Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
null | null | {"license": "apache-2.0"} | Theon1130/5e_4e-5_FTSLAKE_llava-v1.6-mistral_PMC | null | [
"safetensors",
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T15:53:03+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# code-llama-7b-ner-updated-6
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 | {"license": "llama2", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "codellama/CodeLlama-7b-hf", "model-index": [{"name": "code-llama-7b-ner-updated-6", "results": []}]} | MythSankara/code-llama-7b-ner-updated-6 | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:codellama/CodeLlama-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-04-29T15:53:07+00:00 |
feature-extraction | transformers |
## Overview
This is a bare model without any output layer or classification head. It has been quantized to be used for feature extraction tasks.
**Usage**
This model is intended to be used as a base for training on downstream tasks. In order to use it for predictions and inference, it should be fine-tuned on a specific task with an appropriate output layer or classification head added.
**Quantization**
The model has been quantized using the following parameters:
Lora alpha: 16
Lora rank: 64
Lora target modules: all-linear
bits: 4
LoftQ iterations: 5 | {"pipeline_tag": "feature-extraction"} | smallsuper/Mistral-7B-v0.1-4bit-64rank | null | [
"transformers",
"safetensors",
"mistral",
"feature-extraction",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:53:18+00:00 |
sentence-similarity | sentence-transformers |
# xlreator/biosyn-biobert-snomed
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('xlreator/biosyn-biobert-snomed')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('xlreator/biosyn-biobert-snomed')
model = AutoModel.from_pretrained('xlreator/biosyn-biobert-snomed')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=xlreator/biosyn-biobert-snomed)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 18434 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 2,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"} | xlreator/biosyn-biobert-snomed | null | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T15:53:20+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/gemma-2b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-gemma-2b-it-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-gemma-2b-it-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/gemma-2b-it before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/gemma-2b-it"} | PrunaAI/google-gemma-2b-it-HQQ-4bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/gemma-2b-it",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:53:24+00:00 |
null | null | {} | Saumohan/Idefics2-8b-multimodal-ft | null | [
"region:us"
] | null | 2024-04-29T15:53:58+00:00 |
|
fill-mask | transformers | {} | jeonsworld/punk-llama3-mlm | null | [
"transformers",
"safetensors",
"llama",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:54:31+00:00 |
|
text-to-image | diffusers | # Goat Chan - Enanare OC
<Gallery />
## Model description
Goat Chan - Enanare's OC!
Trained based on her appareance, it has a trigger word corresponding to the appearance of the character and suggested prompts that summons related clothes and accesories.
Works well with 0.7-1.0 weight
## Trigger words
Default Appareance: `goatchandef, huge breasts, goat ears, goat horns, tail,` `Pubic tattoo/crotch tattoo`
## Download model
Weights for this model are available in Safetensors format.
[Download](/Shalie/GoatChanPonyXL/tree/main) them in the Files & versions tab.
### License
This LoRA model is provided under the [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) license.
## Restrictions:
- **Usage in Generation Services**: You are not allowed to use the model in any generation services without proper permission from the original creator.
- **Commercial Usage**: The sale of the model or any commercial usage is strictly prohibited without explicit written permission from the original creator. | {"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "not-for-all-audiences"], "widget": [{"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, black footwear, black skirt, frills, hair ornament, long sleeves, pantyhose, petticoat, shirt, skirt, white shirt, wrist cuffs, from side, upper body, water drop", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05250-1948435322-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}, {"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, armpits, bare arms, bare shoulders, collarbone, covered navel, dress, sleeveless, thighs, white dress, cherry blossoms, flower, pelvic curtain, year of the tiger", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05240-1205372394-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}, {"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, black skirt, black socks, collarbone, collared shirt, earrings, hair ornament, hairclip, jewelry, long sleeves, miniskirt, panties, pleated skirt, polka dot, polka dot panties, shirt, skirt, socks, thighs, underwear, white panties, white shirt, blue sky, cloud, cloudy sky, day, groin, heart, indoors, sky, window", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05239-823453425-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}, {"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, ass, black pantyhose, brown shirt, fine fabric emphasis, long sleeves, no shoes, office lady, pantyhose, pencil skirt, shirt, skirt, thighs, toes, flower, red flower, rose, upper body", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05238-2374026388-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}, {"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, bandaid on hand, bandaid on leg, black jacket, blue shorts, blue socks, drawstring, ear piercing, earrings, hair ornament, hairclip, hat, hood, hood down, hooded jacket, jacket, jewelry, long sleeves, nail polish, open clothes, open jacket, piercing, pink footwear, pink jacket, shirt, shoes, short shorts, shorts, sleeves past wrists, sneakers, socks, striped headwear, vertical-striped headwear, vertical stripes, white shirt, x hair ornament, + +, candy, food, lollipop, phone, upper body", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05237-798429254-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}, {"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, aran sweater, black pantyhose, blue skirt, brown coat, cable knit, coat, fur-trimmed coat, fur trim, high-waist skirt, jewelry, necklace, open clothes, open coat, pantyhose, pearl necklace, skirt, sweater, turtleneck, turtleneck sweater, white sweater, close-up, food", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05235-1699623031-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}, {"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, animal costume, animal hood, boots, fins, high heel boots, high heels, hood, hood up, long sleeves, nail polish, orange pantyhose, pantyhose, puffy long sleeves, puffy sleeves, shark hood, sleeves past wrists, white footwear, zipper, blurry, blurry foreground, cloud, depth of field, meteor shower, night, night sky, outdoors, partially submerged, shooting star, sky, star (sky), starry sky, water", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05234-661083179-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}, {"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, asymmetrical legwear, bare shoulders, black bow, black dress, black footwear, black hairband, black ribbon, bow, cleavage, dress, frilled dress, frilled hairband, frilled legwear, frills, garter straps, gloves, hairband, mismatched legwear, neck ribbon, off-shoulder shirt, off shoulder, puffy short sleeves, puffy sleeves, ribbon, shirt, shoes, short sleeves, striped thighhighs, thighhighs, vertical-striped thighhighs, vertical stripes, white gloves, white shirt, white thighhighs, cake, cake slice, day, food, fruit, gelatin, icing, indoors, lemon, lemon slice, plant, potted plant, window", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05227-2360169958-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}, {"text": "score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, <lora:spgoatChanXLPony:1> goatchandef, huge breasts, goat ears, goat horns, tail, blue bow, blue bowtie, blue sweater vest, bow, bowtie, diagonal-striped bowtie, dress shirt, red stripes, school uniform, shirt, striped bow, striped bowtie, sweater vest, white shirt, color guide, heart, simple background, upper body, white background", "parameters": {"negative_prompt": "3d, monochrome, greyscale, source_pony, source_furry"}, "output": {"url": "images/05226-43702283-score_9, score_8_up, score_7_up, uncensored, source_anime, 1girl, _lora_spgoatChanXLPony_1_ goatchandef, huge breasts, goat ear.png"}}], "base_model": "AstraliteHeart/pony-diffusion-v6", "license_name": "faipl-1.0-sd", "license_link": "https://freedevproject.org/faipl-1.0-sd/", "pipeline_tag": "text-to-image"} | Shalie/GoatChanPonyXL | null | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"not-for-all-audiences",
"base_model:AstraliteHeart/pony-diffusion-v6",
"license:other",
"region:us"
] | null | 2024-04-29T15:54:49+00:00 |
text-generation | transformers |
# Uploaded model
- **Developed by:** WbjuSrceu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-2b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "gemma", "trl"], "base_model": "unsloth/gemma-2b-bnb-4bit"} | WbjuSrceu/gemma-2b-bnb-4bit | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/gemma-2b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T15:55:00+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | itsaiai/falcon7b | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:55:14+00:00 |
text-to-audio | transformers | {} | davidilag/speecht5_tts_ravnursson_fo | null | [
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T15:55:31+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | rachid16/LLAMA3_FINETUNNED_WITH_FIQA | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T15:56:18+00:00 |
null | null | {} | crescentcyber/WhyWeLol | null | [
"region:us"
] | null | 2024-04-29T15:56:23+00:00 |
|
null | null | https://civitai.com/models/424866/vladilena-mirize | {"license": "creativeml-openrail-m"} | LarryAIDraw/Vladilena-10 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-04-29T15:56:24+00:00 |
text-generation | transformers | {} | kloodia/moe_llama3-8b_adapter_wt_alpaca | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:56:32+00:00 |
|
null | null | https://civitai.com/models/425388/ais-wallenstein-is-it-wrong-to-try-to-pick-up-girls-in-a-dungeon-lora | {"license": "creativeml-openrail-m"} | LarryAIDraw/aiswallenstein-nvwls-v1 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-04-29T15:56:50+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo UnicomLLM/Unichat-llama3-Chinese-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/UnicomLLM-Unichat-llama3-Chinese-8B-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/UnicomLLM-Unichat-llama3-Chinese-8B-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("UnicomLLM/Unichat-llama3-Chinese-8B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model UnicomLLM/Unichat-llama3-Chinese-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "UnicomLLM/Unichat-llama3-Chinese-8B"} | PrunaAI/UnicomLLM-Unichat-llama3-Chinese-8B-HQQ-4bit-smashed | null | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"base_model:UnicomLLM/Unichat-llama3-Chinese-8B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:57:03+00:00 |
null | null | https://civitai.com/models/92580/mamako-oosuki-tsuujou-kougeki-ga-zentai-kougeki-de-ni-kai-kougeki-no-okaasan-wa-suki-desu-ka | {"license": "creativeml-openrail-m"} | LarryAIDraw/Mamako_Oosuki_DG | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-04-29T15:57:12+00:00 |
null | null | {"license": "llama3"} | NightFuryTimo/Meta-Llama-3-8B-Instruct-GGUF | null | [
"gguf",
"license:llama3",
"region:us"
] | null | 2024-04-29T15:57:37+00:00 |
|
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-2b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-codegemma-2b-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-codegemma-2b-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-2b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-2b"} | PrunaAI/google-codegemma-2b-HQQ-4bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-2b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:58:13+00:00 |
text-generation | transformers |
# Dolphin 2.9 Mixtral 8x22b π¬
Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations
Discord: https://discord.gg/8fbBeC7ZGx
<img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />
A bug has been found in the Dolphin 2.9 dataset in SystemConversations that causes the model to overly talk about the "SYSTEM MESSAGE". To counter this, we recommend you add a statement in the system message directing the model not to mention the system message. An example system message is "The assistant is named Dolphin. A helpful and friendly AI assistant, Dolphin avoids discussing the system message unless directly asked about it."
My appreciation for the sponsors of Dolphin 2.9:
- [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xH100 node
This model is based on Dolphin-2.9-Mixtral-8x22b, and is Apache-2.0 licensed.
The base model has 64k context, and the full-weight fine-tuning was with 4k sequence length.
It took 1 week on 8xH100 provided by Crusoe Cloud
This model was trained FFT on 50% parameters (targeted with [Laser Scanner](https://github.com/cognitivecomputations/laserRMT/blob/main/laser_scanner.py) by Fernando Fernandes, David Golchinfar, Lucas Atkins, and Eric Hartford) , using ChatML prompt template format.
example:
```
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
Dolphin-2.9 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
Dolphin is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Dolphin is licensed Apache 2.0. I grant permission for any use, including commercial, that falls within accordance with Apache-2.0 license. Dolphin was trained on data generated from GPT4, among other models.
## Evals

## Training
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: mistral-community/Mixtral-8x22B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
- model.layers.0.self_attn.q_proj
- model.layers.1.self_attn.q_proj
- model.layers.2.self_attn.q_proj
- model.layers.22.self_attn.q_proj
- model.layers.27.self_attn.q_proj
- model.layers.28.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.21.self_attn.q_proj
- model.layers.24.self_attn.q_proj
- model.layers.14.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.20.self_attn.q_proj
- model.layers.23.self_attn.q_proj
- model.layers.30.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.29.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.16.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.6.self_attn.k_proj
- model.layers.22.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.31.self_attn.v_proj
- model.layers.5.self_attn.v_proj
- model.layers.8.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.30.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.9.self_attn.v_proj
- model.layers.26.self_attn.v_proj
- model.layers.27.self_attn.v_proj
- model.layers.20.self_attn.o_proj
- model.layers.19.self_attn.o_proj
- model.layers.16.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.18.self_attn.o_proj
- model.layers.17.self_attn.o_proj
- model.layers.12.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.14.self_attn.o_proj
- model.layers.22.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.21.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.0.self_attn.o_proj
- model.layers.0.block_sparse_moe.experts.0.w1
- model.layers.1.block_sparse_moe.experts.0.w1
- model.layers.2.block_sparse_moe.experts.0.w1
- model.layers.3.block_sparse_moe.experts.0.w1
- model.layers.4.block_sparse_moe.experts.0.w1
- model.layers.5.block_sparse_moe.experts.0.w1
- model.layers.6.block_sparse_moe.experts.0.w1
- model.layers.7.block_sparse_moe.experts.0.w1
- model.layers.8.block_sparse_moe.experts.0.w1
- model.layers.9.block_sparse_moe.experts.0.w1
- model.layers.10.block_sparse_moe.experts.0.w1
- model.layers.11.block_sparse_moe.experts.0.w1
- model.layers.12.block_sparse_moe.experts.0.w1
- model.layers.13.block_sparse_moe.experts.0.w1
- model.layers.0.block_sparse_moe.experts.0.w2
- model.layers.1.block_sparse_moe.experts.0.w2
- model.layers.2.block_sparse_moe.experts.0.w2
- model.layers.3.block_sparse_moe.experts.0.w2
- model.layers.4.block_sparse_moe.experts.0.w2
- model.layers.5.block_sparse_moe.experts.0.w2
- model.layers.6.block_sparse_moe.experts.0.w2
- model.layers.7.block_sparse_moe.experts.0.w2
- model.layers.8.block_sparse_moe.experts.0.w2
- model.layers.9.block_sparse_moe.experts.0.w2
- model.layers.10.block_sparse_moe.experts.0.w2
- model.layers.11.block_sparse_moe.experts.0.w2
- model.layers.12.block_sparse_moe.experts.0.w2
- model.layers.13.block_sparse_moe.experts.0.w2
- model.layers.0.block_sparse_moe.experts.0.w3
- model.layers.1.block_sparse_moe.experts.0.w3
- model.layers.2.block_sparse_moe.experts.0.w3
- model.layers.3.block_sparse_moe.experts.0.w3
- model.layers.4.block_sparse_moe.experts.0.w3
- model.layers.5.block_sparse_moe.experts.0.w3
- model.layers.6.block_sparse_moe.experts.0.w3
- model.layers.7.block_sparse_moe.experts.0.w3
- model.layers.8.block_sparse_moe.experts.0.w3
- model.layers.9.block_sparse_moe.experts.0.w3
- model.layers.10.block_sparse_moe.experts.0.w3
- model.layers.11.block_sparse_moe.experts.0.w3
- model.layers.12.block_sparse_moe.experts.0.w3
- model.layers.13.block_sparse_moe.experts.0.w3
- model.layers.0.block_sparse_moe.experts.1.w1
- model.layers.1.block_sparse_moe.experts.1.w1
- model.layers.2.block_sparse_moe.experts.1.w1
- model.layers.3.block_sparse_moe.experts.1.w1
- model.layers.4.block_sparse_moe.experts.1.w1
- model.layers.5.block_sparse_moe.experts.1.w1
- model.layers.6.block_sparse_moe.experts.1.w1
- model.layers.7.block_sparse_moe.experts.1.w1
- model.layers.8.block_sparse_moe.experts.1.w1
- model.layers.9.block_sparse_moe.experts.1.w1
- model.layers.10.block_sparse_moe.experts.1.w1
- model.layers.11.block_sparse_moe.experts.1.w1
- model.layers.12.block_sparse_moe.experts.1.w1
- model.layers.13.block_sparse_moe.experts.1.w1
- model.layers.40.block_sparse_moe.experts.1.w2
- model.layers.0.block_sparse_moe.experts.1.w2
- model.layers.1.block_sparse_moe.experts.1.w2
- model.layers.2.block_sparse_moe.experts.1.w2
- model.layers.3.block_sparse_moe.experts.1.w2
- model.layers.4.block_sparse_moe.experts.1.w2
- model.layers.5.block_sparse_moe.experts.1.w2
- model.layers.6.block_sparse_moe.experts.1.w2
- model.layers.7.block_sparse_moe.experts.1.w2
- model.layers.8.block_sparse_moe.experts.1.w2
- model.layers.9.block_sparse_moe.experts.1.w2
- model.layers.10.block_sparse_moe.experts.1.w2
- model.layers.11.block_sparse_moe.experts.1.w2
- model.layers.12.block_sparse_moe.experts.1.w2
- model.layers.5.block_sparse_moe.experts.1.w3
- model.layers.0.block_sparse_moe.experts.1.w3
- model.layers.1.block_sparse_moe.experts.1.w3
- model.layers.2.block_sparse_moe.experts.1.w3
- model.layers.3.block_sparse_moe.experts.1.w3
- model.layers.4.block_sparse_moe.experts.1.w3
- model.layers.6.block_sparse_moe.experts.1.w3
- model.layers.7.block_sparse_moe.experts.1.w3
- model.layers.8.block_sparse_moe.experts.1.w3
- model.layers.9.block_sparse_moe.experts.1.w3
- model.layers.10.block_sparse_moe.experts.1.w3
- model.layers.11.block_sparse_moe.experts.1.w3
- model.layers.12.block_sparse_moe.experts.1.w3
- model.layers.13.block_sparse_moe.experts.1.w3
- model.layers.1.block_sparse_moe.experts.2.w1
- model.layers.0.block_sparse_moe.experts.2.w1
- model.layers.2.block_sparse_moe.experts.2.w1
- model.layers.3.block_sparse_moe.experts.2.w1
- model.layers.4.block_sparse_moe.experts.2.w1
- model.layers.5.block_sparse_moe.experts.2.w1
- model.layers.6.block_sparse_moe.experts.2.w1
- model.layers.7.block_sparse_moe.experts.2.w1
- model.layers.8.block_sparse_moe.experts.2.w1
- model.layers.9.block_sparse_moe.experts.2.w1
- model.layers.10.block_sparse_moe.experts.2.w1
- model.layers.11.block_sparse_moe.experts.2.w1
- model.layers.12.block_sparse_moe.experts.2.w1
- model.layers.13.block_sparse_moe.experts.2.w1
- model.layers.1.block_sparse_moe.experts.2.w2
- model.layers.0.block_sparse_moe.experts.2.w2
- model.layers.2.block_sparse_moe.experts.2.w2
- model.layers.3.block_sparse_moe.experts.2.w2
- model.layers.4.block_sparse_moe.experts.2.w2
- model.layers.5.block_sparse_moe.experts.2.w2
- model.layers.6.block_sparse_moe.experts.2.w2
- model.layers.7.block_sparse_moe.experts.2.w2
- model.layers.8.block_sparse_moe.experts.2.w2
- model.layers.9.block_sparse_moe.experts.2.w2
- model.layers.10.block_sparse_moe.experts.2.w2
- model.layers.11.block_sparse_moe.experts.2.w2
- model.layers.12.block_sparse_moe.experts.2.w2
- model.layers.13.block_sparse_moe.experts.2.w2
- model.layers.1.block_sparse_moe.experts.2.w3
- model.layers.0.block_sparse_moe.experts.2.w3
- model.layers.2.block_sparse_moe.experts.2.w3
- model.layers.3.block_sparse_moe.experts.2.w3
- model.layers.4.block_sparse_moe.experts.2.w3
- model.layers.5.block_sparse_moe.experts.2.w3
- model.layers.6.block_sparse_moe.experts.2.w3
- model.layers.7.block_sparse_moe.experts.2.w3
- model.layers.8.block_sparse_moe.experts.2.w3
- model.layers.9.block_sparse_moe.experts.2.w3
- model.layers.10.block_sparse_moe.experts.2.w3
- model.layers.11.block_sparse_moe.experts.2.w3
- model.layers.12.block_sparse_moe.experts.2.w3
- model.layers.13.block_sparse_moe.experts.2.w3
- model.layers.2.block_sparse_moe.experts.3.w1
- model.layers.1.block_sparse_moe.experts.3.w1
- model.layers.0.block_sparse_moe.experts.3.w1
- model.layers.3.block_sparse_moe.experts.3.w1
- model.layers.4.block_sparse_moe.experts.3.w1
- model.layers.5.block_sparse_moe.experts.3.w1
- model.layers.6.block_sparse_moe.experts.3.w1
- model.layers.7.block_sparse_moe.experts.3.w1
- model.layers.8.block_sparse_moe.experts.3.w1
- model.layers.9.block_sparse_moe.experts.3.w1
- model.layers.10.block_sparse_moe.experts.3.w1
- model.layers.11.block_sparse_moe.experts.3.w1
- model.layers.12.block_sparse_moe.experts.3.w1
- model.layers.13.block_sparse_moe.experts.3.w1
- model.layers.2.block_sparse_moe.experts.3.w2
- model.layers.1.block_sparse_moe.experts.3.w2
- model.layers.0.block_sparse_moe.experts.3.w2
- model.layers.3.block_sparse_moe.experts.3.w2
- model.layers.4.block_sparse_moe.experts.3.w2
- model.layers.5.block_sparse_moe.experts.3.w2
- model.layers.6.block_sparse_moe.experts.3.w2
- model.layers.7.block_sparse_moe.experts.3.w2
- model.layers.8.block_sparse_moe.experts.3.w2
- model.layers.9.block_sparse_moe.experts.3.w2
- model.layers.10.block_sparse_moe.experts.3.w2
- model.layers.11.block_sparse_moe.experts.3.w2
- model.layers.12.block_sparse_moe.experts.3.w2
- model.layers.13.block_sparse_moe.experts.3.w2
- model.layers.2.block_sparse_moe.experts.3.w3
- model.layers.1.block_sparse_moe.experts.3.w3
- model.layers.0.block_sparse_moe.experts.3.w3
- model.layers.3.block_sparse_moe.experts.3.w3
- model.layers.4.block_sparse_moe.experts.3.w3
- model.layers.5.block_sparse_moe.experts.3.w3
- model.layers.6.block_sparse_moe.experts.3.w3
- model.layers.7.block_sparse_moe.experts.3.w3
- model.layers.8.block_sparse_moe.experts.3.w3
- model.layers.9.block_sparse_moe.experts.3.w3
- model.layers.10.block_sparse_moe.experts.3.w3
- model.layers.11.block_sparse_moe.experts.3.w3
- model.layers.12.block_sparse_moe.experts.3.w3
- model.layers.13.block_sparse_moe.experts.3.w3
- model.layers.3.block_sparse_moe.experts.4.w1
- model.layers.2.block_sparse_moe.experts.4.w1
- model.layers.1.block_sparse_moe.experts.4.w1
- model.layers.0.block_sparse_moe.experts.4.w1
- model.layers.4.block_sparse_moe.experts.4.w1
- model.layers.5.block_sparse_moe.experts.4.w1
- model.layers.6.block_sparse_moe.experts.4.w1
- model.layers.7.block_sparse_moe.experts.4.w1
- model.layers.8.block_sparse_moe.experts.4.w1
- model.layers.9.block_sparse_moe.experts.4.w1
- model.layers.10.block_sparse_moe.experts.4.w1
- model.layers.11.block_sparse_moe.experts.4.w1
- model.layers.12.block_sparse_moe.experts.4.w1
- model.layers.13.block_sparse_moe.experts.4.w1
- model.layers.2.block_sparse_moe.experts.4.w2
- model.layers.3.block_sparse_moe.experts.4.w2
- model.layers.1.block_sparse_moe.experts.4.w2
- model.layers.20.block_sparse_moe.experts.4.w2
- model.layers.0.block_sparse_moe.experts.4.w2
- model.layers.4.block_sparse_moe.experts.4.w2
- model.layers.5.block_sparse_moe.experts.4.w2
- model.layers.6.block_sparse_moe.experts.4.w2
- model.layers.7.block_sparse_moe.experts.4.w2
- model.layers.8.block_sparse_moe.experts.4.w2
- model.layers.9.block_sparse_moe.experts.4.w2
- model.layers.10.block_sparse_moe.experts.4.w2
- model.layers.11.block_sparse_moe.experts.4.w2
- model.layers.12.block_sparse_moe.experts.4.w2
- model.layers.3.block_sparse_moe.experts.4.w3
- model.layers.2.block_sparse_moe.experts.4.w3
- model.layers.1.block_sparse_moe.experts.4.w3
- model.layers.0.block_sparse_moe.experts.4.w3
- model.layers.4.block_sparse_moe.experts.4.w3
- model.layers.5.block_sparse_moe.experts.4.w3
- model.layers.6.block_sparse_moe.experts.4.w3
- model.layers.7.block_sparse_moe.experts.4.w3
- model.layers.8.block_sparse_moe.experts.4.w3
- model.layers.9.block_sparse_moe.experts.4.w3
- model.layers.10.block_sparse_moe.experts.4.w3
- model.layers.11.block_sparse_moe.experts.4.w3
- model.layers.12.block_sparse_moe.experts.4.w3
- model.layers.13.block_sparse_moe.experts.4.w3
- model.layers.4.block_sparse_moe.experts.5.w1
- model.layers.3.block_sparse_moe.experts.5.w1
- model.layers.2.block_sparse_moe.experts.5.w1
- model.layers.1.block_sparse_moe.experts.5.w1
- model.layers.0.block_sparse_moe.experts.5.w1
- model.layers.5.block_sparse_moe.experts.5.w1
- model.layers.6.block_sparse_moe.experts.5.w1
- model.layers.7.block_sparse_moe.experts.5.w1
- model.layers.8.block_sparse_moe.experts.5.w1
- model.layers.9.block_sparse_moe.experts.5.w1
- model.layers.10.block_sparse_moe.experts.5.w1
- model.layers.11.block_sparse_moe.experts.5.w1
- model.layers.12.block_sparse_moe.experts.5.w1
- model.layers.13.block_sparse_moe.experts.5.w1
- model.layers.4.block_sparse_moe.experts.5.w2
- model.layers.2.block_sparse_moe.experts.5.w2
- model.layers.3.block_sparse_moe.experts.5.w2
- model.layers.1.block_sparse_moe.experts.5.w2
- model.layers.0.block_sparse_moe.experts.5.w2
- model.layers.5.block_sparse_moe.experts.5.w2
- model.layers.6.block_sparse_moe.experts.5.w2
- model.layers.7.block_sparse_moe.experts.5.w2
- model.layers.8.block_sparse_moe.experts.5.w2
- model.layers.9.block_sparse_moe.experts.5.w2
- model.layers.10.block_sparse_moe.experts.5.w2
- model.layers.11.block_sparse_moe.experts.5.w2
- model.layers.12.block_sparse_moe.experts.5.w2
- model.layers.13.block_sparse_moe.experts.5.w2
- model.layers.4.block_sparse_moe.experts.5.w3
- model.layers.3.block_sparse_moe.experts.5.w3
- model.layers.2.block_sparse_moe.experts.5.w3
- model.layers.1.block_sparse_moe.experts.5.w3
- model.layers.0.block_sparse_moe.experts.5.w3
- model.layers.5.block_sparse_moe.experts.5.w3
- model.layers.6.block_sparse_moe.experts.5.w3
- model.layers.7.block_sparse_moe.experts.5.w3
- model.layers.8.block_sparse_moe.experts.5.w3
- model.layers.9.block_sparse_moe.experts.5.w3
- model.layers.10.block_sparse_moe.experts.5.w3
- model.layers.11.block_sparse_moe.experts.5.w3
- model.layers.12.block_sparse_moe.experts.5.w3
- model.layers.13.block_sparse_moe.experts.5.w3
- model.layers.5.block_sparse_moe.experts.6.w1
- model.layers.4.block_sparse_moe.experts.6.w1
- model.layers.3.block_sparse_moe.experts.6.w1
- model.layers.2.block_sparse_moe.experts.6.w1
- model.layers.1.block_sparse_moe.experts.6.w1
- model.layers.0.block_sparse_moe.experts.6.w1
- model.layers.6.block_sparse_moe.experts.6.w1
- model.layers.7.block_sparse_moe.experts.6.w1
- model.layers.8.block_sparse_moe.experts.6.w1
- model.layers.9.block_sparse_moe.experts.6.w1
- model.layers.10.block_sparse_moe.experts.6.w1
- model.layers.11.block_sparse_moe.experts.6.w1
- model.layers.12.block_sparse_moe.experts.6.w1
- model.layers.13.block_sparse_moe.experts.6.w1
- model.layers.5.block_sparse_moe.experts.6.w2
- model.layers.4.block_sparse_moe.experts.6.w2
- model.layers.2.block_sparse_moe.experts.6.w2
- model.layers.3.block_sparse_moe.experts.6.w2
- model.layers.1.block_sparse_moe.experts.6.w2
- model.layers.0.block_sparse_moe.experts.6.w2
- model.layers.6.block_sparse_moe.experts.6.w2
- model.layers.7.block_sparse_moe.experts.6.w2
- model.layers.8.block_sparse_moe.experts.6.w2
- model.layers.9.block_sparse_moe.experts.6.w2
- model.layers.10.block_sparse_moe.experts.6.w2
- model.layers.11.block_sparse_moe.experts.6.w2
- model.layers.12.block_sparse_moe.experts.6.w2
- model.layers.13.block_sparse_moe.experts.6.w2
- model.layers.5.block_sparse_moe.experts.6.w3
- model.layers.4.block_sparse_moe.experts.6.w3
- model.layers.3.block_sparse_moe.experts.6.w3
- model.layers.2.block_sparse_moe.experts.6.w3
- model.layers.1.block_sparse_moe.experts.6.w3
- model.layers.0.block_sparse_moe.experts.6.w3
- model.layers.6.block_sparse_moe.experts.6.w3
- model.layers.7.block_sparse_moe.experts.6.w3
- model.layers.8.block_sparse_moe.experts.6.w3
- model.layers.9.block_sparse_moe.experts.6.w3
- model.layers.10.block_sparse_moe.experts.6.w3
- model.layers.11.block_sparse_moe.experts.6.w3
- model.layers.12.block_sparse_moe.experts.6.w3
- model.layers.13.block_sparse_moe.experts.6.w3
- model.layers.5.block_sparse_moe.experts.7.w1
- model.layers.6.block_sparse_moe.experts.7.w1
- model.layers.3.block_sparse_moe.experts.7.w1
- model.layers.4.block_sparse_moe.experts.7.w1
- model.layers.2.block_sparse_moe.experts.7.w1
- model.layers.0.block_sparse_moe.experts.7.w1
- model.layers.7.block_sparse_moe.experts.7.w1
- model.layers.8.block_sparse_moe.experts.7.w1
- model.layers.9.block_sparse_moe.experts.7.w1
- model.layers.10.block_sparse_moe.experts.7.w1
- model.layers.11.block_sparse_moe.experts.7.w1
- model.layers.12.block_sparse_moe.experts.7.w1
- model.layers.13.block_sparse_moe.experts.7.w1
- model.layers.14.block_sparse_moe.experts.7.w1
- model.layers.6.block_sparse_moe.experts.7.w2
- model.layers.5.block_sparse_moe.experts.7.w2
- model.layers.4.block_sparse_moe.experts.7.w2
- model.layers.2.block_sparse_moe.experts.7.w2
- model.layers.3.block_sparse_moe.experts.7.w2
- model.layers.1.block_sparse_moe.experts.7.w2
- model.layers.0.block_sparse_moe.experts.7.w2
- model.layers.7.block_sparse_moe.experts.7.w2
- model.layers.8.block_sparse_moe.experts.7.w2
- model.layers.9.block_sparse_moe.experts.7.w2
- model.layers.10.block_sparse_moe.experts.7.w2
- model.layers.11.block_sparse_moe.experts.7.w2
- model.layers.12.block_sparse_moe.experts.7.w2
- model.layers.13.block_sparse_moe.experts.7.w2
- model.layers.6.block_sparse_moe.experts.7.w3
- model.layers.5.block_sparse_moe.experts.7.w3
- model.layers.4.block_sparse_moe.experts.7.w3
- model.layers.3.block_sparse_moe.experts.7.w3
- model.layers.2.block_sparse_moe.experts.7.w3
- model.layers.0.block_sparse_moe.experts.7.w3
- model.layers.7.block_sparse_moe.experts.7.w3
- model.layers.8.block_sparse_moe.experts.7.w3
- model.layers.9.block_sparse_moe.experts.7.w3
- model.layers.10.block_sparse_moe.experts.7.w3
- model.layers.11.block_sparse_moe.experts.7.w3
- model.layers.12.block_sparse_moe.experts.7.w3
- model.layers.13.block_sparse_moe.experts.7.w3
- model.layers.14.block_sparse_moe.experts.7.w3
- model.layers.0.block_sparse_moe.gate
- model.layers.1.block_sparse_moe.gate
- model.layers.2.block_sparse_moe.gate
- model.layers.3.block_sparse_moe.gate
- model.layers.4.block_sparse_moe.gate
- model.layers.5.block_sparse_moe.gate
- model.layers.6.block_sparse_moe.gate
- model.layers.7.block_sparse_moe.gate
- model.layers.8.block_sparse_moe.gate
- model.layers.9.block_sparse_moe.gate
- model.layers.10.block_sparse_moe.gate
- model.layers.11.block_sparse_moe.gate
- model.layers.12.block_sparse_moe.gate
- model.layers.13.block_sparse_moe.gate
model_config:
output_router_logits: true
datasets:
- path: /workspace/datasets/dolphin-2.9/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/Ultrachat200kunfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9/SystemConversations.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: thingy
val_set_size: 0.0002
output_dir: ./out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 3
logging_steps: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2.7e-5
wandb_project: dolphin-2.9-mixtral-8x22b
wandb_watch:
wandb_run_id:
wandb_log_model:
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
# resume_from_checkpoint: /home/ehartford/axolotl/out/checkpoint-316
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
saves_per_epoch: 8
save_total_limit: 2
save_steps:
evals_per_epoch: 4
eval_sample_packing: false
debug:
deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
```
</details><br>
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7022 | 0.0 | 1 | 0.6989 |
| 0.5344 | 0.25 | 238 | 0.5138 |
| 0.5204 | 0.5 | 476 | 0.5018 |
| 0.5059 | 0.75 | 714 | 0.4951 |
| 0.5112 | 1.0 | 952 | 0.4911 |
| 0.4561 | 1.24 | 1190 | 0.4978 |
| 0.478 | 1.49 | 1428 | 0.4935 |
| 0.4714 | 1.74 | 1666 | 0.4899 |
| 0.4626 | 1.99 | 1904 | 0.4861 |
| 0.3675 | 2.22 | 2142 | 0.5240 |
| 0.3595 | 2.47 | 2380 | 0.5229 |
| 0.3438 | 2.72 | 2618 | 0.5217 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0 | {"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "axolotl"], "datasets": ["cognitivecomputations/Dolphin-2.9", "teknium/OpenHermes-2.5", "m-a-p/CodeFeedback-Filtered-Instruction", "cognitivecomputations/dolphin-coder", "cognitivecomputations/samantha-data", "HuggingFaceH4/ultrachat_200k", "microsoft/orca-math-word-problems-200k", "abacusai/SystemChat-1.1", "Locutusque/function-calling-chatml", "internlm/Agent-FLAN"], "base_model": "mistral-community/Mixtral-8x22B-v0.1", "model-index": [{"name": "out", "results": []}]} | cognitivecomputations/dolphin-2.9-mixtral-8x22b | null | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"generated_from_trainer",
"axolotl",
"conversational",
"en",
"dataset:cognitivecomputations/Dolphin-2.9",
"dataset:teknium/OpenHermes-2.5",
"dataset:m-a-p/CodeFeedback-Filtered-Instruction",
"dataset:cognitivecomputations/dolphin-coder",
"dataset:cognitivecomputations/samantha-data",
"dataset:HuggingFaceH4/ultrachat_200k",
"dataset:microsoft/orca-math-word-problems-200k",
"dataset:abacusai/SystemChat-1.1",
"dataset:Locutusque/function-calling-chatml",
"dataset:internlm/Agent-FLAN",
"base_model:mistral-community/Mixtral-8x22B-v0.1",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"has_space"
] | null | 2024-04-29T15:58:25+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo UnicomLLM/Unichat-llama3-Chinese-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/UnicomLLM-Unichat-llama3-Chinese-8B-HQQ-1bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/UnicomLLM-Unichat-llama3-Chinese-8B-HQQ-1bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("UnicomLLM/Unichat-llama3-Chinese-8B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model UnicomLLM/Unichat-llama3-Chinese-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "UnicomLLM/Unichat-llama3-Chinese-8B"} | PrunaAI/UnicomLLM-Unichat-llama3-Chinese-8B-HQQ-1bit-smashed | null | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"base_model:UnicomLLM/Unichat-llama3-Chinese-8B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:58:39+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/gemma-7b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-gemma-7b-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-gemma-7b-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/gemma-7b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/gemma-7b"} | PrunaAI/google-gemma-7b-HQQ-4bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/gemma-7b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:58:39+00:00 |
null | transformers |
# Uploaded model
- **Developed by:** WbjuSrceu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-2b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "gemma", "trl"], "base_model": "unsloth/gemma-2b-bnb-4bit"} | WbjuSrceu/l | null | [
"transformers",
"text-generation-inference",
"unsloth",
"gemma",
"trl",
"en",
"base_model:unsloth/gemma-2b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T15:59:21+00:00 |
text-to-image | diffusers | # Dottore
<Gallery />
## Trigger words
You should use `1boy` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Akimitsujiro/Dottore-Genshin-impact/tree/main) them in the Files & versions tab.
| {"license": "creativeml-openrail-m", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora"], "widget": [{"text": "1boy, male_focus, solo, earrings, jewelry, red_eyes, gloves, blue_hair, fur_trim, blood, mask, open_mouth, smile, hair_between_eyes, black_gloves, coat, upper_body, teeth, holding, bangs, fur-trimmed_coat, blue_shirt, short_hair, sidelocks, shirt, artist_name, single_earring, mask_removed", "parameters": {"negative_prompt": "worst quality, large head, low quality, extra digits, bad eye, EasyNegativeV2, ng_deepnegative_v1_75t"}, "output": {"url": "images/1000092456.webp"}}], "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "1boy"} | Akimitsujiro/Dottore-Genshin-impact | null | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-04-29T15:59:30+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/qj0ujtg | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T15:59:35+00:00 |
video-classification | transformers | {} | michele081tufano/videomae-base-finetuned-ciska-subset | null | [
"transformers",
"safetensors",
"videomae",
"video-classification",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:01:08+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | MohammadSajjad/wav2vec2-large-mms-1b-persian-colab-v3 | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:01:19+00:00 |
null | null | {} | OO8/3B32 | null | [
"region:us"
] | null | 2024-04-29T16:01:20+00:00 |
|
null | null | {} | corenet-community/places365-224x224-vit-base | null | [
"region:us"
] | null | 2024-04-29T16:01:49+00:00 |
|
null | null | {} | corenet-community/places365-224x224-vit-large | null | [
"region:us"
] | null | 2024-04-29T16:02:24+00:00 |
|
text-to-image | diffusers | {} | ai-tools-searchs/au | null | [
"diffusers",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | null | 2024-04-29T16:02:34+00:00 |
|
text-generation | null |
## Llamacpp imatrix Quantizations of Meta-Llama-3-8B-Instruct
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> commit <a href="https://github.com/ggerganov/llama.cpp/commit/ffe666572f98a686b17a2cd1dbf4c0a982e5ac0a">ffe6665</a> for quantization.
Original model: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
## Prompt format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Meta-Llama-3-8B-Instruct-Q8_0.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
| [Meta-Llama-3-8B-Instruct-Q6_K.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
| [Meta-Llama-3-8B-Instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
| [Meta-Llama-3-8B-Instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
| [Meta-Llama-3-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
| [Meta-Llama-3-8B-Instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
| [Meta-Llama-3-8B-Instruct-IQ4_NL.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ4_NL.gguf) | IQ4_NL | 4.67GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
| [Meta-Llama-3-8B-Instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [Meta-Llama-3-8B-Instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
| [Meta-Llama-3-8B-Instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
| [Meta-Llama-3-8B-Instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| [Meta-Llama-3-8B-Instruct-IQ3_S.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ3_S.gguf) | IQ3_S | 3.68GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
| [Meta-Llama-3-8B-Instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
| [Meta-Llama-3-8B-Instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| [Meta-Llama-3-8B-Instruct-IQ3_XXS.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
| [Meta-Llama-3-8B-Instruct-Q2_K.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
| [Meta-Llama-3-8B-Instruct-IQ2_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
| [Meta-Llama-3-8B-Instruct-IQ2_S.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
| [Meta-Llama-3-8B-Instruct-IQ2_XS.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |
| [Meta-Llama-3-8B-Instruct-IQ2_XXS.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ2_XXS.gguf) | IQ2_XXS | 2.39GB | Lower quality, uses SOTA techniques to be usable. |
| [Meta-Llama-3-8B-Instruct-IQ1_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ1_M.gguf) | IQ1_M | 2.16GB | Extremely low quality, *not* recommended. |
| [Meta-Llama-3-8B-Instruct-IQ1_S.gguf](https://huggingface.co/bartowski/Meta-Llama-3-8B-Instruct-GGUF/blob/main/Meta-Llama-3-8B-Instruct-IQ1_S.gguf) | IQ1_S | 2.01GB | Extremely low quality, *not* recommended. |
## Which file should I choose?
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
If you want to get more into the weeds, you can check out this extremely useful feature chart:
[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
| {"language": ["en"], "license": "other", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "pipeline_tag": "text-generation", "license_name": "llama3", "license_link": "LICENSE", "extra_gated_prompt": "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama 3\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Meta Llama 3 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Meta Llama 3\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama 3\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cMeta Llama 3 is licensed under the Meta Llama 3 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference into this Agreement.\nv. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama 3\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable Use Policy (\u201cPolicy\u201d). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n#### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly. You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Meta Llama 3 related to the following:\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal drugs and regulated/controlled substances\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 3. Generating, promoting, or further distributing spam\n 4. Impersonating another individual without consent, authorization, or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are human-generated\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n4. Fail to appropriately disclose to end users any known dangers of your AI system\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n * Reporting issues with the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit", "widget": [{"example_title": "Hello", "messages": [{"role": "user", "content": "Hey my name is Julien! How are you?"}]}, {"example_title": "Winter holidays", "messages": [{"role": "system", "content": "You are a helpful and honest assistant. Please, respond concisely and truthfully."}, {"role": "user", "content": "Can you recommend a good destination for Winter holidays?"}]}, {"example_title": "Programming assistant", "messages": [{"role": "system", "content": "You are a helpful and honest code and programming assistant. Please, respond concisely and truthfully."}, {"role": "user", "content": "Write a function that computes the nth fibonacci number."}]}], "inference": {"parameters": {"max_new_tokens": 300, "stop": ["<|end_of_text|>", "<|eot_id|>"]}}, "quantized_by": "bartowski"} | bartowski/Meta-Llama-3-8B-Instruct-GGUF | null | [
"gguf",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"text-generation",
"en",
"license:other",
"has_space",
"region:us"
] | null | 2024-04-29T16:03:11+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/gemma-7b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-gemma-7b-it-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-gemma-7b-it-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/gemma-7b-it before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/gemma-7b-it"} | PrunaAI/google-gemma-7b-it-HQQ-4bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/gemma-7b-it",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T16:03:26+00:00 |
null | null | {} | Punthon/typhoon-7b-text-to-pandas | null | [
"region:us"
] | null | 2024-04-29T16:03:44+00:00 |
|
null | transformers |
# Model description
SiT is a self-supervised learning model that combines masked image modeling and contrastive learning. The model is trained on ImageNet-1K.
# Model Sources
- https://github.com/Sara-Ahmed/SiT
- https://arxiv.org/abs/2104.03602
# Model Card Authors
Sara Atito, Muhammad Awais, Josef Kittler
# How to use
```python
from modeling_sit import ViTSiTForPreTraining
# reload
model = ViTSiTForPreTraining.from_pretrained("erow/SiT")
```
# BibTeX entry and citation info
```
@inproceedings{atito2023sit,
title={SiT is all you need},
author={Atito, Sara and Awais, Muhammed and Nandam, Srinivasa and Kittler, Josef},
booktitle={2023 IEEE International Conference on Image Processing (ICIP)},
pages={2125--2129},
year={2023},
organization={IEEE}
}
``` | {"license": "apache-2.0", "tags": ["self-supervised learning", "vision", "SiT"], "inference": false} | erow/SiT | null | [
"transformers",
"safetensors",
"vit_sit",
"self-supervised learning",
"vision",
"SiT",
"arxiv:2104.03602",
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T16:03:45+00:00 |
null | null | {} | corenet-community/places365-224x224-vit-huge | null | [
"region:us"
] | null | 2024-04-29T16:04:18+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth"]} | mintujupally/llama2-7b-bnb-4bit-ft | null | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:04:27+00:00 |
text2text-generation | transformers | {} | nick-carroll1/marian-finetuned-kde4-en-to-fr | null | [
"transformers",
"safetensors",
"marian",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:04:44+00:00 |
|
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/gemma-2b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/google-gemma-2b-it-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/gemma-2b-it before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/gemma-2b-it"} | PrunaAI/google-gemma-2b-it-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/gemma-2b-it",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T16:05:21+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-codegemma-7b-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-codegemma-7b-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-7b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-7b"} | PrunaAI/google-codegemma-7b-HQQ-4bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-7b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T16:06:46+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/gemma-2b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/google-gemma-2b-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/gemma-2b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/gemma-2b"} | PrunaAI/google-gemma-2b-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/gemma-2b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T16:07:11+00:00 |
null | null | {} | aarashfeizi/jean-francois-godbout-batch4-repeats4-rank64-snr5.0 | null | [
"region:us"
] | null | 2024-04-29T16:07:18+00:00 |
|
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-peft-p-tuning
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6299
- Accuracy: 0.6649
- F1: 0.7987
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 39 | 0.6309 | 0.6649 | 0.7987 |
| No log | 2.0 | 78 | 0.6299 | 0.6649 | 0.7987 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "mit", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "roberta-large", "model-index": [{"name": "roberta-large-peft-p-tuning", "results": []}]} | NikiBase/roberta-large-peft-p-tuning | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:roberta-large",
"license:mit",
"region:us"
] | null | 2024-04-29T16:07:23+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-2b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/google-codegemma-2b-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-2b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-2b"} | PrunaAI/google-codegemma-2b-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-2b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T16:07:28+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth"]} | mintujupally/mistral-7b-bnb-4bit-ft | null | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:07:33+00:00 |
null | null | {} | corenet-community/place365-512x512-vit-huge | null | [
"region:us"
] | null | 2024-04-29T16:08:33+00:00 |
|
null | null | {} | aaalby/sofia | null | [
"region:us"
] | null | 2024-04-29T16:08:41+00:00 |
|
null | fastai |
# Amazing!
π₯³ Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using π€ Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner π€! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
| {"tags": ["fastai"]} | NatanGarMar/entregable2_model1 | null | [
"fastai",
"has_space",
"region:us"
] | null | 2024-04-29T16:08:48+00:00 |
null | null | {} | diepi/my_awesome_model | null | [
"region:us"
] | null | 2024-04-29T16:09:49+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth", "trl", "sft"]} | JenniferDrieenhuyzen/llama3_npp | null | [
"transformers",
"pytorch",
"llama",
"text-generation",
"unsloth",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T16:10:08+00:00 |
text-generation | transformers |
# Wizard-llama3-70B

## Model description
Wizard-llama3-70B is the fine tune of llama3 70b on top of public datasets and some additional code datasets. model uses ChatML prompt template format.
Wizard-llama3-70B has a variety of instruction, logic and coding skills. It also has initial agentic abilities and supports function calling.
tried to make the model as uncensored as possible .
| {"language": ["en"], "license": "mit", "tags": ["llama-3", "instruct", "finetune", "synthetic data", "distillation"], "base_model": "meta-llama/Meta-Llama-3-70B", "model-index": [{"name": "Wizard-llama3-70B", "results": []}]} | feeltheAGI/Wizard-llama3-70B | null | [
"transformers",
"pytorch",
"llama",
"text-generation",
"llama-3",
"instruct",
"finetune",
"synthetic data",
"distillation",
"conversational",
"en",
"base_model:meta-llama/Meta-Llama-3-70B",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T16:10:17+00:00 |
text-generation | transformers |
# Hermes 2 Pro BakLLaVA - Mistral 7B
Hermes 2 Pro's LLaMA weights + BakLLaVA's mm_projector & vision_tower weights.
Good QA + Function Calling + JSON Mode + Vision Multimodal
GGUFs:
- Hermes 2 pro: https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF
- BakLLaVA-1: https://huggingface.co/mys/ggml_bakllava-1
Test code:
```python
from llava.mm_utils import get_model_name_from_path
from llava.eval.run_llava import eval_model
model_path = "vonjack/Hermes-2-Pro-BakLLaVA-Mistral-7B"
prompt = "What's the content of the image?"
image_file = "https://www.ilankelman.org/stopsigns/australia.jpg"
args = type('Args', (), {
"model_path": model_path,
"model_base": None,
"model_name": get_model_name_from_path(model_path),
"query": prompt,
"conv_mode": None,
"image_file": image_file,
"sep": ",",
"temperature": 0,
"top_p": None,
"num_beams": 1,
"max_new_tokens": 512
})()
eval_model(args)
```
Example:

| {"language": ["en"], "license": "apache-2.0", "tags": ["Mistral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "function calling", "json mode", "llava", "vision", "multimodal"], "datasets": ["teknium/OpenHermes-2.5", "SkunkworksAI/BakLLaVA-1-FT"], "base_model": ["NousResearch/Hermes-2-Pro-Mistral-7B", "kunkworksAI/BakLLaVA-1"], "widget": [{"example_title": "Hermes 2 Pro", "messages": [{"role": "system", "content": "You are a sentient, superintelligent artificial general intelligence, here to teach and assist me."}, {"role": "user", "content": "Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world."}]}], "model-index": [{"name": "Hermes-2-Pro-Mistral-7B", "results": []}]} | vonjack/Hermes-2-Pro-BakLLaVA-Mistral-7B | null | [
"transformers",
"safetensors",
"llava_mistral",
"text-generation",
"Mistral",
"instruct",
"finetune",
"chatml",
"DPO",
"RLHF",
"gpt4",
"synthetic data",
"distillation",
"function calling",
"json mode",
"llava",
"vision",
"multimodal",
"conversational",
"en",
"dataset:teknium/OpenHermes-2.5",
"dataset:SkunkworksAI/BakLLaVA-1-FT",
"base_model:NousResearch/Hermes-2-Pro-Mistral-7B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:10:27+00:00 |
null | null | {} | corenet-community/place365-512x512-vit-large | null | [
"region:us"
] | null | 2024-04-29T16:10:34+00:00 |
|
sentence-similarity | sentence-transformers |
# SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) on the [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) dataset. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) <!-- at revision d782507ee95c6565fe5924fcd6090999055e8db6 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 312 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2")
# Run inference
sentences = [
'A person standing',
'There is a person standing outside',
'A young man plays a racing video game.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8078 |
| **spearman_cosine** | **0.8209** |
| pearson_manhattan | 0.8226 |
| spearman_manhattan | 0.8203 |
| pearson_euclidean | 0.8216 |
| spearman_euclidean | 0.8202 |
| pearson_dot | 0.7901 |
| spearman_dot | 0.7914 |
| pearson_max | 0.8226 |
| spearman_max | 0.8209 |
#### Knowledge Distillation
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-50.1254** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7517 |
| **spearman_cosine** | **0.7558** |
| pearson_manhattan | 0.7763 |
| spearman_manhattan | 0.7597 |
| pearson_euclidean | 0.7706 |
| spearman_euclidean | 0.7554 |
| pearson_dot | 0.7307 |
| spearman_dot | 0.7098 |
| pearson_max | 0.7763 |
| spearman_max | 0.7597 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### sentence-transformers/wikipedia-en-sentences
* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 200,000 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
* Samples:
| sentence | label |
|:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>[-0.09614687412977219, 0.6815224885940552, 2.702199935913086, 1.8371250629425049, -1.2949433326721191, ...]</code> |
| <code>Children smiling and waving at camera</code> | <code>[2.769360303878784, 3.074428081512451, -7.291755676269531, 5.248741149902344, 2.85081148147583, ...]</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-3.0669667720794678, 2.9899890422821045, -1.253997802734375, 6.15218448638916, 0.5838223099708557, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
### Evaluation Dataset
#### sentence-transformers/wikipedia-en-sentences
* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 10,000 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
* Samples:
| sentence | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>[6.200135707855225, -2.0865142345428467, -2.1313390731811523, -1.9593913555145264, -1.081985592842102, ...]</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[1.7725015878677368, 0.6873414516448975, -2.5191268920898438, 3.866339683532715, 2.853647470474243, ...]</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[-3.317653179168701, 3.0908589363098145, 0.1683920919895172, -2.4405274391174316, -3.1366524696350098, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:--------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
| 0.032 | 100 | 0.8847 | - | - | - | - |
| 0.064 | 200 | 0.8136 | - | - | - | - |
| 0.096 | 300 | 0.697 | - | - | - | - |
| 0.128 | 400 | 0.6128 | - | - | - | - |
| 0.16 | 500 | 0.5634 | 0.6324 | -63.2356 | 0.7564 | - |
| 0.192 | 600 | 0.5294 | - | - | - | - |
| 0.224 | 700 | 0.5035 | - | - | - | - |
| 0.256 | 800 | 0.4861 | - | - | - | - |
| 0.288 | 900 | 0.4668 | - | - | - | - |
| 0.32 | 1000 | 0.4515 | 0.5673 | -56.7263 | 0.7965 | - |
| 0.352 | 1100 | 0.4376 | - | - | - | - |
| 0.384 | 1200 | 0.4274 | - | - | - | - |
| 0.416 | 1300 | 0.4178 | - | - | - | - |
| 0.448 | 1400 | 0.4098 | - | - | - | - |
| 0.48 | 1500 | 0.4053 | 0.5354 | -53.5381 | 0.8091 | - |
| 0.512 | 1600 | 0.3934 | - | - | - | - |
| 0.544 | 1700 | 0.391 | - | - | - | - |
| 0.576 | 1800 | 0.3848 | - | - | - | - |
| 0.608 | 1900 | 0.3785 | - | - | - | - |
| 0.64 | 2000 | 0.3737 | 0.5168 | -51.6829 | 0.8159 | - |
| 0.672 | 2100 | 0.3716 | - | - | - | - |
| 0.704 | 2200 | 0.3695 | - | - | - | - |
| 0.736 | 2300 | 0.3666 | - | - | - | - |
| 0.768 | 2400 | 0.3616 | - | - | - | - |
| 0.8 | 2500 | 0.358 | 0.5067 | -50.6687 | 0.8189 | - |
| 0.832 | 2600 | 0.3551 | - | - | - | - |
| 0.864 | 2700 | 0.3544 | - | - | - | - |
| 0.896 | 2800 | 0.3524 | - | - | - | - |
| 0.928 | 2900 | 0.3524 | - | - | - | - |
| **0.96** | **3000** | **0.3529** | **0.5013** | **-50.1254** | **0.8209** | **-** |
| 0.992 | 3100 | 0.3496 | - | - | - | - |
| 1.0 | 3125 | - | - | - | - | 0.7558 |
* The bold row denotes the saved checkpoint.
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.009 kWh
- **Carbon Emitted**: 0.003 kg of CO2
- **Hours Used**: 0.054 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> | {"language": ["en"], "library_name": "sentence-transformers", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "loss:MSELoss"], "metrics": ["pearson_cosine", "spearman_cosine", "pearson_manhattan", "spearman_manhattan", "pearson_euclidean", "spearman_euclidean", "pearson_dot", "spearman_dot", "pearson_max", "spearman_max", "negative_mse"], "base_model": "nreimers/TinyBERT_L-4_H-312_v2", "widget": [{"source_sentence": "A woman at home.", "sentences": ["The woman is inside.", "The woman is performing for an audience.", "The two men are freinds"]}, {"source_sentence": "boys play football", "sentences": ["Rival college football players are playing a football game.", "A man looks at his watch at a bus stop.", "A woman walking on an old bridge near a mountain."]}, {"source_sentence": "Nobody has a pot", "sentences": ["Nobody has a suit", "A woman riding a bicycle on the street.", "The front is decorated with Ethiopian themes and motifs."]}, {"source_sentence": "A dog plays ball.", "sentences": ["A dog with a ball.", "A man looking into a microscope in a lab", "Children go past their parents."]}, {"source_sentence": "A person standing", "sentences": ["There is a person standing outside", "A young man plays a racing video game.", "Two children playing on the floor with toy trains."]}], "pipeline_tag": "sentence-similarity", "co2_eq_emissions": {"emissions": 3.457859864142588, "energy_consumed": 0.00889591477312334, "source": "codecarbon", "training_type": "fine-tuning", "on_cloud": false, "cpu_model": "13th Gen Intel(R) Core(TM) i7-13700K", "ram_total_size": 31.777088165283203, "hours_used": 0.054, "hardware_used": "1 x NVIDIA GeForce RTX 3090"}, "model-index": [{"name": "SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2", "results": [{"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts dev", "type": "sts-dev"}, "metrics": [{"type": "pearson_cosine", "value": 0.8077673131159315, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.8208863013753134, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.8225516575982812, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.8203236078973807, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.8215663439432439, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.8202318953605339, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.7901487535994149, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.7914362691291718, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.8225516575982812, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.8208863013753134, "name": "Spearman Max"}]}, {"task": {"type": "knowledge-distillation", "name": "Knowledge Distillation"}, "dataset": {"name": "Unknown", "type": "unknown"}, "metrics": [{"type": "negative_mse", "value": -50.125449895858765, "name": "Negative Mse"}]}, {"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts test", "type": "sts-test"}, "metrics": [{"type": "pearson_cosine", "value": 0.7516961775809978, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.7558402072520215, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.7762734499549059, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.75965556867712, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.7705568379382428, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.7553604477247078, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.7306801501272192, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.7097993872384684, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.7762734499549059, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.75965556867712, "name": "Spearman Max"}]}]}]} | tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2 | null | [
"sentence-transformers",
"safetensors",
"bert",
"sentence-similarity",
"feature-extraction",
"loss:MSELoss",
"en",
"arxiv:1908.10084",
"arxiv:2004.09813",
"base_model:nreimers/TinyBERT_L-4_H-312_v2",
"model-index",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:10:48+00:00 |
null | null |
# Yamshadowexperiment28T3q-7B
Yamshadowexperiment28T3q-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration.
## π§© Configuration
```yaml
models:
- model: mistralai/Mistral-7B-v0.1
- model: automerger/YamshadowExperiment28-7B
- model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO
merge_method: model_stock
base_model: mistralai/Mistral-7B-v0.1
dtype: bfloat16
```
## π» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "automerger/Yamshadowexperiment28T3q-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "automerger"]} | automerger/Yamshadowexperiment28T3q-7B | null | [
"merge",
"mergekit",
"lazymergekit",
"automerger",
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T16:10:51+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth"]} | mintujupally/gemma-7b-bnb-4bit-ft | null | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:11:26+00:00 |
null | null | {} | corenet-community/place365-512x512-vit-base | null | [
"region:us"
] | null | 2024-04-29T16:12:03+00:00 |
|
null | null | {} | Ilkinism/test-ilkin-private233 | null | [
"safetensors",
"region:us"
] | null | 2024-04-29T16:15:44+00:00 |
|
null | null | {} | sin2piusc/whisper-small-10K-jp | null | [
"safetensors",
"region:us"
] | null | 2024-04-29T16:16:00+00:00 |
|
null | null | {"license": "openrail"} | otmanabs/gcam1 | null | [
"safetensors",
"license:openrail",
"region:us"
] | null | 2024-04-29T16:16:46+00:00 |
|
null | null | {} | aarashfeizi/jean-francois-godbout-batch2-repeats3-rank32-snrNone | null | [
"region:us"
] | null | 2024-04-29T16:16:48+00:00 |
|
null | null |
Samantha-ita-v0.1 GGUF Files
```
q8_0
q6_k
q5_k,m
q4_k_m
``` | {"language": ["it"], "license": "mit", "tags": ["gguf", "samantha"]} | WasamiKirua/Samantha-ita-mistral-v0.1-GGUF | null | [
"gguf",
"samantha",
"it",
"license:mit",
"region:us"
] | null | 2024-04-29T16:16:51+00:00 |
null | null | {"license": "openrail"} | weillon/marcelocamp | null | [
"license:openrail",
"region:us"
] | null | 2024-04-29T16:16:57+00:00 |
|
text-generation | transformers | {} | jamesoneill12/sft-dynamoguard-non-balanced | null | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T16:17:44+00:00 |
|
null | null | # Llama3-OpenBioLLM-70B-GGUF
- Original model: [Llama3-OpenBioLLM-70B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B)
<!-- description start -->
## Description
This repo contains GGUF format model files for [Llama3-OpenBioLLM-70B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration.
* [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applicationsβ
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling.
* [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration.
* [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use.
* [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server.
* [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
<!-- README_GGUF.md-about-gguf end -->
<!-- compatibility_gguf start -->
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: LiteLLMs/Llama3-OpenBioLLM-70B-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install huggingface_hub[hf_transfer]
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 β Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first
n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
)
# Simple inference example
output = llm(
"<PROMPT>", # Prompt
max_tokens=512, # Generate up to 512 tokens
stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
echo=True # Whether to echo the prompt
)
# Chat Completion API
llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a story writing assistant."},
{
"role": "user",
"content": "Write a story about llamas."
}
]
)
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
<!-- README_GGUF.md-how-to-run end -->
<!-- footer end -->
<!-- original-model-card start -->
# Original model card: Llama3-OpenBioLLM-70B
<div align="center">
<img width="260px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/BrQCb95lmEIFz79QAmoNA.png"></div>

<div align="center">
<h1>Advancing Open-source Large Language Models in Medical Domain</h1>
</div>
<p align="center" style="margin-top: 0px;">
<a href="https://colab.research.google.com/drive/1F5oV20InEYeAJGmBwYF9NM_QhLmjBkKJ?usp=sharing">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style=" margin-right: 5px;">Online Demo</span>
</a> |
<a href="https://github.com/openlifescience-ai">
<img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style=" margin-right: 5px;">GitHub</span>
</a> |
<a href="#">
<img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style="margin-right: 5px;">Paper</span>
</a> |
<a href="https://discord.gg/A5Fjf5zC69">
<img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text">Discord</span>
</a>
</p>

Introducing OpenBioLLM-70B: A State-of-the-Art Open Source Biomedical Large Language Model
OpenBioLLM-70B is an advanced open source language model designed specifically for the biomedical domain. Developed by Saama AI Labs, this model leverages cutting-edge techniques to achieve state-of-the-art performance on a wide range of biomedical tasks.
π₯ **Biomedical Specialization**: OpenBioLLM-70B is tailored for the unique language and knowledge requirements of the medical and life sciences fields. It was fine-tuned on a vast corpus of high-quality biomedical data, enabling it to understand and generate text with domain-specific accuracy and fluency.
π **Superior Performance**: With 70 billion parameters, OpenBioLLM-70B outperforms other open source biomedical language models of similar scale. It has also demonstrated better results compared to larger proprietary & open-source models like GPT-4, Gemini, Meditron-70B, Med-PaLM-1 & Med-PaLM-2 on biomedical benchmarks.
π§ **Advanced Training Techniques**: OpenBioLLM-70B builds upon the powerful foundations of the **Meta-Llama-3-70B-Instruct** and [Meta-Llama-3-70B-Instruct](meta-llama/Meta-Llama-3-70B-Instruct) models. It incorporates the DPO dataset and fine-tuning recipe along with a custom diverse medical instruction dataset. Key components of the training pipeline include:
<div align="center">
<img width="1200px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/oPchsJsEpQoGcGXVbh7YS.png">
</div>
- **Policy Optimization**: [Direct Preference Optimization: Your Language Model is Secretly a Reward Model (DPO)](https://arxiv.org/abs/2305.18290)
- **Fine-tuning dataset**: Custom Medical Instruct dataset (We plan to release a sample training dataset in our upcoming paper; please stay updated)
This combination of cutting-edge techniques enables OpenBioLLM-70B to align with key capabilities and preferences for biomedical applications.
βοΈ **Release Details**:
- **Model Size**: 70 billion parameters
- **Quantization**: Optimized quantized versions available [Here](https://huggingface.co/aaditya/OpenBioLLM-70B-GGUF)
- **Language(s) (NLP):**Β en
- **Developed By**: [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) from Saama AI Labs
- **License:**Β Meta-Llama License
- **Fine-tuned from models:**Β [Meta-Llama-3-70B-Instruct](meta-llama/Meta-Llama-3-70B-Instruct)
- **Resources for more information:**
- Paper: Coming soon
The model can be fine-tuned for more specialized tasks and datasets as needed.
OpenBioLLM-70B represents an important step forward in democratizing advanced language AI for the biomedical community. By leveraging state-of-the-art architectures and training techniques from leading open source efforts like Llama-3, we have created a powerful tool to accelerate innovation and discovery in healthcare and the life sciences.
We are excited to share OpenBioLLM-70B with researchers and developers around the world.
### Use with transformers
**Important: Please use the exact chat template provided by Llama-3 instruct version. Otherwise there will be a degradation in the performance. The model output can be verbose in rare cases. Please consider setting temperature = 0 to make this happen less.**
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "aaditya/OpenBioLLM-Llama3-70B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="auto",
)
messages = [
{"role": "system", "content": "You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. Your name is OpenBioLLM, and you were developed by Saama AI Labs. who's willing to help answer the user's query with explanation. In your explanation, leverage your deep medical expertise such as relevant anatomical structures, physiological processes, diagnostic criteria, treatment guidelines, or other pertinent medical concepts. Use precise medical terminology while still aiming to make the explanation clear and accessible to a general audience."},
{"role": "user", "content": "How can i split a 3mg or 4mg waefin pill so i can get a 2.5mg pill?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.0,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
## **Training procedure**
### **Training hyperparameters**
<details>
<summary>Click to see details</summary>
- learning_rate: 0.0002
- lr_scheduler: cosine
- train_batch_size: 12
- eval_batch_size: 8
- GPU: H100 80GB SXM5
- num_devices: 8
- optimizer: adamw_bnb_8bit
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
</details>
### **Peft hyperparameters**
<details>
<summary>Click to see details</summary>
- adapter: qlora
- lora_r: 128
- lora_alpha: 256
- lora_dropout: 0.05
- lora_target_linear: true
-lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
</details>
### **Training results**
### **Framework versions**
- Transformers 4.39.3
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1
- Axolotl
- Lm harness for evaluation
# Benchmark Results
π₯ OpenBioLLM-70B demonstrates superior performance compared to larger models, such as GPT-4, Gemini, Meditron-70B, Med-PaLM-1 & Med-PaLM-2 across 9 diverse biomedical datasets, achieving state-of-the-art results with an average score of 86.06%, despite having a significantly smaller parameter count. The model's strong performance in domain-specific tasks, such as Clinical KG, Medical Genetics, and PubMedQA, highlights its ability to effectively capture and apply biomedical knowledge.
π¨ The GPT-4, Med-PaLM-1, and Med-PaLM-2 results are taken from their official papers. Since Med-PaLM doesn't provide zero-shot accuracy, we are using 5-shot accuracy from their paper for comparison. All results presented are in the zero-shot setting, except for Med-PaLM-2 and Med-PaLM-1, which use 5-shot accuracy.
| | Clinical KG | Medical Genetics | Anatomy | Pro Medicine | College Biology | College Medicine | MedQA 4 opts | PubMedQA | MedMCQA | Avg |
| | - | | - | |
| **OpenBioLLM-70B** | **92.93** | **93.197** | **83.904** | 93.75 | 93.827 | **85.749** | 78.162 | 78.97 | **74.014** | **86.05588** |
| Med-PaLM-2 (5-shot) | 88.3 | 90 | 77.8 | **95.2** | 94.4 | 80.9 | **79.7** | **79.2** | 71.3 | 84.08 |
| **GPT-4** | 86.04 | 91 | 80 | 93.01 | **95.14** | 76.88 | 78.87 | 75.2 | 69.52 | 82.85 |
| Med-PaLM-1 (Flan-PaLM, 5-shot) | 80.4 | 75 | 63.7 | 83.8 | 88.9 | 76.3 | 67.6 | 79 | 57.6 | 74.7 |
| **OpenBioLLM-8B** | 76.101 | 86.1 | 69.829 | 78.21 | 84.213 | 68.042 | 58.993 | 74.12 | 56.913 | 72.502 |
| Gemini-1.0 | 76.7 | 75.8 | 66.7 | 77.7 | 88 | 69.2 | 58 | 70.7 | 54.3 | 70.79 |
| GPT-3.5 Turbo 1106 | 74.71 | 74 | 72.79 | 72.79 | 72.91 | 64.73 | 57.71 | 72.66 | 53.79 | 66 |
| Meditron-70B | 66.79 | 69 | 53.33 | 71.69 | 76.38 | 63 | 57.1 | 76.6 | 46.85 | 64.52 |
| gemma-7b | 69.81 | 70 | 59.26 | 66.18 | 79.86 | 60.12 | 47.21 | 76.2 | 48.96 | 64.18 |
| Mistral-7B-v0.1 | 68.68 | 71 | 55.56 | 68.38 | 68.06 | 59.54 | 50.82 | 75.4 | 48.2 | 62.85 |
| Apollo-7B | 62.26 | 72 | 61.48 | 69.12 | 70.83 | 55.49 | 55.22 | 39.8 | 53.77 | 60 |
| MedAlpaca-7b | 57.36 | 69 | 57.04 | 67.28 | 65.28 | 54.34 | 41.71 | 72.8 | 37.51 | 58.03 |
| BioMistral-7B | 59.9 | 64 | 56.5 | 60.4 | 59 | 54.7 | 50.6 | 77.5 | 48.1 | 57.3 |
| AlpaCare-llama2-7b | 49.81 | 49 | 45.92 | 33.82 | 50 | 43.35 | 29.77 | 72.2 | 34.42 | 45.36 |
| ClinicalGPT | 30.56 | 27 | 30.37 | 19.48 | 25 | 24.27 | 26.08 | 63.8 | 28.18 | 30.52 |
<div align="center">
<img width="1600px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_SzdcJSBjZyo8RS1bTEkP.png">
</div>
## Detailed Medical Subjectwise accuracy

# Use Cases & Examples
π¨Β **Below results are from the quantized version of OpenBioLLM-70B
# Summarize Clinical Notes
OpenBioLLM-70B can efficiently analyze and summarize complex clinical notes, EHR data, and discharge summaries, extracting key information and generating concise, structured summaries

# Answer Medical Questions
OpenBioLLM-70B can provide answers to a wide range of medical questions.


<details>
<summary>Click to see details</summary>



</details>
# Clinical Entity Recognition
OpenBioLLM-70B can perform advanced clinical entity recognition by identifying and extracting key medical concepts, such as diseases, symptoms, medications, procedures, and anatomical structures, from unstructured clinical text. By leveraging its deep understanding of medical terminology and context, the model can accurately annotate and categorize clinical entities, enabling more efficient information retrieval, data analysis, and knowledge discovery from electronic health records, research articles, and other biomedical text sources. This capability can support various downstream applications, such as clinical decision support, pharmacovigilance, and medical research.



# Biomarkers Extraction

# Classification
OpenBioLLM-70B can perform various biomedical classification tasks, such as disease prediction, sentiment analysis, medical document categorization

# De-Identification
OpenBioLLM-70B can detect and remove personally identifiable information (PII) from medical records, ensuring patient privacy and compliance with data protection regulations like HIPAA.

**Advisory Notice!**
While OpenBioLLM-70B leverages high-quality data sources, its outputs may still contain inaccuracies, biases, or misalignments that could pose risks if relied upon for medical decision-making without further testing and refinement. The model's performance has not yet been rigorously evaluated in randomized controlled trials or real-world healthcare environments.
Therefore, we strongly advise against using OpenBioLLM-70B for any direct patient care, clinical decision support, or other professional medical purposes at this time. Its use should be limited to research, development, and exploratory applications by qualified individuals who understand its limitations.
OpenBioLLM-70B is intended solely as a research tool to assist healthcare professionals and should never be considered a replacement for the professional judgment and expertise of a qualified medical doctor.
Appropriately adapting and validating OpenBioLLM-70B for specific medical use cases would require significant additional work, potentially including:
- Thorough testing and evaluation in relevant clinical scenarios
- Alignment with evidence-based guidelines and best practices
- Mitigation of potential biases and failure modes
- Integration with human oversight and interpretation
- Compliance with regulatory and ethical standards
Always consult a qualified healthcare provider for personal medical needs.
# Citation
If you find OpenBioLLM-70B & 8B useful in your work, please cite the model as follows:
```
@misc{OpenBioLLMs,
author = {Ankit Pal, Malaikannan Sankarasubbu},
title = {OpenBioLLMs: Advancing Open-Source Large Language Models for Healthcare and Life Sciences},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
howpublished = {\url{https://huggingface.co/aaditya/OpenBioLLM-Llama3-70B}}
}
```
The accompanying paper is currently in progress and will be released soon.
<div align="center">
<h2> π Contact </h2>
</div>
We look forward to hearing you and collaborating on this exciting project!
**Contributors:**
- [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) [aadityaura at gmail dot com]
- Saama AI Labs
- Note: I am looking for a funded PhD opportunity, especially if it fits my Responsible Generative AI, Multimodal LLMs, Geometric Deep Learning, and Healthcare AI skillset.
# References
We thank the [Meta Team](meta-llama/Meta-Llama-3-70B-Instruct) for their amazing models!
Result sources
- [1] GPT-4 [Capabilities of GPT-4 on Medical Challenge Problems] (https://arxiv.org/abs/2303.13375)
- [2] Med-PaLM-1 [Large Language Models Encode Clinical Knowledge](https://arxiv.org/abs/2212.13138)
- [3] Med-PaLM-2 [Towards Expert-Level Medical Question Answering with Large Language Models](https://arxiv.org/abs/2305.09617)
- [4] Gemini-1.0 [Gemini Goes to Med School](https://arxiv.org/abs/2402.07023)
<!-- original-model-card end -->
| {"language": ["en"], "license": "llama3", "tags": ["llama-3", "llama", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "distillation", "GGUF"], "base_model": "meta-llama/Meta-Llama-3-70B-Instruct", "widget": [{"example_title": "OpenBioLLM-70B", "messages": [{"role": "system", "content": "You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience."}, {"role": "user", "content": "How long does it take for newborn jaundice to go away?"}], "output": {"text": "Newborn jaundice, also known as neonatal jaundice, is a common condition in newborns where the yellowing of the skin and eyes occurs due to an elevated level of bilirubin in the blood. Bilirubin is a yellow pigment that forms when red blood cells break down. In most cases, newborn jaundice resolves on its own without any specific treatment.\nThe duration of newborn jaundice can vary depending on several factors such as the underlying cause, gestational age at birth, and individual variations in bilirubin metabolism. Here are some general guidelines:\n1. Physiological jaundice: This is the most common type of newborn jaundice and usually appears within 24-72 hours after birth. It tends to peak between the second and fifth day of life and gradually improves over the next week or two. By the time the baby is one week old, the jaundice should have mostly resolved. 2. Breast milk jaundice: This type of jaundice occurs in breastfed babies and may appear later than physiological jaundice, typically between the fifth and fourteenth day of life. It tends to persist for a longer duration but usually resolves within six weeks after birth. 3. Pathological jaundice: This type of jaundice is less common and occurs due to an underlying medical condition that affects bilirubin metabolism or liver function. The duration of pathological jaundice depends on the specific cause and may require treatment.\nIt's important for parents to monitor their newborn's jaundice closely and seek medical advice if the jaundice progresses rapidly, becomes severe, or is accompanied by other symptoms such as poor feeding, lethargy, or excessive sleepiness. In these cases, further evaluation and management may be necessary. Remember that each baby is unique, and the timing of jaundice resolution can vary. If you have concerns about your newborn's jaundice, it's always best to consult with a healthcare professional for personalized advice and guidance."}}], "quantized_by": "andrijdavid", "model-index": [{"name": "OpenBioLLM-70B", "results": []}]} | LiteLLMs/Llama3-OpenBioLLM-70B-GGUF | null | [
"gguf",
"llama-3",
"llama",
"Mixtral",
"instruct",
"finetune",
"chatml",
"DPO",
"RLHF",
"gpt4",
"distillation",
"GGUF",
"en",
"arxiv:2305.18290",
"arxiv:2303.13375",
"arxiv:2212.13138",
"arxiv:2305.09617",
"arxiv:2402.07023",
"base_model:meta-llama/Meta-Llama-3-70B-Instruct",
"license:llama3",
"region:us"
] | null | 2024-04-29T16:17:46+00:00 |
fill-mask | transformers | {} | thekoc11/mlm | null | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:17:57+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | HenryCai1129/adapter-llama-adaptertoxic2nontoxic-2k-search-50-0.003 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:18:06+00:00 |
null | null | {} | jhonlumorningstar/Mp4 | null | [
"region:us"
] | null | 2024-04-29T16:18:13+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** jurieyel
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | jurieyel/77hr-tuned-Llama3-8b-4bit | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:18:56+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo microsoft/Phi-3-mini-128k-instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-1bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-1bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model microsoft/Phi-3-mini-128k-instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "microsoft/Phi-3-mini-128k-instruct"} | PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-1bit-smashed | null | [
"transformers",
"phi3",
"text-generation",
"pruna-ai",
"conversational",
"custom_code",
"base_model:microsoft/Phi-3-mini-128k-instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:19:48+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/google-codegemma-7b-it-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-7b-it")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-7b-it"} | PrunaAI/google-codegemma-7b-it-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-7b-it",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T16:20:24+00:00 |
translation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vinai_EnglistToVietnamese
This model is a fine-tuned version of [vinai/vinai-translate-en2vi-v2](https://huggingface.co/vinai/vinai-translate-en2vi-v2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
| {"tags": ["translation", "generated_from_trainer"], "base_model": "vinai/vinai-translate-en2vi-v2", "model-index": [{"name": "vinai_EnglistToVietnamese", "results": []}]} | TammyTrinh/vinai_EnglistToVietnamese | null | [
"transformers",
"tensorboard",
"safetensors",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"base_model:vinai/vinai-translate-en2vi-v2",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:20:25+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/gemma-7b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/google-gemma-7b-it-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/gemma-7b-it before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/gemma-7b-it"} | PrunaAI/google-gemma-7b-it-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"pruna-ai",
"conversational",
"base_model:google/gemma-7b-it",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T16:20:35+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo microsoft/Phi-3-mini-128k-instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-2bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-2bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model microsoft/Phi-3-mini-128k-instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "microsoft/Phi-3-mini-128k-instruct"} | PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-2bit-smashed | null | [
"transformers",
"phi3",
"text-generation",
"pruna-ai",
"conversational",
"custom_code",
"base_model:microsoft/Phi-3-mini-128k-instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:20:42+00:00 |
sentence-similarity | sentence-transformers |
# DivyaMereddy007/FewLayers_Finetuning_V1_TrainSetenceTransforme-Finetuning_COpyfromv5finetuneEPOC5
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('DivyaMereddy007/FewLayers_Finetuning_V1_TrainSetenceTransforme-Finetuning_COpyfromv5finetuneEPOC5')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DivyaMereddy007/FewLayers_Finetuning_V1_TrainSetenceTransforme-Finetuning_COpyfromv5finetuneEPOC5')
model = AutoModel.from_pretrained('DivyaMereddy007/FewLayers_Finetuning_V1_TrainSetenceTransforme-Finetuning_COpyfromv5finetuneEPOC5')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=DivyaMereddy007/FewLayers_Finetuning_V1_TrainSetenceTransforme-Finetuning_COpyfromv5finetuneEPOC5)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 55 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 5,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 27.5,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"} | DivyaMereddy007/FewLayers_Finetuning_V1_TrainSetenceTransforme-Finetuning_COpyfromv5finetuneEPOC5 | null | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:20:48+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo microsoft/Phi-3-mini-4k-instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-1bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-1bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model microsoft/Phi-3-mini-4k-instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "microsoft/Phi-3-mini-4k-instruct"} | PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-1bit-smashed | null | [
"transformers",
"phi3",
"text-generation",
"pruna-ai",
"conversational",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:20:51+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/gemma-7b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/google-gemma-7b-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/gemma-7b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/gemma-7b"} | PrunaAI/google-gemma-7b-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/gemma-7b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T16:21:09+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo microsoft/Phi-3-mini-4k-instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model microsoft/Phi-3-mini-4k-instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "microsoft/Phi-3-mini-4k-instruct"} | PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-4bit-smashed | null | [
"transformers",
"phi3",
"text-generation",
"pruna-ai",
"conversational",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:21:22+00:00 |
text-generation | transformers |
GPTQ quantized version of c4ai-command-r-v01 model.
---
# Model Card for C4AI Command-R
π¨ **This model is non-quantized version of C4AI Command-R. You can find the quantized version of C4AI Command-R using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-v01-4bit)**.
## Model Summary
C4AI Command-R is a research release of a 35 billion parameter highly performant generative model. Command-R is a large language model with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command-R has the capability for multilingual generation evaluated in 10 languages and highly performant RAG capabilities.
Developed by: Cohere and [Cohere For AI](https://cohere.for.ai)
- Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
- License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
- Model: c4ai-command-r-v01
- Model Size: 35 billion parameters
- Context length: 128K
**Try C4AI Command R**
If you want to try Command R before downloading the weights, the model is hosted in a hugging face space [here](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-v01).
**Usage**
Please use `transformers` version 4.39.1 or higher
```python
# pip install 'transformers>=4.39.1'
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Format message with the command-r chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```
**Quantized model through bitsandbytes, 8-bit precision**
```python
# pip install 'transformers>=4.39.1' bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
# Format message with the command-r chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```
**Quantized model through bitsandbytes, 4-bit precision**
You can find a quantized version of this model to 4-bit precision [here](https://huggingface.co/CohereForAI/c4ai-command-r-v01-4bit).
## Model Details
**Input**: Models input text only.
**Output**: Models generate text only.
**Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety.
**Languages covered**: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic.
Pre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian.
**Context length**: Command-R supports a context length of 128K.
### Tool use capabilities:
Command-R has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation.
Command-Rβs tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command-R may use one of its supplied tools more than once.
The model has been trained to recognise a special `directly_answer` tool, which it uses to indicate that it doesnβt want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions.
We recommend including the `directly_answer` tool, but it can be removed or renamed if required.
Comprehensive documentation for working with command-R's tool use prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r).
The code snippet below shows a minimal working example on how to render a prompt.
<details>
<summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary>
```python
from transformers import AutoTokenizer
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# define conversation input:
conversation = [
{"role": "user", "content": "Whats the biggest penguin in the world?"}
]
# Define tools available for the model to use:
tools = [
{
"name": "internet_search",
"description": "Returns a list of relevant document snippets for a textual query retrieved from the internet",
"parameter_definitions": {
"query": {
"description": "Query to search the internet with",
"type": 'str',
"required": True
}
}
},
{
'name': "directly_answer",
"description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history",
'parameter_definitions': {}
}
]
# render the tool use prompt as a string:
tool_use_prompt = tokenizer.apply_tool_use_template(
conversation,
tools=tools,
tokenize=False,
add_generation_prompt=True,
)
print(tool_use_prompt)
```
</details>
<details>
<summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary>
````
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
# System Preamble
## Basic Rules
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
# User Preamble
## Task and Context
You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging.
## Style Guide
Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.
## Available Tools
Here is a list of tools that you have available to you:
```python
def internet_search(query: str) -> List[Dict]:
"""Returns a list of relevant document snippets for a textual query retrieved from the internet
Args:
query (str): Query to search the internet with
"""
pass
```
```python
def directly_answer() -> List[Dict]:
"""Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history
"""
pass
```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
```json
[
{
"tool_name": title of the tool in the specification,
"parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
}
]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
````
</details>
<details>
<summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary>
````
Action: ```json
[
{
"tool_name": "internet_search",
"parameters": {
"query": "biggest penguin in the world"
}
}
]
```
````
</details>
### Grounded Generation and RAG Capabilities:
Command-R has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information.
This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG).This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template.
Deviating from this prompt template may reduce performance, but we encourage experimentation.
Command-Rβs grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets.
The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured.
By default, Command-R will generate grounded responses by first predicting which documents are relevant, then predicting which ones it will cite, then generating an answer.
Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as `accurate` grounded generation.
The model is trained with a number of other answering modes, which can be selected by prompt changes . A `fast` citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens.
Comprehensive documentation for working with command-R's grounded generation prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r).
The code snippet below shows a minimal working example on how to render a prompt.
<details>
<summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary>
````python
from transformers import AutoTokenizer
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# define conversation input:
conversation = [
{"role": "user", "content": "Whats the biggest penguin in the world?"}
]
# define documents to ground on:
documents = [
{ "title": "Tall penguins", "text": "Emperor penguins are the tallest growing up to 122 cm in height." },
{ "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."}
]
# render the tool use prompt as a string:
grounded_generation_prompt = tokenizer.apply_grounded_generation_template(
conversation,
documents=documents,
citation_mode="accurate", # or "fast"
tokenize=False,
add_generation_prompt=True,
)
print(grounded_generation_prompt)
````
</details>
<details>
<summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary>
````<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
# System Preamble
## Basic Rules
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
# User Preamble
## Task and Context
You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging.
## Style Guide
Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results>
Document: 0
title: Tall penguins
text: Emperor penguins are the tallest growing up to 122 cm in height.
Document: 1
title: Penguin habitats
text: Emperor penguins only live in Antarctica.
</results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line.
Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'.
Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'.
Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup.
Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
````
</details>
<details>
<summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary>
````
Relevant Documents: 0,1
Cited Documents: 0,1
Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres.
Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0>
````
</details>
### Code Capabilities:
Command-R has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions.
### Model Card Contact
For errors or additional questions about details in this model card, contact [[email protected]](mailto:[email protected]).
### Terms of Use:
We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 35 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).
### Try Chat:
You can try Command-R chat in the playground [here](https://dashboard.cohere.com/playground/chat). | {"language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar"], "license": "cc-by-nc-4.0", "library_name": "transformers"} | TechxGenus/c4ai-command-r-v01-GPTQ | null | [
"transformers",
"safetensors",
"cohere",
"text-generation",
"conversational",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T16:22:21+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sea-lion-7b
This model is a fine-tuned version of [openthaigpt/openthai-llama-pretrained-7B](https://huggingface.co/openthaigpt/openthai-llama-pretrained-7B) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "openthaigpt/openthai-llama-pretrained-7B", "model-index": [{"name": "sea-lion-7b", "results": []}]} | SuratanBoonpong/sea-lion-7b | null | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:openthaigpt/openthai-llama-pretrained-7B",
"region:us"
] | null | 2024-04-29T16:23:09+00:00 |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="AhmedTarek/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | AhmedTarek/q-FrozenLake-v1-4x4-noSlippery | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T16:24:01+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo microsoft/Phi-3-mini-128k-instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model microsoft/Phi-3-mini-128k-instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "microsoft/Phi-3-mini-128k-instruct"} | PrunaAI/microsoft-Phi-3-mini-128k-instruct-HQQ-4bit-smashed | null | [
"transformers",
"phi3",
"text-generation",
"pruna-ai",
"conversational",
"custom_code",
"base_model:microsoft/Phi-3-mini-128k-instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:24:12+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: codellama/CodeLlama-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true
hub_model_id: noeloco/camel-lora
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: noeloco/fizzbuzz-sft
type: alpaca
ds_type: json
hf_use_auth_token: true
push_dataset_to_hub: noeloco
val_set_size: 0.05
output_dir: ./lora-out
chat_template: chatml
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: false
lora_fan_in_fan_out:
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
wandb_project: runpod1
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug: true
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# camel-lora
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0294
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7211 | 0.06 | 1 | 2.5058 |
| 1.834 | 0.29 | 5 | 2.4238 |
| 1.1688 | 0.57 | 10 | 1.3647 |
| 0.483 | 0.86 | 15 | 0.7108 |
| 0.3742 | 1.14 | 20 | 0.3942 |
| 0.1581 | 1.43 | 25 | 0.2196 |
| 0.2905 | 1.71 | 30 | 0.0822 |
| 0.1803 | 2.0 | 35 | 0.0548 |
| 0.0799 | 2.29 | 40 | 0.0543 |
| 0.0932 | 2.57 | 45 | 0.0390 |
| 0.0851 | 2.86 | 50 | 0.0328 |
| 0.096 | 3.14 | 55 | 0.0287 |
| 0.086 | 3.43 | 60 | 0.0289 |
| 0.0459 | 3.71 | 65 | 0.0294 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 | {"license": "llama2", "library_name": "peft", "tags": ["axolotl", "generated_from_trainer"], "base_model": "codellama/CodeLlama-7b-hf", "model-index": [{"name": "camel-lora", "results": []}]} | noeloco/camel-lora | null | [
"peft",
"pytorch",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:codellama/CodeLlama-7b-hf",
"license:llama2",
"8-bit",
"region:us"
] | null | 2024-04-29T16:25:56+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/google-codegemma-7b-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-7b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-7b"} | PrunaAI/google-codegemma-7b-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-7b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T16:26:07+00:00 |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo microsoft/Phi-3-mini-4k-instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-2bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-2bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model microsoft/Phi-3-mini-4k-instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "microsoft/Phi-3-mini-4k-instruct"} | PrunaAI/microsoft-Phi-3-mini-4k-instruct-HQQ-2bit-smashed | null | [
"transformers",
"phi3",
"text-generation",
"pruna-ai",
"conversational",
"custom_code",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:26:54+00:00 |
text-to-image | diffusers |
# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch2-repeats3-rank16-snr5.0
<Gallery />
## Model description
### These are aarashfeizi/jean-francois-godbout-batch2-repeats3-rank16-snr5.0 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch2-repeats3-rank16-snr5.0.safetensors` here πΎ](/aarashfeizi/jean-francois-godbout-batch2-repeats3-rank16-snr5.0/blob/main//home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch2-repeats3-rank16-snr5.0.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch2-repeats3-rank16-snr5.0:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch2-repeats3-rank16-snr5.0_emb.safetensors` here πΎ](/aarashfeizi/jean-francois-godbout-batch2-repeats3-rank16-snr5.0/blob/main//home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch2-repeats3-rank16-snr5.0_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch2-repeats3-rank16-snr5.0_emb` to your prompt. For example, `A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch2-repeats3-rank16-snr5.0_emb`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [𧨠diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('aarashfeizi/jean-francois-godbout-batch2-repeats3-rank16-snr5.0', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='aarashfeizi/jean-francois-godbout-batch2-repeats3-rank16-snr5.0', filename='/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch2-repeats3-rank16-snr5.0_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('A photo of <s0><s1> giving a speech').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` β use `<s0><s1>` in your prompt
## Details
All [Files & versions](/aarashfeizi/jean-francois-godbout-batch2-repeats3-rank16-snr5.0/tree/main).
The weights were trained using [𧨠diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
| {"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "diffusers", "lora", "template:sd-lora"], "widget": [{"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_0.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_1.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_2.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_3.png"}}], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "A photo of <s0><s1>"} | aarashfeizi/jean-francois-godbout-batch2-repeats3-rank16-snr5.0 | null | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"diffusers-training",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | null | 2024-04-29T16:27:31+00:00 |
null | null | {} | SUGARYeUNGG/model | null | [
"region:us"
] | null | 2024-04-29T16:27:40+00:00 |
|
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="AhmedTarek/taxi-v1", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "taxi-v1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.46 +/- 2.65", "name": "mean_reward", "verified": false}]}]}]} | AhmedTarek/taxi-v1 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T16:28:15+00:00 |
null | null | {"license": "mit"} | Awaazo/FastTTS | null | [
"license:mit",
"region:us"
] | null | 2024-04-29T16:28:23+00:00 |
|
null | null | {"license": "unknown"} | moonshotmillion/REALISM_BY_STABLE_YOGI_v4 | null | [
"license:unknown",
"region:us"
] | null | 2024-04-29T16:29:00+00:00 |
|
text-classification | transformers | {} | nnngoc/ms-marco-MiniLM-L-6-v2-32-6M-1 | null | [
"transformers",
"safetensors",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us",
"has_space"
] | null | 2024-04-29T16:29:10+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | Ziming2000/phi2-code-sft | null | [
"transformers",
"safetensors",
"phi",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T16:30:30+00:00 |
null | null |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {} | jhonlumorningstar/youtubemoney | null | [
"arxiv:1910.09700",
"region:us"
] | null | 2024-04-29T16:31:25+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/vsk5ab5 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:31:32+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/23w9mpm | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:31:37+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/rxim2hq | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T16:31:42+00:00 |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
model = load_from_hub(repo_id="ws11yrin/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.56 +/- 2.71", "name": "mean_reward", "verified": false}]}]}]} | ws11yrin/q-Taxi-v3 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T16:33:19+00:00 |
null | null | {} | Punthon/scb-typhoon-7b-text-to-pandas | null | [
"region:us"
] | null | 2024-04-29T16:33:28+00:00 |
|
text-generation | transformers |
# Uploaded model
- **Developed by:** Madhura
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"} | Madhura/unsloth_4bit_mistral_imdb_model | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-04-29T16:34:19+00:00 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.