type": "map_at_100", "value": 28.083000000000002}, {"type": "map_at_1000", "value": 28.182000000000002}, {"type": "map_at_3", "value": 25.448999999999998}, {"type": "map_at_5", "value": 26.397}, {"type": "mrr_at_1", "value": 24.233}, {"type": "mrr_at_10", "value": 29.802}, {"type": "mrr_at_100", "value": 30.595}, {"type": "mrr_at_1000", "value": 30.660999999999998}, {"type": "mrr_at_3", "value": 28.17}, {"type": "mrr_at_5", "value": 28.967}, {"type": "ndcg_at_1", "value": 24.233}, {"type": "ndcg_at_10", "value": 30.774}, {"type": "ndcg_at_100", "value": 35.414}, {"type": "ndcg_at_1000", "value": 37.962}, {"type": "ndcg_at_3", "value": 27.497}, {"type": "ndcg_at_5", "value": 28.957}, {"type": "precision_at_1", "value": 24.233}, {"type": "precision_at_10", "value": 4.755}, {"type": "precision_at_100", "value": 0.775}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 11.860999999999999}, {"type": "precision_at_5", "value": 8.097999999999999}, {"type": "recall_at_1", "value": 21.364}, {"type": "recall_at_10", "value": 39.291}, {"type": "recall_at_100", "value": 60.907}, {"type": "recall_at_1000", "value": 79.786}, {"type": "recall_at_3", "value": 30.257}, {"type": "recall_at_5", "value": 33.924}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "mteb/cqadupstack-tex", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 15.139}, {"type": "map_at_10", "value": 21.063000000000002}, {"type": "map_at_100", "value": 22.070999999999998}, {"type": "map_at_1000", "value": 22.203999999999997}, {"type": "map_at_3", "value": 19.204}, {"type": "map_at_5", "value": 20.185}, {"type": "mrr_at_1", "value": 18.445}, {"type": "mrr_at_10", "value": 24.698999999999998}, {"type": "mrr_at_100", "value": 25.569999999999997}, {"type": "mrr_at_1000", "value": 25.659}, {"type": "mrr_at_3", "value": 22.866}, {"type": "mrr_at_5", "value": 23.868000000000002}, {"type": "ndcg_at_1", "value": 18.445}, {"type": "ndcg_at_10", "value": 24.998}, {"type": "ndcg_at_100", "value": 29.982999999999997}, {"type": "ndcg_at_1000", "value": 33.271}, {"type": "ndcg_at_3", "value": 21.692}, {"type": "ndcg_at_5", "value": 23.102}, {"type": "precision_at_1", "value": 18.445}, {"type": "precision_at_10", "value": 4.542}, {"type": "precision_at_100", "value": 0.84}, {"type": "precision_at_1000", "value": 0.129}, {"type": "precision_at_3", "value": 10.381}, {"type": "precision_at_5", "value": 7.356999999999999}, {"type": "recall_at_1", "value": 15.139}, {"type": "recall_at_10", "value": 33.268}, {"type": "recall_at_100", "value": 55.87}, {"type": "recall_at_1000", "value": 79.841}, {"type": "recall_at_3", "value": 23.629}, {"type": "recall_at_5", "value": 27.541}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "mteb/cqadupstack-unix", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 24.317}, {"type": "map_at_10", "value": 31.661}, {"type": "map_at_100", "value": 32.844}, {"type": "map_at_1000", "value": 32.952}, {"type": "map_at_3", "value": 29.118}, {"type": "map_at_5", "value": 30.410999999999998}, {"type": "mrr_at_1", "value": 28.544999999999998}, {"type": "mrr_at_10", "value": 36.059999999999995}, {"type": "mrr_at_100", "value": 36.983}, {"type": "mrr_at_1000", "value": 37.047999999999995}, {"type": "mrr_at_3", "value": 33.738}, {"type": "mrr_at_5", "value": 34.871}, {"type": "ndcg_at_1", "value": 28.544999999999998}, {"type": "ndcg_at_10", "value": 36.546}, {"type": "ndcg_at_100", "value": 42.039}, {"type": "ndcg_at_1000", "value": 44.61}, {"type": "ndcg_at_3", "value": 31.835}, {"type": "ndcg_at_5", "value": 33.755}, {"type": "precision_at_1", "value": 28.544999999999998}, {"type": "precision_at_10", "value": 6.0729999999999995}, {"type": "precision_at_100", "value": 0.991}, {"type": "precision_at_1000", "value": 0.132}, {"type": "precision_at_3", "value": 13.993}, {"type": "precision_at_5", "value": 9.795}, {"type": "recall_at_1", "value": 24.317}, {"type": "recall_at_10", "value": 47.227000000000004}, {"type": "recall_at_100", "value": 71.245}, {"type": "recall_at_1000", "value": 89.584}, {"type": "recall_at_3", "value": 34.292}, {"type": "recall_at_5", "value": 39.129000000000005}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "mteb/cqadupstack-webmasters", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 24.169999999999998}, {"type": "map_at_10", "value": 32.669}, {"type": "map_at_100", "value": 34.195}, {"type": "map_at_1000", "value": 34.438}, {"type": "map_at_3", "value": 30.264000000000003}, {"type": "map_at_5", "value": 31.694}, {"type": "mrr_at_1", "value": 29.249000000000002}, {"type": "mrr_at_10", "value": 37.230999999999995}, {"type": "mrr_at_100", "value": 38.216}, {"type": "mrr_at_1000", "value": 38.291}, {"type": "mrr_at_3", "value": 35.178}, {"type": "mrr_at_5", "value": 36.453}, {"type": "ndcg_at_1", "value": 29.249000000000002}, {"type": "ndcg_at_10", "value": 37.967}, {"type": "ndcg_at_100", "value": 43.514}, {"type": "ndcg_at_1000", "value": 46.63}, {"type": "ndcg_at_3", "value": 34.437}, {"type": "ndcg_at_5", "value": 36.299}, {"type": "precision_at_1", "value": 29.249000000000002}, {"type": "precision_at_10", "value": 7.055}, {"type": "precision_at_100", "value": 1.431}, {"type": "precision_at_1000", "value": 0.23800000000000002}, {"type": "precision_at_3", "value": 16.469}, {"type": "precision_at_5", "value": 11.897}, {"type": "recall_at_1", "value": 24.169999999999998}, {"type": "recall_at_10", "value": 47.577000000000005}, {"type": "recall_at_100", "value": 72.375}, {"type": "recall_at_1000", "value": 92.711}, {"type": "recall_at_3", "value": 36.551}, {"type": "recall_at_5", "value": 41.739}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "mteb/cqadupstack-wordpress", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 18.306}, {"type": "map_at_10", "value": 24.882}, {"type": "map_at_100", "value": 25.898}, {"type": "map_at_1000", "value": 25.991999999999997}, {"type": "map_at_3", "value": 22.506999999999998}, {"type": "map_at_5", "value": 23.708000000000002}, {"type": "mrr_at_1", "value": 20.148}, {"type": "mrr_at_10", "value": 27.014}, {"type": "mrr_at_100", "value": 27.886}, {"type": "mrr_at_1000", "value": 27.955999999999996}, {"type": "mrr_at_3", "value": 24.553}, {"type": "mrr_at_5", "value": 25.801000000000002}, {"type": "ndcg_at_1", "value": 20.148}, {"type": "ndcg_at_10", "value": 29.211}, {"type": "ndcg_at_100", "value": 34.307}, {"type": "ndcg_at_1000", "value": 36.875}, {"type": "ndcg_at_3", "value": 24.333}, {"type": "ndcg_at_5", "value": 26.455000000000002}, {"type": "precision_at_1", "value": 20.148}, {"type": "precision_at_10", "value": 4.713}, {"type": "precision_at_100", "value": 0.784}, {"type": "precision_at_1000", "value": 0.11}, {"type": "precision_at_3", "value": 10.290000000000001}, {"type": "precision_at_5", "value": 7.394}, {"type": "recall_at_1", "value": 18.306}, {"type": "recall_at_10", "value": 40.591}, {"type": "recall_at_100", "value": 64.18199999999999}, {"type": "recall_at_1000", "value": 83.646}, {"type": "recall_at_3", "value": 27.528999999999996}, {"type": "recall_at_5", "value": 32.619}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 7.872999999999999}, {"type": "map_at_10", "value": 13.361999999999998}, {"type": "map_at_100", "value": 15.024999999999999}, {"type": "map_at_1000", "value": 15.254000000000001}, {"type": "map_at_3", "value": 10.895000000000001}, {"type": "map_at_5", "value": 12.131}, {"type": "mrr_at_1", "value": 16.743}, {"type": "mrr_at_10", "value": 26.033}, {"type": "mrr_at_100", "value": 27.290999999999997}, {"type": "mrr_at_1000", "value": 27.356}, {"type": "mrr_at_3", "value": 22.573}, {"type": "mrr_at_5", "value": 24.336}, {"type": "ndcg_at_1", "value": 16.743}, {"type": "ndcg_at_10", "value": 19.675}, {"type": "ndcg_at_100", "value": 27.345000000000002}, {"type": "ndcg_at_1000", "value": 31.685999999999996}, {"type": "ndcg_at_3", "value": 15.036}, {"type": "ndcg_at_5", "value": 16.643}, {"type": "precision_at_1", "value": 16.743}, {"type": "precision_at_10", "value": 6.43}, {"type": "precision_at_100", "value": 1.4749999999999999}, {"type": "precision_at_1000", "value": 0.22599999999999998}, {"type": "precision_at_3", "value": 11.01}, {"type": "precision_at_5", "value": 8.924999999999999}, {"type": "recall_at_1", "value": 7.872999999999999}, {"type": "recall_at_10", "value": 25.026}, {"type": "recall_at_100", "value": 52.245}, {"type": "recall_at_1000", "value": 76.949}, {"type": "recall_at_3", "value": 13.962}, {"type": "recall_at_5", "value": 18.085}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 8.586}, {"type": "map_at_10", "value": 17.098}, {"type": "map_at_100", "value": 23.857}, {"type": "map_at_1000", "value": 25.357000000000003}, {"type": "map_at_3", "value": 12.574}, {"type": "map_at_5", "value": 14.374999999999998}, {"type": "mrr_at_1", "value": 59.5}, {"type": "mrr_at_10", "value": 68.199}, {"type": "mrr_at_100", "value": 68.699}, {"type": "mrr_at_1000", "value": 68.71199999999999}, {"type": "mrr_at_3", "value": 65.958}, {"type": "mrr_at_5", "value": 67.38300000000001}, {"type": "ndcg_at_1", "value": 48.625}, {"type": "ndcg_at_10", "value": 36.064}, {"type": "ndcg_at_100", "value": 41.137}, {"type": "ndcg_at_1000", "value": 49.08}, {"type": "ndcg_at_3", "value": 39.615}, {"type": "ndcg_at_5", "value": 37.080999999999996}, {"type": "precision_at_1", "value": 59.5}, {"type": "precision_at_10", "value": 28.050000000000004}, {"type": "precision_at_100", "value": 9.133}, {"type": "precision_at_1000", "value": 1.8960000000000001}, {"type": "precision_at_3", "value": 42.75}, {"type": "precision_at_5", "value": 35.25}, {"type": "recall_at_1", "value": 8.586}, {"type": "recall_at_10", "value": 23.148}, {"type": "recall_at_100", "value": 48.479}, {"type": "recall_at_1000", "value": 73.75500000000001}, {"type": "recall_at_3", "value": 13.718}, {"type": "recall_at_5", "value": 16.862}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 47.440000000000005}, {"type": "f1", "value": 40.19931464357708}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "mteb/fever", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "map_at_1", "value": 50.544}, {"type": "map_at_10", "value": 63.495000000000005}, {"type": "map_at_100", "value": 64.005}, {"type": "map_at_1000", "value": 64.023}, {"type": "map_at_3", "value": 60.937}, {"type": "map_at_5", "value": 62.556}, {"type": "mrr_at_1", "value": 54.379999999999995}, {"type": "mrr_at_10", "value": 67.266}, {"type": "mrr_at_100", "value": 67.647}, {"type": "mrr_at_1000", "value": 67.65299999999999}, {"type": "mrr_at_3", "value": 64.85600000000001}, {"type": "mrr_at_5", "value": 66.402}, {"type": "ndcg_at_1", "value": 54.379999999999995}, {"type": "ndcg_at_10", "value": 69.977}, {"type": "ndcg_at_100", "value": 72.045}, {"type": "ndcg_at_1000", "value": 72.404}, {"type": "ndcg_at_3", "value": 65.12299999999999}, {"type": "ndcg_at_5", "value": 67.843}, {"type": "precision_at_1", "value": 54.379999999999995}, {"type": "precision_at_10", "value": 9.469}, {"type": "precision_at_100", "value": 1.0670000000000002}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_3", "value": 26.533}, {"type": "precision_at_5", "value": 17.441000000000003}, {"type": "recall_at_1", "value": 50.544}, {"type": "recall_at_10", "value": 86.253}, {"type": "recall_at_100", "value": 94.92699999999999}, {"type": "recall_at_1000", "value": 97.301}, {"type": "recall_at_3", "value": 73.215}, {"type": "recall_at_5", "value": 79.81899999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "mteb/fiqa", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "map_at_1", "value": 18.027}, {"type": "map_at_10", "value": 28.347}, {"type": "map_at_100", "value": 30.123}, {"type": "map_at_1000", "value": 30.284}, {"type": "map_at_3", "value": 24.862000000000002}, {"type": "map_at_5", "value": 26.698}, {"type": "mrr_at_1", "value": 34.105000000000004}, {"type": "mrr_at_10", "value": 42.747}, {"type": "mrr_at_100", "value": 43.672}, {"type": "mrr_at_1000", "value": 43.723}, {"type": "mrr_at_3", "value": 40.303}, {"type": "mrr_at_5", "value": 41.6}, {"type": "ndcg_at_1", "value": 34.105000000000004}, {"type": "ndcg_at_10", "value": 35.495}, {"type": "ndcg_at_100", "value": 42.447}, {"type": "ndcg_at_1000", "value": 45.537}, {"type": "ndcg_at_3", "value": 31.911}, {"type": "ndcg_at_5", "value": 32.995999999999995}, {"type": "precision_at_1", "value": 34.105000000000004}, {"type": "precision_at_10", "value": 9.738}, {"type": "precision_at_100", "value": 1.687}, {"type": "precision_at_1000", "value": 0.22399999999999998}, {"type": "precision_at_3", "value": 20.988}, {"type": "precision_at_5", "value": 15.432000000000002}, {"type": "recall_at_1", "value": 18.027}, {"type": "recall_at_10", "value": 41.897}, {"type": "recall_at_100", "value": 67.949}, {"type": "recall_at_1000", "value": 86.735}, {"type": "recall_at_3", "value": 29.342000000000002}, {"type": "recall_at_5", "value": 34.365}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "mteb/hotpotqa", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "map_at_1", "value": 35.409}, {"type": "map_at_10", "value": 55.894}, {"type": "map_at_100", "value": 56.838}, {"type": "map_at_1000", "value": 56.901999999999994}, {"type": "map_at_3", "value": 52.074}, {"type": "map_at_5", "value": 54.429}, {"type": "mrr_at_1", "value": 70.817}, {"type": "mrr_at_10", "value": 78.532}, {"type": "mrr_at_100", "value": 78.755}, {"type": "mrr_at_1000", "value": 78.763}, {"type": "mrr_at_3", "value": 77.171}, {"type": "mrr_at_5", "value": 78.03}, {"type": "ndcg_at_1", "value": 70.817}, {"type": "ndcg_at_10", "value": 64.995}, {"type": "ndcg_at_100", "value": 68.27499999999999}, {"type": "ndcg_at_1000", "value": 69.525}, {"type": "ndcg_at_3", "value": 59.401}, {"type": "ndcg_at_5", "value": 62.471}, {"type": "precision_at_1", "value": 70.817}, {"type": "precision_at_10", "value": 13.957}, {"type": "precision_at_100", "value": 1.651}, {"type": "precision_at_1000", "value": 0.182}, {"type": "precision_at_3", "value": 38.267}, {"type": "precision_at_5", "value": 25.385999999999996}, {"type": "recall_at_1", "value": 35.409}, {"type": "recall_at_10", "value": 69.784}, {"type": "recall_at_100", "value": 82.54599999999999}, {"type": "recall_at_1000", "value": 90.824}, {"type": "recall_at_3", "value": 57.4}, {"type": "recall_at_5", "value": 63.464}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 79.54679999999999}, {"type": "ap", "value": 73.47419341239319}, {"type": "f1", "value": 79.4507801491805}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "mteb/msmarco", "config": "default", "split": "test", "revision": "c5a29a104738b98a9e76336939199e264163d4a0"}, "metrics": [{"type": "map_at_1", "value": 2.465}, {"type": "map_at_10", "value": 15.237}, {"type": "map_at_100", "value": 39.974}, {"type": "map_at_1000", "value": 47.487}, {"type": "map_at_3", "value": 6.798}, {"type": "map_at_5", "value": 9.635}, {"type": "mrr_at_1", "value": 93.023}, {"type": "mrr_at_10", "value": 94.961}, {"type": "mrr_at_100", "value": 95.041}, {"type": "mrr_at_1000", "value": 95.041}, {"type": "mrr_at_3", "value": 94.961}, {"type": "mrr_at_5", "value": 94.961}, {"type": "ndcg_at_1", "value": 75.194}, {"type": "ndcg_at_10", "value": 68.715}, {"type": "ndcg_at_100", "value": 64.191}, {"type": "ndcg_at_1000", "value": 71.192}, {"type": "ndcg_at_3", "value": 73.085}, {"type": "ndcg_at_5", "value": 72.817}, {"type": "precision_at_1", "value": 93.023}, {"type": "precision_at_10", "value": 76.512}, {"type": "precision_at_100", "value": 37.698}, {"type": "precision_at_1000", "value": 6.851}, {"type": "precision_at_3", "value": 88.372}, {"type": "precision_at_5", "value": 84.651}, {"type": "recall_at_1", "value": 2.465}, {"type": "recall_at_10", "value": 16.181}, {"type": "recall_at_100", "value": 52.515}, {"type": "recall_at_1000", "value": 77.483}, {"type": "recall_at_3", "value": 6.922000000000001}, {"type": "recall_at_5", "value": 9.945}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 90.48335613315092}, {"type": "f1", "value": 90.3575395041569}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 58.10533515731875}, {"type": "f1", "value": 41.93379347349137}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 65.60524546065906}, {"type": "f1", "value": 62.37255545904355}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 71.049092131809}, {"type": "f1", "value": 70.19452987909062}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 31.698383065423773}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 27.763066538701253}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 30.320838995172895}, {"type": "mrr", "value": 31.223609863654694}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "mteb/nfcorpus", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "map_at_1", "value": 5.127000000000001}, {"type": "map_at_10", "value": 11.395}, {"type": "map_at_100", "value": 14.252999999999998}, {"type": "map_at_1000", "value": 15.601}, {"type": "map_at_3", "value": 8.327}, {"type": "map_at_5", "value": 9.637}, {"type": "mrr_at_1", "value": 42.105}, {"type": "mrr_at_10", "value": 50.495000000000005}, {"type": "mrr_at_100", "value": 51.175000000000004}, {"type": "mrr_at_1000", "value": 51.217999999999996}, {"type": "mrr_at_3", "value": 48.452}, {"type": "mrr_at_5", "value": 49.830000000000005}, {"type": "ndcg_at_1", "value": 40.093}, {"type": "ndcg_at_10", "value": 31.806}, {"type": "ndcg_at_100", "value": 28.949}, {"type": "ndcg_at_1000", "value": 37.655}, {"type": "ndcg_at_3", "value": 36.692}, {"type": "ndcg_at_5", "value": 34.348}, {"type": "precision_at_1", "value": 41.486000000000004}, {"type": "precision_at_10", "value": 23.777}, {"type": "precision_at_100", "value": 7.457999999999999}, {"type": "precision_at_1000", "value": 2.018}, {"type": "precision_at_3", "value": 34.572}, {"type": "precision_at_5", "value": 29.536}, {"type": "recall_at_1", "value": 5.127000000000001}, {"type": "recall_at_10", "value": 15.427}, {"type": "recall_at_100", "value": 29.206}, {"type": "recall_at_1000", "value": 60.716}, {"type": "recall_at_3", "value": 9.261999999999999}, {"type": "recall_at_5", "value": 11.677999999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "mteb/nq", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "map_at_1", "value": 29.275000000000002}, {"type": "map_at_10", "value": 44.374}, {"type": "map_at_100", "value": 45.405}, {"type": "map_at_1000", "value": 45.437}, {"type": "map_at_3", "value": 40.028000000000006}, {"type": "map_at_5", "value": 42.492999999999995}, {"type": "mrr_at_1", "value": 32.966}, {"type": "mrr_at_10", "value": 46.905}, {"type": "mrr_at_100", "value": 47.699999999999996}, {"type": "mrr_at_1000", "value": 47.721000000000004}, {"type": "mrr_at_3", "value": 43.308}, {"type": "mrr_at_5", "value": 45.458}, {"type": "ndcg_at_1", "value": 32.966}, {"type": "ndcg_at_10", "value": 52.151}, {"type": "ndcg_at_100", "value": 56.565}, {"type": "ndcg_at_1000", "value": 57.315000000000005}, {"type": "ndcg_at_3", "value": 43.973}, {"type": "ndcg_at_5", "value": 48.125}, {"type": "precision_at_1", "value": 32.966}, {"type": "precision_at_10", "value": 8.72}, {"type": "precision_at_100", "value": 1.121}, {"type": "precision_at_1000", "value": 0.11900000000000001}, {"type": "precision_at_3", "value": 20.085}, {"type": "precision_at_5", "value": 14.45}, {"type": "recall_at_1", "value": 29.275000000000002}, {"type": "recall_at_10", "value": 73.288}, {"type": "recall_at_100", "value": 92.56}, {"type": "recall_at_1000", "value": 98.139}, {"type": "recall_at_3", "value": 52.11}, {"type": "recall_at_5", "value": 61.696}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "mteb/quora", "config": "default", "split": "test", "revision": "e4e08e0b7dbe3c8700f0daef558ff32256715259"}, "metrics": [{"type": "map_at_1", "value": 67.537}, {"type": "map_at_10", "value": 80.879}, {"type": "map_at_100", "value": 81.577}, {"type": "map_at_1000", "value": 81.602}, {"type": "map_at_3", "value": 77.981}, {"type": "map_at_5", "value": 79.768}, {"type": "mrr_at_1", "value": 77.69}, {"type": "mrr_at_10", "value": 84.417}, {"type": "mrr_at_100", "value": 84.59299999999999}, {"type": "mrr_at_1000", "value": 84.596}, {"type": "mrr_at_3", "value": 83.26}, {"type": "mrr_at_5", "value": 84.023}, {"type": "ndcg_at_1", "value": 77.72}, {"type": "ndcg_at_10", "value": 85.021}, {"type": "ndcg_at_100", "value": 86.66199999999999}, {"type": "ndcg_at_1000", "value": 86.87700000000001}, {"type": "ndcg_at_3", "value": 81.90899999999999}, {"type": "ndcg_at_5", "value": 83.55}, {"type": "precision_at_1", "value": 77.72}, {"type": "precision_at_10", "value": 12.876999999999999}, {"type": "precision_at_100", "value": 1.498}, {"type": "precision_at_1000", "value": 0.156}, {"type": "precision_at_3", "value": 35.653}, {"type": "precision_at_5", "value": 23.476}, {"type": "recall_at_1", "value": 67.537}, {"type": "recall_at_10", "value": 92.878}, {"type": "recall_at_100", "value": 98.786}, {"type": "recall_at_1000", "value": 99.892}, {"type": "recall_at_3", "value": 83.968}, {"type": "recall_at_5", "value": 88.571}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 49.16241148820256}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 61.54900278834193}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "mteb/scidocs", "config": "default", "split": "test", "revision": "f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88"}, "metrics": [{"type": "map_at_1", "value": 4.173}, {"type": "map_at_10", "value": 10.120999999999999}, {"type": "map_at_100", "value": 11.956}, {"type": "map_at_1000", "value": 12.219}, {"type": "map_at_3", "value": 7.3580000000000005}, {"type": "map_at_5", "value": 8.799}, {"type": "mrr_at_1", "value": 20.599999999999998}, {"type": "mrr_at_10", "value": 30.326999999999998}, {"type": "mrr_at_100", "value": 31.412000000000003}, {"type": "mrr_at_1000", "value": 31.480000000000004}, {"type": "mrr_at_3", "value": 26.983}, {"type": "mrr_at_5", "value": 28.938000000000002}, {"type": "ndcg_at_1", "value": 20.599999999999998}, {"type": "ndcg_at_10", "value": 17.365}, {"type": "ndcg_at_100", "value": 24.623}, {"type": "ndcg_at_1000", "value": 29.65}, {"type": "ndcg_at_3", "value": 16.509999999999998}, {"type": "ndcg_at_5", "value": 14.542}, {"type": "precision_at_1", "value": 20.599999999999998}, {"type": "precision_at_10", "value": 8.98}, {"type": "precision_at_100", "value": 1.939}, {"type": "precision_at_1000", "value": 0.315}, {"type": "precision_at_3", "value": 15.4}, {"type": "precision_at_5", "value": 12.8}, {"type": "recall_at_1", "value": 4.173}, {"type": "recall_at_10", "value": 18.212999999999997}, {"type": "recall_at_100", "value": 39.363}, {"type": "recall_at_1000", "value": 63.94499999999999}, {"type": "recall_at_3", "value": 9.373}, {"type": "recall_at_5", "value": 13.008000000000001}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.87431570350371}, {"type": "cos_sim_spearman", "value": 79.25074443392982}, {"type": "euclidean_pearson", "value": 80.9080554083112}, {"type": "euclidean_spearman", "value": 79.2507399109411}, {"type": "manhattan_pearson", "value": 80.90956765983888}, {"type": "manhattan_spearman", "value": 79.20576643481074}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.48662954870734}, {"type": "cos_sim_spearman", "value": 73.70799073411621}, {"type": "euclidean_pearson", "value": 80.49103960387095}, {"type": "euclidean_spearman", "value": 73.7055087532169}, {"type": "manhattan_pearson", "value": 80.5783519196888}, {"type": "manhattan_spearman", "value": 73.90297846138822}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 80.70595293210951}, {"type": "cos_sim_spearman", "value": 82.31727223815786}, {"type": "euclidean_pearson", "value": 81.5306062072953}, {"type": "euclidean_spearman", "value": 82.31721735735299}, {"type": "manhattan_pearson", "value": 81.43418231655517}, {"type": "manhattan_spearman", "value": 82.20026619822572}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 81.24706825802423}, {"type": "cos_sim_spearman", "value": 80.06920825678749}, {"type": "euclidean_pearson", "value": 80.48334698932342}, {"type": "euclidean_spearman", "value": 80.06918911208002}, {"type": "manhattan_pearson", "value": 80.40681414406772}, {"type": "manhattan_spearman", "value": 80.0102866792831}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.16929217014857}, {"type": "cos_sim_spearman", "value": 87.2100080395613}, {"type": "euclidean_pearson", "value": 86.4066737251256}, {"type": "euclidean_spearman", "value": 87.20998056215564}, {"type": "manhattan_pearson", "value": 86.39080868256596}, {"type": "manhattan_spearman", "value": 87.1927937048571}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 80.53662089031329}, {"type": "cos_sim_spearman", "value": 82.33056272292711}, {"type": "euclidean_pearson", "value": 81.40056519211387}, {"type": "euclidean_spearman", "value": 82.33056272292711}, {"type": "manhattan_pearson", "value": 81.27845573928735}, {"type": "manhattan_spearman", "value": 82.22192854693785}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.66415281856406}, {"type": "cos_sim_spearman", "value": 87.58094863633612}, {"type": "euclidean_pearson", "value": 88.25085288996081}, {"type": "euclidean_spearman", "value": 87.58094863633612}, {"type": "manhattan_pearson", "value": 88.34016528668018}, {"type": "manhattan_spearman", "value": 87.67773968789653}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 65.91354529556227}, {"type": "cos_sim_spearman", "value": 66.29904599827411}, {"type": "euclidean_pearson", "value": 66.99135025654104}, {"type": "euclidean_spearman", "value": 66.29904599827411}, {"type": "manhattan_pearson", "value": 67.29167796154489}, {"type": "manhattan_spearman", "value": 66.54035688112117}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.17371544155577}, {"type": "cos_sim_spearman", "value": 84.91600230031912}, {"type": "euclidean_pearson", "value": 84.58535536355062}, {"type": "euclidean_spearman", "value": 84.91603828194314}, {"type": "manhattan_pearson", "value": 84.52786631260929}, {"type": "manhattan_spearman", "value": 84.8279451537192}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 79.90931256553237}, {"type": "mrr", "value": 94.55430462783404}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "mteb/scifact", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "map_at_1", "value": 52.233}, {"type": "map_at_10", "value": 63.135}, {"type": "map_at_100", "value": 63.766999999999996}, {"type": "map_at_1000", "value": 63.788999999999994}, {"type": "map_at_3", "value": 60.374}, {"type": "map_at_5", "value": 62.11600000000001}, {"type": "mrr_at_1", "value": 54.333}, {"type": "mrr_at_10", "value": 64.208}, {"type": "mrr_at_100", "value": 64.687}, {"type": "mrr_at_1000", "value": 64.705}, {"type": "mrr_at_3", "value": 62.166999999999994}, {"type": "mrr_at_5", "value": 63.532999999999994}, {"type": "ndcg_at_1", "value": 54.333}, {"type": "ndcg_at_10", "value": 67.965}, {"type": "ndcg_at_100", "value": 70.709}, {"type": "ndcg_at_1000", "value": 71.221}, {"type": "ndcg_at_3", "value": 63.376}, {"type": "ndcg_at_5", "value": 65.977}, {"type": "precision_at_1", "value": 54.333}, {"type": "precision_at_10", "value": 9.167}, {"type": "precision_at_100", "value": 1.0630000000000002}, {"type": "precision_at_1000", "value": 0.11100000000000002}, {"type": "precision_at_3", "value": 25.0}, {"type": "precision_at_5", "value": 16.733}, {"type": "recall_at_1", "value": 52.233}, {"type": "recall_at_10", "value": 81.289}, {"type": "recall_at_100", "value": 93.767}, {"type": "recall_at_1000", "value": 97.667}, {"type": "recall_at_3", "value": 69.294}, {"type": "recall_at_5", "value": 75.64999999999999}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.8069306930693}, {"type": "cos_sim_ap", "value": 95.01715408250185}, {"type": "cos_sim_f1", "value": 90.27431421446383}, {"type": "cos_sim_precision", "value": 90.04975124378109}, {"type": "cos_sim_recall", "value": 90.5}, {"type": "dot_accuracy", "value": 99.8069306930693}, {"type": "dot_ap", "value": 95.01715420720572}, {"type": "dot_f1", "value": 90.27431421446383}, {"type": "dot_precision", "value": 90.04975124378109}, {"type": "dot_recall", "value": 90.5}, {"type": "euclidean_accuracy", "value": 99.8069306930693}, {"type": "euclidean_ap", "value": 95.01715408250185}, {"type": "euclidean_f1", "value": 90.27431421446383}, {"type": "euclidean_precision", "value": 90.04975124378109}, {"type": "euclidean_recall", "value": 90.5}, {"type": "manhattan_accuracy", "value": 99.8108910891089}, {"type": "manhattan_ap", "value": 95.08344895081773}, {"type": "manhattan_f1", "value": 90.2672718103883}, {"type": "manhattan_precision", "value": 91.04781281790437}, {"type": "manhattan_recall", "value": 89.5}, {"type": "max_accuracy", "value": 99.8108910891089}, {"type": "max_ap", "value": 95.08344895081773}, {"type": "max_f1", "value": 90.27431421446383}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 56.77496100801627}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 32.03980982336066}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 49.92590367093363}, {"type": "mrr", "value": 50.72744249214838}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 29.873523128424296}, {"type": "cos_sim_spearman", "value": 29.77696422152863}, {"type": "dot_pearson", "value": 29.873538265911392}, {"type": "dot_spearman", "value": 29.77696422152863}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "mteb/trec-covid", "config": "default", "split": "test", "revision": "bb9466bac8153a0349341eb1b22e06409e78ef4e"}, "metrics": [{"type": "map_at_1", "value": 0.16}, {"type": "map_at_10", "value": 1.196}, {"type": "map_at_100", "value": 6.525}, {"type": "map_at_1000", "value": 17.379}, {"type": "map_at_3", "value": 0.43299999999999994}, {"type": "map_at_5", "value": 0.687}, {"type": "mrr_at_1", "value": 64.0}, {"type": "mrr_at_10", "value": 76.467}, {"type": "mrr_at_100", "value": 76.533}, {"type": "mrr_at_1000", "value": 76.533}, {"type": "mrr_at_3", "value": 73.667}, {"type": "mrr_at_5", "value": 75.467}, {"type": "ndcg_at_1", "value": 56.99999999999999}, {"type": "ndcg_at_10", "value": 52.614000000000004}, {"type": "ndcg_at_100", "value": 41.677}, {"type": "ndcg_at_1000", "value": 41.565000000000005}, {"type": "ndcg_at_3", "value": 55.765}, {"type": "ndcg_at_5", "value": 55.553}, {"type": "precision_at_1", "value": 64.0}, {"type": "precision_at_10", "value": 56.8}, {"type": "precision_at_100", "value": 43.18}, {"type": "precision_at_1000", "value": 19.016}, {"type": "precision_at_3", "value": 60.0}, {"type": "precision_at_5", "value": 60.4}, {"type": "recall_at_1", "value": 0.16}, {"type": "recall_at_10", "value": 1.4909999999999999}, {"type": "recall_at_100", "value": 10.238999999999999}, {"type": "recall_at_1000", "value": 40.492}, {"type": "recall_at_3", "value": 0.486}, {"type": "recall_at_5", "value": 0.8099999999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "mteb/touche2020", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "map_at_1", "value": 1.078}, {"type": "map_at_10", "value": 4.777}, {"type": "map_at_100", "value": 8.552}, {"type": "map_at_1000", "value": 9.831}, {"type": "map_at_3", "value": 2.33}, {"type": "map_at_5", "value": 3.102}, {"type": "mrr_at_1", "value": 14.285999999999998}, {"type": "mrr_at_10", "value": 25.688}, {"type": "mrr_at_100", "value": 27.211000000000002}, {"type": "mrr_at_1000", "value": 27.262999999999998}, {"type": "mrr_at_3", "value": 20.408}, {"type": "mrr_at_5", "value": 23.265}, {"type": "ndcg_at_1", "value": 13.264999999999999}, {"type": "ndcg_at_10", "value": 13.225999999999999}, {"type": "ndcg_at_100", "value": 23.873}, {"type": "ndcg_at_1000", "value": 35.357}, {"type": "ndcg_at_3", "value": 11.162999999999998}, {"type": "ndcg_at_5", "value": 12.202}, {"type": "precision_at_1", "value": 14.285999999999998}, {"type": "precision_at_10", "value": 13.469000000000001}, {"type": "precision_at_100", "value": 5.592}, {"type": "precision_at_1000", "value": 1.278}, {"type": "precision_at_3", "value": 12.245000000000001}, {"type": "precision_at_5", "value": 13.877999999999998}, {"type": "recall_at_1", "value": 1.078}, {"type": "recall_at_10", "value": 10.094}, {"type": "recall_at_100", "value": 35.723}, {"type": "recall_at_1000", "value": 70.161}, {"type": "recall_at_3", "value": 3.078}, {"type": "recall_at_5", "value": 5.171}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 63.526}, {"type": "ap", "value": 11.499475362455422}, {"type": "f1", "value": 49.007047166853305}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 61.77136389360498}, {"type": "f1", "value": 61.60711673348749}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 40.700597517044926}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 86.59474280264648}, {"type": "cos_sim_ap", "value": 75.2354882574253}, {"type": "cos_sim_f1", "value": 69.23641703377386}, {"type": "cos_sim_precision", "value": 64.55956184390689}, {"type": "cos_sim_recall", "value": 74.64379947229551}, {"type": "dot_accuracy", "value": 86.59474280264648}, {"type": "dot_ap", "value": 75.2355004100119}, {"type": "dot_f1", "value": 69.23641703377386}, {"type": "dot_precision", "value": 64.55956184390689}, {"type": "dot_recall", "value": 74.64379947229551}, {"type": "euclidean_accuracy", "value": 86.59474280264648}, {"type": "euclidean_ap", "value": 75.23549109559548}, {"type": "euclidean_f1", "value": 69.23641703377386}, {"type": "euclidean_precision", "value": 64.55956184390689}, {"type": "euclidean_recall", "value": 74.64379947229551}, {"type": "manhattan_accuracy", "value": 86.46361089586935}, {"type": "manhattan_ap", "value": 74.97783476285602}, {"type": "manhattan_f1", "value": 69.16030534351145}, {"type": "manhattan_precision", "value": 66.78132678132678}, {"type": "manhattan_recall", "value": 71.71503957783642}, {"type": "max_accuracy", "value": 86.59474280264648}, {"type": "max_ap", "value": 75.2355004100119}, {"type": "max_f1", "value": 69.23641703377386}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.03830480847596}, {"type": "cos_sim_ap", "value": 85.95577773962282}, {"type": "cos_sim_f1", "value": 78.27735233907043}, {"type": "cos_sim_precision", "value": 77.10231516056758}, {"type": "cos_sim_recall", "value": 79.48875885432707}, {"type": "dot_accuracy", "value": 89.03830480847596}, {"type": "dot_ap", "value": 85.95578535080806}, {"type": "dot_f1", "value": 78.27735233907043}, {"type": "dot_precision", "value": 77.10231516056758}, {"type": "dot_recall", "value": 79.48875885432707}, {"type": "euclidean_accuracy", "value": 89.03830480847596}, {"type": "euclidean_ap", "value": 85.95573921817162}, {"type": "euclidean_f1", "value": 78.27735233907043}, {"type": "euclidean_precision", "value": 77.10231516056758}, {"type": "euclidean_recall", "value": 79.48875885432707}, {"type": "manhattan_accuracy", "value": 88.9024721543059}, {"type": "manhattan_ap", "value": 85.89551017445959}, {"type": "manhattan_f1", "value": 78.19396487013964}, {"type": "manhattan_precision", "value": 76.28148799062683}, {"type": "manhattan_recall", "value": 80.20480443486295}, {"type": "max_accuracy", "value": 89.03830480847596}, {"type": "max_ap", "value": 85.95578535080806}, {"type": "max_f1", "value": 78.27735233907043}]}]}]} | yessilver/new_model | null | [
"mteb",
"model-index",
"region:us"
] | null | 2024-05-03T02:39:02+00:00 |
|
text2text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BART_DocBot_SonatafyAI_V1
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0244
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.016 | 1.0 | 982 | 0.0185 |
| 0.0038 | 2.0 | 1964 | 0.0281 |
| 0.0037 | 3.0 | 2946 | 0.0164 |
| 0.0016 | 4.0 | 3928 | 0.0220 |
| 0.0012 | 5.0 | 4910 | 0.0244 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "facebook/bart-large", "model-index": [{"name": "BART_DocBot_SonatafyAI_V1", "results": []}]} | Sonatafyai/BART_DocBot_SonatafyAI_V1 | null | [
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/bart-large",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:39:58+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Atom-7B - bnb 8bits
- Model creator: https://huggingface.co/FlagAlpha/
- Original model: https://huggingface.co/FlagAlpha/Atom-7B/
Original model description:
---
developers: [https://huggingface.co/FlagAlphaAI]
license: apache-2.0
language:
- zh
- en
pipeline_tag: question-answering
library_name: transformers
---
# Atom-7B
Atom-7B完全开源可商用,由Llama中文社区和AtomEcho(原子回声)联合研发,基于Llama2-7B采用大规模的中文数据进行了继续预训练,我们会持续提供更新的模型参数,模型训练过程见[llama.family](https://llama.family)。
模型的部署、训练、微调等方法详见Llama中文社区GitHub仓库:[**Llama-Chinese**](https://github.com/LlamaFamily/Llama-Chinese)。
## 📝 中文数据
| 类型 | 描述 |
| ---------------------------------------------------------- | ------------------------------------------------------------ |
| 网络数据 | 互联网上公开的网络数据,挑选出去重后的高质量中文数据,涉及到百科、书籍、博客、新闻、公告、小说等高质量长文本数据。 |
| [Wikipedia](https://github.com/goldsmith/Wikipedia) | 中文Wikipedia的数据 |
| [悟道](https://github.com/BAAI-WuDao/Model) | 中文悟道开源的200G数据 |
| [Clue](https://github.com/CLUEbenchmark/CLUEDatasetSearch) | Clue开放的中文预训练数据,进行清洗后的高质量中文长文本数据 |
| 竞赛数据集 | 近年来中文自然语言处理多任务竞赛数据集,约150个 |
| [MNBVC](https://github.com/esbatmop/MNBVC) | MNBVC 中清洗出来的部分数据集 |
**我们也欢迎大家在[llama.family](https://llama.family)中贡献自己的数据,您的数据通过审核后会加入模型训练,也将影响模型未来的能力走向。**
## 📚 中文词表
为了提高中文文本处理的效率,我们针对Llama2模型的词表进行了深度优化。
首先,我们基于数百G的中文文本,**在Llama2词表的基础上扩展词库至65,000个单词**。
经过测试,我们的改进使得**中文编码/解码速度提高了约350%**。
此外,我们还扩大了中文字符集的覆盖范围,包括所有**emoji符号**,这使的生成带有表情符号的文章更加高效。
对于Llama2原生词表中的一些特殊情况,如数字、英文等,我们尽可能地避免对其进行修改或替换。
最终,成功地实现了一种既能提高中文处理效率又能保持Llama2原有性能的方法。
## 📈 训练过程
**模型结构**
基于当前最优秀的开源模型Llama2,使用主流Decoder-only的标准Transformer网络结构,支持4K的上下文长度(Context Length),为同尺寸模型中最长,能满足更长的多轮对话、知识问答与摘要等需求,模型应用场景更广泛。
**FlashAttention-2高效训练**
Atom-7B采用了FlashAttention-2技术进行训练。由于在处理较长的输入序列时,内存消耗的问题可能会导致“内存爆炸”现象。FlashAttention-2是一种高效注意力机制的实现方式之一,相较于传统的注意力技术(Attention),它拥有更快速的速度以及更加优化的内存占用率。
**基于NTK的自适应上下文扩展技术**
- 可在不继续训练模型的情况下支持更长的上下文
- 本项目中模型默认支持4K上下文,利用上述技术可扩展至18K+
- 经过微调可以支持到32K+
## 💻 推理配置
实际应用中,消费级显卡要比专业显卡便宜的多(比如3090相比A10,同样都是24G显存)。
对于消费级显卡,直接FP32肯定放不下,一般最基本的是FP16,而INT8和INT4量化就很有用,例如:
- 对于3080显卡(10G显存),Atom-7B的INT8只需要8G显存可以直接部署。
- 对于3080显卡(10G显存),Atom-7B的INT4只需要5G显存可以直接部署。
---
# Llama中文社区
## 🚀 社区地址:
Github:[**Llama-Chinese**](https://github.com/LlamaFamily/Llama-Chinese)
在线体验链接:[**llama.family**](https://llama.family/)
## 🔥 社区介绍
欢迎来到Llama中文社区!
我们是一个专注于Llama模型在中文方面的优化和上层建设的高级技术社区。
**基于大规模中文数据,从预训练开始对Llama2模型进行中文能力的持续迭代升级**。
我们热忱欢迎对大模型LLM充满热情的开发者和研究者加入我们的行列。
## 🐼 社区资源
- Llama2在线体验链接[**llama.family**](https://llama.family/),同时包含Meta原版和中文微调版本!
- Llama2 Chat模型的[中文问答能力评测](https://github.com/LlamaFamily/Llama-Chinese/tree/main#-%E6%A8%A1%E5%9E%8B%E8%AF%84%E6%B5%8B)!
- [社区飞书知识库](https://chinesellama.feishu.cn/wiki/space/7257824476874768388?ccm_open_type=lark_wiki_spaceLink),欢迎大家一起共建!
| {} | RichardErkhov/FlagAlpha_-_Atom-7B-8bits | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"custom_code",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-03T02:41:06+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | arthrod/cicerollamatry6 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:42:10+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | shallow6414/0x2xu58 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:42:30+00:00 |
text-to-audio | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ceb_b64_le4_s8000
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4050
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.4561 | 19.8020 | 500 | 0.4151 |
| 0.4179 | 39.6040 | 1000 | 0.3994 |
| 0.4075 | 59.4059 | 1500 | 0.4018 |
| 0.3981 | 79.2079 | 2000 | 0.4029 |
| 0.3862 | 99.0099 | 2500 | 0.3978 |
| 0.3726 | 118.8119 | 3000 | 0.3978 |
| 0.365 | 138.6139 | 3500 | 0.3960 |
| 0.3525 | 158.4158 | 4000 | 0.3969 |
| 0.3545 | 178.2178 | 4500 | 0.3982 |
| 0.3473 | 198.0198 | 5000 | 0.4039 |
| 0.3439 | 217.8218 | 5500 | 0.4020 |
| 0.3371 | 237.6238 | 6000 | 0.4044 |
| 0.3362 | 257.4257 | 6500 | 0.4041 |
| 0.3311 | 277.2277 | 7000 | 0.4022 |
| 0.3345 | 297.0297 | 7500 | 0.4051 |
| 0.3348 | 316.8317 | 8000 | 0.4050 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "microsoft/speecht5_tts", "model-index": [{"name": "ceb_b64_le4_s8000", "results": []}]} | mikhail-panzo/ceb_b64_le4_s8000 | null | [
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"base_model:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:42:40+00:00 |
text-classification | transformers | {} | koheisanno/bert-base-cased-finetuned-mnli | null | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:43:42+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | shallow6414/hktug03 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:44:49+00:00 |
text-generation | transformers |
## Lumimaid 0.1
<center><div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;">
</div></center>
This model uses the Llama3 **prompting format**
Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough.
We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data.
This model includes the new Luminae dataset from Ikari.
If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY).
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of Lumimaid-8B-v0.1.
Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
- Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset
- [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly)
- [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly)
- [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly)
- Airoboros (reduced)
- [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced)
## Models used (only for 8B)
- Initial LumiMaid 8B Finetune
- Undi95/Llama-3-Unholy-8B-e4
- Undi95/Llama-3-LewdPlay-8B
## Prompt template: Llama3
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw2.5-exl2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:44:53+00:00 |
null | null | {"license": "openrail"} | iaaoli2/kellsmith | null | [
"license:openrail",
"region:us"
] | null | 2024-05-03T02:45:56+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | TrevorAsbery/Mistral-7b-papers | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:47:11+00:00 |
null | transformers |
# Uploaded model
- **Developed by:** pathos00011
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/Phi-3-mini-4k-instruct-bnb-4bit"} | pathos00011/phi3_finetune_skycity | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:47:11+00:00 |
text-generation | transformers | {"license": "mit"} | NishantPar/phi2-email-priority-qlora | null | [
"transformers",
"phi",
"text-generation",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-03T02:47:43+00:00 |
|
null | null | {} | std50218/vivit-b-16x2-kinetics400-finetuned-temp-original-dictionary | null | [
"region:us"
] | null | 2024-05-03T02:48:05+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | cilantro9246/bkxa964 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:49:07+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | golf2248/yob0htd | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:49:37+00:00 |
null | transformers | ## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_Chat_1.0
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "LeroyDyer/Mixtral_AI_Chat_1.0", "quantized_by": "mradermacher"} | mradermacher/Mixtral_AI_Chat_1.0-GGUF | null | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:LeroyDyer/Mixtral_AI_Chat_1.0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:49:46+00:00 |
text-generation | transformers | # gradientai/Llama-3-8B-Instruct-Gradient-1048k AWQ
- Model creator: [gradientai](https://huggingface.co/gradientai)
- Original model: [Llama-3-8B-Instruct-Gradient-1048k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k)
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a>
## Model Summary
Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected].
For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab)
This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data.
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/Llama-3-8B-Instruct-Gradient-1048k-AWQ"
system_message = "You are Llama-3-8B-Instruct-Gradient-1048k, incarnated as a powerful AI. You were created by gradientai."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
## Citation instructions
```plaintext
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```
| {"library_name": "transformers", "tags": ["4-bit", "AWQ", "text-generation", "autotrain_compatible", "endpoints_compatible"], "pipeline_tag": "text-generation", "inference": false, "quantized_by": "Suparious"} | solidrust/Llama-3-8B-Instruct-Gradient-1048k-AWQ | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"4-bit",
"AWQ",
"autotrain_compatible",
"endpoints_compatible",
"conversational",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:50:04+00:00 |
automatic-speech-recognition | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shtapm/whisper-large_0502_decoder9_200steps | null | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:50:17+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth"]} | notzero/qlora_llama3 | null | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:51:15+00:00 |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava_siglip_llama3_8b_finetune_8192
This model is a fine-tuned version of [MFuyu/llava_siglip_llama3_8b_pretrain_8192](https://huggingface.co/MFuyu/llava_siglip_llama3_8b_pretrain_8192) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"tags": ["generated_from_trainer"], "base_model": "MFuyu/llava_siglip_llama3_8b_pretrain_8192", "model-index": [{"name": "llava_siglip_llama3_8b_finetune_8192", "results": []}]} | TIGER-Lab/Mantis-8B-siglip-llama3 | null | [
"transformers",
"safetensors",
"llava",
"pretraining",
"generated_from_trainer",
"base_model:MFuyu/llava_siglip_llama3_8b_pretrain_8192",
"endpoints_compatible",
"region:us",
"has_space"
] | null | 2024-05-03T02:53:08+00:00 |
null | null |
# JarvisLlama-7B
JarvisLlama-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration.
* [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
* [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B)
## 🧩 Configuration
```yaml
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
density: 0.6
weight: 0.5
- model: mlabonne/OrpoLlama-3-8B
parameters:
density: 0.55
weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "automerger/JarvisLlama-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "automerger"], "base_model": ["NousResearch/Meta-Llama-3-8B-Instruct", "mlabonne/OrpoLlama-3-8B"]} | automerger/JarvisLlama-7B | null | [
"merge",
"mergekit",
"lazymergekit",
"automerger",
"base_model:NousResearch/Meta-Llama-3-8B-Instruct",
"base_model:mlabonne/OrpoLlama-3-8B",
"license:apache-2.0",
"region:us"
] | null | 2024-05-03T02:53:20+00:00 |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava_clip_llama3_8b_finetune_8192
This model is a fine-tuned version of [MFuyu/llava_clip_llama3_8b_pretrain_8192](https://huggingface.co/MFuyu/llava_clip_llama3_8b_pretrain_8192) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"tags": ["generated_from_trainer"], "base_model": "MFuyu/llava_clip_llama3_8b_pretrain_8192", "model-index": [{"name": "llava_clip_llama3_8b_finetune_8192", "results": []}]} | TIGER-Lab/Mantis-8B-clip-llama3 | null | [
"transformers",
"safetensors",
"llava",
"pretraining",
"generated_from_trainer",
"base_model:MFuyu/llava_clip_llama3_8b_pretrain_8192",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:53:21+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | golf2248/a131lxy | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:53:36+00:00 |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava_clip_llama3_8b_pretrain_8192
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1
- Datasets 2.17.1
- Tokenizers 0.19.1
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "llava_clip_llama3_8b_pretrain_8192", "results": []}]} | TIGER-Lab/Mantis-8B-clip-llama3-pretraind | null | [
"transformers",
"safetensors",
"llava",
"pretraining",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:53:48+00:00 |
null | null | {} | Sufian5642/bert-finetuned-squad-accelerate | null | [
"region:us"
] | null | 2024-05-03T02:53:50+00:00 |
|
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava_siglip_llama3_8b_pretrain_8192
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1
- Datasets 2.17.1
- Tokenizers 0.19.1
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "llava_siglip_llama3_8b_pretrain_8192", "results": []}]} | TIGER-Lab/Mantis-8B-siglip-llama3-pretraind | null | [
"transformers",
"safetensors",
"llava",
"pretraining",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:53:59+00:00 |
text-generation | transformers |
# WestTemptressTensor-10.7B-v0.2a-SLERP
WestTemptressTensor-10.7B-v0.2a-SLERP is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [jsfs11/TemptressTensor-10.7B-v0.1a](https://huggingface.co/jsfs11/TemptressTensor-10.7B-v0.1a)
* [froggeric/WestLake-10.7B-v2](https://huggingface.co/froggeric/WestLake-10.7B-v2)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: jsfs11/TemptressTensor-10.7B-v0.1a
layer_range: [0, 48]
- model: froggeric/WestLake-10.7B-v2
layer_range: [0, 48]
merge_method: slerp
base_model: jsfs11/TemptressTensor-10.7B-v0.1a
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
random_seed: 0
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"tags": ["merge", "mergekit", "lazymergekit", "jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2"], "base_model": ["jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2"]} | jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"jsfs11/TemptressTensor-10.7B-v0.1a",
"froggeric/WestLake-10.7B-v2",
"base_model:jsfs11/TemptressTensor-10.7B-v0.1a",
"base_model:froggeric/WestLake-10.7B-v2",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:54:25+00:00 |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mfuyu_1.5_8b_8192_720p
This model is a fine-tuned version of [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "cc-by-nc-4.0", "tags": ["generated_from_trainer"], "base_model": "adept/fuyu-8b", "model-index": [{"name": "mfuyu_1.5_8b_8192_720p", "results": []}]} | TIGER-Lab/Mantis-8B-Fuyu | null | [
"transformers",
"safetensors",
"fuyu",
"text-generation",
"generated_from_trainer",
"base_model:adept/fuyu-8b",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T02:54:53+00:00 |
null | null | {} | Nibo4k/lony | null | [
"region:us"
] | null | 2024-05-03T02:56:45+00:00 |
|
text-to-image | diffusers |
# SDXL LoRA DreamBooth - cookey39/teratera
<Gallery />
## Model description
### These are cookey39/teratera LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`teratera.safetensors` here 💾](/cookey39/teratera/blob/main/teratera.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:teratera:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`teratera_emb.safetensors` here 💾](/cookey39/teratera/blob/main/teratera_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `teratera_emb` to your prompt. For example, `In the style of Terada`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('cookey39/teratera', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='cookey39/teratera', filename='teratera_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('In the style of Terada,White hair, cute dress, ice cream.').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/cookey39/teratera/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
| {"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "diffusers", "lora", "template:sd-lora"], "widget": [{"text": "In the style of Terada,White hair, cute dress, ice cream.", "output": {"url": "image_0.png"}}, {"text": "In the style of Terada,White hair, cute dress, ice cream.", "output": {"url": "image_1.png"}}, {"text": "In the style of Terada,White hair, cute dress, ice cream.", "output": {"url": "image_2.png"}}, {"text": "In the style of Terada,White hair, cute dress, ice cream.", "output": {"url": "image_3.png"}}], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "In the style of Terada"} | cookey39/teratera | null | [
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"diffusers-training",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | null | 2024-05-03T02:57:52+00:00 |
text-generation | transformers |
## Lumimaid 0.1
<center><div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;">
</div></center>
This model uses the Llama3 **prompting format**
Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough.
We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data.
This model includes the new Luminae dataset from Ikari.
If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY).
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of Lumimaid-8B-v0.1.
Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
- Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset
- [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly)
- [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly)
- [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly)
- Airoboros (reduced)
- [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced)
## Models used (only for 8B)
- Initial LumiMaid 8B Finetune
- Undi95/Llama-3-Unholy-8B-e4
- Undi95/Llama-3-LewdPlay-8B
## Prompt template: Llama3
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw3-exl2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"3-bit",
"region:us"
] | null | 2024-05-03T02:59:12+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | emozilla/8B_128K_bs_8M_rope_512K_step_1000_lr_2e-5 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T02:59:21+00:00 |
text-classification | transformers | # Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This model is built on Bert model using a Bangla Sentiment analysis dataset which is collected from social media dramas public comments.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Ahnaf Tahmeed.
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** Transformer-based language model
- **Language(s) (NLP):** Bengali
- **License:** MIT
- **Related Models:** Bert
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-classification", model="ahnaf702/Sentibert")
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("ahnaf702/Sentibert")
model = AutoModelForSequenceClassification.from_pretrained("ahnaf702/Sentibert")
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"language": ["bn"], "license": "mit", "tags": ["sentiment_analysis"], "metrics": ["accuracy", "bertscore"], "pipeline_tag": "text-classification", "widget": [{"text": "\u0986\u09ae\u09bf \u09ab\u09c1\u099f\u09ac\u09b2 \u0996\u09c7\u09b2\u09a4\u09c7 \u09ad\u09be\u09b2\u09cb\u09ac\u09be\u09b8\u09bf", "output": [{"label": "POSITIVE", "score": 0.8}, {"label": "NEGATIVE", "score": 0.2}]}, {"text": "\u0986\u09ae\u09be\u09b0 \u098f\u0987 \u0996\u09be\u09ac\u09be\u09b0\u099f\u09be \u09ae\u09cb\u099f\u09c7\u0993 \u09aa\u099b\u09a8\u09cd\u09a6 \u09b9\u09df\u09a8\u09bf", "output": [{"label": "POSITIVE", "score": 0.2}, {"label": "NEGATIVE", "score": 0.8}]}]} | ahnaf702/Sentibert | null | [
"transformers",
"pytorch",
"electra",
"text-classification",
"sentiment_analysis",
"bn",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us",
"has_space"
] | null | 2024-05-03T03:00:36+00:00 |
null | diffusers | {} | 00BER/ddpm-transient-attributes-128 | null | [
"diffusers",
"safetensors",
"diffusers:CustomDDIMPipeline",
"region:us"
] | null | 2024-05-03T03:00:50+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | 1r0nm4g3/Doug | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-03T03:01:02+00:00 |
null | null | {"license": "apache-2.0"} | prabalv/TestLLM | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-03T03:01:26+00:00 |
|
null | transformers | {} | tinyuetchung/llama2_reft_env | null | [
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:02:25+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | shallow6414/fvo55r8 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:02:53+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth"]} | dchatca/4bit-llama3-test | null | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:05:41+00:00 |
text-generation | transformers | {} | migueldeguzmandev/GPT2XL_RLLMv18-10 | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"has_space"
] | null | 2024-05-03T03:05:59+00:00 |
|
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Yo - Oyemade Oyemaja
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 4500
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"language": ["yo"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_17_0"], "base_model": "openai/whisper-medium", "model-index": [{"name": "Whisper Medium Yo - Oyemade Oyemaja", "results": []}]} | neoform-ai/whisper-medium-yoruba | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"yo",
"dataset:mozilla-foundation/common_voice_17_0",
"base_model:openai/whisper-medium",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:06:05+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RM-TLDR_human_loraR64_20000_gemma2b_lr1e-05_bs2_g4
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6702
- Accuracy: 0.5795
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6088 | 1.0 | 2250 | 0.6687 | 0.586 |
| 0.5834 | 2.0 | 4500 | 0.6702 | 0.5795 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-TLDR_human_loraR64_20000_gemma2b_lr1e-05_bs2_g4", "results": []}]} | Holarissun/RM-TLDR_human_loraR64_20000_gemma2b_lr1e-05_bs2_g4 | null | [
"peft",
"safetensors",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-03T03:06:19+00:00 |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | martinsinnona/visdecode_2024_plotqa | null | [
"transformers",
"safetensors",
"pix2struct",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:08:21+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | shallow6414/ugyfclh | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:08:33+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RM-TLDR_human_loraR64_20000_gemma2b_lr5e-05_bs2_g4
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6609
- Accuracy: 0.657
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5488 | 1.0 | 2250 | 0.6267 | 0.65 |
| 0.4845 | 2.0 | 4500 | 0.6609 | 0.657 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-TLDR_human_loraR64_20000_gemma2b_lr5e-05_bs2_g4", "results": []}]} | Holarissun/RM-TLDR_human_loraR64_20000_gemma2b_lr5e-05_bs2_g4 | null | [
"peft",
"safetensors",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-03T03:09:07+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-31m_niki-041a_imdb_random-token-1280_10-rounds_seed-1
This model is a fine-tuned version of [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-31m", "model-index": [{"name": "robust_llm_pythia-31m_niki-041a_imdb_random-token-1280_10-rounds_seed-1", "results": []}]} | AlignmentResearch/robust_llm_pythia-31m_niki-041a_imdb_random-token-1280_10-rounds_seed-1 | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-31m",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:09:27+00:00 |
null | null |
# jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP-GGUF
This model was converted to GGUF format from [`jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP`](https://huggingface.co/jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP-Q8_0-GGUF --model westtemptresstensor-10.7b-v0.2a-slerp.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP-Q8_0-GGUF --model westtemptresstensor-10.7b-v0.2a-slerp.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m westtemptresstensor-10.7b-v0.2a-slerp.Q8_0.gguf -n 128
```
| {"tags": ["merge", "mergekit", "lazymergekit", "jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2", "llama-cpp", "gguf-my-repo"], "base_model": ["jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2"]} | jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP-GGUF | null | [
"gguf",
"merge",
"mergekit",
"lazymergekit",
"jsfs11/TemptressTensor-10.7B-v0.1a",
"froggeric/WestLake-10.7B-v2",
"llama-cpp",
"gguf-my-repo",
"base_model:jsfs11/TemptressTensor-10.7B-v0.1a",
"base_model:froggeric/WestLake-10.7B-v2",
"region:us"
] | null | 2024-05-03T03:09:42+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | shallow6414/tnie408 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:10:44+00:00 |
null | null | {} | liswei/t5-small-zhtw-36000 | null | [
"region:us"
] | null | 2024-05-03T03:10:49+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RM-TLDR_human_loraR64_20000_gemma2b_lr5e-06_bs2_g4
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6962
- Accuracy: 0.5585
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6731 | 1.0 | 2250 | 0.7069 | 0.544 |
| 0.633 | 2.0 | 4500 | 0.6962 | 0.5585 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-TLDR_human_loraR64_20000_gemma2b_lr5e-06_bs2_g4", "results": []}]} | Holarissun/RM-TLDR_human_loraR64_20000_gemma2b_lr5e-06_bs2_g4 | null | [
"peft",
"safetensors",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-03T03:12:27+00:00 |
text-generation | transformers |
2.18 epochs of a 8k private dataset over athirdpath/Llama-3-15b-OpenBioLexi. Uses L3 prompt format.
---
# OpenBioLexi-GLUED
- **Developed by:** athirdpath
- **License:** apache-2.0
- **Finetuned from model :** athirdpath/Llama-3-15b-OpenBioLexi
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "athirdpath/Llama-3-15b-OpenBioLexi"} | athirdpath/Llama-3-15b-OpenBioLexi-GLUED | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:athirdpath/Llama-3-15b-OpenBioLexi",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:13:13+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
tiny-dummy-qwen2 - bnb 4bits
- Model creator: https://huggingface.co/fxmarty/
- Original model: https://huggingface.co/fxmarty/tiny-dummy-qwen2/
Original model description:
---
license: mit
---
| {} | RichardErkhov/fxmarty_-_tiny-dummy-qwen2-4bits | null | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-03T03:13:18+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | golf2248/1cpdxcz | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:13:22+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
tiny-dummy-qwen2 - bnb 8bits
- Model creator: https://huggingface.co/fxmarty/
- Original model: https://huggingface.co/fxmarty/tiny-dummy-qwen2/
Original model description:
---
license: mit
---
| {} | RichardErkhov/fxmarty_-_tiny-dummy-qwen2-8bits | null | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-03T03:13:34+00:00 |
text-generation | transformers |
## Lumimaid 0.1
<center><div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;">
</div></center>
This model uses the Llama3 **prompting format**
Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough.
We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data.
This model includes the new Luminae dataset from Ikari.
If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY).
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of Lumimaid-8B-v0.1.
Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
- Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset
- [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly)
- [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly)
- [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly)
- Airoboros (reduced)
- [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced)
## Models used (only for 8B)
- Initial LumiMaid 8B Finetune
- Undi95/Llama-3-Unholy-8B-e4
- Undi95/Llama-3-LewdPlay-8B
## Prompt template: Llama3
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw3.5-exl2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:13:43+00:00 |
null | null | {} | ysthehurricane/whisper-small-audio-hi-transcrib | null | [
"region:us"
] | null | 2024-05-03T03:13:51+00:00 |
|
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-2-tiny-random - bnb 4bits
- Model creator: https://huggingface.co/yujiepan/
- Original model: https://huggingface.co/yujiepan/llama-2-tiny-random/
Original model description:
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
---
# yujiepan/llama-2-tiny-random
This model is **randomly initialized**, using the config from [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/yujiepan/llama-2-tiny-random/blob/main/config.json) but with the following modifications:
```json
{
"hidden_size": 8,
"intermediate_size": 32,
"num_attention_heads": 2,
"num_hidden_layers": 1,
"num_key_value_heads": 2,
}
```
| {} | RichardErkhov/yujiepan_-_llama-2-tiny-random-4bits | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-03T03:13:59+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RM-TLDR_human_loraR64_20000_gemma2b_lr1e-06_bs2_g4
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7027
- Accuracy: 0.551
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7512 | 1.0 | 2250 | 0.7080 | 0.543 |
| 0.7378 | 2.0 | 4500 | 0.7027 | 0.551 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-TLDR_human_loraR64_20000_gemma2b_lr1e-06_bs2_g4", "results": []}]} | Holarissun/RM-TLDR_human_loraR64_20000_gemma2b_lr1e-06_bs2_g4 | null | [
"peft",
"safetensors",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-05-03T03:14:06+00:00 |
text-generation | transformers | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-2-tiny-random - bnb 8bits
- Model creator: https://huggingface.co/yujiepan/
- Original model: https://huggingface.co/yujiepan/llama-2-tiny-random/
Original model description:
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
---
# yujiepan/llama-2-tiny-random
This model is **randomly initialized**, using the config from [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/yujiepan/llama-2-tiny-random/blob/main/config.json) but with the following modifications:
```json
{
"hidden_size": 8,
"intermediate_size": 32,
"num_attention_heads": 2,
"num_hidden_layers": 1,
"num_key_value_heads": 2,
}
```
| {} | RichardErkhov/yujiepan_-_llama-2-tiny-random-8bits | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] | null | 2024-05-03T03:14:11+00:00 |
null | null | {"license": "openrail"} | marvinmedeiros52/marvinselau | null | [
"license:openrail",
"region:us"
] | null | 2024-05-03T03:14:12+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | cilantro9246/untg5qk | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:14:39+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Poojithpoosa/code_classification_model
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6716
- Validation Loss: 0.6770
- Train Accuracy: 0.6177
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-11, 'decay_steps': 3165, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.6716 | 0.6770 | 0.6177 | 0 |
### Framework versions
- Transformers 4.40.1
- TensorFlow 2.15.0
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "google-bert/bert-base-uncased", "model-index": [{"name": "Poojithpoosa/code_classification_model", "results": []}]} | Poojithpoosa/code_classification_model | null | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:14:47+00:00 |
null | null | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-2-tiny-random - GGUF
- Model creator: https://huggingface.co/yujiepan/
- Original model: https://huggingface.co/yujiepan/llama-2-tiny-random/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-2-tiny-random.Q2_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q2_K.gguf) | Q2_K | 0.0GB |
| [llama-2-tiny-random.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ3_XS.gguf) | IQ3_XS | 0.0GB |
| [llama-2-tiny-random.IQ3_S.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ3_S.gguf) | IQ3_S | 0.0GB |
| [llama-2-tiny-random.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q3_K_S.gguf) | Q3_K_S | 0.0GB |
| [llama-2-tiny-random.IQ3_M.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ3_M.gguf) | IQ3_M | 0.0GB |
| [llama-2-tiny-random.Q3_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q3_K.gguf) | Q3_K | 0.0GB |
| [llama-2-tiny-random.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q3_K_M.gguf) | Q3_K_M | 0.0GB |
| [llama-2-tiny-random.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q3_K_L.gguf) | Q3_K_L | 0.0GB |
| [llama-2-tiny-random.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ4_XS.gguf) | IQ4_XS | 0.0GB |
| [llama-2-tiny-random.Q4_0.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_0.gguf) | Q4_0 | 0.0GB |
| [llama-2-tiny-random.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ4_NL.gguf) | IQ4_NL | 0.0GB |
| [llama-2-tiny-random.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_K_S.gguf) | Q4_K_S | 0.0GB |
| [llama-2-tiny-random.Q4_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_K.gguf) | Q4_K | 0.0GB |
| [llama-2-tiny-random.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_K_M.gguf) | Q4_K_M | 0.0GB |
| [llama-2-tiny-random.Q4_1.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_1.gguf) | Q4_1 | 0.0GB |
| [llama-2-tiny-random.Q5_0.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_0.gguf) | Q5_0 | 0.0GB |
| [llama-2-tiny-random.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_K_S.gguf) | Q5_K_S | 0.0GB |
| [llama-2-tiny-random.Q5_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_K.gguf) | Q5_K | 0.0GB |
| [llama-2-tiny-random.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_K_M.gguf) | Q5_K_M | 0.0GB |
| [llama-2-tiny-random.Q5_1.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_1.gguf) | Q5_1 | 0.0GB |
| [llama-2-tiny-random.Q6_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q6_K.gguf) | Q6_K | 0.0GB |
Original model description:
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
---
# yujiepan/llama-2-tiny-random
This model is **randomly initialized**, using the config from [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/yujiepan/llama-2-tiny-random/blob/main/config.json) but with the following modifications:
```json
{
"hidden_size": 8,
"intermediate_size": 32,
"num_attention_heads": 2,
"num_hidden_layers": 1,
"num_key_value_heads": 2,
}
```
| {} | RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf | null | [
"gguf",
"region:us"
] | null | 2024-05-03T03:15:21+00:00 |
null | null | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
gpt4all-falcon - GGUF
- Model creator: https://huggingface.co/nomic-ai/
- Original model: https://huggingface.co/nomic-ai/gpt4all-falcon/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [gpt4all-falcon.Q2_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q2_K.gguf) | Q2_K | 3.59GB |
| [gpt4all-falcon.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ3_XS.gguf) | IQ3_XS | 3.59GB |
| [gpt4all-falcon.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ3_S.gguf) | IQ3_S | 3.59GB |
| [gpt4all-falcon.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q3_K_S.gguf) | Q3_K_S | 3.59GB |
| [gpt4all-falcon.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ3_M.gguf) | IQ3_M | 3.71GB |
| [gpt4all-falcon.Q3_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q3_K.gguf) | Q3_K | 3.86GB |
| [gpt4all-falcon.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q3_K_M.gguf) | Q3_K_M | 3.86GB |
| [gpt4all-falcon.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q3_K_L.gguf) | Q3_K_L | 4.08GB |
| [gpt4all-falcon.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ4_XS.gguf) | IQ4_XS | 3.89GB |
| [gpt4all-falcon.Q4_0.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_0.gguf) | Q4_0 | 3.92GB |
| [gpt4all-falcon.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ4_NL.gguf) | IQ4_NL | 3.96GB |
| [gpt4all-falcon.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_K_S.gguf) | Q4_K_S | 4.42GB |
| [gpt4all-falcon.Q4_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_K.gguf) | Q4_K | 4.63GB |
| [gpt4all-falcon.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_K_M.gguf) | Q4_K_M | 4.63GB |
| [gpt4all-falcon.Q4_1.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_1.gguf) | Q4_1 | 4.32GB |
| [gpt4all-falcon.Q5_0.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_0.gguf) | Q5_0 | 4.73GB |
| [gpt4all-falcon.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_K_S.gguf) | Q5_K_S | 4.98GB |
| [gpt4all-falcon.Q5_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_K.gguf) | Q5_K | 5.34GB |
| [gpt4all-falcon.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
| [gpt4all-falcon.Q5_1.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_1.gguf) | Q5_1 | 5.13GB |
| [gpt4all-falcon.Q6_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q6_K.gguf) | Q6_K | 6.55GB |
Original model description:
---
license: apache-2.0
datasets:
- nomic-ai/gpt4all-j-prompt-generations
language:
- en
pipeline_tag: text-generation
---
# Model Card for GPT4All-Falcon
An Apache-2 licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model has been finetuned from [Falcon](https://huggingface.co/tiiuae/falcon-7b)
- **Developed by:** [Nomic AI](https://home.nomic.ai)
- **Model Type:** A finetuned Falcon 7B model on assistant style interaction data
- **Language(s) (NLP):** English
- **License:** Apache-2
- **Finetuned from model [optional]:** [Falcon](https://huggingface.co/tiiuae/falcon-7b)
To download a model with a specific revision run
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("nomic-ai/gpt4all-falcon", trust_remote_code=True)
```
Downloading without specifying `revision` defaults to `main`/`v1.0`.
To use it for inference with Cuda, run
```python
from transformers import AutoTokenizer, pipeline
import transformers
import torch
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model.to("cuda:0")
prompt = "Describe a painting of a falcon in a very detailed way." # Change this to your prompt
prompt_template = f"### Instruction: {prompt}\n### Response:"
tokens = tokenizer(prompt_template, return_tensors="pt").input_ids.to("cuda:0")
output = model.generate(input_ids=tokens, max_new_tokens=256, do_sample=True, temperature=0.8)
# Print the generated text
print(tokenizer.decode(output[0]))
```
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
- **Base Model Repository:** [https://huggingface.co/tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
- **Demo [optional]:** [https://gpt4all.io/](https://gpt4all.io/)
### Training Procedure
GPT4All is made possible by our compute partner [Paperspace](https://www.paperspace.com/).
Trained on a DGX cluster with 8 A100 80GB GPUs for ~12 hours. Using Deepspeed + Accelerate, we use a global batch size of 256 with a learning rate of 2e-5. More information can be found in the repo.
### Results
Results on common sense reasoning benchmarks
```
| Model | BoolQ | PIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg. |
|:--------------------------|:--------:|:--------:|:---------:|:----------:|:--------:|:--------:|:--------:|:--------:|
| GPT4All-J 6B v1.0 | 73.4 | 74.8 | 63.4 | 64.7 | 54.9 | 36.0 | 40.2 | 58.2 |
| GPT4All-J v1.1-breezy | 74.0 | 75.1 | 63.2 | 63.6 | 55.4 | 34.9 | 38.4 | 57.8 |
| GPT4All-J v1.2-jazzy | 74.8 | 74.9 | 63.6 | 63.8 | 56.6 | 35.3 | 41.0 | 58.6 |
| GPT4All-J v1.3-groovy | 73.6 | 74.3 | 63.8 | 63.5 | 57.7 | 35.0 | 38.8 | 58.1 |
| GPT4All-J Lora 6B | 68.6 | 75.8 | 66.2 | 63.5 | 56.4 | 35.7 | 40.2 | 58.1 |
| GPT4All LLaMa Lora 7B | 73.1 | 77.6 | 72.1 | 67.8 | 51.1 | 40.4 | 40.2 | 60.3 |
| GPT4All 13B snoozy | **83.3** | 79.2 | 75.0 | **71.3** | 60.9 | 44.2 | 43.4 | 65.3 |
| GPT4All Falcon | 77.6 | 79.8 | 74.9 | 70.1 | 67.9 | 43.4 | 42.6 | 65.2 |
| Dolly 6B | 68.8 | 77.3 | 67.6 | 63.9 | 62.9 | 38.7 | 41.2 | 60.1 |
| Dolly 12B | 56.7 | 75.4 | 71.0 | 62.2 | 64.6 | 38.5 | 40.4 | 58.4 |
| Alpaca 7B | 73.9 | 77.2 | 73.9 | 66.1 | 59.8 | 43.3 | 43.4 | 62.4 |
| Alpaca Lora 7B | 74.3 | 79.3 | 74.0 | 68.8 | 56.6 | 43.9 | 42.6 | 62.8 |
| GPT-J 6.7B | 65.4 | 76.2 | 66.2 | 64.1 | 62.2 | 36.6 | 38.2 | 58.4 |
| LLama 7B | 73.1 | 77.4 | 73.0 | 66.9 | 52.5 | 41.4 | 42.4 | 61.0 |
| LLama 13B | 68.5 | 79.1 | 76.2 | 70.1 | 60.0 | **44.6** | 42.2 | 63.0 |
| Pythia 6.7B | 63.5 | 76.3 | 64.0 | 61.1 | 61.3 | 35.2 | 37.2 | 57.0 |
| Pythia 12B | 67.7 | 76.6 | 67.3 | 63.8 | 63.9 | 34.8 | 38 | 58.9 |
| Fastchat T5 | 81.5 | 64.6 | 46.3 | 61.8 | 49.3 | 33.3 | 39.4 | 53.7 |
| Fastchat Vicuña 7B | 76.6 | 77.2 | 70.7 | 67.3 | 53.5 | 41.2 | 40.8 | 61.0 |
| Fastchat Vicuña 13B | 81.5 | 76.8 | 73.3 | 66.7 | 57.4 | 42.7 | 43.6 | 63.1 |
| StableVicuña RLHF | 82.3 | 78.6 | 74.1 | 70.9 | 61.0 | 43.5 | **44.4** | 65.0 |
| StableLM Tuned | 62.5 | 71.2 | 53.6 | 54.8 | 52.4 | 31.1 | 33.4 | 51.3 |
| StableLM Base | 60.1 | 67.4 | 41.2 | 50.1 | 44.9 | 27.0 | 32.0 | 42.2 |
| Koala 13B | 76.5 | 77.9 | 72.6 | 68.8 | 54.3 | 41.0 | 42.8 | 62.0 |
| Open Assistant Pythia 12B | 67.9 | 78.0 | 68.1 | 65.0 | 64.2 | 40.4 | 43.2 | 61.0 |
| Mosaic MPT7B | 74.8 | 79.3 | 76.3 | 68.6 | 70.0 | 42.2 | 42.6 | 64.8 |
| Mosaic mpt-instruct | 74.3 | 80.4 | **77.2** | 67.8 | **72.2** | **44.6** | 43.0 | **65.6** |
| Mosaic mpt-chat | 77.1 | 78.2 | 74.5 | 67.5 | 69.4 | 43.3 | 44.2 | 64.9 |
| Wizard 7B | 78.4 | 77.2 | 69.9 | 66.5 | 56.8 | 40.5 | 42.6 | 61.7 |
| Wizard 7B Uncensored | 77.7 | 74.2 | 68.0 | 65.2 | 53.5 | 38.7 | 41.6 | 59.8 |
| Wizard 13B Uncensored | 78.4 | 75.5 | 72.1 | 69.5 | 57.5 | 40.4 | 44.0 | 62.5 |
| GPT4-x-Vicuna-13b | 81.3 | 75.0 | 75.2 | 65.0 | 58.7 | 43.9 | 43.6 | 62.2 |
| Falcon 7b | 73.6 | **80.7** | 76.3 | 67.3 | 71.0 | 43.3 | 44.4 | 65.2 |
| text-davinci-003 | 88.1 | 83.8 | 83.4 | 75.8 | 83.9 | 63.9 | 51.0 | 75.7 |
```
| {} | RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf | null | [
"gguf",
"region:us"
] | null | 2024-05-03T03:15:48+00:00 |
null | null | {} | iamglobe2024/llama3 | null | [
"region:us"
] | null | 2024-05-03T03:16:46+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | golf2248/iiqy7t2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:18:12+00:00 |
null | null | {} | Nikkitag/whisper-large-v2 | null | [
"region:us"
] | null | 2024-05-03T03:18:15+00:00 |
|
null | null | {} | tscstudios/VCAJgQZSnfdWIzdHLB7eYxqe8qh1 | null | [
"region:us"
] | null | 2024-05-03T03:19:13+00:00 |
|
audio-classification | transformers | {"license": "gpl-3.0"} | allispaul/whisper-small-gtzan | null | [
"transformers",
"safetensors",
"whisper",
"audio-classification",
"license:gpl-3.0",
"endpoints_compatible",
"region:us",
"has_space"
] | null | 2024-05-03T03:19:32+00:00 |
|
null | null | {} | abken601/test2 | null | [
"region:us"
] | null | 2024-05-03T03:22:14+00:00 |
|
null | null | {} | Phanh2532/GAMA-Code-Generator-v0.1-GGUF | null | [
"gguf",
"region:us"
] | null | 2024-05-03T03:22:23+00:00 |
|
null | null | {} | aslon1213/whisper-small-uz-with-uzbekvoice-new | null | [
"region:us"
] | null | 2024-05-03T03:22:35+00:00 |
|
sentence-similarity | sentence-transformers |
# quangtqv/tool_learning_embed_v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('quangtqv/tool_learning_embed_v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=quangtqv/tool_learning_embed_v2)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"} | quangtqv/tool_learning_embed_v2 | null | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:22:59+00:00 |
null | null | {} | Giux22/semana8-pruebas_transformer | null | [
"region:us"
] | null | 2024-05-03T03:25:04+00:00 |
|
null | null | {} | vsocrates/sft_openassistant-guanaco | null | [
"region:us"
] | null | 2024-05-03T03:27:10+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | abc88767/model50 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:27:24+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | TrevorAsbery/Mistral-7b-code | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:27:33+00:00 |
text-generation | transformers |
## Lumimaid 0.1
<center><div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;">
</div></center>
This model uses the Llama3 **prompting format**
Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough.
We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data.
This model includes the new Luminae dataset from Ikari.
If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY).
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of Lumimaid-8B-v0.1.
Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
- Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset
- [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly)
- [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly)
- [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly)
- Airoboros (reduced)
- [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced)
## Models used (only for 8B)
- Initial LumiMaid 8B Finetune
- Undi95/Llama-3-Unholy-8B-e4
- Undi95/Llama-3-LewdPlay-8B
## Prompt template: Llama3
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw3.7-exl2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:28:34+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# experiments
This model is a fine-tuned version of [vilm/vinallama-7b-chat](https://huggingface.co/vilm/vinallama-7b-chat) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "llama2", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "vilm/vinallama-7b-chat", "model-index": [{"name": "experiments", "results": []}]} | tsang326/experiments | null | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:vilm/vinallama-7b-chat",
"license:llama2",
"region:us"
] | null | 2024-05-03T03:28:54+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Adipta/fine-tuning-phi2-adipta | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:29:30+00:00 |
fill-mask | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sst
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 4.4483
- eval_runtime: 3.3624
- eval_samples_per_second: 148.704
- eval_steps_per_second: 2.379
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetuned-sst", "results": []}]} | rajabilalnazir/distilbert-base-uncased-finetuned-sst | null | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"fill-mask",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:29:48+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | shallow6414/qh3gev9 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:29:56+00:00 |
null | null | {} | Alpaca69B/Llama-2-7b-hf-whatsapp-app-reviews-absa | null | [
"region:us"
] | null | 2024-05-03T03:30:11+00:00 |
|
automatic-speech-recognition | transformers | {} | raidavid/whisper-tiny-ip-30-no-opendata_epoch_5000_20240503 | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] | null | 2024-05-03T03:32:06+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | cungnlp/Vistral-DATN | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-05-03T03:32:16+00:00 |
text-generation | transformers | <img src="./assistance_logo.svg" width="100%" height="20%" alt="">
# Our Models
- [Vecteus](https://huggingface.co/Local-Novel-LLM-project/Vecteus-v1)
- [Ninja-v1](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1)
- [Ninja-v1-NSFW](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-NSFW)
- [Ninja-v1-128k](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-128k)
- [Ninja-v1-NSFW-128k](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-NSFW-128k)
# THIS IS WIP MODEL
# これは Ninja を 小説能力ではなくコードや数学系の知識を持たせたモデルです | {"language": ["en", "ja"], "license": "apache-2.0", "library_name": "transformers", "tags": ["finetuned"], "pipeline_tag": "text-generation"} | Local-Novel-LLM-project/Assistance | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"finetuned",
"en",
"ja",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-05-03T03:32:49+00:00 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.