Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
{}
duyv/TTS-Model
null
[ "safetensors", "region:us" ]
null
2024-04-30T12:42:33+00:00
feature-extraction
transformers
## Bedrock Titan Text Embeddings v2 This repository contains the MTEB scores and usage examples of Bedrock Titan Text Embeddings v2. You can use the embedding model either via the Bedrock InvokeModel API or via Bedrock's batch jobs. For RAG use cases we recommend the former to embed queries during search (latency optimized) and the latter to index corpus (throughput optimized). ## Using Bedrock's InvokeModel API ```python import json import boto3 class TitanEmbeddings(object): accept = "application/json" content_type = "application/json" def __init__(self, model_id="amazon.titan-embed-text-v2:0"): self.bedrock = boto3.client(service_name='bedrock-runtime') self.model_id = model_id def __call__(self, text, dimensions, normalize=True): """ Returns Titan Embeddings Args: text (str): text to embed dimensions (int): Number of output dimensions. normalize (bool): Whether to return the normalized embedding or not. Return: List[float]: Embedding """ body = json.dumps({ "inputText": text, "dimensions": dimensions, "normalize": normalize }) response = self.bedrock.invoke_model( body=body, modelId=self.model_id, accept=self.accept, contentType=self.content_type ) response_body = json.loads(response.get('body').read()) return response_body['embedding'] if __name__ == '__main__': """ Entrypoint for Amazon Titan Embeddings V2 - Text example. """ dimensions = 1024 normalize = True titan_embeddings_v2 = TitanEmbeddings(model_id="amazon.titan-embed-text-v2:0") input_text = "What are the different services that you offer?" embedding = titan_embeddings_v2(input_text, dimensions, normalize) print(f"{input_text=}") print(f"{embedding[:10]=}") ``` ## Using Bedrock's batch jobs ```python import requests from aws_requests_auth.boto_utils import BotoAWSRequestsAuth region = "us-east-1" base_uri = f"bedrock.{region}.amazonaws.com" batch_job_uri = f"https://{base_uri}/model-invocation-job/" # For details on how to set up an IAM role for batch inference, see # https://docs.aws.amazon.com/bedrock/latest/userguide/batch-inference-permissions.html role_arn = "arn:aws:iam::111122223333:role/my-batch-inference-role" payload = { "inputDataConfig": { "s3InputDataConfig": { "s3Uri": "s3://my-input-bucket/batch-input/", "s3InputFormat": "JSONL" } }, "jobName": "embeddings-v2-batch-job", "modelId": "amazon.titan-embed-text-v2:0", "outputDataConfig": { "s3OutputDataConfig": { "s3Uri": "s3://my-output-bucket/batch-output/" } }, "roleArn": role_arn } request_auth = BotoAWSRequestsAuth( aws_host=base_uri, aws_region=region, aws_service="bedrock" ) response= requests.request("POST", batch_job_uri, json=payload, auth=request_auth) print(response.json()) ```
{"language": ["en", "fr", "de", "es", "ja", "zh", "hi", "ar", "it", "pt", "sv", "ko", "he", "cs", "tr", "tl", "ru", "nl", "pl", "ta", "mr", "ml", "te", "kn", "vi", "id", "fa", "hu", "el", "ro", "da", "th", "fi", "sk", "uk", "no", "bg", "ca", "sr", "hr", "lt", "sl", "et", "la", "bn", "lv", "ms", "bs", "sq", "az", "gl", "is", "ka", "mk", "eu", "hy", "ne", "ur", "kk", "mn", "be", "uz", "km", "nn", "gu", "my", "cy", "eo", "si", "tt", "sw", "af", "ga", "pa", "ku", "ky", "tg", "or", "lo", "fo", "mt", "so", "lb", "am", "oc", "jv", "ha", "ps", "sa", "fy", "mg", "as", "ba", "br", "tk", "co", "dv", "rw", "ht", "yi", "sd", "zu", "gd", "bo", "ug", "mi", "rm", "xh", "su", "yo"], "license": "other", "tags": ["feature-extraction", "sentence-similarity", "mteb"], "license_name": "amazon-service-terms", "license_link": "https://aws.amazon.com/service-terms/", "inference": false, "model-index": [{"name": "Titan-text-embeddings-v2", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 79.31343283582089}, {"type": "ap", "value": 43.9465851246623}, {"type": "f1", "value": 73.6131343594374}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (de)", "type": "mteb/amazon_counterfactual", "config": "de", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 70.94218415417559}, {"type": "ap", "value": 82.30115528468109}, {"type": "f1", "value": 69.37963699148699}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en-ext)", "type": "mteb/amazon_counterfactual", "config": "en-ext", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 82.29385307346327}, {"type": "ap", "value": 29.956638709449372}, {"type": "f1", "value": 68.88158061498754}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (ja)", "type": "mteb/amazon_counterfactual", "config": "ja", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 80.06423982869379}, {"type": "ap", "value": 25.2439835379337}, {"type": "f1", "value": 65.53837311569734}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 76.66435}, {"type": "ap", "value": 70.76988138513991}, {"type": "f1", "value": 76.54117595647566}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 35.276}, {"type": "f1", "value": 34.90637768461089}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (de)", "type": "mteb/amazon_reviews_multi", "config": "de", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 38.826}, {"type": "f1", "value": 37.71339372044998}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (es)", "type": "mteb/amazon_reviews_multi", "config": "es", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 39.385999999999996}, {"type": "f1", "value": 38.24347249789392}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (fr)", "type": "mteb/amazon_reviews_multi", "config": "fr", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 39.472}, {"type": "f1", "value": 38.37157729490788}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (ja)", "type": "mteb/amazon_reviews_multi", "config": "ja", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 35.897999999999996}, {"type": "f1", "value": 35.187204289589346}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (zh)", "type": "mteb/amazon_reviews_multi", "config": "zh", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 36.068}, {"type": "f1", "value": 35.042441064207175}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "arguana", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 27.027}, {"type": "map_at_10", "value": 42.617}, {"type": "map_at_100", "value": 43.686}, {"type": "map_at_1000", "value": 43.695}, {"type": "map_at_3", "value": 37.684}, {"type": "map_at_5", "value": 40.532000000000004}, {"type": "mrr_at_1", "value": 27.667}, {"type": "mrr_at_10", "value": 42.88}, {"type": "mrr_at_100", "value": 43.929}, {"type": "mrr_at_1000", "value": 43.938}, {"type": "mrr_at_3", "value": 37.933}, {"type": "mrr_at_5", "value": 40.774}, {"type": "ndcg_at_1", "value": 27.027}, {"type": "ndcg_at_10", "value": 51.312000000000005}, {"type": "ndcg_at_100", "value": 55.696}, {"type": "ndcg_at_1000", "value": 55.896}, {"type": "ndcg_at_3", "value": 41.124}, {"type": "ndcg_at_5", "value": 46.283}, {"type": "precision_at_1", "value": 27.027}, {"type": "precision_at_10", "value": 7.9159999999999995}, {"type": "precision_at_100", "value": 0.979}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_3", "value": 17.022000000000002}, {"type": "precision_at_5", "value": 12.731}, {"type": "recall_at_1", "value": 27.027}, {"type": "recall_at_10", "value": 79.161}, {"type": "recall_at_100", "value": 97.937}, {"type": "recall_at_1000", "value": 99.431}, {"type": "recall_at_3", "value": 51.06699999999999}, {"type": "recall_at_5", "value": 63.656}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 41.775131599226874}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 34.134214263072494}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 63.2885651257187}, {"type": "mrr", "value": 76.37712702809655}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 89.53738990667027}, {"type": "cos_sim_spearman", "value": 87.13210584606783}, {"type": "euclidean_pearson", "value": 87.33265405736388}, {"type": "euclidean_spearman", "value": 87.18632394893399}, {"type": "manhattan_pearson", "value": 87.33673166528312}, {"type": "manhattan_spearman", "value": 86.9736685010257}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB BUCC (de-en)", "type": "mteb/bucc-bitext-mining", "config": "de-en", "split": "test", "revision": "d51519689f32196a32af33b075a01d0e7c51e252"}, "metrics": [{"type": "accuracy", "value": 98.32985386221294}, {"type": "f1", "value": 98.18371607515658}, {"type": "precision", "value": 98.1106471816284}, {"type": "recall", "value": 98.32985386221294}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB BUCC (fr-en)", "type": "mteb/bucc-bitext-mining", "config": "fr-en", "split": "test", "revision": "d51519689f32196a32af33b075a01d0e7c51e252"}, "metrics": [{"type": "accuracy", "value": 98.20603125687872}, {"type": "f1", "value": 98.04461075647515}, {"type": "precision", "value": 97.96390050627338}, {"type": "recall", "value": 98.20603125687872}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB BUCC (ru-en)", "type": "mteb/bucc-bitext-mining", "config": "ru-en", "split": "test", "revision": "d51519689f32196a32af33b075a01d0e7c51e252"}, "metrics": [{"type": "accuracy", "value": 94.8874263941808}, {"type": "f1", "value": 94.57568410114305}, {"type": "precision", "value": 94.42096755570951}, {"type": "recall", "value": 94.8874263941808}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB BUCC (zh-en)", "type": "mteb/bucc-bitext-mining", "config": "zh-en", "split": "test", "revision": "d51519689f32196a32af33b075a01d0e7c51e252"}, "metrics": [{"type": "accuracy", "value": 96.78778304370721}, {"type": "f1", "value": 96.75267684746358}, {"type": "precision", "value": 96.73512374934175}, {"type": "recall", "value": 96.78778304370721}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 84.3051948051948}, {"type": "f1", "value": 83.97876601554812}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 35.005716163806575}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 30.999141295578852}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 36.153}, {"type": "map_at_10", "value": 48.742000000000004}, {"type": "map_at_100", "value": 50.253}, {"type": "map_at_1000", "value": 50.373999999999995}, {"type": "map_at_3", "value": 45.089}, {"type": "map_at_5", "value": 47.08}, {"type": "mrr_at_1", "value": 44.635000000000005}, {"type": "mrr_at_10", "value": 54.715}, {"type": "mrr_at_100", "value": 55.300000000000004}, {"type": "mrr_at_1000", "value": 55.337}, {"type": "mrr_at_3", "value": 52.527}, {"type": "mrr_at_5", "value": 53.76499999999999}, {"type": "ndcg_at_1", "value": 44.635000000000005}, {"type": "ndcg_at_10", "value": 55.31}, {"type": "ndcg_at_100", "value": 60.084}, {"type": "ndcg_at_1000", "value": 61.645}, {"type": "ndcg_at_3", "value": 50.876999999999995}, {"type": "ndcg_at_5", "value": 52.764}, {"type": "precision_at_1", "value": 44.635000000000005}, {"type": "precision_at_10", "value": 10.687000000000001}, {"type": "precision_at_100", "value": 1.66}, {"type": "precision_at_1000", "value": 0.212}, {"type": "precision_at_3", "value": 24.94}, {"type": "precision_at_5", "value": 17.596999999999998}, {"type": "recall_at_1", "value": 36.153}, {"type": "recall_at_10", "value": 67.308}, {"type": "recall_at_100", "value": 87.199}, {"type": "recall_at_1000", "value": 96.904}, {"type": "recall_at_3", "value": 53.466}, {"type": "recall_at_5", "value": 59.512}, {"type": "map_at_1", "value": 32.0}, {"type": "map_at_10", "value": 43.646}, {"type": "map_at_100", "value": 44.933}, {"type": "map_at_1000", "value": 45.049}, {"type": "map_at_3", "value": 40.333999999999996}, {"type": "map_at_5", "value": 42.108000000000004}, {"type": "mrr_at_1", "value": 40.382}, {"type": "mrr_at_10", "value": 49.738}, {"type": "mrr_at_100", "value": 50.331}, {"type": "mrr_at_1000", "value": 50.364}, {"type": "mrr_at_3", "value": 47.442}, {"type": "mrr_at_5", "value": 48.719}, {"type": "ndcg_at_1", "value": 40.382}, {"type": "ndcg_at_10", "value": 49.808}, {"type": "ndcg_at_100", "value": 54.053}, {"type": "ndcg_at_1000", "value": 55.753}, {"type": "ndcg_at_3", "value": 45.355000000000004}, {"type": "ndcg_at_5", "value": 47.215}, {"type": "precision_at_1", "value": 40.382}, {"type": "precision_at_10", "value": 9.58}, {"type": "precision_at_100", "value": 1.488}, {"type": "precision_at_1000", "value": 0.192}, {"type": "precision_at_3", "value": 22.272}, {"type": "precision_at_5", "value": 15.604999999999999}, {"type": "recall_at_1", "value": 32.0}, {"type": "recall_at_10", "value": 60.839}, {"type": "recall_at_100", "value": 78.869}, {"type": "recall_at_1000", "value": 89.384}, {"type": "recall_at_3", "value": 47.226}, {"type": "recall_at_5", "value": 52.864}, {"type": "map_at_1", "value": 44.084}, {"type": "map_at_10", "value": 56.591}, {"type": "map_at_100", "value": 57.533}, {"type": "map_at_1000", "value": 57.583}, {"type": "map_at_3", "value": 53.356}, {"type": "map_at_5", "value": 55.236}, {"type": "mrr_at_1", "value": 50.532999999999994}, {"type": "mrr_at_10", "value": 59.974000000000004}, {"type": "mrr_at_100", "value": 60.557}, {"type": "mrr_at_1000", "value": 60.584}, {"type": "mrr_at_3", "value": 57.774}, {"type": "mrr_at_5", "value": 59.063}, {"type": "ndcg_at_1", "value": 50.532999999999994}, {"type": "ndcg_at_10", "value": 62.265}, {"type": "ndcg_at_100", "value": 65.78}, {"type": "ndcg_at_1000", "value": 66.76299999999999}, {"type": "ndcg_at_3", "value": 57.154}, {"type": "ndcg_at_5", "value": 59.708000000000006}, {"type": "precision_at_1", "value": 50.532999999999994}, {"type": "precision_at_10", "value": 9.85}, {"type": "precision_at_100", "value": 1.247}, {"type": "precision_at_1000", "value": 0.13699999999999998}, {"type": "precision_at_3", "value": 25.434}, {"type": "precision_at_5", "value": 17.279}, {"type": "recall_at_1", "value": 44.084}, {"type": "recall_at_10", "value": 75.576}, {"type": "recall_at_100", "value": 90.524}, {"type": "recall_at_1000", "value": 97.38799999999999}, {"type": "recall_at_3", "value": 61.792}, {"type": "recall_at_5", "value": 68.112}, {"type": "map_at_1", "value": 29.203000000000003}, {"type": "map_at_10", "value": 38.078}, {"type": "map_at_100", "value": 39.144}, {"type": "map_at_1000", "value": 39.222}, {"type": "map_at_3", "value": 35.278999999999996}, {"type": "map_at_5", "value": 36.812}, {"type": "mrr_at_1", "value": 31.299}, {"type": "mrr_at_10", "value": 39.879}, {"type": "mrr_at_100", "value": 40.832}, {"type": "mrr_at_1000", "value": 40.891}, {"type": "mrr_at_3", "value": 37.513999999999996}, {"type": "mrr_at_5", "value": 38.802}, {"type": "ndcg_at_1", "value": 31.299}, {"type": "ndcg_at_10", "value": 43.047999999999995}, {"type": "ndcg_at_100", "value": 48.101}, {"type": "ndcg_at_1000", "value": 49.958999999999996}, {"type": "ndcg_at_3", "value": 37.778}, {"type": "ndcg_at_5", "value": 40.257}, {"type": "precision_at_1", "value": 31.299}, {"type": "precision_at_10", "value": 6.508}, {"type": "precision_at_100", "value": 0.9530000000000001}, {"type": "precision_at_1000", "value": 0.11399999999999999}, {"type": "precision_at_3", "value": 15.744}, {"type": "precision_at_5", "value": 10.893}, {"type": "recall_at_1", "value": 29.203000000000003}, {"type": "recall_at_10", "value": 56.552}, {"type": "recall_at_100", "value": 79.21000000000001}, {"type": "recall_at_1000", "value": 92.884}, {"type": "recall_at_3", "value": 42.441}, {"type": "recall_at_5", "value": 48.399}, {"type": "map_at_1", "value": 19.029}, {"type": "map_at_10", "value": 28.410000000000004}, {"type": "map_at_100", "value": 29.773}, {"type": "map_at_1000", "value": 29.887000000000004}, {"type": "map_at_3", "value": 25.374000000000002}, {"type": "map_at_5", "value": 27.162}, {"type": "mrr_at_1", "value": 23.632}, {"type": "mrr_at_10", "value": 33.0}, {"type": "mrr_at_100", "value": 34.043}, {"type": "mrr_at_1000", "value": 34.105999999999995}, {"type": "mrr_at_3", "value": 30.245}, {"type": "mrr_at_5", "value": 31.830000000000002}, {"type": "ndcg_at_1", "value": 23.632}, {"type": "ndcg_at_10", "value": 34.192}, {"type": "ndcg_at_100", "value": 40.29}, {"type": "ndcg_at_1000", "value": 42.753}, {"type": "ndcg_at_3", "value": 28.811999999999998}, {"type": "ndcg_at_5", "value": 31.46}, {"type": "precision_at_1", "value": 23.632}, {"type": "precision_at_10", "value": 6.455}, {"type": "precision_at_100", "value": 1.095}, {"type": "precision_at_1000", "value": 0.14200000000000002}, {"type": "precision_at_3", "value": 14.096}, {"type": "precision_at_5", "value": 10.448}, {"type": "recall_at_1", "value": 19.029}, {"type": "recall_at_10", "value": 47.278999999999996}, {"type": "recall_at_100", "value": 72.977}, {"type": "recall_at_1000", "value": 90.17699999999999}, {"type": "recall_at_3", "value": 32.519}, {"type": "recall_at_5", "value": 39.156}, {"type": "map_at_1", "value": 30.983}, {"type": "map_at_10", "value": 42.595}, {"type": "map_at_100", "value": 43.906}, {"type": "map_at_1000", "value": 44.001000000000005}, {"type": "map_at_3", "value": 39.245000000000005}, {"type": "map_at_5", "value": 41.14}, {"type": "mrr_at_1", "value": 38.114}, {"type": "mrr_at_10", "value": 48.181000000000004}, {"type": "mrr_at_100", "value": 48.935}, {"type": "mrr_at_1000", "value": 48.972}, {"type": "mrr_at_3", "value": 45.877}, {"type": "mrr_at_5", "value": 47.249}, {"type": "ndcg_at_1", "value": 38.114}, {"type": "ndcg_at_10", "value": 48.793}, {"type": "ndcg_at_100", "value": 54.001999999999995}, {"type": "ndcg_at_1000", "value": 55.749}, {"type": "ndcg_at_3", "value": 43.875}, {"type": "ndcg_at_5", "value": 46.23}, {"type": "precision_at_1", "value": 38.114}, {"type": "precision_at_10", "value": 8.98}, {"type": "precision_at_100", "value": 1.3390000000000002}, {"type": "precision_at_1000", "value": 0.166}, {"type": "precision_at_3", "value": 21.303}, {"type": "precision_at_5", "value": 15.072}, {"type": "recall_at_1", "value": 30.983}, {"type": "recall_at_10", "value": 61.47}, {"type": "recall_at_100", "value": 83.14399999999999}, {"type": "recall_at_1000", "value": 94.589}, {"type": "recall_at_3", "value": 47.019}, {"type": "recall_at_5", "value": 53.445}, {"type": "map_at_1", "value": 29.707}, {"type": "map_at_10", "value": 40.900999999999996}, {"type": "map_at_100", "value": 42.369}, {"type": "map_at_1000", "value": 42.455}, {"type": "map_at_3", "value": 37.416}, {"type": "map_at_5", "value": 39.483000000000004}, {"type": "mrr_at_1", "value": 36.301}, {"type": "mrr_at_10", "value": 46.046}, {"type": "mrr_at_100", "value": 46.922999999999995}, {"type": "mrr_at_1000", "value": 46.964}, {"type": "mrr_at_3", "value": 43.436}, {"type": "mrr_at_5", "value": 45.04}, {"type": "ndcg_at_1", "value": 36.301}, {"type": "ndcg_at_10", "value": 46.955999999999996}, {"type": "ndcg_at_100", "value": 52.712}, {"type": "ndcg_at_1000", "value": 54.447}, {"type": "ndcg_at_3", "value": 41.643}, {"type": "ndcg_at_5", "value": 44.305}, {"type": "precision_at_1", "value": 36.301}, {"type": "precision_at_10", "value": 8.607}, {"type": "precision_at_100", "value": 1.34}, {"type": "precision_at_1000", "value": 0.164}, {"type": "precision_at_3", "value": 19.901}, {"type": "precision_at_5", "value": 14.429}, {"type": "recall_at_1", "value": 29.707}, {"type": "recall_at_10", "value": 59.559}, {"type": "recall_at_100", "value": 83.60499999999999}, {"type": "recall_at_1000", "value": 95.291}, {"type": "recall_at_3", "value": 44.774}, {"type": "recall_at_5", "value": 51.67}, {"type": "map_at_1", "value": 29.455416666666668}, {"type": "map_at_10", "value": 39.61333333333334}, {"type": "map_at_100", "value": 40.85875}, {"type": "map_at_1000", "value": 40.96791666666667}, {"type": "map_at_3", "value": 36.48874999999999}, {"type": "map_at_5", "value": 38.24341666666667}, {"type": "mrr_at_1", "value": 34.80258333333334}, {"type": "mrr_at_10", "value": 43.783}, {"type": "mrr_at_100", "value": 44.591833333333334}, {"type": "mrr_at_1000", "value": 44.64208333333333}, {"type": "mrr_at_3", "value": 41.38974999999999}, {"type": "mrr_at_5", "value": 42.74566666666667}, {"type": "ndcg_at_1", "value": 34.80258333333334}, {"type": "ndcg_at_10", "value": 45.2705}, {"type": "ndcg_at_100", "value": 50.31224999999999}, {"type": "ndcg_at_1000", "value": 52.27916666666667}, {"type": "ndcg_at_3", "value": 40.2745}, {"type": "ndcg_at_5", "value": 42.61575}, {"type": "precision_at_1", "value": 34.80258333333334}, {"type": "precision_at_10", "value": 7.97075}, {"type": "precision_at_100", "value": 1.2400000000000002}, {"type": "precision_at_1000", "value": 0.1595}, {"type": "precision_at_3", "value": 18.627583333333337}, {"type": "precision_at_5", "value": 13.207000000000003}, {"type": "recall_at_1", "value": 29.455416666666668}, {"type": "recall_at_10", "value": 57.66091666666665}, {"type": "recall_at_100", "value": 79.51966666666665}, {"type": "recall_at_1000", "value": 93.01883333333333}, {"type": "recall_at_3", "value": 43.580416666666665}, {"type": "recall_at_5", "value": 49.7025}, {"type": "map_at_1", "value": 27.569}, {"type": "map_at_10", "value": 34.73}, {"type": "map_at_100", "value": 35.708}, {"type": "map_at_1000", "value": 35.808}, {"type": "map_at_3", "value": 32.62}, {"type": "map_at_5", "value": 33.556999999999995}, {"type": "mrr_at_1", "value": 31.135}, {"type": "mrr_at_10", "value": 37.833}, {"type": "mrr_at_100", "value": 38.68}, {"type": "mrr_at_1000", "value": 38.749}, {"type": "mrr_at_3", "value": 35.915}, {"type": "mrr_at_5", "value": 36.751}, {"type": "ndcg_at_1", "value": 31.135}, {"type": "ndcg_at_10", "value": 39.047}, {"type": "ndcg_at_100", "value": 43.822}, {"type": "ndcg_at_1000", "value": 46.249}, {"type": "ndcg_at_3", "value": 35.115}, {"type": "ndcg_at_5", "value": 36.49}, {"type": "precision_at_1", "value": 31.135}, {"type": "precision_at_10", "value": 6.058}, {"type": "precision_at_100", "value": 0.923}, {"type": "precision_at_1000", "value": 0.121}, {"type": "precision_at_3", "value": 15.031}, {"type": "precision_at_5", "value": 10.030999999999999}, {"type": "recall_at_1", "value": 27.569}, {"type": "recall_at_10", "value": 49.332}, {"type": "recall_at_100", "value": 70.967}, {"type": "recall_at_1000", "value": 88.876}, {"type": "recall_at_3", "value": 37.858999999999995}, {"type": "recall_at_5", "value": 41.589}, {"type": "map_at_1", "value": 19.677}, {"type": "map_at_10", "value": 28.097}, {"type": "map_at_100", "value": 29.24}, {"type": "map_at_1000", "value": 29.365000000000002}, {"type": "map_at_3", "value": 25.566}, {"type": "map_at_5", "value": 26.852999999999998}, {"type": "mrr_at_1", "value": 23.882}, {"type": "mrr_at_10", "value": 31.851000000000003}, {"type": "mrr_at_100", "value": 32.757}, {"type": "mrr_at_1000", "value": 32.83}, {"type": "mrr_at_3", "value": 29.485}, {"type": "mrr_at_5", "value": 30.744}, {"type": "ndcg_at_1", "value": 23.882}, {"type": "ndcg_at_10", "value": 33.154}, {"type": "ndcg_at_100", "value": 38.491}, {"type": "ndcg_at_1000", "value": 41.274}, {"type": "ndcg_at_3", "value": 28.648}, {"type": "ndcg_at_5", "value": 30.519000000000002}, {"type": "precision_at_1", "value": 23.882}, {"type": "precision_at_10", "value": 6.117999999999999}, {"type": "precision_at_100", "value": 1.0330000000000001}, {"type": "precision_at_1000", "value": 0.145}, {"type": "precision_at_3", "value": 13.73}, {"type": "precision_at_5", "value": 9.794}, {"type": "recall_at_1", "value": 19.677}, {"type": "recall_at_10", "value": 44.444}, {"type": "recall_at_100", "value": 68.477}, {"type": "recall_at_1000", "value": 88.23}, {"type": "recall_at_3", "value": 31.708}, {"type": "recall_at_5", "value": 36.599}, {"type": "map_at_1", "value": 30.489}, {"type": "map_at_10", "value": 40.883}, {"type": "map_at_100", "value": 42.058}, {"type": "map_at_1000", "value": 42.152}, {"type": "map_at_3", "value": 37.525999999999996}, {"type": "map_at_5", "value": 39.753}, {"type": "mrr_at_1", "value": 35.541}, {"type": "mrr_at_10", "value": 44.842999999999996}, {"type": "mrr_at_100", "value": 45.673}, {"type": "mrr_at_1000", "value": 45.723}, {"type": "mrr_at_3", "value": 42.397}, {"type": "mrr_at_5", "value": 43.937}, {"type": "ndcg_at_1", "value": 35.541}, {"type": "ndcg_at_10", "value": 46.504}, {"type": "ndcg_at_100", "value": 51.637}, {"type": "ndcg_at_1000", "value": 53.535}, {"type": "ndcg_at_3", "value": 41.127}, {"type": "ndcg_at_5", "value": 44.17}, {"type": "precision_at_1", "value": 35.541}, {"type": "precision_at_10", "value": 7.864}, {"type": "precision_at_100", "value": 1.165}, {"type": "precision_at_1000", "value": 0.14300000000000002}, {"type": "precision_at_3", "value": 18.688}, {"type": "precision_at_5", "value": 13.507}, {"type": "recall_at_1", "value": 30.489}, {"type": "recall_at_10", "value": 59.378}, {"type": "recall_at_100", "value": 81.38300000000001}, {"type": "recall_at_1000", "value": 94.294}, {"type": "recall_at_3", "value": 44.946000000000005}, {"type": "recall_at_5", "value": 52.644999999999996}, {"type": "map_at_1", "value": 29.981}, {"type": "map_at_10", "value": 39.688}, {"type": "map_at_100", "value": 41.400999999999996}, {"type": "map_at_1000", "value": 41.634}, {"type": "map_at_3", "value": 36.047000000000004}, {"type": "map_at_5", "value": 38.064}, {"type": "mrr_at_1", "value": 35.375}, {"type": "mrr_at_10", "value": 44.169000000000004}, {"type": "mrr_at_100", "value": 45.07}, {"type": "mrr_at_1000", "value": 45.113}, {"type": "mrr_at_3", "value": 41.502}, {"type": "mrr_at_5", "value": 43.034}, {"type": "ndcg_at_1", "value": 35.375}, {"type": "ndcg_at_10", "value": 45.959}, {"type": "ndcg_at_100", "value": 51.688}, {"type": "ndcg_at_1000", "value": 53.714}, {"type": "ndcg_at_3", "value": 40.457}, {"type": "ndcg_at_5", "value": 43.08}, {"type": "precision_at_1", "value": 35.375}, {"type": "precision_at_10", "value": 8.953}, {"type": "precision_at_100", "value": 1.709}, {"type": "precision_at_1000", "value": 0.253}, {"type": "precision_at_3", "value": 18.775}, {"type": "precision_at_5", "value": 14.032}, {"type": "recall_at_1", "value": 29.981}, {"type": "recall_at_10", "value": 57.896}, {"type": "recall_at_100", "value": 83.438}, {"type": "recall_at_1000", "value": 95.608}, {"type": "recall_at_3", "value": 42.327}, {"type": "recall_at_5", "value": 49.069}, {"type": "map_at_1", "value": 24.59}, {"type": "map_at_10", "value": 32.999}, {"type": "map_at_100", "value": 33.987}, {"type": "map_at_1000", "value": 34.085}, {"type": "map_at_3", "value": 30.013}, {"type": "map_at_5", "value": 31.673000000000002}, {"type": "mrr_at_1", "value": 26.802}, {"type": "mrr_at_10", "value": 35.167}, {"type": "mrr_at_100", "value": 36.001}, {"type": "mrr_at_1000", "value": 36.071999999999996}, {"type": "mrr_at_3", "value": 32.562999999999995}, {"type": "mrr_at_5", "value": 34.014}, {"type": "ndcg_at_1", "value": 26.802}, {"type": "ndcg_at_10", "value": 38.21}, {"type": "ndcg_at_100", "value": 43.086999999999996}, {"type": "ndcg_at_1000", "value": 45.509}, {"type": "ndcg_at_3", "value": 32.452999999999996}, {"type": "ndcg_at_5", "value": 35.191}, {"type": "precision_at_1", "value": 26.802}, {"type": "precision_at_10", "value": 5.989}, {"type": "precision_at_100", "value": 0.928}, {"type": "precision_at_1000", "value": 0.125}, {"type": "precision_at_3", "value": 13.617}, {"type": "precision_at_5", "value": 9.797}, {"type": "recall_at_1", "value": 24.59}, {"type": "recall_at_10", "value": 52.298}, {"type": "recall_at_100", "value": 74.443}, {"type": "recall_at_1000", "value": 92.601}, {"type": "recall_at_3", "value": 36.888}, {"type": "recall_at_5", "value": 43.37}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "climate-fever", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 9.798}, {"type": "map_at_10", "value": 15.983}, {"type": "map_at_100", "value": 17.18}, {"type": "map_at_1000", "value": 17.329}, {"type": "map_at_3", "value": 13.594000000000001}, {"type": "map_at_5", "value": 14.984}, {"type": "mrr_at_1", "value": 21.564}, {"type": "mrr_at_10", "value": 31.415}, {"type": "mrr_at_100", "value": 32.317}, {"type": "mrr_at_1000", "value": 32.376}, {"type": "mrr_at_3", "value": 28.360000000000003}, {"type": "mrr_at_5", "value": 30.194}, {"type": "ndcg_at_1", "value": 21.564}, {"type": "ndcg_at_10", "value": 22.762}, {"type": "ndcg_at_100", "value": 28.199}, {"type": "ndcg_at_1000", "value": 31.284}, {"type": "ndcg_at_3", "value": 18.746}, {"type": "ndcg_at_5", "value": 20.434}, {"type": "precision_at_1", "value": 21.564}, {"type": "precision_at_10", "value": 6.755999999999999}, {"type": "precision_at_100", "value": 1.258}, {"type": "precision_at_1000", "value": 0.182}, {"type": "precision_at_3", "value": 13.507}, {"type": "precision_at_5", "value": 10.541}, {"type": "recall_at_1", "value": 9.798}, {"type": "recall_at_10", "value": 27.407999999999998}, {"type": "recall_at_100", "value": 46.659}, {"type": "recall_at_1000", "value": 64.132}, {"type": "recall_at_3", "value": 17.541999999999998}, {"type": "recall_at_5", "value": 22.137999999999998}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "dbpedia-entity", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 8.276}, {"type": "map_at_10", "value": 18.003}, {"type": "map_at_100", "value": 23.759}, {"type": "map_at_1000", "value": 25.105}, {"type": "map_at_3", "value": 13.812}, {"type": "map_at_5", "value": 15.659999999999998}, {"type": "mrr_at_1", "value": 63.0}, {"type": "mrr_at_10", "value": 71.812}, {"type": "mrr_at_100", "value": 72.205}, {"type": "mrr_at_1000", "value": 72.21300000000001}, {"type": "mrr_at_3", "value": 70.375}, {"type": "mrr_at_5", "value": 71.188}, {"type": "ndcg_at_1", "value": 50.5}, {"type": "ndcg_at_10", "value": 36.954}, {"type": "ndcg_at_100", "value": 40.083999999999996}, {"type": "ndcg_at_1000", "value": 47.661}, {"type": "ndcg_at_3", "value": 42.666}, {"type": "ndcg_at_5", "value": 39.581}, {"type": "precision_at_1", "value": 63.0}, {"type": "precision_at_10", "value": 28.249999999999996}, {"type": "precision_at_100", "value": 8.113}, {"type": "precision_at_1000", "value": 1.7149999999999999}, {"type": "precision_at_3", "value": 47.083000000000006}, {"type": "precision_at_5", "value": 38.65}, {"type": "recall_at_1", "value": 8.276}, {"type": "recall_at_10", "value": 23.177}, {"type": "recall_at_100", "value": 45.321}, {"type": "recall_at_1000", "value": 68.742}, {"type": "recall_at_3", "value": 15.473}, {"type": "recall_at_5", "value": 18.276}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 55.605000000000004}, {"type": "f1", "value": 49.86208997523934}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "fever", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 80.079}, {"type": "map_at_10", "value": 85.143}, {"type": "map_at_100", "value": 85.287}, {"type": "map_at_1000", "value": 85.297}, {"type": "map_at_3", "value": 84.533}, {"type": "map_at_5", "value": 84.953}, {"type": "mrr_at_1", "value": 86.424}, {"type": "mrr_at_10", "value": 91.145}, {"type": "mrr_at_100", "value": 91.212}, {"type": "mrr_at_1000", "value": 91.213}, {"type": "mrr_at_3", "value": 90.682}, {"type": "mrr_at_5", "value": 91.013}, {"type": "ndcg_at_1", "value": 86.424}, {"type": "ndcg_at_10", "value": 88.175}, {"type": "ndcg_at_100", "value": 88.77199999999999}, {"type": "ndcg_at_1000", "value": 88.967}, {"type": "ndcg_at_3", "value": 87.265}, {"type": "ndcg_at_5", "value": 87.813}, {"type": "precision_at_1", "value": 86.424}, {"type": "precision_at_10", "value": 10.012}, {"type": "precision_at_100", "value": 1.042}, {"type": "precision_at_1000", "value": 0.107}, {"type": "precision_at_3", "value": 32.228}, {"type": "precision_at_5", "value": 19.724}, {"type": "recall_at_1", "value": 80.079}, {"type": "recall_at_10", "value": 91.96600000000001}, {"type": "recall_at_100", "value": 94.541}, {"type": "recall_at_1000", "value": 95.824}, {"type": "recall_at_3", "value": 89.213}, {"type": "recall_at_5", "value": 90.791}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "fiqa", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 23.006999999999998}, {"type": "map_at_10", "value": 36.923}, {"type": "map_at_100", "value": 38.932}, {"type": "map_at_1000", "value": 39.096}, {"type": "map_at_3", "value": 32.322}, {"type": "map_at_5", "value": 35.119}, {"type": "mrr_at_1", "value": 45.37}, {"type": "mrr_at_10", "value": 53.418}, {"type": "mrr_at_100", "value": 54.174}, {"type": "mrr_at_1000", "value": 54.20700000000001}, {"type": "mrr_at_3", "value": 51.132}, {"type": "mrr_at_5", "value": 52.451}, {"type": "ndcg_at_1", "value": 45.37}, {"type": "ndcg_at_10", "value": 44.799}, {"type": "ndcg_at_100", "value": 51.605000000000004}, {"type": "ndcg_at_1000", "value": 54.30500000000001}, {"type": "ndcg_at_3", "value": 41.33}, {"type": "ndcg_at_5", "value": 42.608000000000004}, {"type": "precision_at_1", "value": 45.37}, {"type": "precision_at_10", "value": 12.33}, {"type": "precision_at_100", "value": 1.9349999999999998}, {"type": "precision_at_1000", "value": 0.241}, {"type": "precision_at_3", "value": 27.828999999999997}, {"type": "precision_at_5", "value": 20.432}, {"type": "recall_at_1", "value": 23.006999999999998}, {"type": "recall_at_10", "value": 51.06699999999999}, {"type": "recall_at_100", "value": 75.917}, {"type": "recall_at_1000", "value": 92.331}, {"type": "recall_at_3", "value": 36.544}, {"type": "recall_at_5", "value": 43.449}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "hotpotqa", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 38.196999999999996}, {"type": "map_at_10", "value": 55.554}, {"type": "map_at_100", "value": 56.309}, {"type": "map_at_1000", "value": 56.37799999999999}, {"type": "map_at_3", "value": 53.123}, {"type": "map_at_5", "value": 54.626}, {"type": "mrr_at_1", "value": 76.39399999999999}, {"type": "mrr_at_10", "value": 81.75}, {"type": "mrr_at_100", "value": 81.973}, {"type": "mrr_at_1000", "value": 81.982}, {"type": "mrr_at_3", "value": 80.79499999999999}, {"type": "mrr_at_5", "value": 81.393}, {"type": "ndcg_at_1", "value": 76.39399999999999}, {"type": "ndcg_at_10", "value": 64.14800000000001}, {"type": "ndcg_at_100", "value": 66.90899999999999}, {"type": "ndcg_at_1000", "value": 68.277}, {"type": "ndcg_at_3", "value": 60.529999999999994}, {"type": "ndcg_at_5", "value": 62.513}, {"type": "precision_at_1", "value": 76.39399999999999}, {"type": "precision_at_10", "value": 12.967999999999998}, {"type": "precision_at_100", "value": 1.5150000000000001}, {"type": "precision_at_1000", "value": 0.16999999999999998}, {"type": "precision_at_3", "value": 37.884}, {"type": "precision_at_5", "value": 24.294}, {"type": "recall_at_1", "value": 38.196999999999996}, {"type": "recall_at_10", "value": 64.84100000000001}, {"type": "recall_at_100", "value": 75.726}, {"type": "recall_at_1000", "value": 84.794}, {"type": "recall_at_3", "value": 56.826}, {"type": "recall_at_5", "value": 60.736000000000004}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 82.3912}, {"type": "ap", "value": 76.3949298163793}, {"type": "f1", "value": 82.30848699417406}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "msmarco", "config": "default", "split": "dev", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 19.454}, {"type": "map_at_10", "value": 31.22}, {"type": "map_at_100", "value": 32.475}, {"type": "map_at_1000", "value": 32.532}, {"type": "map_at_3", "value": 27.419}, {"type": "map_at_5", "value": 29.608}, {"type": "mrr_at_1", "value": 20.072000000000003}, {"type": "mrr_at_10", "value": 31.813999999999997}, {"type": "mrr_at_100", "value": 33.01}, {"type": "mrr_at_1000", "value": 33.062000000000005}, {"type": "mrr_at_3", "value": 28.055999999999997}, {"type": "mrr_at_5", "value": 30.218}, {"type": "ndcg_at_1", "value": 20.072000000000003}, {"type": "ndcg_at_10", "value": 38.0}, {"type": "ndcg_at_100", "value": 44.038}, {"type": "ndcg_at_1000", "value": 45.43}, {"type": "ndcg_at_3", "value": 30.219}, {"type": "ndcg_at_5", "value": 34.127}, {"type": "precision_at_1", "value": 20.072000000000003}, {"type": "precision_at_10", "value": 6.159}, {"type": "precision_at_100", "value": 0.9169999999999999}, {"type": "precision_at_1000", "value": 0.104}, {"type": "precision_at_3", "value": 13.071}, {"type": "precision_at_5", "value": 9.814}, {"type": "recall_at_1", "value": 19.454}, {"type": "recall_at_10", "value": 58.931}, {"type": "recall_at_100", "value": 86.886}, {"type": "recall_at_1000", "value": 97.425}, {"type": "recall_at_3", "value": 37.697}, {"type": "recall_at_5", "value": 47.101}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 90.46283629730961}, {"type": "f1", "value": 90.22448402668293}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (de)", "type": "mteb/mtop_domain", "config": "de", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 86.91462383770076}, {"type": "f1", "value": 85.77767304705436}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (es)", "type": "mteb/mtop_domain", "config": "es", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 87.73849232821881}, {"type": "f1", "value": 87.33680109229385}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (fr)", "type": "mteb/mtop_domain", "config": "fr", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 86.22298778578141}, {"type": "f1", "value": 85.88868176519013}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (hi)", "type": "mteb/mtop_domain", "config": "hi", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 82.91860882036572}, {"type": "f1", "value": 81.38044567838352}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (th)", "type": "mteb/mtop_domain", "config": "th", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 69.90235081374323}, {"type": "f1", "value": 68.12897827044782}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 66.0031919744642}, {"type": "f1", "value": 48.13490278120492}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (de)", "type": "mteb/mtop_intent", "config": "de", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 63.260073260073256}, {"type": "f1", "value": 42.627167415555505}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (es)", "type": "mteb/mtop_intent", "config": "es", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 65.06004002668445}, {"type": "f1", "value": 44.90527231209402}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (fr)", "type": "mteb/mtop_intent", "config": "fr", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 59.42687128092702}, {"type": "f1", "value": 41.79584710899656}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (hi)", "type": "mteb/mtop_intent", "config": "hi", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 59.078522768017216}, {"type": "f1", "value": 40.398016878580734}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (th)", "type": "mteb/mtop_intent", "config": "th", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 43.750452079565996}, {"type": "f1", "value": 28.985320742729865}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (af)", "type": "mteb/amazon_massive_intent", "config": "af", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 47.59919300605245}, {"type": "f1", "value": 44.27505749600044}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (am)", "type": "mteb/amazon_massive_intent", "config": "am", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 31.56691324815064}, {"type": "f1", "value": 30.34952276390722}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ar)", "type": "mteb/amazon_massive_intent", "config": "ar", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 52.62945527908541}, {"type": "f1", "value": 49.689536347222386}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (az)", "type": "mteb/amazon_massive_intent", "config": "az", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 50.0941492938803}, {"type": "f1", "value": 48.47831879848094}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (bn)", "type": "mteb/amazon_massive_intent", "config": "bn", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 46.540013449899135}, {"type": "f1", "value": 44.25663324630171}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (cy)", "type": "mteb/amazon_massive_intent", "config": "cy", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 44.25689307330195}, {"type": "f1", "value": 42.06066077477426}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (da)", "type": "mteb/amazon_massive_intent", "config": "da", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 55.05716207128446}, {"type": "f1", "value": 52.41516089202158}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (de)", "type": "mteb/amazon_massive_intent", "config": "de", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 61.86953597848015}, {"type": "f1", "value": 58.45989820228606}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (el)", "type": "mteb/amazon_massive_intent", "config": "el", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 47.02084734364493}, {"type": "f1", "value": 45.21525882986924}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 69.24008069939475}, {"type": "f1", "value": 68.27971089998472}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (es)", "type": "mteb/amazon_massive_intent", "config": "es", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 62.53530598520511}, {"type": "f1", "value": 61.83588971206536}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (fa)", "type": "mteb/amazon_massive_intent", "config": "fa", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 55.19166106254204}, {"type": "f1", "value": 52.335787325774}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (fi)", "type": "mteb/amazon_massive_intent", "config": "fi", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 48.43308675184936}, {"type": "f1", "value": 45.841102061239184}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (fr)", "type": "mteb/amazon_massive_intent", "config": "fr", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 64.26698049764627}, {"type": "f1", "value": 62.25607481996241}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (he)", "type": "mteb/amazon_massive_intent", "config": "he", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 57.619367854741085}, {"type": "f1", "value": 54.93671211092237}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (hi)", "type": "mteb/amazon_massive_intent", "config": "hi", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 57.53530598520511}, {"type": "f1", "value": 55.36413211751344}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (hu)", "type": "mteb/amazon_massive_intent", "config": "hu", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 45.66913248150638}, {"type": "f1", "value": 42.52092657926257}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (hy)", "type": "mteb/amazon_massive_intent", "config": "hy", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 39.19973100201749}, {"type": "f1", "value": 37.194613407773566}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (id)", "type": "mteb/amazon_massive_intent", "config": "id", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 54.99663752521856}, {"type": "f1", "value": 53.875181150315356}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (is)", "type": "mteb/amazon_massive_intent", "config": "is", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 43.143913920645595}, {"type": "f1", "value": 41.756257561394456}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (it)", "type": "mteb/amazon_massive_intent", "config": "it", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 60.99529253530599}, {"type": "f1", "value": 59.103812128183705}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ja)", "type": "mteb/amazon_massive_intent", "config": "ja", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 64.29051782111634}, {"type": "f1", "value": 62.5268914542489}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (jv)", "type": "mteb/amazon_massive_intent", "config": "jv", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 43.69199731002017}, {"type": "f1", "value": 41.71651113018154}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ka)", "type": "mteb/amazon_massive_intent", "config": "ka", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 38.34566240753194}, {"type": "f1", "value": 36.935911015227894}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (km)", "type": "mteb/amazon_massive_intent", "config": "km", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 34.21654337592467}, {"type": "f1", "value": 32.067289455027755}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (kn)", "type": "mteb/amazon_massive_intent", "config": "kn", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 51.785474108944186}, {"type": "f1", "value": 49.29285691779668}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ko)", "type": "mteb/amazon_massive_intent", "config": "ko", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 59.58977807666444}, {"type": "f1", "value": 57.81630371862734}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (lv)", "type": "mteb/amazon_massive_intent", "config": "lv", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 46.53665097511768}, {"type": "f1", "value": 44.8386852929464}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ml)", "type": "mteb/amazon_massive_intent", "config": "ml", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 54.468728984532625}, {"type": "f1", "value": 52.13613631138983}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (mn)", "type": "mteb/amazon_massive_intent", "config": "mn", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 40.67921990585071}, {"type": "f1", "value": 39.87218130311539}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ms)", "type": "mteb/amazon_massive_intent", "config": "ms", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 51.2441156691325}, {"type": "f1", "value": 48.93351041227674}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (my)", "type": "mteb/amazon_massive_intent", "config": "my", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 31.76193678547411}, {"type": "f1", "value": 29.917012787908785}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (nb)", "type": "mteb/amazon_massive_intent", "config": "nb", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 54.40820443846671}, {"type": "f1", "value": 51.232049156874396}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (nl)", "type": "mteb/amazon_massive_intent", "config": "nl", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 60.8170813718897}, {"type": "f1", "value": 57.74887572270486}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (pl)", "type": "mteb/amazon_massive_intent", "config": "pl", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 60.067249495628786}, {"type": "f1", "value": 57.60151669462318}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (pt)", "type": "mteb/amazon_massive_intent", "config": "pt", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 62.73705447209146}, {"type": "f1", "value": 61.14377989075874}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ro)", "type": "mteb/amazon_massive_intent", "config": "ro", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 49.68392737054472}, {"type": "f1", "value": 48.07062918679129}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ru)", "type": "mteb/amazon_massive_intent", "config": "ru", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 60.85406859448555}, {"type": "f1", "value": 58.48852652838252}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (sl)", "type": "mteb/amazon_massive_intent", "config": "sl", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 48.58776059179556}, {"type": "f1", "value": 46.92163099241966}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (sq)", "type": "mteb/amazon_massive_intent", "config": "sq", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 47.16879623402824}, {"type": "f1", "value": 45.8155066134247}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (sv)", "type": "mteb/amazon_massive_intent", "config": "sv", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 62.41425689307329}, {"type": "f1", "value": 60.097954878192574}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (sw)", "type": "mteb/amazon_massive_intent", "config": "sw", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 45.97175521183591}, {"type": "f1", "value": 44.29275283000346}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ta)", "type": "mteb/amazon_massive_intent", "config": "ta", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 53.597848016139885}, {"type": "f1", "value": 51.54318966923094}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (te)", "type": "mteb/amazon_massive_intent", "config": "te", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 53.44653665097512}, {"type": "f1", "value": 51.60095623356469}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (th)", "type": "mteb/amazon_massive_intent", "config": "th", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 46.173503698722264}, {"type": "f1", "value": 46.311285276929105}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (tl)", "type": "mteb/amazon_massive_intent", "config": "tl", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 49.47881640887693}, {"type": "f1", "value": 46.63989802589145}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (tr)", "type": "mteb/amazon_massive_intent", "config": "tr", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 58.02958977807666}, {"type": "f1", "value": 55.34728796730868}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (ur)", "type": "mteb/amazon_massive_intent", "config": "ur", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 39.26361802286483}, {"type": "f1", "value": 37.61201358829197}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (vi)", "type": "mteb/amazon_massive_intent", "config": "vi", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 52.15534633490249}, {"type": "f1", "value": 50.438951980623145}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (zh-CN)", "type": "mteb/amazon_massive_intent", "config": "zh-CN", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 63.39946200403498}, {"type": "f1", "value": 62.152249150179664}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (zh-TW)", "type": "mteb/amazon_massive_intent", "config": "zh-TW", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 58.207800941492934}, {"type": "f1", "value": 58.318584465398104}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (af)", "type": "mteb/amazon_massive_scenario", "config": "af", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 58.069939475453936}, {"type": "f1", "value": 55.04073616892449}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (am)", "type": "mteb/amazon_massive_scenario", "config": "am", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 38.214525891055814}, {"type": "f1", "value": 36.42184260742777}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ar)", "type": "mteb/amazon_massive_scenario", "config": "ar", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 57.47141896435777}, {"type": "f1", "value": 57.22453431938479}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (az)", "type": "mteb/amazon_massive_scenario", "config": "az", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 54.37121721587089}, {"type": "f1", "value": 53.004976087120134}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (bn)", "type": "mteb/amazon_massive_scenario", "config": "bn", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 52.71687962340283}, {"type": "f1", "value": 51.140151342341646}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (cy)", "type": "mteb/amazon_massive_scenario", "config": "cy", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 49.502353732347004}, {"type": "f1", "value": 45.74604753969847}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (da)", "type": "mteb/amazon_massive_scenario", "config": "da", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 64.25689307330195}, {"type": "f1", "value": 62.25355539317913}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (de)", "type": "mteb/amazon_massive_scenario", "config": "de", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 71.27774041694688}, {"type": "f1", "value": 70.26880477280841}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (el)", "type": "mteb/amazon_massive_scenario", "config": "el", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 52.420981842636195}, {"type": "f1", "value": 50.824547366213565}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 74.11230665770006}, {"type": "f1", "value": 73.00723710263364}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (es)", "type": "mteb/amazon_massive_scenario", "config": "es", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 67.04102219233356}, {"type": "f1", "value": 66.7904194512351}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (fa)", "type": "mteb/amazon_massive_scenario", "config": "fa", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 60.1714862138534}, {"type": "f1", "value": 58.781208933846095}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (fi)", "type": "mteb/amazon_massive_scenario", "config": "fi", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 54.04841963685272}, {"type": "f1", "value": 51.185007148328545}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (fr)", "type": "mteb/amazon_massive_scenario", "config": "fr", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 69.76462676529927}, {"type": "f1", "value": 68.85227238388136}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (he)", "type": "mteb/amazon_massive_scenario", "config": "he", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 62.84801613987895}, {"type": "f1", "value": 61.18395865529196}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (hi)", "type": "mteb/amazon_massive_scenario", "config": "hi", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 62.17888365837256}, {"type": "f1", "value": 60.40570575783401}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (hu)", "type": "mteb/amazon_massive_scenario", "config": "hu", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 53.52051109616678}, {"type": "f1", "value": 51.210696278552014}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (hy)", "type": "mteb/amazon_massive_scenario", "config": "hy", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 45.94821788836584}, {"type": "f1", "value": 43.65062337089374}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (id)", "type": "mteb/amazon_massive_scenario", "config": "id", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 60.33288500336248}, {"type": "f1", "value": 59.50436947982156}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (is)", "type": "mteb/amazon_massive_scenario", "config": "is", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 50.09751176866174}, {"type": "f1", "value": 47.293838685239}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (it)", "type": "mteb/amazon_massive_scenario", "config": "it", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 66.49293880295897}, {"type": "f1", "value": 65.96586462307134}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ja)", "type": "mteb/amazon_massive_scenario", "config": "ja", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 68.35911230665769}, {"type": "f1", "value": 67.77840431764355}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (jv)", "type": "mteb/amazon_massive_scenario", "config": "jv", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 50.585070611970416}, {"type": "f1", "value": 47.957277125670295}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ka)", "type": "mteb/amazon_massive_scenario", "config": "ka", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 42.76059179556153}, {"type": "f1", "value": 40.446327361325565}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (km)", "type": "mteb/amazon_massive_scenario", "config": "km", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 40.648957632817755}, {"type": "f1", "value": 37.231284508608276}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (kn)", "type": "mteb/amazon_massive_scenario", "config": "kn", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 57.24613315400134}, {"type": "f1", "value": 55.14523425690653}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ko)", "type": "mteb/amazon_massive_scenario", "config": "ko", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 63.839946200403496}, {"type": "f1", "value": 62.6239063060589}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (lv)", "type": "mteb/amazon_massive_scenario", "config": "lv", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 53.14391392064559}, {"type": "f1", "value": 50.08744471966442}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ml)", "type": "mteb/amazon_massive_scenario", "config": "ml", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 58.8399462004035}, {"type": "f1", "value": 57.586991117740794}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (mn)", "type": "mteb/amazon_massive_scenario", "config": "mn", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 44.81842636180229}, {"type": "f1", "value": 42.82813975084655}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ms)", "type": "mteb/amazon_massive_scenario", "config": "ms", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 58.90047074646939}, {"type": "f1", "value": 56.640503134745714}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (my)", "type": "mteb/amazon_massive_scenario", "config": "my", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 38.52051109616678}, {"type": "f1", "value": 36.504553927569454}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (nb)", "type": "mteb/amazon_massive_scenario", "config": "nb", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 64.63685272360458}, {"type": "f1", "value": 62.88129994502907}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (nl)", "type": "mteb/amazon_massive_scenario", "config": "nl", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 67.54203093476798}, {"type": "f1", "value": 66.02745142287087}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (pl)", "type": "mteb/amazon_massive_scenario", "config": "pl", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 64.00470746469402}, {"type": "f1", "value": 62.91845058355313}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (pt)", "type": "mteb/amazon_massive_scenario", "config": "pt", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 65.69939475453934}, {"type": "f1", "value": 65.37413822081011}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ro)", "type": "mteb/amazon_massive_scenario", "config": "ro", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 57.19905850706121}, {"type": "f1", "value": 55.08271383695852}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ru)", "type": "mteb/amazon_massive_scenario", "config": "ru", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 65.42367182246134}, {"type": "f1", "value": 64.61962307022019}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (sl)", "type": "mteb/amazon_massive_scenario", "config": "sl", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 55.147948890383326}, {"type": "f1", "value": 53.2933851469903}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (sq)", "type": "mteb/amazon_massive_scenario", "config": "sq", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 55.679219905850715}, {"type": "f1", "value": 52.80159603468007}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (sv)", "type": "mteb/amazon_massive_scenario", "config": "sv", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 69.42165433759246}, {"type": "f1", "value": 67.99984081248608}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (sw)", "type": "mteb/amazon_massive_scenario", "config": "sw", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 52.30329522528581}, {"type": "f1", "value": 50.10810382364662}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ta)", "type": "mteb/amazon_massive_scenario", "config": "ta", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 56.186953597848024}, {"type": "f1", "value": 55.51656586643505}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (te)", "type": "mteb/amazon_massive_scenario", "config": "te", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 58.019502353732356}, {"type": "f1", "value": 56.260726586358736}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (th)", "type": "mteb/amazon_massive_scenario", "config": "th", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 52.55548083389374}, {"type": "f1", "value": 51.139712264362714}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (tl)", "type": "mteb/amazon_massive_scenario", "config": "tl", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 57.43443174176194}, {"type": "f1", "value": 55.76244076715635}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (tr)", "type": "mteb/amazon_massive_scenario", "config": "tr", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 61.55346334902488}, {"type": "f1", "value": 61.25819823057803}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (ur)", "type": "mteb/amazon_massive_scenario", "config": "ur", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 47.114996637525216}, {"type": "f1", "value": 45.20428169546973}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (vi)", "type": "mteb/amazon_massive_scenario", "config": "vi", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 56.83254875588434}, {"type": "f1", "value": 56.00919757601416}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (zh-CN)", "type": "mteb/amazon_massive_scenario", "config": "zh-CN", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 69.57969065232012}, {"type": "f1", "value": 69.17378512156806}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (zh-TW)", "type": "mteb/amazon_massive_scenario", "config": "zh-TW", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 64.02488231338263}, {"type": "f1", "value": 64.09790488949963}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 29.71446786877363}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 28.003624498407547}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 31.29671894458151}, {"type": "mrr", "value": 32.44455140124599}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "nfcorpus", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 6.127}, {"type": "map_at_10", "value": 13.047}, {"type": "map_at_100", "value": 15.754000000000001}, {"type": "map_at_1000", "value": 16.930999999999997}, {"type": "map_at_3", "value": 9.876999999999999}, {"type": "map_at_5", "value": 11.265}, {"type": "mrr_at_1", "value": 45.511}, {"type": "mrr_at_10", "value": 54.75600000000001}, {"type": "mrr_at_100", "value": 55.33}, {"type": "mrr_at_1000", "value": 55.374}, {"type": "mrr_at_3", "value": 53.147999999999996}, {"type": "mrr_at_5", "value": 53.952999999999996}, {"type": "ndcg_at_1", "value": 43.653}, {"type": "ndcg_at_10", "value": 33.936}, {"type": "ndcg_at_100", "value": 29.952}, {"type": "ndcg_at_1000", "value": 38.356}, {"type": "ndcg_at_3", "value": 40.018}, {"type": "ndcg_at_5", "value": 37.102000000000004}, {"type": "precision_at_1", "value": 45.511}, {"type": "precision_at_10", "value": 24.768}, {"type": "precision_at_100", "value": 7.13}, {"type": "precision_at_1000", "value": 1.928}, {"type": "precision_at_3", "value": 37.461}, {"type": "precision_at_5", "value": 31.703}, {"type": "recall_at_1", "value": 6.127}, {"type": "recall_at_10", "value": 16.512999999999998}, {"type": "recall_at_100", "value": 29.057}, {"type": "recall_at_1000", "value": 59.25899999999999}, {"type": "recall_at_3", "value": 10.940999999999999}, {"type": "recall_at_5", "value": 12.925}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "nq", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 32.228}, {"type": "map_at_10", "value": 47.56}, {"type": "map_at_100", "value": 48.539}, {"type": "map_at_1000", "value": 48.567}, {"type": "map_at_3", "value": 43.214999999999996}, {"type": "map_at_5", "value": 45.799}, {"type": "mrr_at_1", "value": 36.53}, {"type": "mrr_at_10", "value": 50.004000000000005}, {"type": "mrr_at_100", "value": 50.737}, {"type": "mrr_at_1000", "value": 50.758}, {"type": "mrr_at_3", "value": 46.543}, {"type": "mrr_at_5", "value": 48.672}, {"type": "ndcg_at_1", "value": 36.501}, {"type": "ndcg_at_10", "value": 55.103}, {"type": "ndcg_at_100", "value": 59.156}, {"type": "ndcg_at_1000", "value": 59.821999999999996}, {"type": "ndcg_at_3", "value": 47.089}, {"type": "ndcg_at_5", "value": 51.35999999999999}, {"type": "precision_at_1", "value": 36.501}, {"type": "precision_at_10", "value": 9.046999999999999}, {"type": "precision_at_100", "value": 1.13}, {"type": "precision_at_1000", "value": 0.11900000000000001}, {"type": "precision_at_3", "value": 21.398}, {"type": "precision_at_5", "value": 15.307}, {"type": "recall_at_1", "value": 32.228}, {"type": "recall_at_10", "value": 75.608}, {"type": "recall_at_100", "value": 93.062}, {"type": "recall_at_1000", "value": 98.059}, {"type": "recall_at_3", "value": 55.021}, {"type": "recall_at_5", "value": 64.873}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "quora", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 70.623}, {"type": "map_at_10", "value": 84.705}, {"type": "map_at_100", "value": 85.333}, {"type": "map_at_1000", "value": 85.348}, {"type": "map_at_3", "value": 81.736}, {"type": "map_at_5", "value": 83.616}, {"type": "mrr_at_1", "value": 81.28}, {"type": "mrr_at_10", "value": 87.518}, {"type": "mrr_at_100", "value": 87.619}, {"type": "mrr_at_1000", "value": 87.62}, {"type": "mrr_at_3", "value": 86.545}, {"type": "mrr_at_5", "value": 87.238}, {"type": "ndcg_at_1", "value": 81.28999999999999}, {"type": "ndcg_at_10", "value": 88.412}, {"type": "ndcg_at_100", "value": 89.603}, {"type": "ndcg_at_1000", "value": 89.696}, {"type": "ndcg_at_3", "value": 85.563}, {"type": "ndcg_at_5", "value": 87.17}, {"type": "precision_at_1", "value": 81.28999999999999}, {"type": "precision_at_10", "value": 13.439}, {"type": "precision_at_100", "value": 1.5310000000000001}, {"type": "precision_at_1000", "value": 0.157}, {"type": "precision_at_3", "value": 37.437}, {"type": "precision_at_5", "value": 24.662}, {"type": "recall_at_1", "value": 70.623}, {"type": "recall_at_10", "value": 95.531}, {"type": "recall_at_100", "value": 99.58}, {"type": "recall_at_1000", "value": 99.978}, {"type": "recall_at_3", "value": 87.368}, {"type": "recall_at_5", "value": 91.898}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 49.53241309124786}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "282350215ef01743dc01b456c7f5241fa8937f16"}, "metrics": [{"type": "v_measure", "value": 59.712004482915994}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "scidocs", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 5.313}, {"type": "map_at_10", "value": 13.447000000000001}, {"type": "map_at_100", "value": 15.491}, {"type": "map_at_1000", "value": 15.784999999999998}, {"type": "map_at_3", "value": 9.58}, {"type": "map_at_5", "value": 11.562}, {"type": "mrr_at_1", "value": 26.200000000000003}, {"type": "mrr_at_10", "value": 37.212}, {"type": "mrr_at_100", "value": 38.190000000000005}, {"type": "mrr_at_1000", "value": 38.242}, {"type": "mrr_at_3", "value": 34.067}, {"type": "mrr_at_5", "value": 35.862}, {"type": "ndcg_at_1", "value": 26.200000000000003}, {"type": "ndcg_at_10", "value": 21.979000000000003}, {"type": "ndcg_at_100", "value": 29.726999999999997}, {"type": "ndcg_at_1000", "value": 34.766000000000005}, {"type": "ndcg_at_3", "value": 21.16}, {"type": "ndcg_at_5", "value": 18.478}, {"type": "precision_at_1", "value": 26.200000000000003}, {"type": "precision_at_10", "value": 11.25}, {"type": "precision_at_100", "value": 2.241}, {"type": "precision_at_1000", "value": 0.345}, {"type": "precision_at_3", "value": 19.633}, {"type": "precision_at_5", "value": 16.14}, {"type": "recall_at_1", "value": 5.313}, {"type": "recall_at_10", "value": 22.808}, {"type": "recall_at_100", "value": 45.540000000000006}, {"type": "recall_at_1000", "value": 70.043}, {"type": "recall_at_3", "value": 11.932}, {"type": "recall_at_5", "value": 16.347}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "a6ea5a8cab320b040a23452cc28066d9beae2cee"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.95540796619258}, {"type": "cos_sim_spearman", "value": 76.49462277620303}, {"type": "euclidean_pearson", "value": 71.67643435507317}, {"type": "euclidean_spearman", "value": 76.4915921108082}, {"type": "manhattan_pearson", "value": 71.71412560074847}, {"type": "manhattan_spearman", "value": 76.46738312094736}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 81.48773267615617}, {"type": "cos_sim_spearman", "value": 74.99867664033701}, {"type": "euclidean_pearson", "value": 76.0885798115032}, {"type": "euclidean_spearman", "value": 74.99438208715942}, {"type": "manhattan_pearson", "value": 76.09382557464033}, {"type": "manhattan_spearman", "value": 74.96139353538533}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.19022560804167}, {"type": "cos_sim_spearman", "value": 87.9128142106699}, {"type": "euclidean_pearson", "value": 85.51390183763914}, {"type": "euclidean_spearman", "value": 87.89995488057309}, {"type": "manhattan_pearson", "value": 85.44945034816052}, {"type": "manhattan_spearman", "value": 87.791458898378}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 85.17877898640924}, {"type": "cos_sim_spearman", "value": 82.25544088807465}, {"type": "euclidean_pearson", "value": 82.36395988835416}, {"type": "euclidean_spearman", "value": 82.26359924974219}, {"type": "manhattan_pearson", "value": 82.39219808999891}, {"type": "manhattan_spearman", "value": 82.27757404868157}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.66865350602554}, {"type": "cos_sim_spearman", "value": 87.87150169810872}, {"type": "euclidean_pearson", "value": 85.41520650056647}, {"type": "euclidean_spearman", "value": 87.86636613654022}, {"type": "manhattan_pearson", "value": 85.38710485867502}, {"type": "manhattan_spearman", "value": 87.83513424575301}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 80.75527643407175}, {"type": "cos_sim_spearman", "value": 80.9239008594745}, {"type": "euclidean_pearson", "value": 79.37682746800515}, {"type": "euclidean_spearman", "value": 80.91978947194092}, {"type": "manhattan_pearson", "value": 79.38884189990698}, {"type": "manhattan_spearman", "value": 80.91771608341014}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (ko-ko)", "type": "mteb/sts17-crosslingual-sts", "config": "ko-ko", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 80.24344311909609}, {"type": "cos_sim_spearman", "value": 80.78933956176022}, {"type": "euclidean_pearson", "value": 76.95229806538676}, {"type": "euclidean_spearman", "value": 80.79706724032172}, {"type": "manhattan_pearson", "value": 76.90212135774246}, {"type": "manhattan_spearman", "value": 80.68727415384441}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (ar-ar)", "type": "mteb/sts17-crosslingual-sts", "config": "ar-ar", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.33891809228084}, {"type": "cos_sim_spearman", "value": 79.37912430317627}, {"type": "euclidean_pearson", "value": 72.56919843951036}, {"type": "euclidean_spearman", "value": 79.3091436905072}, {"type": "manhattan_pearson", "value": 72.4282811588754}, {"type": "manhattan_spearman", "value": 78.90144894538078}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-ar)", "type": "mteb/sts17-crosslingual-sts", "config": "en-ar", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 59.68908656739356}, {"type": "cos_sim_spearman", "value": 58.76110210983758}, {"type": "euclidean_pearson", "value": 59.14749159577439}, {"type": "euclidean_spearman", "value": 59.015997032145016}, {"type": "manhattan_pearson", "value": 57.907675340322676}, {"type": "manhattan_spearman", "value": 57.07751173022352}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-de)", "type": "mteb/sts17-crosslingual-sts", "config": "en-de", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.53325164873934}, {"type": "cos_sim_spearman", "value": 76.13104388846271}, {"type": "euclidean_pearson", "value": 74.61931031522006}, {"type": "euclidean_spearman", "value": 75.96875166459931}, {"type": "manhattan_pearson", "value": 74.82154350849251}, {"type": "manhattan_spearman", "value": 76.64455924104236}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 85.4228376590724}, {"type": "cos_sim_spearman", "value": 87.22764976624408}, {"type": "euclidean_pearson", "value": 81.94975688107507}, {"type": "euclidean_spearman", "value": 87.19193932664932}, {"type": "manhattan_pearson", "value": 82.0043964628936}, {"type": "manhattan_spearman", "value": 87.09130430957818}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-tr)", "type": "mteb/sts17-crosslingual-sts", "config": "en-tr", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 57.5627552601949}, {"type": "cos_sim_spearman", "value": 55.5263144563657}, {"type": "euclidean_pearson", "value": 57.00569241610482}, {"type": "euclidean_spearman", "value": 55.35291811479459}, {"type": "manhattan_pearson", "value": 56.99656284623506}, {"type": "manhattan_spearman", "value": 55.593673744709946}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (es-en)", "type": "mteb/sts17-crosslingual-sts", "config": "es-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 69.93801311909735}, {"type": "cos_sim_spearman", "value": 72.2581115470475}, {"type": "euclidean_pearson", "value": 68.24881290268563}, {"type": "euclidean_spearman", "value": 72.60813652864522}, {"type": "manhattan_pearson", "value": 67.86369874088834}, {"type": "manhattan_spearman", "value": 71.92346382988023}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (es-es)", "type": "mteb/sts17-crosslingual-sts", "config": "es-es", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.20555264114785}, {"type": "cos_sim_spearman", "value": 85.0588060013836}, {"type": "euclidean_pearson", "value": 81.78229090166155}, {"type": "euclidean_spearman", "value": 85.09687374900614}, {"type": "manhattan_pearson", "value": 81.77449099980244}, {"type": "manhattan_spearman", "value": 84.70331476222177}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (fr-en)", "type": "mteb/sts17-crosslingual-sts", "config": "fr-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 73.786793911605}, {"type": "cos_sim_spearman", "value": 75.63094397551554}, {"type": "euclidean_pearson", "value": 71.64292842519251}, {"type": "euclidean_spearman", "value": 75.60215267384011}, {"type": "manhattan_pearson", "value": 72.2124078037642}, {"type": "manhattan_spearman", "value": 76.34546028465175}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (it-en)", "type": "mteb/sts17-crosslingual-sts", "config": "it-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 69.62139987106455}, {"type": "cos_sim_spearman", "value": 71.35872226722493}, {"type": "euclidean_pearson", "value": 68.50103697766141}, {"type": "euclidean_spearman", "value": 71.24590187948473}, {"type": "manhattan_pearson", "value": 68.89236562525663}, {"type": "manhattan_spearman", "value": 71.77994400789173}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (nl-en)", "type": "mteb/sts17-crosslingual-sts", "config": "nl-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 71.62728174871292}, {"type": "cos_sim_spearman", "value": 71.98655715409397}, {"type": "euclidean_pearson", "value": 70.27026741609356}, {"type": "euclidean_spearman", "value": 72.14004669693777}, {"type": "manhattan_pearson", "value": 70.46335140108751}, {"type": "manhattan_spearman", "value": 72.6638254374311}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 71.10248717637424}, {"type": "cos_sim_spearman", "value": 68.5905931564714}, {"type": "euclidean_pearson", "value": 71.23290000423759}, {"type": "euclidean_spearman", "value": 68.6419513130457}, {"type": "manhattan_pearson", "value": 71.6886015250234}, {"type": "manhattan_spearman", "value": 69.47543660368697}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (de)", "type": "mteb/sts22-crosslingual-sts", "config": "de", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 59.010555056244776}, {"type": "cos_sim_spearman", "value": 60.121771179899255}, {"type": "euclidean_pearson", "value": 53.04527785573465}, {"type": "euclidean_spearman", "value": 60.121771179899255}, {"type": "manhattan_pearson", "value": 52.931480071124234}, {"type": "manhattan_spearman", "value": 60.03868409331775}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (es)", "type": "mteb/sts22-crosslingual-sts", "config": "es", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 70.6833028374664}, {"type": "cos_sim_spearman", "value": 68.57396263856863}, {"type": "euclidean_pearson", "value": 68.30905084522986}, {"type": "euclidean_spearman", "value": 68.57396263856863}, {"type": "manhattan_pearson", "value": 70.91400657516918}, {"type": "manhattan_spearman", "value": 72.72240857808112}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (pl)", "type": "mteb/sts22-crosslingual-sts", "config": "pl", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 36.948290734279645}, {"type": "cos_sim_spearman", "value": 42.07722031011005}, {"type": "euclidean_pearson", "value": 22.539446972018467}, {"type": "euclidean_spearman", "value": 42.07722031011005}, {"type": "manhattan_pearson", "value": 24.119402246951786}, {"type": "manhattan_spearman", "value": 45.80525501822569}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (tr)", "type": "mteb/sts22-crosslingual-sts", "config": "tr", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 66.97840719036533}, {"type": "cos_sim_spearman", "value": 66.62430648804775}, {"type": "euclidean_pearson", "value": 66.89526587772023}, {"type": "euclidean_spearman", "value": 66.62430648804775}, {"type": "manhattan_pearson", "value": 68.6929895225091}, {"type": "manhattan_spearman", "value": 68.91772708432867}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (ar)", "type": "mteb/sts22-crosslingual-sts", "config": "ar", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 56.65098289103698}, {"type": "cos_sim_spearman", "value": 57.436674670689214}, {"type": "euclidean_pearson", "value": 51.79149892785239}, {"type": "euclidean_spearman", "value": 57.436674670689214}, {"type": "manhattan_pearson", "value": 52.64807953938707}, {"type": "manhattan_spearman", "value": 58.94583987372767}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (ru)", "type": "mteb/sts22-crosslingual-sts", "config": "ru", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 60.669531297510225}, {"type": "cos_sim_spearman", "value": 61.71342510003327}, {"type": "euclidean_pearson", "value": 55.821871433553504}, {"type": "euclidean_spearman", "value": 61.71342510003327}, {"type": "manhattan_pearson", "value": 57.77073441351117}, {"type": "manhattan_spearman", "value": 65.20759033207}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (zh)", "type": "mteb/sts22-crosslingual-sts", "config": "zh", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 64.34728960310699}, {"type": "cos_sim_spearman", "value": 64.03565302589584}, {"type": "euclidean_pearson", "value": 61.958942333930544}, {"type": "euclidean_spearman", "value": 64.03565302589584}, {"type": "manhattan_pearson", "value": 64.65072672727923}, {"type": "manhattan_spearman", "value": 67.82569969943107}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (fr)", "type": "mteb/sts22-crosslingual-sts", "config": "fr", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.47120815594353}, {"type": "cos_sim_spearman", "value": 81.46916544955101}, {"type": "euclidean_pearson", "value": 79.21753533489019}, {"type": "euclidean_spearman", "value": 81.46916544955101}, {"type": "manhattan_pearson", "value": 78.26605518839271}, {"type": "manhattan_spearman", "value": 81.29749169339514}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (de-en)", "type": "mteb/sts22-crosslingual-sts", "config": "de-en", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 63.31467231933632}, {"type": "cos_sim_spearman", "value": 53.36160506603274}, {"type": "euclidean_pearson", "value": 64.98434169416196}, {"type": "euclidean_spearman", "value": 53.36160506603274}, {"type": "manhattan_pearson", "value": 69.6837006629638}, {"type": "manhattan_spearman", "value": 60.85384324700893}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (es-en)", "type": "mteb/sts22-crosslingual-sts", "config": "es-en", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.99425127770438}, {"type": "cos_sim_spearman", "value": 77.41308957007035}, {"type": "euclidean_pearson", "value": 79.69441265626801}, {"type": "euclidean_spearman", "value": 77.41308957007035}, {"type": "manhattan_pearson", "value": 80.3726291667624}, {"type": "manhattan_spearman", "value": 79.0414050644631}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (it)", "type": "mteb/sts22-crosslingual-sts", "config": "it", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.13469287716659}, {"type": "cos_sim_spearman", "value": 79.27976881582065}, {"type": "euclidean_pearson", "value": 77.65964425780172}, {"type": "euclidean_spearman", "value": 79.27976881582065}, {"type": "manhattan_pearson", "value": 77.64158710257945}, {"type": "manhattan_spearman", "value": 79.22242281895944}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (pl-en)", "type": "mteb/sts22-crosslingual-sts", "config": "pl-en", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 76.303314995599}, {"type": "cos_sim_spearman", "value": 77.4991345414335}, {"type": "euclidean_pearson", "value": 74.88826621426401}, {"type": "euclidean_spearman", "value": 77.4991345414335}, {"type": "manhattan_pearson", "value": 77.70223488989319}, {"type": "manhattan_spearman", "value": 79.69746987627822}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (zh-en)", "type": "mteb/sts22-crosslingual-sts", "config": "zh-en", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 70.87814957197239}, {"type": "cos_sim_spearman", "value": 69.86785751801642}, {"type": "euclidean_pearson", "value": 68.68630146548654}, {"type": "euclidean_spearman", "value": 69.8615799070054}, {"type": "manhattan_pearson", "value": 61.83743315022061}, {"type": "manhattan_spearman", "value": 64.35346450347738}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (es-it)", "type": "mteb/sts22-crosslingual-sts", "config": "es-it", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 74.1484689923211}, {"type": "cos_sim_spearman", "value": 74.69046355179742}, {"type": "euclidean_pearson", "value": 73.03951899271793}, {"type": "euclidean_spearman", "value": 74.69820632954205}, {"type": "manhattan_pearson", "value": 73.36810146930709}, {"type": "manhattan_spearman", "value": 75.33154135287258}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (de-fr)", "type": "mteb/sts22-crosslingual-sts", "config": "de-fr", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 51.43125921362742}, {"type": "cos_sim_spearman", "value": 58.25341239774093}, {"type": "euclidean_pearson", "value": 48.00689582162098}, {"type": "euclidean_spearman", "value": 58.533194841668426}, {"type": "manhattan_pearson", "value": 46.11721778230745}, {"type": "manhattan_spearman", "value": 55.026889052448134}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (de-pl)", "type": "mteb/sts22-crosslingual-sts", "config": "de-pl", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 40.066205533538046}, {"type": "cos_sim_spearman", "value": 48.46991890841381}, {"type": "euclidean_pearson", "value": 42.29606506858651}, {"type": "euclidean_spearman", "value": 48.34674249441531}, {"type": "manhattan_pearson", "value": 41.70680990555484}, {"type": "manhattan_spearman", "value": 47.54609580342499}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (fr-pl)", "type": "mteb/sts22-crosslingual-sts", "config": "fr-pl", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.26527545520592}, {"type": "cos_sim_spearman", "value": 73.24670207647144}, {"type": "euclidean_pearson", "value": 81.78699781584893}, {"type": "euclidean_spearman", "value": 73.24670207647144}, {"type": "manhattan_pearson", "value": 83.14172292187807}, {"type": "manhattan_spearman", "value": 73.24670207647144}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 81.51438108053523}, {"type": "cos_sim_spearman", "value": 81.9481311864648}, {"type": "euclidean_pearson", "value": 78.6683040592179}, {"type": "euclidean_spearman", "value": 81.9535649926177}, {"type": "manhattan_pearson", "value": 78.65396325536754}, {"type": "manhattan_spearman", "value": 81.96918240343872}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 80.6689275068653}, {"type": "mrr", "value": 95.021337594867}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "scifact", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 55.193999999999996}, {"type": "map_at_10", "value": 65.814}, {"type": "map_at_100", "value": 66.428}, {"type": "map_at_1000", "value": 66.447}, {"type": "map_at_3", "value": 63.304}, {"type": "map_at_5", "value": 64.64}, {"type": "mrr_at_1", "value": 57.99999999999999}, {"type": "mrr_at_10", "value": 66.957}, {"type": "mrr_at_100", "value": 67.405}, {"type": "mrr_at_1000", "value": 67.422}, {"type": "mrr_at_3", "value": 65.0}, {"type": "mrr_at_5", "value": 66.183}, {"type": "ndcg_at_1", "value": 57.99999999999999}, {"type": "ndcg_at_10", "value": 70.523}, {"type": "ndcg_at_100", "value": 72.987}, {"type": "ndcg_at_1000", "value": 73.605}, {"type": "ndcg_at_3", "value": 66.268}, {"type": "ndcg_at_5", "value": 68.27600000000001}, {"type": "precision_at_1", "value": 57.99999999999999}, {"type": "precision_at_10", "value": 9.467}, {"type": "precision_at_100", "value": 1.073}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_3", "value": 26.444000000000003}, {"type": "precision_at_5", "value": 17.2}, {"type": "recall_at_1", "value": 55.193999999999996}, {"type": "recall_at_10", "value": 83.52199999999999}, {"type": "recall_at_100", "value": 94.5}, {"type": "recall_at_1000", "value": 99.667}, {"type": "recall_at_3", "value": 71.989}, {"type": "recall_at_5", "value": 77.31700000000001}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.73465346534654}, {"type": "cos_sim_ap", "value": 92.91719494015508}, {"type": "cos_sim_f1", "value": 86.46200301962756}, {"type": "cos_sim_precision", "value": 87.03140830800406}, {"type": "cos_sim_recall", "value": 85.9}, {"type": "dot_accuracy", "value": 99.73663366336633}, {"type": "dot_ap", "value": 92.90802848215259}, {"type": "dot_f1", "value": 86.46200301962756}, {"type": "dot_precision", "value": 87.03140830800406}, {"type": "dot_recall", "value": 85.9}, {"type": "euclidean_accuracy", "value": 99.73465346534654}, {"type": "euclidean_ap", "value": 92.91627363446204}, {"type": "euclidean_f1", "value": 86.43469490670702}, {"type": "euclidean_precision", "value": 87.18209562563581}, {"type": "euclidean_recall", "value": 85.7}, {"type": "manhattan_accuracy", "value": 99.73663366336633}, {"type": "manhattan_ap", "value": 92.90219877406929}, {"type": "manhattan_f1", "value": 86.31471040492056}, {"type": "manhattan_precision", "value": 88.53838065194533}, {"type": "manhattan_recall", "value": 84.2}, {"type": "max_accuracy", "value": 99.73663366336633}, {"type": "max_ap", "value": 92.91719494015508}, {"type": "max_f1", "value": 86.46200301962756}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 60.73098998430779}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 34.64256206757585}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 54.749150614295694}, {"type": "mrr", "value": 55.78880984211867}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 28.863577054305907}, {"type": "cos_sim_spearman", "value": 27.538596944829774}, {"type": "dot_pearson", "value": 28.93043755116643}, {"type": "dot_spearman", "value": 27.733110516733987}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "trec-covid", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 0.22899999999999998}, {"type": "map_at_10", "value": 2.078}, {"type": "map_at_100", "value": 12.024}, {"type": "map_at_1000", "value": 29.036}, {"type": "map_at_3", "value": 0.681}, {"type": "map_at_5", "value": 1.083}, {"type": "mrr_at_1", "value": 86.0}, {"type": "mrr_at_10", "value": 92.667}, {"type": "mrr_at_100", "value": 92.667}, {"type": "mrr_at_1000", "value": 92.667}, {"type": "mrr_at_3", "value": 92.667}, {"type": "mrr_at_5", "value": 92.667}, {"type": "ndcg_at_1", "value": 82.0}, {"type": "ndcg_at_10", "value": 80.746}, {"type": "ndcg_at_100", "value": 61.090999999999994}, {"type": "ndcg_at_1000", "value": 55.034000000000006}, {"type": "ndcg_at_3", "value": 82.419}, {"type": "ndcg_at_5", "value": 81.018}, {"type": "precision_at_1", "value": 86.0}, {"type": "precision_at_10", "value": 86.2}, {"type": "precision_at_100", "value": 62.68}, {"type": "precision_at_1000", "value": 24.032}, {"type": "precision_at_3", "value": 88.667}, {"type": "precision_at_5", "value": 86.0}, {"type": "recall_at_1", "value": 0.22899999999999998}, {"type": "recall_at_10", "value": 2.263}, {"type": "recall_at_100", "value": 15.238999999999999}, {"type": "recall_at_1000", "value": 51.937}, {"type": "recall_at_3", "value": 0.719}, {"type": "recall_at_5", "value": 1.15}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (sqi-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "sqi-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 19.400000000000002}, {"type": "f1", "value": 15.386076064970075}, {"type": "precision", "value": 14.253878834615676}, {"type": "recall", "value": 19.400000000000002}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (fry-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "fry-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 42.19653179190752}, {"type": "f1", "value": 37.726396917148364}, {"type": "precision", "value": 36.14643545279384}, {"type": "recall", "value": 42.19653179190752}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (kur-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "kur-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 18.536585365853657}, {"type": "f1", "value": 13.512010347376199}, {"type": "precision", "value": 12.034068912117693}, {"type": "recall", "value": 18.536585365853657}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (tur-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "tur-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 81.69999999999999}, {"type": "f1", "value": 77.37888888888888}, {"type": "precision", "value": 75.49583333333332}, {"type": "recall", "value": 81.69999999999999}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (deu-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "deu-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 97.39999999999999}, {"type": "f1", "value": 96.56666666666666}, {"type": "precision", "value": 96.16666666666667}, {"type": "recall", "value": 97.39999999999999}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (nld-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "nld-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 90.0}, {"type": "f1", "value": 87.22333333333333}, {"type": "precision", "value": 85.89166666666667}, {"type": "recall", "value": 90.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ron-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ron-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 64.7}, {"type": "f1", "value": 59.10904761904763}, {"type": "precision", "value": 56.91968253968254}, {"type": "recall", "value": 64.7}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ang-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ang-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 38.80597014925373}, {"type": "f1", "value": 30.890784174366264}, {"type": "precision", "value": 28.327114427860696}, {"type": "recall", "value": 38.80597014925373}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ido-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ido-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 53.900000000000006}, {"type": "f1", "value": 48.294138583638585}, {"type": "precision", "value": 46.333495670995674}, {"type": "recall", "value": 53.900000000000006}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (jav-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "jav-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 11.707317073170733}, {"type": "f1", "value": 8.999999999999998}, {"type": "precision", "value": 8.175377468060395}, {"type": "recall", "value": 11.707317073170733}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (isl-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "isl-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 15.9}, {"type": "f1", "value": 12.451226269430602}, {"type": "precision", "value": 11.404807799760325}, {"type": "recall", "value": 15.9}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (slv-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "slv-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 41.919805589307416}, {"type": "f1", "value": 35.880619060297064}, {"type": "precision", "value": 33.77682308241239}, {"type": "recall", "value": 41.919805589307416}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (cym-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "cym-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 10.956521739130434}, {"type": "f1", "value": 9.098715976676996}, {"type": "precision", "value": 8.659935858401333}, {"type": "recall", "value": 10.956521739130434}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (kaz-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "kaz-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 11.652173913043478}, {"type": "f1", "value": 9.154324883225136}, {"type": "precision", "value": 8.505898125360801}, {"type": "recall", "value": 11.652173913043478}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (est-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "est-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 9.700000000000001}, {"type": "f1", "value": 7.431679431679432}, {"type": "precision", "value": 6.799925118740907}, {"type": "recall", "value": 9.700000000000001}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (heb-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "heb-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 77.5}, {"type": "f1", "value": 72.39999999999999}, {"type": "precision", "value": 70.13444444444444}, {"type": "recall", "value": 77.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (gla-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "gla-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 5.548854041013269}, {"type": "f1", "value": 4.233155465362944}, {"type": "precision", "value": 3.948150869646547}, {"type": "recall", "value": 5.548854041013269}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (mar-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "mar-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 73.5}, {"type": "f1", "value": 67.35333333333332}, {"type": "precision", "value": 64.63666666666666}, {"type": "recall", "value": 73.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (lat-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "lat-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 27.700000000000003}, {"type": "f1", "value": 21.152765495941964}, {"type": "precision", "value": 19.27832403707404}, {"type": "recall", "value": 27.700000000000003}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (bel-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "bel-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 48.1}, {"type": "f1", "value": 41.21001443001443}, {"type": "precision", "value": 38.628495670995676}, {"type": "recall", "value": 48.1}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (pms-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "pms-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 40.0}, {"type": "f1", "value": 34.32060003488575}, {"type": "precision", "value": 32.32134353741497}, {"type": "recall", "value": 40.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (gle-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "gle-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 6.800000000000001}, {"type": "f1", "value": 4.3954389450190465}, {"type": "precision", "value": 3.893838027469606}, {"type": "recall", "value": 6.800000000000001}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (pes-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "pes-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 51.800000000000004}, {"type": "f1", "value": 45.04222943722944}, {"type": "precision", "value": 42.541984126984126}, {"type": "recall", "value": 51.800000000000004}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (nob-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "nob-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 83.1}, {"type": "f1", "value": 79.20675324675324}, {"type": "precision", "value": 77.44944444444444}, {"type": "recall", "value": 83.1}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (bul-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "bul-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 66.8}, {"type": "f1", "value": 60.25746031746031}, {"type": "precision", "value": 57.55250000000001}, {"type": "recall", "value": 66.8}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (cbk-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "cbk-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 63.6}, {"type": "f1", "value": 56.73421356421356}, {"type": "precision", "value": 54.02218253968254}, {"type": "recall", "value": 63.6}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (hun-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "hun-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 17.599999999999998}, {"type": "f1", "value": 13.17699134199134}, {"type": "precision", "value": 11.77444805194805}, {"type": "recall", "value": 17.599999999999998}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (uig-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "uig-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 2.0}, {"type": "f1", "value": 1.3126923076923078}, {"type": "precision", "value": 1.104952380952381}, {"type": "recall", "value": 2.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (rus-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "rus-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 88.3}, {"type": "f1", "value": 84.96333333333334}, {"type": "precision", "value": 83.38333333333333}, {"type": "recall", "value": 88.3}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (spa-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "spa-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 94.69999999999999}, {"type": "f1", "value": 93.12333333333333}, {"type": "precision", "value": 92.375}, {"type": "recall", "value": 94.69999999999999}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (hye-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "hye-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 0.6738544474393532}, {"type": "f1", "value": 0.3690849566291394}, {"type": "precision", "value": 0.3305452159899599}, {"type": "recall", "value": 0.6738544474393532}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (tel-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "tel-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 71.7948717948718}, {"type": "f1", "value": 65.37037037037037}, {"type": "precision", "value": 62.46438746438747}, {"type": "recall", "value": 71.7948717948718}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (afr-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "afr-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 56.699999999999996}, {"type": "f1", "value": 50.58054945054945}, {"type": "precision", "value": 48.313047619047616}, {"type": "recall", "value": 56.699999999999996}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (mon-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "mon-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 13.863636363636363}, {"type": "f1", "value": 10.948429096156369}, {"type": "precision", "value": 10.227287994137523}, {"type": "recall", "value": 13.863636363636363}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (arz-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "arz-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 62.473794549266245}, {"type": "f1", "value": 56.04172906059699}, {"type": "precision", "value": 53.26694619147448}, {"type": "recall", "value": 62.473794549266245}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (hrv-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "hrv-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 40.0}, {"type": "f1", "value": 34.62948179271708}, {"type": "precision", "value": 32.699030910609864}, {"type": "recall", "value": 40.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (nov-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "nov-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 60.311284046692606}, {"type": "f1", "value": 54.06182447038479}, {"type": "precision", "value": 51.757921067259595}, {"type": "recall", "value": 60.311284046692606}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (gsw-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "gsw-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 43.58974358974359}, {"type": "f1", "value": 37.042359350051655}, {"type": "precision", "value": 34.75783475783476}, {"type": "recall", "value": 43.58974358974359}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (nds-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "nds-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 56.49999999999999}, {"type": "f1", "value": 49.471269841269844}, {"type": "precision", "value": 46.742182539682545}, {"type": "recall", "value": 56.49999999999999}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ukr-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ukr-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 71.5}, {"type": "f1", "value": 65.32880952380951}, {"type": "precision", "value": 62.71261904761904}, {"type": "recall", "value": 71.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (uzb-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "uzb-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 11.448598130841122}, {"type": "f1", "value": 7.861361294691689}, {"type": "precision", "value": 6.961045509526818}, {"type": "recall", "value": 11.448598130841122}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (lit-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "lit-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 13.5}, {"type": "f1", "value": 10.448586132968154}, {"type": "precision", "value": 9.624691955878397}, {"type": "recall", "value": 13.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ina-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ina-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 82.19999999999999}, {"type": "f1", "value": 78.25366946778712}, {"type": "precision", "value": 76.54291666666667}, {"type": "recall", "value": 82.19999999999999}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (lfn-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "lfn-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 53.5}, {"type": "f1", "value": 47.48505411255411}, {"type": "precision", "value": 45.29801587301587}, {"type": "recall", "value": 53.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (zsm-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "zsm-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 61.1}, {"type": "f1", "value": 54.60758056758057}, {"type": "precision", "value": 52.16455433455434}, {"type": "recall", "value": 61.1}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ita-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ita-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 85.1}, {"type": "f1", "value": 81.98506715506716}, {"type": "precision", "value": 80.64754901960784}, {"type": "recall", "value": 85.1}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (cmn-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "cmn-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 89.2}, {"type": "f1", "value": 86.13333333333333}, {"type": "precision", "value": 84.65}, {"type": "recall", "value": 89.2}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (lvs-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "lvs-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 13.600000000000001}, {"type": "f1", "value": 10.721816580317723}, {"type": "precision", "value": 9.97922024538847}, {"type": "recall", "value": 13.600000000000001}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (glg-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "glg-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 79.0}, {"type": "f1", "value": 74.2652380952381}, {"type": "precision", "value": 72.18690476190476}, {"type": "recall", "value": 79.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ceb-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ceb-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 12.833333333333332}, {"type": "f1", "value": 10.45993265993266}, {"type": "precision", "value": 9.849548907882243}, {"type": "recall", "value": 12.833333333333332}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (bre-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "bre-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 8.3}, {"type": "f1", "value": 5.457311371692176}, {"type": "precision", "value": 4.8466941508148595}, {"type": "recall", "value": 8.3}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ben-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ben-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 26.3}, {"type": "f1", "value": 20.851341154819416}, {"type": "precision", "value": 19.1173617945522}, {"type": "recall", "value": 26.3}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (swg-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "swg-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 41.964285714285715}, {"type": "f1", "value": 36.38605442176871}, {"type": "precision", "value": 34.523809523809526}, {"type": "recall", "value": 41.964285714285715}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (arq-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "arq-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 26.454445664105382}, {"type": "f1", "value": 20.67692765826684}, {"type": "precision", "value": 18.684070229075715}, {"type": "recall", "value": 26.454445664105382}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (kab-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "kab-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 2.8000000000000003}, {"type": "f1", "value": 1.9487240537240536}, {"type": "precision", "value": 1.7766582325720255}, {"type": "recall", "value": 2.8000000000000003}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (fra-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "fra-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 91.5}, {"type": "f1", "value": 89.39}, {"type": "precision", "value": 88.425}, {"type": "recall", "value": 91.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (por-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "por-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 91.5}, {"type": "f1", "value": 89.38333333333333}, {"type": "precision", "value": 88.36666666666667}, {"type": "recall", "value": 91.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (tat-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "tat-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 9.2}, {"type": "f1", "value": 6.672282438325198}, {"type": "precision", "value": 6.046073589145276}, {"type": "recall", "value": 9.2}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (oci-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "oci-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 45.2}, {"type": "f1", "value": 39.12095238095238}, {"type": "precision", "value": 36.820952380952384}, {"type": "recall", "value": 45.2}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (pol-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "pol-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 86.8}, {"type": "f1", "value": 83.35000000000001}, {"type": "precision", "value": 81.825}, {"type": "recall", "value": 86.8}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (war-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "war-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 13.5}, {"type": "f1", "value": 10.66862856136998}, {"type": "precision", "value": 9.845928551928552}, {"type": "recall", "value": 13.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (aze-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "aze-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 33.4}, {"type": "f1", "value": 27.78153389993659}, {"type": "precision", "value": 25.778055555555557}, {"type": "recall", "value": 33.4}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (vie-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "vie-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 57.699999999999996}, {"type": "f1", "value": 50.440714285714286}, {"type": "precision", "value": 47.64396825396825}, {"type": "recall", "value": 57.699999999999996}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (nno-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "nno-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 62.2}, {"type": "f1", "value": 56.0098625351257}, {"type": "precision", "value": 53.691914098972916}, {"type": "recall", "value": 62.2}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (cha-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "cha-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 27.00729927007299}, {"type": "f1", "value": 22.798053527980535}, {"type": "precision", "value": 21.107055961070557}, {"type": "recall", "value": 27.00729927007299}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (mhr-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "mhr-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 6.2}, {"type": "f1", "value": 4.295544090473964}, {"type": "precision", "value": 3.913153952193392}, {"type": "recall", "value": 6.2}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (dan-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "dan-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 77.10000000000001}, {"type": "f1", "value": 72.49333333333334}, {"type": "precision", "value": 70.53368637110017}, {"type": "recall", "value": 77.10000000000001}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ell-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ell-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 15.2}, {"type": "f1", "value": 10.429591693330824}, {"type": "precision", "value": 9.145801926831338}, {"type": "recall", "value": 15.2}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (amh-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "amh-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 1.7857142857142856}, {"type": "f1", "value": 0.3635204081632653}, {"type": "precision", "value": 0.205026455026455}, {"type": "recall", "value": 1.7857142857142856}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (pam-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "pam-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 6.4}, {"type": "f1", "value": 4.8412763053939525}, {"type": "precision", "value": 4.444087810337809}, {"type": "recall", "value": 6.4}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (hsb-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "hsb-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 43.47826086956522}, {"type": "f1", "value": 37.13266949291794}, {"type": "precision", "value": 34.655332590115194}, {"type": "recall", "value": 43.47826086956522}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (srp-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "srp-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 42.0}, {"type": "f1", "value": 35.412229437229435}, {"type": "precision", "value": 32.907539682539685}, {"type": "recall", "value": 42.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (epo-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "epo-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 36.0}, {"type": "f1", "value": 30.53874458874459}, {"type": "precision", "value": 28.711192408382807}, {"type": "recall", "value": 36.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (kzj-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "kzj-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 7.9}, {"type": "f1", "value": 5.80190114561213}, {"type": "precision", "value": 5.298527531836355}, {"type": "recall", "value": 7.9}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (awa-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "awa-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 49.35064935064935}, {"type": "f1", "value": 41.57805638325119}, {"type": "precision", "value": 38.87445887445887}, {"type": "recall", "value": 49.35064935064935}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (fao-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "fao-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 25.572519083969464}, {"type": "f1", "value": 21.338006776938073}, {"type": "precision", "value": 20.194474736459465}, {"type": "recall", "value": 25.572519083969464}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (mal-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "mal-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 79.62154294032024}, {"type": "f1", "value": 74.47355652595827}, {"type": "precision", "value": 72.2076661814653}, {"type": "recall", "value": 79.62154294032024}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ile-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ile-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 68.0}, {"type": "f1", "value": 61.80859649122807}, {"type": "precision", "value": 59.30381381381381}, {"type": "recall", "value": 68.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (bos-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "bos-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 42.93785310734463}, {"type": "f1", "value": 36.72617201306135}, {"type": "precision", "value": 34.72641059505466}, {"type": "recall", "value": 42.93785310734463}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (cor-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "cor-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 5.5}, {"type": "f1", "value": 3.8651658986175113}, {"type": "precision", "value": 3.4432814407814405}, {"type": "recall", "value": 5.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (cat-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "cat-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 69.19999999999999}, {"type": "f1", "value": 63.41880952380953}, {"type": "precision", "value": 61.07913419913419}, {"type": "recall", "value": 69.19999999999999}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (eus-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "eus-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 15.4}, {"type": "f1", "value": 11.672122577122575}, {"type": "precision", "value": 10.59919974661354}, {"type": "recall", "value": 15.4}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (yue-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "yue-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 58.5}, {"type": "f1", "value": 51.31880452880453}, {"type": "precision", "value": 48.60550125313283}, {"type": "recall", "value": 58.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (swe-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "swe-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 89.3}, {"type": "f1", "value": 86.32666666666667}, {"type": "precision", "value": 84.98333333333333}, {"type": "recall", "value": 89.3}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (dtp-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "dtp-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 5.7}, {"type": "f1", "value": 3.8739805216757546}, {"type": "precision", "value": 3.4734608954367014}, {"type": "recall", "value": 5.7}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (kat-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "kat-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 0.8042895442359249}, {"type": "f1", "value": 0.7596067917783735}, {"type": "precision", "value": 0.7372654155495978}, {"type": "recall", "value": 0.8042895442359249}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (jpn-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "jpn-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 89.7}, {"type": "f1", "value": 86.92333333333333}, {"type": "precision", "value": 85.64166666666667}, {"type": "recall", "value": 89.7}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (csb-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "csb-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 26.08695652173913}, {"type": "f1", "value": 20.517863778733343}, {"type": "precision", "value": 18.901098901098898}, {"type": "recall", "value": 26.08695652173913}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (xho-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "xho-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 12.676056338028168}, {"type": "f1", "value": 9.526324614352783}, {"type": "precision", "value": 9.006292657908235}, {"type": "recall", "value": 12.676056338028168}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (orv-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "orv-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 24.910179640718564}, {"type": "f1", "value": 19.645099411566473}, {"type": "precision", "value": 17.676076418591386}, {"type": "recall", "value": 24.910179640718564}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ind-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ind-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 61.4}, {"type": "f1", "value": 54.64269841269841}, {"type": "precision", "value": 51.981071428571425}, {"type": "recall", "value": 61.4}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (tuk-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "tuk-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 11.330049261083744}, {"type": "f1", "value": 9.610016420361248}, {"type": "precision", "value": 9.123781574258464}, {"type": "recall", "value": 11.330049261083744}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (max-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "max-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 27.816901408450708}, {"type": "f1", "value": 22.51925345174495}, {"type": "precision", "value": 21.10468365750056}, {"type": "recall", "value": 27.816901408450708}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (swh-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "swh-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 11.282051282051283}, {"type": "f1", "value": 7.777167097237831}, {"type": "precision", "value": 7.050109879436802}, {"type": "recall", "value": 11.282051282051283}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (hin-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "hin-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 86.0}, {"type": "f1", "value": 82.05857142857143}, {"type": "precision", "value": 80.25}, {"type": "recall", "value": 86.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (dsb-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "dsb-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 34.44676409185804}, {"type": "f1", "value": 28.296517215097587}, {"type": "precision", "value": 26.16624956236465}, {"type": "recall", "value": 34.44676409185804}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ber-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ber-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 7.199999999999999}, {"type": "f1", "value": 5.500051631938041}, {"type": "precision", "value": 5.164411510424442}, {"type": "recall", "value": 7.199999999999999}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (tam-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "tam-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 71.9869706840391}, {"type": "f1", "value": 65.79339227547696}, {"type": "precision", "value": 63.16503800217155}, {"type": "recall", "value": 71.9869706840391}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (slk-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "slk-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 70.89999999999999}, {"type": "f1", "value": 65.4152380952381}, {"type": "precision", "value": 63.106666666666655}, {"type": "recall", "value": 70.89999999999999}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (tgl-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "tgl-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 21.0}, {"type": "f1", "value": 17.86438197644649}, {"type": "precision", "value": 16.84469948469949}, {"type": "recall", "value": 21.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ast-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ast-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 62.20472440944882}, {"type": "f1", "value": 55.81364829396325}, {"type": "precision", "value": 53.262092238470196}, {"type": "recall", "value": 62.20472440944882}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (mkd-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "mkd-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 41.8}, {"type": "f1", "value": 34.724603174603175}, {"type": "precision", "value": 32.040277777777774}, {"type": "recall", "value": 41.8}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (khm-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "khm-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 0.41551246537396125}, {"type": "f1", "value": 0.3462603878116343}, {"type": "precision", "value": 0.32317636195752536}, {"type": "recall", "value": 0.41551246537396125}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ces-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ces-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 85.6}, {"type": "f1", "value": 81.81333333333333}, {"type": "precision", "value": 80.08333333333334}, {"type": "recall", "value": 85.6}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (tzl-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "tzl-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 31.73076923076923}, {"type": "f1", "value": 26.097374847374844}, {"type": "precision", "value": 24.31891025641026}, {"type": "recall", "value": 31.73076923076923}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (urd-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "urd-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 9.6}, {"type": "f1", "value": 6.598392371412457}, {"type": "precision", "value": 5.855494356434758}, {"type": "recall", "value": 9.6}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (ara-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "ara-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 83.5}, {"type": "f1", "value": 79.65190476190476}, {"type": "precision", "value": 77.875}, {"type": "recall", "value": 83.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (kor-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "kor-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 80.5}, {"type": "f1", "value": 75.75999999999999}, {"type": "precision", "value": 73.60333333333332}, {"type": "recall", "value": 80.5}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (yid-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "yid-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 2.1226415094339623}, {"type": "f1", "value": 1.4622641509433962}, {"type": "precision", "value": 1.2637578616352203}, {"type": "recall", "value": 2.1226415094339623}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (fin-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "fin-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 23.0}, {"type": "f1", "value": 18.111780719280716}, {"type": "precision", "value": 16.497738095238095}, {"type": "recall", "value": 23.0}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (tha-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "tha-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 4.562043795620438}, {"type": "f1", "value": 3.1632119907667358}, {"type": "precision", "value": 2.8806772100567724}, {"type": "recall", "value": 4.562043795620438}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB Tatoeba (wuu-eng)", "type": "mteb/tatoeba-bitext-mining", "config": "wuu-eng", "split": "test", "revision": "9080400076fbadbb4c4dcb136ff4eddc40b42553"}, "metrics": [{"type": "accuracy", "value": 75.9}, {"type": "f1", "value": 70.57690476190476}, {"type": "precision", "value": 68.19761904761904}, {"type": "recall", "value": 75.9}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "webis-touche2020", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 2.804}, {"type": "map_at_10", "value": 11.267000000000001}, {"type": "map_at_100", "value": 17.034}, {"type": "map_at_1000", "value": 18.733}, {"type": "map_at_3", "value": 6.071}, {"type": "map_at_5", "value": 8.187}, {"type": "mrr_at_1", "value": 34.694}, {"type": "mrr_at_10", "value": 50.504000000000005}, {"type": "mrr_at_100", "value": 51.162}, {"type": "mrr_at_1000", "value": 51.162}, {"type": "mrr_at_3", "value": 45.918}, {"type": "mrr_at_5", "value": 49.082}, {"type": "ndcg_at_1", "value": 33.672999999999995}, {"type": "ndcg_at_10", "value": 27.478}, {"type": "ndcg_at_100", "value": 37.961}, {"type": "ndcg_at_1000", "value": 50.117}, {"type": "ndcg_at_3", "value": 30.156}, {"type": "ndcg_at_5", "value": 29.293999999999997}, {"type": "precision_at_1", "value": 34.694}, {"type": "precision_at_10", "value": 24.082}, {"type": "precision_at_100", "value": 7.632999999999999}, {"type": "precision_at_1000", "value": 1.569}, {"type": "precision_at_3", "value": 30.612000000000002}, {"type": "precision_at_5", "value": 29.387999999999998}, {"type": "recall_at_1", "value": 2.804}, {"type": "recall_at_10", "value": 17.785}, {"type": "recall_at_100", "value": 47.452}, {"type": "recall_at_1000", "value": 84.687}, {"type": "recall_at_3", "value": 6.9190000000000005}, {"type": "recall_at_5", "value": 10.807}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "d7c0de2777da35d6aae2200a62c6e0e5af397c4c"}, "metrics": [{"type": "accuracy", "value": 74.5162}, {"type": "ap", "value": 15.022137849208509}, {"type": "f1", "value": 56.77914300422838}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 59.589700056593095}, {"type": "f1", "value": 59.93893560752363}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 40.11538634360855}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 83.97806520832091}, {"type": "cos_sim_ap", "value": 67.80381341664686}, {"type": "cos_sim_f1", "value": 63.01665268958908}, {"type": "cos_sim_precision", "value": 57.713407943822695}, {"type": "cos_sim_recall", "value": 69.39313984168865}, {"type": "dot_accuracy", "value": 83.9899862907552}, {"type": "dot_ap", "value": 67.80914960711299}, {"type": "dot_f1", "value": 63.0287144048612}, {"type": "dot_precision", "value": 57.46252444058223}, {"type": "dot_recall", "value": 69.78891820580475}, {"type": "euclidean_accuracy", "value": 83.9601835846695}, {"type": "euclidean_ap", "value": 67.79862461635126}, {"type": "euclidean_f1", "value": 63.02426882389545}, {"type": "euclidean_precision", "value": 59.64664310954063}, {"type": "euclidean_recall", "value": 66.80738786279683}, {"type": "manhattan_accuracy", "value": 83.94230196101806}, {"type": "manhattan_ap", "value": 67.78560087328111}, {"type": "manhattan_f1", "value": 63.10622881851117}, {"type": "manhattan_precision", "value": 56.63939584644431}, {"type": "manhattan_recall", "value": 71.2401055408971}, {"type": "max_accuracy", "value": 83.9899862907552}, {"type": "max_ap", "value": 67.80914960711299}, {"type": "max_f1", "value": 63.10622881851117}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.04994760740482}, {"type": "cos_sim_ap", "value": 85.71231674852108}, {"type": "cos_sim_f1", "value": 78.92350867093619}, {"type": "cos_sim_precision", "value": 74.07807645549101}, {"type": "cos_sim_recall", "value": 84.44718201416693}, {"type": "dot_accuracy", "value": 89.05188807389295}, {"type": "dot_ap", "value": 85.71776365526502}, {"type": "dot_f1", "value": 78.92055922835156}, {"type": "dot_precision", "value": 74.34152317430069}, {"type": "dot_recall", "value": 84.10070834616569}, {"type": "euclidean_accuracy", "value": 89.05188807389295}, {"type": "euclidean_ap", "value": 85.7114644968015}, {"type": "euclidean_f1", "value": 78.9458525345622}, {"type": "euclidean_precision", "value": 74.14119556397078}, {"type": "euclidean_recall", "value": 84.41638435478903}, {"type": "manhattan_accuracy", "value": 89.06547133930997}, {"type": "manhattan_ap", "value": 85.70658730333459}, {"type": "manhattan_f1", "value": 78.91009741543552}, {"type": "manhattan_precision", "value": 74.00714719169308}, {"type": "manhattan_recall", "value": 84.5087773329227}, {"type": "max_accuracy", "value": 89.06547133930997}, {"type": "max_ap", "value": 85.71776365526502}, {"type": "max_f1", "value": 78.9458525345622}]}]}]}
amazon/Titan-text-embeddings-v2
null
[ "transformers", "feature-extraction", "sentence-similarity", "mteb", "en", "fr", "de", "es", "ja", "zh", "hi", "ar", "it", "pt", "sv", "ko", "he", "cs", "tr", "tl", "ru", "nl", "pl", "ta", "mr", "ml", "te", "kn", "vi", "id", "fa", "hu", "el", "ro", "da", "th", "fi", "sk", "uk", "no", "bg", "ca", "sr", "hr", "lt", "sl", "et", "la", "bn", "lv", "ms", "bs", "sq", "az", "gl", "is", "ka", "mk", "eu", "hy", "ne", "ur", "kk", "mn", "be", "uz", "km", "nn", "gu", "my", "cy", "eo", "si", "tt", "sw", "af", "ga", "pa", "ku", "ky", "tg", "or", "lo", "fo", "mt", "so", "lb", "am", "oc", "jv", "ha", "ps", "sa", "fy", "mg", "as", "ba", "br", "tk", "co", "dv", "rw", "ht", "yi", "sd", "zu", "gd", "bo", "ug", "mi", "rm", "xh", "su", "yo", "license:other", "model-index", "region:us" ]
null
2024-04-30T12:43:01+00:00
text-generation
transformers
{}
itay-nakash/model_fd30467e2d
null
[ "transformers", "mistral", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T12:44:34+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ahjeong/dpo_gemma_7b_bf16_lr5e-7_origindset_beta0.5_kl0.01-epoch2
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T12:44:43+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-7b-dpo-full-sft-wo-kqa_silver_wogold This model is a fine-tuned version of [Minbyul/mistral-7b-wo-kqa_silver_wogold-sft](https://huggingface.co/Minbyul/mistral-7b-wo-kqa_silver_wogold-sft) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.0530 - Rewards/chosen: -2.4760 - Rewards/rejected: -21.0723 - Rewards/accuracies: 0.9700 - Rewards/margins: 18.5963 - Logps/rejected: -2709.2131 - Logps/chosen: -407.7003 - Logits/rejected: -2.0225 - Logits/chosen: -2.2276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2735 | 0.32 | 100 | 0.0529 | -1.3592 | -8.1857 | 0.9700 | 6.8265 | -1420.5509 | -296.0260 | -2.7457 | -2.5375 | | 0.1321 | 0.63 | 200 | 0.0507 | -2.0405 | -16.8511 | 0.9600 | 14.8106 | -2287.0967 | -364.1557 | -2.2518 | -2.3349 | | 0.117 | 0.95 | 300 | 0.0531 | -2.4855 | -21.1345 | 0.9700 | 18.6490 | -2715.4331 | -408.6504 | -2.0210 | -2.2273 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["alignment-handbook", "trl", "dpo", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrafeedback_binarized"], "base_model": "Minbyul/mistral-7b-wo-kqa_silver_wogold-sft", "model-index": [{"name": "mistral-7b-dpo-full-sft-wo-kqa_silver_wogold", "results": []}]}
Minbyul/mistral-7b-dpo-full-sft-wo-kqa_silver_wogold
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:Minbyul/mistral-7b-wo-kqa_silver_wogold-sft", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T12:45:00+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ahjeong/dpo_gemma_7b_bf16_lr5e-7_origindset_beta0.5_kl0.01-epoch3
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T12:48:08+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/AwanLLM/Llama-3-8B-Dolfin-v0.2-Instruct <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF/resolve/main/Llama-3-8B-Dolfin-v0.2-Instruct.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "llama3", "library_name": "transformers", "base_model": "AwanLLM/Llama-3-8B-Dolfin-v0.2-Instruct", "quantized_by": "mradermacher"}
mradermacher/Llama-3-8B-Dolfin-v0.2-Instruct-GGUF
null
[ "transformers", "gguf", "en", "base_model:AwanLLM/Llama-3-8B-Dolfin-v0.2-Instruct", "license:llama3", "endpoints_compatible", "region:us" ]
null
2024-04-30T12:48:19+00:00
text-generation
transformers
{}
itay-nakash/model_42c7bd8eba
null
[ "transformers", "mistral", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T12:49:02+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
nuvocare/adpater_nuvochat
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T12:49:38+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
EyaZr/eya-test
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T12:49:49+00:00
object-detection
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50-finetuned-real-boat-dataset This model is a fine-tuned version of [zhuchi76/detr-resnet-50-finetuned-boat-dataset](https://huggingface.co/zhuchi76/detr-resnet-50-finetuned-boat-dataset) on the boat_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["boat_dataset"], "base_model": "zhuchi76/detr-resnet-50-finetuned-boat-dataset", "model-index": [{"name": "detr-resnet-50-finetuned-real-boat-dataset", "results": []}]}
SIS-2024-spring/detr-resnet-50-finetuned-real-boat-dataset
null
[ "transformers", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:boat_dataset", "base_model:zhuchi76/detr-resnet-50-finetuned-boat-dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T12:50:27+00:00
null
null
{}
weqweasdas/zephyr-7b-dpo-qlora
null
[ "region:us" ]
null
2024-04-30T12:50:33+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alignment-adaptor-test04 This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "mit", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "HuggingFaceH4/zephyr-7b-beta", "model-index": [{"name": "alignment-adaptor-test04", "results": []}]}
Ksgk-fy/alignment-adaptor-test04
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:HuggingFaceH4/zephyr-7b-beta", "license:mit", "region:us" ]
null
2024-04-30T12:51:42+00:00
null
null
{}
esolteric/eso70
null
[ "region:us" ]
null
2024-04-30T12:52:59+00:00
null
null
{}
esolteric/eso71
null
[ "region:us" ]
null
2024-04-30T12:53:11+00:00
null
null
{}
esolteric/eso72
null
[ "region:us" ]
null
2024-04-30T12:53:20+00:00
null
null
{}
esolteric/eso73
null
[ "region:us" ]
null
2024-04-30T12:53:28+00:00
null
null
{}
esolteric/eso74
null
[ "region:us" ]
null
2024-04-30T12:53:41+00:00
null
null
{}
esolteric/eso75
null
[ "region:us" ]
null
2024-04-30T12:53:55+00:00
text-generation
transformers
Model Card for Model ID Model Details Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. Developed by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Model type: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed] Finetuned from model [optional]: [More Information Needed] Model Sources [optional] Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed] Uses Direct Use [More Information Needed] Downstream Use [optional] [More Information Needed] Out-of-Scope Use [More Information Needed] Bias, Risks, and Limitations [More Information Needed] Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] Training Details Training Data [More Information Needed] Training Procedure Preprocessing [optional] [More Information Needed] Training Hyperparameters Training regime: [More Information Needed] Speeds, Sizes, Times [optional] [More Information Needed] Evaluation Testing Data, Factors & Metrics Testing Data [More Information Needed] Factors [More Information Needed] Metrics [More Information Needed] Results [More Information Needed] Summary Model Examination [optional] [More Information Needed] Environmental Impact
{"license": "apache-2.0"}
Jayant9928/orpo_v2
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T12:55:12+00:00
null
null
Bản sao các mô hình chatbot Việt Nam
{"language": ["vi"]}
duyv/ChatBot-GGUF-VietNam
null
[ "gguf", "vi", "region:us" ]
null
2024-04-30T12:55:47+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Mariofm02/T5small_Business_News
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T12:56:17+00:00
text-generation
transformers
{}
robzchhangte/8-MizGPT-v4
null
[ "transformers", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T12:59:07+00:00
null
null
{}
mozksoft/sweetMix-v22Flat-coreml-q6
null
[ "region:us" ]
null
2024-04-30T13:00:08+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Mariofm02/T5small_Politics_News
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:00:13+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ahjeong/dpo_gemma_7b_bf16_lr5e-7_origindset_beta1.1_kl0.01-epoch2
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:00:52+00:00
fill-mask
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
IDPZEro/dummy-model
null
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:02:20+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tulu2-13b-cost-UF-5e-7-nojudge This model is a fine-tuned version of [allenai/tulu-2-13b](https://huggingface.co/allenai/tulu-2-13b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6931 - Rewards/chosen: 0.0268 - Rewards/rejected: 0.0260 - Rewards/accuracies: 0.5450 - Rewards/margins: 0.0008 - Rewards/margins Max: 0.0629 - Rewards/margins Min: -0.0642 - Rewards/margins Std: 0.0421 - Logps/rejected: -327.6042 - Logps/chosen: -331.2294 - Logits/rejected: -0.8979 - Logits/chosen: -1.0239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Rewards/margins Max | Rewards/margins Min | Rewards/margins Std | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:-------------------:|:-------------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6681 | 1.0 | 1245 | 0.6931 | 0.0268 | 0.0260 | 0.5450 | 0.0008 | 0.0629 | -0.0642 | 0.0421 | -327.6042 | -331.2294 | -0.8979 | -1.0239 | ### Framework versions - PEFT 0.7.1 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "allenai/tulu-2-13b", "model-index": [{"name": "tulu2-13b-cost-UF-5e-7-nojudge", "results": []}]}
just1nseo/tulu2-13b-cost-UF-5e-7-nojudge
null
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:allenai/tulu-2-13b", "region:us" ]
null
2024-04-30T13:02:30+00:00
null
null
{}
ricardomd/busqueda
null
[ "region:us" ]
null
2024-04-30T13:02:45+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Mariofm02/T5small_Entertainment_News
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:02:54+00:00
text-generation
transformers
{}
israel/zephyr-7b-gemma-sft-african-ultrachat-2000k
null
[ "transformers", "gemma", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:02:57+00:00
text-generation
transformers
{}
baesad/llama-2-7b-fine-tune
null
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:02:57+00:00
text-to-audio
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fil_b64_le5_s4000 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 0.575 | 22.2222 | 500 | 0.4967 | | 0.4945 | 44.4444 | 1000 | 0.4460 | | 0.4681 | 66.6667 | 1500 | 0.4301 | | 0.4514 | 88.8889 | 2000 | 0.4194 | | 0.4396 | 111.1111 | 2500 | 0.4129 | | 0.432 | 133.3333 | 3000 | 0.4124 | | 0.43 | 155.5556 | 3500 | 0.4104 | | 0.4317 | 177.7778 | 4000 | 0.4125 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "microsoft/speecht5_tts", "model-index": [{"name": "fil_b64_le5_s4000", "results": []}]}
mikhail-panzo/fil_b64_le5_s4000
null
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:02:58+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model18
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:04:08+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ahjeong/dpo_gemma_7b_bf16_lr5e-7_origindset_beta1.1_kl0.01-epoch3
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:04:24+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tulu2-13b-cost-UI-5e-7-nojudge This model is a fine-tuned version of [allenai/tulu-2-13b](https://huggingface.co/allenai/tulu-2-13b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6912 - Rewards/chosen: -0.0076 - Rewards/rejected: -0.0119 - Rewards/accuracies: 0.5960 - Rewards/margins: 0.0043 - Rewards/margins Max: 0.0285 - Rewards/margins Min: -0.0168 - Rewards/margins Std: 0.0151 - Logps/rejected: -331.3923 - Logps/chosen: -334.6692 - Logits/rejected: -0.8885 - Logits/chosen: -1.0144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Rewards/margins Max | Rewards/margins Min | Rewards/margins Std | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:-------------------:|:-------------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6731 | 1.0 | 1185 | 0.6912 | -0.0076 | -0.0119 | 0.5960 | 0.0043 | 0.0285 | -0.0168 | 0.0151 | -331.3923 | -334.6692 | -0.8885 | -1.0144 | ### Framework versions - PEFT 0.7.1 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "allenai/tulu-2-13b", "model-index": [{"name": "tulu2-13b-cost-UI-5e-7-nojudge", "results": []}]}
just1nseo/tulu2-13b-cost-UI-5e-7-nojudge
null
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:allenai/tulu-2-13b", "region:us" ]
null
2024-04-30T13:04:54+00:00
text-generation
transformers
# Untitled Model (1) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [EleutherAI/llemma_7b](https://huggingface.co/EleutherAI/llemma_7b) * [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: codellama/CodeLlama-7b-hf - model: EleutherAI/llemma_7b merge_method: slerp base_model: codellama/CodeLlama-7b-hf parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["EleutherAI/llemma_7b", "codellama/CodeLlama-7b-hf"]}
JyoP/merged_llemma_code_llama_slerp
null
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:EleutherAI/llemma_7b", "base_model:codellama/CodeLlama-7b-hf", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:04:55+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/yzhuang/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF/resolve/main/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "other", "library_name": "transformers", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "yzhuang/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2", "quantized_by": "mradermacher"}
mradermacher/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2-GGUF
null
[ "transformers", "gguf", "trl", "sft", "generated_from_trainer", "en", "dataset:generator", "base_model:yzhuang/Meta-Llama-3-8B-Instruct_fictional_arc_Japanese_v2", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:05:21+00:00
null
null
{}
weqweasdas/zephyr-7b-sft-full
null
[ "region:us" ]
null
2024-04-30T13:05:53+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Mariofm02/T5small_Sport_News
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:06:15+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0643 - Precision: 0.9384 - Recall: 0.9510 - F1: 0.9447 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0756 | 1.0 | 1756 | 0.0674 | 0.9094 | 0.9357 | 0.9224 | 0.9815 | | 0.0367 | 2.0 | 3512 | 0.0666 | 0.9372 | 0.9487 | 0.9429 | 0.9855 | | 0.0223 | 3.0 | 5268 | 0.0643 | 0.9384 | 0.9510 | 0.9447 | 0.9860 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "bert-base-cased", "model-index": [{"name": "bert-finetuned-ner", "results": []}]}
dcram/bert-finetuned-ner
null
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:06:41+00:00
text-generation
transformers
{}
itay-nakash/model_a9d3237cc1
null
[ "transformers", "mistral", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:06:58+00:00
text-to-audio
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fil_b128_le4_s4000 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 0.4635 | 44.4444 | 500 | 0.4207 | | 0.4317 | 88.8889 | 1000 | 0.4081 | | 0.412 | 133.3333 | 1500 | 0.4051 | | 0.395 | 177.7778 | 2000 | 0.4049 | | 0.3848 | 222.2222 | 2500 | 0.4063 | | 0.3738 | 266.6667 | 3000 | 0.4063 | | 0.3618 | 311.1111 | 3500 | 0.4072 | | 0.357 | 355.5556 | 4000 | 0.4081 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "microsoft/speecht5_tts", "model-index": [{"name": "fil_b128_le4_s4000", "results": []}]}
mikhail-panzo/fil_b128_le4_s4000
null
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:07:12+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Mariofm02/T5small_Tech_News
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:07:58+00:00
text2text-generation
transformers
{}
DinoDelija/nllb_english_german_fering_v2
null
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:08:08+00:00
null
null
{}
MohametSena/ddpm-butterflies
null
[ "region:us" ]
null
2024-04-30T13:08:20+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NDD-dimeshift_test-content This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5833 - Accuracy: 0.8875 - F1: 0.8913 - Precision: 0.8954 - Recall: 0.8875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1131 | 0.9989 | 669 | 0.5635 | 0.8758 | 0.8800 | 0.8845 | 0.8758 | | 0.0553 | 1.9978 | 1338 | 0.5833 | 0.8875 | 0.8913 | 0.8954 | 0.8875 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "NDD-dimeshift_test-content", "results": []}]}
lgk03/NDD-dimeshift_test-content
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:08:22+00:00
null
nemo
<h1 align="center"> nach0 </h1> <h3 align="center"> Multimodal Natural and Chemical Languages Foundation Model </h3> <p align="center"> 📃 <a href="https://arxiv.org/abs/2311.12410" target="_blank">Paper</a> • ⏬ <a href="https://huggingface.co/insilicomedicine/nach0_base" target="_blank">Base nach0</a> • ⏬ <a href="https://huggingface.co/insilicomedicine/nach0_large" target="_blank">Large nach0</a> <br> </p> <div align=center><img src="images/nach0_Pub_2.png" width="70%" height="70%" /></div> <h2 id="1">Overview</h2> - nach0 is a multi-domain and multi-task encoder-decoder LLM pre-trained on unlabeled text from scientific literature, patents, and molecule strings to incorporate a range of chemical and linguistic knowledge. - We employed instruction tuning, where specific task-related instructions are utilized to fine-tune nach0 for the final set of tasks. To train nach0 effectively, we leverage the NeMo framework, enabling efficient parallel optimization of both base and large model versions. - Extensive experiments demonstrate that our model outperforms state-of-the-art baselines on single-domain and cross-domain tasks. Furthermore, it can generate high-quality outputs in molecular and textual formats, showcasing its effectiveness in multi-domain setups. <h2 id="1">Tasks</h2> Datasets used for training and evaluation. Colour represents the type of tasks. Yellow and blue datasets are single-domain, typically requiring regression/classification losses or generation in the target domain (natural language or SMILES strings). Gradients from yellow to blue represent cross-domain generation tasks that require natural language input and SMILES output, or vise versa. <div align=center><img src="images/nach0_Pub_1.png" width="70%" height="70%" /></div> <h2> Model Usage Guide</h2> To use model for the inference follow the steps bellow: 1. Preprocess the input by replacing the atom tokens with special tokens. ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import re from rdkit.Chem import MolFromSmiles import string from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') atoms_tokens = ['Ag','Al','As','Au','B','Ba','Bi','Br','C','Ca', 'Cd','Cl','Co','Cr','Cs','Cu','F','Fe','Ga','Gd', 'Ge','H','Hg','I','In','K','Li','M','Mg','Mn', 'Mo','N','Na','O','P','Pt','Ru','S','Sb','Sc', 'Se','Si','Sn','V','W','Z','Zn','c','e','n','o','p','s'] atoms_tokens = sorted(atoms_tokens, key=lambda s: len(s), reverse=True) SMI_REGEX_PATTERN = r"(\[|\]|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9]|" + \ '|'.join(atoms_tokens) + ")" regex = re.compile(SMI_REGEX_PATTERN) def clean_output_sequence(output_sequence): return output_sequence.replace('</s>', '').replace('<sm_', '').replace(' sm_', '').replace('>', '').strip() def add_special_symbols(text): output = [] for word in text.split(): tokens = [token for token in regex.findall(word)] if len(tokens) > 4 and (word == ''.join(tokens)) and MolFromSmiles(word): output.append(''.join(['<sm_'+t+'>' for t in tokens])) else: output.append(word) return ' '.join(output) PROMPT = """Given the following reactants and reagents, please provide a possible product. CCN(CC)CC.CCN=C=NCCCN(C)C.CN(C)C=O.Cl.NC1=CC=C(Cl)C=C1N.O.O=C(O)CCCCCNC(=O)C=C1C2=CC=CC=C2C2=CC=CC=C12.OC1=CC=CC2=C1N=NN2.[Cl-].[Na+]""" PROMPT = add_special_symbols(PROMPT) ``` 2. Load the model checkoint ```python model = AutoModelForSeq2SeqLM.from_pretrained('insilicomedicine/nach0_base') tokenizer = AutoTokenizer.from_pretrained('insilicomedicine/nach0_base') ``` 3. Generate response to prompt and replace special tokens with corresponding atom tokens ```python input_text_ids = tokenizer(PROMPT, padding="longest", max_length=512, truncation=True, return_tensors="pt") generated_text_ids = model.generate(**input_text_ids, do_sample=True, top_k=100, top_p=0.95, max_length=512) generated_text = tokenizer.batch_decode(generated_text_ids, skip_special_tokens=True)[0] generated_text = clean_output_sequence(generated_text) ``` ```python # NC1=CC=C(Cl)C=C1NC(=O)CCCCCNC(=O)C=C1C2=CC=CC=C2C2=CC=CC=C12 ``` <h3> References</h3> If you use our repository, please cite the following related paper: ``` @article{nach0, title={nach0: Multimodal Natural and Chemical Languages Foundation Model}, author={Micha Livne and Zulfat Miftahutdinov and Elena Tutubalina and Maksim Kuznetsov and Daniil Polykovskiy and Annika Brundyn and Aastha Jhunjhunwala and Anthony Costa and Alex Aliper and Alán Aspuru-Guzik and Alex Zhavoronkov}, year={2024}, journal={Chem. Sci.}, pages={-}, publisher={The Royal Society of Chemistry}, } ```
{"language": ["en"], "license": "cc-by-nc-4.0", "tags": ["chemistry"]}
insilicomedicine/nach0_large
null
[ "nemo", "chemistry", "en", "arxiv:2311.12410", "license:cc-by-nc-4.0", "region:us" ]
null
2024-04-30T13:10:49+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2094 - Accuracy: 0.9350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3895 | 1.0 | 370 | 0.2819 | 0.9432 | | 0.225 | 2.0 | 740 | 0.2152 | 0.9472 | | 0.1687 | 3.0 | 1110 | 0.1938 | 0.9499 | | 0.1392 | 4.0 | 1480 | 0.1860 | 0.9526 | | 0.1255 | 5.0 | 1850 | 0.1814 | 0.9553 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224", "model-index": [{"name": "vit-base-oxford-iiit-pets", "results": []}]}
tedbelford/vit-base-oxford-iiit-pets
null
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:11:03+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
tropianhs/mistral-tweet-finetune-tropianhs
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:11:38+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CNEC_1_1_ext_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2572 - Precision: 0.8607 - Recall: 0.8915 - F1: 0.8758 - Accuracy: 0.9627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3946 | 1.72 | 500 | 0.1925 | 0.7835 | 0.8471 | 0.8141 | 0.9467 | | 0.1653 | 3.44 | 1000 | 0.1627 | 0.8340 | 0.8675 | 0.8504 | 0.9572 | | 0.1183 | 5.15 | 1500 | 0.1700 | 0.8378 | 0.8808 | 0.8588 | 0.9595 | | 0.0869 | 6.87 | 2000 | 0.1901 | 0.8554 | 0.8728 | 0.8640 | 0.9589 | | 0.0661 | 8.59 | 2500 | 0.2037 | 0.8482 | 0.8867 | 0.8670 | 0.9595 | | 0.053 | 10.31 | 3000 | 0.2011 | 0.8460 | 0.8867 | 0.8659 | 0.9609 | | 0.043 | 12.03 | 3500 | 0.2216 | 0.8555 | 0.8888 | 0.8718 | 0.9593 | | 0.0358 | 13.75 | 4000 | 0.2245 | 0.8492 | 0.8878 | 0.8680 | 0.9603 | | 0.0296 | 15.46 | 4500 | 0.2401 | 0.8513 | 0.8872 | 0.8689 | 0.9603 | | 0.0264 | 17.18 | 5000 | 0.2415 | 0.8564 | 0.8862 | 0.8710 | 0.9610 | | 0.0212 | 18.9 | 5500 | 0.2570 | 0.8557 | 0.8872 | 0.8712 | 0.9622 | | 0.0205 | 20.62 | 6000 | 0.2540 | 0.8567 | 0.8883 | 0.8722 | 0.9616 | | 0.0167 | 22.34 | 6500 | 0.2573 | 0.8568 | 0.8894 | 0.8728 | 0.9614 | | 0.0161 | 24.05 | 7000 | 0.2572 | 0.8607 | 0.8915 | 0.8758 | 0.9627 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "datasets": ["cnec"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index": [{"name": "CNEC_1_1_ext_slavicbert", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "cnec", "type": "cnec", "config": "default", "split": "validation", "args": "default"}, "metrics": [{"type": "precision", "value": 0.8606811145510835, "name": "Precision"}, {"type": "recall", "value": 0.8915018706574025, "name": "Recall"}, {"type": "f1", "value": 0.8758204253084799, "name": "F1"}, {"type": "accuracy", "value": 0.9626885008032336, "name": "Accuracy"}]}]}]}
stulcrad/CNEC_1_1_ext_slavicbert
null
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:cnec", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:12:56+00:00
text-generation
transformers
# TyphoonTime-passthrough TyphoonTime-passthrough is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [scb10x/typhoon-7b](https://huggingface.co/scb10x/typhoon-7b) * [chargoddard/storytime-13b](https://huggingface.co/chargoddard/storytime-13b) ## 🧩 Configuration \```yaml slices: - sources: - model: scb10x/typhoon-7b layer_range: [0, 32] - sources: - model: chargoddard/storytime-13b layer_range: [24, 32] merge_method: passthrough dtype: bfloat16 \```
{"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "scb10x/typhoon-7b", "chargoddard/storytime-13b"]}
Manichik/TyphoonTime-passthrough
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "scb10x/typhoon-7b", "chargoddard/storytime-13b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:13:33+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: 32 --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Osru/llama-2-7b-nubidoc <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.IQ3_XS.gguf) | IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.IQ3_S.gguf) | IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.IQ3_M.gguf) | IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llama-2-7b-nubidoc-GGUF/resolve/main/llama-2-7b-nubidoc.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "library_name": "transformers", "base_model": "Osru/llama-2-7b-nubidoc", "quantized_by": "mradermacher"}
mradermacher/llama-2-7b-nubidoc-GGUF
null
[ "transformers", "gguf", "en", "base_model:Osru/llama-2-7b-nubidoc", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:13:44+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
jackkira/commentgpt-ft
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:14:02+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shawgpt-ft This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.4134 | 0.9231 | 3 | 3.8260 | | 3.9134 | 1.8462 | 6 | 3.3301 | | 3.3628 | 2.7692 | 9 | 2.9029 | | 2.2019 | 4.0 | 13 | 2.5051 | | 2.6157 | 4.9231 | 16 | 2.2635 | | 2.2945 | 5.8462 | 19 | 2.0651 | | 2.0626 | 6.7692 | 22 | 1.9082 | | 1.4488 | 8.0 | 26 | 1.8209 | | 1.879 | 8.9231 | 29 | 1.7939 | | 1.3095 | 9.2308 | 30 | 1.7856 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "model-index": [{"name": "shawgpt-ft", "results": []}]}
jackkira/shawgpt-ft
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-04-30T13:14:04+00:00
null
diffusers
{}
motionsomething/magicfixup
null
[ "diffusers", "safetensors", "region:us" ]
null
2024-04-30T13:14:09+00:00
null
null
# int2eh/deepseek-coder-33b-instruct-Q5_K_S-GGUF This model was converted to GGUF format from [`deepseek-ai/deepseek-coder-33b-instruct`](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo int2eh/deepseek-coder-33b-instruct-Q5_K_S-GGUF --model deepseek-coder-33b-instruct.Q5_K_S.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo int2eh/deepseek-coder-33b-instruct-Q5_K_S-GGUF --model deepseek-coder-33b-instruct.Q5_K_S.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m deepseek-coder-33b-instruct.Q5_K_S.gguf -n 128 ```
{"license": "other", "tags": ["llama-cpp", "gguf-my-repo"], "license_name": "deepseek", "license_link": "LICENSE"}
int2eh/deepseek-coder-33b-instruct-Q5_K_S-GGUF
null
[ "gguf", "llama-cpp", "gguf-my-repo", "license:other", "region:us" ]
null
2024-04-30T13:15:11+00:00
reinforcement-learning
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AhmedTarek -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AhmedTarek -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga AhmedTarek ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.3), ('learning_starts', 100000), ('n_timesteps', 100000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "5.00 +/- 7.07", "name": "mean_reward", "verified": false}]}]}]}
AhmedTarek/dqn-SpaceInvadersNoFrameskip-v4
null
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-30T13:15:53+00:00
text-generation
transformers
{}
itay-nakash/model_bb62fa2388
null
[ "transformers", "mistral", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:17:09+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo_harmlessharmless_gpt4_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-05 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "dpo_harmlessharmless_gpt4_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-05", "results": []}]}
Holarissun/dpo_harmlessharmless_gpt4_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-05
null
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:gpt2", "license:mit", "region:us" ]
null
2024-04-30T13:17:48+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo_harmlessharmless_gpt4_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "dpo_harmlessharmless_gpt4_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06", "results": []}]}
Holarissun/dpo_harmlessharmless_gpt4_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06
null
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:gpt2", "license:mit", "region:us" ]
null
2024-04-30T13:19:42+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["unsloth"]}
MujtabaAhmed/lora_model
null
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:19:44+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
somnathsingh31/llava-1.5-7b-hf-ft-merged_model
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us", "has_space" ]
null
2024-04-30T13:19:51+00:00
object-detection
transformers
{}
qubvel-hf/detr-resnet-50-finetuned-10k-cppe5-no-trainer-v2
null
[ "transformers", "safetensors", "detr", "object-detection", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:20:18+00:00
text-generation
transformers
# Llama-3-portuguese-Tom-cat-8b-instruct <p align="center"> <img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/tom-cat-8b.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> </p> This model was trained with a superset of 300,000 chat in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Llama3 8B, the model was adjusted mainly for chat. # How to use ### FULL MODEL : A100 ### HALF MODEL: L4 ### 8bit or 4bit : T4 or V100 You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 8b) to perform much better. ```python !pip install -q -U transformers !pip install -q -U accelerate !pip install -q -U bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model = AutoModelForCausalLM.from_pretrained("rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", device_map= {"": 0}) tokenizer = AutoTokenizer.from_pretrained("rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct") model.eval() ``` You can use with Pipeline. ```python from transformers import pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, do_sample=True, max_new_tokens=512, num_beams=2, temperature=0.3, top_k=50, top_p=0.95, early_stopping=True, pad_token_id=tokenizer.eos_token_id, ) def format_prompt(question:str): system_prompt = "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido." return f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> { system_prompt }<|eot_id|><|start_header_id|>user<|end_header_id|> { question }<|eot_id|><|start_header_id|>assistant<|end_header_id|>""" prompt = format_prompt("Me fale sobra a OAB, Ordem dos Advogados do Brasil") result = pipe(prompt) result[0]["generated_text"].split("assistant<|end_header_id|>")[1] #A Ordem dos Advogados do Brasil (OAB) é a entidade responsável por regulamentar e fiscalizar a profissão de advogado no Brasil. #Foi criada em 1930, com o objetivo de proteger os direitos e interesses dos advogados e da sociedade, garantindo a defesa dos direitos e garantias fundamentais. #A OAB é uma entidade de direito público, com personalidade jurídica própria, e é composta por advogados e advogadas que atuam em todo o território nacional. #A entidade é dirigida por um Conselho Federal, que é o órgão máximo da OAB, e é composto por 32 membros, eleitos por votação direta dos advogados e advogadas. #A OAB tem como principais atribuições:. Regulamentar a profissão de advogado: a OAB estabelece as normas e regulamentações para a formação, habilitação e exercício #a profissão de advogado no Brasil. Fiscalizar a atividade dos advogados: a OAB fiscaliza a atividade dos advogados, verificando se eles atendem às normas e #regulamentações estabelecidas.. Defender os direitos e interesses dos advogados: a OAB defende os direitos e interesses dos advogados, garantindo que eles #possam exercer sua profissão com liberdade e segurança.\n4. Representar a sociedade: a OAB representa a sociedade, defendendo os direitos e interesses dos #dadãos e das instituições.A OAB também é responsável por: Certificar a formação e habilitação dos advogados; Fiscalizar a atividade dos advogados, verificando #se eles atendem às normas e regulamentações estabelecidas;\n* Defender os direitos e interesses dos advogados, garantindo que eles possam exercer sua profissão #com liberdade e segurança; Representar a sociedade, defendendo os direitos e interesses dos cidadãos e das instituições.Além disso, a OAB também é responsável por: #Publicar o Diário da Ordem dos Advogados do Brasil ``` ```python prompt = format_prompt("Haja como um professor de matemática e me explique porque 2 + 2 = 4") result = pipe(prompt) result[0]["generated_text"].split("assistant<|end_header_id|>")[1] #Meu aluno, é um prazer explicar um conceito fundamental da matemática! equação 2 + 2 = 4 pode parecer simples, mas é #importante entender por quê ela é verdadeira. Em matemática, a adição é uma operação que combina dois números para obter um resultado. #Nesse caso, estamos adicionando 2 e 2. Para entender melhor, vamos começar com um exemplo concreto. Imagine que você tem 2 maçãs em uma mesa e seu amigo também tem #2 maçãs em outra mesa. Se você e seu amigo combinam suas maçãs, você terá agora 4 maçãs.Agora, vamos usar símbolos para representar essa situação. #Podemos escrever 2 + 2 =?, e o resultado é 4. Isso significa que quando você soma 2 e 2, o resultado é 4. Mas por quê isso é verdade? Isso é porque a adição é #uma operação que segue certas regras. Uma dessas regras é que a ordem em que você soma os números não muda o resultado. Isso significa que 2 + 2 é igual a 2 + 2, #independentemente da ordem em que você soma.Além disso, a adição também é uma operação que é associativa, o que significa que você pode adicionar números em #qualquer ordem e o resultado será o mesmo. Por exemplo, (2 + 2) + 0 = 2 + (2 + 0). Isso é verdade porque a adição é uma operação que é idempotente, o que significa #que adicionando 0 a um número não muda o resultado.Portanto, quando você soma 2 e 2, o resultado é 4 porque a adição segue essas regras. A equação 2 + 2 = 4 #é verdadeira porque é uma consequência lógica da definição da adição e das regras que a governam.Espero que isso tenha ajudado a entender melhor por quê 2 + 2 = 4, #meu aluno! ``` If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem. # 4bits example ```python from transformers import BitsAndBytesConfig import torch nb_4bit_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True ) model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb_config, device_map={"": 0} ) ``` # Open Portuguese LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|---------| |Average |**70.57**| |ENEM Challenge (No Images)| 70.40| |BLUEX (No Images) | 58| |OAB Exams | 51.07| |Assin2 RTE | 90.91| |Assin2 STS | 75.40| |FaQuAD NLI | 76.05| |HateBR Binary | 86.99| |PT Hate Speech Binary | 60.39| |tweetSentBR | 65.92| ### Comments Any idea, help or report will always be welcome. email: [email protected] <div style="display:flex; flex-direction:row; justify-content:left"> <a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank"> <img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white"> </a> <a href="https://github.com/rhaymisonbetini" target="_blank"> <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> </a>
{"language": ["pt"], "license": "apache-2.0", "library_name": "transformers", "tags": ["portugues", "portuguese", "QA", "instruct"], "datasets": ["rhaymison/superset"], "base_model": "meta-llama/Meta-Llama-3-8B-Instruct", "pipeline_tag": "text-generation", "model-index": [{"name": "Llama-3-portuguese-Tom-cat-8b-instruct", "results": [{"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "ENEM Challenge (No Images)", "type": "eduagarcia/enem_challenge", "split": "train", "args": {"num_few_shot": 3}}, "metrics": [{"type": "acc", "value": 70.4, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "BLUEX (No Images)", "type": "eduagarcia-temp/BLUEX_without_images", "split": "train", "args": {"num_few_shot": 3}}, "metrics": [{"type": "acc", "value": 58.0, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "OAB Exams", "type": "eduagarcia/oab_exams", "split": "train", "args": {"num_few_shot": 3}}, "metrics": [{"type": "acc", "value": 51.07, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Assin2 RTE", "type": "assin2", "split": "test", "args": {"num_few_shot": 15}}, "metrics": [{"type": "f1_macro", "value": 90.91, "name": "f1-macro"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Assin2 STS", "type": "eduagarcia/portuguese_benchmark", "split": "test", "args": {"num_few_shot": 15}}, "metrics": [{"type": "pearson", "value": 75.4, "name": "pearson"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "FaQuAD NLI", "type": "ruanchaves/faquad-nli", "split": "test", "args": {"num_few_shot": 15}}, "metrics": [{"type": "f1_macro", "value": 76.05, "name": "f1-macro"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "HateBR Binary", "type": "ruanchaves/hatebr", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "f1_macro", "value": 86.99, "name": "f1-macro"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "PT Hate Speech Binary", "type": "hate_speech_portuguese", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "f1_macro", "value": 60.39, "name": "f1-macro"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "tweetSentBR", "type": "eduagarcia/tweetsentbr_fewshot", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "f1_macro", "value": 65.92, "name": "f1-macro"}], "source": {"url": "https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct", "name": "Open Portuguese LLM Leaderboard"}}]}]}
rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct
null
[ "transformers", "safetensors", "llama", "text-generation", "portugues", "portuguese", "QA", "instruct", "conversational", "pt", "dataset:rhaymison/superset", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:22:22+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ahjeong/dpo_gemma_7b_bf16_lr5e-7_origindset_beta2.2_kl0.01-epoch2
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:23:11+00:00
null
null
{}
gatoch/april30-instruct-pix2pix
null
[ "region:us" ]
null
2024-04-30T13:24:15+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-dpo-full This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5590 - Rewards/chosen: -0.7818 - Rewards/rejected: -2.7115 - Rewards/accuracies: 0.7857 - Rewards/margins: 1.9297 - Logps/rejected: -287.3273 - Logps/chosen: -289.7805 - Logits/rejected: -2.4561 - Logits/chosen: -2.5007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6075 | 0.1 | 100 | 0.5945 | 0.3241 | -0.1206 | 0.7163 | 0.4447 | -261.4175 | -278.7209 | -2.6324 | -2.6651 | | 0.5341 | 0.21 | 200 | 0.5471 | -0.0734 | -1.0103 | 0.7639 | 0.9369 | -270.3152 | -282.6963 | -2.5394 | -2.5779 | | 0.5315 | 0.31 | 300 | 0.5258 | 0.1435 | -0.9757 | 0.7619 | 1.1192 | -269.9694 | -280.5274 | -2.5337 | -2.5711 | | 0.4978 | 0.42 | 400 | 0.5366 | -0.2177 | -1.2826 | 0.7579 | 1.0649 | -273.0383 | -284.1391 | -2.5667 | -2.6011 | | 0.5134 | 0.52 | 500 | 0.5340 | -0.4713 | -1.5140 | 0.7460 | 1.0427 | -275.3516 | -286.6748 | -2.4488 | -2.4836 | | 0.5404 | 0.63 | 600 | 0.5188 | -0.0534 | -1.2981 | 0.7480 | 1.2447 | -273.1928 | -282.4962 | -2.3631 | -2.4039 | | 0.5256 | 0.73 | 700 | 0.5270 | -0.2533 | -1.5704 | 0.7639 | 1.3172 | -275.9163 | -284.4948 | -2.3224 | -2.3640 | | 0.4991 | 0.84 | 800 | 0.5278 | -0.2394 | -1.5276 | 0.7639 | 1.2882 | -275.4879 | -284.3556 | -2.3730 | -2.4144 | | 0.5084 | 0.94 | 900 | 0.5457 | 0.2664 | -0.9546 | 0.7619 | 1.2210 | -269.7581 | -279.2981 | -2.4875 | -2.5254 | | 0.1011 | 1.05 | 1000 | 0.5361 | -0.5236 | -2.1364 | 0.7877 | 1.6129 | -281.5762 | -287.1976 | -2.4389 | -2.4774 | | 0.0942 | 1.15 | 1100 | 0.5454 | -0.4356 | -2.2047 | 0.7897 | 1.7691 | -282.2592 | -286.3182 | -2.4515 | -2.4926 | | 0.0817 | 1.26 | 1200 | 0.5530 | -0.7588 | -2.5855 | 0.7857 | 1.8268 | -286.0674 | -289.5495 | -2.4441 | -2.4863 | | 0.0697 | 1.36 | 1300 | 0.5549 | -0.5919 | -2.4690 | 0.7798 | 1.8771 | -284.9021 | -287.8810 | -2.4474 | -2.4910 | | 0.0842 | 1.47 | 1400 | 0.5575 | -0.7425 | -2.6443 | 0.7917 | 1.9018 | -286.6550 | -289.3871 | -2.4669 | -2.5100 | | 0.075 | 1.57 | 1500 | 0.5590 | -0.5382 | -2.4532 | 0.7956 | 1.9150 | -284.7438 | -287.3436 | -2.4699 | -2.5133 | | 0.098 | 1.67 | 1600 | 0.5583 | -0.7761 | -2.6741 | 0.7877 | 1.8980 | -286.9528 | -289.7227 | -2.4652 | -2.5092 | | 0.0718 | 1.78 | 1700 | 0.5593 | -0.7532 | -2.6704 | 0.7877 | 1.9172 | -286.9160 | -289.4940 | -2.4592 | -2.5036 | | 0.0828 | 1.88 | 1800 | 0.5606 | -0.7985 | -2.7306 | 0.7897 | 1.9321 | -287.5178 | -289.9467 | -2.4560 | -2.5007 | | 0.103 | 1.99 | 1900 | 0.5601 | -0.7805 | -2.7113 | 0.7857 | 1.9309 | -287.3255 | -289.7666 | -2.4554 | -2.5002 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrafeedback_binarized"], "base_model": "alignment-handbook/zephyr-7b-sft-full", "model-index": [{"name": "zephyr-7b-dpo-full", "results": []}]}
weqweasdas/zephyr-7b-dpo-full
null
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:24:16+00:00
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.40.1 - Pytorch 1.13.1+cu116 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["swag"], "base_model": "bert-base-uncased", "model-index": [{"name": "bert-base-uncased-finetuned-swag", "results": []}]}
jarminraws/bert-base-uncased-finetuned-swag
null
[ "transformers", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "base_model:bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:24:59+00:00
text2text-generation
transformers
{}
alexbeta80/pix2struct_polizze_2
null
[ "transformers", "pytorch", "pix2struct", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:25:17+00:00
null
null
{}
dana2002/last-one
null
[ "region:us" ]
null
2024-04-30T13:25:18+00:00
feature-extraction
transformers
# fine-tuned/medical-100-64-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo_9062874564 ## Model Description fine-tuned/medical-100-64-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo_9062874564 is a fine-tuned version of jinaai/jina-embeddings-v2-small-en designed for a specific domain. ## Use Case This model is designed to support various applications in natural language processing and understanding. ## Associated Dataset This the dataset for this model can be found [**here**](https://huggingface.co/datasets/fine-tuned/fine-tuned/medical-100-64-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo_9062874564). ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from transformers import AutoModel, AutoTokenizer llm_name = "fine-tuned/medical-100-64-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo_9062874564" tokenizer = AutoTokenizer.from_pretrained(llm_name) model = AutoModel.from_pretrained(llm_name) tokens = tokenizer("Your text here", return_tensors="pt") embedding = model(**tokens) ```
{}
fine-tuned/medical-100-64-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo_9062874564
null
[ "transformers", "safetensors", "bert", "feature-extraction", "custom_code", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:25:39+00:00
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # O0430HMA17 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2942 | 0.09 | 10 | 0.1808 | | 0.1615 | 0.18 | 20 | 0.1583 | | 0.1524 | 0.27 | 30 | 0.1564 | | 0.1564 | 0.36 | 40 | 0.1529 | | 0.1528 | 0.45 | 50 | 0.1525 | | 0.1533 | 0.54 | 60 | 0.1504 | | 0.1528 | 0.63 | 70 | 0.1483 | | 0.147 | 0.73 | 80 | 0.1365 | | 0.4162 | 0.82 | 90 | 0.2004 | | 0.3136 | 0.91 | 100 | 0.0837 | | 0.15 | 1.0 | 110 | 0.0849 | | 0.0947 | 1.09 | 120 | 0.0721 | | 0.1072 | 1.18 | 130 | 0.3448 | | 0.0929 | 1.27 | 140 | 0.0710 | | 0.7574 | 1.36 | 150 | 0.4213 | | 0.1423 | 1.45 | 160 | 0.0615 | | 0.0548 | 1.54 | 170 | 0.0528 | | 0.0641 | 1.63 | 180 | 0.0572 | | 0.0594 | 1.72 | 190 | 0.0471 | | 0.0438 | 1.81 | 200 | 0.0419 | | 0.0362 | 1.9 | 210 | 0.0342 | | 0.0272 | 1.99 | 220 | 0.0235 | | 0.0372 | 2.08 | 230 | 0.0306 | | 0.0254 | 2.18 | 240 | 0.0238 | | 0.0194 | 2.27 | 250 | 0.0227 | | 0.0253 | 2.36 | 260 | 0.0218 | | 0.0255 | 2.45 | 270 | 0.0208 | | 0.0171 | 2.54 | 280 | 0.0208 | | 0.0246 | 2.63 | 290 | 0.0204 | | 0.0215 | 2.72 | 300 | 0.0197 | | 0.019 | 2.81 | 310 | 0.0195 | | 0.0205 | 2.9 | 320 | 0.0188 | | 0.021 | 2.99 | 330 | 0.0188 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "O0430HMA17", "results": []}]}
Litzy619/O0430HMA17
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T13:25:46+00:00
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # O0430HMA18 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3037 | 0.09 | 10 | 0.1850 | | 0.1607 | 0.18 | 20 | 0.1587 | | 0.151 | 0.27 | 30 | 0.1564 | | 0.1546 | 0.36 | 40 | 0.1521 | | 0.1523 | 0.45 | 50 | 0.1509 | | 0.1561 | 0.54 | 60 | 0.1489 | | 0.1516 | 0.63 | 70 | 0.1490 | | 0.1506 | 0.73 | 80 | 0.1549 | | 0.1465 | 0.82 | 90 | 0.1491 | | 0.1473 | 0.91 | 100 | 0.1499 | | 0.1483 | 1.0 | 110 | 0.1459 | | 0.1178 | 1.09 | 120 | 0.0927 | | 0.3145 | 1.18 | 130 | 0.1129 | | 0.361 | 1.27 | 140 | 0.0686 | | 0.0834 | 1.36 | 150 | 0.0706 | | 0.0597 | 1.45 | 160 | 0.0545 | | 0.0553 | 1.54 | 170 | 0.0613 | | 0.0607 | 1.63 | 180 | 0.0521 | | 0.0629 | 1.72 | 190 | 0.0501 | | 0.0458 | 1.81 | 200 | 0.0351 | | 0.0544 | 1.9 | 210 | 0.0925 | | 0.0574 | 1.99 | 220 | 0.0583 | | 0.0487 | 2.08 | 230 | 0.0434 | | 0.0349 | 2.18 | 240 | 0.0310 | | 0.0245 | 2.27 | 250 | 0.0252 | | 0.0236 | 2.36 | 260 | 0.0197 | | 0.0221 | 2.45 | 270 | 0.0182 | | 0.0145 | 2.54 | 280 | 0.0161 | | 0.0212 | 2.63 | 290 | 0.0146 | | 0.0151 | 2.72 | 300 | 0.0142 | | 0.013 | 2.81 | 310 | 0.0131 | | 0.0182 | 2.9 | 320 | 0.0129 | | 0.014 | 2.99 | 330 | 0.0126 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "O0430HMA18", "results": []}]}
Litzy619/O0430HMA18
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T13:25:59+00:00
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # O0430HMA19 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.313 | 0.09 | 10 | 0.1802 | | 0.1606 | 0.18 | 20 | 0.1569 | | 0.1542 | 0.27 | 30 | 0.1539 | | 0.1561 | 0.36 | 40 | 0.1548 | | 0.1506 | 0.45 | 50 | 0.1503 | | 0.1507 | 0.54 | 60 | 0.1485 | | 0.1516 | 0.63 | 70 | 0.1478 | | 0.1497 | 0.73 | 80 | 0.1605 | | 0.1476 | 0.82 | 90 | 0.1501 | | 0.1474 | 0.91 | 100 | 0.1492 | | 0.458 | 1.0 | 110 | 0.1739 | | 0.1648 | 1.09 | 120 | 0.1543 | | 0.5694 | 1.18 | 130 | 0.1570 | | 0.1614 | 1.27 | 140 | 0.1608 | | 1.4211 | 1.36 | 150 | 0.1518 | | 0.1489 | 1.45 | 160 | 0.1496 | | 0.151 | 1.54 | 170 | 0.1514 | | 0.4185 | 1.63 | 180 | 0.6224 | | 0.6333 | 1.72 | 190 | 0.1473 | | 0.1485 | 1.81 | 200 | 0.1536 | | 0.1557 | 1.9 | 210 | 0.1487 | | 0.1499 | 1.99 | 220 | 0.1507 | | 0.1509 | 2.08 | 230 | 0.1486 | | 0.1448 | 2.18 | 240 | 0.1475 | | 0.145 | 2.27 | 250 | 0.1497 | | 0.1464 | 2.36 | 260 | 0.1487 | | 0.1452 | 2.45 | 270 | 0.1472 | | 0.1436 | 2.54 | 280 | 0.1468 | | 0.1441 | 2.63 | 290 | 0.1477 | | 0.1463 | 2.72 | 300 | 0.1466 | | 0.1455 | 2.81 | 310 | 0.1464 | | 0.146 | 2.9 | 320 | 0.1465 | | 0.1467 | 2.99 | 330 | 0.1466 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "O0430HMA19", "results": []}]}
Litzy619/O0430HMA19
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T13:26:20+00:00
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # O0430HMA20 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3072 | 0.09 | 10 | 0.1919 | | 0.1572 | 0.18 | 20 | 0.1540 | | 0.1494 | 0.27 | 30 | 0.1654 | | 0.1558 | 0.36 | 40 | 0.1537 | | 0.1517 | 0.45 | 50 | 0.1553 | | 0.1513 | 0.54 | 60 | 0.1508 | | 0.1532 | 0.63 | 70 | 0.1477 | | 0.1499 | 0.73 | 80 | 0.1557 | | 0.1469 | 0.82 | 90 | 0.1484 | | 0.1471 | 0.91 | 100 | 0.1501 | | 0.1499 | 1.0 | 110 | 0.1513 | | 0.1462 | 1.09 | 120 | 0.1486 | | 0.1473 | 1.18 | 130 | 0.1539 | | 0.1475 | 1.27 | 140 | 0.1490 | | 0.1485 | 1.36 | 150 | 0.1485 | | 0.1371 | 1.45 | 160 | 0.1344 | | 0.6524 | 1.54 | 170 | 0.4249 | | 0.1586 | 1.63 | 180 | 0.0785 | | 0.0783 | 1.72 | 190 | 0.0804 | | 0.0752 | 1.81 | 200 | 0.0712 | | 0.0658 | 1.9 | 210 | 1.1126 | | 0.1685 | 1.99 | 220 | 0.0589 | | 0.0605 | 2.08 | 230 | 0.0574 | | 0.0497 | 2.18 | 240 | 0.0514 | | 0.0475 | 2.27 | 250 | 0.0463 | | 0.0494 | 2.36 | 260 | 0.0429 | | 0.0369 | 2.45 | 270 | 0.0338 | | 0.0261 | 2.54 | 280 | 0.0276 | | 0.0349 | 2.63 | 290 | 0.0251 | | 0.0278 | 2.72 | 300 | 0.0250 | | 0.0248 | 2.81 | 310 | 0.0220 | | 0.0269 | 2.9 | 320 | 0.0220 | | 0.0246 | 2.99 | 330 | 0.0215 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "O0430HMA20", "results": []}]}
Litzy619/O0430HMA20
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T13:26:22+00:00
null
transformers
# Model details These are the q4 in GGUF of a quick experiment on llamafied phi-3 with only 1000 orpo steps from an azureml translated german orca binarized-dataset (johannhartmann/mistralorpo), with original phi-3 prompt template. The immediate result is not really good, but also not bad enough to disencourage further experiments. # Benchmark results This was an experiment on a german dataset snippet which, as expected, worsened results on english benchmarks: | Metric |Value| |---------------------------------|----:| |Avg. |64.40| |AI2 Reasoning Challenge (25-Shot)|60.41| |HellaSwag (10-Shot) |78.37| |MMLU (5-Shot) |65.26| |TruthfulQA (0-shot) |49.76| |Winogrande (5-shot) |70.24| |GSM8k (5-shot) |62.32| On german EQ-Bench (v2_de) 51.82 (insignificant over 51.41 for original llamafied but significantly better than intermediate cstr/phi-3-orpo-v8_16 which after initial 150 test steps achieved 46.38) but with still only 164/171 correctly parsed. Note: We can improve the correctness of parsing, i.a., by only a few SFT steps, as shown with cas/phi3-mini-4k-llamafied-sft-v3 (170/171 correct but with then only 39.46 score in v2_de, which was also an experiment in changing the prompt template). All that was quickly done with bnb and q4 quants only, which might, in theory, affect especially such small dense models significantly. But it served the intention for both proof-of-concept-experiments at least. Probably it would easily be possible to further improve results, but that would take some time and compute. # Training setup This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
{"language": ["en", "de"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "orpo"], "base_model": "cstr/phi-3-orpo-v8_16"}
cstr/phi-3-orpo-v9_16-GGUF
null
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "orpo", "en", "de", "base_model:cstr/phi-3-orpo-v8_16", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:26:29+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ahjeong/dpo_gemma_7b_bf16_lr5e-7_origindset_beta2.2_kl0.01-epoch3
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:26:33+00:00
null
null
{}
fabst/openai-whisper-tiny-swiss-german-1714483336
null
[ "region:us" ]
null
2024-04-30T13:26:47+00:00
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # O0430HMA21 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4312 | 0.09 | 10 | 0.1874 | | 0.1634 | 0.18 | 20 | 0.1497 | | 0.1488 | 0.27 | 30 | 0.1613 | | 0.1545 | 0.36 | 40 | 0.1540 | | 0.1508 | 0.45 | 50 | 0.1523 | | 0.1531 | 0.54 | 60 | 0.1514 | | 0.1533 | 0.63 | 70 | 0.1467 | | 0.1508 | 0.73 | 80 | 0.1608 | | 0.1482 | 0.82 | 90 | 0.1485 | | 0.1462 | 0.91 | 100 | 0.1425 | | 0.1171 | 1.0 | 110 | 0.9807 | | 0.9406 | 1.09 | 120 | 0.1657 | | 0.3022 | 1.18 | 130 | 0.2118 | | 0.173 | 1.27 | 140 | 0.2822 | | 0.1207 | 1.36 | 150 | 0.0716 | | 0.067 | 1.45 | 160 | 0.0495 | | 0.0569 | 1.54 | 170 | 0.0470 | | 0.0515 | 1.63 | 180 | 0.0446 | | 0.0397 | 1.72 | 190 | 0.0745 | | 0.0345 | 1.81 | 200 | 0.0217 | | 0.0199 | 1.9 | 210 | 0.0118 | | 0.0097 | 1.99 | 220 | 0.0128 | | 0.025 | 2.08 | 230 | 0.0168 | | 0.0139 | 2.18 | 240 | 0.0121 | | 0.0108 | 2.27 | 250 | 0.0133 | | 0.0148 | 2.36 | 260 | 0.0100 | | 0.0105 | 2.45 | 270 | 0.0065 | | 0.0058 | 2.54 | 280 | 0.0065 | | 0.0147 | 2.63 | 290 | 0.0061 | | 0.0068 | 2.72 | 300 | 0.0061 | | 0.0079 | 2.81 | 310 | 0.0058 | | 0.0105 | 2.9 | 320 | 0.0059 | | 0.0067 | 2.99 | 330 | 0.0059 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "O0430HMA21", "results": []}]}
Litzy619/O0430HMA21
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T13:27:23+00:00
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # O0430HMA22 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4451 | 0.09 | 10 | 0.1875 | | 0.166 | 0.18 | 20 | 0.1559 | | 0.1487 | 0.27 | 30 | 0.1614 | | 0.1558 | 0.36 | 40 | 0.1541 | | 0.1509 | 0.45 | 50 | 0.1503 | | 0.154 | 0.54 | 60 | 0.1506 | | 0.1515 | 0.63 | 70 | 0.1472 | | 0.1486 | 0.73 | 80 | 0.1571 | | 0.1465 | 0.82 | 90 | 0.1489 | | 0.1486 | 0.91 | 100 | 0.1494 | | 0.1512 | 1.0 | 110 | 0.1504 | | 0.1451 | 1.09 | 120 | 0.1458 | | 0.1363 | 1.18 | 130 | 0.1194 | | 0.4695 | 1.27 | 140 | 0.0859 | | 0.2213 | 1.36 | 150 | 0.1021 | | 0.1433 | 1.45 | 160 | 0.1743 | | 0.0896 | 1.54 | 170 | 0.0789 | | 0.0705 | 1.63 | 180 | 0.0677 | | 0.0746 | 1.72 | 190 | 0.0697 | | 0.0572 | 1.81 | 200 | 0.0534 | | 0.0524 | 1.9 | 210 | 0.0385 | | 0.0511 | 1.99 | 220 | 0.0436 | | 0.0401 | 2.08 | 230 | 0.0288 | | 0.0262 | 2.18 | 240 | 0.0192 | | 0.0223 | 2.27 | 250 | 0.0179 | | 0.0254 | 2.36 | 260 | 0.0184 | | 0.0184 | 2.45 | 270 | 0.0169 | | 0.0124 | 2.54 | 280 | 0.0137 | | 0.0199 | 2.63 | 290 | 0.0124 | | 0.0158 | 2.72 | 300 | 0.0128 | | 0.0124 | 2.81 | 310 | 0.0115 | | 0.0159 | 2.9 | 320 | 0.0125 | | 0.0144 | 2.99 | 330 | 0.0116 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "O0430HMA22", "results": []}]}
Litzy619/O0430HMA22
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T13:27:30+00:00
automatic-speech-recognition
transformers
{}
adityarra07/whisper-med-LoRA_noise_128_256_45k_merged_ckpt2
null
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:27:44+00:00
null
null
{}
buzoff666/wc456
null
[ "region:us" ]
null
2024-04-30T13:29:21+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo_harmlessharmless_human_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "dpo_harmlessharmless_human_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06", "results": []}]}
Holarissun/dpo_harmlessharmless_human_subset20000_modelgpt2_maxsteps5000_bz8_lr5e-06
null
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:gpt2", "license:mit", "region:us" ]
null
2024-04-30T13:29:38+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo_harmlessharmless_human_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-05 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "dpo_harmlessharmless_human_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-05", "results": []}]}
Holarissun/dpo_harmlessharmless_human_subset20000_modelgpt2_maxsteps5000_bz8_lr1e-05
null
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:gpt2", "license:mit", "region:us" ]
null
2024-04-30T13:29:49+00:00
null
null
{"license": "mit"}
ramanan-techlover/smart-yoga
null
[ "license:mit", "region:us" ]
null
2024-04-30T13:30:06+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt1B_domar_finetune_1epoch This model is a fine-tuned version of [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9146 | 0.79 | 200 | 0.8557 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.1 - Pytorch 2.2.0+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "AI-Sweden-Models/gpt-sw3-1.3b", "model-index": [{"name": "gpt1B_domar_finetune_1epoch", "results": []}]}
thorirhrafn/gpt1B_domar_finetune_1epoch
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:AI-Sweden-Models/gpt-sw3-1.3b", "license:apache-2.0", "region:us" ]
null
2024-04-30T13:31:34+00:00
null
transformers
# Uploaded model - **Developed by:** mohammedriza-rahman - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
mohammedriza-rahman/updated
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:32:22+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CNEC_2_0_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.3354 - Precision: 0.8427 - Recall: 0.8737 - F1: 0.8579 - Accuracy: 0.9553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.288 | 2.22 | 1000 | 0.2461 | 0.7705 | 0.7926 | 0.7814 | 0.9413 | | 0.1551 | 4.44 | 2000 | 0.2270 | 0.8116 | 0.8444 | 0.8277 | 0.9503 | | 0.0963 | 6.67 | 3000 | 0.2220 | 0.8181 | 0.8623 | 0.8396 | 0.9533 | | 0.0619 | 8.89 | 4000 | 0.2520 | 0.8202 | 0.8598 | 0.8395 | 0.9507 | | 0.044 | 11.11 | 5000 | 0.2613 | 0.8332 | 0.8680 | 0.8502 | 0.9535 | | 0.0283 | 13.33 | 6000 | 0.2734 | 0.8377 | 0.8673 | 0.8522 | 0.9546 | | 0.0227 | 15.56 | 7000 | 0.2908 | 0.8390 | 0.8687 | 0.8536 | 0.9546 | | 0.0173 | 17.78 | 8000 | 0.3083 | 0.8393 | 0.8670 | 0.8529 | 0.9528 | | 0.013 | 20.0 | 9000 | 0.3238 | 0.8333 | 0.8673 | 0.8500 | 0.9522 | | 0.0103 | 22.22 | 10000 | 0.3352 | 0.8325 | 0.8712 | 0.8515 | 0.9539 | | 0.0091 | 24.44 | 11000 | 0.3299 | 0.8400 | 0.8655 | 0.8526 | 0.9542 | | 0.0073 | 26.67 | 12000 | 0.3376 | 0.8387 | 0.8666 | 0.8524 | 0.9535 | | 0.0065 | 28.89 | 13000 | 0.3354 | 0.8427 | 0.8737 | 0.8579 | 0.9553 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "datasets": ["cnec"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index": [{"name": "CNEC_2_0_slavicbert", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "cnec", "type": "cnec", "config": "default", "split": "validation", "args": "default"}, "metrics": [{"type": "precision", "value": 0.8427043808209728, "name": "Precision"}, {"type": "recall", "value": 0.8737482117310443, "name": "Recall"}, {"type": "f1", "value": 0.8579455662862159, "name": "F1"}, {"type": "accuracy", "value": 0.9552753162160115, "name": "Accuracy"}]}]}]}
stulcrad/CNEC_2_0_slavicbert
null
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:cnec", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:32:39+00:00
text-classification
transformers
{}
skelley/Day_to_day_tasks
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:32:59+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CNEC_1_1_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.3720 - Precision: 0.8513 - Recall: 0.8671 - F1: 0.8591 - Accuracy: 0.9509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3658 | 0.85 | 1000 | 0.2671 | 0.8101 | 0.8172 | 0.8136 | 0.9366 | | 0.227 | 1.7 | 2000 | 0.2624 | 0.8190 | 0.8172 | 0.8181 | 0.9380 | | 0.141 | 2.56 | 3000 | 0.2474 | 0.8317 | 0.8424 | 0.8370 | 0.9448 | | 0.092 | 3.41 | 4000 | 0.2498 | 0.8412 | 0.8534 | 0.8472 | 0.9460 | | 0.0839 | 4.26 | 5000 | 0.2689 | 0.8438 | 0.8583 | 0.8510 | 0.9489 | | 0.0698 | 5.11 | 6000 | 0.2830 | 0.8420 | 0.8539 | 0.8479 | 0.9473 | | 0.0507 | 5.96 | 7000 | 0.2902 | 0.8359 | 0.8503 | 0.8431 | 0.9468 | | 0.0344 | 6.81 | 8000 | 0.3221 | 0.8310 | 0.8512 | 0.8410 | 0.9478 | | 0.0249 | 7.67 | 9000 | 0.3262 | 0.8444 | 0.8508 | 0.8476 | 0.9478 | | 0.0185 | 8.52 | 10000 | 0.3214 | 0.8458 | 0.8525 | 0.8492 | 0.9502 | | 0.0151 | 9.37 | 11000 | 0.3399 | 0.8382 | 0.8578 | 0.8479 | 0.9499 | | 0.01 | 10.22 | 12000 | 0.3348 | 0.8385 | 0.8574 | 0.8478 | 0.9492 | | 0.0086 | 11.07 | 13000 | 0.3636 | 0.8395 | 0.8543 | 0.8468 | 0.9479 | | 0.0092 | 11.93 | 14000 | 0.3644 | 0.8419 | 0.8578 | 0.8498 | 0.9485 | | 0.0058 | 12.78 | 15000 | 0.3624 | 0.8450 | 0.8618 | 0.8533 | 0.9503 | | 0.0032 | 13.63 | 16000 | 0.3703 | 0.8483 | 0.8614 | 0.8548 | 0.9507 | | 0.003 | 14.48 | 17000 | 0.3720 | 0.8513 | 0.8671 | 0.8591 | 0.9509 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "datasets": ["cnec"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index": [{"name": "CNEC_1_1_slavicbert", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "cnec", "type": "cnec", "config": "default", "split": "validation", "args": "default"}, "metrics": [{"type": "precision", "value": 0.8513220632856524, "name": "Precision"}, {"type": "recall", "value": 0.8671081677704194, "name": "Recall"}, {"type": "f1", "value": 0.8591426071741033, "name": "F1"}, {"type": "accuracy", "value": 0.9509352959214965, "name": "Accuracy"}]}]}]}
stulcrad/CNEC_1_1_slavicbert
null
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:cnec", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:33:10+00:00
text-generation
transformers
{}
ajtamayoh/GPT2_DocBot_SonatafyAI_V4
null
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T13:33:12+00:00
text-to-image
diffusers
# AutoTrain LoRA DreamBooth - AmilaUvaz/Michelle These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on <Michelle, a 24-year-old traveler with brown skin, rectangle face, brown eyes, Armond-shaped eyebrows, long wavy brown hair)> using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False.
{"license": "openrail++", "tags": ["autotrain", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "<Michelle, a 24-year-old traveler with brown skin, rectangle face, brown eyes, Armond-shaped eyebrows, long wavy brown hair)>"}
AmilaUvaz/Michelle
null
[ "diffusers", "autotrain", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "license:openrail++", "region:us" ]
null
2024-04-30T13:33:17+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/shyamieee/Maverick-v2.0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Maverick-v2.0-GGUF/resolve/main/Maverick-v2.0.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": "shyamieee/Maverick-v2.0", "quantized_by": "mradermacher"}
mradermacher/Maverick-v2.0-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:shyamieee/Maverick-v2.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:33:24+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CNEC_2_0_Supertypes_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2859 - Precision: 0.8603 - Recall: 0.8905 - F1: 0.8752 - Accuracy: 0.9654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1989 | 1.0 | 1799 | 0.1639 | 0.8057 | 0.8410 | 0.8230 | 0.9544 | | 0.1512 | 2.0 | 3598 | 0.1679 | 0.8105 | 0.8550 | 0.8322 | 0.9550 | | 0.1085 | 3.0 | 5397 | 0.1516 | 0.8253 | 0.8662 | 0.8452 | 0.9582 | | 0.0823 | 4.0 | 7196 | 0.1586 | 0.8374 | 0.8765 | 0.8565 | 0.9608 | | 0.0529 | 5.0 | 8995 | 0.1802 | 0.8346 | 0.8670 | 0.8505 | 0.9602 | | 0.0507 | 6.0 | 10794 | 0.2033 | 0.8249 | 0.8699 | 0.8468 | 0.9603 | | 0.0441 | 7.0 | 12593 | 0.2032 | 0.8401 | 0.8724 | 0.8559 | 0.9614 | | 0.0271 | 8.0 | 14392 | 0.2247 | 0.8450 | 0.8740 | 0.8593 | 0.9604 | | 0.0289 | 9.0 | 16191 | 0.2319 | 0.8385 | 0.8794 | 0.8585 | 0.9613 | | 0.0214 | 10.0 | 17990 | 0.2623 | 0.8462 | 0.8703 | 0.8581 | 0.9609 | | 0.0173 | 11.0 | 19789 | 0.2553 | 0.8432 | 0.8748 | 0.8587 | 0.9614 | | 0.0149 | 12.0 | 21588 | 0.2760 | 0.8582 | 0.8827 | 0.8703 | 0.9631 | | 0.0143 | 13.0 | 23387 | 0.2748 | 0.8530 | 0.8843 | 0.8684 | 0.9630 | | 0.0095 | 14.0 | 25186 | 0.2796 | 0.8543 | 0.8864 | 0.8701 | 0.9632 | | 0.0049 | 15.0 | 26985 | 0.2944 | 0.8512 | 0.8810 | 0.8658 | 0.9627 | | 0.0047 | 16.0 | 28784 | 0.2836 | 0.8524 | 0.8848 | 0.8683 | 0.9644 | | 0.0047 | 17.0 | 30583 | 0.2902 | 0.8490 | 0.8827 | 0.8655 | 0.9646 | | 0.0039 | 18.0 | 32382 | 0.2888 | 0.8603 | 0.8881 | 0.8740 | 0.9650 | | 0.0026 | 19.0 | 34181 | 0.2917 | 0.8585 | 0.8897 | 0.8738 | 0.9644 | | 0.0047 | 20.0 | 35980 | 0.2859 | 0.8603 | 0.8905 | 0.8752 | 0.9654 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "datasets": ["cnec"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index": [{"name": "CNEC_2_0_Supertypes_slavicbert", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "cnec", "type": "cnec", "config": "default", "split": "validation", "args": "default"}, "metrics": [{"type": "precision", "value": 0.8603351955307262, "name": "Precision"}, {"type": "recall", "value": 0.8905410987195373, "name": "Recall"}, {"type": "f1", "value": 0.8751775928556932, "name": "F1"}, {"type": "accuracy", "value": 0.9654245247292282, "name": "Accuracy"}]}]}]}
stulcrad/CNEC_2_0_Supertypes_slavicbert
null
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:cnec", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:33:26+00:00
null
null
{}
ToeBoe/luntik
null
[ "region:us" ]
null
2024-04-30T13:33:54+00:00
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
MohammadKarami/whole-electra
null
[ "transformers", "safetensors", "electra", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:33:54+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CNEC_1_1_Supertypes_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2993 - Precision: 0.8427 - Recall: 0.8811 - F1: 0.8615 - Accuracy: 0.9511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4662 | 1.7 | 500 | 0.2442 | 0.7608 | 0.8311 | 0.7944 | 0.9353 | | 0.2083 | 3.4 | 1000 | 0.2039 | 0.8150 | 0.8744 | 0.8437 | 0.9467 | | 0.1504 | 5.1 | 1500 | 0.1902 | 0.8234 | 0.8740 | 0.8480 | 0.9517 | | 0.11 | 6.8 | 2000 | 0.2027 | 0.8328 | 0.8762 | 0.8539 | 0.9519 | | 0.0883 | 8.5 | 2500 | 0.2176 | 0.8361 | 0.8820 | 0.8584 | 0.9509 | | 0.0708 | 10.2 | 3000 | 0.2297 | 0.8405 | 0.8828 | 0.8611 | 0.9510 | | 0.0615 | 11.9 | 3500 | 0.2429 | 0.8361 | 0.8793 | 0.8571 | 0.9519 | | 0.0471 | 13.61 | 4000 | 0.2546 | 0.8340 | 0.8775 | 0.8552 | 0.9504 | | 0.0428 | 15.31 | 4500 | 0.2718 | 0.8440 | 0.8775 | 0.8604 | 0.9495 | | 0.0358 | 17.01 | 5000 | 0.2730 | 0.8401 | 0.8758 | 0.8576 | 0.9502 | | 0.0325 | 18.71 | 5500 | 0.2793 | 0.8421 | 0.8815 | 0.8613 | 0.9501 | | 0.0277 | 20.41 | 6000 | 0.2984 | 0.8446 | 0.8842 | 0.8639 | 0.9504 | | 0.0245 | 22.11 | 6500 | 0.2987 | 0.8454 | 0.8802 | 0.8625 | 0.9507 | | 0.0224 | 23.81 | 7000 | 0.2993 | 0.8427 | 0.8811 | 0.8615 | 0.9511 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "datasets": ["cnec"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index": [{"name": "CNEC_1_1_Supertypes_slavicbert", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "cnec", "type": "cnec", "config": "default", "split": "validation", "args": "default"}, "metrics": [{"type": "precision", "value": 0.8427061310782241, "name": "Precision"}, {"type": "recall", "value": 0.881078691423519, "name": "Recall"}, {"type": "f1", "value": 0.8614653122973849, "name": "F1"}, {"type": "accuracy", "value": 0.9510886231217418, "name": "Accuracy"}]}]}]}
stulcrad/CNEC_1_1_Supertypes_slavicbert
null
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:cnec", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:35:10+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CNEC_2_0_ext_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2252 - Precision: 0.8578 - Recall: 0.8864 - F1: 0.8719 - Accuracy: 0.9697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1347 | 4.46 | 1000 | 0.1375 | 0.8279 | 0.8620 | 0.8446 | 0.9656 | | 0.0681 | 8.93 | 2000 | 0.1519 | 0.8345 | 0.8710 | 0.8524 | 0.9668 | | 0.0406 | 13.39 | 3000 | 0.1663 | 0.8519 | 0.8789 | 0.8652 | 0.9679 | | 0.0276 | 17.86 | 4000 | 0.1719 | 0.8623 | 0.8888 | 0.8754 | 0.9690 | | 0.02 | 22.32 | 5000 | 0.1920 | 0.8505 | 0.8809 | 0.8654 | 0.9686 | | 0.015 | 26.79 | 6000 | 0.1984 | 0.8570 | 0.8893 | 0.8729 | 0.9693 | | 0.0108 | 31.25 | 7000 | 0.2048 | 0.8587 | 0.8864 | 0.8723 | 0.9692 | | 0.0092 | 35.71 | 8000 | 0.2179 | 0.8606 | 0.8888 | 0.8745 | 0.9696 | | 0.0076 | 40.18 | 9000 | 0.2252 | 0.8564 | 0.8878 | 0.8718 | 0.9696 | | 0.0057 | 44.64 | 10000 | 0.2262 | 0.8571 | 0.8873 | 0.8720 | 0.9698 | | 0.0054 | 49.11 | 11000 | 0.2252 | 0.8578 | 0.8864 | 0.8719 | 0.9697 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "datasets": ["cnec"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index": [{"name": "CNEC_2_0_ext_slavicbert", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "cnec", "type": "cnec", "config": "default", "split": "validation", "args": "default"}, "metrics": [{"type": "precision", "value": 0.8578290105667628, "name": "Precision"}, {"type": "recall", "value": 0.8863523573200992, "name": "Recall"}, {"type": "f1", "value": 0.8718574566756162, "name": "F1"}, {"type": "accuracy", "value": 0.969659869151012, "name": "Accuracy"}]}]}]}
stulcrad/CNEC_2_0_ext_slavicbert
null
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:cnec", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:35:24+00:00
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/AlphaMist7B-slr-v4-GGUF/resolve/main/AlphaMist7B-slr-v4.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "cc-by-nc-4.0", "library_name": "transformers", "datasets": ["Custom_datasets"], "base_model": "Alphacode-AI/AlphaMist7B-slr-v4", "quantized_by": "mradermacher"}
mradermacher/AlphaMist7B-slr-v4-GGUF
null
[ "transformers", "gguf", "en", "dataset:Custom_datasets", "base_model:Alphacode-AI/AlphaMist7B-slr-v4", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T13:35:48+00:00