Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence-compression This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2973 - Accuracy: 0.8912 - F1: 0.8367 - Precision: 0.8495 - Recall: 0.8243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2686 | 1.0 | 10000 | 0.2667 | 0.8894 | 0.8283 | 0.8725 | 0.7884 | | 0.2205 | 2.0 | 20000 | 0.2704 | 0.8925 | 0.8372 | 0.8579 | 0.8175 | | 0.1476 | 3.0 | 30000 | 0.2973 | 0.8912 | 0.8367 | 0.8495 | 0.8243 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "sentence-compression", "results": []}]}
AlexMaclean/sentence-compression
null
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.2388 - Wer: 0.3681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3748 | 0.07 | 500 | 3.8784 | 1.0 | | 2.8068 | 0.14 | 1000 | 2.8289 | 0.9826 | | 1.6698 | 0.22 | 1500 | 0.8811 | 0.7127 | | 1.3488 | 0.29 | 2000 | 0.5166 | 0.5369 | | 1.2239 | 0.36 | 2500 | 0.4105 | 0.4741 | | 1.1537 | 0.43 | 3000 | 0.3585 | 0.4448 | | 1.1184 | 0.51 | 3500 | 0.3336 | 0.4292 | | 1.0968 | 0.58 | 4000 | 0.3195 | 0.4180 | | 1.0737 | 0.65 | 4500 | 0.3075 | 0.4141 | | 1.0677 | 0.72 | 5000 | 0.3015 | 0.4089 | | 1.0462 | 0.8 | 5500 | 0.2971 | 0.4077 | | 1.0392 | 0.87 | 6000 | 0.2870 | 0.3997 | | 1.0178 | 0.94 | 6500 | 0.2805 | 0.3963 | | 0.992 | 1.01 | 7000 | 0.2748 | 0.3935 | | 1.0197 | 1.09 | 7500 | 0.2691 | 0.3884 | | 1.0056 | 1.16 | 8000 | 0.2682 | 0.3889 | | 0.9826 | 1.23 | 8500 | 0.2647 | 0.3868 | | 0.9815 | 1.3 | 9000 | 0.2603 | 0.3832 | | 0.9717 | 1.37 | 9500 | 0.2561 | 0.3807 | | 0.9605 | 1.45 | 10000 | 0.2523 | 0.3783 | | 0.96 | 1.52 | 10500 | 0.2494 | 0.3788 | | 0.9442 | 1.59 | 11000 | 0.2478 | 0.3760 | | 0.9564 | 1.66 | 11500 | 0.2454 | 0.3733 | | 0.9436 | 1.74 | 12000 | 0.2439 | 0.3747 | | 0.938 | 1.81 | 12500 | 0.2411 | 0.3716 | | 0.9353 | 1.88 | 13000 | 0.2397 | 0.3698 | | 0.9271 | 1.95 | 13500 | 0.2388 | 0.3681 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["fr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "xls-r-300m-fr", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8.0 fr", "type": "mozilla-foundation/common_voice_8_0", "args": "fr"}, "metrics": [{"type": "wer", "value": 36.81, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "fr"}, "metrics": [{"type": "wer", "value": 35.55, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "fr"}, "metrics": [{"type": "wer", "value": 39.94, "name": "Test WER"}]}]}]}
AlexN/xls-r-300m-fr-0
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "fr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2700 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["fr"], "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "xls-r-300m-fr", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8.0 fr", "type": "mozilla-foundation/common_voice_8_0", "args": "fr"}, "metrics": [{"type": "wer", "value": 21.58, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "fr"}, "metrics": [{"type": "wer", "value": 36.03, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "fr"}, "metrics": [{"type": "wer", "value": 38.86, "name": "Test WER"}]}]}]}
AlexN/xls-r-300m-fr
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "fr", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.2290 - Wer: 0.2382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0952 | 0.64 | 500 | 3.0982 | 1.0 | | 1.7975 | 1.29 | 1000 | 0.7887 | 0.5651 | | 1.4138 | 1.93 | 1500 | 0.5238 | 0.4389 | | 1.344 | 2.57 | 2000 | 0.4775 | 0.4318 | | 1.2737 | 3.21 | 2500 | 0.4648 | 0.4075 | | 1.2554 | 3.86 | 3000 | 0.4069 | 0.3678 | | 1.1996 | 4.5 | 3500 | 0.3914 | 0.3668 | | 1.1427 | 5.14 | 4000 | 0.3694 | 0.3572 | | 1.1372 | 5.78 | 4500 | 0.3568 | 0.3501 | | 1.0831 | 6.43 | 5000 | 0.3331 | 0.3253 | | 1.1074 | 7.07 | 5500 | 0.3332 | 0.3352 | | 1.0536 | 7.71 | 6000 | 0.3131 | 0.3152 | | 1.0248 | 8.35 | 6500 | 0.3024 | 0.3023 | | 1.0075 | 9.0 | 7000 | 0.2948 | 0.3028 | | 0.979 | 9.64 | 7500 | 0.2796 | 0.2853 | | 0.9594 | 10.28 | 8000 | 0.2719 | 0.2789 | | 0.9172 | 10.93 | 8500 | 0.2620 | 0.2695 | | 0.9047 | 11.57 | 9000 | 0.2537 | 0.2596 | | 0.8777 | 12.21 | 9500 | 0.2438 | 0.2525 | | 0.8629 | 12.85 | 10000 | 0.2409 | 0.2493 | | 0.8575 | 13.5 | 10500 | 0.2366 | 0.2440 | | 0.8361 | 14.14 | 11000 | 0.2317 | 0.2385 | | 0.8126 | 14.78 | 11500 | 0.2290 | 0.2382 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["pt"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "xls-r-300m-pt", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8.0 pt", "type": "mozilla-foundation/common_voice_8_0", "args": "pt"}, "metrics": [{"type": "wer", "value": 19.361, "name": "Test WER"}, {"type": "cer", "value": 5.533, "name": "Test CER"}, {"type": "wer", "value": 19.36, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "fr"}, "metrics": [{"type": "wer", "value": 47.812, "name": "Validation WER"}, {"type": "cer", "value": 18.805, "name": "Validation CER"}, {"type": "wer", "value": 48.01, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "pt"}, "metrics": [{"type": "wer", "value": 49.21, "name": "Test WER"}]}]}]}
AlexN/xls-r-300m-pt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "pt", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"license": "cc"}
AlexaMerens/Owl
null
[ "license:cc", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AlexaRyck/KEITH
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
Alexander-Learn/bert-finetuned-ner-accelerate
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
Alexander-Learn/bert-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Alexander-Learn/bert-finetuned-squad-accelerate
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
Alexander-Learn/bert-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Alexandru/creative_copilot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AlexeyIgnatov/albert-xlarge-v2-squad-v2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AlexeyYazev/my-awesome-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Alfia/anekdotes
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AliPotter24/a
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Alicanke/Wyau
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Alifarsi/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aliraza47/BERT
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Alireza-rw/testbot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cola This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.7552 - Matthews Correlation: 0.5495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model_index": [{"name": "cola", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metric": {"name": "Matthews Correlation", "type": "matthews_correlation", "value": 0.5494768667363472}}]}]}
Alireza1044/albert-base-v2-cola
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5383 - Accuracy: 0.8501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model_index": [{"name": "mnli", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE MNLI", "type": "glue", "args": "mnli"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.8500813669650122}}]}]}
Alireza1044/albert-base-v2-mnli
null
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mrpc This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4171 - Accuracy: 0.8627 - F1: 0.9011 - Combined Score: 0.8819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model_index": [{"name": "mrpc", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metric": {"name": "F1", "type": "f1", "value": 0.901060070671378}}]}]}
Alireza1044/albert-base-v2-mrpc
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3608 - Accuracy: 0.9138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model_index": [{"name": "qnli", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE QNLI", "type": "glue", "args": "qnli"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9137836353651839}}]}]}
Alireza1044/albert-base-v2-qnli
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qqp This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3695 - Accuracy: 0.9050 - F1: 0.8723 - Combined Score: 0.8886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model_index": [{"name": "qqp", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE QQP", "type": "glue", "args": "qqp"}, "metric": {"name": "F1", "type": "f1", "value": 0.8722569490623753}}]}]}
Alireza1044/albert-base-v2-qqp
null
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rte This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7994 - Accuracy: 0.6859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model_index": [{"name": "rte", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE RTE", "type": "glue", "args": "rte"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.6859205776173285}}]}]}
Alireza1044/albert-base-v2-rte
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sst2 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3808 - Accuracy: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model_index": [{"name": "sst2", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE SST2", "type": "glue", "args": "sst2"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9231651376146789}}]}]}
Alireza1044/albert-base-v2-sst2
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stsb This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.3978 - Pearson: 0.9090 - Spearmanr: 0.9051 - Combined Score: 0.9071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["spearmanr"], "model_index": [{"name": "stsb", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE STSB", "type": "glue", "args": "stsb"}, "metric": {"name": "Spearmanr", "type": "spearmanr", "value": 0.9050744778895732}}]}]}
Alireza1044/albert-base-v2-stsb
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6898 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model_index": [{"name": "wnli", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "GLUE WNLI", "type": "glue", "args": "wnli"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.5633802816901409}}]}]}
Alireza1044/albert-base-v2-wnli
null
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
A simple model trained on dialogues of characters in NBC series, `The Office`. The model can do a binary classification between `Michael Scott` and `Dwight Shrute`'s dialogues. <style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:top} </style> <table class="tg"> <thead> <tr> <th class="tg-c3ow" colspan="2">Label Definitions</th> </tr> </thead> <tbody> <tr> <td class="tg-c3ow">Label 0</td> <td class="tg-c3ow">Michael</td> </tr> <tr> <td class="tg-c3ow">Label 1</td> <td class="tg-c3ow">Dwight</td> </tr> </tbody> </table>
{}
Alireza1044/bert_classification_lm
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Alireza1044/dwight_bert_lm
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Alireza1044/michael_bert_lm
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AlirezaBaneshi/testPersianQA
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aliskin/xlm-roberta-base-finetuned-marc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aliyyu/Keren
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#HarryBoy
{"tags": ["conversational"]}
AllwynJ/HarryBoy
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Allybaby21/Allysai
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart50-ft-si-en This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 5.0476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.98 | 30 | 5.6367 | | No log | 1.98 | 60 | 4.1221 | | No log | 2.98 | 90 | 3.1880 | | No log | 3.98 | 120 | 3.1175 | | No log | 4.98 | 150 | 3.3575 | | No log | 5.98 | 180 | 3.7855 | | No log | 6.98 | 210 | 4.3530 | | No log | 7.98 | 240 | 4.7216 | | No log | 8.98 | 270 | 4.9202 | | No log | 9.98 | 300 | 5.0476 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.6.0 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model_index": [{"name": "mbart50-ft-si-en", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}}]}]}
Aloka/mbart50-ft-si-en
null
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7272 - Matthews Correlation: 0.5343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5219 | 1.0 | 535 | 0.5340 | 0.4215 | | 0.3467 | 2.0 | 1070 | 0.5131 | 0.5181 | | 0.2331 | 3.0 | 1605 | 0.6406 | 0.5040 | | 0.1695 | 4.0 | 2140 | 0.7272 | 0.5343 | | 0.1212 | 5.0 | 2675 | 0.8399 | 0.5230 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5343023846000738, "name": "Matthews Correlation"}]}]}]}
Alstractor/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Altidore/DuggFace
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# Wav2vec2-base for Danish This wav2vec2-base model has been pretrained on ~1300 hours of danish speech data. The pretraining data consists of podcasts and audiobooks and is unfortunately not public available. However, we were allowed to distribute the pretrained model. This model was pretrained on 16kHz sampled speech audio. When using the model, make sure to use speech audio sampled at 16kHz. The pre-training was done using the fairseq library in January 2021. It needs to be fine-tuned to perform speech recognition. # Finetuning In order to finetune the model to speech recognition, you can draw inspiration from this [notebook tutorial](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F) or [this blog post tutorial](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2).
{"language": "da", "license": "apache-2.0", "tags": ["speech"]}
Alvenir/wav2vec2-base-da
null
[ "transformers", "pytorch", "wav2vec2", "pretraining", "speech", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Amalq/distilroberta-base-finetuned-MentalHealth
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Amalq/distilroberta-base-finetuned-anxiety-depression
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-schizophreniaReddit2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 490 | 1.8093 | | 1.9343 | 2.0 | 980 | 1.7996 | | 1.8856 | 3.0 | 1470 | 1.7966 | | 1.8552 | 4.0 | 1960 | 1.7844 | | 1.8267 | 5.0 | 2450 | 1.7839 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "roberta-base-finetuned-schizophreniaReddit2", "results": []}]}
Amalq/roberta-base-finetuned-schizophreniaReddit2
null
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
AmanPriyanshu/DistilBert-Sentiment-Analysis
null
[ "transformers", "tf", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# Question Answering NLU Question Answering NLU (QANLU) is an approach that maps the NLU task into question answering, leveraging pre-trained question-answering models to perform well on few-shot settings. Instead of training an intent classifier or a slot tagger, for example, we can ask the model intent- and slot-related questions in natural language: ``` Context : Yes. No. I'm looking for a cheap flight to Boston. Question: Is the user looking to book a flight? Answer : Yes Question: Is the user asking about departure time? Answer : No Question: What price is the user looking for? Answer : cheap Question: Where is the user flying from? Answer : (empty) ``` Note the "Yes. No. " prepended in the context. Those are to allow the model to answer intent-related questions (e.g. "Is the user looking for a restaurant?"). Thus, by asking questions for each intent and slot in natural language, we can effectively construct an NLU hypothesis. For more details, please read the paper: [Language model is all you need: Natural language understanding as question answering](https://assets.amazon.science/33/ea/800419b24a09876601d8ab99bfb9/language-model-is-all-you-need-natural-language-understanding-as-question-answering.pdf). ## Model training Instructions for how to train and evaluate a QANLU model, as well as the necessary code for ATIS are in the [Amazon Science repository](https://github.com/amazon-research/question-answering-nlu). ## Intended use and limitations This model has been fine-tuned on ATIS (English) and is intended to demonstrate the power of this approach. For other domains or tasks, it should be further fine-tuned on relevant data. ## Use in transformers: ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline tokenizer = AutoTokenizer.from_pretrained("AmazonScience/qanlu", use_auth_token=True) model = AutoModelForQuestionAnswering.from_pretrained("AmazonScience/qanlu", use_auth_token=True) qa_pipeline = pipeline('question-answering', model=model, tokenizer=tokenizer) qa_input = { 'context': 'Yes. No. I want a cheap flight to Boston.', 'question': 'What is the destination?' } answer = qa_pipeline(qa_input) ``` ## Citation If you use this work, please cite: ``` @inproceedings{namazifar2021language, title={Language model is all you need: Natural language understanding as question answering}, author={Namazifar, Mahdi and Papangelis, Alexandros and Tur, Gokhan and Hakkani-T{\"u}r, Dilek}, booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7803--7807}, year={2021}, organization={IEEE} } ``` ## License This library is licensed under the CC BY NC License.
{"language": "en", "license": "cc-by-4.0", "datasets": ["atis"], "widget": [{"context": "Yes. No. I'm looking for a cheap flight to Boston."}]}
AmazonScience/qanlu
null
[ "transformers", "pytorch", "roberta", "question-answering", "en", "dataset:atis", "license:cc-by-4.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Amba/wav2vec2-large-xls-r-300m-tr-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Amba/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
aisoftware/Loquela
null
[ "onnx", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Amir99/toxic
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AmirBialer/amirbialer-Classifier
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AmirHussein/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AmirServi/MyModel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Amirosein/distilbert_v1
null
[ "transformers", "pytorch", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Amirosein/roberta
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Amit29/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AmitT/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Amitabh/doc-classification
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Amro-Kamal/gpt
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
image-classification
transformers
# indian-foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### idli ![idli](images/idli.jpg) #### kachori ![kachori](images/kachori.jpg) #### pani puri ![pani puri](images/pani_puri.jpg) #### samosa ![samosa](images/samosa.jpg) #### vada pav ![vada pav](images/vada_pav.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
Amrrs/indian-foods
null
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
image-classification
transformers
# south-indian-foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dosai ![dosai](images/dosai.jpg) #### idiyappam ![idiyappam](images/idiyappam.jpg) #### idli ![idli](images/idli.jpg) #### puttu ![puttu](images/puttu.jpg) #### vadai ![vadai](images/vadai.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
Amrrs/south-indian-foods
null
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ta", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 82.94 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1-Klkgr4f-C9SanHfVC5RhP0ELUH6TYlN?usp=sharing)
{"language": "ta", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Tamil by Amrrs", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ta", "type": "common_voice", "args": "ta"}, "metrics": [{"type": "wer", "value": 82.94, "name": "Test WER"}]}]}]}
Amrrs/wav2vec2-large-xlsr-53-tamil
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ta", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ana1315/A
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ana1315/ana
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AnaRhisT/bert_sequence_cs_validation
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Analufm/Ana
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 479512837 - CO2 Emissions (in grams): 123.88023112815048 ## Validation Metrics - Loss: 0.6220805048942566 - Accuracy: 0.7961119332705503 - Macro F1: 0.7616345204219084 - Micro F1: 0.7961119332705503 - Weighted F1: 0.795387503907883 - Macro Precision: 0.782839455262034 - Micro Precision: 0.7961119332705503 - Weighted Precision: 0.7992606754484262 - Macro Recall: 0.7451485972167191 - Micro Recall: 0.7961119332705503 - Weighted Recall: 0.7961119332705503 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Anamika/autonlp-Feedback1-479512837 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Anamika/autonlp-Feedback1-479512837", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Anamika/autonlp-Feedback1-479512837", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "unk", "tags": "autonlp", "datasets": ["Anamika/autonlp-data-Feedback1"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 123.88023112815048}
Anamika/autonlp-Feedback1-479512837
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autonlp", "unk", "dataset:Anamika/autonlp-data-Feedback1", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 473312409 - CO2 Emissions (in grams): 25.128735714898614 ## Validation Metrics - Loss: 0.6010786890983582 - Accuracy: 0.7990650945370823 - Macro F1: 0.7429662929144928 - Micro F1: 0.7990650945370823 - Weighted F1: 0.7977660363770382 - Macro Precision: 0.7744390888231261 - Micro Precision: 0.7990650945370823 - Weighted Precision: 0.800444194278352 - Macro Recall: 0.7198278524814119 - Micro Recall: 0.7990650945370823 - Weighted Recall: 0.7990650945370823 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Anamika/autonlp-fa-473312409 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Anamika/autonlp-fa-473312409", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Anamika/autonlp-fa-473312409", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["Anamika/autonlp-data-fa"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 25.128735714898614}
Anamika/autonlp-fa-473312409
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:Anamika/autonlp-data-fa", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Anders/itu-ams-summa
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andi/bert-tt-ner-1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Andranik/TestPytorchClassification
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra_large_discriminator_squad2_512 This model is a fine-tuned version of [ahotrod/electra_large_discriminator_squad2_512](https://huggingface.co/ahotrod/electra_large_discriminator_squad2_512) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "electra_large_discriminator_squad2_512", "results": []}]}
Andranik/TestQA2
null
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
Andranik/TestQaV1
null
[ "transformers", "pytorch", "rust", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
AndreLiu1225/t5-news-summarizer
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
This is a pretrained model that was loaded from t5-base. It has been adapted and changed by changing the max_length and summary_length.
{}
AndreLiu1225/t5-news
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andres2015/HiggingFaceTest
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # model-QA-5-epoch-RU This model is a fine-tuned version of [AndrewChar/diplom-prod-epoch-4-datast-sber-QA](https://huggingface.co/AndrewChar/diplom-prod-epoch-4-datast-sber-QA) on sberquad dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1991 - Validation Loss: 0.0 - Epoch: 5 ## Model description Модель отвечающая на вопрос по контектсу это дипломная работа ## Intended uses & limitations Контекст должен содержать не более 512 токенов ## Training and evaluation data DataSet SberSQuAD {'exact_match': 54.586, 'f1': 73.644} ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_re': 2e-06 'decay_steps': 2986, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.1991 | | 5 | ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
{"language": "ru", "tags": ["generated_from_keras_callback"], "datasets": ["sberquad"], "model-index": [{"name": "model-QA-5-epoch-RU", "results": []}]}
AndrewChar/model-QA-5-epoch-RU
null
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "ru", "dataset:sberquad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1355 - Wer: 0.1532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 2.5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0826 | 0.07 | 1000 | 0.4637 | 0.4654 | | 1.118 | 0.15 | 2000 | 0.2595 | 0.2687 | | 1.1268 | 0.22 | 3000 | 0.2635 | 0.2661 | | 1.0919 | 0.29 | 4000 | 0.2417 | 0.2566 | | 1.1013 | 0.37 | 5000 | 0.2414 | 0.2567 | | 1.0898 | 0.44 | 6000 | 0.2546 | 0.2731 | | 1.0808 | 0.51 | 7000 | 0.2399 | 0.2535 | | 1.0719 | 0.59 | 8000 | 0.2353 | 0.2528 | | 1.0446 | 0.66 | 9000 | 0.2427 | 0.2545 | | 1.0347 | 0.73 | 10000 | 0.2266 | 0.2402 | | 1.0457 | 0.81 | 11000 | 0.2290 | 0.2448 | | 1.0124 | 0.88 | 12000 | 0.2295 | 0.2448 | | 1.025 | 0.95 | 13000 | 0.2138 | 0.2345 | | 1.0107 | 1.03 | 14000 | 0.2108 | 0.2294 | | 0.9758 | 1.1 | 15000 | 0.2019 | 0.2204 | | 0.9547 | 1.17 | 16000 | 0.2000 | 0.2178 | | 0.986 | 1.25 | 17000 | 0.2018 | 0.2200 | | 0.9588 | 1.32 | 18000 | 0.1992 | 0.2138 | | 0.9413 | 1.39 | 19000 | 0.1898 | 0.2049 | | 0.9339 | 1.47 | 20000 | 0.1874 | 0.2056 | | 0.9268 | 1.54 | 21000 | 0.1797 | 0.1976 | | 0.9194 | 1.61 | 22000 | 0.1743 | 0.1905 | | 0.8987 | 1.69 | 23000 | 0.1738 | 0.1932 | | 0.8884 | 1.76 | 24000 | 0.1703 | 0.1873 | | 0.8939 | 1.83 | 25000 | 0.1633 | 0.1831 | | 0.8629 | 1.91 | 26000 | 0.1549 | 0.1750 | | 0.8607 | 1.98 | 27000 | 0.1550 | 0.1738 | | 0.8316 | 2.05 | 28000 | 0.1512 | 0.1709 | | 0.8321 | 2.13 | 29000 | 0.1481 | 0.1657 | | 0.825 | 2.2 | 30000 | 0.1446 | 0.1627 | | 0.8115 | 2.27 | 31000 | 0.1396 | 0.1583 | | 0.7959 | 2.35 | 32000 | 0.1389 | 0.1569 | | 0.7835 | 2.42 | 33000 | 0.1362 | 0.1545 | | 0.7959 | 2.49 | 34000 | 0.1355 | 0.1531 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1B-german --dataset mozilla-foundation/common_voice_8_0 --config de --split test --log_outputs ``` 2. To evaluate on test dev data ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1B-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
{"language": ["de"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "de", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - German", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "de"}, "metrics": [{"type": "wer", "value": 15.25, "name": "Test WER"}, {"type": "cer", "value": 3.78, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "de"}, "metrics": [{"type": "wer", "value": 35.29, "name": "Test WER"}, {"type": "cer", "value": 13.83, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "de"}, "metrics": [{"type": "wer", "value": 36.2, "name": "Test WER"}]}]}]}
AndrewMcDowell/wav2vec2-xls-r-1B-german
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "de", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 1.1373 - Wer: 0.8607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.2416 | 0.84 | 500 | 1.2867 | 0.8875 | | 2.3089 | 1.67 | 1000 | 1.8336 | 0.9548 | | 2.3614 | 2.51 | 1500 | 1.5937 | 0.9469 | | 2.5234 | 3.35 | 2000 | 1.9765 | 0.9867 | | 2.5373 | 4.19 | 2500 | 1.9062 | 0.9916 | | 2.5703 | 5.03 | 3000 | 1.9772 | 0.9915 | | 2.4656 | 5.86 | 3500 | 1.8083 | 0.9829 | | 2.4339 | 6.7 | 4000 | 1.7548 | 0.9752 | | 2.344 | 7.54 | 4500 | 1.6146 | 0.9638 | | 2.2677 | 8.38 | 5000 | 1.5105 | 0.9499 | | 2.2074 | 9.21 | 5500 | 1.4191 | 0.9357 | | 2.3768 | 10.05 | 6000 | 1.6663 | 0.9665 | | 2.3804 | 10.89 | 6500 | 1.6571 | 0.9720 | | 2.3237 | 11.72 | 7000 | 1.6049 | 0.9637 | | 2.317 | 12.56 | 7500 | 1.5875 | 0.9655 | | 2.2988 | 13.4 | 8000 | 1.5357 | 0.9603 | | 2.2906 | 14.24 | 8500 | 1.5637 | 0.9592 | | 2.2848 | 15.08 | 9000 | 1.5326 | 0.9537 | | 2.2381 | 15.91 | 9500 | 1.5631 | 0.9508 | | 2.2072 | 16.75 | 10000 | 1.4565 | 0.9395 | | 2.197 | 17.59 | 10500 | 1.4304 | 0.9406 | | 2.198 | 18.43 | 11000 | 1.4230 | 0.9382 | | 2.1668 | 19.26 | 11500 | 1.3998 | 0.9315 | | 2.1498 | 20.1 | 12000 | 1.3920 | 0.9258 | | 2.1244 | 20.94 | 12500 | 1.3584 | 0.9153 | | 2.0953 | 21.78 | 13000 | 1.3274 | 0.9054 | | 2.0762 | 22.61 | 13500 | 1.2933 | 0.9073 | | 2.0587 | 23.45 | 14000 | 1.2516 | 0.8944 | | 2.0363 | 24.29 | 14500 | 1.2214 | 0.8902 | | 2.0302 | 25.13 | 15000 | 1.2087 | 0.8871 | | 2.0071 | 25.96 | 15500 | 1.1953 | 0.8786 | | 1.9882 | 26.8 | 16000 | 1.1738 | 0.8712 | | 1.9772 | 27.64 | 16500 | 1.1647 | 0.8672 | | 1.9585 | 28.48 | 17000 | 1.1459 | 0.8635 | | 1.944 | 29.31 | 17500 | 1.1414 | 0.8616 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["ar"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
AndrewMcDowell/wav2vec2-xls-r-1b-arabic
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ar", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.5500 - Wer: 1.0132 - Cer: 0.1609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.7019 | 12.65 | 1000 | 1.0510 | 0.9832 | 0.2589 | | 1.6385 | 25.31 | 2000 | 0.6670 | 0.9915 | 0.1851 | | 1.4344 | 37.97 | 3000 | 0.6183 | 1.0213 | 0.1797 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` 2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
{"language": ["ja"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "ja", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ja"}, "metrics": [{"type": "wer", "value": 95.33, "name": "Test WER"}, {"type": "cer", "value": 22.27, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "de"}, "metrics": [{"type": "wer", "value": 100.0, "name": "Test WER"}, {"type": "cer", "value": 30.33, "name": "Test CER"}, {"type": "cer", "value": 29.63, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ja"}, "metrics": [{"type": "cer", "value": 32.69, "name": "Test CER"}]}]}]}
AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "ja", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 0.4502 - Wer: 0.4783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7972 | 0.43 | 500 | 5.1401 | 1.0 | | 3.3241 | 0.86 | 1000 | 3.3220 | 1.0 | | 3.1432 | 1.29 | 1500 | 3.0806 | 0.9999 | | 2.9297 | 1.72 | 2000 | 2.5678 | 1.0057 | | 2.2593 | 2.14 | 2500 | 1.1068 | 0.8218 | | 2.0504 | 2.57 | 3000 | 0.7878 | 0.7114 | | 1.937 | 3.0 | 3500 | 0.6955 | 0.6450 | | 1.8491 | 3.43 | 4000 | 0.6452 | 0.6304 | | 1.803 | 3.86 | 4500 | 0.5961 | 0.6042 | | 1.7545 | 4.29 | 5000 | 0.5550 | 0.5748 | | 1.7045 | 4.72 | 5500 | 0.5374 | 0.5743 | | 1.6733 | 5.15 | 6000 | 0.5337 | 0.5404 | | 1.6761 | 5.57 | 6500 | 0.5054 | 0.5266 | | 1.655 | 6.0 | 7000 | 0.4926 | 0.5243 | | 1.6252 | 6.43 | 7500 | 0.4946 | 0.5183 | | 1.6209 | 6.86 | 8000 | 0.4915 | 0.5194 | | 1.5772 | 7.29 | 8500 | 0.4725 | 0.5104 | | 1.5602 | 7.72 | 9000 | 0.4726 | 0.5097 | | 1.5783 | 8.15 | 9500 | 0.4667 | 0.4956 | | 1.5442 | 8.58 | 10000 | 0.4685 | 0.4937 | | 1.5597 | 9.01 | 10500 | 0.4708 | 0.4957 | | 1.5406 | 9.43 | 11000 | 0.4539 | 0.4810 | | 1.5274 | 9.86 | 11500 | 0.4502 | 0.4783 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["ar"], "license": "apache-2.0", "tags": ["ar", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "XLS-R-300M - Arabic", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "ar"}, "metrics": [{"type": "wer", "value": 47.54, "name": "Test WER"}, {"type": "cer", "value": 17.64, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "ar"}, "metrics": [{"type": "wer", "value": 93.72, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ar"}, "metrics": [{"type": "wer", "value": 92.49, "name": "Test WER"}]}]}]}
AndrewMcDowell/wav2vec2-xls-r-300m-arabic
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. eval results: WER: 0.20161578657865786 CER: 0.05062357805269733 --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1768 - Wer: 0.2016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.7531 | 0.04 | 500 | 5.4564 | 1.0 | | 2.9882 | 0.08 | 1000 | 3.0041 | 1.0 | | 2.1953 | 0.13 | 1500 | 1.1723 | 0.7121 | | 1.2406 | 0.17 | 2000 | 0.3656 | 0.3623 | | 1.1294 | 0.21 | 2500 | 0.2843 | 0.2926 | | 1.0731 | 0.25 | 3000 | 0.2554 | 0.2664 | | 1.051 | 0.3 | 3500 | 0.2387 | 0.2535 | | 1.0479 | 0.34 | 4000 | 0.2345 | 0.2512 | | 1.0026 | 0.38 | 4500 | 0.2270 | 0.2452 | | 0.9921 | 0.42 | 5000 | 0.2212 | 0.2353 | | 0.9839 | 0.47 | 5500 | 0.2141 | 0.2330 | | 0.9907 | 0.51 | 6000 | 0.2122 | 0.2334 | | 0.9788 | 0.55 | 6500 | 0.2114 | 0.2270 | | 0.9687 | 0.59 | 7000 | 0.2066 | 0.2323 | | 0.9777 | 0.64 | 7500 | 0.2033 | 0.2237 | | 0.9476 | 0.68 | 8000 | 0.2020 | 0.2194 | | 0.9625 | 0.72 | 8500 | 0.1977 | 0.2191 | | 0.9497 | 0.76 | 9000 | 0.1976 | 0.2175 | | 0.9781 | 0.81 | 9500 | 0.1956 | 0.2159 | | 0.9552 | 0.85 | 10000 | 0.1958 | 0.2191 | | 0.9345 | 0.89 | 10500 | 0.1964 | 0.2158 | | 0.9528 | 0.93 | 11000 | 0.1926 | 0.2154 | | 0.9502 | 0.98 | 11500 | 0.1953 | 0.2149 | | 0.9358 | 1.02 | 12000 | 0.1927 | 0.2167 | | 0.941 | 1.06 | 12500 | 0.1901 | 0.2115 | | 0.9287 | 1.1 | 13000 | 0.1936 | 0.2090 | | 0.9491 | 1.15 | 13500 | 0.1900 | 0.2104 | | 0.9478 | 1.19 | 14000 | 0.1931 | 0.2120 | | 0.946 | 1.23 | 14500 | 0.1914 | 0.2134 | | 0.9499 | 1.27 | 15000 | 0.1931 | 0.2173 | | 0.9346 | 1.32 | 15500 | 0.1913 | 0.2105 | | 0.9509 | 1.36 | 16000 | 0.1902 | 0.2137 | | 0.9294 | 1.4 | 16500 | 0.1895 | 0.2086 | | 0.9418 | 1.44 | 17000 | 0.1913 | 0.2183 | | 0.9302 | 1.49 | 17500 | 0.1884 | 0.2114 | | 0.9418 | 1.53 | 18000 | 0.1894 | 0.2108 | | 0.9363 | 1.57 | 18500 | 0.1886 | 0.2132 | | 0.9338 | 1.61 | 19000 | 0.1856 | 0.2078 | | 0.9185 | 1.66 | 19500 | 0.1852 | 0.2056 | | 0.9216 | 1.7 | 20000 | 0.1874 | 0.2095 | | 0.9176 | 1.74 | 20500 | 0.1873 | 0.2078 | | 0.9288 | 1.78 | 21000 | 0.1865 | 0.2097 | | 0.9278 | 1.83 | 21500 | 0.1869 | 0.2100 | | 0.9295 | 1.87 | 22000 | 0.1878 | 0.2095 | | 0.9221 | 1.91 | 22500 | 0.1852 | 0.2121 | | 0.924 | 1.95 | 23000 | 0.1855 | 0.2042 | | 0.9104 | 2.0 | 23500 | 0.1858 | 0.2105 | | 0.9284 | 2.04 | 24000 | 0.1850 | 0.2080 | | 0.9162 | 2.08 | 24500 | 0.1839 | 0.2045 | | 0.9111 | 2.12 | 25000 | 0.1838 | 0.2080 | | 0.91 | 2.17 | 25500 | 0.1889 | 0.2106 | | 0.9152 | 2.21 | 26000 | 0.1856 | 0.2026 | | 0.9209 | 2.25 | 26500 | 0.1891 | 0.2133 | | 0.9094 | 2.29 | 27000 | 0.1857 | 0.2089 | | 0.9065 | 2.34 | 27500 | 0.1840 | 0.2052 | | 0.9156 | 2.38 | 28000 | 0.1833 | 0.2062 | | 0.8986 | 2.42 | 28500 | 0.1789 | 0.2001 | | 0.9045 | 2.46 | 29000 | 0.1769 | 0.2022 | | 0.9039 | 2.51 | 29500 | 0.1819 | 0.2073 | | 0.9145 | 2.55 | 30000 | 0.1828 | 0.2063 | | 0.9081 | 2.59 | 30500 | 0.1811 | 0.2049 | | 0.9252 | 2.63 | 31000 | 0.1833 | 0.2086 | | 0.8957 | 2.68 | 31500 | 0.1795 | 0.2083 | | 0.891 | 2.72 | 32000 | 0.1809 | 0.2058 | | 0.9023 | 2.76 | 32500 | 0.1812 | 0.2061 | | 0.8918 | 2.8 | 33000 | 0.1775 | 0.1997 | | 0.8852 | 2.85 | 33500 | 0.1790 | 0.1997 | | 0.8928 | 2.89 | 34000 | 0.1767 | 0.2013 | | 0.9079 | 2.93 | 34500 | 0.1735 | 0.1986 | | 0.9032 | 2.97 | 35000 | 0.1793 | 0.2024 | | 0.9018 | 3.02 | 35500 | 0.1778 | 0.2027 | | 0.8846 | 3.06 | 36000 | 0.1776 | 0.2046 | | 0.8848 | 3.1 | 36500 | 0.1812 | 0.2064 | | 0.9062 | 3.14 | 37000 | 0.1800 | 0.2018 | | 0.9011 | 3.19 | 37500 | 0.1783 | 0.2049 | | 0.8996 | 3.23 | 38000 | 0.1810 | 0.2036 | | 0.893 | 3.27 | 38500 | 0.1805 | 0.2056 | | 0.897 | 3.31 | 39000 | 0.1773 | 0.2035 | | 0.8992 | 3.36 | 39500 | 0.1804 | 0.2054 | | 0.8987 | 3.4 | 40000 | 0.1768 | 0.2016 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset mozilla-foundation/common_voice_7_0 --config de --split test --log_outputs ``` 2. To evaluate on test dev data ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
{"language": ["de"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "de", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "XLS-R-300M - German", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "de"}, "metrics": [{"type": "wer", "value": 20.16, "name": "Test WER"}, {"type": "cer", "value": 5.06, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "de"}, "metrics": [{"type": "wer", "value": 39.79, "name": "Test WER"}, {"type": "cer", "value": 15.02, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "de"}, "metrics": [{"type": "wer", "value": 47.95, "name": "Test WER"}]}]}]}
AndrewMcDowell/wav2vec2-xls-r-300m-german-de
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. Kanji are converted into Hiragana using the [pykakasi](https://pykakasi.readthedocs.io/en/latest/index.html) library during training and evaluation. The model can output both Hiragana and Katakana characters. Since there is no spacing, WER is not a suitable metric for evaluating performance and CER is more suitable. On mozilla-foundation/common_voice_8_0 it achieved: - cer: 23.64% On speech-recognition-community-v2/dev_data it achieved: - cer: 30.99% It achieves the following results on the evaluation set: - Loss: 0.5212 - Wer: 1.3068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.0974 | 4.72 | 1000 | 4.0178 | 1.9535 | | 2.1276 | 9.43 | 2000 | 0.9301 | 1.2128 | | 1.7622 | 14.15 | 3000 | 0.7103 | 1.5527 | | 1.6397 | 18.87 | 4000 | 0.6729 | 1.4269 | | 1.5468 | 23.58 | 5000 | 0.6087 | 1.2497 | | 1.4885 | 28.3 | 6000 | 0.5786 | 1.3222 | | 1.451 | 33.02 | 7000 | 0.5726 | 1.3768 | | 1.3912 | 37.74 | 8000 | 0.5518 | 1.2497 | | 1.3617 | 42.45 | 9000 | 0.5352 | 1.2694 | | 1.3113 | 47.17 | 10000 | 0.5228 | 1.2781 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` 2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
{"language": ["ja"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "ja", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300-m", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ja"}, "metrics": [{"type": "wer", "value": 95.82, "name": "Test WER"}, {"type": "cer", "value": 23.64, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "de"}, "metrics": [{"type": "wer", "value": 100.0, "name": "Test WER"}, {"type": "cer", "value": 30.99, "name": "Test CER"}, {"type": "cer", "value": 30.37, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ja"}, "metrics": [{"type": "cer", "value": 34.42, "name": "Test CER"}]}]}]}
AndrewMcDowell/wav2vec2-xls-r-300m-japanese
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "ja", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AndrewNLP/redditDepressionPropensityClassifiers
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andrey1989/bert-multilingual-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andrey1989/mbart-finetuned-en-to-kk
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1264 - Precision: 0.9305 - Recall: 0.9375 - F1: 0.9340 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.301 | 1.0 | 625 | 0.1756 | 0.8843 | 0.9067 | 0.8953 | 0.9500 | | 0.1259 | 2.0 | 1250 | 0.1248 | 0.9285 | 0.9335 | 0.9310 | 0.9688 | | 0.0895 | 3.0 | 1875 | 0.1264 | 0.9305 | 0.9375 | 0.9340 | 0.9700 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wikiann"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "mbert-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "wikiann", "type": "wikiann", "args": "lv"}, "metrics": [{"type": "precision", "value": 0.9304986338797814, "name": "Precision"}, {"type": "recall", "value": 0.9375430144528561, "name": "Recall"}, {"type": "f1", "value": 0.9340075419952005, "name": "F1"}, {"type": "accuracy", "value": 0.9699674740348558, "name": "Accuracy"}]}]}]}
Andrey1989/mbert-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andrey1989/mbert-finetuned-ner_2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andrey1989/mt5-small-finetuned-mlsum-es
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andrey1989/mt5-small-finetuned-mlsum-fr
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andrey78/my_model_nlp
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Andrey78/my_nlp_test_model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
This model is a finetuning of bert-base-greek-uncased as a Token Classifier which predicts at each token which punctuation mark it is followed by. The model preprocesses everything to lowercase and removes all Greek diacritics. For information on pretraining of the Greek Bert model, please refer to [Greek Bert](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1) # Finetuning Parameters Epochs: 5 Maximum Sequence Length: 512 Learning Rate: 4e−5 Batch Size: 16 Finetuning Data: Greek Europarl data available at: https://opus.nlpl.eu/Europarl.php Tokens: 44.1M Sentences: 1.6M Punctuation Points Recognised: '.' (0) : Full stop ',' (1) : Comma ';' (2) : Greek question mark '-' (3) : Dash ':' (4) : Semicolon '0' (5) : No punctuation point is following # Load Finetuned Model ~~~ from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Andrianos/bert-base-greek-punctuation-prediction-finetuned") model = AutoModelForTokenClassification.from_pretrained("Andrianos/bert-base-greek-punctuation-prediction-finetuned") ~~~ # Using the Model If you are interested in trying out examples and finding the limitations of the model, the starter Python code to use the model is available at [Github Repo](https://github.com/Andrian0s/Greek-Transformer-Model-Punctuation-Prediction) # Examples of the Model Using the demo script, we tried out a few brief examples and show the results below Input | Input with Predictions ------------- | ------------- "προσεκτικά στον δρομο θα σε περιμενω" | "προσεκτικα στον δρομο, θα σε περιμενω" "τι θα φας για βραδινο" | "τι θα φας για βραδινο;" "κυριε μαυροκέφαλε εσπασε η κεραια του διαδικτυου θα παρω τηλεφωνο την cyta" | "κυριε μαυροκεφαλε, εσπασε η κεραια του διαδικτυου. θα παρω τηλεφωνο την cyta." "κυριε μαυροκεφαλε εσπασεν η αντεννα του ιντερνετ εννα πιαω τηλεφωνον την cyta" | "κυριε μαυροκεφαλε, εσπασεν η αντεννα του ιντερνετ. εννα πιαω τηλεφωνον την cyta." The last two examples have identical meanings, the first is written in plain Modern Greek and the latter in the Cypriot Dialect. It is interesting to see the model performs similarly, even if some words and suffixes are out of vocabulary. # Further Performance Improvements We would be happy to hear people have finetuned this model with more and diverse datasets, as we expect this to increase robustness. Within our research, improvements to consistency in punctuation prediction have shown to be possible with techniques such as sliding windows (during inference) for larger documents, weighted loss and ensembling of different models. Make sure to cite our work when you further our models with the aforementioned techniques. # Author This model is further work based on the winning submission at Shared Task 2 Sentence End and Punctuation Prediction in NLG Text at SwissText2021. The winning submission is entitled "UZH OnPoint at Swisstext-2021: Sentence End and Punctuation Prediction in NLG Text Through Ensembling of Different Transformers" in the Proceedings of the 6th SwissText Held Online. It is publicly available at http://ceur-ws.org/Vol-2957/sepp_paper2.pdf If you use the model, please cite the following: @inproceedings{ST2021-OnPoint, title={UZH OnPoint at Swisstext-2021: Sentence End and Punctuation Prediction in NLG Text Through Ensembling of Different Transformers}, author={Michail, Andrianos and Wehrli, Silvan and Bucková, Terézia}, booktitle={Proceedings of the 1st Shared Task on Sentence End and Punctuation Prediction in NLG Text (SEPPNLG 2021) at SwissText 2021}, year={2021} } Model Finetuned and released by Andrianos Michail with resources provided by [Department of Computational Linguistics, University of Zurich](https://www.cl.uzh.ch/en.html) | Github: [@Andrian0s](https://github.com/Andrian0s) | LinkedIn: [amichail2](https://www.linkedin.com/in/amichail2/)
{}
Andrianos/bert-base-greek-punctuation-prediction-finetuned
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a person's name right after another person's name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Person's name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
{"language": ["hr", "sr", "multilingual"], "license": "apache-2.0", "datasets": ["hr500k"], "widget": [{"text": "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije"}]}
Andrija/M-bert-NER
null
[ "transformers", "pytorch", "bert", "token-classification", "hr", "sr", "multilingual", "dataset:hr500k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
from transformers import RobertaTokenizerFast tokenizer = RobertaTokenizerFast.from_pretrained('Andrija/RobertaFastBPE', bos_token="&lt;s&gt;", eos_token="&lt;/s&gt;") encoded = tokenizer('Stručnjaci te bolnice, predvođeni dr Alisom Lim') # {'input_ids': [0, 47541, 34632, 603, 24817, 16, 27540, 6768, 2350, 2803, 3991, 2733, 81, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} tokenizer.decode(encoded['input_ids']) # &lt;s&gt;Stručnjaci te bolnice, predvođeni dr Alisom Lim&lt;/s&gt;
{}
Andrija/RobertaFastBPE
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Transformer language model for Croatian and Serbian Trained on 43GB datasets that contain Croatian and Serbian language for one epochs (9.6 mil. steps, 3 epochs). Leipzig Corpus, OSCAR, srWac, hrWac, cc100-hr and cc100-sr datasets Validation number of exampels run for perplexity:1620487 sentences Perplexity:6.02 Start loss: 8.6 Final loss: 2.0 Thoughts: Model could be trained more, the training did not stagnate. | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `Andrija/SRoBERTa-F` | 80M | Fifth | Leipzig Corpus, OSCAR, srWac, hrWac, cc100-hr and cc100-sr (43 GB of text) |
{"language": ["hr", "sr", "multilingual"], "license": "apache-2.0", "tags": ["masked-lm"], "datasets": ["oscar", "srwac", "leipzig", "cc100", "hrwac"], "widget": [{"text": "Ovo je po\u010detak <mask>."}]}
Andrija/SRoBERTa-F
null
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "masked-lm", "hr", "sr", "multilingual", "dataset:oscar", "dataset:srwac", "dataset:leipzig", "dataset:cc100", "dataset:hrwac", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a person’s name right after another person’s name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Person’s name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
{"language": ["hr", "sr", "multilingual"], "license": "apache-2.0", "datasets": ["hr500k"], "widget": [{"text": "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije"}]}
Andrija/SRoBERTa-L-NER
null
[ "transformers", "pytorch", "roberta", "token-classification", "hr", "sr", "multilingual", "dataset:hr500k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Transformer language model for Croatian and Serbian Trained on 6GB datasets that contain Croatian and Serbian language for two epochs (500k steps). Leipzig, OSCAR and srWac datasets | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `Andrija/SRoBERTa-L` | 80M | Third | Leipzig Corpus, OSCAR and srWac (6 GB of text) |
{"language": ["hr", "sr", "multilingual"], "license": "apache-2.0", "tags": ["masked-lm"], "datasets": ["oscar", "srwac", "leipzig"], "widget": [{"text": "Ovo je po\u010detak <mask>."}]}
Andrija/SRoBERTa-L
null
[ "transformers", "pytorch", "roberta", "fill-mask", "masked-lm", "hr", "sr", "multilingual", "dataset:oscar", "dataset:srwac", "dataset:leipzig", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a person’s name right after another person’s name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Person’s name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
{"language": ["hr", "sr", "multilingual"], "license": "apache-2.0", "datasets": ["hr500k"], "widget": [{"text": "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije"}]}
Andrija/SRoBERTa-NER
null
[ "transformers", "pytorch", "roberta", "token-classification", "hr", "sr", "multilingual", "dataset:hr500k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
Andrija/SRoBERTa-NLP
null
[ "transformers", "pytorch", "roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a person's name right after another person's name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Person's name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
{"language": ["hr", "sr", "multilingual"], "license": "apache-2.0", "datasets": ["hr500k"], "widget": [{"text": "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije"}]}
Andrija/SRoBERTa-XL-NER
null
[ "transformers", "pytorch", "roberta", "token-classification", "hr", "sr", "multilingual", "dataset:hr500k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00