Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
golf2248/r6ed8ef
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:28:58+00:00
text-generation
transformers
## Lumimaid 0.1 <center><div style="width: 100%;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;"> </div></center> This model uses the Llama3 **prompting format** Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough. We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data. This model includes the new Luminae dataset from Ikari. If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY). ## Credits: - Undi - IkariDev ## Description This repo contains FP16 files of Lumimaid-8B-v0.1. Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt) ## Training data used: - [Aesir datasets](https://huggingface.co/MinervaAI) - [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt) - [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx - [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) - [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal) - Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset - [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly) - [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly) - [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly) - Airoboros (reduced) - [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced) ## Models used (only for 8B) - Initial LumiMaid 8B Finetune - Undi95/Llama-3-Unholy-8B-e4 - Undi95/Llama-3-LewdPlay-8B ## Prompt template: Llama3 ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` ## Others Undi: If you want to support us, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
{"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]}
blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw2.25-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:30:43+00:00
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.1.dev0
{"library_name": "peft", "base_model": "baffo32/decapoda-research-llama-7B-hf"}
Yuki20/capstone-llama7B-lora
null
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:baffo32/decapoda-research-llama-7B-hf", "region:us" ]
null
2024-05-03T02:31:18+00:00
text-generation
transformers
# Llama-3-RPMerge-8B-SLERP Llama-3-RPMerge-8B-SLERP is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Undi95/Llama-3-LewdPlay-8B-evo](https://huggingface.co/Undi95/Llama-3-LewdPlay-8B-evo) * [cgato/L3-TheSpice-8b-v0.8.3](https://huggingface.co/cgato/L3-TheSpice-8b-v0.8.3) ## 🧩 Configuration ```yaml slices: - sources: - model: Undi95/Llama-3-LewdPlay-8B-evo layer_range: [0, 32] - model: cgato/L3-TheSpice-8b-v0.8.3 layer_range: [0, 32] merge_method: slerp base_model: Undi95/Llama-3-LewdPlay-8B-evo parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 random_seed: 0 int8_mask: true ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/Llama-3-RPMerge-8B-SLERP" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "Undi95/Llama-3-LewdPlay-8B-evo", "cgato/L3-TheSpice-8b-v0.8.3"], "base_model": ["Undi95/Llama-3-LewdPlay-8B-evo", "cgato/L3-TheSpice-8b-v0.8.3"]}
jsfs11/Llama-3-RPMerge-8B-SLERP
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "Undi95/Llama-3-LewdPlay-8B-evo", "cgato/L3-TheSpice-8b-v0.8.3", "conversational", "base_model:Undi95/Llama-3-LewdPlay-8B-evo", "base_model:cgato/L3-TheSpice-8b-v0.8.3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:31:33+00:00
null
null
{}
std50218/vivit-b-16x2-kinetics400-finetuned-temp-original
null
[ "region:us" ]
null
2024-05-03T02:32:23+00:00
text-generation
transformers
{"license": "mit"}
migueldeguzmandev/GPT2XL_RLLMv18-9
null
[ "transformers", "pytorch", "gpt2", "text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:33:05+00:00
text2text-generation
transformers
{}
ngl18/longt5-large-16384-pubmed-lora-biolaysumm
null
[ "transformers", "safetensors", "longt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:33:12+00:00
text-generation
transformers
{}
luizlzg/CaLLMe-2_8b
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:33:27+00:00
null
null
{"license": "mit"}
pukiwawa/llama3
null
[ "license:mit", "region:us" ]
null
2024-05-03T02:33:36+00:00
text-generation
transformers
{}
luizlzg/CaLLMe-2_8b_awq
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-03T02:33:46+00:00
null
keras
{"license": "mit"}
rohanth/tensor-forest
null
[ "keras", "tflite", "tensorboard", "onnx", "license:mit", "region:us" ]
null
2024-05-03T02:36:28+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
devkya/custom-peft-whiper-large
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:36:39+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/qyvbuo1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:37:02+00:00
null
null
{"tags": ["mteb"], "model-index": [{"name": "e5-small-v2", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 76.65671641791046}, {"type": "ap", "value": 40.16054083847425}, {"type": "f1", "value": 70.73805260085523}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 46.431999999999995}, {"type": "f1", "value": 44.4239364840113}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 24.182000000000002}, {"type": "map_at_10", "value": 38.53}, {"type": "map_at_100", "value": 39.574999999999996}, {"type": "map_at_1000", "value": 39.593}, {"type": "map_at_3", "value": 33.796}, {"type": "map_at_5", "value": 36.406}, {"type": "mrr_at_1", "value": 24.964}, {"type": "mrr_at_10", "value": 38.829}, {"type": "mrr_at_100", "value": 39.867000000000004}, {"type": "mrr_at_1000", "value": 39.885999999999996}, {"type": "mrr_at_3", "value": 34.092}, {"type": "mrr_at_5", "value": 36.713}, {"type": "ndcg_at_1", "value": 24.182000000000002}, {"type": "ndcg_at_10", "value": 46.865}, {"type": "ndcg_at_100", "value": 51.611}, {"type": "ndcg_at_1000", "value": 52.137}, {"type": "ndcg_at_3", "value": 37.036}, {"type": "ndcg_at_5", "value": 41.715999999999994}, {"type": "precision_at_1", "value": 24.182000000000002}, {"type": "precision_at_10", "value": 7.367999999999999}, {"type": "precision_at_100", "value": 0.951}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_3", "value": 15.481}, {"type": "precision_at_5", "value": 11.55}, {"type": "recall_at_1", "value": 24.182000000000002}, {"type": "recall_at_10", "value": 73.68400000000001}, {"type": "recall_at_100", "value": 95.092}, {"type": "recall_at_1000", "value": 99.289}, {"type": "recall_at_3", "value": 46.444}, {"type": "recall_at_5", "value": 57.752}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 43.243157093430476}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 36.48617956618108}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 57.6915668741631}, {"type": "mrr", "value": 70.97832300048366}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.25177125617765}, {"type": "cos_sim_spearman", "value": 82.19042698150236}, {"type": "euclidean_pearson", "value": 81.39677961271671}, {"type": "euclidean_spearman", "value": 82.19042698150236}, {"type": "manhattan_pearson", "value": 81.83582953195571}, {"type": "manhattan_spearman", "value": 82.20127060207557}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 73.73701298701299}, {"type": "f1", "value": 72.68295178070956}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 35.55562814544096}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 31.024495399036073}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "mteb/cqadupstack-android", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 31.356}, {"type": "map_at_10", "value": 41.583}, {"type": "map_at_100", "value": 42.931999999999995}, {"type": "map_at_1000", "value": 43.059999999999995}, {"type": "map_at_3", "value": 38.572}, {"type": "map_at_5", "value": 40.184999999999995}, {"type": "mrr_at_1", "value": 39.485}, {"type": "mrr_at_10", "value": 48.325}, {"type": "mrr_at_100", "value": 49.044}, {"type": "mrr_at_1000", "value": 49.095}, {"type": "mrr_at_3", "value": 45.97}, {"type": "mrr_at_5", "value": 47.38}, {"type": "ndcg_at_1", "value": 39.485}, {"type": "ndcg_at_10", "value": 47.689}, {"type": "ndcg_at_100", "value": 52.611}, {"type": "ndcg_at_1000", "value": 54.75600000000001}, {"type": "ndcg_at_3", "value": 43.675000000000004}, {"type": "ndcg_at_5", "value": 45.305}, {"type": "precision_at_1", "value": 39.485}, {"type": "precision_at_10", "value": 9.142}, {"type": "precision_at_100", "value": 1.4460000000000002}, {"type": "precision_at_1000", "value": 0.19}, {"type": "precision_at_3", "value": 21.364}, {"type": "precision_at_5", "value": 15.021}, {"type": "recall_at_1", "value": 31.356}, {"type": "recall_at_10", "value": 58.338}, {"type": "recall_at_100", "value": 79.23400000000001}, {"type": "recall_at_1000", "value": 93.4}, {"type": "recall_at_3", "value": 45.224}, {"type": "recall_at_5", "value": 50.719}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "mteb/cqadupstack-english", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 25.988}, {"type": "map_at_10", "value": 34.314}, {"type": "map_at_100", "value": 35.323}, {"type": "map_at_1000", "value": 35.453}, {"type": "map_at_3", "value": 31.855}, {"type": "map_at_5", "value": 33.317}, {"type": "mrr_at_1", "value": 32.675}, {"type": "mrr_at_10", "value": 40.199}, {"type": "mrr_at_100", "value": 40.912}, {"type": "mrr_at_1000", "value": 40.964}, {"type": "mrr_at_3", "value": 38.132}, {"type": "mrr_at_5", "value": 39.421}, {"type": "ndcg_at_1", "value": 32.675}, {"type": "ndcg_at_10", "value": 39.346}, {"type": "ndcg_at_100", "value": 43.578}, {"type": "ndcg_at_1000", "value": 45.975}, {"type": "ndcg_at_3", "value": 35.75}, {"type": "ndcg_at_5", "value": 37.578}, {"type": "precision_at_1", "value": 32.675}, {"type": "precision_at_10", "value": 7.228999999999999}, {"type": "precision_at_100", "value": 1.204}, {"type": "precision_at_1000", "value": 0.172}, {"type": "precision_at_3", "value": 17.113}, {"type": "precision_at_5", "value": 12.166}, {"type": "recall_at_1", "value": 25.988}, {"type": "recall_at_10", "value": 47.943000000000005}, {"type": "recall_at_100", "value": 66.326}, {"type": "recall_at_1000", "value": 82.02000000000001}, {"type": "recall_at_3", "value": 37.169999999999995}, {"type": "recall_at_5", "value": 42.356}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "mteb/cqadupstack-gaming", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 38.536}, {"type": "map_at_10", "value": 49.514}, {"type": "map_at_100", "value": 50.55500000000001}, {"type": "map_at_1000", "value": 50.615}, {"type": "map_at_3", "value": 46.329}, {"type": "map_at_5", "value": 48.278}, {"type": "mrr_at_1", "value": 43.887}, {"type": "mrr_at_10", "value": 52.900999999999996}, {"type": "mrr_at_100", "value": 53.63099999999999}, {"type": "mrr_at_1000", "value": 53.664}, {"type": "mrr_at_3", "value": 50.502}, {"type": "mrr_at_5", "value": 52.063}, {"type": "ndcg_at_1", "value": 43.887}, {"type": "ndcg_at_10", "value": 54.847}, {"type": "ndcg_at_100", "value": 59.163}, {"type": "ndcg_at_1000", "value": 60.44199999999999}, {"type": "ndcg_at_3", "value": 49.6}, {"type": "ndcg_at_5", "value": 52.493}, {"type": "precision_at_1", "value": 43.887}, {"type": "precision_at_10", "value": 8.677}, {"type": "precision_at_100", "value": 1.176}, {"type": "precision_at_1000", "value": 0.133}, {"type": "precision_at_3", "value": 21.797}, {"type": "precision_at_5", "value": 15.146999999999998}, {"type": "recall_at_1", "value": 38.536}, {"type": "recall_at_10", "value": 67.23}, {"type": "recall_at_100", "value": 86.095}, {"type": "recall_at_1000", "value": 95.26400000000001}, {"type": "recall_at_3", "value": 53.388000000000005}, {"type": "recall_at_5", "value": 60.4}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "mteb/cqadupstack-gis", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 23.488}, {"type": "map_at_10", "value": 30.375000000000004}, {"type": "map_at_100", "value": 31.343}, {"type": "map_at_1000", "value": 31.447999999999997}, {"type": "map_at_3", "value": 28.017999999999997}, {"type": "map_at_5", "value": 29.415999999999997}, {"type": "mrr_at_1", "value": 25.085}, {"type": "mrr_at_10", "value": 31.935000000000002}, {"type": "mrr_at_100", "value": 32.843}, {"type": "mrr_at_1000", "value": 32.929}, {"type": "mrr_at_3", "value": 29.548000000000002}, {"type": "mrr_at_5", "value": 31.04}, {"type": "ndcg_at_1", "value": 25.085}, {"type": "ndcg_at_10", "value": 34.48}, {"type": "ndcg_at_100", "value": 39.501}, {"type": "ndcg_at_1000", "value": 42.141}, {"type": "ndcg_at_3", "value": 29.831000000000003}, {"type": "ndcg_at_5", "value": 32.312999999999995}, {"type": "precision_at_1", "value": 25.085}, {"type": "precision_at_10", "value": 5.153}, {"type": "precision_at_100", "value": 0.815}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 12.09}, {"type": "precision_at_5", "value": 8.701}, {"type": "recall_at_1", "value": 23.488}, {"type": "recall_at_10", "value": 45.671}, {"type": "recall_at_100", "value": 69.062}, {"type": "recall_at_1000", "value": 88.82}, {"type": "recall_at_3", "value": 33.376}, {"type": "recall_at_5", "value": 39.311}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "mteb/cqadupstack-mathematica", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 12.879999999999999}, {"type": "map_at_10", "value": 18.873}, {"type": "map_at_100", "value": 20.097}, {"type": "map_at_1000", "value": 20.222}, {"type": "map_at_3", "value": 16.982}, {"type": "map_at_5", "value": 17.902}, {"type": "mrr_at_1", "value": 15.920000000000002}, {"type": "mrr_at_10", "value": 22.71}, {"type": "mrr_at_100", "value": 23.818}, {"type": "mrr_at_1000", "value": 23.898}, {"type": "mrr_at_3", "value": 20.626}, {"type": "mrr_at_5", "value": 21.733}, {"type": "ndcg_at_1", "value": 15.920000000000002}, {"type": "ndcg_at_10", "value": 22.959}, {"type": "ndcg_at_100", "value": 29.270000000000003}, {"type": "ndcg_at_1000", "value": 32.448}, {"type": "ndcg_at_3", "value": 19.356}, {"type": "ndcg_at_5", "value": 20.816000000000003}, {"type": "precision_at_1", "value": 15.920000000000002}, {"type": "precision_at_10", "value": 4.328}, {"type": "precision_at_100", "value": 0.8710000000000001}, {"type": "precision_at_1000", "value": 0.127}, {"type": "precision_at_3", "value": 9.203999999999999}, {"type": "precision_at_5", "value": 6.5920000000000005}, {"type": "recall_at_1", "value": 12.879999999999999}, {"type": "recall_at_10", "value": 31.724999999999998}, {"type": "recall_at_100", "value": 60.049}, {"type": "recall_at_1000", "value": 83.133}, {"type": "recall_at_3", "value": 21.981}, {"type": "recall_at_5", "value": 25.668999999999997}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "mteb/cqadupstack-physics", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 22.774}, {"type": "map_at_10", "value": 31.312}, {"type": "map_at_100", "value": 32.487}, {"type": "map_at_1000", "value": 32.609}, {"type": "map_at_3", "value": 28.589}, {"type": "map_at_5", "value": 30.142999999999997}, {"type": "mrr_at_1", "value": 28.393}, {"type": "mrr_at_10", "value": 36.813}, {"type": "mrr_at_100", "value": 37.724999999999994}, {"type": "mrr_at_1000", "value": 37.789}, {"type": "mrr_at_3", "value": 34.392}, {"type": "mrr_at_5", "value": 35.893}, {"type": "ndcg_at_1", "value": 28.393}, {"type": "ndcg_at_10", "value": 36.835}, {"type": "ndcg_at_100", "value": 42.192}, {"type": "ndcg_at_1000", "value": 44.812000000000005}, {"type": "ndcg_at_3", "value": 32.268}, {"type": "ndcg_at_5", "value": 34.515}, {"type": "precision_at_1", "value": 28.393}, {"type": "precision_at_10", "value": 6.737}, {"type": "precision_at_100", "value": 1.114}, {"type": "precision_at_1000", "value": 0.154}, {"type": "precision_at_3", "value": 15.399}, {"type": "precision_at_5", "value": 10.991}, {"type": "recall_at_1", "value": 22.774}, {"type": "recall_at_10", "value": 48.136}, {"type": "recall_at_100", "value": 71.0}, {"type": "recall_at_1000", "value": 88.74}, {"type": "recall_at_3", "value": 35.098}, {"type": "recall_at_5", "value": 41.134}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "mteb/cqadupstack-programmers", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 23.669}, {"type": "map_at_10", "value": 32.554}, {"type": "map_at_100", "value": 33.886}, {"type": "map_at_1000", "value": 34.004}, {"type": "map_at_3", "value": 29.944}, {"type": "map_at_5", "value": 31.330999999999996}, {"type": "mrr_at_1", "value": 29.110000000000003}, {"type": "mrr_at_10", "value": 37.234}, {"type": "mrr_at_100", "value": 38.151}, {"type": "mrr_at_1000", "value": 38.218999999999994}, {"type": "mrr_at_3", "value": 35.046}, {"type": "mrr_at_5", "value": 36.056}, {"type": "ndcg_at_1", "value": 29.110000000000003}, {"type": "ndcg_at_10", "value": 37.743}, {"type": "ndcg_at_100", "value": 43.413000000000004}, {"type": "ndcg_at_1000", "value": 46.06}, {"type": "ndcg_at_3", "value": 33.501999999999995}, {"type": "ndcg_at_5", "value": 35.175}, {"type": "precision_at_1", "value": 29.110000000000003}, {"type": "precision_at_10", "value": 6.872}, {"type": "precision_at_100", "value": 1.129}, {"type": "precision_at_1000", "value": 0.154}, {"type": "precision_at_3", "value": 16.02}, {"type": "precision_at_5", "value": 11.21}, {"type": "recall_at_1", "value": 23.669}, {"type": "recall_at_10", "value": 48.615}, {"type": "recall_at_100", "value": 72.708}, {"type": "recall_at_1000", "value": 90.96300000000001}, {"type": "recall_at_3", "value": 36.373}, {"type": "recall_at_5", "value": 41.06}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "mteb/cqadupstack-stats", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 21.364}, {"type": "map_at_10", "value": 27.208}, {"type": "map_at_100", "value": 28.083000000000002}, {"type": "map_at_1000", "value": 28.182000000000002}, {"type": "map_at_3", "value": 25.448999999999998}, {"type": "map_at_5", "value": 26.397}, {"type": "mrr_at_1", "value": 24.233}, {"type": "mrr_at_10", "value": 29.802}, {"type": "mrr_at_100", "value": 30.595}, {"type": "mrr_at_1000", "value": 30.660999999999998}, {"type": "mrr_at_3", "value": 28.17}, {"type": "mrr_at_5", "value": 28.967}, {"type": "ndcg_at_1", "value": 24.233}, {"type": "ndcg_at_10", "value": 30.774}, {"type": "ndcg_at_100", "value": 35.414}, {"type": "ndcg_at_1000", "value": 37.962}, {"type": "ndcg_at_3", "value": 27.497}, {"type": "ndcg_at_5", "value": 28.957}, {"type": "precision_at_1", "value": 24.233}, {"type": "precision_at_10", "value": 4.755}, {"type": "precision_at_100", "value": 0.775}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 11.860999999999999}, {"type": "precision_at_5", "value": 8.097999999999999}, {"type": "recall_at_1", "value": 21.364}, {"type": "recall_at_10", "value": 39.291}, {"type": "recall_at_100", "value": 60.907}, {"type": "recall_at_1000", "value": 79.786}, {"type": "recall_at_3", "value": 30.257}, {"type": "recall_at_5", "value": 33.924}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "mteb/cqadupstack-tex", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 15.139}, {"type": "map_at_10", "value": 21.063000000000002}, {"type": "map_at_100", "value": 22.070999999999998}, {"type": "map_at_1000", "value": 22.203999999999997}, {"type": "map_at_3", "value": 19.204}, {"type": "map_at_5", "value": 20.185}, {"type": "mrr_at_1", "value": 18.445}, {"type": "mrr_at_10", "value": 24.698999999999998}, {"type": "mrr_at_100", "value": 25.569999999999997}, {"type": "mrr_at_1000", "value": 25.659}, {"type": "mrr_at_3", "value": 22.866}, {"type": "mrr_at_5", "value": 23.868000000000002}, {"type": "ndcg_at_1", "value": 18.445}, {"type": "ndcg_at_10", "value": 24.998}, {"type": "ndcg_at_100", "value": 29.982999999999997}, {"type": "ndcg_at_1000", "value": 33.271}, {"type": "ndcg_at_3", "value": 21.692}, {"type": "ndcg_at_5", "value": 23.102}, {"type": "precision_at_1", "value": 18.445}, {"type": "precision_at_10", "value": 4.542}, {"type": "precision_at_100", "value": 0.84}, {"type": "precision_at_1000", "value": 0.129}, {"type": "precision_at_3", "value": 10.381}, {"type": "precision_at_5", "value": 7.356999999999999}, {"type": "recall_at_1", "value": 15.139}, {"type": "recall_at_10", "value": 33.268}, {"type": "recall_at_100", "value": 55.87}, {"type": "recall_at_1000", "value": 79.841}, {"type": "recall_at_3", "value": 23.629}, {"type": "recall_at_5", "value": 27.541}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "mteb/cqadupstack-unix", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 24.317}, {"type": "map_at_10", "value": 31.661}, {"type": "map_at_100", "value": 32.844}, {"type": "map_at_1000", "value": 32.952}, {"type": "map_at_3", "value": 29.118}, {"type": "map_at_5", "value": 30.410999999999998}, {"type": "mrr_at_1", "value": 28.544999999999998}, {"type": "mrr_at_10", "value": 36.059999999999995}, {"type": "mrr_at_100", "value": 36.983}, {"type": "mrr_at_1000", "value": 37.047999999999995}, {"type": "mrr_at_3", "value": 33.738}, {"type": "mrr_at_5", "value": 34.871}, {"type": "ndcg_at_1", "value": 28.544999999999998}, {"type": "ndcg_at_10", "value": 36.546}, {"type": "ndcg_at_100", "value": 42.039}, {"type": "ndcg_at_1000", "value": 44.61}, {"type": "ndcg_at_3", "value": 31.835}, {"type": "ndcg_at_5", "value": 33.755}, {"type": "precision_at_1", "value": 28.544999999999998}, {"type": "precision_at_10", "value": 6.0729999999999995}, {"type": "precision_at_100", "value": 0.991}, {"type": "precision_at_1000", "value": 0.132}, {"type": "precision_at_3", "value": 13.993}, {"type": "precision_at_5", "value": 9.795}, {"type": "recall_at_1", "value": 24.317}, {"type": "recall_at_10", "value": 47.227000000000004}, {"type": "recall_at_100", "value": 71.245}, {"type": "recall_at_1000", "value": 89.584}, {"type": "recall_at_3", "value": 34.292}, {"type": "recall_at_5", "value": 39.129000000000005}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "mteb/cqadupstack-webmasters", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 24.169999999999998}, {"type": "map_at_10", "value": 32.669}, {"type": "map_at_100", "value": 34.195}, {"type": "map_at_1000", "value": 34.438}, {"type": "map_at_3", "value": 30.264000000000003}, {"type": "map_at_5", "value": 31.694}, {"type": "mrr_at_1", "value": 29.249000000000002}, {"type": "mrr_at_10", "value": 37.230999999999995}, {"type": "mrr_at_100", "value": 38.216}, {"type": "mrr_at_1000", "value": 38.291}, {"type": "mrr_at_3", "value": 35.178}, {"type": "mrr_at_5", "value": 36.453}, {"type": "ndcg_at_1", "value": 29.249000000000002}, {"type": "ndcg_at_10", "value": 37.967}, {"type": "ndcg_at_100", "value": 43.514}, {"type": "ndcg_at_1000", "value": 46.63}, {"type": "ndcg_at_3", "value": 34.437}, {"type": "ndcg_at_5", "value": 36.299}, {"type": "precision_at_1", "value": 29.249000000000002}, {"type": "precision_at_10", "value": 7.055}, {"type": "precision_at_100", "value": 1.431}, {"type": "precision_at_1000", "value": 0.23800000000000002}, {"type": "precision_at_3", "value": 16.469}, {"type": "precision_at_5", "value": 11.897}, {"type": "recall_at_1", "value": 24.169999999999998}, {"type": "recall_at_10", "value": 47.577000000000005}, {"type": "recall_at_100", "value": 72.375}, {"type": "recall_at_1000", "value": 92.711}, {"type": "recall_at_3", "value": 36.551}, {"type": "recall_at_5", "value": 41.739}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "mteb/cqadupstack-wordpress", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 18.306}, {"type": "map_at_10", "value": 24.882}, {"type": "map_at_100", "value": 25.898}, {"type": "map_at_1000", "value": 25.991999999999997}, {"type": "map_at_3", "value": 22.506999999999998}, {"type": "map_at_5", "value": 23.708000000000002}, {"type": "mrr_at_1", "value": 20.148}, {"type": "mrr_at_10", "value": 27.014}, {"type": "mrr_at_100", "value": 27.886}, {"type": "mrr_at_1000", "value": 27.955999999999996}, {"type": "mrr_at_3", "value": 24.553}, {"type": "mrr_at_5", "value": 25.801000000000002}, {"type": "ndcg_at_1", "value": 20.148}, {"type": "ndcg_at_10", "value": 29.211}, {"type": "ndcg_at_100", "value": 34.307}, {"type": "ndcg_at_1000", "value": 36.875}, {"type": "ndcg_at_3", "value": 24.333}, {"type": "ndcg_at_5", "value": 26.455000000000002}, {"type": "precision_at_1", "value": 20.148}, {"type": "precision_at_10", "value": 4.713}, {"type": "precision_at_100", "value": 0.784}, {"type": "precision_at_1000", "value": 0.11}, {"type": "precision_at_3", "value": 10.290000000000001}, {"type": "precision_at_5", "value": 7.394}, {"type": "recall_at_1", "value": 18.306}, {"type": "recall_at_10", "value": 40.591}, {"type": "recall_at_100", "value": 64.18199999999999}, {"type": "recall_at_1000", "value": 83.646}, {"type": "recall_at_3", "value": 27.528999999999996}, {"type": "recall_at_5", "value": 32.619}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 7.872999999999999}, {"type": "map_at_10", "value": 13.361999999999998}, {"type": "map_at_100", "value": 15.024999999999999}, {"type": "map_at_1000", "value": 15.254000000000001}, {"type": "map_at_3", "value": 10.895000000000001}, {"type": "map_at_5", "value": 12.131}, {"type": "mrr_at_1", "value": 16.743}, {"type": "mrr_at_10", "value": 26.033}, {"type": "mrr_at_100", "value": 27.290999999999997}, {"type": "mrr_at_1000", "value": 27.356}, {"type": "mrr_at_3", "value": 22.573}, {"type": "mrr_at_5", "value": 24.336}, {"type": "ndcg_at_1", "value": 16.743}, {"type": "ndcg_at_10", "value": 19.675}, {"type": "ndcg_at_100", "value": 27.345000000000002}, {"type": "ndcg_at_1000", "value": 31.685999999999996}, {"type": "ndcg_at_3", "value": 15.036}, {"type": "ndcg_at_5", "value": 16.643}, {"type": "precision_at_1", "value": 16.743}, {"type": "precision_at_10", "value": 6.43}, {"type": "precision_at_100", "value": 1.4749999999999999}, {"type": "precision_at_1000", "value": 0.22599999999999998}, {"type": "precision_at_3", "value": 11.01}, {"type": "precision_at_5", "value": 8.924999999999999}, {"type": "recall_at_1", "value": 7.872999999999999}, {"type": "recall_at_10", "value": 25.026}, {"type": "recall_at_100", "value": 52.245}, {"type": "recall_at_1000", "value": 76.949}, {"type": "recall_at_3", "value": 13.962}, {"type": "recall_at_5", "value": 18.085}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 8.586}, {"type": "map_at_10", "value": 17.098}, {"type": "map_at_100", "value": 23.857}, {"type": "map_at_1000", "value": 25.357000000000003}, {"type": "map_at_3", "value": 12.574}, {"type": "map_at_5", "value": 14.374999999999998}, {"type": "mrr_at_1", "value": 59.5}, {"type": "mrr_at_10", "value": 68.199}, {"type": "mrr_at_100", "value": 68.699}, {"type": "mrr_at_1000", "value": 68.71199999999999}, {"type": "mrr_at_3", "value": 65.958}, {"type": "mrr_at_5", "value": 67.38300000000001}, {"type": "ndcg_at_1", "value": 48.625}, {"type": "ndcg_at_10", "value": 36.064}, {"type": "ndcg_at_100", "value": 41.137}, {"type": "ndcg_at_1000", "value": 49.08}, {"type": "ndcg_at_3", "value": 39.615}, {"type": "ndcg_at_5", "value": 37.080999999999996}, {"type": "precision_at_1", "value": 59.5}, {"type": "precision_at_10", "value": 28.050000000000004}, {"type": "precision_at_100", "value": 9.133}, {"type": "precision_at_1000", "value": 1.8960000000000001}, {"type": "precision_at_3", "value": 42.75}, {"type": "precision_at_5", "value": 35.25}, {"type": "recall_at_1", "value": 8.586}, {"type": "recall_at_10", "value": 23.148}, {"type": "recall_at_100", "value": 48.479}, {"type": "recall_at_1000", "value": 73.75500000000001}, {"type": "recall_at_3", "value": 13.718}, {"type": "recall_at_5", "value": 16.862}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 47.440000000000005}, {"type": "f1", "value": 40.19931464357708}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "mteb/fever", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "map_at_1", "value": 50.544}, {"type": "map_at_10", "value": 63.495000000000005}, {"type": "map_at_100", "value": 64.005}, {"type": "map_at_1000", "value": 64.023}, {"type": "map_at_3", "value": 60.937}, {"type": "map_at_5", "value": 62.556}, {"type": "mrr_at_1", "value": 54.379999999999995}, {"type": "mrr_at_10", "value": 67.266}, {"type": "mrr_at_100", "value": 67.647}, {"type": "mrr_at_1000", "value": 67.65299999999999}, {"type": "mrr_at_3", "value": 64.85600000000001}, {"type": "mrr_at_5", "value": 66.402}, {"type": "ndcg_at_1", "value": 54.379999999999995}, {"type": "ndcg_at_10", "value": 69.977}, {"type": "ndcg_at_100", "value": 72.045}, {"type": "ndcg_at_1000", "value": 72.404}, {"type": "ndcg_at_3", "value": 65.12299999999999}, {"type": "ndcg_at_5", "value": 67.843}, {"type": "precision_at_1", "value": 54.379999999999995}, {"type": "precision_at_10", "value": 9.469}, {"type": "precision_at_100", "value": 1.0670000000000002}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_3", "value": 26.533}, {"type": "precision_at_5", "value": 17.441000000000003}, {"type": "recall_at_1", "value": 50.544}, {"type": "recall_at_10", "value": 86.253}, {"type": "recall_at_100", "value": 94.92699999999999}, {"type": "recall_at_1000", "value": 97.301}, {"type": "recall_at_3", "value": 73.215}, {"type": "recall_at_5", "value": 79.81899999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "mteb/fiqa", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "map_at_1", "value": 18.027}, {"type": "map_at_10", "value": 28.347}, {"type": "map_at_100", "value": 30.123}, {"type": "map_at_1000", "value": 30.284}, {"type": "map_at_3", "value": 24.862000000000002}, {"type": "map_at_5", "value": 26.698}, {"type": "mrr_at_1", "value": 34.105000000000004}, {"type": "mrr_at_10", "value": 42.747}, {"type": "mrr_at_100", "value": 43.672}, {"type": "mrr_at_1000", "value": 43.723}, {"type": "mrr_at_3", "value": 40.303}, {"type": "mrr_at_5", "value": 41.6}, {"type": "ndcg_at_1", "value": 34.105000000000004}, {"type": "ndcg_at_10", "value": 35.495}, {"type": "ndcg_at_100", "value": 42.447}, {"type": "ndcg_at_1000", "value": 45.537}, {"type": "ndcg_at_3", "value": 31.911}, {"type": "ndcg_at_5", "value": 32.995999999999995}, {"type": "precision_at_1", "value": 34.105000000000004}, {"type": "precision_at_10", "value": 9.738}, {"type": "precision_at_100", "value": 1.687}, {"type": "precision_at_1000", "value": 0.22399999999999998}, {"type": "precision_at_3", "value": 20.988}, {"type": "precision_at_5", "value": 15.432000000000002}, {"type": "recall_at_1", "value": 18.027}, {"type": "recall_at_10", "value": 41.897}, {"type": "recall_at_100", "value": 67.949}, {"type": "recall_at_1000", "value": 86.735}, {"type": "recall_at_3", "value": 29.342000000000002}, {"type": "recall_at_5", "value": 34.365}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "mteb/hotpotqa", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "map_at_1", "value": 35.409}, {"type": "map_at_10", "value": 55.894}, {"type": "map_at_100", "value": 56.838}, {"type": "map_at_1000", "value": 56.901999999999994}, {"type": "map_at_3", "value": 52.074}, {"type": "map_at_5", "value": 54.429}, {"type": "mrr_at_1", "value": 70.817}, {"type": "mrr_at_10", "value": 78.532}, {"type": "mrr_at_100", "value": 78.755}, {"type": "mrr_at_1000", "value": 78.763}, {"type": "mrr_at_3", "value": 77.171}, {"type": "mrr_at_5", "value": 78.03}, {"type": "ndcg_at_1", "value": 70.817}, {"type": "ndcg_at_10", "value": 64.995}, {"type": "ndcg_at_100", "value": 68.27499999999999}, {"type": "ndcg_at_1000", "value": 69.525}, {"type": "ndcg_at_3", "value": 59.401}, {"type": "ndcg_at_5", "value": 62.471}, {"type": "precision_at_1", "value": 70.817}, {"type": "precision_at_10", "value": 13.957}, {"type": "precision_at_100", "value": 1.651}, {"type": "precision_at_1000", "value": 0.182}, {"type": "precision_at_3", "value": 38.267}, {"type": "precision_at_5", "value": 25.385999999999996}, {"type": "recall_at_1", "value": 35.409}, {"type": "recall_at_10", "value": 69.784}, {"type": "recall_at_100", "value": 82.54599999999999}, {"type": "recall_at_1000", "value": 90.824}, {"type": "recall_at_3", "value": 57.4}, {"type": "recall_at_5", "value": 63.464}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 79.54679999999999}, {"type": "ap", "value": 73.47419341239319}, {"type": "f1", "value": 79.4507801491805}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "mteb/msmarco", "config": "default", "split": "test", "revision": "c5a29a104738b98a9e76336939199e264163d4a0"}, "metrics": [{"type": "map_at_1", "value": 2.465}, {"type": "map_at_10", "value": 15.237}, {"type": "map_at_100", "value": 39.974}, {"type": "map_at_1000", "value": 47.487}, {"type": "map_at_3", "value": 6.798}, {"type": "map_at_5", "value": 9.635}, {"type": "mrr_at_1", "value": 93.023}, {"type": "mrr_at_10", "value": 94.961}, {"type": "mrr_at_100", "value": 95.041}, {"type": "mrr_at_1000", "value": 95.041}, {"type": "mrr_at_3", "value": 94.961}, {"type": "mrr_at_5", "value": 94.961}, {"type": "ndcg_at_1", "value": 75.194}, {"type": "ndcg_at_10", "value": 68.715}, {"type": "ndcg_at_100", "value": 64.191}, {"type": "ndcg_at_1000", "value": 71.192}, {"type": "ndcg_at_3", "value": 73.085}, {"type": "ndcg_at_5", "value": 72.817}, {"type": "precision_at_1", "value": 93.023}, {"type": "precision_at_10", "value": 76.512}, {"type": "precision_at_100", "value": 37.698}, {"type": "precision_at_1000", "value": 6.851}, {"type": "precision_at_3", "value": 88.372}, {"type": "precision_at_5", "value": 84.651}, {"type": "recall_at_1", "value": 2.465}, {"type": "recall_at_10", "value": 16.181}, {"type": "recall_at_100", "value": 52.515}, {"type": "recall_at_1000", "value": 77.483}, {"type": "recall_at_3", "value": 6.922000000000001}, {"type": "recall_at_5", "value": 9.945}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 90.48335613315092}, {"type": "f1", "value": 90.3575395041569}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 58.10533515731875}, {"type": "f1", "value": 41.93379347349137}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 65.60524546065906}, {"type": "f1", "value": 62.37255545904355}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 71.049092131809}, {"type": "f1", "value": 70.19452987909062}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 31.698383065423773}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 27.763066538701253}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 30.320838995172895}, {"type": "mrr", "value": 31.223609863654694}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "mteb/nfcorpus", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "map_at_1", "value": 5.127000000000001}, {"type": "map_at_10", "value": 11.395}, {"type": "map_at_100", "value": 14.252999999999998}, {"type": "map_at_1000", "value": 15.601}, {"type": "map_at_3", "value": 8.327}, {"type": "map_at_5", "value": 9.637}, {"type": "mrr_at_1", "value": 42.105}, {"type": "mrr_at_10", "value": 50.495000000000005}, {"type": "mrr_at_100", "value": 51.175000000000004}, {"type": "mrr_at_1000", "value": 51.217999999999996}, {"type": "mrr_at_3", "value": 48.452}, {"type": "mrr_at_5", "value": 49.830000000000005}, {"type": "ndcg_at_1", "value": 40.093}, {"type": "ndcg_at_10", "value": 31.806}, {"type": "ndcg_at_100", "value": 28.949}, {"type": "ndcg_at_1000", "value": 37.655}, {"type": "ndcg_at_3", "value": 36.692}, {"type": "ndcg_at_5", "value": 34.348}, {"type": "precision_at_1", "value": 41.486000000000004}, {"type": "precision_at_10", "value": 23.777}, {"type": "precision_at_100", "value": 7.457999999999999}, {"type": "precision_at_1000", "value": 2.018}, {"type": "precision_at_3", "value": 34.572}, {"type": "precision_at_5", "value": 29.536}, {"type": "recall_at_1", "value": 5.127000000000001}, {"type": "recall_at_10", "value": 15.427}, {"type": "recall_at_100", "value": 29.206}, {"type": "recall_at_1000", "value": 60.716}, {"type": "recall_at_3", "value": 9.261999999999999}, {"type": "recall_at_5", "value": 11.677999999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "mteb/nq", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "map_at_1", "value": 29.275000000000002}, {"type": "map_at_10", "value": 44.374}, {"type": "map_at_100", "value": 45.405}, {"type": "map_at_1000", "value": 45.437}, {"type": "map_at_3", "value": 40.028000000000006}, {"type": "map_at_5", "value": 42.492999999999995}, {"type": "mrr_at_1", "value": 32.966}, {"type": "mrr_at_10", "value": 46.905}, {"type": "mrr_at_100", "value": 47.699999999999996}, {"type": "mrr_at_1000", "value": 47.721000000000004}, {"type": "mrr_at_3", "value": 43.308}, {"type": "mrr_at_5", "value": 45.458}, {"type": "ndcg_at_1", "value": 32.966}, {"type": "ndcg_at_10", "value": 52.151}, {"type": "ndcg_at_100", "value": 56.565}, {"type": "ndcg_at_1000", "value": 57.315000000000005}, {"type": "ndcg_at_3", "value": 43.973}, {"type": "ndcg_at_5", "value": 48.125}, {"type": "precision_at_1", "value": 32.966}, {"type": "precision_at_10", "value": 8.72}, {"type": "precision_at_100", "value": 1.121}, {"type": "precision_at_1000", "value": 0.11900000000000001}, {"type": "precision_at_3", "value": 20.085}, {"type": "precision_at_5", "value": 14.45}, {"type": "recall_at_1", "value": 29.275000000000002}, {"type": "recall_at_10", "value": 73.288}, {"type": "recall_at_100", "value": 92.56}, {"type": "recall_at_1000", "value": 98.139}, {"type": "recall_at_3", "value": 52.11}, {"type": "recall_at_5", "value": 61.696}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "mteb/quora", "config": "default", "split": "test", "revision": "e4e08e0b7dbe3c8700f0daef558ff32256715259"}, "metrics": [{"type": "map_at_1", "value": 67.537}, {"type": "map_at_10", "value": 80.879}, {"type": "map_at_100", "value": 81.577}, {"type": "map_at_1000", "value": 81.602}, {"type": "map_at_3", "value": 77.981}, {"type": "map_at_5", "value": 79.768}, {"type": "mrr_at_1", "value": 77.69}, {"type": "mrr_at_10", "value": 84.417}, {"type": "mrr_at_100", "value": 84.59299999999999}, {"type": "mrr_at_1000", "value": 84.596}, {"type": "mrr_at_3", "value": 83.26}, {"type": "mrr_at_5", "value": 84.023}, {"type": "ndcg_at_1", "value": 77.72}, {"type": "ndcg_at_10", "value": 85.021}, {"type": "ndcg_at_100", "value": 86.66199999999999}, {"type": "ndcg_at_1000", "value": 86.87700000000001}, {"type": "ndcg_at_3", "value": 81.90899999999999}, {"type": "ndcg_at_5", "value": 83.55}, {"type": "precision_at_1", "value": 77.72}, {"type": "precision_at_10", "value": 12.876999999999999}, {"type": "precision_at_100", "value": 1.498}, {"type": "precision_at_1000", "value": 0.156}, {"type": "precision_at_3", "value": 35.653}, {"type": "precision_at_5", "value": 23.476}, {"type": "recall_at_1", "value": 67.537}, {"type": "recall_at_10", "value": 92.878}, {"type": "recall_at_100", "value": 98.786}, {"type": "recall_at_1000", "value": 99.892}, {"type": "recall_at_3", "value": 83.968}, {"type": "recall_at_5", "value": 88.571}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 49.16241148820256}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 61.54900278834193}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "mteb/scidocs", "config": "default", "split": "test", "revision": "f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88"}, "metrics": [{"type": "map_at_1", "value": 4.173}, {"type": "map_at_10", "value": 10.120999999999999}, {"type": "map_at_100", "value": 11.956}, {"type": "map_at_1000", "value": 12.219}, {"type": "map_at_3", "value": 7.3580000000000005}, {"type": "map_at_5", "value": 8.799}, {"type": "mrr_at_1", "value": 20.599999999999998}, {"type": "mrr_at_10", "value": 30.326999999999998}, {"type": "mrr_at_100", "value": 31.412000000000003}, {"type": "mrr_at_1000", "value": 31.480000000000004}, {"type": "mrr_at_3", "value": 26.983}, {"type": "mrr_at_5", "value": 28.938000000000002}, {"type": "ndcg_at_1", "value": 20.599999999999998}, {"type": "ndcg_at_10", "value": 17.365}, {"type": "ndcg_at_100", "value": 24.623}, {"type": "ndcg_at_1000", "value": 29.65}, {"type": "ndcg_at_3", "value": 16.509999999999998}, {"type": "ndcg_at_5", "value": 14.542}, {"type": "precision_at_1", "value": 20.599999999999998}, {"type": "precision_at_10", "value": 8.98}, {"type": "precision_at_100", "value": 1.939}, {"type": "precision_at_1000", "value": 0.315}, {"type": "precision_at_3", "value": 15.4}, {"type": "precision_at_5", "value": 12.8}, {"type": "recall_at_1", "value": 4.173}, {"type": "recall_at_10", "value": 18.212999999999997}, {"type": "recall_at_100", "value": 39.363}, {"type": "recall_at_1000", "value": 63.94499999999999}, {"type": "recall_at_3", "value": 9.373}, {"type": "recall_at_5", "value": 13.008000000000001}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.87431570350371}, {"type": "cos_sim_spearman", "value": 79.25074443392982}, {"type": "euclidean_pearson", "value": 80.9080554083112}, {"type": "euclidean_spearman", "value": 79.2507399109411}, {"type": "manhattan_pearson", "value": 80.90956765983888}, {"type": "manhattan_spearman", "value": 79.20576643481074}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.48662954870734}, {"type": "cos_sim_spearman", "value": 73.70799073411621}, {"type": "euclidean_pearson", "value": 80.49103960387095}, {"type": "euclidean_spearman", "value": 73.7055087532169}, {"type": "manhattan_pearson", "value": 80.5783519196888}, {"type": "manhattan_spearman", "value": 73.90297846138822}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 80.70595293210951}, {"type": "cos_sim_spearman", "value": 82.31727223815786}, {"type": "euclidean_pearson", "value": 81.5306062072953}, {"type": "euclidean_spearman", "value": 82.31721735735299}, {"type": "manhattan_pearson", "value": 81.43418231655517}, {"type": "manhattan_spearman", "value": 82.20026619822572}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 81.24706825802423}, {"type": "cos_sim_spearman", "value": 80.06920825678749}, {"type": "euclidean_pearson", "value": 80.48334698932342}, {"type": "euclidean_spearman", "value": 80.06918911208002}, {"type": "manhattan_pearson", "value": 80.40681414406772}, {"type": "manhattan_spearman", "value": 80.0102866792831}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.16929217014857}, {"type": "cos_sim_spearman", "value": 87.2100080395613}, {"type": "euclidean_pearson", "value": 86.4066737251256}, {"type": "euclidean_spearman", "value": 87.20998056215564}, {"type": "manhattan_pearson", "value": 86.39080868256596}, {"type": "manhattan_spearman", "value": 87.1927937048571}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 80.53662089031329}, {"type": "cos_sim_spearman", "value": 82.33056272292711}, {"type": "euclidean_pearson", "value": 81.40056519211387}, {"type": "euclidean_spearman", "value": 82.33056272292711}, {"type": "manhattan_pearson", "value": 81.27845573928735}, {"type": "manhattan_spearman", "value": 82.22192854693785}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.66415281856406}, {"type": "cos_sim_spearman", "value": 87.58094863633612}, {"type": "euclidean_pearson", "value": 88.25085288996081}, {"type": "euclidean_spearman", "value": 87.58094863633612}, {"type": "manhattan_pearson", "value": 88.34016528668018}, {"type": "manhattan_spearman", "value": 87.67773968789653}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 65.91354529556227}, {"type": "cos_sim_spearman", "value": 66.29904599827411}, {"type": "euclidean_pearson", "value": 66.99135025654104}, {"type": "euclidean_spearman", "value": 66.29904599827411}, {"type": "manhattan_pearson", "value": 67.29167796154489}, {"type": "manhattan_spearman", "value": 66.54035688112117}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.17371544155577}, {"type": "cos_sim_spearman", "value": 84.91600230031912}, {"type": "euclidean_pearson", "value": 84.58535536355062}, {"type": "euclidean_spearman", "value": 84.91603828194314}, {"type": "manhattan_pearson", "value": 84.52786631260929}, {"type": "manhattan_spearman", "value": 84.8279451537192}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 79.90931256553237}, {"type": "mrr", "value": 94.55430462783404}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "mteb/scifact", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "map_at_1", "value": 52.233}, {"type": "map_at_10", "value": 63.135}, {"type": "map_at_100", "value": 63.766999999999996}, {"type": "map_at_1000", "value": 63.788999999999994}, {"type": "map_at_3", "value": 60.374}, {"type": "map_at_5", "value": 62.11600000000001}, {"type": "mrr_at_1", "value": 54.333}, {"type": "mrr_at_10", "value": 64.208}, {"type": "mrr_at_100", "value": 64.687}, {"type": "mrr_at_1000", "value": 64.705}, {"type": "mrr_at_3", "value": 62.166999999999994}, {"type": "mrr_at_5", "value": 63.532999999999994}, {"type": "ndcg_at_1", "value": 54.333}, {"type": "ndcg_at_10", "value": 67.965}, {"type": "ndcg_at_100", "value": 70.709}, {"type": "ndcg_at_1000", "value": 71.221}, {"type": "ndcg_at_3", "value": 63.376}, {"type": "ndcg_at_5", "value": 65.977}, {"type": "precision_at_1", "value": 54.333}, {"type": "precision_at_10", "value": 9.167}, {"type": "precision_at_100", "value": 1.0630000000000002}, {"type": "precision_at_1000", "value": 0.11100000000000002}, {"type": "precision_at_3", "value": 25.0}, {"type": "precision_at_5", "value": 16.733}, {"type": "recall_at_1", "value": 52.233}, {"type": "recall_at_10", "value": 81.289}, {"type": "recall_at_100", "value": 93.767}, {"type": "recall_at_1000", "value": 97.667}, {"type": "recall_at_3", "value": 69.294}, {"type": "recall_at_5", "value": 75.64999999999999}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.8069306930693}, {"type": "cos_sim_ap", "value": 95.01715408250185}, {"type": "cos_sim_f1", "value": 90.27431421446383}, {"type": "cos_sim_precision", "value": 90.04975124378109}, {"type": "cos_sim_recall", "value": 90.5}, {"type": "dot_accuracy", "value": 99.8069306930693}, {"type": "dot_ap", "value": 95.01715420720572}, {"type": "dot_f1", "value": 90.27431421446383}, {"type": "dot_precision", "value": 90.04975124378109}, {"type": "dot_recall", "value": 90.5}, {"type": "euclidean_accuracy", "value": 99.8069306930693}, {"type": "euclidean_ap", "value": 95.01715408250185}, {"type": "euclidean_f1", "value": 90.27431421446383}, {"type": "euclidean_precision", "value": 90.04975124378109}, {"type": "euclidean_recall", "value": 90.5}, {"type": "manhattan_accuracy", "value": 99.8108910891089}, {"type": "manhattan_ap", "value": 95.08344895081773}, {"type": "manhattan_f1", "value": 90.2672718103883}, {"type": "manhattan_precision", "value": 91.04781281790437}, {"type": "manhattan_recall", "value": 89.5}, {"type": "max_accuracy", "value": 99.8108910891089}, {"type": "max_ap", "value": 95.08344895081773}, {"type": "max_f1", "value": 90.27431421446383}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 56.77496100801627}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 32.03980982336066}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 49.92590367093363}, {"type": "mrr", "value": 50.72744249214838}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 29.873523128424296}, {"type": "cos_sim_spearman", "value": 29.77696422152863}, {"type": "dot_pearson", "value": 29.873538265911392}, {"type": "dot_spearman", "value": 29.77696422152863}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "mteb/trec-covid", "config": "default", "split": "test", "revision": "bb9466bac8153a0349341eb1b22e06409e78ef4e"}, "metrics": [{"type": "map_at_1", "value": 0.16}, {"type": "map_at_10", "value": 1.196}, {"type": "map_at_100", "value": 6.525}, {"type": "map_at_1000", "value": 17.379}, {"type": "map_at_3", "value": 0.43299999999999994}, {"type": "map_at_5", "value": 0.687}, {"type": "mrr_at_1", "value": 64.0}, {"type": "mrr_at_10", "value": 76.467}, {"type": "mrr_at_100", "value": 76.533}, {"type": "mrr_at_1000", "value": 76.533}, {"type": "mrr_at_3", "value": 73.667}, {"type": "mrr_at_5", "value": 75.467}, {"type": "ndcg_at_1", "value": 56.99999999999999}, {"type": "ndcg_at_10", "value": 52.614000000000004}, {"type": "ndcg_at_100", "value": 41.677}, {"type": "ndcg_at_1000", "value": 41.565000000000005}, {"type": "ndcg_at_3", "value": 55.765}, {"type": "ndcg_at_5", "value": 55.553}, {"type": "precision_at_1", "value": 64.0}, {"type": "precision_at_10", "value": 56.8}, {"type": "precision_at_100", "value": 43.18}, {"type": "precision_at_1000", "value": 19.016}, {"type": "precision_at_3", "value": 60.0}, {"type": "precision_at_5", "value": 60.4}, {"type": "recall_at_1", "value": 0.16}, {"type": "recall_at_10", "value": 1.4909999999999999}, {"type": "recall_at_100", "value": 10.238999999999999}, {"type": "recall_at_1000", "value": 40.492}, {"type": "recall_at_3", "value": 0.486}, {"type": "recall_at_5", "value": 0.8099999999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "mteb/touche2020", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "map_at_1", "value": 1.078}, {"type": "map_at_10", "value": 4.777}, {"type": "map_at_100", "value": 8.552}, {"type": "map_at_1000", "value": 9.831}, {"type": "map_at_3", "value": 2.33}, {"type": "map_at_5", "value": 3.102}, {"type": "mrr_at_1", "value": 14.285999999999998}, {"type": "mrr_at_10", "value": 25.688}, {"type": "mrr_at_100", "value": 27.211000000000002}, {"type": "mrr_at_1000", "value": 27.262999999999998}, {"type": "mrr_at_3", "value": 20.408}, {"type": "mrr_at_5", "value": 23.265}, {"type": "ndcg_at_1", "value": 13.264999999999999}, {"type": "ndcg_at_10", "value": 13.225999999999999}, {"type": "ndcg_at_100", "value": 23.873}, {"type": "ndcg_at_1000", "value": 35.357}, {"type": "ndcg_at_3", "value": 11.162999999999998}, {"type": "ndcg_at_5", "value": 12.202}, {"type": "precision_at_1", "value": 14.285999999999998}, {"type": "precision_at_10", "value": 13.469000000000001}, {"type": "precision_at_100", "value": 5.592}, {"type": "precision_at_1000", "value": 1.278}, {"type": "precision_at_3", "value": 12.245000000000001}, {"type": "precision_at_5", "value": 13.877999999999998}, {"type": "recall_at_1", "value": 1.078}, {"type": "recall_at_10", "value": 10.094}, {"type": "recall_at_100", "value": 35.723}, {"type": "recall_at_1000", "value": 70.161}, {"type": "recall_at_3", "value": 3.078}, {"type": "recall_at_5", "value": 5.171}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 63.526}, {"type": "ap", "value": 11.499475362455422}, {"type": "f1", "value": 49.007047166853305}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 61.77136389360498}, {"type": "f1", "value": 61.60711673348749}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 40.700597517044926}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 86.59474280264648}, {"type": "cos_sim_ap", "value": 75.2354882574253}, {"type": "cos_sim_f1", "value": 69.23641703377386}, {"type": "cos_sim_precision", "value": 64.55956184390689}, {"type": "cos_sim_recall", "value": 74.64379947229551}, {"type": "dot_accuracy", "value": 86.59474280264648}, {"type": "dot_ap", "value": 75.2355004100119}, {"type": "dot_f1", "value": 69.23641703377386}, {"type": "dot_precision", "value": 64.55956184390689}, {"type": "dot_recall", "value": 74.64379947229551}, {"type": "euclidean_accuracy", "value": 86.59474280264648}, {"type": "euclidean_ap", "value": 75.23549109559548}, {"type": "euclidean_f1", "value": 69.23641703377386}, {"type": "euclidean_precision", "value": 64.55956184390689}, {"type": "euclidean_recall", "value": 74.64379947229551}, {"type": "manhattan_accuracy", "value": 86.46361089586935}, {"type": "manhattan_ap", "value": 74.97783476285602}, {"type": "manhattan_f1", "value": 69.16030534351145}, {"type": "manhattan_precision", "value": 66.78132678132678}, {"type": "manhattan_recall", "value": 71.71503957783642}, {"type": "max_accuracy", "value": 86.59474280264648}, {"type": "max_ap", "value": 75.2355004100119}, {"type": "max_f1", "value": 69.23641703377386}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.03830480847596}, {"type": "cos_sim_ap", "value": 85.95577773962282}, {"type": "cos_sim_f1", "value": 78.27735233907043}, {"type": "cos_sim_precision", "value": 77.10231516056758}, {"type": "cos_sim_recall", "value": 79.48875885432707}, {"type": "dot_accuracy", "value": 89.03830480847596}, {"type": "dot_ap", "value": 85.95578535080806}, {"type": "dot_f1", "value": 78.27735233907043}, {"type": "dot_precision", "value": 77.10231516056758}, {"type": "dot_recall", "value": 79.48875885432707}, {"type": "euclidean_accuracy", "value": 89.03830480847596}, {"type": "euclidean_ap", "value": 85.95573921817162}, {"type": "euclidean_f1", "value": 78.27735233907043}, {"type": "euclidean_precision", "value": 77.10231516056758}, {"type": "euclidean_recall", "value": 79.48875885432707}, {"type": "manhattan_accuracy", "value": 88.9024721543059}, {"type": "manhattan_ap", "value": 85.89551017445959}, {"type": "manhattan_f1", "value": 78.19396487013964}, {"type": "manhattan_precision", "value": 76.28148799062683}, {"type": "manhattan_recall", "value": 80.20480443486295}, {"type": "max_accuracy", "value": 89.03830480847596}, {"type": "max_ap", "value": 85.95578535080806}, {"type": "max_f1", "value": 78.27735233907043}]}]}]}
yessilver/new_model
null
[ "mteb", "model-index", "region:us" ]
null
2024-05-03T02:39:02+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART_DocBot_SonatafyAI_V1 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.016 | 1.0 | 982 | 0.0185 | | 0.0038 | 2.0 | 1964 | 0.0281 | | 0.0037 | 3.0 | 2946 | 0.0164 | | 0.0016 | 4.0 | 3928 | 0.0220 | | 0.0012 | 5.0 | 4910 | 0.0244 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "facebook/bart-large", "model-index": [{"name": "BART_DocBot_SonatafyAI_V1", "results": []}]}
Sonatafyai/BART_DocBot_SonatafyAI_V1
null
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:39:58+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Atom-7B - bnb 8bits - Model creator: https://huggingface.co/FlagAlpha/ - Original model: https://huggingface.co/FlagAlpha/Atom-7B/ Original model description: --- developers: [https://huggingface.co/FlagAlphaAI] license: apache-2.0 language: - zh - en pipeline_tag: question-answering library_name: transformers --- # Atom-7B Atom-7B完全开源可商用,由Llama中文社区和AtomEcho(原子回声)联合研发,基于Llama2-7B采用大规模的中文数据进行了继续预训练,我们会持续提供更新的模型参数,模型训练过程见[llama.family](https://llama.family)。 模型的部署、训练、微调等方法详见Llama中文社区GitHub仓库:[**Llama-Chinese**](https://github.com/LlamaFamily/Llama-Chinese)。 ## 📝 中文数据 | 类型 | 描述 | | ---------------------------------------------------------- | ------------------------------------------------------------ | | 网络数据 | 互联网上公开的网络数据,挑选出去重后的高质量中文数据,涉及到百科、书籍、博客、新闻、公告、小说等高质量长文本数据。 | | [Wikipedia](https://github.com/goldsmith/Wikipedia) | 中文Wikipedia的数据 | | [悟道](https://github.com/BAAI-WuDao/Model) | 中文悟道开源的200G数据 | | [Clue](https://github.com/CLUEbenchmark/CLUEDatasetSearch) | Clue开放的中文预训练数据,进行清洗后的高质量中文长文本数据 | | 竞赛数据集 | 近年来中文自然语言处理多任务竞赛数据集,约150个 | | [MNBVC](https://github.com/esbatmop/MNBVC) | MNBVC 中清洗出来的部分数据集 | **我们也欢迎大家在[llama.family](https://llama.family)中贡献自己的数据,您的数据通过审核后会加入模型训练,也将影响模型未来的能力走向。** ## 📚 中文词表 为了提高中文文本处理的效率,我们针对Llama2模型的词表进行了深度优化。 首先,我们基于数百G的中文文本,**在Llama2词表的基础上扩展词库至65,000个单词**。 经过测试,我们的改进使得**中文编码/解码速度提高了约350%**。 此外,我们还扩大了中文字符集的覆盖范围,包括所有**emoji符号**,这使的生成带有表情符号的文章更加高效。 对于Llama2原生词表中的一些特殊情况,如数字、英文等,我们尽可能地避免对其进行修改或替换。 最终,成功地实现了一种既能提高中文处理效率又能保持Llama2原有性能的方法。 ## 📈 训练过程 **模型结构** 基于当前最优秀的开源模型Llama2,使用主流Decoder-only的标准Transformer网络结构,支持4K的上下文长度(Context Length),为同尺寸模型中最长,能满足更长的多轮对话、知识问答与摘要等需求,模型应用场景更广泛。 **FlashAttention-2高效训练** Atom-7B采用了FlashAttention-2技术进行训练。由于在处理较长的输入序列时,内存消耗的问题可能会导致“内存爆炸”现象。FlashAttention-2是一种高效注意力机制的实现方式之一,相较于传统的注意力技术(Attention),它拥有更快速的速度以及更加优化的内存占用率。 **基于NTK的自适应上下文扩展技术** - 可在不继续训练模型的情况下支持更长的上下文 - 本项目中模型默认支持4K上下文,利用上述技术可扩展至18K+ - 经过微调可以支持到32K+ ## 💻 推理配置 实际应用中,消费级显卡要比专业显卡便宜的多(比如3090相比A10,同样都是24G显存)。 对于消费级显卡,直接FP32肯定放不下,一般最基本的是FP16,而INT8和INT4量化就很有用,例如: - 对于3080显卡(10G显存),Atom-7B的INT8只需要8G显存可以直接部署。 - 对于3080显卡(10G显存),Atom-7B的INT4只需要5G显存可以直接部署。 --- # Llama中文社区 ## 🚀 社区地址: Github:[**Llama-Chinese**](https://github.com/LlamaFamily/Llama-Chinese) 在线体验链接:[**llama.family**](https://llama.family/) ## 🔥 社区介绍 欢迎来到Llama中文社区! 我们是一个专注于Llama模型在中文方面的优化和上层建设的高级技术社区。 **基于大规模中文数据,从预训练开始对Llama2模型进行中文能力的持续迭代升级**。 我们热忱欢迎对大模型LLM充满热情的开发者和研究者加入我们的行列。 ## 🐼 社区资源 - Llama2在线体验链接[**llama.family**](https://llama.family/),同时包含Meta原版和中文微调版本! - Llama2 Chat模型的[中文问答能力评测](https://github.com/LlamaFamily/Llama-Chinese/tree/main#-%E6%A8%A1%E5%9E%8B%E8%AF%84%E6%B5%8B)! - [社区飞书知识库](https://chinesellama.feishu.cn/wiki/space/7257824476874768388?ccm_open_type=lark_wiki_spaceLink),欢迎大家一起共建!
{}
RichardErkhov/FlagAlpha_-_Atom-7B-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "custom_code", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-03T02:41:06+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
arthrod/cicerollamatry6
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:42:10+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/0x2xu58
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:42:30+00:00
text-to-audio
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ceb_b64_le4_s8000 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 0.4561 | 19.8020 | 500 | 0.4151 | | 0.4179 | 39.6040 | 1000 | 0.3994 | | 0.4075 | 59.4059 | 1500 | 0.4018 | | 0.3981 | 79.2079 | 2000 | 0.4029 | | 0.3862 | 99.0099 | 2500 | 0.3978 | | 0.3726 | 118.8119 | 3000 | 0.3978 | | 0.365 | 138.6139 | 3500 | 0.3960 | | 0.3525 | 158.4158 | 4000 | 0.3969 | | 0.3545 | 178.2178 | 4500 | 0.3982 | | 0.3473 | 198.0198 | 5000 | 0.4039 | | 0.3439 | 217.8218 | 5500 | 0.4020 | | 0.3371 | 237.6238 | 6000 | 0.4044 | | 0.3362 | 257.4257 | 6500 | 0.4041 | | 0.3311 | 277.2277 | 7000 | 0.4022 | | 0.3345 | 297.0297 | 7500 | 0.4051 | | 0.3348 | 316.8317 | 8000 | 0.4050 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "microsoft/speecht5_tts", "model-index": [{"name": "ceb_b64_le4_s8000", "results": []}]}
mikhail-panzo/ceb_b64_le4_s8000
null
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:42:40+00:00
text-classification
transformers
{}
koheisanno/bert-base-cased-finetuned-mnli
null
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:43:42+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/hktug03
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:44:49+00:00
text-generation
transformers
## Lumimaid 0.1 <center><div style="width: 100%;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;"> </div></center> This model uses the Llama3 **prompting format** Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough. We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data. This model includes the new Luminae dataset from Ikari. If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY). ## Credits: - Undi - IkariDev ## Description This repo contains FP16 files of Lumimaid-8B-v0.1. Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt) ## Training data used: - [Aesir datasets](https://huggingface.co/MinervaAI) - [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt) - [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx - [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) - [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal) - Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset - [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly) - [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly) - [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly) - Airoboros (reduced) - [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced) ## Models used (only for 8B) - Initial LumiMaid 8B Finetune - Undi95/Llama-3-Unholy-8B-e4 - Undi95/Llama-3-LewdPlay-8B ## Prompt template: Llama3 ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` ## Others Undi: If you want to support us, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
{"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]}
blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw2.5-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:44:53+00:00
null
null
{"license": "openrail"}
iaaoli2/kellsmith
null
[ "license:openrail", "region:us" ]
null
2024-05-03T02:45:56+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
TrevorAsbery/Mistral-7b-papers
null
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:47:11+00:00
null
transformers
# Uploaded model - **Developed by:** pathos00011 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/Phi-3-mini-4k-instruct-bnb-4bit"}
pathos00011/phi3_finetune_skycity
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:47:11+00:00
text-generation
transformers
{"license": "mit"}
NishantPar/phi2-email-priority-qlora
null
[ "transformers", "phi", "text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-03T02:47:43+00:00
null
null
{}
std50218/vivit-b-16x2-kinetics400-finetuned-temp-original-dictionary
null
[ "region:us" ]
null
2024-05-03T02:48:05+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cilantro9246/bkxa964
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:49:07+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
golf2248/yob0htd
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:49:37+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_Chat_1.0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_Chat_1.0-GGUF/resolve/main/Mixtral_AI_Chat_1.0.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "LeroyDyer/Mixtral_AI_Chat_1.0", "quantized_by": "mradermacher"}
mradermacher/Mixtral_AI_Chat_1.0-GGUF
null
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:LeroyDyer/Mixtral_AI_Chat_1.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:49:46+00:00
text-generation
transformers
# gradientai/Llama-3-8B-Instruct-Gradient-1048k AWQ - Model creator: [gradientai](https://huggingface.co/gradientai) - Original model: [Llama-3-8B-Instruct-Gradient-1048k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) <a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a> ## Model Summary Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected]. For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab) This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/Llama-3-8B-Instruct-Gradient-1048k-AWQ" system_message = "You are Llama-3-8B-Instruct-Gradient-1048k, incarnated as a powerful AI. You were created by gradientai." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Citation instructions ```plaintext @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ```
{"library_name": "transformers", "tags": ["4-bit", "AWQ", "text-generation", "autotrain_compatible", "endpoints_compatible"], "pipeline_tag": "text-generation", "inference": false, "quantized_by": "Suparious"}
solidrust/Llama-3-8B-Instruct-Gradient-1048k-AWQ
null
[ "transformers", "safetensors", "llama", "text-generation", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "conversational", "text-generation-inference", "region:us" ]
null
2024-05-03T02:50:04+00:00
automatic-speech-recognition
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shtapm/whisper-large_0502_decoder9_200steps
null
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:50:17+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["unsloth"]}
notzero/qlora_llama3
null
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:51:15+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava_siglip_llama3_8b_finetune_8192 This model is a fine-tuned version of [MFuyu/llava_siglip_llama3_8b_pretrain_8192](https://huggingface.co/MFuyu/llava_siglip_llama3_8b_pretrain_8192) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"tags": ["generated_from_trainer"], "base_model": "MFuyu/llava_siglip_llama3_8b_pretrain_8192", "model-index": [{"name": "llava_siglip_llama3_8b_finetune_8192", "results": []}]}
TIGER-Lab/Mantis-8B-siglip-llama3
null
[ "transformers", "safetensors", "llava", "pretraining", "generated_from_trainer", "base_model:MFuyu/llava_siglip_llama3_8b_pretrain_8192", "endpoints_compatible", "region:us", "has_space" ]
null
2024-05-03T02:53:08+00:00
null
null
# JarvisLlama-7B JarvisLlama-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) * [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) ## 🧩 Configuration ```yaml models: - model: NousResearch/Meta-Llama-3-8B # No parameters necessary for base model - model: NousResearch/Meta-Llama-3-8B-Instruct parameters: density: 0.6 weight: 0.5 - model: mlabonne/OrpoLlama-3-8B parameters: density: 0.55 weight: 0.05 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3-8B parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/JarvisLlama-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "automerger"], "base_model": ["NousResearch/Meta-Llama-3-8B-Instruct", "mlabonne/OrpoLlama-3-8B"]}
automerger/JarvisLlama-7B
null
[ "merge", "mergekit", "lazymergekit", "automerger", "base_model:NousResearch/Meta-Llama-3-8B-Instruct", "base_model:mlabonne/OrpoLlama-3-8B", "license:apache-2.0", "region:us" ]
null
2024-05-03T02:53:20+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava_clip_llama3_8b_finetune_8192 This model is a fine-tuned version of [MFuyu/llava_clip_llama3_8b_pretrain_8192](https://huggingface.co/MFuyu/llava_clip_llama3_8b_pretrain_8192) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"tags": ["generated_from_trainer"], "base_model": "MFuyu/llava_clip_llama3_8b_pretrain_8192", "model-index": [{"name": "llava_clip_llama3_8b_finetune_8192", "results": []}]}
TIGER-Lab/Mantis-8B-clip-llama3
null
[ "transformers", "safetensors", "llava", "pretraining", "generated_from_trainer", "base_model:MFuyu/llava_clip_llama3_8b_pretrain_8192", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:53:21+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
golf2248/a131lxy
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:53:36+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava_clip_llama3_8b_pretrain_8192 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1 - Datasets 2.17.1 - Tokenizers 0.19.1
{"tags": ["generated_from_trainer"], "model-index": [{"name": "llava_clip_llama3_8b_pretrain_8192", "results": []}]}
TIGER-Lab/Mantis-8B-clip-llama3-pretraind
null
[ "transformers", "safetensors", "llava", "pretraining", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:53:48+00:00
null
null
{}
Sufian5642/bert-finetuned-squad-accelerate
null
[ "region:us" ]
null
2024-05-03T02:53:50+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava_siglip_llama3_8b_pretrain_8192 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1 - Datasets 2.17.1 - Tokenizers 0.19.1
{"tags": ["generated_from_trainer"], "model-index": [{"name": "llava_siglip_llama3_8b_pretrain_8192", "results": []}]}
TIGER-Lab/Mantis-8B-siglip-llama3-pretraind
null
[ "transformers", "safetensors", "llava", "pretraining", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:53:59+00:00
text-generation
transformers
# WestTemptressTensor-10.7B-v0.2a-SLERP WestTemptressTensor-10.7B-v0.2a-SLERP is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [jsfs11/TemptressTensor-10.7B-v0.1a](https://huggingface.co/jsfs11/TemptressTensor-10.7B-v0.1a) * [froggeric/WestLake-10.7B-v2](https://huggingface.co/froggeric/WestLake-10.7B-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: jsfs11/TemptressTensor-10.7B-v0.1a layer_range: [0, 48] - model: froggeric/WestLake-10.7B-v2 layer_range: [0, 48] merge_method: slerp base_model: jsfs11/TemptressTensor-10.7B-v0.1a parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 random_seed: 0 int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2"], "base_model": ["jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2"]}
jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP
null
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2", "base_model:jsfs11/TemptressTensor-10.7B-v0.1a", "base_model:froggeric/WestLake-10.7B-v2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:54:25+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mfuyu_1.5_8b_8192_720p This model is a fine-tuned version of [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "cc-by-nc-4.0", "tags": ["generated_from_trainer"], "base_model": "adept/fuyu-8b", "model-index": [{"name": "mfuyu_1.5_8b_8192_720p", "results": []}]}
TIGER-Lab/Mantis-8B-Fuyu
null
[ "transformers", "safetensors", "fuyu", "text-generation", "generated_from_trainer", "base_model:adept/fuyu-8b", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T02:54:53+00:00
null
null
{}
Nibo4k/lony
null
[ "region:us" ]
null
2024-05-03T02:56:45+00:00
text-to-image
diffusers
# SDXL LoRA DreamBooth - cookey39/teratera <Gallery /> ## Model description ### These are cookey39/teratera LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`teratera.safetensors` here 💾](/cookey39/teratera/blob/main/teratera.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:teratera:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`teratera_emb.safetensors` here 💾](/cookey39/teratera/blob/main/teratera_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `teratera_emb` to your prompt. For example, `In the style of Terada` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('cookey39/teratera', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='cookey39/teratera', filename='teratera_emb.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('In the style of Terada,White hair, cute dress, ice cream.').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/cookey39/teratera/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "diffusers", "lora", "template:sd-lora"], "widget": [{"text": "In the style of Terada,White hair, cute dress, ice cream.", "output": {"url": "image_0.png"}}, {"text": "In the style of Terada,White hair, cute dress, ice cream.", "output": {"url": "image_1.png"}}, {"text": "In the style of Terada,White hair, cute dress, ice cream.", "output": {"url": "image_2.png"}}, {"text": "In the style of Terada,White hair, cute dress, ice cream.", "output": {"url": "image_3.png"}}], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "In the style of Terada"}
cookey39/teratera
null
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-03T02:57:52+00:00
text-generation
transformers
## Lumimaid 0.1 <center><div style="width: 100%;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;"> </div></center> This model uses the Llama3 **prompting format** Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough. We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data. This model includes the new Luminae dataset from Ikari. If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY). ## Credits: - Undi - IkariDev ## Description This repo contains FP16 files of Lumimaid-8B-v0.1. Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt) ## Training data used: - [Aesir datasets](https://huggingface.co/MinervaAI) - [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt) - [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx - [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) - [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal) - Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset - [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly) - [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly) - [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly) - Airoboros (reduced) - [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced) ## Models used (only for 8B) - Initial LumiMaid 8B Finetune - Undi95/Llama-3-Unholy-8B-e4 - Undi95/Llama-3-LewdPlay-8B ## Prompt template: Llama3 ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` ## Others Undi: If you want to support us, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
{"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]}
blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw3-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "3-bit", "region:us" ]
null
2024-05-03T02:59:12+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
emozilla/8B_128K_bs_8M_rope_512K_step_1000_lr_2e-5
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T02:59:21+00:00
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model is built on Bert model using a Bangla Sentiment analysis dataset which is collected from social media dramas public comments. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Ahnaf Tahmeed. - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** Transformer-based language model - **Language(s) (NLP):** Bengali - **License:** MIT - **Related Models:** Bert - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-classification", model="ahnaf702/Sentibert") # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("ahnaf702/Sentibert") model = AutoModelForSequenceClassification.from_pretrained("ahnaf702/Sentibert") [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"language": ["bn"], "license": "mit", "tags": ["sentiment_analysis"], "metrics": ["accuracy", "bertscore"], "pipeline_tag": "text-classification", "widget": [{"text": "\u0986\u09ae\u09bf \u09ab\u09c1\u099f\u09ac\u09b2 \u0996\u09c7\u09b2\u09a4\u09c7 \u09ad\u09be\u09b2\u09cb\u09ac\u09be\u09b8\u09bf", "output": [{"label": "POSITIVE", "score": 0.8}, {"label": "NEGATIVE", "score": 0.2}]}, {"text": "\u0986\u09ae\u09be\u09b0 \u098f\u0987 \u0996\u09be\u09ac\u09be\u09b0\u099f\u09be \u09ae\u09cb\u099f\u09c7\u0993 \u09aa\u099b\u09a8\u09cd\u09a6 \u09b9\u09df\u09a8\u09bf", "output": [{"label": "POSITIVE", "score": 0.2}, {"label": "NEGATIVE", "score": 0.8}]}]}
ahnaf702/Sentibert
null
[ "transformers", "pytorch", "electra", "text-classification", "sentiment_analysis", "bn", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us", "has_space" ]
null
2024-05-03T03:00:36+00:00
null
diffusers
{}
00BER/ddpm-transient-attributes-128
null
[ "diffusers", "safetensors", "diffusers:CustomDDIMPipeline", "region:us" ]
null
2024-05-03T03:00:50+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
1r0nm4g3/Doug
null
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-03T03:01:02+00:00
null
null
{"license": "apache-2.0"}
prabalv/TestLLM
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-03T03:01:26+00:00
null
transformers
{}
tinyuetchung/llama2_reft_env
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:02:25+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/fvo55r8
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:02:53+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["unsloth"]}
dchatca/4bit-llama3-test
null
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:05:41+00:00
text-generation
transformers
{}
migueldeguzmandev/GPT2XL_RLLMv18-10
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "has_space" ]
null
2024-05-03T03:05:59+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Yo - Oyemade Oyemaja This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 4500 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"language": ["yo"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_17_0"], "base_model": "openai/whisper-medium", "model-index": [{"name": "Whisper Medium Yo - Oyemade Oyemaja", "results": []}]}
neoform-ai/whisper-medium-yoruba
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "yo", "dataset:mozilla-foundation/common_voice_17_0", "base_model:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:06:05+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RM-TLDR_human_loraR64_20000_gemma2b_lr1e-05_bs2_g4 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6702 - Accuracy: 0.5795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6088 | 1.0 | 2250 | 0.6687 | 0.586 | | 0.5834 | 2.0 | 4500 | 0.6702 | 0.5795 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-TLDR_human_loraR64_20000_gemma2b_lr1e-05_bs2_g4", "results": []}]}
Holarissun/RM-TLDR_human_loraR64_20000_gemma2b_lr1e-05_bs2_g4
null
[ "peft", "safetensors", "trl", "reward-trainer", "generated_from_trainer", "base_model:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-03T03:06:19+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
martinsinnona/visdecode_2024_plotqa
null
[ "transformers", "safetensors", "pix2struct", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:08:21+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/ugyfclh
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:08:33+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RM-TLDR_human_loraR64_20000_gemma2b_lr5e-05_bs2_g4 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6609 - Accuracy: 0.657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5488 | 1.0 | 2250 | 0.6267 | 0.65 | | 0.4845 | 2.0 | 4500 | 0.6609 | 0.657 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-TLDR_human_loraR64_20000_gemma2b_lr5e-05_bs2_g4", "results": []}]}
Holarissun/RM-TLDR_human_loraR64_20000_gemma2b_lr5e-05_bs2_g4
null
[ "peft", "safetensors", "trl", "reward-trainer", "generated_from_trainer", "base_model:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-03T03:09:07+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-31m_niki-041a_imdb_random-token-1280_10-rounds_seed-1 This model is a fine-tuned version of [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-31m", "model-index": [{"name": "robust_llm_pythia-31m_niki-041a_imdb_random-token-1280_10-rounds_seed-1", "results": []}]}
AlignmentResearch/robust_llm_pythia-31m_niki-041a_imdb_random-token-1280_10-rounds_seed-1
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-31m", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:09:27+00:00
null
null
# jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP-GGUF This model was converted to GGUF format from [`jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP`](https://huggingface.co/jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP-Q8_0-GGUF --model westtemptresstensor-10.7b-v0.2a-slerp.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP-Q8_0-GGUF --model westtemptresstensor-10.7b-v0.2a-slerp.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m westtemptresstensor-10.7b-v0.2a-slerp.Q8_0.gguf -n 128 ```
{"tags": ["merge", "mergekit", "lazymergekit", "jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2", "llama-cpp", "gguf-my-repo"], "base_model": ["jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2"]}
jsfs11/WestTemptressTensor-10.7B-v0.2a-SLERP-GGUF
null
[ "gguf", "merge", "mergekit", "lazymergekit", "jsfs11/TemptressTensor-10.7B-v0.1a", "froggeric/WestLake-10.7B-v2", "llama-cpp", "gguf-my-repo", "base_model:jsfs11/TemptressTensor-10.7B-v0.1a", "base_model:froggeric/WestLake-10.7B-v2", "region:us" ]
null
2024-05-03T03:09:42+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/tnie408
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:10:44+00:00
null
null
{}
liswei/t5-small-zhtw-36000
null
[ "region:us" ]
null
2024-05-03T03:10:49+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RM-TLDR_human_loraR64_20000_gemma2b_lr5e-06_bs2_g4 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6962 - Accuracy: 0.5585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6731 | 1.0 | 2250 | 0.7069 | 0.544 | | 0.633 | 2.0 | 4500 | 0.6962 | 0.5585 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-TLDR_human_loraR64_20000_gemma2b_lr5e-06_bs2_g4", "results": []}]}
Holarissun/RM-TLDR_human_loraR64_20000_gemma2b_lr5e-06_bs2_g4
null
[ "peft", "safetensors", "trl", "reward-trainer", "generated_from_trainer", "base_model:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-03T03:12:27+00:00
text-generation
transformers
2.18 epochs of a 8k private dataset over athirdpath/Llama-3-15b-OpenBioLexi. Uses L3 prompt format. --- # OpenBioLexi-GLUED - **Developed by:** athirdpath - **License:** apache-2.0 - **Finetuned from model :** athirdpath/Llama-3-15b-OpenBioLexi This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "athirdpath/Llama-3-15b-OpenBioLexi"}
athirdpath/Llama-3-15b-OpenBioLexi-GLUED
null
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:athirdpath/Llama-3-15b-OpenBioLexi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:13:13+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) tiny-dummy-qwen2 - bnb 4bits - Model creator: https://huggingface.co/fxmarty/ - Original model: https://huggingface.co/fxmarty/tiny-dummy-qwen2/ Original model description: --- license: mit ---
{}
RichardErkhov/fxmarty_-_tiny-dummy-qwen2-4bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-03T03:13:18+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
golf2248/1cpdxcz
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:13:22+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) tiny-dummy-qwen2 - bnb 8bits - Model creator: https://huggingface.co/fxmarty/ - Original model: https://huggingface.co/fxmarty/tiny-dummy-qwen2/ Original model description: --- license: mit ---
{}
RichardErkhov/fxmarty_-_tiny-dummy-qwen2-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-03T03:13:34+00:00
text-generation
transformers
## Lumimaid 0.1 <center><div style="width: 100%;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;"> </div></center> This model uses the Llama3 **prompting format** Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough. We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data. This model includes the new Luminae dataset from Ikari. If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY). ## Credits: - Undi - IkariDev ## Description This repo contains FP16 files of Lumimaid-8B-v0.1. Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt) ## Training data used: - [Aesir datasets](https://huggingface.co/MinervaAI) - [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt) - [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx - [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) - [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal) - Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset - [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly) - [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly) - [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly) - Airoboros (reduced) - [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced) ## Models used (only for 8B) - Initial LumiMaid 8B Finetune - Undi95/Llama-3-Unholy-8B-e4 - Undi95/Llama-3-LewdPlay-8B ## Prompt template: Llama3 ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` ## Others Undi: If you want to support us, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
{"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]}
blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw3.5-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:13:43+00:00
null
null
{}
ysthehurricane/whisper-small-audio-hi-transcrib
null
[ "region:us" ]
null
2024-05-03T03:13:51+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama-2-tiny-random - bnb 4bits - Model creator: https://huggingface.co/yujiepan/ - Original model: https://huggingface.co/yujiepan/llama-2-tiny-random/ Original model description: --- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- # yujiepan/llama-2-tiny-random This model is **randomly initialized**, using the config from [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/yujiepan/llama-2-tiny-random/blob/main/config.json) but with the following modifications: ```json { "hidden_size": 8, "intermediate_size": 32, "num_attention_heads": 2, "num_hidden_layers": 1, "num_key_value_heads": 2, } ```
{}
RichardErkhov/yujiepan_-_llama-2-tiny-random-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-03T03:13:59+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RM-TLDR_human_loraR64_20000_gemma2b_lr1e-06_bs2_g4 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7027 - Accuracy: 0.551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7512 | 1.0 | 2250 | 0.7080 | 0.543 | | 0.7378 | 2.0 | 4500 | 0.7027 | 0.551 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-TLDR_human_loraR64_20000_gemma2b_lr1e-06_bs2_g4", "results": []}]}
Holarissun/RM-TLDR_human_loraR64_20000_gemma2b_lr1e-06_bs2_g4
null
[ "peft", "safetensors", "trl", "reward-trainer", "generated_from_trainer", "base_model:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-05-03T03:14:06+00:00
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama-2-tiny-random - bnb 8bits - Model creator: https://huggingface.co/yujiepan/ - Original model: https://huggingface.co/yujiepan/llama-2-tiny-random/ Original model description: --- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- # yujiepan/llama-2-tiny-random This model is **randomly initialized**, using the config from [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/yujiepan/llama-2-tiny-random/blob/main/config.json) but with the following modifications: ```json { "hidden_size": 8, "intermediate_size": 32, "num_attention_heads": 2, "num_hidden_layers": 1, "num_key_value_heads": 2, } ```
{}
RichardErkhov/yujiepan_-_llama-2-tiny-random-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-03T03:14:11+00:00
null
null
{"license": "openrail"}
marvinmedeiros52/marvinselau
null
[ "license:openrail", "region:us" ]
null
2024-05-03T03:14:12+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cilantro9246/untg5qk
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:14:39+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Poojithpoosa/code_classification_model This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6716 - Validation Loss: 0.6770 - Train Accuracy: 0.6177 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-11, 'decay_steps': 3165, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6716 | 0.6770 | 0.6177 | 0 | ### Framework versions - Transformers 4.40.1 - TensorFlow 2.15.0 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "google-bert/bert-base-uncased", "model-index": [{"name": "Poojithpoosa/code_classification_model", "results": []}]}
Poojithpoosa/code_classification_model
null
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:14:47+00:00
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama-2-tiny-random - GGUF - Model creator: https://huggingface.co/yujiepan/ - Original model: https://huggingface.co/yujiepan/llama-2-tiny-random/ | Name | Quant method | Size | | ---- | ---- | ---- | | [llama-2-tiny-random.Q2_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q2_K.gguf) | Q2_K | 0.0GB | | [llama-2-tiny-random.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ3_XS.gguf) | IQ3_XS | 0.0GB | | [llama-2-tiny-random.IQ3_S.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ3_S.gguf) | IQ3_S | 0.0GB | | [llama-2-tiny-random.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q3_K_S.gguf) | Q3_K_S | 0.0GB | | [llama-2-tiny-random.IQ3_M.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ3_M.gguf) | IQ3_M | 0.0GB | | [llama-2-tiny-random.Q3_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q3_K.gguf) | Q3_K | 0.0GB | | [llama-2-tiny-random.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q3_K_M.gguf) | Q3_K_M | 0.0GB | | [llama-2-tiny-random.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q3_K_L.gguf) | Q3_K_L | 0.0GB | | [llama-2-tiny-random.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ4_XS.gguf) | IQ4_XS | 0.0GB | | [llama-2-tiny-random.Q4_0.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_0.gguf) | Q4_0 | 0.0GB | | [llama-2-tiny-random.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.IQ4_NL.gguf) | IQ4_NL | 0.0GB | | [llama-2-tiny-random.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_K_S.gguf) | Q4_K_S | 0.0GB | | [llama-2-tiny-random.Q4_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_K.gguf) | Q4_K | 0.0GB | | [llama-2-tiny-random.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_K_M.gguf) | Q4_K_M | 0.0GB | | [llama-2-tiny-random.Q4_1.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q4_1.gguf) | Q4_1 | 0.0GB | | [llama-2-tiny-random.Q5_0.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_0.gguf) | Q5_0 | 0.0GB | | [llama-2-tiny-random.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_K_S.gguf) | Q5_K_S | 0.0GB | | [llama-2-tiny-random.Q5_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_K.gguf) | Q5_K | 0.0GB | | [llama-2-tiny-random.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_K_M.gguf) | Q5_K_M | 0.0GB | | [llama-2-tiny-random.Q5_1.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q5_1.gguf) | Q5_1 | 0.0GB | | [llama-2-tiny-random.Q6_K.gguf](https://huggingface.co/RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf/blob/main/llama-2-tiny-random.Q6_K.gguf) | Q6_K | 0.0GB | Original model description: --- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- # yujiepan/llama-2-tiny-random This model is **randomly initialized**, using the config from [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/yujiepan/llama-2-tiny-random/blob/main/config.json) but with the following modifications: ```json { "hidden_size": 8, "intermediate_size": 32, "num_attention_heads": 2, "num_hidden_layers": 1, "num_key_value_heads": 2, } ```
{}
RichardErkhov/yujiepan_-_llama-2-tiny-random-gguf
null
[ "gguf", "region:us" ]
null
2024-05-03T03:15:21+00:00
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gpt4all-falcon - GGUF - Model creator: https://huggingface.co/nomic-ai/ - Original model: https://huggingface.co/nomic-ai/gpt4all-falcon/ | Name | Quant method | Size | | ---- | ---- | ---- | | [gpt4all-falcon.Q2_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q2_K.gguf) | Q2_K | 3.59GB | | [gpt4all-falcon.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ3_XS.gguf) | IQ3_XS | 3.59GB | | [gpt4all-falcon.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ3_S.gguf) | IQ3_S | 3.59GB | | [gpt4all-falcon.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q3_K_S.gguf) | Q3_K_S | 3.59GB | | [gpt4all-falcon.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ3_M.gguf) | IQ3_M | 3.71GB | | [gpt4all-falcon.Q3_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q3_K.gguf) | Q3_K | 3.86GB | | [gpt4all-falcon.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q3_K_M.gguf) | Q3_K_M | 3.86GB | | [gpt4all-falcon.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q3_K_L.gguf) | Q3_K_L | 4.08GB | | [gpt4all-falcon.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ4_XS.gguf) | IQ4_XS | 3.89GB | | [gpt4all-falcon.Q4_0.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_0.gguf) | Q4_0 | 3.92GB | | [gpt4all-falcon.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.IQ4_NL.gguf) | IQ4_NL | 3.96GB | | [gpt4all-falcon.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_K_S.gguf) | Q4_K_S | 4.42GB | | [gpt4all-falcon.Q4_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_K.gguf) | Q4_K | 4.63GB | | [gpt4all-falcon.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_K_M.gguf) | Q4_K_M | 4.63GB | | [gpt4all-falcon.Q4_1.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q4_1.gguf) | Q4_1 | 4.32GB | | [gpt4all-falcon.Q5_0.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_0.gguf) | Q5_0 | 4.73GB | | [gpt4all-falcon.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_K_S.gguf) | Q5_K_S | 4.98GB | | [gpt4all-falcon.Q5_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_K.gguf) | Q5_K | 5.34GB | | [gpt4all-falcon.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [gpt4all-falcon.Q5_1.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q5_1.gguf) | Q5_1 | 5.13GB | | [gpt4all-falcon.Q6_K.gguf](https://huggingface.co/RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf/blob/main/gpt4all-falcon.Q6_K.gguf) | Q6_K | 6.55GB | Original model description: --- license: apache-2.0 datasets: - nomic-ai/gpt4all-j-prompt-generations language: - en pipeline_tag: text-generation --- # Model Card for GPT4All-Falcon An Apache-2 licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model has been finetuned from [Falcon](https://huggingface.co/tiiuae/falcon-7b) - **Developed by:** [Nomic AI](https://home.nomic.ai) - **Model Type:** A finetuned Falcon 7B model on assistant style interaction data - **Language(s) (NLP):** English - **License:** Apache-2 - **Finetuned from model [optional]:** [Falcon](https://huggingface.co/tiiuae/falcon-7b) To download a model with a specific revision run ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("nomic-ai/gpt4all-falcon", trust_remote_code=True) ``` Downloading without specifying `revision` defaults to `main`/`v1.0`. To use it for inference with Cuda, run ```python from transformers import AutoTokenizer, pipeline import transformers import torch tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model.to("cuda:0") prompt = "Describe a painting of a falcon in a very detailed way." # Change this to your prompt prompt_template = f"### Instruction: {prompt}\n### Response:" tokens = tokenizer(prompt_template, return_tensors="pt").input_ids.to("cuda:0") output = model.generate(input_ids=tokens, max_new_tokens=256, do_sample=True, temperature=0.8) # Print the generated text print(tokenizer.decode(output[0])) ``` ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [https://github.com/nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) - **Base Model Repository:** [https://huggingface.co/tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) - **Demo [optional]:** [https://gpt4all.io/](https://gpt4all.io/) ### Training Procedure GPT4All is made possible by our compute partner [Paperspace](https://www.paperspace.com/). Trained on a DGX cluster with 8 A100 80GB GPUs for ~12 hours. Using Deepspeed + Accelerate, we use a global batch size of 256 with a learning rate of 2e-5. More information can be found in the repo. ### Results Results on common sense reasoning benchmarks ``` | Model | BoolQ | PIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg. | |:--------------------------|:--------:|:--------:|:---------:|:----------:|:--------:|:--------:|:--------:|:--------:| | GPT4All-J 6B v1.0 | 73.4 | 74.8 | 63.4 | 64.7 | 54.9 | 36.0 | 40.2 | 58.2 | | GPT4All-J v1.1-breezy | 74.0 | 75.1 | 63.2 | 63.6 | 55.4 | 34.9 | 38.4 | 57.8 | | GPT4All-J v1.2-jazzy | 74.8 | 74.9 | 63.6 | 63.8 | 56.6 | 35.3 | 41.0 | 58.6 | | GPT4All-J v1.3-groovy | 73.6 | 74.3 | 63.8 | 63.5 | 57.7 | 35.0 | 38.8 | 58.1 | | GPT4All-J Lora 6B | 68.6 | 75.8 | 66.2 | 63.5 | 56.4 | 35.7 | 40.2 | 58.1 | | GPT4All LLaMa Lora 7B | 73.1 | 77.6 | 72.1 | 67.8 | 51.1 | 40.4 | 40.2 | 60.3 | | GPT4All 13B snoozy | **83.3** | 79.2 | 75.0 | **71.3** | 60.9 | 44.2 | 43.4 | 65.3 | | GPT4All Falcon | 77.6 | 79.8 | 74.9 | 70.1 | 67.9 | 43.4 | 42.6 | 65.2 | | Dolly 6B | 68.8 | 77.3 | 67.6 | 63.9 | 62.9 | 38.7 | 41.2 | 60.1 | | Dolly 12B | 56.7 | 75.4 | 71.0 | 62.2 | 64.6 | 38.5 | 40.4 | 58.4 | | Alpaca 7B | 73.9 | 77.2 | 73.9 | 66.1 | 59.8 | 43.3 | 43.4 | 62.4 | | Alpaca Lora 7B | 74.3 | 79.3 | 74.0 | 68.8 | 56.6 | 43.9 | 42.6 | 62.8 | | GPT-J 6.7B | 65.4 | 76.2 | 66.2 | 64.1 | 62.2 | 36.6 | 38.2 | 58.4 | | LLama 7B | 73.1 | 77.4 | 73.0 | 66.9 | 52.5 | 41.4 | 42.4 | 61.0 | | LLama 13B | 68.5 | 79.1 | 76.2 | 70.1 | 60.0 | **44.6** | 42.2 | 63.0 | | Pythia 6.7B | 63.5 | 76.3 | 64.0 | 61.1 | 61.3 | 35.2 | 37.2 | 57.0 | | Pythia 12B | 67.7 | 76.6 | 67.3 | 63.8 | 63.9 | 34.8 | 38 | 58.9 | | Fastchat T5 | 81.5 | 64.6 | 46.3 | 61.8 | 49.3 | 33.3 | 39.4 | 53.7 | | Fastchat Vicuña 7B | 76.6 | 77.2 | 70.7 | 67.3 | 53.5 | 41.2 | 40.8 | 61.0 | | Fastchat Vicuña 13B | 81.5 | 76.8 | 73.3 | 66.7 | 57.4 | 42.7 | 43.6 | 63.1 | | StableVicuña RLHF | 82.3 | 78.6 | 74.1 | 70.9 | 61.0 | 43.5 | **44.4** | 65.0 | | StableLM Tuned | 62.5 | 71.2 | 53.6 | 54.8 | 52.4 | 31.1 | 33.4 | 51.3 | | StableLM Base | 60.1 | 67.4 | 41.2 | 50.1 | 44.9 | 27.0 | 32.0 | 42.2 | | Koala 13B | 76.5 | 77.9 | 72.6 | 68.8 | 54.3 | 41.0 | 42.8 | 62.0 | | Open Assistant Pythia 12B | 67.9 | 78.0 | 68.1 | 65.0 | 64.2 | 40.4 | 43.2 | 61.0 | | Mosaic MPT7B | 74.8 | 79.3 | 76.3 | 68.6 | 70.0 | 42.2 | 42.6 | 64.8 | | Mosaic mpt-instruct | 74.3 | 80.4 | **77.2** | 67.8 | **72.2** | **44.6** | 43.0 | **65.6** | | Mosaic mpt-chat | 77.1 | 78.2 | 74.5 | 67.5 | 69.4 | 43.3 | 44.2 | 64.9 | | Wizard 7B | 78.4 | 77.2 | 69.9 | 66.5 | 56.8 | 40.5 | 42.6 | 61.7 | | Wizard 7B Uncensored | 77.7 | 74.2 | 68.0 | 65.2 | 53.5 | 38.7 | 41.6 | 59.8 | | Wizard 13B Uncensored | 78.4 | 75.5 | 72.1 | 69.5 | 57.5 | 40.4 | 44.0 | 62.5 | | GPT4-x-Vicuna-13b | 81.3 | 75.0 | 75.2 | 65.0 | 58.7 | 43.9 | 43.6 | 62.2 | | Falcon 7b | 73.6 | **80.7** | 76.3 | 67.3 | 71.0 | 43.3 | 44.4 | 65.2 | | text-davinci-003 | 88.1 | 83.8 | 83.4 | 75.8 | 83.9 | 63.9 | 51.0 | 75.7 | ```
{}
RichardErkhov/nomic-ai_-_gpt4all-falcon-gguf
null
[ "gguf", "region:us" ]
null
2024-05-03T03:15:48+00:00
null
null
{}
iamglobe2024/llama3
null
[ "region:us" ]
null
2024-05-03T03:16:46+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
golf2248/iiqy7t2
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:18:12+00:00
null
null
{}
Nikkitag/whisper-large-v2
null
[ "region:us" ]
null
2024-05-03T03:18:15+00:00
null
null
{}
tscstudios/VCAJgQZSnfdWIzdHLB7eYxqe8qh1
null
[ "region:us" ]
null
2024-05-03T03:19:13+00:00
audio-classification
transformers
{"license": "gpl-3.0"}
allispaul/whisper-small-gtzan
null
[ "transformers", "safetensors", "whisper", "audio-classification", "license:gpl-3.0", "endpoints_compatible", "region:us", "has_space" ]
null
2024-05-03T03:19:32+00:00
null
null
{}
abken601/test2
null
[ "region:us" ]
null
2024-05-03T03:22:14+00:00
null
null
{}
Phanh2532/GAMA-Code-Generator-v0.1-GGUF
null
[ "gguf", "region:us" ]
null
2024-05-03T03:22:23+00:00
null
null
{}
aslon1213/whisper-small-uz-with-uzbekvoice-new
null
[ "region:us" ]
null
2024-05-03T03:22:35+00:00
sentence-similarity
sentence-transformers
# quangtqv/tool_learning_embed_v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('quangtqv/tool_learning_embed_v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=quangtqv/tool_learning_embed_v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
quangtqv/tool_learning_embed_v2
null
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:22:59+00:00
null
null
{}
Giux22/semana8-pruebas_transformer
null
[ "region:us" ]
null
2024-05-03T03:25:04+00:00
null
null
{}
vsocrates/sft_openassistant-guanaco
null
[ "region:us" ]
null
2024-05-03T03:27:10+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model50
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:27:24+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
TrevorAsbery/Mistral-7b-code
null
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:27:33+00:00
text-generation
transformers
## Lumimaid 0.1 <center><div style="width: 100%;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/d3QMaxy3peFTpSlWdWF-k.png" style="display: block; margin: auto;"> </div></center> This model uses the Llama3 **prompting format** Llama3 trained on our RP datasets, we tried to have a balance between the ERP and the RP, not too horny, but just enough. We also added some non-RP dataset, making the model less dumb overall. It should look like a 40%/60% ratio for Non-RP/RP+ERP data. This model includes the new Luminae dataset from Ikari. If you consider trying this model please give us some feedback either on the Community tab on hf or on our [Discord Server](https://discord.gg/MtCVRWTZXY). ## Credits: - Undi - IkariDev ## Description This repo contains FP16 files of Lumimaid-8B-v0.1. Switch: [8B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1) - [70B](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1) - [70B-alt](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-70B-v0.1-alt) ## Training data used: - [Aesir datasets](https://huggingface.co/MinervaAI) - [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt) - [limarp](https://huggingface.co/datasets/lemonilia/LimaRP) - 8k ctx - [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) - [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal) - Luminae-i1 (70B/70B-alt) (i2 was not existing when the 70b started training) | Luminae-i2 (8B) (this one gave better results on the 8b) - Ikari's Dataset - [Squish42/bluemoon-fandom-1-1-rp-cleaned](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - 50% (randomly) - [NobodyExistsOnTheInternet/PIPPAsharegptv2test](https://huggingface.co/datasets/NobodyExistsOnTheInternet/PIPPAsharegptv2test) - 5% (randomly) - [cgato/SlimOrcaDedupCleaned](https://huggingface.co/datasets/cgato/SlimOrcaDedupCleaned) - 5% (randomly) - Airoboros (reduced) - [Capybara](https://huggingface.co/datasets/Undi95/Capybara-ShareGPT/) (reduced) ## Models used (only for 8B) - Initial LumiMaid 8B Finetune - Undi95/Llama-3-Unholy-8B-e4 - Undi95/Llama-3-LewdPlay-8B ## Prompt template: Llama3 ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` ## Others Undi: If you want to support us, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
{"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]}
blockblockblock/Llama-3-Lumimaid-8B-v0.1-bpw3.7-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:28:34+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # experiments This model is a fine-tuned version of [vilm/vinallama-7b-chat](https://huggingface.co/vilm/vinallama-7b-chat) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "llama2", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "vilm/vinallama-7b-chat", "model-index": [{"name": "experiments", "results": []}]}
tsang326/experiments
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:vilm/vinallama-7b-chat", "license:llama2", "region:us" ]
null
2024-05-03T03:28:54+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Adipta/fine-tuning-phi2-adipta
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:29:30+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 4.4483 - eval_runtime: 3.3624 - eval_samples_per_second: 148.704 - eval_steps_per_second: 2.379 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetuned-sst", "results": []}]}
rajabilalnazir/distilbert-base-uncased-finetuned-sst
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:29:48+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/qh3gev9
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:29:56+00:00
null
null
{}
Alpaca69B/Llama-2-7b-hf-whatsapp-app-reviews-absa
null
[ "region:us" ]
null
2024-05-03T03:30:11+00:00
automatic-speech-recognition
transformers
{}
raidavid/whisper-tiny-ip-30-no-opendata_epoch_5000_20240503
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2024-05-03T03:32:06+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cungnlp/Vistral-DATN
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-03T03:32:16+00:00
text-generation
transformers
<img src="./assistance_logo.svg" width="100%" height="20%" alt=""> # Our Models - [Vecteus](https://huggingface.co/Local-Novel-LLM-project/Vecteus-v1) - [Ninja-v1](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1) - [Ninja-v1-NSFW](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-NSFW) - [Ninja-v1-128k](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-128k) - [Ninja-v1-NSFW-128k](https://huggingface.co/Local-Novel-LLM-project/Ninja-v1-NSFW-128k) # THIS IS WIP MODEL # これは Ninja を 小説能力ではなくコードや数学系の知識を持たせたモデルです
{"language": ["en", "ja"], "license": "apache-2.0", "library_name": "transformers", "tags": ["finetuned"], "pipeline_tag": "text-generation"}
Local-Novel-LLM-project/Assistance
null
[ "transformers", "safetensors", "mistral", "text-generation", "finetuned", "en", "ja", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-03T03:32:49+00:00