sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
listlengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
listlengths 0
201
| languages
listlengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
listlengths 0
722
| processed_texts
listlengths 1
723
| tokens_length
listlengths 1
723
| input_texts
listlengths 1
61
| embeddings
listlengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
transformers
|
# Vision-and-Language Transformer (ViLT), fine-tuned on COCO
Vision-and-Language Transformer (ViLT) model fine-tuned on [COCO](https://cocodataset.org/#home). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT).
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the model for image and text retrieval.
### How to use
Here is how to use the model in PyTorch:
```
from transformers import ViltProcessor, ViltForImageAndTextRetrieval
import requests
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco")
model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco")
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
scores = dict()
for text in texts:
encoding = processor(image, text, return_tensors="pt")
outputs = model(**encoding)
scores[text] = outputs.logits[0, :].item()
```
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
```bibtex
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
```
|
{"license": "apache-2.0"}
| null |
dandelin/vilt-b32-finetuned-coco
|
[
"transformers",
"pytorch",
"vilt",
"arxiv:2102.03334",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2102.03334"
] |
[] |
TAGS
#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us
|
# Vision-and-Language Transformer (ViLT), fine-tuned on COCO
Vision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository.
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the model for image and text retrieval.
### How to use
Here is how to use the model in PyTorch:
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
|
[
"# Vision-and-Language Transformer (ViLT), fine-tuned on COCO\n\nVision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the model for image and text retrieval.",
"### How to use\n\nHere is how to use the model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Vision-and-Language Transformer (ViLT), fine-tuned on COCO\n\nVision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the model for image and text retrieval.",
"### How to use\n\nHere is how to use the model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
40,
115,
22,
17,
7,
3,
9,
8,
8,
11
] |
[
"passage: TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n# Vision-and-Language Transformer (ViLT), fine-tuned on COCO\n\nVision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the model for image and text retrieval.### How to use\n\nHere is how to use the model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info"
] |
[
-0.06131885200738907,
0.03359616920351982,
-0.002222111215814948,
0.03491804748773575,
0.1571560949087143,
0.04417775571346283,
0.10672325640916824,
0.08876167237758636,
-0.0669664815068245,
0.04459856450557709,
0.11000601202249527,
0.08625166863203049,
0.12380868941545486,
0.1133391410112381,
0.006334159057587385,
-0.21579965949058533,
0.0403447262942791,
0.03820009157061577,
0.10585819184780121,
0.11470106989145279,
0.07443269342184067,
-0.09960590302944183,
0.10282018780708313,
0.029008837416768074,
-0.16519461572170258,
-0.05617513880133629,
-0.05291979759931564,
-0.027783401310443878,
0.08607777953147888,
0.06179238110780716,
0.13360972702503204,
0.03813407942652702,
0.06545434147119522,
-0.14556293189525604,
0.02534790150821209,
0.04858969524502754,
-0.02015279233455658,
0.05934686213731766,
0.07747459411621094,
-0.03152991458773613,
0.176719531416893,
-0.002927699824795127,
0.07254111021757126,
0.054775599390268326,
-0.1142350435256958,
-0.16401517391204834,
-0.1047375351190567,
0.11107073724269867,
0.09783817082643509,
0.08381231129169464,
-0.010594388470053673,
0.1464477777481079,
-0.04182735085487366,
0.04940633475780487,
0.09438684582710266,
-0.11573807150125504,
-0.07250381261110306,
0.10981105268001556,
0.06049944460391998,
0.039958786219358444,
-0.0695398822426796,
0.014155053533613682,
0.0670088604092598,
0.007185662165284157,
0.02550487592816353,
-0.04945334047079086,
-0.012844635173678398,
-0.04370740428566933,
-0.12296106666326523,
-0.10400953143835068,
0.12349359691143036,
-0.03301357477903366,
-0.07986733317375183,
-0.06341404467821121,
-0.019473539665341377,
0.018864205107092857,
-0.019061453640460968,
-0.02197951450943947,
0.030644865706562996,
-0.009735559113323689,
0.10653992742300034,
-0.13143211603164673,
-0.14035536348819733,
-0.11390681564807892,
0.03209536522626877,
0.0017854629550129175,
0.03475814312696457,
0.026849159970879555,
-0.07739858329296112,
0.12550371885299683,
-0.09579605609178543,
-0.05958954617381096,
-0.05395985394716263,
-0.08459572494029999,
-0.043928112834692,
-0.02566312439739704,
-0.00010903509246418253,
-0.06596267968416214,
-0.036112792789936066,
0.02965099923312664,
0.045651860535144806,
0.06733312457799911,
-0.06260329484939575,
0.0725543349981308,
0.01031825877726078,
0.19451770186424255,
-0.047248706221580505,
0.10537582635879517,
-0.028683215379714966,
-0.012823904864490032,
0.007047675084322691,
-0.049036771059036255,
-0.07759864628314972,
-0.010795618407428265,
-0.0372038409113884,
0.07093937695026398,
0.014439706690609455,
0.02731597237288952,
0.001600748160853982,
-0.01750289462506771,
0.2226063311100006,
-0.044999539852142334,
0.014405774883925915,
0.05306406319141388,
0.002129643689841032,
0.0318378284573555,
0.13295604288578033,
-0.026860171929001808,
-0.07057253271341324,
0.1004185602068901,
-0.06223968043923378,
0.025810474529862404,
-0.107481449842453,
-0.0774613469839096,
0.02401842549443245,
-0.15756598114967346,
0.004127772059291601,
-0.11369992792606354,
-0.15104228258132935,
-0.0290856771171093,
0.03589063137769699,
-0.040523502975702286,
0.042176004499197006,
-0.04549152031540871,
-0.02145661786198616,
0.016652118414640427,
0.04088631644845009,
0.08876024186611176,
-0.015060646459460258,
0.06311116367578506,
0.002114369999617338,
0.03719611465930939,
-0.03792600333690643,
0.053461361676454544,
-0.0697154775261879,
0.04917324706912041,
-0.0736331194639206,
0.018913311883807182,
-0.043296054005622864,
-0.0035314178094267845,
-0.10240893065929413,
-0.06601299345493317,
0.013576201163232327,
0.016816021874547005,
0.048653729259967804,
0.11799456179141998,
-0.12442265450954437,
-0.011682800017297268,
0.17544320225715637,
-0.15252847969532013,
-0.058398135006427765,
0.09256115555763245,
-0.023149602115154266,
0.09209013730287552,
0.02169777825474739,
0.06489351391792297,
0.2013920396566391,
-0.19083380699157715,
0.046138275414705276,
0.04475105553865433,
-0.10640356689691544,
-0.0476863831281662,
0.044101227074861526,
-0.0015260139480233192,
-0.13114236295223236,
0.02313479222357273,
-0.13956329226493835,
-0.035898204892873764,
-0.043776605278253555,
-0.06689672917127609,
-0.02822469361126423,
-0.04373856633901596,
-0.0012757231015712023,
0.04938246309757233,
-0.01634838618338108,
-0.008150650188326836,
-0.05916031450033188,
-0.03463296592235565,
0.1079939529299736,
-0.055529698729515076,
0.015247074887156487,
-0.05351005867123604,
0.10931947082281113,
-0.11617005616426468,
-0.0007919935160316527,
-0.10924485325813293,
0.06905193626880646,
0.009345312602818012,
-0.03989007696509361,
0.09020847827196121,
0.09470970183610916,
0.020566577091813087,
0.05989019200205803,
-0.006846026051789522,
-0.028131235390901566,
-0.00296386587433517,
-0.027891453355550766,
-0.05727475881576538,
-0.11247530579566956,
-0.0018915141699835658,
-0.06794722378253937,
0.09920770674943924,
-0.16566219925880432,
0.01484469510614872,
0.0017941390397027135,
0.0014623776078224182,
-0.05114689841866493,
-0.013031203299760818,
0.023669390007853508,
0.025545524433255196,
0.005720456130802631,
-0.046505074948072433,
0.0960858166217804,
0.04292142018675804,
-0.03284771740436554,
0.0969516783952713,
-0.1683945506811142,
-0.20965518057346344,
0.1383243352174759,
-0.04205437749624252,
-0.11764226108789444,
-0.013408963568508625,
0.0052194492891430855,
-0.037558335810899734,
-0.0398225411772728,
0.018894704058766365,
0.1747722029685974,
0.0026283732149749994,
0.144869863986969,
-0.11904256045818329,
-0.00719848508015275,
0.07378415763378143,
-0.06546639651060104,
-0.06429456919431686,
0.09710241854190826,
0.1497490406036377,
-0.11931070685386658,
0.07793597131967545,
0.06448625028133392,
-0.07698661834001541,
0.1542925387620926,
0.05127234384417534,
-0.05946021527051926,
-0.020067544654011726,
0.06143337860703468,
0.031005460768938065,
0.1338036060333252,
-0.14749367535114288,
0.0007193605415523052,
0.050257034599781036,
-0.01968836598098278,
0.03272448852658272,
-0.17664897441864014,
-0.008556351996958256,
0.049047280102968216,
-0.00960586592555046,
-0.05561267212033272,
0.025062866508960724,
-0.027569111436605453,
0.06435835361480713,
0.04112328588962555,
0.030602581799030304,
0.021120069548487663,
-0.032107315957546234,
-0.10289561748504639,
0.19023944437503815,
-0.09236373007297516,
-0.27332088351249695,
-0.1454080045223236,
-0.001395198400132358,
0.03194547817111015,
0.025901587679982185,
0.04568655416369438,
-0.07411858439445496,
-0.06678901612758636,
-0.045938026160001755,
-0.007179895415902138,
-0.09944005310535431,
-0.08574560284614563,
-0.051663827151060104,
-0.03292416036128998,
-0.03916163370013237,
-0.11762656271457672,
0.014391195960342884,
-0.01809752732515335,
-0.08411451429128647,
0.07134309411048889,
-0.08149401843547821,
0.0639902651309967,
0.17546547949314117,
-0.03898058459162712,
0.027167320251464844,
-0.03390511870384216,
0.10722289979457855,
-0.09237614274024963,
-0.004731480497866869,
0.20123663544654846,
-0.016264619305729866,
0.05897502973675728,
0.08819103240966797,
-0.005665856879204512,
-0.051754917949438095,
-0.00705574220046401,
-0.010322914458811283,
-0.12685774266719818,
-0.20279225707054138,
-0.04570427164435387,
-0.05328090488910675,
0.07139810174703598,
0.062357254326343536,
0.03453106805682182,
0.08156487345695496,
0.13015492260456085,
-0.05221030116081238,
-0.0212114118039608,
0.010082571767270565,
0.10929834097623825,
0.020524725317955017,
-0.018721649423241615,
0.05002463608980179,
-0.08829572796821594,
0.04337413236498833,
0.07410626858472824,
0.06929408013820648,
0.17956596612930298,
0.04491610825061798,
0.08705385029315948,
0.07525533437728882,
0.097495436668396,
0.044770196080207825,
0.0806846022605896,
-0.06860630959272385,
0.03573670983314514,
-0.05009796470403671,
-0.06998419016599655,
-0.06997925043106079,
0.07816462963819504,
0.05698807165026665,
-0.006462798919528723,
-0.09734425693750381,
-0.007930637337267399,
-0.006609098520129919,
0.06904222071170807,
-0.0009460529545322061,
-0.2285008579492569,
-0.02798096090555191,
0.027088331058621407,
0.058689747005701065,
-0.150664284825325,
0.0001232146460097283,
0.01991698332130909,
-0.15671569108963013,
0.01833711750805378,
-0.03464236855506897,
0.11348135024309158,
-0.08750683069229126,
-0.04351034015417099,
-0.06689031422138214,
0.022676216438412666,
0.023335307836532593,
0.13197200000286102,
-0.18641409277915955,
0.14513768255710602,
-0.009912793524563313,
0.07068338990211487,
-0.06517543643712997,
0.022653505206108093,
0.00420621782541275,
0.14508824050426483,
0.19597890973091125,
-0.010784074664115906,
0.11202727258205414,
-0.0887061059474945,
-0.0055201416835188866,
-0.0037602174561470747,
0.06031224504113197,
0.006579707842320204,
0.01818998157978058,
-0.017272429540753365,
-0.0037926018703728914,
-0.026237495243549347,
-0.028665758669376373,
-0.04545460641384125,
-0.11888328194618225,
0.06680047512054443,
-0.0964866578578949,
0.02305244281888008,
-0.028808102011680603,
-0.03711804002523422,
-0.05075587332248688,
0.14532814919948578,
-0.10357329249382019,
-0.07588458806276321,
-0.1439330130815506,
-0.04061328247189522,
0.0590902678668499,
-0.06941551715135574,
0.057504814118146896,
-0.09038184583187103,
0.10666432976722717,
-0.06910549849271774,
-0.05777759104967117,
0.011762437410652637,
-0.09159733355045319,
-0.15940351784229279,
-0.011544229462742805,
0.10677508264780045,
0.043499935418367386,
0.013120639137923717,
0.03509579971432686,
-0.0031555432360619307,
-0.08837258070707321,
-0.12505370378494263,
0.03758765384554863,
0.11955495178699493,
0.09617282450199127,
-0.0073045785538852215,
0.05041104927659035,
-0.05371849238872528,
-0.07336711883544922,
-0.01206124760210514,
0.10572342574596405,
0.1319754719734192,
-0.06341622769832611,
0.14736777544021606,
0.18249620497226715,
-0.1390063315629959,
-0.2642194330692291,
0.002205249620601535,
0.014624574221670628,
0.028923891484737396,
-0.07777359336614609,
-0.12806087732315063,
-0.014908474870026112,
-0.01463839691132307,
-0.03361991047859192,
0.015136218629777431,
-0.21137750148773193,
-0.09616672247648239,
0.1270325630903244,
0.1399526298046112,
0.04650965332984924,
-0.11326143890619278,
-0.06412003189325333,
-0.009425237774848938,
-0.16575433313846588,
0.13775570690631866,
-0.046395957469940186,
0.08853879570960999,
-0.029353981837630272,
0.034462034702301025,
0.02092711813747883,
-0.07592032849788666,
0.14495660364627838,
-0.09328682720661163,
0.041072357445955276,
-0.07150538265705109,
-0.07633885741233826,
0.03515087813138962,
-0.03984242305159569,
0.09886392205953598,
0.010797726921737194,
0.06684334576129913,
-0.10558447241783142,
-0.05694417655467987,
-0.10548113286495209,
0.05830014869570732,
-0.0768420472741127,
-0.06467494368553162,
-0.04667631536722183,
0.041727565228939056,
0.03397781774401665,
-0.01900283619761467,
0.005842890590429306,
-0.11552994698286057,
-0.05031414330005646,
0.15635985136032104,
0.17484770715236664,
0.04950874298810959,
-0.06950709223747253,
-0.024108590558171272,
-0.04355858638882637,
0.10426057875156403,
-0.2006053924560547,
0.013827136717736721,
0.05671337991952896,
0.016266461461782455,
0.11121760308742523,
0.027849985286593437,
-0.09730047732591629,
0.01228207815438509,
0.027205774560570717,
-0.08880388736724854,
-0.1169249638915062,
-0.006630119867622852,
0.11193454265594482,
-0.019086867570877075,
-0.018247004598379135,
0.10233525931835175,
-0.10516853630542755,
-0.022177405655384064,
-0.015334198251366615,
0.008601216599345207,
-0.03725897893309593,
0.040659841150045395,
0.09280115365982056,
0.03675348311662674,
-0.08457411825656891,
0.06077169254422188,
0.06757292151451111,
-0.10869699716567993,
0.028120869770646095,
0.06746761500835419,
-0.10067958384752274,
-0.09822007268667221,
0.025863077491521835,
0.16735966503620148,
-0.09921249002218246,
-0.11014795303344727,
0.040424928069114685,
-0.10830163210630417,
0.028029335662722588,
0.15805190801620483,
0.04074189066886902,
0.0008468868327327073,
-0.04098571464419365,
0.021320294588804245,
-0.15116631984710693,
0.04417242482304573,
-0.035957060754299164,
0.03369848430156708,
-0.07006718218326569,
0.08415240049362183,
0.058573830872774124,
0.12289883196353912,
-0.03380491957068443,
-0.054479166865348816,
-0.09088060259819031,
0.03030022419989109,
-0.0839209333062172,
0.08729507774114609,
-0.06367801129817963,
0.008590606972575188,
-0.0026859878562390804,
-0.022055072709918022,
0.032100778073072433,
0.009552271105349064,
-0.06032823398709297,
0.017471911385655403,
-0.021416515111923218,
0.06255143135786057,
-0.10239765793085098,
0.00029985563014633954,
0.05235391855239868,
-0.026360876858234406,
0.04471834376454353,
0.013515589758753777,
-0.022468987852334976,
0.052267249673604965,
-0.14304162561893463,
0.045320264995098114,
0.01351636741310358,
0.025719812139868736,
-0.005240931175649166,
-0.12250331044197083,
0.008328910917043686,
-0.022696426138281822,
-0.0838196724653244,
-0.02668188512325287,
0.11588182300329208,
-0.11456874012947083,
0.05636756122112274,
0.0242757648229599,
-0.07937559485435486,
-0.025617435574531555,
0.09326840937137604,
0.01038541179150343,
0.06117897853255272,
0.018411092460155487,
-0.0182180255651474,
0.10660317540168762,
-0.07521195709705353,
-0.010825315490365028,
0.014041511341929436,
-0.03662527725100517,
-0.05865098163485527,
-0.10107129067182541,
0.053982362151145935,
-0.02099589630961418,
0.053541116416454315,
0.03776010870933533,
0.030188310891389847,
-0.010659852996468544,
0.040716737508773804,
0.0030282442457973957,
0.012439743615686893,
0.09940683841705322,
-0.02109552174806595,
0.017615780234336853,
0.026657281443476677,
0.04059808328747749,
-0.016620155423879623,
-0.04044267535209656,
0.1090063527226448,
0.10315831750631332,
0.06982612609863281,
0.07469245046377182,
0.04195161908864975,
-0.031290169805288315,
-0.07708429545164108,
-0.07050246745347977,
-0.03727070242166519,
0.031549256294965744,
-0.07770179957151413,
0.06516507267951965,
0.1679345667362213,
-0.12082422524690628,
0.0690663531422615,
-0.006614638492465019,
-0.07971061766147614,
-0.0764850378036499,
-0.17527224123477936,
-0.05024615675210953,
-0.027836762368679047,
0.03741547092795372,
-0.05618719756603241,
0.061403725296258926,
0.05920989066362381,
0.02315462753176689,
-0.05570981279015541,
0.15392060577869415,
0.0009970067767426372,
-0.03251958265900612,
0.044933903962373734,
0.03437007963657379,
0.05740823596715927,
-0.09622185677289963,
0.038529958575963974,
0.023360691964626312,
0.022259341552853584,
0.04910492151975632,
0.050309956073760986,
0.0693545788526535,
0.04014747589826584,
-0.01226817350834608,
-0.07710888236761093,
-0.0025001761969178915,
0.04476585611701012,
0.02894113026559353,
0.11942429840564728,
-0.025450848042964935,
0.03183671832084656,
-0.0124739371240139,
0.0972941517829895,
-0.05177099630236626,
-0.06608427315950394,
-0.09146279841661453,
0.26007750630378723,
-0.0419786274433136,
-0.011291645467281342,
0.030361758545041084,
-0.04088923707604408,
0.010540954768657684,
0.35329726338386536,
0.18106836080551147,
0.012589739635586739,
0.01175344455987215,
0.028883544728159904,
0.021962633356451988,
0.02742704749107361,
0.10876654088497162,
0.031478479504585266,
0.1838904619216919,
-0.10594780743122101,
0.08326158672571182,
-0.040678005665540695,
-0.031959038227796555,
0.039857782423496246,
0.08579379320144653,
-0.009442268870770931,
-0.05194993317127228,
-0.05417162552475929,
0.04703642055392265,
-0.06409496814012527,
-0.13469180464744568,
0.12113778293132782,
-0.03243771940469742,
-0.03991738706827164,
-0.0016072788275778294,
0.05910234525799751,
-0.03619137778878212,
0.01650630682706833,
-0.04079970344901085,
-0.029208194464445114,
0.15208208560943604,
0.019153881818056107,
-0.13343515992164612,
-0.041636910289525986,
0.03380496799945831,
-0.09886888414621353,
0.19098550081253052,
0.015313501469790936,
0.05697484314441681,
0.04789774492383003,
0.0536385178565979,
-0.08346257358789444,
0.06456214189529419,
0.04329058527946472,
-0.03166792541742325,
0.03191845491528511,
0.11116567999124527,
-0.03388766199350357,
-0.0396038182079792,
-0.0018952091922983527,
-0.12911711633205414,
0.05921432748436928,
-0.06543435901403427,
-0.02611021138727665,
-0.04086213931441307,
0.10102476179599762,
-0.12846849858760834,
0.14574052393436432,
0.1412293165922165,
-0.0023098362144082785,
-0.0666857361793518,
-0.07089848816394806,
0.03946757689118385,
-0.0362059511244297,
0.05606590211391449,
0.006152798887342215,
-0.07877042889595032,
-0.008931725285947323,
0.009589895606040955,
0.07753534615039825,
-0.22243037819862366,
-0.033724550157785416,
-0.026521150022745132,
-0.03204537183046341,
-0.02855253592133522,
0.04542026296257973,
0.005333768203854561,
-0.00932092871516943,
-0.051648326218128204,
-0.04628292843699455,
-0.010317396372556686,
0.12270257622003555,
-0.06385156512260437,
-0.075584277510643
] |
null | null |
transformers
|
# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k
Vision-and-Language Transformer (ViLT) model fine-tuned on [Flickr30k](https://arxiv.org/abs/1505.04870#:~:text=The%20Flickr30k%20dataset%20has%20become,for%20sentence%2Dbased%20image%20description.&text=Such%20annotations%20are%20essential%20for,entity%20mentions%20in%20an%20image.). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT).
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the model for image and text retrieval.
### How to use
Here is how to use the model in PyTorch:
```
from transformers import ViltProcessor, ViltForImageAndTextRetrieval
import requests
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-flickr30k")
model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-flickr30k")
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
scores = dict()
for text in texts:
encoding = processor(image, text, return_tensors="pt")
outputs = model(**encoding)
scores[text] = outputs.logits[0, :].item()
```
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
```bibtex
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
```
|
{"license": "apache-2.0"}
| null |
dandelin/vilt-b32-finetuned-flickr30k
|
[
"transformers",
"pytorch",
"vilt",
"arxiv:1505.04870",
"arxiv:2102.03334",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1505.04870",
"2102.03334"
] |
[] |
TAGS
#transformers #pytorch #vilt #arxiv-1505.04870 #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us
|
# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k
Vision-and-Language Transformer (ViLT) model fine-tuned on Flickr30k. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository.
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the model for image and text retrieval.
### How to use
Here is how to use the model in PyTorch:
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
|
[
"# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k\n\nVision-and-Language Transformer (ViLT) model fine-tuned on Flickr30k. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the model for image and text retrieval.",
"### How to use\n\nHere is how to use the model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #vilt #arxiv-1505.04870 #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k\n\nVision-and-Language Transformer (ViLT) model fine-tuned on Flickr30k. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the model for image and text retrieval.",
"### How to use\n\nHere is how to use the model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
48,
117,
22,
17,
7,
3,
9,
8,
8,
11
] |
[
"passage: TAGS\n#transformers #pytorch #vilt #arxiv-1505.04870 #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k\n\nVision-and-Language Transformer (ViLT) model fine-tuned on Flickr30k. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the model for image and text retrieval.### How to use\n\nHere is how to use the model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info"
] |
[
-0.06805937737226486,
0.05900660902261734,
-0.0024869386106729507,
0.05577206239104271,
0.17949703335762024,
0.06650010496377945,
0.10941033065319061,
0.09165266156196594,
-0.057377975434064865,
0.0488504134118557,
0.10236510634422302,
0.09820116311311722,
0.10313563793897629,
0.09958039224147797,
0.012215705588459969,
-0.2566187083721161,
0.009533848613500595,
0.03421337530016899,
0.08026140928268433,
0.11342120170593262,
0.08636635541915894,
-0.08267497271299362,
0.09290912747383118,
0.03660515695810318,
-0.17839623987674713,
-0.025303389877080917,
-0.014435576274991035,
-0.029533425346016884,
0.1097094863653183,
0.06063111871480942,
0.10103261470794678,
0.013084967620670795,
0.08991970866918564,
-0.1267649084329605,
0.02011668123304844,
0.06672780215740204,
-0.00656149024143815,
0.07004721462726593,
0.08803873509168625,
-0.003462340449914336,
0.19140155613422394,
-0.038415487855672836,
0.0657564178109169,
0.05942899361252785,
-0.10763011872768402,
-0.22927598655223846,
-0.09539438039064407,
0.12994082272052765,
0.049780067056417465,
0.08999089151620865,
-0.005313671659678221,
0.14072589576244354,
-0.008032656274735928,
0.07352497428655624,
0.11412730067968369,
-0.1575736254453659,
-0.07498989254236221,
0.08846669644117355,
0.03673456236720085,
0.02291334606707096,
-0.09622329473495483,
0.00578169384971261,
0.054745327681303024,
0.005785083398222923,
0.028105860576033592,
-0.03351916745305061,
-0.01233730185776949,
-0.06353598833084106,
-0.12867991626262665,
-0.09680353850126266,
0.13453920185565948,
-0.019218094646930695,
-0.07335187494754791,
-0.07710640132427216,
-0.04970536381006241,
0.045355334877967834,
0.004187747836112976,
-0.015534892678260803,
0.0057670120149850845,
-0.03246508166193962,
0.09244722872972488,
-0.1622997224330902,
-0.12153264135122299,
-0.11137278378009796,
0.052253562957048416,
0.038405075669288635,
0.06513145565986633,
0.04064507037401199,
-0.09910265356302261,
0.11400055885314941,
-0.12476091831922531,
-0.06709777563810349,
-0.01685740426182747,
-0.08393334597349167,
-0.044443074613809586,
-0.02254297025501728,
0.026089290156960487,
-0.1018342599272728,
-0.052967507392168045,
0.06297080963850021,
0.009946582838892937,
0.08124002069234848,
-0.054425518959760666,
0.0436418280005455,
0.014589512720704079,
0.15602967143058777,
-0.05578033626079559,
0.07560524344444275,
-0.025410475209355354,
0.0018458818085491657,
-0.010683313012123108,
-0.020604051649570465,
-0.04061874747276306,
-0.04142865538597107,
-0.019846057519316673,
0.048311930149793625,
0.024333182722330093,
0.06233811005949974,
0.04310596361756325,
-0.04856730252504349,
0.17342697083950043,
-0.08288638293743134,
-0.013717377558350563,
0.04003528133034706,
-0.020980345085263252,
0.04151218757033348,
0.11403174698352814,
-0.07099584490060806,
-0.10074174404144287,
0.09302880614995956,
-0.06521669030189514,
0.02181524597108364,
-0.09463254362344742,
-0.1053241491317749,
-0.012890626676380634,
-0.16407079994678497,
-0.01362264808267355,
-0.09283895790576935,
-0.1724262237548828,
-0.02337847277522087,
0.07043200731277466,
-0.047325391322374344,
0.015501816757023335,
-0.013958710245788097,
-0.013881651684641838,
0.0330432765185833,
0.029267529025673866,
0.05328923463821411,
0.00474467733874917,
0.09743717312812805,
0.045851144939661026,
0.039988234639167786,
-0.02262558974325657,
0.06578885763883591,
-0.06798513233661652,
0.023601848632097244,
-0.08909177035093307,
0.013668030500411987,
-0.049248598515987396,
-0.03831011801958084,
-0.11337902396917343,
-0.1007343977689743,
0.007349601946771145,
0.004349716007709503,
0.06183960661292076,
0.1209031194448471,
-0.1390155851840973,
-0.002739671152085066,
0.14929896593093872,
-0.1712350994348526,
-0.0130879245698452,
0.09466272592544556,
-0.018613923341035843,
0.0880194827914238,
0.012580635026097298,
0.12054471671581268,
0.17176970839500427,
-0.19652032852172852,
0.04789566248655319,
0.03177816793322563,
-0.1277010142803192,
-0.029396837577223778,
0.023717759177088737,
0.007263957988470793,
-0.1188201755285263,
0.031332895159721375,
-0.16835692524909973,
-0.017628349363803864,
-0.05747107043862343,
-0.04380420222878456,
-0.03648917376995087,
-0.02864709682762623,
0.05134115740656853,
0.0688583254814148,
-0.01343767624348402,
0.011753343977034092,
-0.061991166323423386,
0.04892069101333618,
0.12827633321285248,
-0.04998691380023956,
0.004806785378605127,
-0.0503409281373024,
0.0641588568687439,
-0.1115834191441536,
-0.007285424508154392,
-0.13134397566318512,
0.06292442232370377,
0.003999017179012299,
-0.08621012419462204,
0.08996953070163727,
0.11421150714159012,
0.037904076278209686,
0.04688768833875656,
-0.02977587841451168,
-0.0483357235789299,
-0.034230783581733704,
-0.025627829134464264,
-0.04195193946361542,
-0.12386823445558548,
-0.04008067399263382,
-0.0461842305958271,
0.04472474381327629,
-0.19510193169116974,
0.01793675869703293,
-0.027089161798357964,
0.014937696978449821,
-0.05422406643629074,
-0.03317161649465561,
0.017446357756853104,
-0.008717859163880348,
0.00826951302587986,
-0.051728129386901855,
0.10463673621416092,
0.03446049988269806,
0.03168433904647827,
0.04781397059559822,
-0.120061956346035,
-0.1779816746711731,
0.11871303617954254,
-0.040914200246334076,
-0.13098521530628204,
0.02358068898320198,
0.002675063908100128,
-0.03299024701118469,
-0.046512097120285034,
0.02514289692044258,
0.12054263055324554,
0.01684447191655636,
0.1576773226261139,
-0.08676894754171371,
0.005554107017815113,
0.06925680488348007,
-0.06318414211273193,
-0.07856859266757965,
0.09013604372739792,
0.14014163613319397,
-0.12120649218559265,
0.07708405703306198,
0.021044397726655006,
-0.05305051431059837,
0.18890157341957092,
0.06527147442102432,
-0.048984311521053314,
-0.03589601069688797,
0.07259046286344528,
0.015012035146355629,
0.1457405686378479,
-0.15546058118343353,
-0.007240311708301306,
0.04342665523290634,
-0.007272847928106785,
0.022997571155428886,
-0.14877082407474518,
-0.0024785292334854603,
0.03806121274828911,
-0.01917191967368126,
-0.051762718707323074,
0.04673184081912041,
-0.021916283294558525,
0.0720447450876236,
0.03507091477513313,
0.07654955983161926,
0.024824395775794983,
-0.032033372670412064,
-0.09167585521936417,
0.17185348272323608,
-0.07676834613084793,
-0.2563570439815521,
-0.15640266239643097,
-0.000955479103140533,
-0.020716963335871696,
-0.010797171853482723,
0.02750404365360737,
-0.09953838586807251,
-0.06558344513177872,
-0.02433839812874794,
0.04059364274144173,
-0.11188214272260666,
-0.09957274794578552,
-0.03954313322901726,
-0.03645908832550049,
0.008564312942326069,
-0.1214987188577652,
0.025596819818019867,
-0.020751075819134712,
-0.08898792415857315,
0.06176462396979332,
-0.010469585657119751,
0.04374339431524277,
0.10203999280929565,
-0.05894193425774574,
0.04878532513976097,
-0.022969422861933708,
0.16826419532299042,
-0.0759885236620903,
0.030909953638911247,
0.26304957270622253,
0.00980515219271183,
0.0696948990225792,
0.09208960086107254,
-0.006254193838685751,
-0.054050128906965256,
0.004243591800332069,
0.03263555094599724,
-0.09792838990688324,
-0.21152928471565247,
-0.03370983153581619,
-0.05882922187447548,
0.03919091448187828,
0.0901038721203804,
0.04492983594536781,
0.06989802420139313,
0.10243832319974899,
-0.057121001183986664,
-0.014445973560214043,
0.008008399978280067,
0.11806246638298035,
0.10760671645402908,
-0.02635960653424263,
0.03202207759022713,
-0.07117893546819687,
0.051145076751708984,
0.07434745132923126,
0.043385978788137436,
0.20232169330120087,
0.005544361192733049,
0.061293210834264755,
0.06464621424674988,
0.1426435261964798,
0.039622753858566284,
0.07319961488246918,
-0.08698387444019318,
0.03938787057995796,
-0.032047338783741,
-0.058189757168293,
-0.06859255582094193,
0.0376896858215332,
0.000947491847909987,
0.014669260941445827,
-0.08838243782520294,
0.001105084433220327,
-0.028771866112947464,
0.11408129334449768,
0.008310108445584774,
-0.1908409148454666,
-0.05130704864859581,
-0.0023398431949317455,
0.03458545729517937,
-0.17314983904361725,
0.005959698464721441,
0.04416194185614586,
-0.15846288204193115,
0.030326638370752335,
-0.06732634454965591,
0.09122176468372345,
-0.08537629246711731,
-0.02553049474954605,
-0.02062118984758854,
0.06864938139915466,
0.01948453113436699,
0.12449690699577332,
-0.186430886387825,
0.15925781428813934,
-0.007533613126724958,
0.09297847747802734,
-0.044518519192934036,
0.014473630115389824,
-0.0061174905858933926,
0.11590731143951416,
0.20283465087413788,
-0.003256335388869047,
0.1392524391412735,
-0.08525719493627548,
0.032869186252355576,
-0.020430386066436768,
0.08125600963830948,
0.05195453017950058,
0.026309829205274582,
-0.05484864488244057,
0.0033771672751754522,
-0.014513175934553146,
-0.02238515019416809,
-0.1142071932554245,
-0.11293653398752213,
0.06303272396326065,
-0.10871205478906631,
0.018681222572922707,
-0.019709551706910133,
-0.03220008313655853,
-0.023158570751547813,
0.13169842958450317,
-0.11016266793012619,
-0.08353295922279358,
-0.14985287189483643,
0.012980910018086433,
0.08353082835674286,
-0.09262136369943619,
0.06838089227676392,
-0.08723416924476624,
0.08132991939783096,
-0.059988874942064285,
-0.08561097085475922,
-0.006645519752055407,
-0.08708914369344711,
-0.1442103236913681,
0.020561227574944496,
0.08433510363101959,
0.041378699243068695,
-0.007847812958061695,
0.00929115992039442,
0.012354490347206593,
-0.05976032838225365,
-0.11530457437038422,
0.047601569443941116,
0.08191324025392532,
0.0444331169128418,
-0.03584020584821701,
-0.0052148690447211266,
-0.09386119991540909,
-0.06068521738052368,
-0.036151908338069916,
0.11356113851070404,
0.15331071615219116,
-0.07185622304677963,
0.12181200087070465,
0.20556168258190155,
-0.12873998284339905,
-0.24384814500808716,
0.022144077345728874,
0.03980585187673569,
0.008166065439581871,
-0.03305837884545326,
-0.17341528832912445,
-0.01656883768737316,
-0.008193903602659702,
-0.013391214422881603,
0.002456322079524398,
-0.22727364301681519,
-0.10036728531122208,
0.11808554828166962,
0.15497279167175293,
0.033866848796606064,
-0.09333234280347824,
-0.04890882223844528,
-0.003778786165639758,
-0.1746574193239212,
0.12562650442123413,
0.04387682303786278,
0.09460923820734024,
-0.04567437246441841,
0.041291654109954834,
0.032780010253190994,
-0.0835316851735115,
0.09739886969327927,
-0.08329453319311142,
0.06411001086235046,
-0.0800672098994255,
-0.11121031641960144,
0.032163672149181366,
-0.026808684691786766,
0.139532670378685,
0.04688698798418045,
0.07677414268255234,
-0.13270507752895355,
-0.05579179897904396,
-0.15067079663276672,
0.062912218272686,
-0.0858771800994873,
-0.07122808694839478,
-0.008652325719594955,
0.07311712950468063,
0.03071162849664688,
-0.026476522907614708,
-0.0030726364348083735,
-0.08269301801919937,
-0.03745963051915169,
0.1471954733133316,
0.1272296905517578,
0.09837698936462402,
-0.12496422231197357,
-0.022230640053749084,
-0.01635804772377014,
0.10064631700515747,
-0.16768944263458252,
0.005798262543976307,
0.05280093476176262,
0.05423220247030258,
0.12406107783317566,
0.01310498546808958,
-0.08403175324201584,
-0.00022888969397172332,
-0.00006400594429578632,
-0.10811025649309158,
-0.15920500457286835,
-0.014002644456923008,
0.0710938572883606,
-0.01920200139284134,
-0.003364612814038992,
0.09745843708515167,
-0.12111232429742813,
-0.027782872319221497,
-0.022644663229584694,
0.01432704832404852,
-0.01721845380961895,
0.06134505569934845,
0.11093754321336746,
0.03905680775642395,
-0.07652133703231812,
0.05729273706674576,
0.07833380997180939,
-0.10344540327787399,
0.04264555498957634,
0.09895588457584381,
-0.09662533551454544,
-0.08591549843549728,
0.0037350542843341827,
0.10800713300704956,
-0.10353292524814606,
-0.07186640053987503,
0.026440104469656944,
-0.08225877583026886,
0.009337952360510826,
0.1343405544757843,
0.02641317807137966,
-0.025624748319387436,
-0.06029774621129036,
0.031836532056331635,
-0.15208591520786285,
0.06069004163146019,
-0.016859320923686028,
0.02464534342288971,
-0.12478942424058914,
0.12436512112617493,
0.06346175819635391,
0.10943635553121567,
-0.023027600720524788,
-0.04858637973666191,
-0.10510886460542679,
0.009498314931988716,
-0.0565701425075531,
0.041758306324481964,
-0.03723325952887535,
0.01736202836036682,
-0.0238418597728014,
-0.03711060807108879,
0.044762659817934036,
0.030494889244437218,
-0.04934562370181084,
-0.006839635316282511,
0.001293843612074852,
0.049397919327020645,
-0.11611580103635788,
0.013213141821324825,
0.03584831580519676,
-0.02235843800008297,
0.0528859943151474,
0.02511519566178322,
-0.0283906701952219,
0.04006749019026756,
-0.09161276370286942,
0.007552381604909897,
-0.027875499799847603,
0.02395288646221161,
0.0005922490381635725,
-0.10212597250938416,
0.0317361019551754,
-0.04713888093829155,
-0.0484238937497139,
-0.035503070801496506,
0.13706621527671814,
-0.13232246041297913,
0.061505407094955444,
0.012038267217576504,
-0.06230383738875389,
-0.04731985554099083,
0.09921174496412277,
0.01317079458385706,
0.058035530149936676,
0.05270225554704666,
-0.04223112016916275,
0.09576617926359177,
-0.11931769549846649,
-0.013792190700769424,
0.01903134398162365,
-0.030821332708001137,
-0.043188996613025665,
-0.07612143456935883,
0.05298098176717758,
-0.01556994765996933,
-0.009029342792928219,
0.07650244235992432,
-0.02156982384622097,
0.021911900490522385,
0.020649254322052002,
-0.0933179035782814,
-0.030190544202923775,
0.055678535252809525,
-0.05438457801938057,
0.01680472493171692,
0.04184805974364281,
0.037326082587242126,
-0.056629639118909836,
-0.01792619563639164,
0.13248442113399506,
0.1414734274148941,
0.009449067525565624,
0.023093363270163536,
0.053838953375816345,
-0.04728781431913376,
-0.10176506638526917,
-0.023616129532456398,
-0.016924994066357613,
0.07090818881988525,
-0.10223805904388428,
0.10461520403623581,
0.17230504751205444,
-0.10994262993335724,
0.10351396352052689,
-0.02461807057261467,
-0.08318999409675598,
-0.08055439591407776,
-0.2144506871700287,
-0.036124709993600845,
-0.028423089534044266,
0.049115002155303955,
-0.06063961610198021,
0.09661401063203812,
0.05326324701309204,
0.034037139266729355,
-0.055226296186447144,
0.1552032083272934,
0.023566676303744316,
-0.06263181567192078,
0.0381505973637104,
0.037376560270786285,
0.025567904114723206,
-0.08633466064929962,
0.06222127005457878,
0.04242083430290222,
0.028679082170128822,
0.04645233973860741,
0.03599298745393753,
0.028743131086230278,
0.02739754691720009,
0.00433889776468277,
-0.07215023785829544,
-0.009451852180063725,
0.05855313315987587,
0.06227600574493408,
0.12636655569076538,
-0.02316293865442276,
0.0172603577375412,
-0.042869992554187775,
0.1353360265493393,
-0.04587259516119957,
-0.09581319242715836,
-0.07615217566490173,
0.2387923151254654,
-0.028275836259126663,
-0.012410201132297516,
0.02235787734389305,
-0.051115982234478,
0.025053199380636215,
0.3367663025856018,
0.18079298734664917,
0.03874761983752251,
-0.0053649176843464375,
0.03438565135002136,
0.016391200944781303,
0.02558022364974022,
0.11733997613191605,
0.04248037561774254,
0.20689156651496887,
-0.09277846664190292,
0.11841529607772827,
-0.06505806744098663,
-0.016408875584602356,
0.03996296599507332,
0.12258172035217285,
0.003081993665546179,
-0.026836680248379707,
-0.05637769401073456,
0.04563680291175842,
-0.01750279776751995,
-0.19637511670589447,
0.08756954967975616,
-0.022043926641345024,
-0.05727982893586159,
-0.028561919927597046,
0.0831066444516182,
-0.02802262455224991,
0.0065384963527321815,
-0.03482179716229439,
-0.006567169912159443,
0.1638144552707672,
0.0283577311784029,
-0.11185461282730103,
-0.09374862909317017,
0.07634137570858002,
-0.07718070596456528,
0.15957863628864288,
0.005898976698517799,
0.051121439784765244,
0.0423821397125721,
0.005091148894280195,
-0.08530523627996445,
0.05571407452225685,
0.022105325013399124,
-0.03731429949402809,
0.019770022481679916,
0.1415962427854538,
-0.017272870987653732,
-0.00820310227572918,
-0.03792799264192581,
-0.1451382040977478,
0.04019772633910179,
0.005864729639142752,
-0.04471319168806076,
-0.049576181918382645,
0.13947844505310059,
-0.11337785422801971,
0.14617934823036194,
0.1871737539768219,
-0.011025230400264263,
-0.0622229278087616,
-0.12671831250190735,
0.023578844964504242,
-0.00732432771474123,
0.07791486382484436,
0.01896272972226143,
-0.09940081089735031,
-0.000985810998827219,
-0.06951325386762619,
0.05186626315116882,
-0.20236600935459137,
-0.04631467163562775,
-0.022118261083960533,
-0.04366466775536537,
-0.032573409378528595,
0.04008517786860466,
0.013660592958331108,
0.02803238481283188,
-0.03593359515070915,
0.0022645238786935806,
-0.018229536712169647,
0.13073624670505524,
-0.08566576987504959,
-0.04812752828001976
] |
null | null |
transformers
|
# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2
Vision-and-Language Transformer (ViLT) model fine-tuned on [NLVR2](https://lil.nlp.cornell.edu/nlvr/). It was introduced in the paper [ViLT: Vision-and-Language Transformer
Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT).
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the model to determine whether a sentence is true or false given 2 images.
### How to use
Here is how to use the model in PyTorch:
```
from transformers import ViltProcessor, ViltForImagesAndTextClassification
import requests
from PIL import Image
image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw)
image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg", stream=True).raw)
text = "The left image contains twice the number of dogs as the right image."
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2")
model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2")
# prepare inputs
encoding = processor([image1, image2], text, return_tensors="pt")
# forward pass
outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0))
logits = outputs.logits
idx = logits.argmax(-1).item()
print("Predicted answer:", model.config.id2label[idx])
```
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
```bibtex
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
```
|
{"license": "apache-2.0"}
| null |
dandelin/vilt-b32-finetuned-nlvr2
|
[
"transformers",
"pytorch",
"vilt",
"arxiv:2102.03334",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2102.03334"
] |
[] |
TAGS
#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us
|
# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2
Vision-and-Language Transformer (ViLT) model fine-tuned on NLVR2. It was introduced in the paper ViLT: Vision-and-Language Transformer
Without Convolution or Region Supervision by Kim et al. and first released in this repository.
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the model to determine whether a sentence is true or false given 2 images.
### How to use
Here is how to use the model in PyTorch:
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
|
[
"# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on NLVR2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the model to determine whether a sentence is true or false given 2 images.",
"### How to use\n\nHere is how to use the model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n",
"# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on NLVR2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the model to determine whether a sentence is true or false given 2 images.",
"### How to use\n\nHere is how to use the model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
44,
118,
27,
17,
7,
3,
9,
8,
8,
11
] |
[
"passage: TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on NLVR2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the model to determine whether a sentence is true or false given 2 images.### How to use\n\nHere is how to use the model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info"
] |
[
-0.028564289212226868,
0.04073359817266464,
-0.0019601776730269194,
0.06207162141799927,
0.14058233797550201,
0.02884635329246521,
0.07726264744997025,
0.1013403981924057,
-0.057337686419487,
0.04910721629858017,
0.10995318740606308,
0.07410313189029694,
0.11127879470586777,
0.0490049310028553,
0.035382162779569626,
-0.21877071261405945,
0.03567396104335785,
0.005216662771999836,
0.10345031321048737,
0.10869896411895752,
0.08193589001893997,
-0.08976816385984421,
0.08985716104507446,
0.04792938008904457,
-0.15178938210010529,
-0.01444193720817566,
-0.001970290206372738,
-0.010081391781568527,
0.09625238925218582,
0.057227715849876404,
0.10034531354904175,
0.022049156948924065,
0.09352795034646988,
-0.16501714289188385,
0.013117289170622826,
0.0625486895442009,
-0.024914054200053215,
0.04729147627949715,
0.0806683599948883,
0.009193018078804016,
0.21729379892349243,
-0.050314560532569885,
0.06423919647932053,
0.04958447068929672,
-0.10787028074264526,
-0.25346922874450684,
-0.08159131556749344,
0.09171047061681747,
0.05267194285988808,
0.09574533253908157,
-0.02825058437883854,
0.15122687816619873,
-0.06104610487818718,
0.08110915124416351,
0.07638224959373474,
-0.17026250064373016,
-0.05548159033060074,
0.12773621082305908,
0.04782789945602417,
0.04173951968550682,
-0.08392506092786789,
0.022336244583129883,
0.06091989949345589,
0.02061077207326889,
0.03163985162973404,
-0.02292797341942787,
-0.02871987596154213,
-0.009966813027858734,
-0.1423795372247696,
-0.09837283194065094,
0.10400393605232239,
-0.02979167178273201,
-0.054678112268447876,
-0.07325226068496704,
-0.016314223408699036,
0.026389874517917633,
0.03266904130578041,
-0.014497837983071804,
-0.010079625062644482,
-0.03347620368003845,
0.0628250315785408,
-0.13323061168193817,
-0.12289752066135406,
-0.11892686784267426,
0.01187669113278389,
0.018671801313757896,
0.05126936733722687,
0.04925674572587013,
-0.10401000082492828,
0.12357078492641449,
-0.13069267570972443,
-0.07682715356349945,
-0.04524039849638939,
-0.07788527011871338,
-0.07373899221420288,
-0.01520129106938839,
-0.00009528978262096643,
-0.06184383109211922,
-0.05094307288527489,
0.018531106412410736,
-0.00003653788007795811,
0.06883567571640015,
-0.05786889046430588,
0.037887636572122574,
0.029695678502321243,
0.18137718737125397,
-0.06737484782934189,
0.10008326172828674,
-0.0558260977268219,
-0.0034386208280920982,
0.013597014360129833,
-0.03740116208791733,
-0.06758110970258713,
-0.03571813926100731,
-0.026802908629179,
0.06755632162094116,
0.019415564835071564,
0.028217999264597893,
0.01568746007978916,
-0.024632353335618973,
0.11796600371599197,
-0.0831037387251854,
0.02240847982466221,
0.039551086723804474,
-0.030317682772874832,
0.015701500698924065,
0.1076490730047226,
-0.0459204837679863,
-0.08602188527584076,
0.06588558107614517,
-0.05493959039449692,
0.017392106354236603,
-0.1052008718252182,
-0.1202125996351242,
0.017394937574863434,
-0.14330805838108063,
-0.016853325068950653,
-0.09962434321641922,
-0.15031276643276215,
-0.029468214139342308,
0.036920979619026184,
-0.07149980217218399,
0.05383666604757309,
-0.02782079577445984,
-0.026439890265464783,
0.027457069605588913,
0.03664850816130638,
0.07534247636795044,
-0.00411572027951479,
0.08422703295946121,
0.022847913205623627,
0.05362715199589729,
-0.003771205898374319,
0.057177796959877014,
-0.07821012288331985,
0.02914484031498432,
0.002952554263174534,
0.029285117983818054,
-0.05609450489282608,
-0.04689565300941467,
-0.1009933352470398,
-0.09679689258337021,
-0.004083296749740839,
0.011590871028602123,
0.06383062154054642,
0.09450934827327728,
-0.19205176830291748,
-0.007994999177753925,
0.1689419150352478,
-0.15745025873184204,
-0.05723334848880768,
0.10480184108018875,
-0.020854445174336433,
0.06864967197179794,
0.025533923879265785,
0.10475519299507141,
0.18437784910202026,
-0.1929445117712021,
0.02571842260658741,
0.037528567016124725,
-0.09303900599479675,
0.009824171662330627,
0.04113500937819481,
0.025018850341439247,
-0.1636732816696167,
0.020459366962313652,
-0.12983742356300354,
-0.01914660632610321,
-0.04746606945991516,
-0.05727623775601387,
-0.042334381490945816,
-0.023447098210453987,
0.07338448613882065,
0.06018313020467758,
-0.03528822585940361,
-0.012219845317304134,
-0.0815272182226181,
0.0255599245429039,
0.1345747709274292,
-0.04659951850771904,
0.009393202140927315,
-0.06410650163888931,
0.09119804948568344,
-0.104427769780159,
-0.006867441814392805,
-0.12294889986515045,
0.052861087024211884,
0.011841658502817154,
-0.10118405520915985,
0.09807809442281723,
0.14090432226657867,
0.03973621129989624,
0.057014890015125275,
-0.021494371816515923,
-0.03851582109928131,
-0.04155527055263519,
-0.003591443644836545,
-0.025575924664735794,
-0.1356787532567978,
-0.023569265380501747,
-0.0606144554913044,
0.021949876099824905,
-0.18405817449092865,
0.004119562450796366,
0.005909627303481102,
0.03342502564191818,
-0.035082027316093445,
-0.010303467512130737,
-0.004375701770186424,
0.013823023065924644,
-0.007990466430783272,
-0.03496033698320389,
0.07317249476909637,
0.0016564202960580587,
-0.026360945776104927,
0.08163122832775116,
-0.1483062207698822,
-0.19536811113357544,
0.11855527013540268,
-0.017409639433026314,
-0.08982999622821808,
0.04368748143315315,
0.007329052314162254,
-0.019855596125125885,
-0.06394073367118835,
0.00047505798283964396,
0.11348856985569,
0.010056053288280964,
0.11533470451831818,
-0.11151465028524399,
-0.019225945696234703,
0.0630393922328949,
-0.06857772171497345,
-0.09167441725730896,
0.12242715060710907,
0.1275397092103958,
-0.12385333329439163,
0.06941689550876617,
0.08679564297199249,
-0.0659196749329567,
0.19561785459518433,
0.060812078416347504,
-0.06055738776922226,
-0.05574095621705055,
0.057200245559215546,
0.018113303929567337,
0.13551007211208344,
-0.13557939231395721,
0.006582590751349926,
0.04892631620168686,
0.004054744262248278,
0.026840003207325935,
-0.1699039787054062,
-0.007184751331806183,
0.05639831721782684,
-0.030637580901384354,
-0.06283517181873322,
0.05634232237935066,
-0.01772325299680233,
0.07997751235961914,
0.02530200220644474,
0.05246662721037865,
0.020307445898652077,
-0.04627882316708565,
-0.10341116786003113,
0.15902887284755707,
-0.0999271422624588,
-0.28571397066116333,
-0.1629817932844162,
-0.002003125147894025,
-0.023517217487096786,
0.014080958440899849,
0.03765561059117317,
-0.12425441294908524,
-0.06899212300777435,
-0.06726489216089249,
0.028252098709344864,
-0.11455322802066803,
-0.08498076349496841,
-0.05282972753047943,
-0.008659783750772476,
0.007187500596046448,
-0.11710013449192047,
0.013056020252406597,
-0.008944250643253326,
-0.09470896422863007,
0.06162111461162567,
-0.0067458138801157475,
0.05747503787279129,
0.14709904789924622,
-0.04425802454352379,
0.03565429151058197,
-0.02153938077390194,
0.1764732003211975,
-0.07010044902563095,
0.02525452710688114,
0.250244677066803,
0.009688066318631172,
0.06283821165561676,
0.13029484450817108,
0.0013445753138512373,
-0.03625733032822609,
0.02121920883655548,
0.02172073721885681,
-0.10466130822896957,
-0.22230884432792664,
-0.059024378657341,
-0.04676971212029457,
0.02295253425836563,
0.06934518367052078,
0.04389079660177231,
0.08253124356269836,
0.07333049178123474,
-0.03603237867355347,
-0.039428938180208206,
0.025256583467125893,
0.10160517692565918,
0.09864801913499832,
-0.05197182297706604,
0.0563652403652668,
-0.070542111992836,
0.042577020823955536,
0.08180026710033417,
0.03319135680794716,
0.18463027477264404,
0.01293382328003645,
0.020083844661712646,
0.0856429859995842,
0.12319707125425339,
0.042598072439432144,
0.03773294389247894,
-0.06927564740180969,
0.0194046963006258,
-0.023720109835267067,
-0.06785844266414642,
-0.04775146394968033,
0.06468994915485382,
0.07279938459396362,
0.022462837398052216,
-0.07855053246021271,
-0.02140684798359871,
0.0016337740235030651,
0.017856385558843613,
0.07678812742233276,
-0.18443503975868225,
-0.045461662113666534,
0.02805996686220169,
0.042395271360874176,
-0.1441943347454071,
0.0120858708396554,
0.08747364580631256,
-0.14940416812896729,
0.00938335806131363,
-0.026055406779050827,
0.09253204613924026,
-0.03311930596828461,
-0.022968502715229988,
-0.02599547989666462,
0.04597393423318863,
0.015998337417840958,
0.15590856969356537,
-0.20834507048130035,
0.16627715528011322,
-0.011772002093493938,
0.06767702102661133,
-0.05246787518262863,
0.006439294200390577,
-0.028640160337090492,
0.125051349401474,
0.20100037753582,
0.006812761537730694,
0.06579220294952393,
-0.10930003970861435,
0.029459010809659958,
-0.009858333505690098,
0.08670321851968765,
0.04203205928206444,
0.01843729056417942,
-0.04196728765964508,
0.007974714040756226,
-0.016815518960356712,
-0.015848416835069656,
-0.09173951297998428,
-0.1086491271853447,
0.054739322513341904,
-0.08430279791355133,
-0.006257935427129269,
-0.03880022466182709,
-0.041131772100925446,
-0.06043140962719917,
0.11300905048847198,
-0.10497653484344482,
-0.07009739428758621,
-0.14308959245681763,
-0.011052604764699936,
0.09922155737876892,
-0.09244602173566818,
0.036615680903196335,
-0.08135983347892761,
0.11528241634368896,
-0.0521940179169178,
-0.07302176207304001,
-0.017139798030257225,
-0.07424663007259369,
-0.14434018731117249,
-0.0012063391041010618,
0.11531856656074524,
0.06471879035234451,
0.024440092965960503,
0.01934630051255226,
0.023514069616794586,
-0.07798094302415848,
-0.13487443327903748,
0.04123751074075699,
0.13651181757450104,
0.008025351911783218,
-0.0017362582730129361,
0.013482904992997646,
-0.044120728969573975,
-0.0658777579665184,
-0.03823458030819893,
0.11650915443897247,
0.16108757257461548,
-0.09688346832990646,
0.15302377939224243,
0.1914805918931961,
-0.11720101535320282,
-0.26902538537979126,
0.0015133873093873262,
0.02571686916053295,
0.03239680826663971,
-0.0028550387360155582,
-0.11811601370573044,
-0.015139106661081314,
-0.025330331176519394,
-0.014902038499712944,
-0.049329861998558044,
-0.253884494304657,
-0.10522264987230301,
0.10046285390853882,
0.12698473036289215,
-0.005717580672353506,
-0.06493126600980759,
-0.04821239784359932,
0.0067821647971868515,
-0.1283300817012787,
0.15153983235359192,
-0.04064873233437538,
0.09207041561603546,
-0.030690496787428856,
0.06903793662786484,
0.02946491353213787,
-0.06378386169672012,
0.1467522531747818,
-0.08826182037591934,
0.059126242995262146,
-0.0742751955986023,
-0.08544249087572098,
-0.0010810414096340537,
-0.053576987236738205,
0.12159643322229385,
0.018816594034433365,
0.07980526983737946,
-0.1353922337293625,
-0.05067141354084015,
-0.13806480169296265,
0.05464159697294235,
-0.08817242085933685,
-0.0733218565583229,
-0.04910370334982872,
0.08649951964616776,
0.0483982190489769,
-0.04325300082564354,
0.001357341418042779,
-0.10826343297958374,
-0.02267332375049591,
0.16549226641654968,
0.1269247978925705,
0.0920305848121643,
-0.05052771046757698,
-0.0015802779234945774,
-0.018987184390425682,
0.09885895252227783,
-0.1685568243265152,
0.031110387295484543,
0.07288071513175964,
0.032917045056819916,
0.12990354001522064,
0.020733866840600967,
-0.11139052361249924,
-0.01571175828576088,
0.011190530844032764,
-0.08929289877414703,
-0.16460658609867096,
-0.031022606417536736,
0.08253321051597595,
-0.020875010639429092,
-0.03410886228084564,
0.0990087166428566,
-0.11831699311733246,
-0.009070251137018204,
-0.013695054687559605,
0.035938508808612823,
-0.04138121381402016,
0.05944705754518509,
0.09680876135826111,
0.04216047748923302,
-0.07356438040733337,
0.05793100222945213,
0.07400424778461456,
-0.09833603352308273,
0.048414215445518494,
0.06790933758020401,
-0.0719611868262291,
-0.09062357991933823,
0.0021966053172945976,
0.11365793645381927,
-0.07386816293001175,
-0.09748481214046478,
0.056016597896814346,
-0.10819344967603683,
0.027544651180505753,
0.14710715413093567,
0.03399517387151718,
0.016353793442249298,
-0.05658574402332306,
0.013459439389407635,
-0.13727149367332458,
0.09091600030660629,
-0.002479236340150237,
0.018215687945485115,
-0.1163085326552391,
0.12185211479663849,
0.05992254987359047,
0.13157491385936737,
-0.037341367453336716,
-0.055564191192388535,
-0.12164796888828278,
0.027673594653606415,
-0.09951543807983398,
0.036809902638196945,
-0.02298085205256939,
0.01357960794121027,
0.002544999588280916,
-0.04871983826160431,
0.025979286059737206,
0.037719689309597015,
-0.05520385876297951,
-0.0019220917019993067,
-0.010649082250893116,
0.046281859278678894,
-0.12224706262350082,
-0.003741624066606164,
0.06088194251060486,
-0.022769717499613762,
0.02776912786066532,
-0.0036144766490906477,
-0.017726320773363113,
0.06281955540180206,
-0.15262043476104736,
0.01781049370765686,
-0.023925194516777992,
0.04052119702100754,
0.016060708090662956,
-0.14821021258831024,
0.026094693690538406,
-0.03660350292921066,
-0.08223337680101395,
-0.01792719215154648,
0.07418040931224823,
-0.10392290353775024,
0.055332791060209274,
0.00982875656336546,
-0.08643684536218643,
-0.03728582710027695,
0.11082950234413147,
-0.02648923732340336,
0.0838315412402153,
0.05100381746888161,
-0.03718707710504532,
0.1077158972620964,
-0.09850943088531494,
-0.010434405878186226,
-0.004879695829004049,
-0.0000920251477509737,
-0.05198054760694504,
-0.08517085760831833,
0.05031048506498337,
-0.02367057278752327,
0.022732900455594063,
0.09713280946016312,
-0.014952683821320534,
0.007822479121387005,
0.017812330275774002,
-0.062154337763786316,
-0.024180859327316284,
0.062265872955322266,
-0.05206979066133499,
0.02582111768424511,
0.023765549063682556,
-0.000296743237413466,
-0.06758947670459747,
0.0017484966665506363,
0.1251167505979538,
0.10373011976480484,
0.04826592653989792,
0.028774846345186234,
0.0715133398771286,
-0.04671267420053482,
-0.08598083257675171,
-0.03873830288648605,
-0.034513674676418304,
0.04047548025846481,
-0.09854745864868164,
0.10743776708841324,
0.14757084846496582,
-0.14320050179958344,
0.08683956414461136,
-0.018740836530923843,
-0.09464818239212036,
-0.10428940504789352,
-0.22693628072738647,
-0.04570036381483078,
-0.03041127510368824,
0.044031500816345215,
-0.06996890902519226,
0.07975632697343826,
0.004853658843785524,
0.05345318466424942,
-0.05857784301042557,
0.1377708613872528,
-0.025423862040042877,
-0.04367196559906006,
0.011735890060663223,
0.03353431820869446,
0.053581394255161285,
-0.047392137348651886,
0.0781535729765892,
0.056243136525154114,
0.021258540451526642,
0.03437720984220505,
0.05022558197379112,
0.036695919930934906,
0.018486272543668747,
-0.01676458679139614,
-0.05060947686433792,
-0.0054414598271250725,
0.03268134966492653,
0.04981287196278572,
0.1568720042705536,
0.01241587195545435,
0.01114216260612011,
-0.040769774466753006,
0.1654297411441803,
-0.0737147405743599,
-0.08837836235761642,
-0.09333328902721405,
0.28658491373062134,
-0.05028502270579338,
0.006574488710612059,
0.011712429113686085,
-0.06559459120035172,
-0.010774193331599236,
0.31681859493255615,
0.1617458611726761,
0.020898111164569855,
0.0026345839723944664,
0.02616325579583645,
0.024585101753473282,
0.007081976626068354,
0.0904051661491394,
0.03051326423883438,
0.21554182469844818,
-0.0921381488442421,
0.10840815305709839,
-0.0588250607252121,
-0.013431674800813198,
0.05004680156707764,
0.08821015059947968,
-0.015204684808850288,
-0.05021532624959946,
-0.06943945586681366,
0.042537011206150055,
-0.044035810977220535,
-0.1391541063785553,
0.09272990375757217,
-0.022928090766072273,
-0.045425087213516235,
0.005922713782638311,
0.12031984329223633,
-0.03739044442772865,
0.0067923483438789845,
-0.04501296952366829,
0.004021172411739826,
0.13566945493221283,
0.026887202635407448,
-0.09283827990293503,
-0.06328297406435013,
0.08056750893592834,
-0.03362758457660675,
0.16631759703159332,
0.005549037363380194,
0.06903798133134842,
0.06211315840482712,
0.017204631119966507,
-0.09528836607933044,
0.09916689246892929,
0.0319332480430603,
-0.052899736911058426,
-0.0032278967555612326,
0.16212084889411926,
0.004615591373294592,
0.015196104533970356,
-0.003094370011240244,
-0.12323544174432755,
0.04743887856602669,
-0.02789241634309292,
-0.02062569558620453,
-0.05383092164993286,
0.1265123039484024,
-0.10325530916452408,
0.1446194052696228,
0.186872661113739,
-0.017339421436190605,
-0.052154116332530975,
-0.11174925416707993,
0.03320344537496567,
-0.04488451033830643,
0.0869099423289299,
0.03750111162662506,
-0.06440892070531845,
0.01912788115441799,
-0.050069671124219894,
0.05642376095056534,
-0.2108467072248459,
-0.060190558433532715,
-0.0068467180244624615,
-0.048492975533008575,
-0.009696717374026775,
0.07077588886022568,
0.01611403003334999,
0.019733469933271408,
-0.03612680733203888,
-0.045058123767375946,
0.0034831520169973373,
0.11501193791627884,
-0.07357538491487503,
-0.051073603332042694
] |
null | null |
transformers
|
# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2
Vision-and-Language Transformer (ViLT) model fine-tuned on [VQAv2](https://visualqa.org/). It was introduced in the paper [ViLT: Vision-and-Language Transformer
Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT).
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the raw model for visual question answering.
### How to use
Here is how to use this model in PyTorch:
```python
from transformers import ViltProcessor, ViltForQuestionAnswering
import requests
from PIL import Image
# prepare image + question
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = "How many cats are there?"
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
print("Predicted answer:", model.config.id2label[idx])
```
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
```bibtex
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
```
|
{"license": "apache-2.0", "tags": ["visual-question-answering"], "widget": [{"text": "What's the animal doing?", "src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg"}, {"text": "What is on top of the building?", "src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg"}]}
|
visual-question-answering
|
dandelin/vilt-b32-finetuned-vqa
|
[
"transformers",
"pytorch",
"vilt",
"visual-question-answering",
"arxiv:2102.03334",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2102.03334"
] |
[] |
TAGS
#transformers #pytorch #vilt #visual-question-answering #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us
|
# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2
Vision-and-Language Transformer (ViLT) model fine-tuned on VQAv2. It was introduced in the paper ViLT: Vision-and-Language Transformer
Without Convolution or Region Supervision by Kim et al. and first released in this repository.
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the raw model for visual question answering.
### How to use
Here is how to use this model in PyTorch:
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
|
[
"# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on VQAv2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the raw model for visual question answering.",
"### How to use\n\nHere is how to use this model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #vilt #visual-question-answering #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n",
"# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on VQAv2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the raw model for visual question answering.",
"### How to use\n\nHere is how to use this model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
53,
118,
21,
17,
7,
3,
9,
8,
8,
11
] |
[
"passage: TAGS\n#transformers #pytorch #vilt #visual-question-answering #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on VQAv2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the raw model for visual question answering.### How to use\n\nHere is how to use this model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info"
] |
[
-0.05531284213066101,
0.043694935739040375,
-0.0027142041362822056,
0.04724341630935669,
0.16190052032470703,
0.055136844515800476,
0.07061278820037842,
0.12305285781621933,
-0.08675549924373627,
0.043442536145448685,
0.10722402483224869,
0.07569784671068192,
0.10581852495670319,
0.07724853605031967,
0.04032813012599945,
-0.25119948387145996,
0.014342522248625755,
0.031535401940345764,
0.06558248400688171,
0.11192984133958817,
0.1002734899520874,
-0.10635745525360107,
0.0859026163816452,
0.026170456781983376,
-0.124481201171875,
-0.010563063435256481,
-0.04492777958512306,
-0.0242596585303545,
0.1047307550907135,
0.05092882364988327,
0.09547535330057144,
0.012232358567416668,
0.0745776817202568,
-0.17590604722499847,
0.02151366136968136,
0.0643218383193016,
-0.021217873319983482,
0.07492570579051971,
0.08987879753112793,
0.005068484228104353,
0.14089837670326233,
-0.08035901933908463,
0.059880539774894714,
0.06608140468597412,
-0.12394842505455017,
-0.2575398087501526,
-0.07201281934976578,
0.11213630437850952,
0.06316583603620529,
0.0997205451130867,
-0.02780941314995289,
0.16303588449954987,
-0.03999798372387886,
0.07577462494373322,
0.11967039108276367,
-0.18344226479530334,
-0.07176656275987625,
0.0989387035369873,
0.055949050933122635,
0.041313596069812775,
-0.10022545605897903,
0.010956198908388615,
0.055903367698192596,
0.011110791936516762,
0.02883346937596798,
-0.02407064102590084,
-0.06131640821695328,
-0.029243361204862595,
-0.15141518414020538,
-0.11055335402488708,
0.16462092101573944,
-0.01752541773021221,
-0.04926200211048126,
-0.06733819097280502,
-0.04679396003484726,
0.02483382821083069,
0.01952461339533329,
-0.034429632127285004,
0.008055181242525578,
-0.031764645129442215,
0.07629186660051346,
-0.1587192267179489,
-0.1497345119714737,
-0.10345862805843353,
0.03917638584971428,
-0.028925782069563866,
0.05966567620635033,
0.04020996764302254,
-0.09121725708246231,
0.12407422065734863,
-0.11292532831430435,
-0.06833876669406891,
-0.03139818459749222,
-0.08881878852844238,
-0.08097268640995026,
-0.03659166768193245,
0.016953522339463234,
-0.12590157985687256,
-0.048820070922374725,
0.029907969757914543,
0.006343692075461149,
0.04736403003334999,
-0.05854632332921028,
0.037166912108659744,
0.02335992082953453,
0.18764467537403107,
-0.0942961722612381,
0.10014598816633224,
-0.04561049863696098,
0.013569219969213009,
-0.02168251760303974,
-0.016321230679750443,
-0.059388067573308945,
-0.04416683316230774,
-0.015555977821350098,
0.07652151584625244,
0.041360728442668915,
0.06497274339199066,
0.021497560665011406,
-0.04722539708018303,
0.11409244686365128,
-0.07455558329820633,
-0.01633329503238201,
0.040782224386930466,
-0.015567651018500328,
0.0018448751652613282,
0.1005241796374321,
-0.0438748300075531,
-0.10373266041278839,
0.05218612775206566,
-0.06658890843391418,
0.014228688552975655,
-0.10505837947130203,
-0.1009746715426445,
0.0010145674459636211,
-0.11075286567211151,
-0.02624010108411312,
-0.08209078013896942,
-0.1359516680240631,
-0.02029346488416195,
0.05632566660642624,
-0.04885384440422058,
0.03014984168112278,
-0.012917467392981052,
-0.025405578315258026,
0.01924828439950943,
0.033449672162532806,
0.10168368369340897,
0.0009934778790920973,
0.09567801654338837,
0.02366924285888672,
0.05248226597905159,
-0.002704889513552189,
0.0743284523487091,
-0.07637923955917358,
0.02025754004716873,
-0.0062797293066978455,
0.025741595774888992,
-0.046783655881881714,
-0.03835659101605415,
-0.12238600850105286,
-0.10478194057941437,
0.015368640422821045,
0.003569674212485552,
0.0627489984035492,
0.1285959780216217,
-0.2129286676645279,
0.008599909022450447,
0.17356076836585999,
-0.13813520967960358,
-0.05460992455482483,
0.11225133389234543,
-0.012765150517225266,
0.0882248729467392,
0.01697775349020958,
0.12149260938167572,
0.14986158907413483,
-0.20698758959770203,
0.027742382138967514,
0.02976023033261299,
-0.10423535853624344,
0.010531970299780369,
0.055698901414871216,
0.004290065262466669,
-0.06813853234052658,
0.020880945026874542,
-0.1464657336473465,
-0.04426828771829605,
-0.06750991195440292,
-0.073584645986557,
-0.033844441175460815,
-0.03109433688223362,
0.04740341007709503,
0.06310811638832092,
-0.020301248878240585,
0.012963839806616306,
-0.0767424926161766,
0.013270645402371883,
0.11654424667358398,
-0.030869366601109505,
0.009913659654557705,
-0.06149216368794441,
0.07847855985164642,
-0.10977673530578613,
0.00043501961044967175,
-0.12169333547353745,
0.05637039989233017,
0.008239547722041607,
-0.06321965903043747,
0.07940899580717087,
0.16098463535308838,
0.034067004919052124,
0.04150107130408287,
-0.028327075764536858,
-0.05458005517721176,
-0.059914860874414444,
-0.015758080407977104,
-0.042522888630628586,
-0.13909737765789032,
-0.03980940952897072,
-0.054774340242147446,
0.0231272354722023,
-0.14663352072238922,
0.021939188241958618,
0.03356219083070755,
0.0320807546377182,
-0.018183434382081032,
-0.02344604767858982,
0.03347659111022949,
0.0020172770600765944,
0.014339152723550797,
-0.03864481672644615,
0.09671225398778915,
0.0005240347818471491,
0.010254387743771076,
0.052803706377744675,
-0.11703865230083466,
-0.16338305175304413,
0.11242686212062836,
-0.03649384155869484,
-0.09486819058656693,
0.018941380083560944,
-0.02676001377403736,
-0.023143712431192398,
-0.04061082378029823,
-0.004626686684787273,
0.11995287239551544,
0.013893410563468933,
0.12339259684085846,
-0.08772303909063339,
-0.00687424186617136,
0.044307492673397064,
-0.06131903454661369,
-0.08505035936832428,
0.10037709772586823,
0.1099439486861229,
-0.11555269360542297,
0.08916844427585602,
0.06645233184099197,
-0.03479582816362381,
0.22254116833209991,
0.04958071932196617,
-0.070822574198246,
-0.0523938313126564,
0.06172609701752663,
0.014206462539732456,
0.14884425699710846,
-0.19626426696777344,
0.0059428527019917965,
0.055765535682439804,
0.005315279588103294,
0.032555755227804184,
-0.14302463829517365,
-0.014106785878539085,
0.03166528046131134,
-0.02795175276696682,
-0.032744988799095154,
0.061306461691856384,
-0.010716849006712437,
0.08750864863395691,
0.0324617475271225,
0.09564213454723358,
0.012088337913155556,
-0.05465896055102348,
-0.09159323573112488,
0.15375523269176483,
-0.10167958587408066,
-0.28685152530670166,
-0.13856589794158936,
0.022191571071743965,
-0.0021076530683785677,
0.0044615184888243675,
0.046082060784101486,
-0.12359990179538727,
-0.05808261036872864,
-0.03613527864217758,
0.06395501643419266,
-0.1193944662809372,
-0.0854063406586647,
-0.05432808771729469,
-0.018635360524058342,
0.01824960485100746,
-0.1357652246952057,
0.036150723695755005,
-0.022586748003959656,
-0.13346178829669952,
0.06942993402481079,
-0.0029430047143250704,
0.059431739151477814,
0.11105094105005264,
-0.04000493511557579,
0.03605670481920242,
-0.038573332130908966,
0.21630606055259705,
-0.08467879146337509,
0.027452923357486725,
0.22934193909168243,
0.0010073562152683735,
0.06027712672948837,
0.13539999723434448,
-0.006948210299015045,
-0.058949586004018784,
0.00625987071543932,
0.02154894545674324,
-0.08099189400672913,
-0.23192815482616425,
-0.03969638794660568,
-0.07158426940441132,
0.047388024628162384,
0.0618555061519146,
0.04050379619002342,
0.06790991127490997,
0.07560358941555023,
-0.07134387642145157,
-0.03242367133498192,
-0.0036300907377153635,
0.10571303218603134,
0.11739686131477356,
-0.05959713086485863,
0.035536617040634155,
-0.06504426896572113,
0.032521720975637436,
0.0839930921792984,
0.07224682718515396,
0.178299218416214,
0.008428404107689857,
0.07175824046134949,
0.08712968230247498,
0.144745871424675,
0.03340548649430275,
0.0553075410425663,
-0.08947335928678513,
0.028188422322273254,
-0.045602958649396896,
-0.06689111143350601,
-0.0549079030752182,
0.048425935208797455,
0.08869389444589615,
0.015450822189450264,
-0.08192172646522522,
-0.006392551586031914,
0.019284192472696304,
0.1344977766275406,
0.04516543820500374,
-0.13915759325027466,
-0.04643166437745094,
0.026327352970838547,
0.03375331684947014,
-0.16132257878780365,
-0.005162301938980818,
0.07811403274536133,
-0.1556912511587143,
-0.0052795447409152985,
-0.04181978106498718,
0.09167841821908951,
-0.06176463142037392,
-0.005810731090605259,
-0.03161771222949028,
0.02884560078382492,
0.015218706801533699,
0.14683295786380768,
-0.23884524405002594,
0.1818571388721466,
0.008105426095426083,
0.07671352475881577,
-0.0466952808201313,
0.015626126900315285,
-0.029689352959394455,
0.1124926283955574,
0.20232439041137695,
0.0028941556811332703,
0.15620453655719757,
-0.0705169066786766,
0.03161527216434479,
-0.006262642331421375,
0.08159539103507996,
0.027832606807351112,
0.022266123443841934,
-0.05636332184076309,
0.013881980441510677,
-0.015918828547000885,
0.06560947000980377,
-0.09677507728338242,
-0.115839883685112,
0.0759015902876854,
-0.10149949043989182,
0.07010288536548615,
-0.044743191450834274,
-0.03863430768251419,
-0.02399633824825287,
0.12358156591653824,
-0.13274894654750824,
-0.07010209560394287,
-0.13884244859218597,
0.018145278096199036,
0.09399563819169998,
-0.07448767125606537,
0.05030381307005882,
-0.0832357332110405,
0.0968412533402443,
-0.053453825414180756,
-0.04779161885380745,
-0.004937910474836826,
-0.08069460093975067,
-0.16326040029525757,
-0.013879997655749321,
0.11956829577684402,
0.019934872165322304,
0.02131768688559532,
0.011451500467956066,
0.00951304193586111,
-0.08257865160703659,
-0.11292975395917892,
0.0705466940999031,
0.0992644652724266,
0.03034091182053089,
-0.02273457683622837,
-0.021767830476164818,
-0.13133011758327484,
-0.06682083755731583,
-0.04189891368150711,
0.15015198290348053,
0.16929365694522858,
-0.08589700609445572,
0.14486877620220184,
0.1943988800048828,
-0.12336511164903641,
-0.24963679909706116,
0.008085602894425392,
0.05067874491214752,
0.012353770434856415,
0.002537648193538189,
-0.14574892818927765,
-0.050623249262571335,
-0.024786081165075302,
-0.010558606125414371,
-0.04363410174846649,
-0.23908531665802002,
-0.09269881248474121,
0.09391337633132935,
0.1323852837085724,
-0.006910579279065132,
-0.10232232511043549,
-0.040072232484817505,
0.020475655794143677,
-0.14680279791355133,
0.13041871786117554,
0.02706773392856121,
0.11522761732339859,
-0.044669680297374725,
0.051982007920742035,
0.035423703491687775,
-0.0807449072599411,
0.12258296459913254,
-0.09307719767093658,
0.047582369297742844,
-0.07258496433496475,
-0.10555434226989746,
0.06971504539251328,
-0.03166906535625458,
0.11538591980934143,
0.07209557294845581,
0.08007766306400299,
-0.1483742743730545,
-0.03724714741110802,
-0.14475445449352264,
0.0519753098487854,
-0.10216166824102402,
-0.09802763909101486,
-0.016294054687023163,
0.08463452756404877,
0.05874871835112572,
-0.03516118973493576,
-0.01639346405863762,
-0.09745994955301285,
0.0037135884631425142,
0.16394446790218353,
0.13492351770401,
0.09112836420536041,
-0.10608624666929245,
-0.010572178289294243,
-0.009447985328733921,
0.1019243523478508,
-0.15969227254390717,
0.03284044191241264,
0.07331133633852005,
0.02356015518307686,
0.13545605540275574,
0.014337549917399883,
-0.10841596871614456,
-0.0028036762960255146,
0.008513894863426685,
-0.11495181173086166,
-0.18101027607917786,
-0.013921179808676243,
0.09434418380260468,
-0.04730682447552681,
-0.009118637070059776,
0.09278065711259842,
-0.09699512273073196,
-0.02755332551896572,
-0.005097901914268732,
0.026073014363646507,
-0.02021808922290802,
0.055894527584314346,
0.11369679868221283,
0.05420438572764397,
-0.06004348769783974,
0.050262317061424255,
0.07784504443407059,
-0.10249171406030655,
0.03826699033379555,
0.06774330139160156,
-0.08148567378520966,
-0.10399085283279419,
0.009320519864559174,
0.08507274091243744,
-0.049769166857004166,
-0.05580170080065727,
0.04737209901213646,
-0.08345131576061249,
0.020815148949623108,
0.12846511602401733,
0.021640732884407043,
-0.005560185760259628,
-0.0472213514149189,
0.024660395458340645,
-0.12164032459259033,
0.09343964606523514,
-0.048642829060554504,
-0.004398096352815628,
-0.10372690856456757,
0.1308944821357727,
0.046244047582149506,
0.12074312567710876,
-0.024301446974277496,
-0.06748242676258087,
-0.11091293394565582,
0.021414311602711678,
-0.09390643239021301,
0.01629658043384552,
-0.02152022160589695,
0.00900305900722742,
-0.01554839313030243,
-0.05361397936940193,
0.027269860729575157,
0.02774992771446705,
-0.05898912250995636,
0.0015767569420859218,
-0.011262724176049232,
0.07098963856697083,
-0.13813157379627228,
-0.0027307039126753807,
0.046102073043584824,
-0.015269509516656399,
0.06511100381612778,
-0.01169495563954115,
-0.03396941348910332,
0.035762954503297806,
-0.1298372596502304,
0.007715869694948196,
-0.03829996660351753,
0.03489820286631584,
0.013264664448797703,
-0.10725494474172592,
0.00891419593244791,
-0.048314303159713745,
-0.07423891872167587,
-0.020343957468867302,
0.12533514201641083,
-0.11144573241472244,
0.06876581162214279,
0.03605515509843826,
-0.060996972024440765,
-0.03383504971861839,
0.08800350874662399,
-0.024415023624897003,
0.058366402983665466,
0.053780943155288696,
-0.03505868464708328,
0.11475560814142227,
-0.12327603250741959,
-0.006330764386802912,
0.0014334263978525996,
-0.013064892962574959,
-0.06046361103653908,
-0.08061596006155014,
0.05411330610513687,
-0.03845399618148804,
0.026827314868569374,
0.07611949741840363,
0.013403082266449928,
0.03309544175863266,
0.010961415246129036,
-0.07446034997701645,
-0.022428592666983604,
0.045355673879384995,
-0.0651516392827034,
0.030650518834590912,
0.025312364101409912,
0.021387722343206406,
-0.07671256363391876,
0.01908733882009983,
0.10908515006303787,
0.10479918122291565,
0.04845227673649788,
0.0093224523589015,
0.05409140884876251,
-0.043707478791475296,
-0.11378378421068192,
-0.060474708676338196,
0.002506977180019021,
0.053149495273828506,
-0.11746620386838913,
0.0777716115117073,
0.172675222158432,
-0.12936362624168396,
0.10170599818229675,
-0.04531456530094147,
-0.07583867013454437,
-0.06793826818466187,
-0.18926750123500824,
-0.02799810841679573,
-0.031071968376636505,
0.03713899105787277,
-0.08780225366353989,
0.087337926030159,
0.024454019963741302,
0.03830965608358383,
-0.05177326872944832,
0.17098067700862885,
0.02875686250627041,
-0.05974181368947029,
0.022250233218073845,
0.03684721514582634,
0.04963932931423187,
-0.11277176439762115,
0.10018826276063919,
0.03728918731212616,
0.02453269250690937,
0.032351016998291016,
0.05292027071118355,
0.008492737077176571,
0.0006829083431512117,
-0.035290468484163284,
-0.06751791387796402,
-0.016094472259283066,
0.04257877543568611,
0.030113941058516502,
0.15724022686481476,
-0.01317169051617384,
0.0029274497646838427,
-0.0272903461009264,
0.1723203808069229,
-0.05973190814256668,
-0.10157889872789383,
-0.10469632595777512,
0.23672878742218018,
-0.02503392845392227,
-0.005544499959796667,
0.030950535088777542,
-0.061295393854379654,
0.013251821510493755,
0.3264695405960083,
0.193374365568161,
0.010386168956756592,
0.009845864027738571,
0.03809191659092903,
0.030143549665808678,
0.013359407894313335,
0.0814594179391861,
0.060441453009843826,
0.20683909952640533,
-0.1077960953116417,
0.13889504969120026,
-0.05819879099726677,
-0.013546392321586609,
0.05844658613204956,
0.11690064519643784,
0.003432418452575803,
-0.026058776304125786,
-0.052597951143980026,
0.05200949311256409,
-0.0478922575712204,
-0.20607566833496094,
0.06737781316041946,
-0.05568845942616463,
-0.057587455958127975,
-0.02050054632127285,
0.12100999057292938,
-0.023624461144208908,
0.02081429772078991,
-0.027301106601953506,
-0.008340598084032536,
0.1507551521062851,
0.03555823117494583,
-0.08732281625270844,
-0.08121201395988464,
0.11630022525787354,
-0.10326790064573288,
0.17079441249370575,
-0.0004913226584903896,
0.037927914410829544,
0.04536260664463043,
0.0027632771525532007,
-0.08864090591669083,
0.06421729922294617,
0.045050594955682755,
-0.048396095633506775,
-0.01124492846429348,
0.14107061922550201,
-0.004817546345293522,
0.023968970403075218,
-0.00924611184746027,
-0.15475837886333466,
0.04644487798213959,
0.007008072454482317,
-0.01979660615324974,
-0.045358188450336456,
0.14091911911964417,
-0.10362452268600464,
0.13827191293239594,
0.18468943238258362,
-0.024644115939736366,
-0.06179057061672211,
-0.13180877268314362,
0.027207354083657265,
-0.024573463946580887,
0.07555149495601654,
0.007957146503031254,
-0.0966317355632782,
0.013245088048279285,
-0.04394235834479332,
0.05634109675884247,
-0.16783270239830017,
-0.06981636583805084,
0.0021358926314860582,
-0.03867785632610321,
-0.03428928926587105,
0.06385409086942673,
0.03333766385912895,
0.011222856119275093,
-0.032366182655096054,
0.009472324512898922,
-0.013143099844455719,
0.11733651906251907,
-0.09188893437385559,
-0.04026741534471512
] |
null | null |
transformers
|
# Vision-and-Language Transformer (ViLT), pre-trained only
Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT).
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
(to do)
## Intended uses & limitations
You can use the raw model for visual question answering.
### How to use
(to do)
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
```bibtex
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
```
|
{"license": "apache-2.0"}
| null |
dandelin/vilt-b32-mlm-itm
|
[
"transformers",
"pytorch",
"vilt",
"arxiv:2102.03334",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2102.03334"
] |
[] |
TAGS
#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us
|
# Vision-and-Language Transformer (ViLT), pre-trained only
Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository.
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
(to do)
## Intended uses & limitations
You can use the raw model for visual question answering.
### How to use
(to do)
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
|
[
"# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Model description\n\n(to do)",
"## Intended uses & limitations\n\nYou can use the raw model for visual question answering.",
"### How to use\n\n(to do)",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Model description\n\n(to do)",
"## Intended uses & limitations\n\nYou can use the raw model for visual question answering.",
"### How to use\n\n(to do)",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
40,
125,
7,
21,
9,
7,
3,
9,
8,
8,
11
] |
[
"passage: TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Model description\n\n(to do)## Intended uses & limitations\n\nYou can use the raw model for visual question answering.### How to use\n\n(to do)## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info"
] |
[
-0.07054779678583145,
0.057640302926301956,
-0.0017178659327328205,
0.03322206437587738,
0.16312934458255768,
0.07315270602703094,
0.11384540051221848,
0.09157150983810425,
-0.05451732501387596,
0.04992339387536049,
0.12525850534439087,
0.05808262899518013,
0.11552893370389938,
0.08717464655637741,
0.028306923806667328,
-0.23047153651714325,
0.030892761424183846,
0.017142420634627342,
0.072393998503685,
0.09863051772117615,
0.07710251957178116,
-0.07916003465652466,
0.09129296988248825,
0.014933658763766289,
-0.14312244951725006,
-0.03856433182954788,
-0.040817469358444214,
-0.015244798734784126,
0.10392210632562637,
0.060416679829359055,
0.08640894293785095,
0.01732494868338108,
0.08511274307966232,
-0.1714867800474167,
0.019055014476180077,
0.06848421692848206,
-0.015263735316693783,
0.06051813066005707,
0.06133474037051201,
0.007767551578581333,
0.14390598237514496,
-0.013639464043080807,
0.08655305951833725,
0.06939198821783066,
-0.13151060044765472,
-0.2339516282081604,
-0.07278386503458023,
0.09769810736179352,
0.08882825821638107,
0.08826626092195511,
-0.016118323430418968,
0.12317652255296707,
-0.018758544698357582,
0.0539529025554657,
0.07985799014568329,
-0.15408064424991608,
-0.09172713756561279,
0.14127501845359802,
0.05656079947948456,
0.06930393725633621,
-0.09975157678127289,
0.005321876611560583,
0.0675860345363617,
0.020434634760022163,
-0.0020098856184631586,
-0.029094737023115158,
-0.0194010641425848,
-0.03855316713452339,
-0.13711221516132355,
-0.09895043075084686,
0.18139702081680298,
-0.0343928299844265,
-0.08473024517297745,
-0.04435233399271965,
-0.03413696587085724,
0.010506588034331799,
0.006673920433968306,
-0.032252829521894455,
0.024202559143304825,
-0.0013990565203130245,
0.10254047065973282,
-0.1652403622865677,
-0.1206275150179863,
-0.15630488097667694,
0.06643306463956833,
0.020482558757066727,
0.05235333368182182,
0.032332468777894974,
-0.0878758355975151,
0.12368081510066986,
-0.13535836338996887,
-0.06189635396003723,
-0.06413398683071136,
-0.08821357041597366,
-0.08720358461141586,
-0.03554845601320267,
0.016930164769291878,
-0.09444442391395569,
-0.04433170333504677,
0.058558110147714615,
0.0448235422372818,
0.09569716453552246,
-0.05790717527270317,
0.044881001114845276,
0.000777403824031353,
0.16740389168262482,
-0.047325726598501205,
0.0973590537905693,
-0.058431096374988556,
-0.0022599122021347284,
-0.019457422196865082,
-0.03558947145938873,
-0.06517432630062103,
-0.017251674085855484,
-0.051110927015542984,
0.06629016250371933,
0.007577546406537294,
0.049917593598365784,
0.026288462802767754,
-0.0376136340200901,
0.13501563668251038,
-0.06170975789427757,
-0.027966702356934547,
0.029998965561389923,
0.004595410544425249,
-0.02915097214281559,
0.10056950896978378,
-0.03443161025643349,
-0.06300141662359238,
0.08785508573055267,
-0.06754930317401886,
0.006486326921731234,
-0.10876553505659103,
-0.08418804407119751,
-0.007276018615812063,
-0.14292936027050018,
-0.01469883881509304,
-0.06841469556093216,
-0.17123262584209442,
-0.030986901372671127,
0.08645118772983551,
-0.05134613439440727,
0.024838095530867577,
-0.029071342200040817,
-0.0067849839106202126,
0.02430732361972332,
0.035406697541475296,
0.07440576702356339,
-0.004733034875243902,
0.06986202299594879,
0.034405164420604706,
0.03817005455493927,
-0.02276865392923355,
0.05820923298597336,
-0.05877835676074028,
0.046616747975349426,
-0.03781215474009514,
0.0168705303221941,
-0.058598488569259644,
-0.01902741566300392,
-0.12102488428354263,
-0.07392071187496185,
-0.017887653782963753,
0.016281863674521446,
0.06051371619105339,
0.11561021953821182,
-0.16542276740074158,
0.011537955142557621,
0.18933598697185516,
-0.16216056048870087,
-0.04208151251077652,
0.09095367789268494,
-0.01840505190193653,
0.11068746447563171,
0.014926000498235226,
0.11973156780004501,
0.1560215801000595,
-0.1861276775598526,
0.07386226207017899,
0.04661117121577263,
-0.09153266251087189,
-0.013869460672140121,
0.051565464586019516,
-0.018790973350405693,
-0.15885666012763977,
0.026672620326280594,
-0.1626114845275879,
-0.05646882206201553,
-0.05737476423382759,
-0.060526683926582336,
-0.025009751319885254,
-0.03819766640663147,
0.026462452486157417,
0.04893350973725319,
-0.028014443814754486,
0.00959270354360342,
-0.06791593134403229,
0.007692511659115553,
0.11930269002914429,
-0.042835015803575516,
-0.002011785749346018,
-0.06013122573494911,
0.024348877370357513,
-0.1309414505958557,
0.002055206336081028,
-0.10072135180234909,
0.05549655109643936,
0.01574232056736946,
-0.07723909616470337,
0.08804349601268768,
0.15485355257987976,
0.030432268977165222,
0.05268732085824013,
-0.017630960792303085,
-0.03077549859881401,
-0.04142840951681137,
-0.03228912502527237,
-0.04577171057462692,
-0.1427430659532547,
-0.023529600352048874,
-0.06858502328395844,
0.043952010571956635,
-0.1888236552476883,
0.0321330800652504,
-0.015291151590645313,
-0.036411017179489136,
-0.042130205780267715,
-0.041648589074611664,
0.02411251701414585,
-0.014414406381547451,
0.010570586659014225,
-0.05308228358626366,
0.09156530350446701,
0.04272704944014549,
-0.0023368599358946085,
0.029056526720523834,
-0.13839858770370483,
-0.19969360530376434,
0.09810217469930649,
0.007585637271404266,
-0.12456855922937393,
0.016038643196225166,
-0.005266915541142225,
-0.04113984480500221,
-0.035032015293836594,
0.030486682429909706,
0.15261492133140564,
0.004205996636301279,
0.127046599984169,
-0.10012511163949966,
-0.0011637741699814796,
0.0674961507320404,
-0.0674547553062439,
-0.07254574447870255,
0.07995667308568954,
0.15328852832317352,
-0.10667186975479126,
0.0756918266415596,
0.02456527017056942,
-0.06442348659038544,
0.20620191097259521,
0.07006948441267014,
-0.037997275590896606,
-0.044482823461294174,
0.08989211916923523,
0.018247079104185104,
0.168463796377182,
-0.2313956320285797,
-0.0010202175471931696,
0.03222384676337242,
0.014150483533740044,
0.03245237097144127,
-0.14998061954975128,
-0.019079582765698433,
0.03127368912100792,
-0.037239670753479004,
-0.0524950847029686,
0.03836248815059662,
-0.06339339166879654,
0.0643063634634018,
0.053890325129032135,
0.08879552036523819,
0.028540916740894318,
-0.05273047089576721,
-0.09859075397253036,
0.17821234464645386,
-0.0940982773900032,
-0.22374117374420166,
-0.14293470978736877,
-0.006043900735676289,
-0.011983352713286877,
0.029436005279421806,
0.04523910582065582,
-0.12105557322502136,
-0.06349942088127136,
-0.03365914523601532,
0.03466141223907471,
-0.1503070443868637,
-0.09871403872966766,
-0.03251655772328377,
-0.02727627195417881,
-0.011463497765362263,
-0.12041312456130981,
0.03321436420083046,
-0.02808619663119316,
-0.12270265817642212,
0.034991905093193054,
-0.047483038157224655,
0.040396548807621,
0.14432956278324127,
-0.014536158181726933,
0.044478029012680054,
-0.022245407104492188,
0.17289581894874573,
-0.07958555966615677,
-0.008863274939358234,
0.22002968192100525,
-0.008641289547085762,
0.04811415821313858,
0.12900994718074799,
-0.0036062488798052073,
-0.0861225426197052,
0.010621943511068821,
0.02270561270415783,
-0.11302710324525833,
-0.23507070541381836,
-0.021247509866952896,
-0.07319112867116928,
0.05298200622200966,
0.06511451303958893,
0.054967958480119705,
0.0692056268453598,
0.10678539425134659,
-0.06695675849914551,
-0.008948362432420254,
0.013139786198735237,
0.1211756244301796,
0.055721528828144073,
-0.034678999334573746,
0.03229280933737755,
-0.055900994688272476,
0.06090739741921425,
0.06418382376432419,
0.0643840953707695,
0.20559795200824738,
0.04998783394694328,
0.0828990563750267,
0.08493318408727646,
0.11381051689386368,
0.041640713810920715,
0.045551519840955734,
-0.09163422882556915,
0.030451877042651176,
-0.04677477106451988,
-0.0588604174554348,
-0.08115856349468231,
0.06736986339092255,
0.014321036636829376,
0.012867636978626251,
-0.07756412774324417,
0.00888985674828291,
-0.03009370155632496,
0.14648868143558502,
0.009047679603099823,
-0.1768161803483963,
-0.051577068865299225,
0.029832657426595688,
0.04824753478169441,
-0.19331899285316467,
0.005413535982370377,
0.05243362858891487,
-0.14190758764743805,
0.008688420057296753,
-0.04390549287199974,
0.09361275285482407,
-0.06614623963832855,
-0.022409401834011078,
-0.009907685220241547,
0.050962869077920914,
0.002190227620303631,
0.13781535625457764,
-0.2147577702999115,
0.1734859049320221,
0.00015734077896922827,
0.09421208500862122,
-0.034511320292949677,
0.03141402453184128,
-0.03213561326265335,
0.12743891775608063,
0.21691609919071198,
-0.002016030717641115,
0.10543984174728394,
-0.06445912271738052,
0.03972931578755379,
0.004105370491743088,
0.09562977403402328,
-0.003204476088285446,
0.010466513223946095,
-0.04381100833415985,
0.021638302132487297,
-0.01144024170935154,
-0.012687936425209045,
-0.10913487523794174,
-0.1114690750837326,
0.08394647389650345,
-0.11720433086156845,
0.0653499886393547,
-0.04195303097367287,
-0.006394691299647093,
0.013742129318416119,
0.16176404058933258,
-0.152439147233963,
-0.06623265892267227,
-0.14568746089935303,
-0.015216097235679626,
0.07678800076246262,
-0.06600186973810196,
0.058031655848026276,
-0.09420529007911682,
0.08798528462648392,
-0.04693851247429848,
-0.04082707315683365,
0.023017264902591705,
-0.09831314533948898,
-0.16545246541500092,
-0.024909187108278275,
0.09343460202217102,
0.05176662281155586,
0.009101989679038525,
0.004086955450475216,
0.0019164344994351268,
-0.07194577902555466,
-0.1243191808462143,
0.06324862688779831,
0.1159655749797821,
0.04251498356461525,
-0.03487411513924599,
-0.009102916345000267,
-0.056398842483758926,
-0.044620536267757416,
-0.04895276948809624,
0.0990305095911026,
0.16095885634422302,
-0.062445905059576035,
0.14761219918727875,
0.23453430831432343,
-0.14716678857803345,
-0.2370547652244568,
0.03625669702887535,
0.048338383436203,
0.011990536004304886,
-0.058822713792324066,
-0.188156858086586,
-0.013956681825220585,
-0.003450932912528515,
-0.028418201953172684,
-0.0030057737603783607,
-0.22630734741687775,
-0.08533339947462082,
0.10460591316223145,
0.1350891888141632,
0.04347195848822594,
-0.10080531984567642,
-0.057899266481399536,
-0.014066825620830059,
-0.16111034154891968,
0.10695106536149979,
0.020281361415982246,
0.10615290701389313,
-0.0320621058344841,
0.014082614332437515,
0.027242304757237434,
-0.08033444732427597,
0.14233152568340302,
-0.06601904332637787,
0.06376464664936066,
-0.07208202034235,
-0.09236764162778854,
0.04537299647927284,
-0.03245311975479126,
0.11375701427459717,
0.04892263561487198,
0.07230483740568161,
-0.10372121632099152,
-0.07230078428983688,
-0.11095315217971802,
0.04621060565114021,
-0.09056296944618225,
-0.09567660093307495,
-0.01278735138475895,
0.07135940343141556,
0.025377845391631126,
-0.020684128627181053,
0.0011957846581935883,
-0.11741053313016891,
-0.015261429361999035,
0.1311369091272354,
0.16690693795681,
0.06824449449777603,
-0.08999902009963989,
0.00843064859509468,
-0.012038965709507465,
0.10954548418521881,
-0.1925252228975296,
0.02540517784655094,
0.0460018627345562,
0.029308831319212914,
0.1266200840473175,
0.02760062739253044,
-0.09818883240222931,
0.0036228089593350887,
-0.004404228180646896,
-0.09671613574028015,
-0.1744687706232071,
-0.003810760797932744,
0.12816473841667175,
-0.057690009474754333,
0.004899255465716124,
0.0907488539814949,
-0.09924100339412689,
-0.00924781896173954,
-0.015599207021296024,
0.019292697310447693,
-0.02692391164600849,
0.05927543342113495,
0.08753064274787903,
0.05077146366238594,
-0.0690947026014328,
0.04975119233131409,
0.07223090529441833,
-0.07504680752754211,
0.04320153594017029,
0.05969474837183952,
-0.09822145849466324,
-0.09501475840806961,
-0.009500169195234776,
0.13827362656593323,
-0.04236653819680214,
-0.06675488501787186,
0.04690343514084816,
-0.09650420397520065,
0.011382625438272953,
0.12043704837560654,
0.017370913177728653,
-0.00913020595908165,
-0.052875179797410965,
0.048249661922454834,
-0.13073493540287018,
0.05611608177423477,
-0.048541054129600525,
0.02486804500222206,
-0.09499648958444595,
0.09167744964361191,
0.06049928069114685,
0.1096644401550293,
-0.016266316175460815,
-0.06791943311691284,
-0.11674237251281738,
0.03107517398893833,
-0.08550837635993958,
0.047588758170604706,
-0.03279365226626396,
0.018960928544402122,
-0.003603361314162612,
-0.04155493155121803,
0.027728984132409096,
0.01029603835195303,
-0.06347235292196274,
0.012625624425709248,
-0.014014411717653275,
0.06755997240543365,
-0.09257106482982635,
0.020319918170571327,
0.046407245099544525,
-0.026825258508324623,
0.055873241275548935,
-0.004756032023578882,
-0.013374407775700092,
0.03686773031949997,
-0.12369070947170258,
0.05610158294439316,
-0.04180271923542023,
0.018671799451112747,
-0.017268646508455276,
-0.09819404780864716,
0.009790751151740551,
-0.05541015416383743,
-0.06508486717939377,
-0.028466396033763885,
0.12616899609565735,
-0.12457432597875595,
0.07051672041416168,
0.01561448723077774,
-0.07773830741643906,
-0.02501348964869976,
0.08069200813770294,
-0.009521097876131535,
0.07531014829874039,
0.025085462257266045,
-0.025201568379998207,
0.09242285788059235,
-0.10895790904760361,
-0.013193260878324509,
0.03153995797038078,
-0.0015273676253855228,
-0.05809104070067406,
-0.09388787299394608,
0.05423004552721977,
-0.026737943291664124,
0.03514188900589943,
0.06001943349838257,
0.010720236226916313,
0.015550132840871811,
-0.007434250321239233,
-0.02612823061645031,
-0.016087999567389488,
0.06834391504526138,
-0.03270126134157181,
0.030258851125836372,
0.04338670149445534,
0.03420484811067581,
-0.06186497211456299,
-0.03193141147494316,
0.12204303592443466,
0.11445601284503937,
0.045581284910440445,
0.02573520503938198,
0.03564799949526787,
-0.06709142029285431,
-0.08734049648046494,
0.00434474553912878,
-0.005119647830724716,
0.0487745925784111,
-0.09516482800245285,
0.08079899102449417,
0.17816802859306335,
-0.12295389175415039,
0.08402244001626968,
-0.021579217165708542,
-0.0930970162153244,
-0.09948167204856873,
-0.20237088203430176,
-0.035774119198322296,
-0.04239070415496826,
0.05158976837992668,
-0.07343307882547379,
0.07808127999305725,
0.06691914051771164,
0.03429131954908371,
-0.036243047565221786,
0.15219232439994812,
0.03190631791949272,
-0.045631539076566696,
0.011883671395480633,
0.029692448675632477,
0.046591274440288544,
-0.11494752019643784,
0.04924632981419563,
0.04124204441905022,
0.015356850810348988,
0.03950592130422592,
0.0361211858689785,
0.02649017423391342,
0.01043110340833664,
-0.0027223112992942333,
-0.06122289597988129,
-0.009680385701358318,
0.056880008429288864,
0.03115122951567173,
0.11999485641717911,
-0.024722212925553322,
0.0003666398406494409,
-0.011868750676512718,
0.13429765403270721,
-0.059265438467264175,
-0.07750170677900314,
-0.0998658537864685,
0.24942733347415924,
-0.045151203870773315,
0.006518710870295763,
0.014094816520810127,
-0.04332343116402626,
0.032168079167604446,
0.33538514375686646,
0.18108941614627838,
0.02079121023416519,
-0.008334189653396606,
0.045958589762449265,
0.017981529235839844,
0.01532384566962719,
0.10276585072278976,
0.032736971974372864,
0.20542165637016296,
-0.10306338965892792,
0.11441009491682053,
-0.028092756867408752,
-0.012514459900557995,
0.06754205375909805,
0.11431185901165009,
0.00643643643707037,
-0.02466839924454689,
-0.055235035717487335,
0.06043006852269173,
-0.04244674742221832,
-0.1836337000131607,
0.09402447193861008,
-0.00275916769169271,
-0.055484626442193985,
-0.015777170658111572,
0.07488136738538742,
-0.047366246581077576,
0.017995581030845642,
-0.04062528535723686,
-0.046360116451978683,
0.15515616536140442,
0.025149215012788773,
-0.10686225444078445,
-0.11886241286993027,
0.10109057277441025,
-0.05407930538058281,
0.19897542893886566,
-0.002749829785898328,
0.040519386529922485,
0.03899404779076576,
0.007660140749067068,
-0.07072259485721588,
0.06418391317129135,
0.033063698559999466,
-0.042010631412267685,
0.00617397902533412,
0.12185923755168915,
-0.03753712773323059,
0.03755142539739609,
-0.011488950811326504,
-0.1497611552476883,
0.047756925225257874,
-0.012637142091989517,
-0.047537967562675476,
-0.05444230139255524,
0.12859205901622772,
-0.12877227365970612,
0.15081144869327545,
0.16965192556381226,
-0.012954505160450935,
-0.07048901170492172,
-0.10631968826055527,
0.05523037165403366,
-0.02709534950554371,
0.10620690882205963,
0.015538457781076431,
-0.11862260848283768,
0.008860060013830662,
-0.02694273740053177,
0.055081456899642944,
-0.21788708865642548,
-0.06218311935663223,
0.00017097203817684203,
-0.020762169733643532,
-0.002735174261033535,
0.044469669461250305,
0.029391895979642868,
0.012170782312750816,
-0.0610102079808712,
-0.025772714987397194,
-0.013973560184240341,
0.1310613453388214,
-0.07762202620506287,
-0.0686311349272728
] |
null | null |
transformers
|
# Vision-and-Language Transformer (ViLT), pre-trained only
Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Note: this model only includes the language modeling head.
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens.
### How to use
Here is how to use this model in PyTorch:
```
from transformers import ViltProcessor, ViltForMaskedLM
import requests
from PIL import Image
import re
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = "a bunch of [MASK] laying on a [MASK]."
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm")
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
outputs = model(**encoding)
tl = len(re.findall("\[MASK\]", text))
inferred_token = [text]
# gradually fill in the MASK tokens, one by one
with torch.no_grad():
for i in range(tl):
encoded = processor.tokenizer(inferred_token)
input_ids = torch.tensor(encoded.input_ids).to(device)
encoded = encoded["input_ids"][0][1:-1]
outputs = model(input_ids=input_ids, pixel_values=pixel_values)
mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size)
# only take into account text features (minus CLS and SEP token)
mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :]
mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1)
# only take into account text
mlm_values[torch.tensor(encoded) != 103] = 0
select = mlm_values.argmax().item()
encoded[select] = mlm_ids[select].item()
inferred_token = [processor.decode(encoded)]
selected_token = ""
encoded = processor.tokenizer(inferred_token)
processor.decode(encoded.input_ids[0], skip_special_tokens=True)
```
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
```bibtex
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
```
|
{"license": "apache-2.0"}
|
fill-mask
|
dandelin/vilt-b32-mlm
|
[
"transformers",
"pytorch",
"vilt",
"fill-mask",
"arxiv:2102.03334",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2102.03334"
] |
[] |
TAGS
#transformers #pytorch #vilt #fill-mask #arxiv-2102.03334 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# Vision-and-Language Transformer (ViLT), pre-trained only
Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Note: this model only includes the language modeling head.
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Intended uses & limitations
You can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens.
### How to use
Here is how to use this model in PyTorch:
## Training data
(to do)
## Training procedure
### Preprocessing
(to do)
### Pretraining
(to do)
## Evaluation results
(to do)
### BibTeX entry and citation info
|
[
"# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Note: this model only includes the language modeling head.\n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens.",
"### How to use\n\nHere is how to use this model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #vilt #fill-mask #arxiv-2102.03334 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Note: this model only includes the language modeling head.\n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.",
"## Intended uses & limitations\n\nYou can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens.",
"### How to use\n\nHere is how to use this model in PyTorch:",
"## Training data\n\n(to do)",
"## Training procedure",
"### Preprocessing\n\n(to do)",
"### Pretraining\n\n(to do)",
"## Evaluation results\n\n(to do)",
"### BibTeX entry and citation info"
] |
[
57,
137,
37,
17,
7,
3,
9,
8,
8,
11
] |
[
"passage: TAGS\n#transformers #pytorch #vilt #fill-mask #arxiv-2102.03334 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Note: this model only includes the language modeling head.\n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens.### How to use\n\nHere is how to use this model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info"
] |
[
-0.04889468476176262,
0.03951264172792435,
-0.004259373992681503,
0.04498325288295746,
0.11948470026254654,
0.048700399696826935,
0.14012831449508667,
0.11494965851306915,
-0.0034103982616215944,
0.07543580234050751,
0.05483810976147652,
0.038362033665180206,
0.13925734162330627,
0.15305598080158234,
0.03827759250998497,
-0.27749985456466675,
0.01466322224587202,
-0.02550382912158966,
0.08029798418283463,
0.10170844197273254,
0.10689537972211838,
-0.09138178080320358,
0.07459431141614914,
0.03560230880975723,
-0.09491406381130219,
-0.035055771470069885,
-0.04706111550331116,
-0.029322665184736252,
0.08671677112579346,
0.03445488587021828,
0.08550414443016052,
-0.005224345251917839,
0.08457188308238983,
-0.1345563530921936,
0.025465216487646103,
0.07934639602899551,
-0.005936035420745611,
0.09331423789262772,
0.07493769377470016,
-0.029885662719607353,
0.13081786036491394,
-0.0820440798997879,
0.061133891344070435,
0.03805479407310486,
-0.12816166877746582,
-0.20568926632404327,
-0.09146451950073242,
0.14037209749221802,
0.11655741184949875,
0.06538539379835129,
-0.01585417240858078,
0.10046007484197617,
0.02863166108727455,
0.06812184303998947,
0.1483944207429886,
-0.1843269318342209,
-0.06103077903389931,
0.047062862664461136,
0.08847849816083908,
0.05446561425924301,
-0.08974157273769379,
0.007131489925086498,
0.03328745812177658,
0.00947756227105856,
0.04574725031852722,
-0.010056523606181145,
0.022447368130087852,
-0.05513497069478035,
-0.14880754053592682,
-0.08656934648752213,
0.11863184720277786,
-0.02685469761490822,
-0.06833240389823914,
-0.10551676154136658,
-0.05480581894516945,
0.021306175738573074,
-0.013116893358528614,
-0.023238327354192734,
0.011297115124762058,
-0.012168113142251968,
0.11691280454397202,
-0.15137945115566254,
-0.09993123263120651,
-0.07296540588140488,
-0.0035174405202269554,
0.08189655840396881,
0.021739954128861427,
0.0652376189827919,
-0.06153223291039467,
0.09737269580364227,
-0.10055248439311981,
-0.11724365502595901,
-0.024177735671401024,
-0.06249518692493439,
-0.057640787214040756,
-0.027709567919373512,
0.0228528194129467,
-0.15968018770217896,
-0.03706284239888191,
0.06615951657295227,
-0.05455426126718521,
0.0333561971783638,
-0.1019776314496994,
0.07060980796813965,
0.050626449286937714,
0.1544693112373352,
-0.08539490401744843,
0.0464642271399498,
-0.006180833093822002,
-0.00952511839568615,
0.027059007436037064,
-0.045327428728342056,
-0.0589822456240654,
-0.02392825484275818,
-0.007307411637157202,
0.05825328826904297,
0.05722762271761894,
0.03542101010680199,
-0.009275545366108418,
-0.04557979851961136,
0.16313335299491882,
-0.11167020350694656,
0.01937462016940117,
0.03328222781419754,
-0.028418853878974915,
-0.03689391165971756,
0.127033531665802,
-0.005167437717318535,
-0.08555839210748672,
0.08880390226840973,
-0.0648883730173111,
0.029249047860503197,
-0.10161571204662323,
-0.10736703127622604,
-0.0050728279165923595,
-0.07740993797779083,
-0.06521578878164291,
-0.05657917261123657,
-0.13683189451694489,
-0.021054115146398544,
0.07213494926691055,
-0.06280718743801117,
0.017098788172006607,
-0.012621484696865082,
0.00022972890292294323,
0.05110738053917885,
0.03809952735900879,
0.015534589998424053,
-0.016698503866791725,
0.0496288537979126,
-0.028178518638014793,
0.08467987924814224,
-0.01255129650235176,
0.056540776044130325,
-0.05717421695590019,
0.05717052146792412,
-0.11594850569963455,
0.07903152704238892,
-0.02797923982143402,
-0.023637207224965096,
-0.1310575008392334,
-0.059289637953042984,
-0.05128723010420799,
-0.019162161275744438,
0.06834541261196136,
0.14159539341926575,
-0.152060866355896,
-0.002687153173610568,
0.23226343095302582,
-0.13541698455810547,
-0.05531798675656319,
0.09522140771150589,
-0.04496113210916519,
0.09858061373233795,
0.01768415793776512,
0.09571228921413422,
0.11103778332471848,
-0.21467234194278717,
0.04904981702566147,
0.04867299646139145,
-0.07402683794498444,
0.02812991663813591,
0.0639692097902298,
-0.027384400367736816,
-0.039135534316301346,
-0.0058440761640667915,
-0.07736517488956451,
-0.019151704385876656,
-0.04368463531136513,
-0.06850186735391617,
-0.006351656746119261,
-0.010992392897605896,
0.03320786729454994,
0.03562801331281662,
-0.02096371538937092,
0.00741307670250535,
-0.08109047263860703,
0.014852568507194519,
0.08927728980779648,
-0.03700658306479454,
0.025013722479343414,
-0.026374727487564087,
0.05274537205696106,
-0.11241654306650162,
-0.01437984686344862,
-0.14003866910934448,
0.03340166434645653,
0.03508319333195686,
-0.04390373453497887,
0.08211781084537506,
0.019572801887989044,
0.03413372486829758,
0.05394217371940613,
0.0012255830224603415,
-0.0074303532019257545,
-0.0020969025790691376,
-0.025488518178462982,
-0.06419996172189713,
-0.15048979222774506,
-0.03453904017806053,
-0.0542859248816967,
0.0719158872961998,
-0.11233384907245636,
0.024322424083948135,
-0.026919396594166756,
0.021166207268834114,
-0.011887560598552227,
-0.03160012513399124,
0.02876027300953865,
-0.025899790227413177,
-0.00880924891680479,
-0.04825291037559509,
0.05722462385892868,
0.03254207223653793,
-0.02279471978545189,
0.11193673312664032,
-0.12846693396568298,
-0.22482942044734955,
0.09988582879304886,
0.006616880651563406,
-0.10872054845094681,
-0.0025520622730255127,
-0.03146832063794136,
-0.04753321781754494,
-0.05190145969390869,
0.004387584049254656,
0.13653144240379333,
0.020925041288137436,
0.11771934479475021,
-0.10238678008317947,
-0.03711361065506935,
0.031565114855766296,
-0.07491187006235123,
-0.09183315187692642,
0.04279639571905136,
0.08493003249168396,
-0.165513813495636,
0.08202829211950302,
0.040354300290346146,
-0.0302939061075449,
0.17378051578998566,
0.07206320017576218,
-0.07410912215709686,
-0.051691934466362,
0.04675998166203499,
0.026099085807800293,
0.1057446300983429,
-0.10166799277067184,
0.015929171815514565,
0.04743598401546478,
0.0009978495072573423,
0.04063403978943825,
-0.13782142102718353,
0.030605152249336243,
0.015711426734924316,
-0.0561380460858345,
-0.024237941950559616,
0.035087455064058304,
-0.017548397183418274,
0.09017926454544067,
0.0765426903963089,
0.07305784523487091,
-0.00836288370192051,
-0.06613177061080933,
-0.12551170587539673,
0.15220138430595398,
-0.12145531177520752,
-0.2833946645259857,
-0.172316312789917,
-0.021054008975625038,
-0.006631388794630766,
0.022553278133273125,
0.025899551808834076,
-0.02279692143201828,
-0.05097108334302902,
-0.047965940088033676,
0.02801343984901905,
-0.09072532504796982,
-0.06286360323429108,
-0.026579098775982857,
-0.024859584867954254,
-0.0026473647449165583,
-0.11667317897081375,
0.0014079391257837415,
-0.014299584552645683,
-0.05834976211190224,
0.02973359078168869,
-0.039377495646476746,
0.05273884907364845,
0.15672625601291656,
-0.04870070889592171,
0.028538044542074203,
-0.016630858182907104,
0.20715051889419556,
-0.10090933740139008,
0.0767006054520607,
0.16850484907627106,
-0.04639514535665512,
0.10286194086074829,
0.1553492248058319,
0.0066979145631194115,
-0.019396532326936722,
0.013949442654848099,
-0.015800585970282555,
-0.07219728827476501,
-0.22400885820388794,
-0.03247904032468796,
-0.08803413808345795,
-0.04524825140833855,
0.09357304871082306,
0.039165377616882324,
0.08201145380735397,
0.06945757567882538,
-0.08611737936735153,
0.00024515349650755525,
0.06198636814951897,
0.10920975357294083,
-0.00019790262740571052,
-0.0014169560745358467,
0.0571211613714695,
-0.05077768489718437,
0.013978108763694763,
0.07514753937721252,
0.04808255657553673,
0.16796378791332245,
-0.0013855784200131893,
0.08072372525930405,
0.09229990094900131,
0.09347032010555267,
0.019270412623882294,
0.08785159140825272,
-0.10372595489025116,
0.0733688697218895,
-0.044357672333717346,
-0.0946393609046936,
-0.02807655557990074,
0.06877782195806503,
0.04577198252081871,
0.0490630678832531,
-0.05606164410710335,
-0.03898829221725464,
0.01027518417686224,
0.22991348803043365,
0.04039372503757477,
-0.18921709060668945,
-0.05724618211388588,
0.04330846294760704,
0.04650089517235756,
-0.14483419060707092,
-0.03813447803258896,
0.026509033516049385,
-0.15127231180667877,
0.06951842457056046,
-0.04858638346195221,
0.09912675619125366,
-0.04310597851872444,
-0.05111643671989441,
-0.0062771691009402275,
0.05044284462928772,
-0.019706085324287415,
0.10688646137714386,
-0.21536333858966827,
0.15983368456363678,
0.011413355357944965,
0.05439024791121483,
-0.06613379716873169,
0.06479895859956741,
0.003667793469503522,
0.10117358714342117,
0.1674540638923645,
0.014805024489760399,
0.06139238178730011,
-0.03191937878727913,
-0.02732042409479618,
-0.053787924349308014,
0.07669094204902649,
-0.029181644320487976,
0.03282111510634422,
-0.020472530275583267,
-0.015425543300807476,
-0.006817199289798737,
0.03146171569824219,
-0.0881117656826973,
-0.12283609062433243,
0.08736629784107208,
-0.0708112046122551,
-0.018422458320856094,
-0.027471253648400307,
-0.04648327827453613,
0.004805657081305981,
0.15800121426582336,
-0.08833402395248413,
-0.09655146300792694,
-0.12909021973609924,
-0.009031969122588634,
0.10917547345161438,
-0.08790677040815353,
0.050253964960575104,
-0.0921744704246521,
0.1318003237247467,
-0.07740836590528488,
-0.07844771444797516,
0.02805381454527378,
-0.08483920991420746,
-0.14016073942184448,
-0.03568875789642334,
0.11138155311346054,
0.06533545255661011,
0.012372580356895924,
0.008443609811365604,
0.03570208325982094,
-0.06323062628507614,
-0.08724596351385117,
0.04300621524453163,
0.09933388978242874,
0.06444567441940308,
0.057159796357154846,
-0.05803311616182327,
-0.1812504529953003,
-0.10091134160757065,
-0.00961328949779272,
0.08600901067256927,
0.1395447701215744,
-0.07786540687084198,
0.1701759397983551,
0.17252564430236816,
-0.14680902659893036,
-0.22880233824253082,
0.006399902980774641,
0.07252977043390274,
0.036497004330158234,
-0.02703833393752575,
-0.1480485200881958,
-0.011270330287516117,
-0.031028984114527702,
-0.05187052860856056,
0.026520822197198868,
-0.24519504606723785,
-0.1021847277879715,
0.10471031814813614,
0.07852596789598465,
-0.015438185073435307,
-0.11972497403621674,
-0.06435728073120117,
-0.020687201991677284,
-0.07834028452634811,
0.11421451717615128,
0.021405093371868134,
0.08165247738361359,
-0.019190147519111633,
0.013229697942733765,
0.04217379912734032,
-0.0632271096110344,
0.12184526026248932,
-0.0646529421210289,
0.0301352608948946,
-0.10260949283838272,
-0.07547461986541748,
0.05673480033874512,
-0.061697959899902344,
0.1269274801015854,
0.06314567476511002,
0.0589027926325798,
-0.10381053388118744,
-0.025064481422305107,
-0.09296327829360962,
0.07635446637868881,
-0.07515096664428711,
-0.07704688608646393,
-0.052700530737638474,
0.07861822843551636,
0.06778773665428162,
-0.00011025500134564936,
0.03897304832935333,
-0.0638236328959465,
0.05290086939930916,
0.13797003030776978,
0.10539897531270981,
0.10900288820266724,
-0.04963697865605354,
-0.007002587430179119,
-0.019832493737339973,
0.07803068310022354,
-0.1460307389497757,
0.034792426973581314,
0.0410999059677124,
0.02658124268054962,
0.14461565017700195,
0.02816472016274929,
-0.1599237024784088,
-0.01295428816229105,
0.049683403223752975,
-0.09883350878953934,
-0.09753145277500153,
-0.012973391450941563,
0.04757045954465866,
-0.0737529769539833,
-0.024154525250196457,
0.1125587522983551,
-0.06409043073654175,
-0.03467759117484093,
-0.005292214918881655,
0.07049798965454102,
-0.02403826266527176,
0.02965129353106022,
0.09623010456562042,
0.04070768877863884,
-0.03875823691487312,
0.05376753211021423,
0.14114812016487122,
-0.004403301049023867,
0.02143235132098198,
0.12309723347425461,
-0.06712035089731216,
-0.05615527555346489,
0.011409307830035686,
0.07773014158010483,
0.023491734638810158,
-0.05225302278995514,
0.0480625294148922,
-0.06240764632821083,
0.008724299259483814,
0.1252702921628952,
0.007725839503109455,
-0.025514673441648483,
-0.009654562920331955,
0.019115660339593887,
-0.08952417224645615,
0.11050381511449814,
-0.030277803540229797,
0.008883770555257797,
-0.03321043774485588,
0.09386090189218521,
0.03863777965307236,
0.13221630454063416,
-0.02598886936903,
-0.05062200501561165,
-0.09846673905849457,
0.012946171686053276,
-0.024808652698993683,
0.07776757329702377,
-0.06087566912174225,
-0.0054756649769842625,
-0.03123818151652813,
-0.045720502734184265,
0.010227581486105919,
0.027768973261117935,
-0.04916775971651077,
-0.02139655314385891,
-0.05652303621172905,
0.0601813942193985,
-0.1345975548028946,
-0.032074421644210815,
0.06806658953428268,
-0.05062996223568916,
0.07741633802652359,
0.0220160074532032,
-0.0223355982452631,
0.0044671655632555485,
-0.13285024464130402,
0.037113312631845474,
-0.02356530725955963,
0.034060362726449966,
-0.004686552565544844,
-0.11191656440496445,
0.024079574272036552,
-0.03882300481200218,
-0.049927134066820145,
-0.027338335290551186,
0.08214441686868668,
-0.11110446602106094,
0.05460231751203537,
-0.014933699741959572,
-0.051704440265893936,
-0.04000133275985718,
0.11889608949422836,
-0.008704161271452904,
0.055302657186985016,
0.026643963530659676,
-0.05122853443026543,
0.13546346127986908,
-0.14012853801250458,
-0.011709261685609818,
0.009908975102007389,
0.004635598044842482,
-0.018294868990778923,
-0.0783633142709732,
0.052715402096509933,
-0.02952744998037815,
0.08267609030008316,
0.13032272458076477,
0.016620200127363205,
0.009202378802001476,
0.0022969862911850214,
-0.07200751453638077,
0.006227724254131317,
0.06870609521865845,
-0.047806378453969955,
-0.0016587452264502645,
0.038103584200143814,
0.011834243312478065,
-0.05977913364768028,
-0.004408678505569696,
0.11610022187232971,
0.10795416682958603,
0.11234308034181595,
0.029297294095158577,
0.06093679368495941,
-0.05284469947218895,
-0.04733683913946152,
-0.055598337203264236,
0.008225359953939915,
0.022836189717054367,
-0.050941161811351776,
0.07595288753509521,
0.15051387250423431,
-0.16925466060638428,
0.11963553726673126,
0.007810685317963362,
-0.07872829586267471,
-0.12142547219991684,
-0.1605558544397354,
-0.023112859576940536,
-0.006130794528871775,
0.011953398585319519,
-0.08941274881362915,
0.07086706906557083,
0.015969956293702126,
0.008898969739675522,
-0.030697349458932877,
0.09567441046237946,
-0.001233370741829276,
-0.07496245205402374,
0.051055166870355606,
0.04338862746953964,
0.07232532650232315,
-0.08094042539596558,
0.04398496821522713,
0.044573426246643066,
0.052947212010622025,
0.05355622619390488,
0.05192660540342331,
0.05768287554383278,
0.05065275356173515,
-0.021001096814870834,
-0.09531712532043457,
0.009847758337855339,
0.0104875098913908,
0.03684947267174721,
0.1176815927028656,
0.025592749938368797,
0.009567013010382652,
-0.020883912220597267,
0.10807950049638748,
-0.05296116694808006,
-0.11085627973079681,
-0.10328710079193115,
0.2226267009973526,
-0.04913538321852684,
-0.026882827281951904,
-0.003831923473626375,
-0.09705612808465958,
-0.019367946311831474,
0.2631833851337433,
0.23579445481300354,
-0.006977816578000784,
0.009433872997760773,
0.022896265611052513,
0.016407664865255356,
0.058787185698747635,
0.0774477943778038,
0.053960274904966354,
0.24463008344173431,
-0.06628049165010452,
0.1433757245540619,
-0.04571313038468361,
-0.004829855635762215,
-0.022027714177966118,
0.09198415279388428,
-0.04004448652267456,
-0.012139520607888699,
-0.04163691774010658,
0.08943670243024826,
-0.04508402943611145,
-0.24693769216537476,
0.036000967025756836,
-0.06972828507423401,
-0.07303600758314133,
-0.0020253872498869896,
0.016172613948583603,
-0.014843652956187725,
0.02444264478981495,
-0.003447385039180517,
-0.024099327623844147,
0.1643737256526947,
0.032973889261484146,
-0.07825266569852829,
-0.05803992599248886,
0.06368771195411682,
-0.15291109681129456,
0.19060702621936798,
0.010318191722035408,
0.06739117205142975,
0.053401753306388855,
0.006374320946633816,
-0.0654633492231369,
0.028990143910050392,
0.02033242955803871,
0.026023823767900467,
0.029177069664001465,
0.1396370381116867,
-0.020437972620129585,
-0.058847151696681976,
0.03633008152246475,
-0.09971301257610321,
0.0498456135392189,
-0.06915123015642166,
-0.04341752827167511,
-0.09161458909511566,
0.10990049690008163,
-0.11094245314598083,
0.14454211294651031,
0.16308088600635529,
-0.02112051099538803,
-0.03679149970412254,
-0.07968046516180038,
-0.0074675362557172775,
-0.026963042095303535,
0.10444843024015427,
-0.02149791829288006,
-0.09260624647140503,
0.00038518462679348886,
-0.05970924347639084,
0.09106193482875824,
-0.2469591498374939,
-0.04158644750714302,
-0.0031754609663039446,
-0.05215292051434517,
-0.049676354974508286,
0.05269132927060127,
0.025618502870202065,
-0.008798806928098202,
-0.03785370662808418,
-0.06767291575670242,
0.006714662536978722,
0.10525377094745636,
-0.09786480665206909,
-0.02759961225092411
] |
null | null |
transformers
|
# GPT-2 Fine-tuning in Vietnamese Wikipedia
## Model description
This is a Vietnamese GPT-2 model which is finetuned on the [Latest pages articles of Vietnamese Wikipedia](https://dumps.wikimedia.org/viwiki/latest/viwiki-latest-pages-articles.xml.bz2).
## Dataset
The dataset is about 800MB, includes many articles from Wikipedia.
## How to use
You can use this model to:
- Tokenize Vietnamese sentences with GPT2Tokenizer.
- Generate text seems like a Wikipedia article.
- Finetune it to other downstream tasks.
Here is how to use the model to generate text in Pytorch:
```python
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('danghuy1999/gpt2-viwiki')
model = GPT2LMHeadModel.from_pretrained('danghuy1999/gpt2-viwiki').to('cuda')
text = "Albert Einstein lΓ nhΓ vαΊt lΓ½ hα»c tαΊ‘o ra thuyαΊΏt lượng tα»"
input_ids = tokenizer.encode(text, return_tensors='pt').to('cuda')
max_length = 100
sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,
do_sample=True,
max_length=max_length,
min_length=max_length,
top_k=40,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=2,
num_return_sequences=3)
for i, sample_output in enumerate(sample_outputs):
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist())))
print('\n---')
```
And the results are:
```bash
>> Generated text 1
Albert Einstein lΓ nhΓ vαΊt lΓ½ hα»c tαΊ‘o ra thuyαΊΏt lượng tα».
MαΊ·c dΓΉ thuyαΊΏt tΖ°Ζ‘ng Δα»i tα»ng quΓ‘t khΓ΄ng Δược Γ‘p dα»₯ng rα»ng rΓ£i trong nhiα»u lΔ©nh vα»±c khΓ‘c nhau, nhΖ°ng cΓ‘c nhΓ lΓ½ thuyαΊΏt ΔΓ£ ΔΖ°a ra khΓ‘i niα»m rα»ng hΖ‘n vα» tΓnh chαΊ₯t cα»§a vαΊt chαΊ₯t. Mα»t trong nhα»―ng nghiΓͺn cα»©u cα»§a Albert Einstein vα» sα»± tα»n tαΊ‘i cα»§a hα» quy chiαΊΏu quΓ‘n tΓnh, Γ΄ng ΔΓ£ Δα» xuαΊ₯t rαΊ±ng mα»t lα»±c hαΊ₯p dαΊ«n cΓ³ thα» cΓ³ khα»i lượng bαΊ±ng nΔng lượng cα»§a nΓ³. Tuy nhiΓͺn, nhα»―ng ngΖ°α»i cho rαΊ±ng
---
>> Generated text 2
Albert Einstein lΓ nhΓ vαΊt lΓ½ hα»c tαΊ‘o ra thuyαΊΏt lượng tα». Tuy nhiΓͺn, thuyαΊΏt tΖ°Ζ‘ng Δα»i hαΊΉp khΓ΄ng phαΊ£i lΓ lΓ½ thuyαΊΏt cα»§a Einstein.
Cho ΔαΊΏn tαΊn cuα»i thαΊΏ kα»· 19, Albert Einstein ΔΓ£ chα»©ng minh Δược sα»± tα»n tαΊ‘i cα»§a lα»±c hαΊ₯p dαΊ«n trong mα»t sα» trΖ°α»ng hợp ΔαΊ·c biα»t. NΔm 1915, Γ΄ng ΔΖ°a ra khΓ‘i niα»m "khα»i lượng" Δα» miΓͺu tαΊ£ chuyα»n Δα»ng lượng cα»§a mα»t hαΊ‘t bαΊ±ng khα»i lượng nghα» cα»§a nΓ³. Γng cho rαΊ±ng nΔng lượng "m" lΓ mα»t thΓ nh phαΊ§n cα»§a
---
>> Generated text 3
Albert Einstein lΓ nhΓ vαΊt lΓ½ hα»c tαΊ‘o ra thuyαΊΏt lượng tα». Tuy nhiΓͺn, thuyαΊΏt tΖ°Ζ‘ng Δα»i hαΊΉp khΓ΄ng Δược chαΊ₯p nhαΊn rα»ng rΓ£i bα»i cΓ‘c nhΓ lΓ½ thuyαΊΏt.
Mα»t trong nhα»―ng nghiΓͺn cα»©u cα»§a Einstein vα» tΓnh chαΊ₯t cα»§a lα»±c hαΊ₯p dαΊ«n lΓ vΓ o nΔm 1905, Γ΄ng ΔΓ£ ΔΖ°a ra mα»t khΓ‘i niα»m vα» lα»±c hα»c. Γng ΔΓ£ phΓ‘t biα»u rαΊ±ng nαΊΏu mα»t hαΊ‘t mang Δiα»n tΓch dΖ°Ζ‘ng, nΓ³ cΓ³ thα» chuyα»n Δα»i nΔng lượng cα»§a nΓ³ thΓ nh cΓ‘c hαΊ‘t khΓ‘c. NΔm 1915, Arthur Eddington phΓ‘t minh ra
---
```
You can do the same with **Tensorflow** by using the model **TFGPT2Tokenizer** instead.
|
{"language": "vi", "license": "mit", "tags": ["gpt2-viwiki"]}
| null |
danghuy1999/gpt2-viwiki
|
[
"transformers",
"pytorch",
"tf",
"gpt2",
"gpt2-viwiki",
"vi",
"license:mit",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"vi"
] |
TAGS
#transformers #pytorch #tf #gpt2 #gpt2-viwiki #vi #license-mit #endpoints_compatible #text-generation-inference #region-us
|
# GPT-2 Fine-tuning in Vietnamese Wikipedia
## Model description
This is a Vietnamese GPT-2 model which is finetuned on the Latest pages articles of Vietnamese Wikipedia.
## Dataset
The dataset is about 800MB, includes many articles from Wikipedia.
## How to use
You can use this model to:
- Tokenize Vietnamese sentences with GPT2Tokenizer.
- Generate text seems like a Wikipedia article.
- Finetune it to other downstream tasks.
Here is how to use the model to generate text in Pytorch:
And the results are:
You can do the same with Tensorflow by using the model TFGPT2Tokenizer instead.
|
[
"# GPT-2 Fine-tuning in Vietnamese Wikipedia",
"## Model description\n\nThis is a Vietnamese GPT-2 model which is finetuned on the Latest pages articles of Vietnamese Wikipedia.",
"## Dataset\n\nThe dataset is about 800MB, includes many articles from Wikipedia.",
"## How to use\n\nYou can use this model to:\n\n- Tokenize Vietnamese sentences with GPT2Tokenizer.\n- Generate text seems like a Wikipedia article.\n- Finetune it to other downstream tasks.\n\nHere is how to use the model to generate text in Pytorch:\n\n\n\nAnd the results are:\n\n\n\nYou can do the same with Tensorflow by using the model TFGPT2Tokenizer instead."
] |
[
"TAGS\n#transformers #pytorch #tf #gpt2 #gpt2-viwiki #vi #license-mit #endpoints_compatible #text-generation-inference #region-us \n",
"# GPT-2 Fine-tuning in Vietnamese Wikipedia",
"## Model description\n\nThis is a Vietnamese GPT-2 model which is finetuned on the Latest pages articles of Vietnamese Wikipedia.",
"## Dataset\n\nThe dataset is about 800MB, includes many articles from Wikipedia.",
"## How to use\n\nYou can use this model to:\n\n- Tokenize Vietnamese sentences with GPT2Tokenizer.\n- Generate text seems like a Wikipedia article.\n- Finetune it to other downstream tasks.\n\nHere is how to use the model to generate text in Pytorch:\n\n\n\nAnd the results are:\n\n\n\nYou can do the same with Tensorflow by using the model TFGPT2Tokenizer instead."
] |
[
50,
12,
27,
17,
90
] |
[
"passage: TAGS\n#transformers #pytorch #tf #gpt2 #gpt2-viwiki #vi #license-mit #endpoints_compatible #text-generation-inference #region-us \n# GPT-2 Fine-tuning in Vietnamese Wikipedia## Model description\n\nThis is a Vietnamese GPT-2 model which is finetuned on the Latest pages articles of Vietnamese Wikipedia.## Dataset\n\nThe dataset is about 800MB, includes many articles from Wikipedia.## How to use\n\nYou can use this model to:\n\n- Tokenize Vietnamese sentences with GPT2Tokenizer.\n- Generate text seems like a Wikipedia article.\n- Finetune it to other downstream tasks.\n\nHere is how to use the model to generate text in Pytorch:\n\n\n\nAnd the results are:\n\n\n\nYou can do the same with Tensorflow by using the model TFGPT2Tokenizer instead."
] |
[
-0.025421086698770523,
0.06762370467185974,
-0.003115792525932193,
0.08804202079772949,
0.09280010312795639,
-0.010106329806149006,
0.03380400687456131,
0.14072924852371216,
0.008932764641940594,
-0.017817365005612373,
0.09240097552537918,
0.116930291056633,
0.045930035412311554,
0.163442000746727,
0.038829728960990906,
-0.365597665309906,
0.0428447350859642,
0.08766528218984604,
0.041875191032886505,
0.09885194897651672,
0.09088756889104843,
-0.031057557091116905,
0.1424400955438614,
0.05630987510085106,
-0.14779359102249146,
-0.008799504488706589,
0.013154793530702591,
-0.09397958964109421,
0.12770438194274902,
0.01621275395154953,
-0.037447065114974976,
0.053675953298807144,
0.010723352432250977,
-0.03294484317302704,
0.020252585411071777,
0.032474685460329056,
-0.03142152354121208,
0.054754890501499176,
0.05508304014801979,
0.06818956881761551,
0.370619535446167,
-0.1026558130979538,
-0.018464475870132446,
0.013978011906147003,
-0.08400395512580872,
-0.16216474771499634,
-0.066486656665802,
0.15164506435394287,
0.1479645073413849,
0.039749257266521454,
-0.02528482861816883,
0.11903036385774612,
-0.07826505601406097,
0.05516118183732033,
0.17509505152702332,
-0.3667871356010437,
-0.02654123120009899,
0.1262136697769165,
0.027173170819878578,
-0.036779794842004776,
-0.05558566749095917,
0.09455867111682892,
-0.029872426763176918,
0.0577247329056263,
0.09801752865314484,
-0.12068884074687958,
-0.03311680257320404,
-0.007991882972419262,
-0.10758854448795319,
0.005796887446194887,
0.14551745355129242,
0.009012749418616295,
-0.03773802891373634,
-0.14649051427841187,
-0.08554036170244217,
0.041880782693624496,
-0.04740767553448677,
-0.10809951275587082,
-0.010653281584382057,
0.037105195224285126,
0.10185673832893372,
-0.18989352881908417,
-0.12309657782316208,
-0.06534512341022491,
-0.14148859679698944,
-0.09159527719020844,
0.04274051636457443,
0.029787560924887657,
-0.05695108696818352,
0.10424534976482391,
-0.24630782008171082,
0.0035890787839889526,
-0.027396002784371376,
-0.06815925240516663,
-0.049769673496484756,
0.019551781937479973,
0.04653676971793175,
-0.07512261718511581,
0.014620482921600342,
0.0026439493522047997,
-0.0956580638885498,
0.0276491716504097,
0.03576810657978058,
0.057668108493089676,
-0.006163525395095348,
0.13228173553943634,
-0.18222685158252716,
0.056988198310136795,
0.07793309539556503,
-0.10274235159158707,
-0.024152114987373352,
-0.004051018040627241,
-0.12221476435661316,
-0.09379369020462036,
0.027569537982344627,
-0.01619577407836914,
-0.018750064074993134,
0.07810158282518387,
-0.01647932454943657,
-0.0920729711651802,
0.2339881807565689,
-0.03015054017305374,
-0.015955666080117226,
-0.05697966367006302,
-0.02029414288699627,
0.13771530985832214,
0.08899059146642685,
0.008910714648663998,
-0.12602917850017548,
-0.002182221971452236,
-0.02568170242011547,
-0.008160535246133804,
0.004471195861697197,
-0.05227648466825485,
-0.009964965283870697,
-0.11916379630565643,
-0.053754936903715134,
-0.08057387918233871,
-0.17652204632759094,
0.04267455264925957,
0.07142779231071472,
-0.05375237390398979,
-0.05942583456635475,
-0.020408613607287407,
-0.00852698739618063,
-0.03917314112186432,
0.012500653974711895,
0.015810221433639526,
0.004129575565457344,
0.04635298252105713,
-0.06849480420351028,
0.15218785405158997,
-0.11998511105775833,
0.03573451191186905,
-0.0672113224864006,
0.04969390481710434,
-0.16848193109035492,
0.10461946576833725,
0.07816844433546066,
-0.05422031134366989,
-0.09945397824048996,
-0.08108444511890411,
-0.01840953901410103,
-0.01984095759689808,
-0.005475902929902077,
0.10700986534357071,
-0.11872965842485428,
-0.04836287349462509,
0.21268096566200256,
-0.08387956768274307,
-0.05649644136428833,
0.1801709681749344,
0.04402048885822296,
0.14290061593055725,
0.11396502703428268,
0.19299426674842834,
0.03088809736073017,
-0.11000178754329681,
0.09171223640441895,
0.09580142050981522,
-0.17020028829574585,
-0.05088111013174057,
0.08170466870069504,
0.03832948952913284,
0.0008215217385441065,
0.037106405943632126,
-0.0515410453081131,
0.05440281331539154,
-0.051680486649274826,
-0.0205499567091465,
-0.00011623015598161146,
-0.04945250600576401,
0.11942597478628159,
0.00020455279445741326,
0.08118969947099686,
0.032835450023412704,
-0.07464599609375,
-0.006496616173535585,
0.05873386561870575,
-0.061544422060251236,
0.03730444982647896,
-0.11865470558404922,
0.06852228939533234,
-0.0006543051567859948,
0.05246072635054588,
-0.09727752208709717,
0.039639659225940704,
0.027058720588684082,
0.10953085124492645,
0.04956972971558571,
0.018413744866847992,
0.02373824268579483,
0.05084777623414993,
-0.0609307698905468,
0.04376477375626564,
0.05869969353079796,
-0.016995739191770554,
-0.055141571909189224,
-0.009951945394277573,
0.006507770158350468,
0.03408999368548393,
0.025548700243234634,
-0.13329334557056427,
0.0019116636831313372,
0.09378533810377121,
0.02311365306377411,
-0.02169853076338768,
0.022774526849389076,
0.06325386464595795,
-0.02594805881381035,
0.00996362417936325,
-0.04232876002788544,
0.08757796883583069,
0.0061714001931250095,
-0.052670616656541824,
0.18467900156974792,
0.0218342375010252,
0.02192855440080166,
0.12540793418884277,
0.014861409552395344,
-0.06043732911348343,
0.016613420099020004,
-0.02050088718533516,
-0.020194927230477333,
-0.05029790475964546,
0.040747031569480896,
0.0990096852183342,
0.02717314101755619,
0.13244867324829102,
-0.09301915764808655,
0.01580759882926941,
0.0490085631608963,
-0.047318167984485626,
0.03602457046508789,
0.0814407616853714,
0.10145027935504913,
-0.163621723651886,
0.03995239734649658,
0.007756584323942661,
0.044678203761577606,
0.1123417317867279,
0.06281663477420807,
-0.05303603783249855,
-0.022781776264309883,
0.06549866497516632,
0.002860368462279439,
-0.0074011823162436485,
-0.13806279003620148,
0.0017179823480546474,
0.07620587944984436,
0.03038225881755352,
0.03685091435909271,
-0.13890479505062103,
-0.041246797889471054,
-0.025735272094607353,
-0.08325191587209702,
0.012094034813344479,
0.13284116983413696,
-0.02084493450820446,
0.08274305611848831,
0.055173393338918686,
0.07439778000116348,
0.01411892008036375,
0.05450822785496712,
-0.08411537855863571,
0.16476348042488098,
-0.03118094615638256,
-0.39930349588394165,
-0.061318330466747284,
-0.06118270009756088,
-0.04590597376227379,
0.024620605632662773,
0.05763790383934975,
-0.1250796616077423,
-0.04297076538205147,
-0.02104494534432888,
0.05372515693306923,
0.04808570072054863,
0.04534967243671417,
-0.041935089975595474,
-0.0023950161412358284,
-0.09342534840106964,
-0.04696720093488693,
-0.058200545608997345,
-0.05977020412683487,
-0.12049433588981628,
0.12305305898189545,
-0.19245004653930664,
0.01686127297580242,
0.1418646275997162,
-0.04821590334177017,
0.058196164667606354,
-0.023902911692857742,
0.17900773882865906,
-0.07666635513305664,
0.15993104875087738,
0.21609561145305634,
0.11134956777095795,
0.08091168105602264,
0.014040997251868248,
-0.0041410233825445175,
-0.0661122053861618,
0.05420519784092903,
0.033597856760025024,
-0.09443295001983643,
-0.1643906980752945,
-0.0786394476890564,
-0.07007251679897308,
0.04878704994916916,
0.05124548450112343,
0.08599723130464554,
0.06576154381036758,
0.11228394508361816,
0.01979355327785015,
0.1571011245250702,
0.037054866552352905,
0.04396616294980049,
0.15458691120147705,
0.0008188087376765907,
0.050637077540159225,
-0.07992053776979446,
-0.020734546706080437,
0.16241620481014252,
0.040269963443279266,
0.1654682755470276,
-0.025926979258656502,
0.09877532720565796,
0.08603311330080032,
0.13210076093673706,
0.055913280695676804,
0.10149035602807999,
-0.11160782724618912,
-0.02245345152914524,
-0.039306044578552246,
-0.05685228854417801,
0.04426624998450279,
0.05089482665061951,
-0.030283208936452866,
-0.13172540068626404,
-0.03207002207636833,
0.12054125964641571,
0.04750456660985947,
0.1640223115682602,
0.05018945410847664,
-0.17505227029323578,
-0.07032088935375214,
-0.03324177861213684,
0.004858700092881918,
-0.06450265645980835,
0.03915352374315262,
0.1096748635172844,
-0.19499540328979492,
0.06479854136705399,
-0.027392596006393433,
0.10667400807142258,
-0.05429888516664505,
0.01586991176009178,
0.00989620666950941,
-0.0112944096326828,
0.03551382198929787,
0.10371062904596329,
-0.1680183857679367,
0.14600154757499695,
-0.013051262125372887,
-0.014232535846531391,
-0.12491259723901749,
-0.038504038006067276,
0.013240746222436428,
0.17731209099292755,
0.21712419390678406,
0.03491387888789177,
0.1487557291984558,
-0.0159310195595026,
-0.11264142394065857,
0.007959859445691109,
-0.018758639693260193,
0.01171882264316082,
-0.03553398326039314,
-0.003937417175620794,
-0.04665530100464821,
-0.04928998649120331,
0.03473372384905815,
-0.024891190230846405,
-0.07172200828790665,
0.04065358266234398,
0.04357403144240379,
-0.020049341022968292,
0.009015125222504139,
-0.03655323386192322,
0.007224095053970814,
0.29834288358688354,
0.05746413767337799,
-0.11823625862598419,
-0.08465885370969772,
-0.033702269196510315,
0.09588976204395294,
-0.0883096233010292,
0.05120929330587387,
-0.04793114960193634,
0.06260432302951813,
-0.036420561373233795,
-0.09855267405509949,
0.10218703746795654,
-0.03125278279185295,
-0.06289583444595337,
0.046598393470048904,
0.13398005068302155,
0.049816761165857315,
0.003897659946233034,
0.08403939008712769,
-0.01923462562263012,
-0.013524779118597507,
-0.18503665924072266,
-0.036103758960962296,
0.03951588645577431,
0.025338830426335335,
-0.05837428197264671,
-0.04521917551755905,
-0.025976017117500305,
-0.049555689096450806,
-0.07961715757846832,
0.1881410777568817,
0.09236029535531998,
-0.06987062841653824,
0.19008022546768188,
0.1054743155837059,
-0.03155941143631935,
-0.2440565675497055,
-0.0945511981844902,
-0.00848068855702877,
0.033142488449811935,
-0.00701546436175704,
-0.14344210922718048,
0.06929957121610641,
0.05861525237560272,
-0.0027322254609316587,
-0.0015992764383554459,
-0.31843245029449463,
-0.15899917483329773,
0.057546813040971756,
0.052590321749448776,
0.07999970763921738,
-0.08316913992166519,
-0.025232965126633644,
0.002248115371912718,
-0.16722504794597626,
0.22489280998706818,
-0.1216847375035286,
0.08133553713560104,
-0.0639587938785553,
0.0868130475282669,
0.019049452617764473,
0.0018490275833755732,
0.08014161884784698,
0.03095831163227558,
-0.01937570609152317,
-0.0511506162583828,
-0.06012300029397011,
0.16338151693344116,
0.012813441455364227,
0.21957330405712128,
0.0674767717719078,
0.012178885750472546,
-0.11570905148983002,
-0.10006994009017944,
-0.1398863047361374,
-0.03331854194402695,
0.012256521731615067,
-0.10995417833328247,
-0.052782218903303146,
0.08349702507257462,
0.016233688220381737,
0.010190366767346859,
-0.030372044071555138,
-0.007862338796257973,
-0.07470838725566864,
0.07237983494997025,
0.06464658677577972,
-0.1396493911743164,
-0.02943773940205574,
-0.03189612925052643,
-0.008231873624026775,
0.03506520390510559,
-0.20196597278118134,
0.020159075036644936,
0.05816037207841873,
-0.012217432260513306,
0.08738286793231964,
0.009554577991366386,
-0.07897433638572693,
0.01755428873002529,
0.06396717578172684,
-0.17031480371952057,
-0.16888439655303955,
-0.07510768622159958,
-0.044434547424316406,
0.10384663939476013,
0.03216075897216797,
0.029873961582779884,
-0.08093786239624023,
-0.07491634786128998,
0.01819659397006035,
-0.007892073132097721,
-0.09544573724269867,
0.03720090910792351,
0.009085780940949917,
0.025638168677687645,
-0.0912410095334053,
0.03654322028160095,
0.11007175594568253,
-0.12338393181562424,
0.011141309514641762,
0.2145875096321106,
-0.1610603779554367,
-0.06834011524915695,
0.015672592446208,
-0.027728592976927757,
-0.03563157841563225,
-0.051603298634290695,
0.03291976451873779,
-0.026775037869811058,
0.03327656164765358,
-0.03184870257973671,
0.07571293413639069,
0.03237738087773323,
-0.05793265998363495,
-0.06291478127241135,
-0.10845084488391876,
-0.010875909589231014,
0.09351128339767456,
-0.03820792958140373,
-0.11249227821826935,
0.020049210637807846,
0.043508145958185196,
0.20385128259658813,
-0.08184052258729935,
-0.05905090272426605,
-0.08479643613100052,
0.009946214966475964,
-0.07066578418016434,
0.03794034942984581,
-0.16813014447689056,
-0.0615898035466671,
-0.06154711917042732,
-0.050716474652290344,
-0.01706036739051342,
0.01365368627011776,
-0.03345350921154022,
0.009345238097012043,
-0.05032782629132271,
-0.01744673028588295,
-0.08254864066839218,
-0.035885825753211975,
0.051001403480768204,
-0.007084468845278025,
0.14207108318805695,
-0.0038181280251592398,
-0.08474192768335342,
0.04788872227072716,
-0.06887371838092804,
-0.017963722348213196,
0.0831482782959938,
-0.003119423985481262,
0.059434082359075546,
-0.06481088697910309,
0.03186291828751564,
0.019550461322069168,
0.061548471450805664,
0.026765916496515274,
0.10748197883367538,
-0.0869435966014862,
-0.04559634253382683,
-0.1210104376077652,
-0.06578705459833145,
-0.07887934893369675,
0.07242821156978607,
0.04270274192094803,
0.05696893855929375,
0.039986930787563324,
-0.06822824478149414,
0.012931900098919868,
-0.07588497549295425,
-0.015145783312618732,
-0.050483740866184235,
-0.027522778138518333,
0.05478674918413162,
-0.09318849444389343,
0.0065643941052258015,
0.015433660708367825,
0.1350957453250885,
0.04229651391506195,
-0.01609060727059841,
0.003117141779512167,
0.00940215028822422,
-0.03729606419801712,
-0.041911568492650986,
0.11493242532014847,
0.015120359137654305,
-0.016623344272375107,
-0.03640654683113098,
0.08899117261171341,
-0.020817335695028305,
0.13076841831207275,
0.14014223217964172,
-0.04309682920575142,
0.043118249624967575,
0.03167518973350525,
-0.06701453030109406,
0.08667910099029541,
-0.1985241025686264,
0.0039453101344406605,
-0.11829549074172974,
0.043557289987802505,
-0.09650415182113647,
-0.013524034060537815,
0.16135306656360626,
-0.13550859689712524,
0.0930444598197937,
0.058139607310295105,
-0.1062035784125328,
-0.11647338420152664,
-0.3278733491897583,
-0.06220831722021103,
-0.11849594861268997,
-0.016967780888080597,
-0.06786659359931946,
0.04410446435213089,
-0.02853858843445778,
0.10264084488153458,
-0.056404054164886475,
0.16791558265686035,
-0.08662079274654388,
-0.08668848127126694,
0.09464693069458008,
-0.017282595857977867,
0.004238700959831476,
0.04124941676855087,
0.09148363769054413,
-0.0024641614872962236,
0.006234352011233568,
0.060328591614961624,
0.06968973577022552,
-0.0026381227653473616,
0.016656670719385147,
-0.08157997578382492,
-0.03034125827252865,
-0.06448165327310562,
0.03057132661342621,
0.013555270619690418,
0.009574441239237785,
0.03004903346300125,
-0.10531748831272125,
0.011254147626459599,
0.15205849707126617,
-0.003980427049100399,
-0.15020966529846191,
-0.10351663827896118,
0.22834469377994537,
0.01228418480604887,
-0.03194967657327652,
0.0282038114964962,
-0.006128801964223385,
-0.05866933986544609,
0.3355400860309601,
0.21925215423107147,
0.014620252884924412,
-0.03357827663421631,
0.0003416624094825238,
0.018830906599760056,
0.02574477158486843,
0.1351921707391739,
0.08810324221849442,
0.2752009630203247,
-0.0800003930926323,
-0.005178350023925304,
-0.08748824894428253,
-0.057894978672266006,
-0.10577713698148727,
0.008575130254030228,
0.09835396707057953,
0.010980363003909588,
-0.016459792852401733,
0.1014738380908966,
-0.12899933755397797,
0.016877245157957077,
-0.04589390382170677,
-0.0877811387181282,
-0.07644763588905334,
0.01870226301252842,
-0.14790545403957367,
0.03115682117640972,
0.05278661474585533,
-0.018087632954120636,
0.04839552938938141,
0.09103614091873169,
0.05314607545733452,
-0.1883956342935562,
0.059312853962183,
0.11894764751195908,
0.01934555172920227,
0.08117882162332535,
0.0019337002886459231,
0.08291170001029968,
0.04551684856414795,
-0.003913172520697117,
-0.07727339118719101,
0.07571864873170853,
-0.057445600628852844,
0.09172951430082321,
0.012595727108418941,
0.027989370748400688,
0.006725847255438566,
-0.14538413286209106,
-0.03638738766312599,
-0.04677441343665123,
-0.0018530486850067973,
-0.04706624150276184,
0.09192485362291336,
-0.08546241372823715,
0.09801196306943893,
-0.10534955561161041,
0.08893068134784698,
0.10672866553068161,
-0.022087249904870987,
0.05737952142953873,
-0.11865115165710449,
0.06100979819893837,
-0.01562130730599165,
-0.07367512583732605,
-0.046333372592926025,
-0.06254749745130539,
0.0029869768768548965,
0.009443194605410099,
0.04804301634430885,
-0.1923627406358719,
-0.0173654668033123,
-0.09254289418458939,
0.004390786401927471,
-0.10931724309921265,
0.0975022166967392,
-0.0032654020469635725,
0.021175963804125786,
-0.018038909882307053,
-0.06723245978355408,
-0.03850223124027252,
0.03196007013320923,
-0.1377858966588974,
-0.1072116270661354
] |
null | null |
transformers
|
## Description:
[**Sentence-CamemBERT-Large**](https://huggingface.co/dangvantuan/sentence-camembert-large) is the Embedding Model for French developed by [La Javaness](https://www.lajavaness.com/). The purpose of this embedding model is to represent the content and semantics of a French sentence in a mathematical vector which allows it to understand the meaning of the text-beyond individual words in queries and documents, offering a powerful semantic search.
## Pre-trained sentence embedding models are state-of-the-art of Sentence Embeddings for French.
The model is Fine-tuned using pre-trained [facebook/camembert-large](https://huggingface.co/camembert/camembert-large) and
[Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/) on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train)
## Usage
The model can be used directly (without a language model) as follows:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("dangvantuan/sentence-camembert-large")
sentences = ["Un avion est en train de dΓ©coller.",
"Un homme joue d'une grande flΓ»te.",
"Un homme Γ©tale du fromage rΓ’pΓ© sur une pizza.",
"Une personne jette un chat au plafond.",
"Une personne est en train de plier un morceau de papier.",
]
embeddings = model.encode(sentences)
```
## Evaluation
The model can be evaluated as follows on the French test data of stsb.
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.readers import InputExample
from datasets import load_dataset
def convert_dataset(dataset):
dataset_samples=[]
for df in dataset:
score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[df['sentence1'],
df['sentence2']], label=score)
dataset_samples.append(inp_example)
return dataset_samples
# Loading the dataset for evaluation
df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev")
df_test = load_dataset("stsb_multi_mt", name="fr", split="test")
# Convert the dataset for evaluation
# For Dev set:
dev_samples = convert_dataset(df_dev)
val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
val_evaluator(model, output_path="./")
# For Test set:
test_samples = convert_dataset(df_test)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(model, output_path="./")
```
**Test Result**:
The performance is measured using Pearson and Spearman correlation:
- On dev
| Model | Pearson correlation | Spearman correlation | #params |
| ------------- | ------------- | ------------- |------------- |
| [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 88.2 |88.02 | 336M|
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base) | 86.73|86.54 | 110M |
| [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 79.22 | 79.16|135M |
| [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 85 | NaN|175B |
| [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.75 | 80.44|NaN |
- On test
| Model | Pearson correlation | Spearman correlation |
| ------------- | ------------- | ------------- |
| [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 85.9 | 85.8|
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base)| 82.36 | 81.64|
| [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 78.62 | 77.48|
| [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 82 | NaN|175B |
| [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.05 | 77.56|NaN |
## Citation
@article{reimers2019sentence,
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
author={Nils Reimers, Iryna Gurevych},
journal={https://arxiv.org/abs/1908.10084},
year={2019}
}
@article{martin2020camembert,
title={CamemBERT: a Tasty French Language Mode},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
|
{"language": "fr", "license": "apache-2.0", "tags": ["Text", "Sentence Similarity", "Sentence-Embedding", "camembert-large"], "datasets": ["stsb_multi_mt"], "pipeline_tag": "sentence-similarity", "model-index": [{"name": "sentence-camembert-large by Van Tuan DANG", "results": [{"task": {"type": "Text Similarity", "name": "Sentence-Embedding"}, "dataset": {"name": "Text Similarity fr", "type": "stsb_multi_mt", "args": "fr"}, "metrics": [{"type": "Pearson_correlation_coefficient", "value": "xx.xx", "name": "Test Pearson correlation coefficient"}]}]}]}
|
sentence-similarity
|
dangvantuan/sentence-camembert-large
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"camembert",
"feature-extraction",
"Text",
"Sentence Similarity",
"Sentence-Embedding",
"camembert-large",
"sentence-similarity",
"fr",
"dataset:stsb_multi_mt",
"arxiv:1908.10084",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1908.10084"
] |
[
"fr"
] |
TAGS
#transformers #pytorch #tf #safetensors #camembert #feature-extraction #Text #Sentence Similarity #Sentence-Embedding #camembert-large #sentence-similarity #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
|
Description:
------------
Sentence-CamemBERT-Large is the Embedding Model for French developed by La Javaness. The purpose of this embedding model is to represent the content and semantics of a French sentence in a mathematical vector which allows it to understand the meaning of the text-beyond individual words in queries and documents, offering a powerful semantic search.
Pre-trained sentence embedding models are state-of-the-art of Sentence Embeddings for French.
---------------------------------------------------------------------------------------------
The model is Fine-tuned using pre-trained facebook/camembert-large and
Siamese BERT-Networks with 'sentences-transformers' on dataset stsb
Usage
-----
The model can be used directly (without a language model) as follows:
Evaluation
----------
The model can be evaluated as follows on the French test data of stsb.
Test Result:
The performance is measured using Pearson and Spearman correlation:
* On dev
* On test
Model: dangvantuan/sentence-camembert-large, Pearson correlation: 85.9, Spearman correlation: 85.8
Model: dangvantuan/sentence-camembert-base, Pearson correlation: 82.36, Spearman correlation: 81.64
Model: distiluse-base-multilingual-cased, Pearson correlation: 78.62, Spearman correlation: 77.48
Model: GPT-3 (text-davinci-003), Pearson correlation: 82, Spearman correlation: NaN
Model: GPT-(text-embedding-ada-002), Pearson correlation: 79.05, Spearman correlation: 77.56
@article{reimers2019sentence,
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
author={Nils Reimers, Iryna Gurevych},
journal={URL
year={2019}
}
```
@article{martin2020camembert,
title={CamemBERT: a Tasty French Language Mode},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
```
|
[] |
[
"TAGS\n#transformers #pytorch #tf #safetensors #camembert #feature-extraction #Text #Sentence Similarity #Sentence-Embedding #camembert-large #sentence-similarity #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n"
] |
[
107
] |
[
"passage: TAGS\n#transformers #pytorch #tf #safetensors #camembert #feature-extraction #Text #Sentence Similarity #Sentence-Embedding #camembert-large #sentence-similarity #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n"
] |
[
-0.06660515815019608,
0.049158934503793716,
-0.0072651635855436325,
0.056815192103385925,
0.010279997251927853,
0.006490158382803202,
0.07528635114431381,
0.11158791929483414,
-0.0012443712912499905,
0.03511728346347809,
0.11260858923196793,
0.0594920851290226,
0.024546954780817032,
0.0015330263413488865,
-0.047761254012584686,
-0.19559112191200256,
0.08999556303024292,
0.06148327887058258,
-0.07169290632009506,
0.10805763304233551,
0.13464964926242828,
-0.04657426476478577,
0.0879506841301918,
-0.014208772219717503,
-0.041577260941267014,
0.04294801503419876,
0.0029696947894990444,
-0.06858653575181961,
0.144586443901062,
0.043032336980104446,
0.03602134808897972,
0.08019687235355377,
-0.04628121480345726,
-0.15251260995864868,
0.03132309392094612,
0.013938230462372303,
-0.06517282873392105,
0.039047323167324066,
0.052973680198192596,
-0.1066252738237381,
0.082107312977314,
-0.030139703303575516,
0.0015074318507686257,
0.024088209494948387,
-0.12159013003110886,
-0.13969166576862335,
-0.05889715254306793,
0.0648551732301712,
-0.013198760338127613,
0.0570213757455349,
-0.015868211165070534,
0.12059785425662994,
-0.1264156848192215,
0.09213846921920776,
0.19252094626426697,
-0.29659053683280945,
-0.017518993467092514,
0.08782403916120529,
0.06808032840490341,
0.03950038552284241,
-0.015447655692696571,
0.039740752428770065,
0.04806729778647423,
0.0697292760014534,
0.04788064956665039,
-0.058665111660957336,
-0.08057408034801483,
0.08565133064985275,
-0.11659988760948181,
-0.03590327501296997,
0.2976630628108978,
0.027066122740507126,
0.052790720015764236,
-0.05378825217485428,
-0.09039530903100967,
0.08559642732143402,
-0.02063237503170967,
0.02201147750020027,
0.00032081277458928525,
0.0691063404083252,
0.016005299985408783,
-0.019246594980359077,
-0.1348411589860916,
-0.010474534705281258,
-0.19510214030742645,
-0.0023624899331480265,
0.027140183374285698,
0.010033158585429192,
-0.12288795411586761,
0.019196003675460815,
-0.1403246968984604,
-0.13613352179527283,
0.030173299834132195,
-0.07773612439632416,
0.051368553191423416,
0.057830844074487686,
-0.08813121169805527,
-0.041905779391527176,
0.16454972326755524,
0.09484829753637314,
-0.005284782964736223,
-0.01684429869055748,
-0.03509565070271492,
0.11238515377044678,
-0.01801527850329876,
0.08938787877559662,
-0.11290033906698227,
-0.07508128136396408,
0.006680707447230816,
0.024338748306035995,
0.03127353638410568,
-0.006065988447517157,
-0.11403365433216095,
-0.049257807433605194,
0.06583159416913986,
0.05738695710897446,
0.0807376354932785,
0.07588016986846924,
-0.036274246871471405,
0.033843375742435455,
0.037025343626737595,
-0.09006383270025253,
-0.01807231642305851,
0.005293167196214199,
0.043953750282526016,
0.0708126425743103,
0.014789765700697899,
0.010996834374964237,
-0.07070456445217133,
-0.0010970194125548005,
-0.08534083515405655,
0.0003009540669154376,
0.020798562094569206,
-0.08731001615524292,
0.07851792126893997,
-0.06329625099897385,
-0.003972839564085007,
-0.11715371906757355,
-0.06991113722324371,
0.02620924822986126,
0.016240788623690605,
-0.004353330936282873,
-0.03282198682427406,
-0.005453003570437431,
-0.03799916058778763,
0.019275832921266556,
-0.029900938272476196,
-0.05326981469988823,
-0.07199423015117645,
0.08050805330276489,
-0.07361556589603424,
0.07246746867895126,
-0.09789291769266129,
0.0444195531308651,
-0.1682758629322052,
0.015061723068356514,
-0.11046768724918365,
-0.026897896081209183,
-0.02244110405445099,
0.08281690627336502,
-0.04882809519767761,
-0.061981961131095886,
-0.12063677608966827,
0.03543699160218239,
-0.017574118450284004,
0.16344544291496277,
-0.18808422982692719,
-0.08420984447002411,
0.23478879034519196,
-0.10041328519582748,
-0.17002147436141968,
0.1659170240163803,
0.04151872545480728,
-0.04794028401374817,
0.07219851016998291,
0.2703658640384674,
-0.005809467285871506,
-0.0031976429745554924,
0.03581133484840393,
0.14754100143909454,
-0.025964902713894844,
0.012286079116165638,
0.07582736760377884,
-0.0432889424264431,
0.02320787124335766,
0.03126687929034233,
0.015198779292404652,
0.03755290061235428,
-0.03745535761117935,
-0.04431798309087753,
-0.07865969091653824,
-0.023765433579683304,
0.011358494870364666,
-0.011281955987215042,
-0.029846835881471634,
-0.11587591469287872,
-0.027393324300646782,
-0.03769994154572487,
0.06354700773954391,
-0.036299195140600204,
0.04565432667732239,
-0.023169035091996193,
0.1488046944141388,
0.016316400840878487,
0.007865098305046558,
-0.1403454691171646,
0.020799648016691208,
-0.023304961621761322,
0.06603290885686874,
0.04919928312301636,
0.1317162960767746,
0.056689441204071045,
-0.007126609329134226,
-0.05348474532365799,
0.00874987244606018,
0.09261301159858704,
0.031197281554341316,
0.0018301131203770638,
-0.17451298236846924,
0.05516497418284416,
-0.03474436700344086,
0.09457683563232422,
-0.02310878597199917,
0.045687105506658554,
0.07335063070058823,
0.12834587693214417,
-0.04975665733218193,
0.08069754391908646,
0.024455362930893898,
-0.01027524285018444,
-0.04047079011797905,
-0.0016299801645800471,
0.058623068034648895,
0.006997439544647932,
-0.095069020986557,
0.25569432973861694,
-0.1666458398103714,
0.24855870008468628,
0.19916917383670807,
-0.1532575935125351,
0.03634844347834587,
-0.040865279734134674,
-0.0252221692353487,
0.038983095437288284,
0.02354230359196663,
-0.08457823097705841,
0.003509053261950612,
-0.015362453646957874,
0.11461818218231201,
-0.1373499631881714,
-0.05063008517026901,
-0.0022229438181966543,
-0.036063302308321,
-0.053753409534692764,
0.13632556796073914,
-0.0018323106924071908,
-0.22329552471637726,
0.18371373414993286,
0.3378761112689972,
0.015599159523844719,
0.08003049343824387,
-0.07961485534906387,
-0.031297191977500916,
0.007069896440953016,
0.010850406251847744,
-0.05980980396270752,
0.05955236777663231,
-0.13294973969459534,
-0.008021818473935127,
0.08516361564397812,
0.0648784264922142,
0.058016564697027206,
-0.12796682119369507,
-0.05535911023616791,
0.033500973135232925,
-0.05168633162975311,
-0.05639154464006424,
0.05285407230257988,
0.058108408004045486,
0.14927083253860474,
-0.0611475445330143,
-0.13016913831233978,
0.018990689888596535,
0.003507449524477124,
-0.08784012496471405,
0.1685795783996582,
-0.1429121345281601,
-0.2656244933605194,
-0.0589866079390049,
0.03158057853579521,
-0.0622413344681263,
0.0035013763699680567,
0.11454162001609802,
-0.056025415658950806,
0.007889507338404655,
-0.09837909787893295,
0.03888741135597229,
-0.05910658463835716,
0.016379058361053467,
-0.13671517372131348,
0.032609108835458755,
-0.0025412682443857193,
-0.13882479071617126,
-0.06402760744094849,
-0.019659269601106644,
-0.021984141319990158,
0.07607041299343109,
-0.11974052339792252,
0.09589537978172302,
0.12864112854003906,
0.029506264254450798,
0.018449483439326286,
-0.04888369143009186,
0.16677208244800568,
-0.022773180156946182,
0.06110763177275658,
0.2199765294790268,
0.04682353511452675,
0.07211372256278992,
0.13145442306995392,
0.019910084083676338,
-0.02685939520597458,
-0.004280938301235437,
-0.007106710225343704,
-0.028026247397065163,
-0.1573590487241745,
-0.10610570013523102,
-0.10840458422899246,
0.10785184800624847,
0.00805965717881918,
0.033963706344366074,
0.06749802082777023,
0.024472147226333618,
-0.06260303407907486,
-0.06485848128795624,
0.07006804645061493,
0.03968119993805885,
0.21532268822193146,
-0.03290214762091637,
0.145860493183136,
-0.05715326964855194,
-0.10237067192792892,
0.11062443256378174,
0.015167459845542908,
0.0626840814948082,
0.004054453689604998,
0.0308846402913332,
0.09747064113616943,
0.12044136971235275,
0.03300635516643524,
0.0702001228928566,
-0.037578023970127106,
-0.024591373279690742,
-0.07876654714345932,
-0.09522591531276703,
0.03673345595598221,
0.027932729572057724,
0.042995620518922806,
-0.03372082859277725,
-0.06151484325528145,
-0.10088032484054565,
0.14274519681930542,
0.09351518750190735,
0.13283057510852814,
-0.1719624251127243,
0.02027052454650402,
0.05319637432694435,
0.019661277532577515,
-0.015315524302423,
0.0936029702425003,
0.08531739562749863,
-0.03640555962920189,
0.08415837585926056,
0.0337880440056324,
0.10568457096815109,
0.09915681928396225,
0.08419571071863174,
-0.11508902162313461,
-0.06450702995061874,
-0.009833518415689468,
0.07941750437021255,
-0.28475990891456604,
0.2617588937282562,
0.026675771921873093,
-0.10361241549253464,
-0.05364784598350525,
-0.006667000707238913,
0.0610501728951931,
0.2402280569076538,
0.11532232165336609,
0.012238946743309498,
-0.052381716668605804,
-0.0024478184059262276,
-0.04146727919578552,
0.06264034658670425,
0.060018390417099,
-0.04332219809293747,
-0.012737415730953217,
-0.057736463844776154,
-0.023780999705195427,
0.021390944719314575,
0.20527063310146332,
-0.0013228515163064003,
-0.132162407040596,
0.02191835269331932,
0.05913754180073738,
-0.07687965780496597,
-0.07100104540586472,
-0.038818929344415665,
-0.1603655368089676,
0.07664532214403152,
-0.02491823211312294,
-0.028108030557632446,
-0.0628804862499237,
-0.07310987263917923,
0.10939568281173706,
-0.04363133758306503,
-0.011128959245979786,
-0.06310107558965683,
0.019063159823417664,
-0.09322947263717651,
-0.1407935470342636,
0.10316841304302216,
-0.09822852909564972,
-0.050218481570482254,
-0.03463561832904816,
0.21195073425769806,
-0.11581408232450485,
0.09514930844306946,
0.03927304223179817,
0.05564434826374054,
-0.10074454545974731,
-0.065669484436512,
-0.033702149987220764,
-0.013660495169460773,
0.11844395846128464,
0.05071840062737465,
-0.10071785748004913,
-0.06192931532859802,
0.005125785246491432,
0.007414797320961952,
0.16906625032424927,
0.20674528181552887,
-0.06077052280306816,
0.0855090543627739,
0.17091713845729828,
-0.009800434112548828,
-0.2900660037994385,
-0.08075614273548126,
-0.17606304585933685,
-0.009615830145776272,
0.0461946465075016,
-0.01726534217596054,
0.07406878471374512,
0.05106167495250702,
-0.03161463886499405,
-0.05306432396173477,
-0.2708413004875183,
-0.07465995103120804,
0.1308109313249588,
-0.05517185851931572,
0.2109525352716446,
-0.116431325674057,
-0.040167395025491714,
-0.02262185327708721,
-0.17219583690166473,
0.08878006041049957,
-0.17803290486335754,
0.046310193836688995,
0.018527312204241753,
-0.05043627321720123,
0.027750732377171516,
-0.025952378287911415,
0.1556953638792038,
0.005999602843075991,
0.07193908095359802,
-0.07368119060993195,
0.0005544713931158185,
0.06326344609260559,
0.0032526475843042135,
0.09235073626041412,
-0.23529942333698273,
0.0558340921998024,
-0.028113633394241333,
0.0011303655337542295,
-0.12179996073246002,
0.06582403182983398,
-0.01619088463485241,
-0.06829709559679031,
-0.08235783874988556,
0.013400503434240818,
0.03371553495526314,
-0.023380151018500328,
0.14536285400390625,
-0.07399650663137436,
0.10331203043460846,
0.10112351179122925,
0.09598146378993988,
-0.1921095848083496,
-0.05656592547893524,
-0.05088404566049576,
-0.06130531057715416,
0.04435017332434654,
-0.15838287770748138,
0.07023389637470245,
0.0834265947341919,
-0.01923537440598011,
0.07448264956474304,
0.08112908154726028,
-0.009779654443264008,
-0.09720361232757568,
0.130440354347229,
-0.1535627692937851,
-0.09416057914495468,
-0.052969422191381454,
-0.008006399497389793,
0.01034478284418583,
0.026614606380462646,
0.12197896838188171,
-0.012231671251356602,
-0.011426384560763836,
-0.002750287763774395,
0.023450566455721855,
-0.06941156834363937,
0.061457790434360504,
0.06370068341493607,
0.03997582942247391,
-0.0993257611989975,
0.082788847386837,
0.02275586687028408,
-0.17448748648166656,
-0.0190229844301939,
0.0958588495850563,
-0.09947390854358673,
-0.11434976756572723,
-0.02890343777835369,
0.044590629637241364,
-0.03428550809621811,
-0.07229645550251007,
-0.10693879425525665,
-0.15347659587860107,
0.057676296681165695,
0.2090795487165451,
0.10461744666099548,
0.0921097919344902,
0.020278749987483025,
-0.08771896362304688,
0.03507841005921364,
0.06885123252868652,
0.013533135876059532,
0.026126662269234657,
-0.0702098160982132,
0.07316891849040985,
-0.03520713746547699,
0.09133892506361008,
-0.04323958605527878,
0.021214600652456284,
-0.05877416208386421,
-0.011065203696489334,
-0.09235431998968124,
-0.040265507996082306,
-0.08668749034404755,
-0.048588983714580536,
-0.013386573642492294,
-0.08325117826461792,
-0.038329511880874634,
-0.024098439142107964,
-0.07983055710792542,
0.0011574820382520556,
-0.032351527363061905,
0.12554387748241425,
-0.09752195328474045,
-0.037170153111219406,
0.10636395215988159,
-0.06096171587705612,
0.09537511318922043,
0.04246469587087631,
-0.10400892049074173,
0.06640408933162689,
-0.12875871360301971,
-0.13363133370876312,
0.0544360913336277,
0.05859653279185295,
-0.006070295348763466,
-0.0031823080498725176,
0.008041419088840485,
0.05779324844479561,
-0.007757249753922224,
0.05073611065745354,
-0.04414477199316025,
-0.08800702542066574,
-0.008055984042584896,
-0.015461915172636509,
-0.14422863721847534,
-0.01824144460260868,
-0.0781572237610817,
0.09331674128770828,
0.03945987671613693,
0.10221661627292633,
-0.04102911427617073,
0.0026801556814461946,
-0.18237073719501495,
0.03898915275931358,
-0.03731671720743179,
-0.17863623797893524,
-0.08840730041265488,
-0.056180283427238464,
0.019421273842453957,
0.003181002102792263,
0.18057014048099518,
0.01773983985185623,
-0.07498370110988617,
0.0657925084233284,
0.12391224503517151,
0.10222696512937546,
0.03300173208117485,
0.19349169731140137,
0.03219744563102722,
-0.05120832100510597,
-0.12907841801643372,
0.019314292818307877,
0.0338631272315979,
0.06734170019626617,
0.059287458658218384,
0.20721641182899475,
0.12903942167758942,
0.07386885583400726,
0.07959387451410294,
0.024534333497285843,
0.0349566712975502,
-0.08067364245653152,
0.06479501724243164,
0.0778106078505516,
0.005098490044474602,
0.10531763732433319,
0.22774656116962433,
-0.07156630605459213,
0.06628672778606415,
-0.06840153783559799,
-0.004151726607233286,
-0.11472208052873611,
-0.10504269599914551,
-0.07631223648786545,
-0.08842591196298599,
-0.04631270840764046,
-0.11121547967195511,
0.019459595903754234,
0.12170342355966568,
0.06844509392976761,
-0.025081008672714233,
0.03718656301498413,
-0.04266130551695824,
-0.0832144096493721,
0.045828334987163544,
-0.014070216566324234,
0.04786098003387451,
0.03541254252195358,
-0.06348134577274323,
0.01303115300834179,
-0.00005784469612990506,
-0.02154679037630558,
0.009641535580158234,
0.059185903519392014,
-0.021889209747314453,
-0.15585877001285553,
-0.07435102760791779,
-0.03640570864081383,
-0.040664199739694595,
-0.0017591998912394047,
0.0742514580488205,
0.039293237030506134,
-0.0120736388489604,
0.07673760503530502,
0.24842531979084015,
-0.06842917948961258,
-0.18426278233528137,
-0.08937854319810867,
0.1476043164730072,
0.031119266524910927,
0.069331094622612,
0.014467454515397549,
-0.04304132238030434,
-0.05458013340830803,
0.21229679882526398,
0.29771488904953003,
-0.09501390159130096,
0.03760239854454994,
0.029762618243694305,
0.020559702068567276,
0.04667328670620918,
-0.03708813712000847,
0.11008486151695251,
0.16643941402435303,
-0.07267767190933228,
0.02878495864570141,
-0.08300432562828064,
0.01416692417114973,
-0.1228301152586937,
0.0825437605381012,
0.05967305600643158,
-0.07172577828168869,
0.026070239022374153,
0.10260888934135437,
0.004983043763786554,
0.0953085795044899,
-0.1045471578836441,
-0.21449996531009674,
-0.08393724262714386,
-0.0250575989484787,
0.1333378702402115,
0.05028887838125229,
0.06640960276126862,
-0.04855157062411308,
-0.017942428588867188,
-0.007076756563037634,
0.0002523035218473524,
-0.17252027988433838,
-0.06543399393558502,
0.08421366661787033,
-0.023449376225471497,
0.04675351083278656,
0.0008523464202880859,
0.04577916860580444,
0.11542584747076035,
0.025197839364409447,
0.0049204472452402115,
0.08579255640506744,
0.07143919914960861,
0.04742351174354553,
-0.014555330388247967,
-0.08346998691558838,
0.020234528928995132,
-0.038795728236436844,
0.08552014827728271,
-0.15712566673755646,
0.056943558156490326,
0.036521244794130325,
-0.08748942613601685,
-0.04651741683483124,
0.04540620744228363,
-0.0457615852355957,
0.04263675957918167,
0.07867234200239182,
-0.03327496722340584,
-0.05177885293960571,
-0.05416908487677574,
-0.036775849759578705,
0.044293034821748734,
-0.09484420716762543,
-0.020067201927304268,
-0.042496208101511,
-0.02577912248671055,
-0.041505590081214905,
0.0037598663475364447,
-0.17325174808502197,
-0.08838889747858047,
-0.007154648192226887,
0.03169794753193855,
-0.11838633567094803,
0.07539371401071548,
0.09494278579950333,
0.0026043669786304235,
-0.0029682598542422056,
-0.0767132043838501,
0.05678786337375641,
0.05259490758180618,
-0.06546049565076828,
-0.06989370286464691
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-en-to-pt
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3295
- Bleu: 5.6807
- Gen Len: 18.6772
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 0.5787 | 1.0 | 6250 | 0.4928 | 4.1007 | 18.638 |
| 0.5089 | 2.0 | 12500 | 0.4463 | 4.3492 | 18.663 |
| 0.4652 | 3.0 | 18750 | 0.4215 | 4.68 | 18.6652 |
| 0.4353 | 4.0 | 25000 | 0.3980 | 4.8172 | 18.6708 |
| 0.4042 | 5.0 | 31250 | 0.3799 | 4.9719 | 18.6514 |
| 0.3734 | 6.0 | 37500 | 0.3676 | 5.2226 | 18.6572 |
| 0.3396 | 7.0 | 43750 | 0.3513 | 5.2693 | 18.6596 |
| 0.308 | 8.0 | 50000 | 0.3400 | 5.4546 | 18.676 |
| 0.2767 | 9.0 | 56250 | 0.3331 | 5.5649 | 18.6708 |
| 0.2424 | 10.0 | 62500 | 0.3295 | 5.6807 | 18.6772 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-pt", "results": []}]}
|
text2text-generation
|
danhsf/t5-small-finetuned-en-to-pt
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5-small-finetuned-en-to-pt
===========================
This model is a fine-tuned version of t5-small on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3295
* Bleu: 5.6807
* Gen Len: 18.6772
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.005
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 10
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.0+cu111
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.005\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.005\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
67,
97,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.005\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.08834715932607651,
0.04774978384375572,
-0.0027600200846791267,
0.11220227926969528,
0.14685240387916565,
0.017715144902467728,
0.13807284832000732,
0.13690778613090515,
-0.1201547235250473,
0.03410015627741814,
0.1322575956583023,
0.16117118299007416,
0.01969009079039097,
0.10335364192724228,
-0.0514589361846447,
-0.2550477683544159,
-0.007882479578256607,
0.041799455881118774,
-0.049369003623723984,
0.13620969653129578,
0.08890630304813385,
-0.11479265242815018,
0.09053237736225128,
-0.0012478061253204942,
-0.18759022653102875,
0.019926615059375763,
0.0012736826902255416,
-0.054899659007787704,
0.1514187604188919,
0.03239260986447334,
0.1083890050649643,
0.009949684143066406,
0.06689133495092392,
-0.1894035041332245,
0.011407049372792244,
0.06063782423734665,
-0.006028021220117807,
0.08595988899469376,
0.051443833857774734,
0.0015550950774922967,
0.18889620900154114,
-0.08163394778966904,
0.0437462143599987,
0.0256346445530653,
-0.11757417023181915,
-0.17881309986114502,
-0.08394937217235565,
0.03588097169995308,
0.07189727574586868,
0.11746874451637268,
-0.010038121603429317,
0.1320616751909256,
-0.0737663060426712,
0.1109580248594284,
0.24540163576602936,
-0.2971794903278351,
-0.06218256056308746,
0.011343344114720821,
0.03198673576116562,
0.08140451461076736,
-0.08336681127548218,
-0.018830958753824234,
0.056723762303590775,
0.05066367983818054,
0.1230933666229248,
-0.032152798026800156,
-0.12806977331638336,
0.015614115633070469,
-0.14465174078941345,
-0.05263059213757515,
0.17351503670215607,
0.031312428414821625,
-0.030217245221138,
-0.049961112439632416,
-0.0838673934340477,
-0.1694701761007309,
-0.019654694944620132,
-0.012692230753600597,
0.03974658623337746,
-0.019515005871653557,
-0.054404012858867645,
-0.039477888494729996,
-0.11339499056339264,
-0.06923077255487442,
-0.0786779448390007,
0.12009245902299881,
0.043931104242801666,
0.007037831470370293,
-0.0495438277721405,
0.10828156024217606,
0.004166996572166681,
-0.12846983969211578,
0.016011234372854233,
0.038474421948194504,
0.02109253592789173,
-0.029715675860643387,
-0.0600254163146019,
-0.10525306314229965,
0.0186212956905365,
0.114298015832901,
-0.055660542100667953,
0.045061204582452774,
0.014144851826131344,
0.04630975052714348,
-0.1023721918463707,
0.1691797524690628,
-0.028373008593916893,
-0.0025378279387950897,
0.015015708282589912,
0.04017656296491623,
0.04209601879119873,
-0.02255125716328621,
-0.13022227585315704,
0.00349140795879066,
0.09343109279870987,
0.02243497036397457,
-0.056999873369932175,
0.07611753046512604,
-0.036586400121450424,
-0.014776368625462055,
-0.008886737748980522,
-0.09692812711000443,
0.018031297251582146,
-0.00041965334094129503,
-0.0738874301314354,
0.00003839093551505357,
0.040019888430833817,
0.005325085483491421,
-0.05131646245718002,
0.09366686642169952,
-0.08155693113803864,
0.020802263170480728,
-0.0967516079545021,
-0.11850783228874207,
0.02280575782060623,
-0.09765852242708206,
0.015248625539243221,
-0.10164272040128708,
-0.1982787549495697,
-0.006990344729274511,
0.050584644079208374,
-0.020453816279768944,
-0.05524096637964249,
-0.07248088717460632,
-0.08431647717952728,
0.019680162891745567,
-0.019389376044273376,
0.13401520252227783,
-0.0641017034649849,
0.09949891269207001,
0.026970937848091125,
0.0604417622089386,
-0.05323446914553642,
0.053985580801963806,
-0.09455934911966324,
0.005714172963052988,
-0.14608661830425262,
0.04354213923215866,
-0.03034321777522564,
0.06365229934453964,
-0.08373680710792542,
-0.09704181551933289,
-0.007899655029177666,
0.006254385691136122,
0.07649974524974823,
0.10368932038545609,
-0.17578957974910736,
-0.08471005409955978,
0.17861796915531158,
-0.06979936361312866,
-0.1322958767414093,
0.1335982382297516,
-0.05372358113527298,
0.051891304552555084,
0.06631141155958176,
0.1767672300338745,
0.05440928786993027,
-0.0926855131983757,
0.010219073854386806,
0.016264313831925392,
0.04316645860671997,
-0.058972764760255814,
0.059939853847026825,
-0.007913360372185707,
0.0323420912027359,
0.022731490433216095,
-0.007243737578392029,
0.05227653309702873,
-0.08640438318252563,
-0.08479327708482742,
-0.05314984545111656,
-0.07740893214941025,
0.025695370510220528,
0.05861489847302437,
0.074721559882164,
-0.11230544000864029,
-0.09804797172546387,
0.04374582692980766,
0.08521532267332077,
-0.07760286331176758,
0.049148596823215485,
-0.053028516471385956,
0.08008130639791489,
-0.02516890875995159,
-0.007965357042849064,
-0.17330384254455566,
-0.017091374844312668,
0.010387164540588856,
0.007114094216376543,
0.03171072527766228,
0.02057149074971676,
0.0668196827173233,
0.06520450115203857,
-0.04438348114490509,
-0.016535650938749313,
-0.040587738156318665,
-0.016521787270903587,
-0.12719713151454926,
-0.1968344897031784,
-0.0213263388723135,
-0.021140139549970627,
0.1292341947555542,
-0.2042427659034729,
0.05001658573746681,
0.00801904033869505,
0.06472903490066528,
0.010604334995150566,
-0.0038308172952383757,
-0.04121905937790871,
0.07547798752784729,
-0.0650099664926529,
-0.049710363149642944,
0.07214277982711792,
0.01370893232524395,
-0.09688008576631546,
-0.027359647676348686,
-0.12942877411842346,
0.13583491742610931,
0.1441480815410614,
-0.12893496453762054,
-0.06585609912872314,
0.002710448345169425,
-0.057691916823387146,
-0.03267836570739746,
-0.03430576249957085,
0.007353276014328003,
0.19350314140319824,
-0.009186472743749619,
0.16185639798641205,
-0.08321747928857803,
-0.05262232944369316,
0.02330073155462742,
-0.03365027531981468,
0.03174946829676628,
0.13344347476959229,
0.11649280041456223,
-0.05733412876725197,
0.1453648954629898,
0.1383415162563324,
-0.09729249775409698,
0.15179239213466644,
-0.04639824107289314,
-0.0835823342204094,
-0.0030895506497472525,
0.0016888842219486833,
0.0006827312172390521,
0.0727478414773941,
-0.17992529273033142,
-0.00886610895395279,
0.023187320679426193,
0.023524006828665733,
0.037822429090738297,
-0.22633865475654602,
-0.025640901178121567,
0.041764259338378906,
-0.059096455574035645,
-0.007504551205784082,
-0.007312423549592495,
-0.002199566690251231,
0.11083360016345978,
-0.007581467740237713,
-0.07759670913219452,
0.03835129737854004,
0.004062317777425051,
-0.09074904024600983,
0.2140669971704483,
-0.08165708184242249,
-0.15753106772899628,
-0.1327233910560608,
-0.07485692948102951,
-0.059258513152599335,
0.007216073106974363,
0.08237229287624359,
-0.0896502435207367,
-0.027367403730750084,
-0.09090492129325867,
0.03910240903496742,
-0.008227101527154446,
0.02684823051095009,
0.004311303608119488,
-0.0003322188858874142,
0.04816580191254616,
-0.12040654569864273,
-0.012978323735296726,
-0.05036823824048042,
-0.06792028993368149,
0.04244387894868851,
0.019769566133618355,
0.12102044373750687,
0.16176487505435944,
-0.019779333844780922,
0.016360700130462646,
-0.03730936720967293,
0.20612889528274536,
-0.062496040016412735,
-0.02020903490483761,
0.1548323631286621,
0.0014049762394279242,
0.05765701085329056,
0.09117071330547333,
0.055079080164432526,
-0.0837201401591301,
0.015945008024573326,
0.032484956085681915,
-0.040579210966825485,
-0.24965637922286987,
-0.03692806139588356,
-0.066761814057827,
0.013907521031796932,
0.08081956952810287,
0.03603312745690346,
0.06016942858695984,
0.06170448288321495,
0.02834971621632576,
0.09042669832706451,
-0.028438979759812355,
0.06693927198648453,
0.12968659400939941,
0.03865865245461464,
0.12099406868219376,
-0.060500871390104294,
-0.05575929582118988,
0.05122886598110199,
-0.011244283057749271,
0.22506599128246307,
0.0012773432536050677,
0.18052810430526733,
0.061211902648210526,
0.14821361005306244,
-0.012492171488702297,
0.08881457895040512,
-0.015851764008402824,
-0.03247132897377014,
-0.017502926290035248,
-0.05195360258221626,
-0.03439406305551529,
0.02393370307981968,
-0.09510570019483566,
0.06059366092085838,
-0.12043440341949463,
0.024618329480290413,
0.059199683368206024,
0.2596934139728546,
0.036353472620248795,
-0.3218814730644226,
-0.08658524602651596,
0.006427180487662554,
-0.04297308996319771,
-0.020926350727677345,
0.039162248373031616,
0.11078961193561554,
-0.07865435630083084,
0.03393789008259773,
-0.06579835712909698,
0.1035487949848175,
-0.03858918324112892,
0.054246898740530014,
0.05011340230703354,
0.09331431239843369,
0.004227517172694206,
0.09014205634593964,
-0.32240262627601624,
0.27394160628318787,
0.0028319775592535734,
0.07131952792406082,
-0.08291797339916229,
0.012606984004378319,
0.029657458886504173,
0.05878657475113869,
0.0732455775141716,
-0.018844017758965492,
-0.036421604454517365,
-0.1446385681629181,
-0.060563068836927414,
0.029873717576265335,
0.09362920373678207,
-0.02222740650177002,
0.09896400570869446,
-0.03331729769706726,
0.010821078903973103,
0.07133590430021286,
0.009026659652590752,
-0.05069725215435028,
-0.10524331778287888,
-0.007413665764033794,
0.027851704508066177,
-0.052573516964912415,
-0.05764349550008774,
-0.10487154871225357,
-0.11848902702331543,
0.1543796956539154,
-0.03617338463664055,
-0.04023626819252968,
-0.10657838732004166,
0.06418117135763168,
0.0516984760761261,
-0.09217209368944168,
0.03972539305686951,
0.008583594113588333,
0.06363555788993835,
0.01957324706017971,
-0.07945699989795685,
0.10756188631057739,
-0.06398617476224899,
-0.16592924296855927,
-0.05501681938767433,
0.11431054770946503,
0.016722334548830986,
0.05964066460728645,
-0.01818864792585373,
0.003737588645890355,
-0.05333063006401062,
-0.08938100934028625,
0.014678280800580978,
-0.01163763739168644,
0.07370676845312119,
0.012880031019449234,
-0.05573108047246933,
0.016830090433359146,
-0.06425974518060684,
-0.04530448466539383,
0.20856915414333344,
0.23232977092266083,
-0.08033313602209091,
0.026244057342410088,
0.029391389340162277,
-0.0823545977473259,
-0.19854886829853058,
0.019220037385821342,
0.041322458535432816,
0.008628154173493385,
0.01918690651655197,
-0.18722452223300934,
0.09796575456857681,
0.1035698875784874,
-0.003782650688663125,
0.11768490821123123,
-0.358672171831131,
-0.13218756020069122,
0.11421474069356918,
0.1389663815498352,
0.11190546303987503,
-0.15113532543182373,
-0.024922382086515427,
-0.03302253037691116,
-0.11873522400856018,
0.10596121847629547,
-0.12409351766109467,
0.1252928227186203,
-0.0303348395973444,
0.10538018494844437,
0.003971325233578682,
-0.055174268782138824,
0.10692881792783737,
0.009533780626952648,
0.09417594969272614,
-0.06782092899084091,
-0.007228330243378878,
0.05296974629163742,
-0.04042814299464226,
0.038610026240348816,
-0.1285502314567566,
0.03174658864736557,
-0.09888064116239548,
-0.02013392746448517,
-0.06414695084095001,
0.04618401452898979,
-0.03982848674058914,
-0.06491430848836899,
-0.041329510509967804,
-0.018189048394560814,
0.053017713129520416,
-0.006038785446435213,
0.1523195207118988,
0.012166452594101429,
0.1443876028060913,
0.118972547352314,
0.08296256512403488,
-0.0719408467411995,
-0.05021442472934723,
-0.012986885383725166,
-0.011653573252260685,
0.05533068627119064,
-0.17038634419441223,
0.02040957286953926,
0.1425919085741043,
0.023075319826602936,
0.142761692404747,
0.08491920679807663,
-0.036558352410793304,
0.019683144986629486,
0.05659976974129677,
-0.17464546859264374,
-0.09561894088983536,
-0.021988464519381523,
-0.054905541241168976,
-0.0933363288640976,
0.06196441501379013,
0.10477794706821442,
-0.07523077726364136,
-0.0010108714923262596,
-0.012997878715395927,
0.007822575978934765,
-0.05789694935083389,
0.17549768090248108,
0.045230645686388016,
0.04325567185878754,
-0.09563873708248138,
0.08252184092998505,
0.04384494945406914,
-0.08870124071836472,
0.027160290628671646,
0.10846695303916931,
-0.07532136142253876,
-0.05250553414225578,
0.07939515262842178,
0.18873761594295502,
-0.050804562866687775,
-0.05421216040849686,
-0.1439516544342041,
-0.12176505476236343,
0.09035476297140121,
0.18052202463150024,
0.09744726866483688,
0.015842271968722343,
-0.06792871654033661,
0.015125087462365627,
-0.12278935313224792,
0.09340529143810272,
0.03706596419215202,
0.06340010464191437,
-0.12964117527008057,
0.16275838017463684,
0.013898763805627823,
0.04076003655791283,
-0.021017372608184814,
0.023901162669062614,
-0.09198029339313507,
0.01446828618645668,
-0.12340252846479416,
-0.017883138731122017,
-0.017519701272249222,
-0.00252524227835238,
-0.006021130830049515,
-0.03798183426260948,
-0.06051918491721153,
0.019185781478881836,
-0.11046290397644043,
-0.02473103627562523,
0.0247641671448946,
0.05791625380516052,
-0.11680113524198532,
-0.027353763580322266,
0.02068432979285717,
-0.07191307097673416,
0.07913152128458023,
0.05468948930501938,
0.0032174449879676104,
0.06672843545675278,
-0.14938132464885712,
0.02630201168358326,
0.07232561707496643,
0.031460534781217575,
0.05247555300593376,
-0.06435032188892365,
-0.010248735547065735,
0.0029948153533041477,
0.05073646456003189,
0.015007803216576576,
0.062112320214509964,
-0.13263171911239624,
0.009646622464060783,
-0.021561594679951668,
-0.08525369316339493,
-0.06939400732517242,
0.044294510036706924,
0.0688532292842865,
0.012667190283536911,
0.19072410464286804,
-0.08190303295850754,
0.03994851931929588,
-0.2096068412065506,
0.011500419117510319,
0.008339504711329937,
-0.11398588865995407,
-0.1222025603055954,
-0.07214859127998352,
0.06199567764997482,
-0.06829673796892166,
0.12523293495178223,
0.026243852451443672,
0.025305308401584625,
0.026574674993753433,
-0.014655460603535175,
0.00979895144701004,
0.007951503619551659,
0.21977971494197845,
0.02845078893005848,
-0.03471359238028526,
0.03599415346980095,
0.03237846493721008,
0.11519359797239304,
0.11972609907388687,
0.2109585404396057,
0.13539275527000427,
-0.01037527248263359,
0.11747154593467712,
0.03546016663312912,
-0.050972484052181244,
-0.16088493168354034,
0.029242265969514847,
-0.0274024847894907,
0.12055374681949615,
-0.025569897145032883,
0.2165345400571823,
0.10336146503686905,
-0.1490596979856491,
0.04035259410738945,
-0.039507392793893814,
-0.08121363073587418,
-0.12407126277685165,
-0.06975050270557404,
-0.08036962151527405,
-0.14106504619121552,
-0.0007058643968775868,
-0.12069474905729294,
0.03342447429895401,
0.10560358315706253,
0.015859924256801605,
-0.02716304175555706,
0.1600608080625534,
0.026202306151390076,
0.0049166204407811165,
0.058656636625528336,
-0.0006964732892811298,
-0.02270640805363655,
-0.11286264657974243,
-0.06898164004087448,
-0.0040276567451655865,
-0.024107085540890694,
0.0367664210498333,
-0.039453621953725815,
-0.035482119768857956,
0.04087831825017929,
-0.036568593233823776,
-0.09084466844797134,
0.012865389697253704,
0.02117850072681904,
0.061392903327941895,
0.05972033739089966,
0.013606841675937176,
-0.00003104035567957908,
-0.005660024005919695,
0.21307185292243958,
-0.08372752368450165,
-0.08229152113199234,
-0.08159271627664566,
0.2403385192155838,
0.04411764442920685,
-0.010484738275408745,
0.025358861312270164,
-0.06603036820888519,
-0.011331833899021149,
0.2633504867553711,
0.20240193605422974,
-0.06731335818767548,
-0.014210519380867481,
0.0049416664987802505,
-0.0020343202631920576,
-0.022983530536293983,
0.11242469400167465,
0.14575037360191345,
0.061431046575307846,
-0.0821448564529419,
-0.039171505719423294,
-0.04745642840862274,
-0.001581480260938406,
-0.052460238337516785,
0.0809851586818695,
0.03436528518795967,
-0.005958070047199726,
-0.022014502435922623,
0.05015384033322334,
-0.07354052364826202,
-0.08510306477546692,
0.025429727509617805,
-0.20409175753593445,
-0.14601242542266846,
-0.003671539481729269,
0.12440316379070282,
0.003937555942684412,
0.06570862978696823,
-0.024462375789880753,
-0.0008245782228186727,
0.07911795377731323,
-0.018313530832529068,
-0.10943716764450073,
-0.05445541813969612,
0.08418196439743042,
-0.15328776836395264,
0.19550040364265442,
-0.04381672292947769,
0.060335706919431686,
0.12766267359256744,
0.06211553514003754,
-0.0681716650724411,
0.08088386058807373,
0.04098772630095482,
-0.04932957515120506,
0.029016777873039246,
0.07612576335668564,
-0.031478747725486755,
0.048841286450624466,
0.04716240614652634,
-0.1217695102095604,
0.018176862969994545,
-0.03830408304929733,
-0.05428507179021835,
-0.035365547984838486,
-0.04268427565693855,
-0.06272977590560913,
0.12161405384540558,
0.20732566714286804,
-0.027474284172058105,
0.008040966466069221,
-0.08222240209579468,
-0.0010364901972934604,
0.05463138967752457,
0.024940716102719307,
-0.049575306475162506,
-0.2171623855829239,
0.0009906283812597394,
0.06467512249946594,
-0.01820749044418335,
-0.26982709765434265,
-0.08347900211811066,
-0.002245913725346327,
-0.06424462795257568,
-0.11878794431686401,
0.06983662396669388,
0.10919130593538284,
0.047163743525743484,
-0.052164431661367416,
-0.046258628368377686,
-0.07056241482496262,
0.15861181914806366,
-0.1386287659406662,
-0.0897151455283165
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-en-to-ro-lr_2e-3-fp_false
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4239
- Bleu: 7.1921
- Gen Len: 18.2611
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 0.8922 | 0.05 | 2000 | 1.7000 | 6.5274 | 18.2656 |
| 0.8621 | 0.1 | 4000 | 1.6409 | 6.6411 | 18.2311 |
| 0.8433 | 0.16 | 6000 | 1.6396 | 6.6601 | 18.2596 |
| 0.8297 | 0.21 | 8000 | 1.6304 | 6.7129 | 18.2581 |
| 0.8006 | 0.26 | 10000 | 1.6022 | 6.6067 | 18.2816 |
| 0.793 | 0.31 | 12000 | 1.5999 | 6.551 | 18.2631 |
| 0.774 | 0.37 | 14000 | 1.5586 | 6.7105 | 18.2661 |
| 0.7618 | 0.42 | 16000 | 1.5769 | 6.7278 | 18.2526 |
| 0.7463 | 0.47 | 18000 | 1.5625 | 6.6972 | 18.2201 |
| 0.7394 | 0.52 | 20000 | 1.5377 | 6.936 | 18.2491 |
| 0.7203 | 0.58 | 22000 | 1.5191 | 7.0205 | 18.2731 |
| 0.7158 | 0.63 | 24000 | 1.5055 | 6.835 | 18.2506 |
| 0.688 | 0.68 | 26000 | 1.4779 | 7.0534 | 18.2716 |
| 0.678 | 0.73 | 28000 | 1.4691 | 6.9735 | 18.2616 |
| 0.6677 | 0.79 | 30000 | 1.4702 | 7.0359 | 18.2496 |
| 0.6568 | 0.84 | 32000 | 1.4534 | 6.9982 | 18.2556 |
| 0.6475 | 0.89 | 34000 | 1.4427 | 7.0443 | 18.2466 |
| 0.6395 | 0.94 | 36000 | 1.4265 | 7.1205 | 18.2721 |
| 0.6319 | 1.0 | 38000 | 1.4239 | 7.1921 | 18.2611 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-lr_2e-3-fp_false", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 7.1921, "name": "Bleu"}]}]}]}
|
text2text-generation
|
danhsf/t5-small-finetuned-en-to-ro-lr_2e-3-fp_false
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5-small-finetuned-en-to-ro-lr\_2e-3-fp\_false
==============================================
This model is a fine-tuned version of t5-small on the wmt16 dataset.
It achieves the following results on the evaluation set:
* Loss: 1.4239
* Bleu: 7.1921
* Gen Len: 18.2611
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.002
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
78,
97,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.1062561497092247,
0.10275673121213913,
-0.0019632908515632153,
0.12153957784175873,
0.1349707841873169,
0.008975919336080551,
0.14095041155815125,
0.14363139867782593,
-0.0732484832406044,
0.024050947278738022,
0.1407383382320404,
0.13402217626571655,
0.03866170719265938,
0.0990511029958725,
-0.04309215769171715,
-0.2359904646873474,
-0.004465804900974035,
0.05184900760650635,
-0.05780528113245964,
0.1476311832666397,
0.09074056893587112,
-0.10781461000442505,
0.10567955672740936,
0.0047362614423036575,
-0.1681816577911377,
-0.0014622821472585201,
0.0031356706749647856,
-0.04769640415906906,
0.1440178006887436,
0.036889899522066116,
0.07996398955583572,
0.010965811088681221,
0.06027805805206299,
-0.17597460746765137,
0.009861389175057411,
0.05803856626152992,
0.002827921649441123,
0.10287361592054367,
0.06092572584748268,
0.007408854551613331,
0.1098707914352417,
-0.06675076484680176,
0.027347316965460777,
0.036939289420843124,
-0.12225428968667984,
-0.21632669866085052,
-0.0797775536775589,
0.04640711471438408,
0.068039171397686,
0.11548718065023422,
-0.010064206086099148,
0.13221284747123718,
-0.03519778326153755,
0.10261313617229462,
0.2224467694759369,
-0.29879963397979736,
-0.056387439370155334,
0.04289545863866806,
0.04259319230914116,
0.08850429207086563,
-0.08636551350355148,
-0.017256835475564003,
0.040920574218034744,
0.05322102829813957,
0.14631065726280212,
-0.026979198679327965,
-0.05193357542157173,
0.013060472905635834,
-0.1338537037372589,
-0.06089766323566437,
0.19903412461280823,
0.05986013263463974,
-0.02651173062622547,
-0.05204344168305397,
-0.08550917357206345,
-0.1565668284893036,
-0.016081733629107475,
0.007629765663295984,
0.04032487794756889,
-0.011883452534675598,
-0.07065427303314209,
-0.03096325881779194,
-0.10977233201265335,
-0.05838887393474579,
-0.0586039200425148,
0.07905077189207077,
0.02371777407824993,
0.010460334829986095,
-0.04907390847802162,
0.11298661679029465,
0.008525666780769825,
-0.15100200474262238,
0.025746162980794907,
0.030887123197317123,
0.016310784965753555,
-0.01569691114127636,
-0.053665563464164734,
-0.1008177250623703,
0.010780775919556618,
0.10023561865091324,
-0.047434087842702866,
0.04008087143301964,
0.017094222828745842,
0.05139725282788277,
-0.09591174125671387,
0.18074414134025574,
-0.07008494436740875,
-0.058404590934515,
0.00953828264027834,
0.07676910609006882,
0.04170813784003258,
-0.020829837769269943,
-0.13446642458438873,
-0.00324417045339942,
0.1134990006685257,
0.013163652271032333,
-0.020881418138742447,
0.07323324680328369,
-0.046942342072725296,
-0.04528503865003586,
0.01661866158246994,
-0.0848163440823555,
-0.00258844718337059,
-0.013125071302056313,
-0.07520239800214767,
-0.02436181530356407,
0.03477669507265091,
0.014599044807255268,
-0.035630930215120316,
0.07042456418275833,
-0.10264001041650772,
0.005237854551523924,
-0.07464193552732468,
-0.10755298286676407,
0.02343045361340046,
-0.06818655133247375,
0.014182169921696186,
-0.09725628793239594,
-0.2064078152179718,
-0.004441789351403713,
0.0577339269220829,
-0.02665763348340988,
-0.07238937169313431,
-0.05237288773059845,
-0.0760621726512909,
0.022336287423968315,
-0.01960243657231331,
0.13514971733093262,
-0.06810223311185837,
0.11054282635450363,
0.02511974796652794,
0.052775464951992035,
-0.05180690065026283,
0.057620979845523834,
-0.10651151090860367,
0.031199725344777107,
-0.12313750386238098,
0.053360503166913986,
-0.021771617233753204,
0.07459782809019089,
-0.11205914616584778,
-0.09065545350313187,
-0.007139069028198719,
-0.01829574629664421,
0.07486393302679062,
0.10019280761480331,
-0.17672882974147797,
-0.07527533918619156,
0.17633594572544098,
-0.04659712314605713,
-0.15493573248386383,
0.13947802782058716,
-0.04369716718792915,
0.05368431657552719,
0.06530839949846268,
0.20506741106510162,
0.06904980540275574,
-0.06656518578529358,
0.006344090681523085,
0.016377098858356476,
0.07033481448888779,
-0.08187232166528702,
0.10347504168748856,
-0.00587027333676815,
0.012910498306155205,
0.018352163955569267,
-0.046159692108631134,
0.06717990338802338,
-0.0766046941280365,
-0.08823522180318832,
-0.039842765778303146,
-0.10107126086950302,
0.04324258863925934,
0.05478169396519661,
0.06701333075761795,
-0.09623313695192337,
-0.09653215110301971,
0.023040855303406715,
0.08454344421625137,
-0.07768077403306961,
0.03923412039875984,
-0.058453720062971115,
0.0853227749466896,
-0.07584775239229202,
-0.005401269067078829,
-0.1693091243505478,
-0.011660441756248474,
0.011442196555435658,
0.013179386034607887,
0.028635263442993164,
0.029027363285422325,
0.06814434379339218,
0.058696601539850235,
-0.05905598774552345,
-0.02960040234029293,
-0.028338586911559105,
-0.005827782209962606,
-0.12531031668186188,
-0.18440032005310059,
-0.04392573609948158,
-0.013532944954931736,
0.14609916508197784,
-0.1925939917564392,
0.044199973344802856,
-0.011342616751790047,
0.0684211477637291,
0.015194900333881378,
-0.016273004934191704,
-0.024969644844532013,
0.05128217488527298,
-0.05419326573610306,
-0.05942480266094208,
0.07771637290716171,
0.019962934777140617,
-0.1160719096660614,
-0.0047094798646867275,
-0.13853539526462555,
0.15926523506641388,
0.1321854144334793,
-0.08298291265964508,
-0.04360315576195717,
0.004244321491569281,
-0.05156289041042328,
-0.04325037822127342,
-0.025339776650071144,
-0.019454501569271088,
0.1530664712190628,
0.009253283031284809,
0.16480739414691925,
-0.09525943547487259,
-0.04939912632107735,
0.025063514709472656,
-0.028486672788858414,
0.016822021454572678,
0.13781200349330902,
0.08281178027391434,
-0.11243603378534317,
0.15291385352611542,
0.17431160807609558,
-0.05793148651719093,
0.142081156373024,
-0.04372479394078255,
-0.07793213427066803,
-0.0307561457157135,
-0.010400891304016113,
0.003073485102504492,
0.0888867974281311,
-0.14075955748558044,
0.01295256707817316,
0.03765325993299484,
0.03171977028250694,
0.024704834446310997,
-0.20114891231060028,
-0.03251342102885246,
0.04634349048137665,
-0.05331233888864517,
-0.032280877232551575,
-0.00317708239890635,
-0.015443301759660244,
0.10209011286497116,
0.007277340162545443,
-0.07026155292987823,
0.04667225107550621,
-0.00008847169374348596,
-0.08047454804182053,
0.20336322486400604,
-0.07740869373083115,
-0.18570148944854736,
-0.15103788673877716,
-0.08401760458946228,
-0.07560988515615463,
0.011296594515442848,
0.07008069008588791,
-0.06667279452085495,
-0.025289511308073997,
-0.0960969477891922,
0.026379769667983055,
-0.02413259632885456,
0.008797181770205498,
0.024782858788967133,
-0.011785094626247883,
0.07532039284706116,
-0.11546454578638077,
-0.01034568715840578,
-0.016445066779851913,
-0.030190952122211456,
0.033985208719968796,
0.004324367269873619,
0.11588878929615021,
0.15033447742462158,
-0.00008531325875082985,
0.015359184704720974,
-0.025897348299622536,
0.24809513986110687,
-0.060158051550388336,
-0.00764903798699379,
0.16764633357524872,
-0.001341422670520842,
0.06754627823829651,
0.10743575543165207,
0.05757022649049759,
-0.08008236438035965,
0.00574599951505661,
0.020111083984375,
-0.04066222161054611,
-0.22850383818149567,
-0.03267141059041023,
-0.06458695232868195,
0.03337616100907326,
0.09303015470504761,
0.021893350407481194,
0.05529266968369484,
0.06437169015407562,
0.019180597737431526,
0.09516758471727371,
-0.029553256928920746,
0.0676693543791771,
0.12318459898233414,
0.0414847731590271,
0.12521898746490479,
-0.04887770116329193,
-0.033635418862104416,
0.04762323200702667,
0.029968274757266045,
0.19616378843784332,
-0.005354000721126795,
0.21265678107738495,
0.047922126948833466,
0.1661122590303421,
-0.014128952287137508,
0.08129492402076721,
-0.019134456291794777,
-0.017719896510243416,
-0.02974165417253971,
-0.04962114617228508,
-0.03942083194851875,
0.017408397048711777,
-0.05421629175543785,
0.05669301003217697,
-0.10191082954406738,
0.005302756559103727,
0.04426512494683266,
0.2647702693939209,
0.04952554032206535,
-0.34262168407440186,
-0.10610557347536087,
0.00767655810341239,
-0.03715125471353531,
-0.02789969928562641,
0.0262435469776392,
0.11914973706007004,
-0.09055985510349274,
0.0326363630592823,
-0.07821418344974518,
0.1084216833114624,
-0.0430024079978466,
0.05469314754009247,
0.06692107766866684,
0.07493250072002411,
0.0015045226318761706,
0.09313187748193741,
-0.28593528270721436,
0.2678266167640686,
0.00939946062862873,
0.04046120494604111,
-0.08216840028762817,
-0.0030083616729825735,
0.023482905700802803,
0.05387163534760475,
0.0776262879371643,
-0.0025649038143455982,
0.006895868573337793,
-0.16226571798324585,
-0.07782864570617676,
0.02014262042939663,
0.06510630995035172,
-0.05958566442131996,
0.10357753187417984,
-0.040453843772411346,
0.005145157687366009,
0.06798586249351501,
0.04059133678674698,
-0.032844845205545425,
-0.10729148238897324,
0.015929436311125755,
0.046187061816453934,
-0.030420782044529915,
-0.0625281035900116,
-0.10136045515537262,
-0.10234755277633667,
0.1358456313610077,
-0.020996714010834694,
-0.05571277067065239,
-0.10069437325000763,
0.07148396223783493,
0.07947367429733276,
-0.10048629343509674,
0.018760917708277702,
-0.0025450014509260654,
0.07511398941278458,
0.020210618153214455,
-0.08135544508695602,
0.10941127687692642,
-0.06155388429760933,
-0.15926367044448853,
-0.0480387806892395,
0.13205350935459137,
0.006059905979782343,
0.06370451301336288,
-0.017789611592888832,
0.007333959918469191,
-0.06033045053482056,
-0.07317272573709488,
0.01743936538696289,
-0.014252051711082458,
0.07516667246818542,
-0.005697185639292002,
-0.019948309287428856,
0.031171435490250587,
-0.07023868709802628,
-0.046280886977910995,
0.19302159547805786,
0.24075736105442047,
-0.08069616556167603,
0.021427370607852936,
0.05192543566226959,
-0.0597635917365551,
-0.17867861688137054,
0.009537158533930779,
0.04329438880085945,
0.003797134617343545,
0.06514893472194672,
-0.17048175632953644,
0.0845918208360672,
0.08528583496809006,
-0.013040827587246895,
0.11485046148300171,
-0.36117732524871826,
-0.12750723958015442,
0.08159887790679932,
0.1313391625881195,
0.10576902329921722,
-0.15230023860931396,
-0.042985957115888596,
-0.0352763794362545,
-0.17169253528118134,
0.1286257952451706,
-0.09800828993320465,
0.13000771403312683,
-0.025454454123973846,
0.10221227258443832,
0.007701451424509287,
-0.05983057618141174,
0.12515921890735626,
0.004154018592089415,
0.07293948531150818,
-0.06637020409107208,
0.006270607002079487,
0.08330883830785751,
-0.049813322722911835,
0.033252183347940445,
-0.13907687366008759,
0.040280673652887344,
-0.11185387521982193,
-0.022842098027467728,
-0.0827556848526001,
0.022762181237339973,
-0.04064071550965309,
-0.06846319884061813,
-0.024956030771136284,
0.019288010895252228,
0.06548040360212326,
-0.011718763038516045,
0.1407627910375595,
0.01725657470524311,
0.12424051761627197,
0.14513880014419556,
0.08061528205871582,
-0.07514185458421707,
-0.0772092342376709,
-0.040198661386966705,
-0.022143416106700897,
0.05050724744796753,
-0.16601817309856415,
0.022694503888487816,
0.13330109417438507,
0.017482955008745193,
0.13762368261814117,
0.07139061391353607,
-0.04382854700088501,
0.0030553583055734634,
0.04980253428220749,
-0.17149598896503448,
-0.13834623992443085,
-0.0395449660718441,
-0.01913975551724434,
-0.13082429766654968,
0.041974153369665146,
0.12325365096330643,
-0.06767555326223373,
-0.007139404769986868,
0.0017789057455956936,
0.01791931688785553,
-0.05205858126282692,
0.18173247575759888,
0.05023150146007538,
0.052765753120183945,
-0.09881123900413513,
0.09100335836410522,
0.05828508362174034,
-0.07485432177782059,
0.015905097126960754,
0.07793575525283813,
-0.08625136315822601,
-0.04860564321279526,
0.02232840657234192,
0.1601693481206894,
-0.07173532992601395,
-0.041511520743370056,
-0.1407778263092041,
-0.10506986826658249,
0.07569071650505066,
0.1290183961391449,
0.09098878502845764,
0.02008916810154915,
-0.06072130426764488,
-0.01534437108784914,
-0.10535690188407898,
0.1113223284482956,
0.055057816207408905,
0.06914996355772018,
-0.14792798459529877,
0.12564362585544586,
-0.001964391442015767,
0.05732924863696098,
-0.010372644290328026,
0.024057116359472275,
-0.07853680849075317,
0.009954025037586689,
-0.14393499493598938,
-0.020438235253095627,
-0.02982891909778118,
-0.0012588384561240673,
-0.025935452431440353,
-0.05132116377353668,
-0.05853309854865074,
0.02053946629166603,
-0.11082427203655243,
-0.03664712235331535,
0.02469809167087078,
0.05167975649237633,
-0.11375097185373306,
-0.02929506078362465,
0.03162330016493797,
-0.06706824153661728,
0.08458918333053589,
0.028759874403476715,
-0.002287650713697076,
0.04859226569533348,
-0.0978751927614212,
0.024971799924969673,
0.030854349955916405,
0.027818819507956505,
0.05318628251552582,
-0.07681897282600403,
-0.017905501648783684,
-0.007950901053845882,
0.03810551017522812,
0.01591690257191658,
0.08555953204631805,
-0.13209976255893707,
-0.006007385440170765,
-0.011921558529138565,
-0.04965062066912651,
-0.07614057511091232,
0.04297462850809097,
0.05914364755153656,
0.04025127366185188,
0.20024007558822632,
-0.05880571901798248,
0.041934724897146225,
-0.22187353670597076,
0.010406284593045712,
0.006410558708012104,
-0.1297011822462082,
-0.10080582648515701,
-0.06440933048725128,
0.05743841081857681,
-0.06526949256658554,
0.1010642796754837,
0.005811754614114761,
0.04092637449502945,
0.02350115031003952,
0.00693839555606246,
0.030013330280780792,
-0.006049801595509052,
0.2280440330505371,
0.009135843254625797,
-0.02927052043378353,
0.05271871015429497,
0.03988400474190712,
0.09571025520563126,
0.14860855042934418,
0.18854688107967377,
0.14824837446212769,
0.00016807549400255084,
0.08744683861732483,
0.024918213486671448,
-0.033752020448446274,
-0.1869398057460785,
0.020101910457015038,
-0.0221929419785738,
0.1312035471200943,
-0.019827183336019516,
0.2266974002122879,
0.09084688872098923,
-0.16506722569465637,
0.03791329637169838,
-0.058584511280059814,
-0.07474502176046371,
-0.09313435107469559,
-0.11824411898851395,
-0.06833053380250931,
-0.13202188909053802,
-0.014258339069783688,
-0.11646975576877594,
0.029178326949477196,
0.12621881067752838,
0.010016623884439468,
-0.03916380926966667,
0.14856258034706116,
0.015079553239047527,
-0.013849247246980667,
0.05257555842399597,
-0.0021742836106568575,
-0.03301691636443138,
-0.08690257370471954,
-0.06632919609546661,
0.007546053733676672,
0.002545206109061837,
0.03717217221856117,
-0.04234777390956879,
-0.04136150702834129,
0.031587354838848114,
-0.032009709626436234,
-0.10757419466972351,
-0.0031139173079282045,
0.02204093150794506,
0.058969248086214066,
0.06439990550279617,
0.009356456808745861,
0.010111912153661251,
-0.005768192932009697,
0.24127396941184998,
-0.08391647040843964,
-0.06771457195281982,
-0.09331095218658447,
0.20164929330348969,
0.012150166556239128,
-0.04400035738945007,
0.031525734812021255,
-0.07139942049980164,
0.009767042472958565,
0.2630941867828369,
0.19563890993595123,
-0.10326076298952103,
-0.019983747974038124,
0.0037656996864825487,
-0.0014374313177540898,
-0.017160411924123764,
0.1095891073346138,
0.12126123160123825,
0.04087824746966362,
-0.09610819816589355,
-0.018499184399843216,
-0.060990430414676666,
-0.010332681238651276,
-0.03428073599934578,
0.08005718886852264,
0.023118291050195694,
-0.007205862086266279,
-0.02878631092607975,
0.061890799552202225,
-0.0650859996676445,
-0.0970059484243393,
-0.0031355167739093304,
-0.20383042097091675,
-0.15135221183300018,
-0.028925251215696335,
0.10876821726560593,
0.004940529819577932,
0.05600149556994438,
-0.02491558901965618,
0.03622051328420639,
0.07466055452823639,
-0.01635521464049816,
-0.09148096293210983,
-0.061867620795965195,
0.09267494827508926,
-0.11711303889751434,
0.19354453682899475,
-0.046726591885089874,
0.03595202788710594,
0.12614235281944275,
0.0600622184574604,
-0.0961698368191719,
0.0717962458729744,
0.050965193659067154,
-0.012861104682087898,
0.029816484078764915,
0.08124285191297531,
-0.016438569873571396,
0.07388748228549957,
0.036537494510412216,
-0.11395194381475449,
0.0005326890968717635,
-0.02309086173772812,
-0.024579094722867012,
-0.0386623814702034,
-0.05021308735013008,
-0.04931611567735672,
0.14116999506950378,
0.19694697856903076,
-0.05904671549797058,
-0.02017137035727501,
-0.07605693489313126,
-0.002871656557545066,
0.06399159878492355,
0.008793514221906662,
-0.05394838750362396,
-0.2188493013381958,
-0.006570830941200256,
0.043360400944948196,
-0.00214608246460557,
-0.2736107409000397,
-0.08329947292804718,
-0.003603266319260001,
-0.06394641101360321,
-0.09701747447252274,
0.08942282944917679,
0.09919945895671844,
0.038867589086294174,
-0.0512310154736042,
-0.0037236222997307777,
-0.0787869542837143,
0.151788592338562,
-0.14867529273033142,
-0.09071886539459229
] |
null | null |
transformers
|
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 457311749
- CO2 Emissions (in grams): 10.148805588432941
## Validation Metrics
- Loss: 1.647747278213501
- Rouge1: 32.4854
- Rouge2: 19.8974
- RougeL: 30.0602
- RougeLsum: 29.9377
- Gen Len: 46.6556
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/danicodes/autonlp-legal-text-summary-457311749
```
|
{"language": "unk", "tags": "autonlp", "datasets": ["danicodes/autonlp-data-legal-text-summary"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 10.148805588432941}
|
text2text-generation
|
danicodes/autonlp-legal-text-summary-457311749
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"autonlp",
"unk",
"dataset:danicodes/autonlp-data-legal-text-summary",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"unk"
] |
TAGS
#transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-danicodes/autonlp-data-legal-text-summary #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 457311749
- CO2 Emissions (in grams): 10.148805588432941
## Validation Metrics
- Loss: 1.647747278213501
- Rouge1: 32.4854
- Rouge2: 19.8974
- RougeL: 30.0602
- RougeLsum: 29.9377
- Gen Len: 46.6556
## Usage
You can use cURL to access this model:
|
[
"# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 457311749\n- CO2 Emissions (in grams): 10.148805588432941",
"## Validation Metrics\n\n- Loss: 1.647747278213501\n- Rouge1: 32.4854\n- Rouge2: 19.8974\n- RougeL: 30.0602\n- RougeLsum: 29.9377\n- Gen Len: 46.6556",
"## Usage\n\nYou can use cURL to access this model:"
] |
[
"TAGS\n#transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-danicodes/autonlp-data-legal-text-summary #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 457311749\n- CO2 Emissions (in grams): 10.148805588432941",
"## Validation Metrics\n\n- Loss: 1.647747278213501\n- Rouge1: 32.4854\n- Rouge2: 19.8974\n- RougeL: 30.0602\n- RougeLsum: 29.9377\n- Gen Len: 46.6556",
"## Usage\n\nYou can use cURL to access this model:"
] |
[
75,
41,
54,
13
] |
[
"passage: TAGS\n#transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-danicodes/autonlp-data-legal-text-summary #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 457311749\n- CO2 Emissions (in grams): 10.148805588432941## Validation Metrics\n\n- Loss: 1.647747278213501\n- Rouge1: 32.4854\n- Rouge2: 19.8974\n- RougeL: 30.0602\n- RougeLsum: 29.9377\n- Gen Len: 46.6556## Usage\n\nYou can use cURL to access this model:"
] |
[
-0.19320963323116302,
0.13215458393096924,
-0.001642912975512445,
0.05495886877179146,
0.048746634274721146,
0.026004506275057793,
0.11865246295928955,
0.08040344715118408,
0.020085357129573822,
0.028375905007123947,
0.14769355952739716,
0.12064440548419952,
-0.005060236435383558,
0.1816992610692978,
-0.054213933646678925,
-0.15347200632095337,
0.06543529778718948,
0.038493331521749496,
0.022809548303484917,
0.11960286647081375,
0.1196298822760582,
-0.08116846531629562,
0.142195925116539,
0.07962419837713242,
-0.11480171233415604,
-0.02879583090543747,
0.0427151583135128,
-0.07776545733213425,
0.13399632275104523,
0.12000017613172531,
0.1513769030570984,
0.09885707497596741,
0.11415748298168182,
-0.09247096627950668,
0.0055486056953668594,
-0.043033212423324585,
-0.06199316680431366,
0.12360462546348572,
0.022348882630467415,
-0.037036921828985214,
0.014051484875380993,
0.0001910488063003868,
0.006560334470123053,
0.030534405261278152,
-0.0942649245262146,
-0.023002438247203827,
-0.06150662899017334,
-0.044413164258003235,
0.11687802523374557,
0.10855071246623993,
-0.021288471296429634,
0.2582162022590637,
-0.146338552236557,
0.030896110460162163,
0.16827690601348877,
-0.17173150181770325,
-0.006607272662222385,
0.1354859173297882,
0.02098970301449299,
-0.10789026319980621,
-0.03666146844625473,
0.09144850820302963,
0.10259730368852615,
-0.02289242297410965,
0.042058154940605164,
-0.0917460098862648,
-0.008589522913098335,
0.020637033507227898,
-0.10728456825017929,
-0.00834495760500431,
0.2502451539039612,
0.051160987466573715,
-0.08691313117742538,
0.0122324638068676,
-0.06710188835859299,
-0.11298924684524536,
-0.04937416687607765,
-0.07879124581813812,
0.01261170208454132,
-0.05545806884765625,
-0.0338861458003521,
0.043124113231897354,
-0.1634145826101303,
-0.03491676598787308,
-0.14139316976070404,
0.04054257646203041,
-0.050493981689214706,
0.0032528063748031855,
-0.03261975571513176,
0.11645149439573288,
-0.1798185110092163,
-0.08437076210975647,
-0.03656213730573654,
-0.060276102274656296,
-0.03599799796938896,
-0.018238307908177376,
-0.04805241897702217,
0.08487661182880402,
0.02647004835307598,
0.1953517496585846,
0.02802411839365959,
-0.02656192146241665,
0.10722094029188156,
0.026542287319898605,
0.0022381278686225414,
0.16948778927326202,
-0.09279752522706985,
-0.06740939617156982,
0.06760886311531067,
-0.07441611588001251,
0.04864468798041344,
-0.059773221611976624,
-0.13471288979053497,
-0.10285869985818863,
0.04739667475223541,
0.028839852660894394,
0.03559129685163498,
-0.01255055982619524,
-0.11356088519096375,
-0.013117270544171333,
0.18597480654716492,
-0.002294141100719571,
0.03782375156879425,
-0.02183411829173565,
-0.019750433042645454,
0.04757154732942581,
0.11410778760910034,
0.053255874663591385,
-0.021226998418569565,
0.09665995836257935,
-0.13641032576560974,
-0.016404131427407265,
-0.029976749792695045,
-0.08640893548727036,
0.06502661108970642,
-0.08900613337755203,
0.04150864854454994,
-0.2080237716436386,
-0.08233357220888138,
0.010855157859623432,
-0.01677660644054413,
-0.039888471364974976,
-0.06641433387994766,
-0.03687787428498268,
-0.020710501819849014,
0.038535021245479584,
0.0014492241898551583,
-0.0239238440990448,
-0.04022114723920822,
-0.0075861006043851376,
0.005002028774470091,
0.05173267424106598,
-0.1652422547340393,
0.006109124049544334,
-0.09289061278104782,
-0.0013339390279725194,
-0.1265164613723755,
0.0025012646801769733,
0.01585981622338295,
-0.03245504945516586,
-0.12137749791145325,
-0.05768222361803055,
0.02046443335711956,
-0.020629635080695152,
0.1100473552942276,
0.22274628281593323,
-0.08767369389533997,
-0.06719698756933212,
0.06836199015378952,
-0.06910736858844757,
-0.11782584339380264,
0.08382183313369751,
-0.018737301230430603,
0.010774124413728714,
0.025521093979477882,
-0.04639415070414543,
0.11076857894659042,
-0.17614951729774475,
-0.03001522459089756,
0.07240249216556549,
-0.002188541227951646,
-0.1503605842590332,
0.10161372274160385,
-0.035186510533094406,
-0.13760286569595337,
-0.017036501318216324,
0.04891622066497803,
0.02889997512102127,
-0.0962335392832756,
-0.12489806115627289,
-0.04673650860786438,
-0.0012016447726637125,
0.04524631053209305,
-0.054017432034015656,
0.05782470852136612,
-0.019891999661922455,
-0.07646554708480835,
-0.07332547754049301,
0.09597783535718918,
0.003714122110977769,
0.017141813412308693,
-0.07975862920284271,
0.10734313726425171,
-0.1440347284078598,
-0.05403730273246765,
-0.138513445854187,
-0.07333259284496307,
-0.023625941947102547,
-0.01392069086432457,
-0.026990216225385666,
0.041565049439668655,
0.02652784064412117,
0.0684620812535286,
-0.02597510814666748,
0.018306463956832886,
0.021080603823065758,
-0.012377871200442314,
-0.12439172714948654,
-0.1340622901916504,
0.009288251399993896,
-0.009335947223007679,
0.2500664293766022,
-0.08952382951974869,
-0.0004588523297570646,
0.002811735961586237,
0.08059396594762802,
-0.03245452791452408,
0.042427290230989456,
-0.01427658274769783,
0.015795083716511726,
-0.08601216971874237,
0.01505879033356905,
0.016826609149575233,
-0.005424300208687782,
-0.17804785072803497,
0.09443695098161697,
-0.13586805760860443,
0.1390695571899414,
0.1821543127298355,
-0.04092389717698097,
-0.07456649839878082,
-0.02838020771741867,
0.009539742022752762,
0.000378828844986856,
-0.09321039170026779,
-0.029978787526488304,
0.01416150201112032,
-0.0007848821696825325,
0.08840417861938477,
-0.06714817881584167,
-0.028993971645832062,
0.11541048437356949,
-0.07537255436182022,
0.005407034419476986,
0.1334570348262787,
0.1982400119304657,
-0.10476663708686829,
0.08641137927770615,
0.143479123711586,
-0.11236194521188736,
0.009221632964909077,
0.03422335907816887,
-0.0653136819601059,
-0.05406443402171135,
-0.10148043185472488,
0.03725558519363403,
0.12572500109672546,
-0.03473355248570442,
0.08781091868877411,
0.09422443807125092,
-0.035917021334171295,
-0.0016150878509506583,
-0.16240988671779633,
-0.04425322264432907,
0.019490161910653114,
0.032936692237854004,
-0.09671466797590256,
0.060004763305187225,
-0.022432120516896248,
0.13922464847564697,
-0.01582478918135166,
-0.14022678136825562,
0.018149761483073235,
0.038448456674814224,
-0.15391379594802856,
0.27725017070770264,
-0.08251739293336868,
-0.2549380958080292,
-0.12915298342704773,
0.011653068475425243,
-0.009773503988981247,
0.05151040852069855,
0.07033461332321167,
-0.07218223810195923,
-0.0959920734167099,
-0.03081825003027916,
0.00517719192430377,
0.011537235230207443,
0.09474364668130875,
-0.050688691437244415,
-0.06052163988351822,
-0.027692226693034172,
-0.11202637851238251,
-0.03525786101818085,
-0.010438039898872375,
0.0358995646238327,
0.14072595536708832,
-0.0920330062508583,
0.13812664151191711,
0.17893527448177338,
-0.03727777302265167,
-0.04172709211707115,
0.04268166050314903,
0.26874884963035583,
-0.07103069126605988,
0.06155860796570778,
0.12375596165657043,
0.05849380046129227,
0.03998967632651329,
0.10416833311319351,
0.03320646286010742,
-0.06691546738147736,
0.001319024246186018,
-0.0198532585054636,
-0.07093460857868195,
-0.22694827616214752,
-0.1352352797985077,
-0.030872410163283348,
0.02141910046339035,
0.0548265278339386,
-0.00417630048468709,
0.1520666927099228,
0.17079748213291168,
-0.017386388033628464,
0.0592225082218647,
-0.06481879949569702,
0.08999811112880707,
0.15047363936901093,
-0.001533324713818729,
0.15518024563789368,
-0.07231752574443817,
-0.10360182821750641,
0.119890958070755,
-0.0725802481174469,
0.12004540115594864,
0.13122175633907318,
0.01818511076271534,
-0.008475396782159805,
0.1045522540807724,
0.07310869544744492,
0.16222679615020752,
0.10861220210790634,
-0.062117479741573334,
-0.033521704375743866,
-0.07512470334768295,
-0.0063499566167593,
0.08366488665342331,
0.05941940099000931,
-0.03197194263339043,
-0.10852202028036118,
0.04255536571145058,
0.019852302968502045,
0.009016166441142559,
0.1818409115076065,
-0.37619325518608093,
-0.08237312734127045,
0.014672129414975643,
0.06140813231468201,
-0.0689229667186737,
-0.043184567242860794,
-0.03836280480027199,
-0.14962494373321533,
0.05680488422513008,
-0.0024449315387755632,
0.08747496455907822,
0.029426826164126396,
0.01059788279235363,
-0.10260941088199615,
0.01741047389805317,
-0.02733187936246395,
0.06557277590036392,
-0.24064430594444275,
0.2796820104122162,
0.05838781222701073,
-0.04839102923870087,
-0.07669685781002045,
0.0117580471560359,
-0.0012300342787057161,
0.20609983801841736,
0.1625889241695404,
0.04392893239855766,
0.020486442372202873,
-0.09239794313907623,
-0.20696207880973816,
0.08140073716640472,
-0.0017082454869523644,
-0.08061777055263519,
0.04515519365668297,
0.039208948612213135,
-0.06986510753631592,
0.03089309297502041,
0.016653208062052727,
-0.13842768967151642,
-0.07378068566322327,
0.09313099831342697,
0.10808679461479187,
-0.04528852552175522,
0.004024038556963205,
-0.124296635389328,
-0.020877594128251076,
0.2111632525920868,
-0.03714215010404587,
-0.03525245562195778,
-0.13616903126239777,
-0.026926545426249504,
0.14593027532100677,
-0.1062815710902214,
0.06618312746286392,
-0.050624068826436996,
0.0826115608215332,
-0.057368602603673935,
-0.04384174570441246,
0.15663351118564606,
-0.11352914571762085,
-0.09668301790952682,
-0.03771975263953209,
0.13787142932415009,
0.02385287545621395,
0.09564784914255142,
0.05848138406872749,
0.012518269941210747,
-0.10217104852199554,
-0.1618487387895584,
0.01659071445465088,
0.012527871876955032,
0.07894422113895416,
-0.019515907391905785,
0.026186544448137283,
-0.06560856103897095,
0.001626417739316821,
-0.003345848759636283,
0.14495030045509338,
0.22001202404499054,
-0.09592895954847336,
0.03070676699280739,
0.17211730778217316,
-0.0304842758923769,
-0.23857524991035461,
-0.0030833773780614138,
-0.03832315653562546,
0.07334594428539276,
-0.10600096732378006,
-0.09581443667411804,
0.07353312522172928,
0.11055935174226761,
-0.05774776637554169,
0.009147685952484608,
-0.2072470784187317,
-0.17463281750679016,
0.20115570724010468,
-0.00014106668822932988,
0.27672073245048523,
-0.041362833231687546,
-0.017234385013580322,
-0.10590691864490509,
-0.2784776985645294,
0.17375075817108154,
-0.05573451146483421,
0.07150521874427795,
-0.00302546052262187,
0.0840306356549263,
0.03724830970168114,
-0.040743403136730194,
0.22040529549121857,
0.04998420923948288,
-0.0025392493698745966,
0.012418190948665142,
-0.08683093637228012,
0.060212813317775726,
-0.02789154276251793,
0.10876886546611786,
0.009324053302407265,
0.04769172891974449,
-0.11060266941785812,
-0.037188973277807236,
-0.006451656110584736,
0.14492064714431763,
-0.05862031131982803,
-0.0933300331234932,
-0.028266260400414467,
-0.0019074924057349563,
-0.033536966890096664,
-0.05611537769436836,
0.10583905875682831,
-0.0024083321914076805,
0.010417142882943153,
0.09484415501356125,
0.16963914036750793,
-0.045734915882349014,
0.01918567344546318,
0.054906100034713745,
-0.09234127402305603,
0.08836463838815689,
-0.16280019283294678,
0.05690138041973114,
0.13130205869674683,
-0.010073862038552761,
0.03916454315185547,
0.035352952778339386,
-0.05833350121974945,
-0.02007506787776947,
0.12291116267442703,
-0.16204001009464264,
0.03850226849317551,
-0.040155377238988876,
-0.018175240606069565,
-0.05229312181472778,
0.10651274770498276,
0.1439242660999298,
-0.03938552364706993,
-0.04849758744239807,
0.004026107955724001,
-0.02714754268527031,
-0.03613680601119995,
0.19262580573558807,
0.053895898163318634,
0.07335031777620316,
-0.11764353513717651,
0.018074534833431244,
0.014095825143158436,
-0.05749814584851265,
-0.03763624653220177,
-0.0005094538209959865,
-0.12430024892091751,
-0.10304312407970428,
0.010610338300466537,
0.09638529270887375,
-0.3549448549747467,
-0.045512113720178604,
-0.05877917632460594,
-0.08002673089504242,
0.05036391317844391,
0.1691252440214157,
0.10808540135622025,
0.05472898855805397,
0.029655683785676956,
-0.12564735114574432,
-0.12888075411319733,
-0.022067701444029808,
0.08075880259275436,
0.0532938651740551,
-0.03960471227765083,
0.028588978573679924,
-0.028576502576470375,
0.12061144411563873,
-0.043063536286354065,
0.021892527118325233,
-0.1248956173658371,
-0.032614484429359436,
-0.10769229382276535,
0.0029510660097002983,
-0.06389941275119781,
-0.022781116887927055,
-0.03284915164113045,
-0.06275969743728638,
-0.07361072301864624,
0.024652158841490746,
-0.0652892217040062,
-0.0020268752705305815,
-0.01895246095955372,
0.03268133103847504,
-0.06431398540735245,
-0.02026824839413166,
0.06322361528873444,
-0.020976025611162186,
0.0902961865067482,
0.11084750294685364,
0.06401747465133667,
0.058416370302438736,
-0.14698955416679382,
0.04178128018975258,
0.10719987750053406,
0.030413003638386726,
0.10595902055501938,
-0.18036490678787231,
0.03432285785675049,
0.03635574132204056,
0.04605879634618759,
0.003650772152468562,
0.023228980600833893,
-0.12027473747730255,
0.06156904622912407,
-0.05235421657562256,
-0.1287820190191269,
-0.07112052291631699,
-0.014349328354001045,
0.07733199000358582,
0.021286435425281525,
0.0421074703335762,
-0.001414801343344152,
0.07092839479446411,
-0.10412763804197311,
0.05419877544045448,
-0.07934000343084335,
-0.04516489431262016,
-0.10940727591514587,
-0.0694994404911995,
0.06039736419916153,
-0.008033791556954384,
0.14691057801246643,
-0.05249175801873207,
0.17928235232830048,
-0.005407386459410191,
0.05515148118138313,
0.04893755540251732,
0.002069707028567791,
0.11995869874954224,
0.1097538024187088,
0.015441016294062138,
0.0117936497554183,
0.13534508645534515,
0.08640848100185394,
0.006964085623621941,
0.14495867490768433,
-0.0766359195113182,
0.04948035255074501,
0.1804303526878357,
-0.015682687982916832,
-0.10966594517230988,
-0.051549188792705536,
-0.05189089849591255,
-0.06576798111200333,
0.001759319449774921,
0.005857113748788834,
0.03420303016901016,
0.09275674819946289,
-0.08281265944242477,
-0.02606992796063423,
-0.01803682930767536,
-0.05242810770869255,
-0.24521775543689728,
-0.059206824749708176,
-0.13503098487854004,
-0.07142100483179092,
-0.023827914148569107,
-0.11503398418426514,
-0.041838388890028,
0.011794613674283028,
0.055014777928590775,
-0.026383109390735626,
0.06413020193576813,
-0.06729909032583237,
-0.025379324331879616,
-0.0015397982206195593,
0.04415934532880783,
0.058849986642599106,
-0.06281637400388718,
-0.013700976967811584,
0.006913609802722931,
0.017619499936699867,
0.002335653407499194,
-0.02500220760703087,
0.04630841687321663,
0.10720030963420868,
0.029287951067090034,
-0.09584587067365646,
-0.06805408000946045,
0.015013309195637703,
0.08111286908388138,
0.03717778995633125,
0.002649239031597972,
0.044182561337947845,
0.016160884872078896,
0.16227829456329346,
-0.07500666379928589,
-0.030925679951906204,
-0.1286616027355194,
0.22349222004413605,
-0.03700041025876999,
0.061618488281965256,
0.029203522950410843,
-0.03984278440475464,
0.005072806496173143,
0.19526995718479156,
0.18925094604492188,
0.00001007476203085389,
0.0402178019285202,
0.024066481739282608,
0.014781521633267403,
0.030322276055812836,
-0.040871236473321915,
0.0584273524582386,
0.17178493738174438,
-0.13536758720874786,
-0.021375060081481934,
-0.019090404734015465,
0.0032112374901771545,
0.016810504719614983,
0.052754003554582596,
-0.012757611460983753,
-0.05522047355771065,
-0.033656664192676544,
0.070058673620224,
-0.06213659420609474,
0.029030872508883476,
0.06777439266443253,
-0.15980100631713867,
-0.11650621145963669,
0.023984616622328758,
-0.05700386315584183,
0.025894101709127426,
0.1128932386636734,
-0.10333084315061569,
-0.08319475501775742,
0.13261401653289795,
0.042303137481212616,
-0.20739860832691193,
-0.08405628800392151,
0.03344041854143143,
0.10059146583080292,
0.12497168034315109,
0.02356189861893654,
0.17229324579238892,
0.11988893151283264,
0.07380013912916183,
-0.10708507895469666,
0.08423099666833878,
0.06698457151651382,
-0.07633428275585175,
0.10425873100757599,
-0.04016968980431557,
-0.02215643972158432,
0.05930975079536438,
0.0304497592151165,
-0.12996986508369446,
0.05583583936095238,
-0.027160730212926865,
0.01445780135691166,
-0.04605966433882713,
0.008640367537736893,
-0.10738296061754227,
0.11547417938709259,
0.07478540390729904,
-0.07734784483909607,
-0.08390695601701736,
-0.011931910179555416,
0.10557142645120621,
0.07058511674404144,
-0.13459795713424683,
-0.010526520200073719,
-0.10105644911527634,
0.08598697930574417,
0.034977298229932785,
0.0546681173145771,
-0.14177651703357697,
-0.029745474457740784,
-0.05879746377468109,
-0.0522589236497879,
-0.05936666578054428,
0.033815763890743256,
-0.022269675508141518,
0.016991320997476578,
-0.027280086651444435,
-0.08229715377092361,
-0.004054229240864515,
0.06364505738019943,
-0.0764784961938858,
-0.18580813705921173
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-fi-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt19 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5235
- Bleu: 1.129
- Gen Len: 17.088
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-----:|:-------:|
| 3.414 | 1.0 | 6250 | 3.5235 | 1.129 | 17.088 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt19"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-fi-to-en", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt19", "type": "wmt19", "args": "fi-en"}, "metrics": [{"type": "bleu", "value": 1.129, "name": "Bleu"}]}]}]}
|
text2text-generation
|
danielbispov/t5-small-finetuned-fi-to-en
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt19",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt19 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
t5-small-finetuned-fi-to-en
===========================
This model is a fine-tuned version of t5-small on the wmt19 dataset.
It achieves the following results on the evaluation set:
* Loss: 3.5235
* Bleu: 1.129
* Gen Len: 17.088
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.9.1
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt19 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
78,
113,
4,
31
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt19 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.10018763691186905,
0.1020846888422966,
-0.003068779595196247,
0.09225403517484665,
0.11054647713899612,
-0.006213840562850237,
0.1617499440908432,
0.162706196308136,
-0.114800363779068,
0.04455270618200302,
0.13961674273014069,
0.1435156911611557,
0.04854437708854675,
0.16310958564281464,
-0.06632992625236511,
-0.2530263364315033,
0.043470803648233414,
0.061283789575099945,
-0.012580701150000095,
0.1338246911764145,
0.0904705822467804,
-0.12272895127534866,
0.0896165519952774,
0.03833270072937012,
-0.19326481223106384,
-0.011609970591962337,
0.0059687127359211445,
-0.08158375322818756,
0.11036525666713715,
0.03099856898188591,
0.08436957746744156,
0.039180938154459,
0.045189373195171356,
-0.1550242155790329,
0.010375169105827808,
0.05498515069484711,
0.00827142782509327,
0.10604949295520782,
0.056162938475608826,
-0.010299665853381157,
0.10616742819547653,
-0.0669391006231308,
0.06652136147022247,
0.022880258038640022,
-0.12801775336265564,
-0.27871155738830566,
-0.10212668031454086,
0.04871084913611412,
0.0693507120013237,
0.08826534450054169,
-0.004520665854215622,
0.19702355563640594,
-0.022306036204099655,
0.11174735426902771,
0.24653120338916779,
-0.3087678849697113,
-0.049290891736745834,
-0.01921570487320423,
0.04577462375164032,
0.07205170392990112,
-0.07492587715387344,
-0.02931707724928856,
0.019380899146199226,
0.04735000431537628,
0.15927506983280182,
-0.014448489062488079,
-0.012800455093383789,
-0.014281049370765686,
-0.1337154507637024,
-0.07792136073112488,
0.1774699091911316,
0.03921618312597275,
-0.04285382479429245,
-0.07829474657773972,
-0.07784807682037354,
-0.1647094488143921,
-0.050074536353349686,
0.004097722936421633,
0.03582059592008591,
-0.03727676719427109,
-0.0920134112238884,
-0.018563522025942802,
-0.07967954874038696,
-0.036789871752262115,
-0.04771464690566063,
0.1373450756072998,
0.042789045721292496,
0.022503841668367386,
-0.06761586666107178,
0.07799156755208969,
-0.028913171961903572,
-0.16636113822460175,
-0.004351222887635231,
0.012087524868547916,
0.01453577820211649,
-0.03473612293601036,
-0.040222372859716415,
-0.14462514221668243,
0.000259148160694167,
0.1468612402677536,
-0.09334859251976013,
0.07446911931037903,
-0.023643674328923225,
0.038803085684776306,
-0.07430234551429749,
0.18703024089336395,
-0.023472825065255165,
0.024703796952962875,
0.01715351641178131,
0.07596509158611298,
0.05584677308797836,
-0.03435618430376053,
-0.12055395543575287,
0.03844399377703667,
0.11864006519317627,
0.01588430441915989,
-0.02454064041376114,
0.06577832996845245,
-0.047562096267938614,
-0.03462990000844002,
0.061708513647317886,
-0.10162343829870224,
0.02910531684756279,
-0.019021380692720413,
-0.06431005150079727,
-0.01667419821023941,
0.01940012350678444,
0.005663660354912281,
-0.046590231359004974,
0.07883727550506592,
-0.08945700526237488,
0.019512144848704338,
-0.08141499012708664,
-0.13866153359413147,
0.027348272502422333,
-0.07426105439662933,
0.006277119275182486,
-0.09613287448883057,
-0.15284103155136108,
-0.0039021640550345182,
0.06136146932840347,
-0.04219929501414299,
-0.05902670696377754,
-0.04299786686897278,
-0.0868426263332367,
0.04926447942852974,
-0.019756818190217018,
0.08416874706745148,
-0.06971218436956406,
0.09078147262334824,
0.04638383165001869,
0.07213754951953888,
-0.03984277322888374,
0.04497559368610382,
-0.09281358867883682,
0.041922248899936676,
-0.2172863781452179,
0.06157746911048889,
-0.04312095046043396,
0.08662452548742294,
-0.10385770350694656,
-0.10326875001192093,
0.03069126233458519,
-0.026302341371774673,
0.1007145345211029,
0.09796161204576492,
-0.15941861271858215,
-0.07684922963380814,
0.2003459483385086,
-0.08972305059432983,
-0.14009089767932892,
0.13591672480106354,
-0.04871119558811188,
0.014289581216871738,
0.05544539541006088,
0.2317148894071579,
0.055908702313899994,
-0.09179017692804337,
-0.008614196442067623,
-0.042321786284446716,
0.06010192260146141,
-0.07324924319982529,
0.07647610455751419,
0.00991632230579853,
0.06145457923412323,
0.009714977815747261,
0.014831996522843838,
0.039630450308322906,
-0.08423927426338196,
-0.07801096886396408,
-0.05849820002913475,
-0.07193876057863235,
0.020310724154114723,
0.04425632581114769,
0.0717134177684784,
-0.13394947350025177,
-0.11368897557258606,
0.06131714582443237,
0.07428808510303497,
-0.08134866505861282,
0.05585301294922829,
-0.10654421150684357,
0.11364541202783585,
-0.07551930844783783,
-0.0008307253010571003,
-0.18427656590938568,
-0.012058502063155174,
0.032651256769895554,
-0.004908444359898567,
0.01981928199529648,
-0.04268219321966171,
0.07159537822008133,
0.06758479028940201,
-0.0454409159719944,
-0.039951834827661514,
-0.02546634152531624,
0.003112686099484563,
-0.1129593625664711,
-0.19479155540466309,
-0.042033739387989044,
-0.03840361908078194,
0.08614470809698105,
-0.14758265018463135,
0.04368523508310318,
0.05486701801419258,
0.11014524847269058,
0.041494220495224,
-0.027607671916484833,
-0.0022278637625277042,
0.06243022531270981,
-0.04838660731911659,
-0.06537848711013794,
0.061123572289943695,
0.03182387724518776,
-0.09600108116865158,
0.014401034452021122,
-0.1599268764257431,
0.17221617698669434,
0.13894468545913696,
-0.014114472083747387,
-0.050131455063819885,
-0.008900337852537632,
-0.052476607263088226,
-0.026773352175951004,
-0.017601974308490753,
0.01672980561852455,
0.15561625361442566,
0.020717434585094452,
0.16096404194831848,
-0.10199111700057983,
-0.05529586970806122,
0.0493716299533844,
-0.03665054216980934,
-0.010622305795550346,
0.11059325933456421,
0.02662118338048458,
-0.12866270542144775,
0.13846920430660248,
0.14286133646965027,
-0.04404761642217636,
0.1358369141817093,
-0.066703200340271,
-0.06732253730297089,
-0.036458831280469894,
-0.012704506516456604,
0.031152628362178802,
0.09622544050216675,
-0.11676729470491409,
-0.01631728745996952,
0.0448470339179039,
0.03376463055610657,
0.006583698559552431,
-0.1879774034023285,
-0.0009514066623523831,
0.043630145490169525,
-0.04815473034977913,
-0.05524202436208725,
-0.005423141643404961,
0.005827711429446936,
0.10021030902862549,
0.015520267188549042,
-0.051317181438207626,
0.0346757210791111,
0.01522294245660305,
-0.06749412417411804,
0.1842164397239685,
-0.10602883994579315,
-0.17849291861057281,
-0.1230456680059433,
-0.10149050503969193,
-0.06708266586065292,
-0.004150925204157829,
0.0843280777335167,
-0.08161202073097229,
-0.05000532418489456,
-0.10126762837171555,
-0.02306601032614708,
-0.009696278721094131,
0.0240644384175539,
0.05365544185042381,
-0.02094155177474022,
0.07344329357147217,
-0.1127854585647583,
-0.031708747148513794,
-0.014876692555844784,
0.02543807588517666,
0.07116822153329849,
0.008927240036427975,
0.11151015013456345,
0.1279984563589096,
-0.0242888443171978,
0.04513131454586983,
-0.038922835141420364,
0.24176450073719025,
-0.06830469518899918,
-0.01417594961822033,
0.1426510363817215,
-0.009647167287766933,
0.09138821065425873,
0.11491662263870239,
0.05251104384660721,
-0.09115907549858093,
-0.0015367405721917748,
-0.00041505557601340115,
-0.04727872088551521,
-0.21514791250228882,
-0.01625802554190159,
-0.054274171590805054,
-0.003881246317178011,
0.10052440315485,
0.026576703414320946,
0.0366966687142849,
0.05031925067305565,
0.014330320060253143,
0.05342646688222885,
-0.013777720741927624,
0.11247818171977997,
0.13427524268627167,
0.06212279200553894,
0.146734818816185,
-0.059854548424482346,
-0.029770830646157265,
0.04593222588300705,
0.012001479044556618,
0.20769736170768738,
-0.004520060028880835,
0.20818497240543365,
0.04629175364971161,
0.1476970911026001,
0.027173694223165512,
0.07598870992660522,
-0.02254333347082138,
-0.013118457049131393,
-0.015776121988892555,
-0.04557669907808304,
-0.03777977451682091,
0.016659578308463097,
-0.06125941127538681,
0.03827628865838051,
-0.11847175657749176,
0.016849497333168983,
0.053374625742435455,
0.29953569173812866,
0.038882024586200714,
-0.3712882101535797,
-0.11650913953781128,
0.007000518497079611,
-0.05181701481342316,
-0.04291817173361778,
0.002645885804668069,
0.08292568475008011,
-0.07723570615053177,
0.07746873050928116,
-0.08541270345449448,
0.11191704124212265,
-0.05196968466043472,
0.03893275558948517,
0.04198085144162178,
0.09454268217086792,
-0.011730986647307873,
0.05784764140844345,
-0.29936105012893677,
0.2732609808444977,
0.027074739336967468,
0.06433761864900589,
-0.07817383855581284,
0.015040147118270397,
0.004691777750849724,
0.05168619379401207,
0.05657634511590004,
-0.005691114813089371,
-0.10781347751617432,
-0.15011364221572876,
-0.09195749461650848,
0.009990077465772629,
0.07840804010629654,
0.01623954065144062,
0.11786516010761261,
-0.0145232193171978,
-0.0015449393540620804,
0.049491994082927704,
-0.013675522059202194,
-0.035708434879779816,
-0.11374549567699432,
0.02914362959563732,
0.039247266948223114,
-0.031697556376457214,
-0.07419957965612411,
-0.10647760331630707,
-0.059273213148117065,
0.17128615081310272,
0.04077592119574547,
-0.07561281323432922,
-0.12755049765110016,
0.044117044657468796,
0.07491014152765274,
-0.09065021574497223,
0.02600887604057789,
-0.01437362376600504,
0.11996328830718994,
-0.004594895988702774,
-0.08028590679168701,
0.1202910989522934,
-0.05557899549603462,
-0.16314399242401123,
-0.041699301451444626,
0.1180524155497551,
0.009735427796840668,
0.06057346239686012,
-0.010378982871770859,
0.03900416940450668,
-0.03765861690044403,
-0.07123029232025146,
0.03556712344288826,
-0.007789004128426313,
0.09825917333364487,
-0.04796770215034485,
-0.0009896435076370835,
0.033016085624694824,
-0.06960947811603546,
-0.027153439819812775,
0.18108122050762177,
0.266105055809021,
-0.08588437736034393,
0.0673796758055687,
0.0362028069794178,
-0.050399087369441986,
-0.14879798889160156,
0.008192582987248898,
0.054714757949113846,
0.0035161178093403578,
0.010161531157791615,
-0.16965854167938232,
0.02221534587442875,
0.07710161805152893,
-0.015185222961008549,
0.06606222689151764,
-0.31467893719673157,
-0.12734904885292053,
0.08964621275663376,
0.13493612408638,
0.097837895154953,
-0.15706242620944977,
-0.04531409963965416,
-0.030369957908988,
-0.14819741249084473,
0.1336977630853653,
-0.09590937942266464,
0.11140712350606918,
-0.033226314932107925,
0.10642417520284653,
0.014789297245442867,
-0.06322453916072845,
0.1176949217915535,
-0.012947356328368187,
0.0779290646314621,
-0.07025248557329178,
0.04366183653473854,
0.11597884446382523,
-0.08242516964673996,
0.05078281834721565,
-0.10572516918182373,
0.039296962320804596,
-0.12145008146762848,
-0.018549833446741104,
-0.07246318459510803,
0.004954969976097345,
-0.030171753838658333,
-0.03906407952308655,
-0.037583135068416595,
0.005628174636512995,
0.07399932295084,
-0.027488160878419876,
0.19540078938007355,
0.01930144615471363,
0.147178053855896,
0.17262719571590424,
0.10053175687789917,
-0.1310165673494339,
-0.05786973983049393,
-0.00041452344157733023,
-0.030882958322763443,
0.043887894600629807,
-0.1660018116235733,
0.039319250732660294,
0.13272079825401306,
0.0029261172749102116,
0.12074041366577148,
0.06462981551885605,
-0.06618103384971619,
0.02116284891963005,
0.05464329198002815,
-0.17308880388736725,
-0.1185058131814003,
-0.005367597099393606,
0.053829092532396317,
-0.12104032188653946,
0.045562442392110825,
0.12125708162784576,
-0.056052759289741516,
-0.023098310455679893,
0.008229565806686878,
0.01741304062306881,
-0.017695661634206772,
0.18055808544158936,
0.031234538182616234,
0.07005497813224792,
-0.10988664627075195,
0.08031564205884933,
0.05452023446559906,
-0.10929570347070694,
0.053878139704465866,
0.10350678861141205,
-0.1005036011338234,
-0.02862250804901123,
0.04278114438056946,
0.1660299003124237,
-0.057480089366436005,
-0.048328131437301636,
-0.16644708812236786,
-0.12406480312347412,
0.0968790054321289,
0.16366170346736908,
0.06660693138837814,
0.0017572676297277212,
-0.04054222255945206,
-0.010881980881094933,
-0.12618380784988403,
0.10076475143432617,
0.055830687284469604,
0.07968033105134964,
-0.13435396552085876,
0.11342677474021912,
-0.011321359314024448,
0.050156112760305405,
-0.011622069403529167,
0.014238107949495316,
-0.11041751503944397,
0.01038625929504633,
-0.14443741738796234,
-0.004826387856155634,
-0.05337183550000191,
-0.0009759929962456226,
-0.025580905377864838,
-0.041120514273643494,
-0.058523211628198624,
0.020469864830374718,
-0.1198640838265419,
-0.0324748270213604,
0.020423399284482002,
0.02045697718858719,
-0.1141161099076271,
-0.024624794721603394,
0.011345991864800453,
-0.08571263402700424,
0.08150087296962738,
0.052220724523067474,
-0.012837125919759274,
0.02815367840230465,
-0.011058763600885868,
0.0009309215238317847,
0.05295306071639061,
0.006905372720211744,
0.07237394899129868,
-0.11434946209192276,
-0.015455376356840134,
0.014208587817847729,
0.017158471047878265,
0.025686489418148994,
0.11869373917579651,
-0.11686389148235321,
0.0013386178761720657,
-0.0015236497856676579,
-0.059656914323568344,
-0.07277462631464005,
0.07228334248065948,
0.09348870068788528,
0.01784394681453705,
0.19061405956745148,
-0.07530587911605835,
0.02783544361591339,
-0.2032882571220398,
-0.000046619719796581194,
0.012749255634844303,
-0.15050595998764038,
-0.05861150845885277,
-0.043253593146800995,
0.06526286900043488,
-0.07326818257570267,
0.11756386607885361,
0.0037997306790202856,
0.031071355566382408,
0.04546111822128296,
-0.031089970842003822,
-0.018179098144173622,
0.006781864445656538,
0.18242749571800232,
0.013275309465825558,
-0.04055717587471008,
0.08462826162576675,
0.022592388093471527,
0.0844791904091835,
0.12972228229045868,
0.1882862150669098,
0.12850001454353333,
0.04441741853952408,
0.09765543043613434,
0.027607252821326256,
-0.021371791139245033,
-0.19375315308570862,
0.04546856880187988,
-0.03152036294341087,
0.15109731256961823,
-0.0053464933298528194,
0.18965791165828705,
0.13437248766422272,
-0.15117903053760529,
0.05496416240930557,
-0.03718271479010582,
-0.08447819948196411,
-0.10388675332069397,
-0.11438137292861938,
-0.08708535879850388,
-0.15624243021011353,
-0.007010945584625006,
-0.12222159653902054,
0.04700343310832977,
0.045942310243844986,
0.016012543812394142,
-0.009619242511689663,
0.12341272085905075,
0.0379907451570034,
0.009403780102729797,
0.05509466305375099,
-0.01028603408485651,
-0.04945056140422821,
-0.04538772255182266,
-0.06734171509742737,
0.01758095622062683,
0.004124753177165985,
0.0479586198925972,
-0.0033020121045410633,
-0.016076944768428802,
0.041341427713632584,
-0.030365191400051117,
-0.11980807781219482,
0.009200275875627995,
0.03388967365026474,
0.06859467178583145,
0.03605712205171585,
0.00964408926665783,
-0.006429165601730347,
-0.017445210367441177,
0.20029008388519287,
-0.0778028815984726,
-0.06454338878393173,
-0.11159073561429977,
0.24533361196517944,
0.015221815556287766,
-0.04924832284450531,
0.03743290156126022,
-0.06514857709407806,
-0.01128551084548235,
0.19773198664188385,
0.18003909289836884,
-0.028993869200348854,
-0.011101912707090378,
-0.023961631581187248,
-0.010179453529417515,
-0.02414572983980179,
0.10797380656003952,
0.12682725489139557,
0.015175841748714447,
-0.07314962148666382,
-0.02750057354569435,
-0.06978408247232437,
-0.012233402580022812,
-0.04853658750653267,
0.08325102180242538,
0.02740413136780262,
-0.00790634285658598,
-0.03012262098491192,
0.050401680171489716,
-0.05184215307235718,
-0.050676379352808,
0.0010681282728910446,
-0.20641648769378662,
-0.1564837396144867,
0.001258727046661079,
0.07120426744222641,
-0.011828050948679447,
0.06194399669766426,
-0.0016786691267043352,
0.011356505565345287,
0.08475343883037567,
-0.013957642950117588,
-0.08048684149980545,
-0.07302670180797577,
0.1064569428563118,
-0.16903699934482574,
0.17045174539089203,
-0.031197749078273773,
0.03137723356485367,
0.14252908527851105,
0.04793757200241089,
-0.11161505430936813,
0.06817005574703217,
0.04081493616104126,
-0.03937619552016258,
0.01232004165649414,
0.1295044869184494,
-0.022150332108139992,
0.06825726479291916,
0.03677710145711899,
-0.12171033024787903,
-0.01735503599047661,
-0.09996425360441208,
-0.017751330509781837,
-0.01939964108169079,
-0.04474543407559395,
-0.04336847364902496,
0.1229143813252449,
0.19188235700130463,
-0.04552793502807617,
-0.003605414414778352,
-0.0658259242773056,
0.018996112048625946,
0.06964480131864548,
-0.017464837059378624,
-0.05967002734541893,
-0.26397693157196045,
0.00014406282571144402,
0.0853632315993309,
-0.008590152487158775,
-0.27040284872055054,
-0.09224291890859604,
-0.004014668054878712,
-0.04969894513487816,
-0.10462602972984314,
0.09157435595989227,
0.0920664519071579,
0.04601920768618584,
-0.07135192304849625,
-0.0007167996373027563,
-0.07177214324474335,
0.16927465796470642,
-0.13975684344768524,
-0.058497440069913864
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bangla_asr
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 157.8652
- Wer: 0.4507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2601.5363 | 7.46 | 500 | 259.6630 | 0.6863 |
| 417.7386 | 14.93 | 1000 | 156.6117 | 0.5275 |
| 262.9455 | 22.39 | 1500 | 155.0886 | 0.5006 |
| 178.7715 | 29.85 | 2000 | 155.1077 | 0.4840 |
| 132.448 | 37.31 | 2500 | 163.8623 | 0.4770 |
| 116.3943 | 44.78 | 3000 | 161.5531 | 0.4609 |
| 87.1653 | 52.24 | 3500 | 165.6857 | 0.4597 |
| 80.5606 | 59.7 | 4000 | 157.8652 | 0.4507 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bangla_asr", "results": []}]}
|
automatic-speech-recognition
|
danielbubiola/bangla_asr
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us
|
bangla\_asr
===========
This model is a fine-tuned version of Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 157.8652
* Wer: 0.4507
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 60
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.10.0+cu111
* Datasets 1.13.3
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
48,
130,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
-0.12255808711051941,
0.058131176978349686,
-0.002464908640831709,
0.07896807789802551,
0.14656300842761993,
0.0035955181811004877,
0.09428741782903671,
0.12115810811519623,
-0.05210718512535095,
0.07519831508398056,
0.10286389291286469,
0.1257193237543106,
0.04120578244328499,
0.08762868493795395,
-0.042812179774045944,
-0.29237064719200134,
-0.005849851761013269,
0.020821774378418922,
-0.02561732940375805,
0.1293853223323822,
0.07513270527124405,
-0.1436576247215271,
0.04718299210071564,
0.0007861403282731771,
-0.14568078517913818,
0.004525233060121536,
-0.0006785414880141616,
-0.07613945752382278,
0.145655557513237,
0.0027360895182937384,
0.10778140276670456,
0.0319146066904068,
0.09930718690156937,
-0.2338450849056244,
0.012144471518695354,
0.04134216904640198,
0.04362785816192627,
0.06339626759290695,
0.06966274976730347,
-0.03817705065011978,
0.10618661344051361,
-0.10180585831403732,
0.06756625324487686,
0.02524532377719879,
-0.1178969219326973,
-0.24440014362335205,
-0.05462191626429558,
0.019233006983995438,
0.07286718487739563,
0.11299456655979156,
-0.029813138768076897,
0.10509881377220154,
-0.10188894718885422,
0.1054760292172432,
0.2523745894432068,
-0.26685452461242676,
-0.05877234786748886,
-0.030815109610557556,
0.035049550235271454,
0.07161182910203934,
-0.12069609016180038,
-0.009910637512803078,
0.02129214070737362,
0.058649562299251556,
0.1032237559556961,
-0.015258653089404106,
-0.09857463091611862,
0.020778954029083252,
-0.1521921157836914,
-0.021207520738244057,
0.06845143437385559,
0.029087934643030167,
-0.022693177685141563,
-0.08558401465415955,
-0.04878377169370651,
-0.20221151411533356,
-0.05985281616449356,
-0.017770830541849136,
0.037050727754831314,
-0.0569012388586998,
-0.10629703849554062,
-0.007091280538588762,
-0.0887422114610672,
-0.08995165675878525,
-0.04096921160817146,
0.1710052192211151,
0.04057891666889191,
-0.013874777592718601,
-0.02082989364862442,
0.09820719063282013,
-0.0018885042518377304,
-0.1289864033460617,
0.016116345301270485,
0.04635412245988846,
-0.06740586459636688,
-0.0197122972458601,
-0.05836579576134682,
-0.042507048696279526,
0.005897873546928167,
0.09978754818439484,
-0.06893860548734665,
0.08173898607492447,
0.007089041173458099,
0.03534476459026337,
-0.10187258571386337,
0.20369119942188263,
-0.0800740197300911,
-0.02356131002306938,
-0.03841671720147133,
0.06632503122091293,
-0.004328225273638964,
-0.025388037785887718,
-0.09296070784330368,
-0.0012429928174242377,
0.10949372500181198,
0.03020271100103855,
-0.0659068152308464,
0.05072912573814392,
-0.03797898441553116,
-0.009695366956293583,
-0.0579235777258873,
-0.10930456221103668,
0.03773307800292969,
0.044265080243349075,
-0.08428896218538284,
0.02665567211806774,
0.014292251318693161,
0.024499353021383286,
-0.043934620916843414,
0.11136134713888168,
-0.06458032131195068,
0.043713003396987915,
-0.06264699995517731,
-0.12547975778579712,
0.012854449450969696,
-0.10600978136062622,
0.006618719547986984,
-0.08888807892799377,
-0.10728981345891953,
-0.022691823542118073,
0.029153775423765182,
-0.05196627974510193,
-0.00676848366856575,
-0.09886269271373749,
-0.0758521631360054,
0.0287928469479084,
-0.028773855417966843,
0.13949093222618103,
-0.06072946637868881,
0.11427337676286697,
0.03706176578998566,
0.08345657587051392,
-0.011967608705163002,
0.06927581131458282,
-0.06193471699953079,
0.01457204483449459,
-0.16827307641506195,
0.09784678369760513,
-0.07721510529518127,
0.0223623588681221,
-0.11176171153783798,
-0.12270431965589523,
-0.0009158992324955761,
0.003480709856376052,
0.1065155416727066,
0.10892010480165482,
-0.1991490125656128,
-0.09720192849636078,
0.185397669672966,
-0.05447150021791458,
-0.05498918890953064,
0.13822796940803528,
-0.04006165638566017,
0.0006005134782753885,
0.0692245215177536,
0.2434341162443161,
0.0430353544652462,
-0.11808072030544281,
0.023560887202620506,
-0.02717006392776966,
0.07004228234291077,
-0.0013459686888381839,
0.055664192885160446,
-0.02515697479248047,
0.04483426362276077,
0.016378985717892647,
-0.02133338898420334,
0.06864938139915466,
-0.10747722536325455,
-0.08479474484920502,
-0.02204653061926365,
-0.10371799021959305,
0.062156643718481064,
0.056879088282585144,
0.06077712029218674,
-0.09295038133859634,
-0.0938417911529541,
0.03077104687690735,
0.07453855872154236,
-0.10069622844457626,
0.052785392850637436,
-0.0878961831331253,
0.05488477274775505,
-0.00601259246468544,
-0.027025150135159492,
-0.19401030242443085,
0.032076943665742874,
0.016449397429823875,
0.01472802460193634,
0.04196688160300255,
-0.028766950592398643,
0.09153088927268982,
0.05622298642992973,
-0.04378362372517586,
-0.041764482855796814,
-0.02214186266064644,
0.007687556557357311,
-0.1098986342549324,
-0.21819253265857697,
-0.03816014528274536,
-0.020227566361427307,
0.13474246859550476,
-0.1984669417142868,
0.014796503819525242,
0.012502738274633884,
0.0842888355255127,
0.011748052202165127,
-0.03244612738490105,
-0.013559347949922085,
0.09624337404966354,
-0.004755084402859211,
-0.04913606122136116,
0.0647846981883049,
-0.013312125578522682,
-0.10423074662685394,
0.005984843242913485,
-0.13861681520938873,
0.086484894156456,
0.1360032856464386,
-0.0871107205748558,
-0.08984585106372833,
-0.0022632863838225603,
-0.0547591894865036,
-0.04106676205992699,
-0.030784571543335915,
0.02404683642089367,
0.2489083707332611,
0.011542887426912785,
0.12969890236854553,
-0.06927564740180969,
-0.03296871855854988,
0.03519996255636215,
-0.007954414933919907,
0.016605425626039505,
0.15756089985370636,
0.09294679015874863,
-0.03248213976621628,
0.10451707988977432,
0.07693419605493546,
-0.09686999768018723,
0.1415051966905594,
-0.03246443718671799,
-0.09870678931474686,
-0.013748494908213615,
-0.00422052713111043,
-0.0014129955088719726,
0.11630424857139587,
-0.17888475954532623,
-0.03148752823472023,
0.0074560376815497875,
0.014007531106472015,
0.03261648863554001,
-0.23380953073501587,
-0.02007419243454933,
0.03149404376745224,
-0.069548599421978,
-0.04030890390276909,
-0.009314493276178837,
0.02658197656273842,
0.11303867399692535,
0.003531559370458126,
-0.09287109225988388,
-0.008055542595684528,
-0.01839449629187584,
-0.08333853632211685,
0.19295403361320496,
-0.08710509538650513,
-0.15430603921413422,
-0.0818890705704689,
-0.07439872622489929,
-0.01732049137353897,
0.006569880060851574,
0.049366310238838196,
-0.11486560106277466,
-0.007891763001680374,
-0.06391788274049759,
0.03354742005467415,
-0.03391558304429054,
0.04578781872987747,
-0.015143598429858685,
-0.013436499051749706,
0.050308212637901306,
-0.0983007475733757,
-0.003241816535592079,
-0.0696415975689888,
-0.0312746986746788,
0.0430184081196785,
0.0535818487405777,
0.11197143793106079,
0.19206133484840393,
-0.0007197543163783848,
0.028177428990602493,
-0.04297765716910362,
0.194746196269989,
-0.08636987954378128,
-0.038695190101861954,
0.09764818102121353,
-0.02419102191925049,
0.038958590477705,
0.1144421398639679,
0.057627998292446136,
-0.09065298736095428,
-0.004931393079459667,
0.03055328130722046,
-0.037770017981529236,
-0.2148125320672989,
-0.04871755465865135,
-0.04830031841993332,
-0.007416100706905127,
0.09049983322620392,
0.014033052138984203,
0.008660892955958843,
0.023549774661660194,
0.043899379670619965,
-0.001175158889964223,
-0.013737169094383717,
0.03982039541006088,
0.09470053762197495,
0.015910129994153976,
0.11787478625774384,
-0.014697345905005932,
-0.07418251037597656,
0.016321906819939613,
-0.005932820029556751,
0.22626057267189026,
0.005934275221079588,
0.13632796704769135,
0.04635113105177879,
0.17817069590091705,
0.010700172744691372,
0.06908184289932251,
0.008065909147262573,
-0.036406032741069794,
0.017005780711770058,
-0.05269432067871094,
-0.035711564123630524,
0.021382303908467293,
0.06961861997842789,
0.03278343752026558,
-0.1358121931552887,
-0.03338028863072395,
0.035193778574466705,
0.3008727729320526,
0.05701757222414017,
-0.29971808195114136,
-0.08329018950462341,
-0.00912307295948267,
-0.06607692688703537,
-0.014065315946936607,
0.041045110672712326,
0.13365229964256287,
-0.08709374070167542,
0.026711566373705864,
-0.05166345462203026,
0.08343342691659927,
-0.05621456727385521,
0.03743140771985054,
0.03376442566514015,
0.0768030509352684,
-0.0005354033201001585,
0.04994470626115799,
-0.29348474740982056,
0.29598379135131836,
-0.0004895817255601287,
0.07624459266662598,
-0.07245582342147827,
-0.02161380462348461,
0.025151394307613373,
-0.023043673485517502,
0.09288311749696732,
-0.020525526255369186,
-0.04967557638883591,
-0.21554575860500336,
-0.07374876737594604,
0.023212578147649765,
0.1530889868736267,
-0.014910043217241764,
0.11966236680746078,
-0.004710397217422724,
-0.011920193210244179,
0.07224271446466446,
-0.07093056291341782,
-0.08015259355306625,
-0.084128238260746,
-0.009060959331691265,
0.07322856783866882,
-0.00535443564876914,
-0.05470691993832588,
-0.11723785847425461,
-0.12630513310432434,
0.10836213827133179,
-0.08299858868122101,
-0.01869938150048256,
-0.1119505912065506,
0.07262551039457321,
0.13007967174053192,
-0.07635591179132462,
0.03712217137217522,
0.041917528957128525,
0.07647199928760529,
0.017326053231954575,
-0.04678928479552269,
0.11825450509786606,
-0.0705653503537178,
-0.17425526678562164,
-0.044139113277196884,
0.16305255889892578,
0.07433224469423294,
0.08168185502290726,
-0.01957441121339798,
0.023023994639515877,
-0.024057438597083092,
-0.07560016959905624,
0.06417933851480484,
0.01586359739303589,
0.010637566447257996,
0.05270249769091606,
-0.03400731086730957,
-0.02317163534462452,
-0.09962762147188187,
-0.015741625800728798,
0.21518518030643463,
0.22516658902168274,
-0.08763626217842102,
0.05873551964759827,
0.06206109747290611,
-0.04909674823284149,
-0.1855851113796234,
0.038226108998060226,
0.08966833353042603,
0.02945444919168949,
0.006399964448064566,
-0.19804508984088898,
0.07577596604824066,
0.061999253928661346,
-0.004145246930420399,
0.10649481415748596,
-0.3328333795070648,
-0.14239539206027985,
0.14292855560779572,
0.12525321543216705,
0.05752275884151459,
-0.130907341837883,
-0.03605283051729202,
0.00013091940490994602,
-0.07865435630083084,
0.0912465900182724,
-0.08149254322052002,
0.14934785664081573,
-0.006919337902218103,
0.11382922530174255,
0.023554915562272072,
-0.060805544257164,
0.10803208500146866,
0.02452465333044529,
0.05943433195352554,
-0.030344752594828606,
-0.01987464167177677,
-0.004857208114117384,
-0.024380235001444817,
0.011367565020918846,
-0.04934056103229523,
0.017909877002239227,
-0.07776401191949844,
-0.04143449291586876,
-0.11073822528123856,
0.02392500266432762,
-0.016548100858926773,
-0.05639323219656944,
-0.014065694995224476,
0.027849696576595306,
0.05594656616449356,
0.0030579983722418547,
0.07571468502283096,
-0.05926806852221489,
0.13687200844287872,
0.10030045360326767,
0.11810826510190964,
-0.03060215339064598,
-0.05535431578755379,
-0.0007386225624941289,
-0.02094789780676365,
0.046123065054416656,
-0.08996480703353882,
0.01794401928782463,
0.16001452505588531,
0.05491172894835472,
0.1347094476222992,
0.08048679679632187,
-0.061647601425647736,
0.025821493938565254,
0.03995967283844948,
-0.12946151196956635,
-0.13171182572841644,
-0.006010845303535461,
-0.03758759796619415,
-0.0840613916516304,
0.04120359569787979,
0.10253290086984634,
-0.06257550418376923,
-0.006314931437373161,
-0.01443435624241829,
0.007677602116018534,
-0.06928708404302597,
0.2292211651802063,
0.059869538992643356,
0.0529833659529686,
-0.11436871439218521,
0.06363669037818909,
0.037111714482307434,
-0.1419776827096939,
0.04545643925666809,
0.10009143501520157,
-0.07050769776105881,
-0.032020583748817444,
0.017128074541687965,
0.13142432272434235,
-0.023137472569942474,
-0.05454433336853981,
-0.12400081008672714,
-0.1439129263162613,
0.09654968976974487,
0.19294588267803192,
0.058406416326761246,
0.009649546816945076,
-0.0778987780213356,
0.03066154569387436,
-0.13101589679718018,
0.07674692571163177,
0.0498155914247036,
0.042977750301361084,
-0.11661864072084427,
0.20302096009254456,
0.016505230218172073,
0.04320695623755455,
-0.022484181448817253,
-0.0019481118069961667,
-0.11535821110010147,
0.05954505503177643,
-0.1312047392129898,
-0.01972087472677231,
-0.033782828599214554,
-0.007136882282793522,
-0.002741120057180524,
-0.07057196646928787,
-0.05922083184123039,
0.016494207084178925,
-0.11629830300807953,
-0.016990993171930313,
0.009748696349561214,
0.03169182315468788,
-0.11966636776924133,
-0.03113476186990738,
0.02603294514119625,
-0.07708746194839478,
0.0945044681429863,
0.09594982862472534,
-0.02064749412238598,
0.07557482272386551,
-0.1560376137495041,
-0.021841730922460556,
0.05323703587055206,
-0.0002049610047833994,
0.04978566616773605,
-0.10625874251127243,
-0.0156171303242445,
-0.017983652651309967,
0.06667947769165039,
0.025852786377072334,
0.0846029594540596,
-0.11476806551218033,
0.008990929462015629,
-0.034895192831754684,
-0.06449714303016663,
-0.07074177265167236,
0.03967580199241638,
0.06759746372699738,
0.04502340033650398,
0.14236319065093994,
-0.09773244708776474,
0.0713571086525917,
-0.19610488414764404,
0.004013096913695335,
-0.03382158651947975,
-0.08137229084968567,
-0.059489257633686066,
-0.04859227314591408,
0.10096988081932068,
-0.06621373444795609,
0.12173453718423843,
-0.019519146531820297,
0.06542795896530151,
0.017182689160108566,
-0.07560185343027115,
-0.026135141029953957,
0.049773458391427994,
0.22906750440597534,
0.04885638505220413,
-0.051653627306222916,
0.0640447810292244,
0.0474516786634922,
0.09187739342451096,
0.18422982096672058,
0.1909758597612381,
0.1852409988641739,
0.04331167787313461,
0.1018202006816864,
0.06874928623437881,
-0.0887993574142456,
-0.13939040899276733,
0.07213026285171509,
-0.06406675279140472,
0.09131637960672379,
-0.03089294396340847,
0.27141857147216797,
0.06537306308746338,
-0.16103088855743408,
0.06640761345624924,
-0.04720815643668175,
-0.10851714015007019,
-0.1124228909611702,
-0.0294183362275362,
-0.07374627888202667,
-0.1409999281167984,
0.0075592598877847195,
-0.10608840733766556,
0.0475890189409256,
0.07509338855743408,
0.04820955544710159,
-0.00040004521724767983,
0.1736796796321869,
0.027219226583838463,
0.01132875680923462,
0.11362005770206451,
0.02025645412504673,
-0.01829584687948227,
-0.08692409843206406,
-0.0819012001156807,
0.04010652005672455,
-0.018079478293657303,
0.051133278757333755,
-0.052785392850637436,
-0.11138041317462921,
0.037050891667604446,
-0.02069595456123352,
-0.10328596085309982,
0.018478231504559517,
0.006414590869098902,
0.08480095863342285,
0.060850873589515686,
0.03110898844897747,
-0.02731246128678322,
-0.021933116018772125,
0.2244497537612915,
-0.10105686634778976,
-0.0969788059592247,
-0.09427797794342041,
0.2658438980579376,
0.02735685557126999,
0.00181659369263798,
0.008797690272331238,
-0.07733361423015594,
-0.011875451542437077,
0.24086762964725494,
0.1835109144449234,
-0.08550232648849487,
0.004827525932341814,
0.007044768426567316,
0.000209997539059259,
-0.028836186975240707,
0.07466654479503632,
0.15218870341777802,
0.09427345544099808,
-0.09176868945360184,
-0.04601743444800377,
-0.0526464618742466,
-0.038854725658893585,
-0.033011991530656815,
0.0861997902393341,
0.042186103761196136,
-0.005159482359886169,
-0.06070839241147041,
0.08689295500516891,
-0.1218114048242569,
-0.1195443645119667,
0.03125690296292305,
-0.22776345908641815,
-0.16777478158473969,
-0.01946130208671093,
0.07430119067430496,
0.033909253776073456,
0.041569340974092484,
-0.017426155507564545,
-0.001297911163419485,
0.06581727415323257,
0.0013830377720296383,
-0.0738905817270279,
-0.0468255952000618,
0.07063864916563034,
-0.09173531830310822,
0.15016546845436096,
-0.052905190736055374,
0.068050816655159,
0.1148127093911171,
0.10484421998262405,
-0.042409498244524,
0.08913303166627884,
0.05362311005592346,
-0.12655457854270935,
0.03511400893330574,
0.1838226020336151,
-0.041261035948991776,
0.08986642956733704,
0.041949812322854996,
-0.14761829376220703,
0.04143727943301201,
-0.0757807195186615,
-0.06318017840385437,
-0.04981842264533043,
-0.03854231536388397,
-0.04470812901854515,
0.12009411305189133,
0.1881646066904068,
-0.04139705374836922,
0.009704675525426865,
-0.06152604520320892,
-0.009886637330055237,
0.035794127732515335,
0.07317820191383362,
-0.07213467359542847,
-0.2721250653266907,
0.009841972962021828,
0.013579953461885452,
-0.0022460666950792074,
-0.27718809247016907,
-0.08114158362150192,
0.025863535702228546,
-0.06226150691509247,
-0.06912156939506531,
0.09351218491792679,
0.07110096514225006,
0.05831169709563255,
-0.04484178125858307,
-0.08193827420473099,
-0.024965159595012665,
0.1950874626636505,
-0.17891860008239746,
-0.06747063994407654
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# daniel_asr
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4565
- Wer: 0.3423
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4909 | 4.0 | 500 | 1.3485 | 0.8887 |
| 0.5887 | 8.0 | 1000 | 0.4957 | 0.4641 |
| 0.2207 | 12.0 | 1500 | 0.4621 | 0.3971 |
| 0.125 | 16.0 | 2000 | 0.4339 | 0.3756 |
| 0.0829 | 20.0 | 2500 | 0.4618 | 0.3613 |
| 0.0601 | 24.0 | 3000 | 0.4564 | 0.3535 |
| 0.0456 | 28.0 | 3500 | 0.4565 | 0.3423 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "daniel_asr", "results": []}]}
|
automatic-speech-recognition
|
danielbubiola/daniel_asr
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
|
daniel\_asr
===========
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4565
* Wer: 0.3423
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 30
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.10.0+cu111
* Datasets 1.13.3
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
56,
130,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
-0.10822959244251251,
0.099675752222538,
-0.003300065640360117,
0.06340761482715607,
0.10860926657915115,
-0.020167825743556023,
0.1288769543170929,
0.15049001574516296,
-0.09271349757909775,
0.07457399368286133,
0.12636904418468475,
0.1505885273218155,
0.04232662543654442,
0.1459311991930008,
-0.05005314201116562,
-0.2829117476940155,
0.046162717044353485,
0.0348406657576561,
-0.0121766971424222,
0.12717968225479126,
0.08421128243207932,
-0.12457819283008575,
0.057947319000959396,
0.034365277737379074,
-0.1584104299545288,
-0.003970644436776638,
-0.005117249675095081,
-0.10462873429059982,
0.12317385524511337,
0.006251727696508169,
0.07064329087734222,
0.04838201776146889,
0.06631770730018616,
-0.2193475365638733,
0.006690362934023142,
0.043937861919403076,
0.028387419879436493,
0.07415802031755447,
0.0581994503736496,
-0.02945130504667759,
0.10399823635816574,
-0.07501231133937836,
0.08020306378602982,
0.03743743896484375,
-0.10571174323558807,
-0.29113149642944336,
-0.08603336662054062,
0.04763360694050789,
0.06857916712760925,
0.08891522884368896,
-0.012067495845258236,
0.144022136926651,
-0.05461663380265236,
0.11053165048360825,
0.28164494037628174,
-0.31383398175239563,
-0.04501998424530029,
-0.03997642174363136,
0.05645865947008133,
0.060465965420007706,
-0.09994802623987198,
-0.017910847440361977,
0.015012132935225964,
0.044832006096839905,
0.13800188899040222,
-0.016268642619252205,
-0.05933629348874092,
-0.006875182036310434,
-0.149040088057518,
-0.060275666415691376,
0.11524058878421783,
0.022648070007562637,
-0.039792802184820175,
-0.09874942153692245,
-0.055090054869651794,
-0.21280622482299805,
-0.06727685779333115,
-0.01608140580356121,
0.04322221875190735,
-0.0424761027097702,
-0.10445226728916168,
-0.011462483555078506,
-0.067214734852314,
-0.07468024641275406,
-0.04020216315984726,
0.19049659371376038,
0.0569683313369751,
-0.0015599278267472982,
-0.03913375735282898,
0.07671435922384262,
-0.02081478387117386,
-0.13849472999572754,
-0.024057583883404732,
0.036882609128952026,
-0.020599735900759697,
-0.01540920790284872,
-0.041751619428396225,
-0.059525419026613235,
0.02147202007472515,
0.16159066557884216,
-0.10229084640741348,
0.09610845148563385,
-0.02040909230709076,
0.03964505344629288,
-0.1023506298661232,
0.20751461386680603,
-0.04149479418992996,
0.017300888895988464,
-0.01036039274185896,
0.055753905326128006,
0.029493195936083794,
-0.026112813502550125,
-0.0944448858499527,
0.03134589642286301,
0.1209908202290535,
0.04713206738233566,
-0.04747193679213524,
0.06453514844179153,
-0.034078627824783325,
-0.00976975541561842,
0.0015425614546984434,
-0.1116979643702507,
0.036166802048683167,
0.019734438508749008,
-0.06563939899206161,
0.004243024159222841,
0.014517679810523987,
0.007364774588495493,
-0.054604124277830124,
0.08333495259284973,
-0.06161367520689964,
0.03338611125946045,
-0.05673642084002495,
-0.1255759745836258,
0.0254832673817873,
-0.11468040943145752,
-0.003398764180019498,
-0.09991598129272461,
-0.10067108273506165,
-0.011766123585402966,
0.03731279447674751,
-0.03822978585958481,
-0.02582731656730175,
-0.07831884920597076,
-0.0903376117348671,
0.045774877071380615,
-0.03446253389120102,
0.07107189297676086,
-0.07455966621637344,
0.09409195184707642,
0.03365432471036911,
0.08763306587934494,
-0.01564944162964821,
0.06029713898897171,
-0.07134567946195602,
0.026744363829493523,
-0.19970214366912842,
0.07492507249116898,
-0.08829209953546524,
0.05765917897224426,
-0.12506166100502014,
-0.11516561359167099,
0.02212962694466114,
-0.007345497142523527,
0.09889665991067886,
0.0976170003414154,
-0.17107638716697693,
-0.08861831575632095,
0.20791228115558624,
-0.08212082087993622,
-0.08377639949321747,
0.12448340654373169,
-0.02486608363687992,
-0.00034487590892240405,
0.05570755526423454,
0.25771892070770264,
0.04567098990082741,
-0.12561871111392975,
0.007944315671920776,
-0.040438469499349594,
0.0426238514482975,
-0.035683345049619675,
0.058901671320199966,
-0.028174052014946938,
0.06841765344142914,
0.01783875562250614,
-0.004300459288060665,
0.0377449095249176,
-0.08730132132768631,
-0.0771728903055191,
-0.043716900050640106,
-0.07817266881465912,
0.029336441308259964,
0.032532043755054474,
0.06398753076791763,
-0.11690137535333633,
-0.10784720629453659,
0.03895878419280052,
0.0814940482378006,
-0.10364940762519836,
0.07184524834156036,
-0.1202312484383583,
0.08338981866836548,
-0.01493844948709011,
-0.005216938443481922,
-0.19063900411128998,
0.03534865006804466,
0.03775133937597275,
-0.028579330071806908,
0.04033041372895241,
-0.06452071666717529,
0.07755736261606216,
0.045356228947639465,
-0.026059629395604134,
-0.04673822969198227,
-0.009306485764682293,
0.010259725153446198,
-0.08931370079517365,
-0.20704664289951324,
-0.03785887360572815,
-0.038044244050979614,
0.07835710793733597,
-0.13819026947021484,
0.034040216356515884,
0.07705976814031601,
0.0922568067908287,
0.032501887530088425,
-0.03155825659632683,
-0.0013533032033592463,
0.08992743492126465,
-0.020763428881764412,
-0.06439613550901413,
0.05805477127432823,
0.020028982311487198,
-0.08660950511693954,
0.03891601413488388,
-0.14935077726840973,
0.12675049901008606,
0.14704614877700806,
-0.015051227062940598,
-0.06689473241567612,
0.00010667734750313684,
-0.04766694828867912,
-0.03477296233177185,
-0.0042805140838027,
0.03377611190080643,
0.2151905596256256,
0.013937880285084248,
0.14332830905914307,
-0.0892372876405716,
-0.04220341518521309,
0.04966939240694046,
-0.02212832309305668,
-0.0064864978194236755,
0.11720538139343262,
0.0451214499771595,
-0.05501340702176094,
0.11844924837350845,
0.0907815545797348,
-0.0788188949227333,
0.12142251431941986,
-0.06029483675956726,
-0.07461198419332504,
-0.020842645317316055,
0.005617763847112656,
0.023748908191919327,
0.09859650582075119,
-0.16244098544120789,
-0.039806708693504333,
0.025940977036952972,
0.025764435529708862,
0.020472196862101555,
-0.20870044827461243,
0.014138329774141312,
0.02901417203247547,
-0.08571688830852509,
-0.04336029291152954,
0.0030441186390817165,
0.012708943337202072,
0.09419949352741241,
0.01257222518324852,
-0.0939040407538414,
0.01075243204832077,
0.003870375920087099,
-0.07392288744449615,
0.1760009527206421,
-0.11667042225599289,
-0.17668895423412323,
-0.10546509921550751,
-0.09277024120092392,
-0.03984987363219261,
-0.002946222200989723,
0.08907544612884521,
-0.09253612160682678,
-0.03951948508620262,
-0.08322479575872421,
-0.015800848603248596,
-0.02584817260503769,
0.041999366134405136,
0.0313355028629303,
-0.011593472212553024,
0.06448721885681152,
-0.11675503849983215,
-0.021844986826181412,
-0.0398770235478878,
-0.0008108904585242271,
0.05417420715093613,
0.03741366043686867,
0.10862545669078827,
0.15839046239852905,
-0.01037275604903698,
0.050479814410209656,
-0.0457041934132576,
0.18834930658340454,
-0.07471095770597458,
-0.03741134703159332,
0.11121487617492676,
-0.0058354721404612064,
0.06876740604639053,
0.11724447458982468,
0.048488009721040726,
-0.09788484871387482,
-0.012771572917699814,
0.004045606590807438,
-0.04586487263441086,
-0.21520774066448212,
-0.03567230701446533,
-0.04488169774413109,
-0.0015765558928251266,
0.10597339272499084,
0.04105941206216812,
0.03757038712501526,
0.021633010357618332,
0.03250035271048546,
0.0055378032848238945,
0.0024906140752136707,
0.09663364291191101,
0.1290869563817978,
0.040204159915447235,
0.13291816413402557,
-0.03813957795500755,
-0.03726104274392128,
0.030234666541218758,
0.00462446128949523,
0.23055092990398407,
0.019664591178297997,
0.19055898487567902,
0.056628961116075516,
0.17497165501117706,
0.04161965847015381,
0.06674608588218689,
-0.001665950519964099,
-0.011428255587816238,
0.011377641931176186,
-0.05277388170361519,
-0.039488013833761215,
0.024215510115027428,
0.024078506976366043,
0.010328367352485657,
-0.11433999240398407,
-0.011104782111942768,
0.046694785356521606,
0.35245031118392944,
0.028211859986186028,
-0.33761468529701233,
-0.09064370393753052,
-0.012201257050037384,
-0.08551396429538727,
-0.030578618869185448,
0.04586395248770714,
0.08793317526578903,
-0.08076810091733932,
0.06415379047393799,
-0.062390632927417755,
0.08992937952280045,
-0.0642600953578949,
0.03401235491037369,
0.03723759949207306,
0.07146970927715302,
0.004128440748900175,
0.03326454013586044,
-0.29203230142593384,
0.28165560960769653,
0.005191357806324959,
0.07652265578508377,
-0.06112175062298775,
0.008107251487672329,
0.025618722662329674,
0.01830456405878067,
0.08772759884595871,
-0.025723259896039963,
-0.11981545388698578,
-0.17462708055973053,
-0.09302173554897308,
0.011321182362735271,
0.12884265184402466,
0.01404081005603075,
0.11067666113376617,
-0.011263678781688213,
-0.016661478206515312,
0.049431778490543365,
-0.09618551284074783,
-0.06534599512815475,
-0.09206702560186386,
0.011860211379826069,
0.08234149217605591,
0.03347118943929672,
-0.07286433130502701,
-0.10325606167316437,
-0.08850222080945969,
0.14942961931228638,
-0.05208592489361763,
-0.042645301669836044,
-0.11885630339384079,
0.008311794139444828,
0.109124094247818,
-0.07936578243970871,
0.06090658903121948,
0.009680752642452717,
0.10459772497415543,
0.011390188708901405,
-0.06779034435749054,
0.11945819109678268,
-0.06419113278388977,
-0.16671337187290192,
-0.028847509995102882,
0.14494214951992035,
0.03056386671960354,
0.060433026403188705,
-0.008058210834860802,
0.038120876997709274,
-0.021853651851415634,
-0.0774228423833847,
0.0406605489552021,
0.026499440893530846,
0.0439123660326004,
-0.013164152391254902,
-0.018967239186167717,
-0.006070209201425314,
-0.09074874222278595,
-0.01814614050090313,
0.2064867615699768,
0.24344108998775482,
-0.09640686959028244,
0.09291441738605499,
0.06943506747484207,
-0.042097147554159164,
-0.17234089970588684,
-0.0038790483959019184,
0.06509050726890564,
0.000005351470463210717,
-0.0248651634901762,
-0.1938454508781433,
0.023908907547593117,
0.06926876306533813,
-0.020998604595661163,
0.08171622455120087,
-0.3183232247829437,
-0.1406307816505432,
0.1374066323041916,
0.11396436393260956,
0.059524938464164734,
-0.14593273401260376,
-0.05537234991788864,
-0.010357857681810856,
-0.1036871075630188,
0.09447412192821503,
-0.07449747622013092,
0.1356905996799469,
-0.02407083474099636,
0.09048546850681305,
0.011327960528433323,
-0.05825302377343178,
0.10642484575510025,
0.012443309649825096,
0.059944190084934235,
-0.045728690922260284,
0.017388567328453064,
0.04785845801234245,
-0.06322921067476273,
0.055156588554382324,
-0.08024109899997711,
0.02839946746826172,
-0.08033619076013565,
-0.03248301148414612,
-0.08508959412574768,
0.01420549862086773,
-0.009605566039681435,
-0.0333847776055336,
-0.037120092660188675,
0.0018844814039766788,
0.06282699108123779,
-0.010366815142333508,
0.15573710203170776,
-0.027310438454151154,
0.12642912566661835,
0.16214096546173096,
0.10141889750957489,
-0.10404428839683533,
-0.07683391124010086,
0.005353863351047039,
-0.03425366058945656,
0.05507161468267441,
-0.11772949248552322,
0.0374416708946228,
0.1360854059457779,
0.031792279332876205,
0.1228531077504158,
0.06948218494653702,
-0.06524974852800369,
0.03323432430624962,
0.04207287356257439,
-0.13784939050674438,
-0.12749193608760834,
0.013279353268444538,
0.02333078719675541,
-0.07195265591144562,
0.07305441796779633,
0.11555314809083939,
-0.055095698684453964,
-0.013801833614706993,
-0.0019095407333225012,
0.013798229396343231,
-0.04101138189435005,
0.19526535272598267,
0.03678850829601288,
0.06154259294271469,
-0.1245705634355545,
0.08053390681743622,
0.038583576679229736,
-0.1331944614648819,
0.060929812490940094,
0.10616770386695862,
-0.09484384208917618,
-0.02851886674761772,
0.028711074963212013,
0.11185205727815628,
-0.028263479471206665,
-0.07390765845775604,
-0.14269445836544037,
-0.1429070234298706,
0.10887688398361206,
0.20547187328338623,
0.056251514703035355,
0.016643211245536804,
-0.05918126553297043,
0.016913002356886864,
-0.11840061843395233,
0.06926038861274719,
0.04077918455004692,
0.06004178896546364,
-0.1290147453546524,
0.14634470641613007,
0.01732582412660122,
0.03992059826850891,
-0.014602077193558216,
-0.011380162090063095,
-0.11204449087381363,
0.03977004438638687,
-0.12899863719940186,
0.004968761000782251,
-0.06649181246757507,
0.0010107652051374316,
0.003637960646301508,
-0.04961981624364853,
-0.06380630284547806,
0.034933269023895264,
-0.11994827538728714,
-0.023454628884792328,
0.0013668711762875319,
0.03702240437269211,
-0.12869490683078766,
-0.00937681831419468,
0.01491378154605627,
-0.09351558983325958,
0.09738873690366745,
0.08695000410079956,
-0.03262457251548767,
0.05093376338481903,
-0.060065679252147675,
-0.026180030778050423,
0.07850224524736404,
-0.006546197924762964,
0.05116262659430504,
-0.13098447024822235,
-0.019763074815273285,
0.011079980991780758,
0.034322094172239304,
0.024183884263038635,
0.11216950416564941,
-0.11596840620040894,
0.0009172951686196029,
-0.027726253494620323,
-0.05208310857415199,
-0.06831369549036026,
0.05034910887479782,
0.10944218933582306,
0.027158264070749283,
0.16378004848957062,
-0.09329521656036377,
0.02864367887377739,
-0.1659409999847412,
0.006244651973247528,
-0.015402473509311676,
-0.12141422927379608,
-0.05091831088066101,
-0.031923726201057434,
0.07782353460788727,
-0.06372612714767456,
0.12926429510116577,
-0.0302314143627882,
0.02521517500281334,
0.03747618943452835,
-0.07651915401220322,
-0.05347057059407234,
0.039878156036138535,
0.20521073043346405,
0.038992080837488174,
-0.04332895576953888,
0.0748397707939148,
0.020881792530417442,
0.08104509860277176,
0.12795478105545044,
0.17392674088478088,
0.16054309904575348,
0.06415445357561111,
0.11675389856100082,
0.0548175610601902,
-0.05325957387685776,
-0.17404964566230774,
0.09129635989665985,
-0.05973295867443085,
0.1303301602602005,
-0.013782957568764687,
0.2406129240989685,
0.12073571979999542,
-0.15380768477916718,
0.06590574234724045,
-0.019002273678779602,
-0.08930869400501251,
-0.11625064164400101,
-0.0640975832939148,
-0.08643919974565506,
-0.17592790722846985,
0.009026954881846905,
-0.10206138342618942,
0.06300023943185806,
0.046582844108343124,
0.037413351237773895,
0.016993701457977295,
0.1380058079957962,
0.015221303328871727,
0.0026881019584834576,
0.09175070375204086,
-0.003382439725100994,
-0.055894702672958374,
-0.07345172762870789,
-0.0844438374042511,
0.03444278612732887,
-0.013464136980473995,
0.0579255074262619,
-0.0041413637809455395,
-0.06932219862937927,
0.04745379090309143,
-0.038733821362257004,
-0.09639431536197662,
0.023092305287718773,
0.02144113928079605,
0.06993499398231506,
0.050396792590618134,
0.03458376228809357,
-0.041390322148799896,
-0.0023561420384794474,
0.19505612552165985,
-0.09454663842916489,
-0.09351488947868347,
-0.10949129611253738,
0.25379374623298645,
0.039379071444272995,
-0.015554843470454216,
0.02151809260249138,
-0.060560062527656555,
-0.03180092200636864,
0.2114194929599762,
0.1723226010799408,
-0.01116170920431614,
0.004614291246980429,
-0.01414461899548769,
-0.006181462202221155,
-0.03659471869468689,
0.07935505360364914,
0.14721040427684784,
0.0624801442027092,
-0.06336896121501923,
-0.051964882761240005,
-0.05117638781666756,
-0.03481784462928772,
-0.06592334061861038,
0.07547760754823685,
0.006828696001321077,
-0.025172237306833267,
-0.044893521815538406,
0.06380100548267365,
-0.09479472041130066,
-0.08201537281274796,
0.024797851219773293,
-0.19570329785346985,
-0.14996619522571564,
0.006833694875240326,
0.07076682895421982,
0.011772987432777882,
0.034874558448791504,
0.003135041566565633,
-0.009663884527981281,
0.08166079223155975,
-0.0014469854068011045,
-0.08074266463518143,
-0.06594680994749069,
0.08451119065284729,
-0.1334533542394638,
0.1663215011358261,
-0.04209939017891884,
0.04780808091163635,
0.12325333803892136,
0.08858786523342133,
-0.08054462820291519,
0.08672730624675751,
0.04238315671682358,
-0.10697498172521591,
0.021263642236590385,
0.1536252200603485,
-0.033488329499959946,
0.09508569538593292,
0.030688641592860222,
-0.11497800052165985,
0.014703071676194668,
-0.08972270041704178,
-0.03808770328760147,
-0.04114031791687012,
-0.050166599452495575,
-0.044312071055173874,
0.10966888070106506,
0.1632404923439026,
-0.04387403652071953,
0.003933595027774572,
-0.05213035270571709,
0.011972117237746716,
0.04762331768870354,
-0.0004025105736218393,
-0.061575230211019516,
-0.27876561880111694,
0.011589550413191319,
0.036713045090436935,
0.0030818863306194544,
-0.2576640844345093,
-0.09719633311033249,
0.013703498058021069,
-0.04294035583734512,
-0.08798902481794357,
0.08574584126472473,
0.07478064298629761,
0.04632873460650444,
-0.0524776466190815,
-0.057823486626148224,
-0.03551657870411873,
0.18890078365802765,
-0.1751941740512848,
-0.05986809358000755
] |
null | null |
spacy
|
| Feature | Description |
| --- | --- |
| **Name** | `en_acnl_electra_pipeline` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.1.3,<3.2.0` |
| **Default Pipeline** | `transformer`, `tagger`, `parser` |
| **Components** | `transformer`, `tagger`, `parser` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | GPL |
| **Author** | Daniel VasiΔ() |
### Label Scheme
<details>
<summary>View label scheme (87 labels for 2 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `VERB`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `dative`, `dep`, `det`, `dobj`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nummod`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TAG_ACC` | 97.69 |
| `DEP_UAS` | 95.77 |
| `DEP_LAS` | 94.52 |
| `SENTS_P` | 95.09 |
| `SENTS_R` | 94.81 |
| `SENTS_F` | 94.95 |
| `TRANSFORMER_LOSS` | 6123357.72 |
| `TAGGER_LOSS` | 338995.26 |
| `PARSER_LOSS` | 4101825.66 |
|
{"language": ["en"], "tags": ["spacy", "token-classification"]}
|
token-classification
|
danielvasic/en_acnl_electra_pipeline
|
[
"spacy",
"token-classification",
"en",
"model-index",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#spacy #token-classification #en #model-index #region-us
|
### Label Scheme
View label scheme (87 labels for 2 components)
### Accuracy
|
[
"### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)",
"### Accuracy"
] |
[
"TAGS\n#spacy #token-classification #en #model-index #region-us \n",
"### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)",
"### Accuracy"
] |
[
21,
17,
5
] |
[
"passage: TAGS\n#spacy #token-classification #en #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)### Accuracy"
] |
[
-0.057152312248945236,
0.13800309598445892,
-0.0033150282688438892,
0.012250912375748158,
0.0830731987953186,
0.06638222187757492,
0.20220614969730377,
0.08131004869937897,
0.2455916553735733,
0.06313537806272507,
0.018921395763754845,
0.06293158233165741,
0.06318740546703339,
0.2671758532524109,
-0.12007240951061249,
-0.26282915472984314,
0.0829298123717308,
-0.008438033983111382,
0.06422018259763718,
0.1368921548128128,
0.0628293976187706,
-0.13070359826087952,
0.050118036568164825,
-0.05853686481714249,
-0.22085127234458923,
0.023273572325706482,
0.03060390055179596,
-0.09133976697921753,
0.06963930279016495,
-0.04468533396720886,
0.23156920075416565,
0.016941513866186142,
0.0637373998761177,
-0.21542714536190033,
-0.0008655186975374818,
-0.02269713021814823,
-0.03820877894759178,
0.09244001656770706,
0.050130050629377365,
0.0032324804924428463,
-0.039988357573747635,
-0.05592114478349686,
0.06124134734272957,
0.028903618454933167,
-0.1295434981584549,
-0.14392633736133575,
-0.03996284678578377,
0.1505800485610962,
0.12900204956531525,
-0.08970668911933899,
-0.003804229898378253,
0.09081469476222992,
-0.062423914670944214,
0.051486410200595856,
0.1477360725402832,
-0.29435595870018005,
-0.0018454663222655654,
0.1913992017507553,
-0.07786543667316437,
0.09305085241794586,
-0.023037247359752655,
0.12768469750881195,
0.11329462379217148,
-0.04462427645921707,
-0.03663673251867294,
0.0031230763997882605,
0.07006819546222687,
0.00789865106344223,
-0.11953528970479965,
-0.07675537467002869,
0.4525396525859833,
0.11387424916028976,
-0.016987251117825508,
-0.09286662936210632,
-0.11032483726739883,
-0.12167204171419144,
-0.08495309203863144,
-0.08577335625886917,
0.05319289490580559,
0.01223006471991539,
0.13651618361473083,
0.07412046194076538,
-0.09842687845230103,
-0.0721902847290039,
-0.1683671921491623,
0.26262980699539185,
0.0023303686175495386,
0.09180504083633423,
-0.17533153295516968,
0.014683948829770088,
-0.14241154491901398,
-0.08631644397974014,
0.01997695490717888,
-0.08359312266111374,
-0.11601488292217255,
-0.042401645332574844,
0.05179128795862198,
0.09178037196397781,
0.042571209371089935,
0.037077855318784714,
-0.01833527162671089,
0.04958958178758621,
-0.02680257149040699,
0.06692151725292206,
0.13081727921962738,
0.18758609890937805,
-0.039728160947561264,
-0.004528952296823263,
-0.06994414329528809,
-0.06705186516046524,
0.049543898552656174,
-0.04075894132256508,
-0.13438786566257477,
-0.01957840286195278,
0.11715883761644363,
0.08018650859594345,
-0.0618702732026577,
-0.0815625786781311,
-0.11780805140733719,
-0.06582112610340118,
0.08426586538553238,
-0.11751954257488251,
0.04108145833015442,
-0.0013597954530268908,
-0.009531412273645401,
0.0961131751537323,
-0.1339999884366989,
0.007481673266738653,
0.05094737932085991,
0.012921283952891827,
-0.09689155966043472,
0.0050482372753322124,
-0.02621474303305149,
-0.09847669303417206,
0.013584353029727936,
-0.10568928718566895,
0.014159312471747398,
-0.039157141000032425,
-0.08463284373283386,
-0.007394405081868172,
-0.016582775861024857,
-0.07162721455097198,
0.030563727021217346,
-0.020647449418902397,
-0.041690073907375336,
-0.001966511830687523,
0.02998025342822075,
-0.05780544877052307,
-0.06297149509191513,
0.0016922925133258104,
-0.023908881470561028,
0.09733322262763977,
-0.06805180758237839,
0.02888592705130577,
-0.06614413112401962,
0.0779150053858757,
-0.16934062540531158,
0.03126400336623192,
-0.04923524707555771,
0.04739852994680405,
-0.0689319297671318,
-0.06546375155448914,
-0.005043318960815668,
-0.015483845956623554,
-0.09886471927165985,
0.1560620367527008,
-0.21165572106838226,
-0.06709557771682739,
0.22005042433738708,
-0.19510029256343842,
-0.125153586268425,
0.028060471639037132,
-0.0026061367243528366,
0.06447041779756546,
0.0714440792798996,
0.1534087210893631,
0.03459012508392334,
-0.10239694267511368,
0.018506089225411415,
0.09891219437122345,
-0.06135997176170349,
-0.042909711599349976,
0.1164589524269104,
0.01933760941028595,
-0.0033746594563126564,
0.01341299433261156,
0.054750122129917145,
-0.11031518131494522,
-0.0667669028043747,
-0.06825774908065796,
-0.01837930828332901,
0.023533504456281662,
0.04877325892448425,
0.044488612562417984,
0.03172789514064789,
-0.03598916530609131,
0.017098957672715187,
0.018847018480300903,
0.05174529552459717,
0.027716947719454765,
-0.05704905837774277,
-0.032888613641262054,
0.12702998518943787,
-0.12195032835006714,
-0.0819939449429512,
-0.16076752543449402,
-0.13933810591697693,
0.05835196375846863,
0.014185702428221703,
-0.006130717229098082,
0.16627760231494904,
0.021154770627617836,
-0.005661454983055592,
0.0017038292717188597,
-0.013219759799540043,
-0.02037736587226391,
0.07236050069332123,
-0.08148198574781418,
-0.15354962646961212,
-0.0403670035302639,
-0.100799560546875,
0.03496351093053818,
-0.01162484660744667,
0.0011716692242771387,
0.15142489969730377,
0.09655783325433731,
0.06130561605095863,
0.04300365969538689,
0.03908638283610344,
0.00815635360777378,
-0.03848059102892876,
-0.045574966818094254,
0.07000467926263809,
-0.09961271286010742,
-0.05783297121524811,
-0.060301847755908966,
-0.12681743502616882,
0.10841433703899384,
0.12049197405576706,
-0.0793490782380104,
-0.04117117077112198,
-0.09276986867189407,
-0.0022112710867077112,
0.0010565642733126879,
-0.11624149978160858,
0.008813065476715565,
-0.08360216021537781,
-0.022685671225190163,
0.028390375897288322,
-0.09024903923273087,
-0.02964886836707592,
0.028971228748559952,
-0.037681251764297485,
-0.17445410788059235,
0.10558994114398956,
-0.027425043284893036,
-0.2741320729255676,
0.1482386440038681,
0.2762889862060547,
0.1803625077009201,
0.08245206624269485,
-0.023052405565977097,
-0.05459245294332504,
-0.036713916808366776,
-0.00449610548093915,
-0.08989900350570679,
0.16103336215019226,
-0.15590424835681915,
-0.023621713742613792,
0.06041721627116203,
0.05371766909956932,
0.008869505487382412,
-0.2040521204471588,
0.00045851877075619996,
0.0012867737095803022,
-0.03512196987867355,
-0.07237520068883896,
-0.049630243331193924,
0.03117859549820423,
0.14886930584907532,
0.06882447004318237,
-0.1869809329509735,
0.046950746327638626,
-0.06254755705595016,
-0.06989168375730515,
0.1506679356098175,
-0.06802543252706528,
-0.24817408621311188,
-0.14145684242248535,
-0.0485897958278656,
-0.03287768363952637,
0.05842692777514458,
-0.030157921835780144,
-0.09283468127250671,
-0.024881336838006973,
0.030614642426371574,
-0.03576026111841202,
-0.1643519401550293,
-0.03252643719315529,
-0.01015640702098608,
0.09337835758924484,
-0.13971799612045288,
-0.028741510584950447,
-0.09790706634521484,
-0.10327740013599396,
0.12229204922914505,
0.09207667410373688,
-0.18514838814735413,
0.07657281309366226,
0.305261492729187,
-0.05828725919127464,
0.09632711857557297,
0.005444981623440981,
0.079426109790802,
-0.08621656894683838,
0.04065782204270363,
0.1003747209906578,
0.03562196344137192,
0.058586906641721725,
0.2502802610397339,
0.05723921209573746,
-0.13960421085357666,
-0.0382801778614521,
-0.053739067167043686,
-0.11503519862890244,
-0.1299077272415161,
-0.1213003620505333,
-0.043341848999261856,
-0.051060304045677185,
0.04521794244647026,
0.01262952946126461,
-0.009240075014531612,
0.06193150579929352,
0.01116043608635664,
-0.04215052351355553,
0.029156584292650223,
0.04077644273638725,
0.05693695694208145,
-0.04966011643409729,
0.0776301696896553,
-0.03603509068489075,
-0.07717160880565643,
0.09677641093730927,
0.08092992007732391,
0.16702954471111298,
0.18737465143203735,
-0.004925957415252924,
0.045723333954811096,
0.006592819932848215,
0.13349279761314392,
0.09156155586242676,
0.1371668130159378,
-0.009421689435839653,
-0.03791619464755058,
-0.056122660636901855,
-0.016057001426815987,
0.07575606554746628,
-0.007654028944671154,
-0.0593695268034935,
-0.07349181920289993,
-0.06270252168178558,
0.06256448477506638,
0.00851444061845541,
0.2904307246208191,
-0.20452934503555298,
0.015977049246430397,
0.13573551177978516,
0.08796423673629761,
-0.10869663953781128,
0.07228608429431915,
0.05202128738164902,
-0.09790775924921036,
0.0604483038187027,
-0.014946878887712955,
0.12563681602478027,
-0.1140604242682457,
-0.016761427745223045,
-0.09792184829711914,
-0.07463736832141876,
-0.011510838754475117,
0.10679370164871216,
-0.019508184865117073,
0.35984137654304504,
0.0355466827750206,
-0.058124978095293045,
-0.05939790606498718,
-0.008658098988234997,
0.010624154470860958,
0.2033543437719345,
0.21638600528240204,
0.05093038082122803,
-0.20038531720638275,
-0.20919132232666016,
-0.03650602698326111,
-0.025199485942721367,
0.1732368916273117,
-0.07035110145807266,
0.022069646045565605,
0.009954690001904964,
0.0024179648607969284,
-0.008838384412229061,
0.0335104838013649,
-0.01984229125082493,
0.002993224188685417,
0.028415972366929054,
0.0779053121805191,
-0.10584351420402527,
-0.005153282079845667,
-0.07713568955659866,
-0.12288744747638702,
0.16858522593975067,
-0.03255358710885048,
-0.10297685116529465,
-0.0900120958685875,
0.0009093452827073634,
0.10466041415929794,
-0.04277057945728302,
-0.03668851777911186,
-0.05520283803343773,
0.17188268899917603,
0.006451378110796213,
-0.098769910633564,
0.1349518746137619,
-0.01687386818230152,
-0.03547317534685135,
-0.060361143201589584,
0.1626829206943512,
-0.015803981572389603,
-0.015580661594867706,
0.07602816820144653,
0.08627356588840485,
-0.025707243010401726,
-0.10096614062786102,
0.12422196567058563,
0.011809981428086758,
0.0270732119679451,
0.30106639862060547,
-0.08433733135461807,
-0.14133386313915253,
-0.04531488195061684,
0.0973440632224083,
0.10929147154092789,
0.2550390362739563,
-0.09569846838712692,
0.05983462929725647,
0.0854097530245781,
-0.03131996467709541,
-0.1718723028898239,
-0.036555834114551544,
-0.15424366295337677,
0.040438469499349594,
-0.02543683350086212,
-0.05183150991797447,
0.12090382725000381,
0.042068060487508774,
-0.08526752144098282,
0.02590012364089489,
-0.2023628056049347,
-0.055439580231904984,
0.21835659444332123,
0.054207514971494675,
0.20664182305335999,
-0.043812867254018784,
-0.12076068669557571,
-0.0696553960442543,
-0.18828962743282318,
0.15783001482486725,
0.026463063433766365,
0.08401717990636826,
-0.06514384597539902,
0.0025628209114074707,
0.04725109413266182,
-0.013034343719482422,
0.22904275357723236,
0.10281534492969513,
0.09121250361204147,
0.019891485571861267,
-0.1974612921476364,
0.16928261518478394,
-0.020716482773423195,
0.009841732680797577,
0.21796312928199768,
0.03969115391373634,
-0.14379671216011047,
-0.015147880651056767,
-0.00014895452477503568,
-0.0008342427900061011,
-0.03542499989271164,
-0.0774906575679779,
-0.09957122057676315,
-0.004035636316984892,
-0.06400809437036514,
-0.045811742544174194,
0.2937476933002472,
-0.03165191784501076,
0.13660037517547607,
0.14512644708156586,
-0.009330184198915958,
-0.11667399108409882,
0.013384700752794743,
-0.08933872729539871,
-0.05322686955332756,
0.060300327837467194,
-0.17191043496131897,
0.07864382863044739,
0.13197541236877441,
0.06327632069587708,
0.12255186587572098,
0.12299492210149765,
-0.03383553400635719,
-0.04544408246874809,
0.11586346477270126,
-0.1097799763083458,
-0.19760185480117798,
-0.01583540253341198,
-0.19223551452159882,
-0.013159403577446938,
0.057075146585702896,
0.05705895647406578,
0.044730592519044876,
-0.01871422491967678,
0.004843065049499273,
0.037969909608364105,
-0.04444088041782379,
0.09457902610301971,
0.0261592585593462,
0.07026853412389755,
-0.13502514362335205,
0.12316496670246124,
0.0699426680803299,
0.0038242621812969446,
-0.07196854054927826,
-0.04781164973974228,
-0.12240660935640335,
-0.031008051708340645,
0.013658490031957626,
0.13749904930591583,
-0.12549707293510437,
-0.1013883501291275,
-0.07065417617559433,
-0.14969173073768616,
0.016811517998576164,
0.09401708841323853,
0.15861397981643677,
0.1136108785867691,
0.007114945445209742,
-0.11242792010307312,
0.04267791658639908,
0.04491377994418144,
-0.03274621441960335,
0.016640707850456238,
-0.23788024485111237,
0.013984528370201588,
-0.0467904657125473,
0.1403784304857254,
-0.11435999721288681,
-0.09522054344415665,
-0.11389242112636566,
0.00526709808036685,
-0.03234682232141495,
0.057372771203517914,
-0.03038076125085354,
-0.010458080098032951,
-0.005780900362879038,
-0.028342844918370247,
-0.05869007110595703,
-0.026725299656391144,
-0.10660036653280258,
0.06118190661072731,
-0.02785356715321541,
0.12292170524597168,
-0.09209985285997391,
-0.03125116229057312,
0.10292289406061172,
-0.030727505683898926,
0.0673142746090889,
0.05433689430356026,
0.034987159073352814,
0.060986850410699844,
-0.20531797409057617,
-0.00569527642801404,
0.11099904775619507,
0.029557963833212852,
0.09918348491191864,
-0.1401883065700531,
0.0033174825366586447,
0.017630496993660927,
-0.05018268898129463,
0.08693228662014008,
-0.04597897082567215,
-0.10874225944280624,
-0.13868752121925354,
-0.1591709852218628,
-0.1762489676475525,
-0.030856961384415627,
0.030091363936662674,
0.19661711156368256,
0.05338926240801811,
-0.006573121063411236,
0.06259210407733917,
0.02527030184864998,
-0.0660807341337204,
-0.007090229541063309,
-0.03951553255319595,
-0.08023996651172638,
0.046763110905885696,
-0.00427223090082407,
-0.006151063833385706,
-0.019064849242568016,
0.3149872124195099,
0.050293032079935074,
0.053165167570114136,
0.051770035177469254,
0.1565920114517212,
-0.005468236282467842,
0.04236302524805069,
0.23799560964107513,
0.08315402269363403,
-0.07466419786214828,
0.07293114811182022,
0.039652176201343536,
0.0199894979596138,
0.07375718653202057,
0.17182157933712006,
0.09489099681377411,
-0.1505325585603714,
0.06806941330432892,
0.034342192113399506,
0.02089337259531021,
-0.06781914085149765,
0.056650955229997635,
0.026475489139556885,
0.005214688368141651,
0.07532723993062973,
-0.07864707708358765,
0.13264904916286469,
-0.17583318054676056,
0.12485572695732117,
-0.016695331782102585,
-0.09394131600856781,
-0.20115450024604797,
-0.04110546410083771,
-0.11887486279010773,
-0.037928834557533264,
-0.0028526177629828453,
-0.11364870518445969,
-0.03737104311585426,
0.1909932643175125,
0.021532442420721054,
0.011818252503871918,
0.0296438317745924,
-0.2187914252281189,
-0.001187300542369485,
0.12622056901454926,
0.029999177902936935,
0.007562283426523209,
-0.03593451902270317,
-0.026033349335193634,
0.04293077439069748,
-0.04635179415345192,
-0.03367828577756882,
-0.03588152304291725,
0.05171411857008934,
-0.05223653465509415,
-0.15807130932807922,
-0.08212433010339737,
-0.06547842919826508,
-0.026363464072346687,
-0.015356892719864845,
-0.14120423793792725,
0.03763454779982567,
-0.004116964992135763,
0.005342239048331976,
0.28811636567115784,
-0.08266224712133408,
0.0726175382733345,
-0.07136500626802444,
0.24832753837108612,
-0.06431891769170761,
0.1163448691368103,
0.06154779717326164,
-0.06529421359300613,
-0.05055110901594162,
0.05621825531125069,
0.11999450623989105,
0.011642886325716972,
-0.014799515716731548,
0.010342568159103394,
0.02209443971514702,
0.07346116751432419,
0.000035281089367344975,
-0.04751373454928398,
0.12159673124551773,
-0.04330778494477272,
0.09390523284673691,
-0.0736519992351532,
-0.04186752066016197,
-0.03832106292247772,
-0.019643248990178108,
0.15128979086875916,
-0.03463607653975487,
-0.15107791125774384,
0.21570630371570587,
-0.015639154240489006,
0.022148726508021355,
0.24434806406497955,
-0.1587686985731125,
-0.13117314875125885,
0.01586708426475525,
0.017168806865811348,
-0.023592699319124222,
0.06856240332126617,
-0.12322857230901718,
0.009131002239882946,
0.00020229039364494383,
0.05113540589809418,
-0.2126489281654358,
-0.08753957599401474,
0.01294443104416132,
-0.06517971307039261,
0.07243984192609787,
0.016205284744501114,
0.1302272528409958,
0.07996469736099243,
-0.04701492190361023,
-0.03509578853845596,
0.062237925827503204,
0.0009699753718450665,
0.06404175609350204,
-0.00478194048628211,
0.124242402613163,
-0.0194870438426733,
-0.11061614751815796,
0.12826713919639587,
-0.14887429773807526,
-0.04732167720794678,
-0.04328717663884163,
-0.09465040266513824,
-0.04656675457954407,
0.042634934186935425,
-0.0992901399731636,
0.09809276461601257,
0.09694507718086243,
-0.008613484911620617,
0.008267230354249477,
0.01604572869837284,
0.08583158254623413,
0.07282815128564835,
-0.0404682494699955,
0.010962238535284996,
0.008024080656468868,
-0.038951851427555084,
0.08521640300750732,
-0.036743324249982834,
-0.19810894131660461,
-0.023710066452622414,
-0.09087252616882324,
0.02636953815817833,
-0.03803541883826256,
0.10741214454174042,
0.10428708791732788,
0.03311615064740181,
-0.04554145410656929,
-0.26387152075767517,
0.06765580922365189,
0.09941332042217255,
-0.07316619157791138,
-0.0591566301882267
] |
null | null |
spacy
|
| Feature | Description |
| --- | --- |
| **Name** | `en_acnl_roberta_pipeline` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.1.3,<3.2.0` |
| **Default Pipeline** | `transformer`, `tagger`, `parser` |
| **Components** | `transformer`, `tagger`, `parser` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | OntoNotes |
| **License** | CC BY-SA 4.0 |
| **Author** | Daniel VasiΔ |
### Label Scheme
<details>
<summary>View label scheme (87 labels for 2 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `VERB`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `dative`, `dep`, `det`, `dobj`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nummod`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TAG_ACC` | 98.05 |
| `DEP_UAS` | 95.98 |
| `DEP_LAS` | 94.83 |
| `SENTS_P` | 93.80 |
| `SENTS_R` | 95.42 |
| `SENTS_F` | 94.61 |
| `TRANSFORMER_LOSS` | 3784861.59 |
| `TAGGER_LOSS` | 698704.80 |
| `PARSER_LOSS` | 5540167.00 |
|
{"language": ["en"], "license": "cc-by-4.0", "library_name": "spacy", "tags": ["spacy", "token-classification"], "datasets": ["conll2012_ontonotesv5"], "metrics": ["f1"], "pipeline_tag": "text-classification"}
|
text-classification
|
danielvasic/en_acnl_roberta_pipeline
|
[
"spacy",
"token-classification",
"text-classification",
"en",
"dataset:conll2012_ontonotesv5",
"license:cc-by-4.0",
"model-index",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#spacy #token-classification #text-classification #en #dataset-conll2012_ontonotesv5 #license-cc-by-4.0 #model-index #region-us
|
### Label Scheme
View label scheme (87 labels for 2 components)
### Accuracy
|
[
"### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)",
"### Accuracy"
] |
[
"TAGS\n#spacy #token-classification #text-classification #en #dataset-conll2012_ontonotesv5 #license-cc-by-4.0 #model-index #region-us \n",
"### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)",
"### Accuracy"
] |
[
47,
17,
5
] |
[
"passage: TAGS\n#spacy #token-classification #text-classification #en #dataset-conll2012_ontonotesv5 #license-cc-by-4.0 #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)### Accuracy"
] |
[
-0.08344817906618118,
0.2074509859085083,
-0.0021221712231636047,
0.05794493481516838,
0.06630004197359085,
0.047653280198574066,
0.21690542995929718,
0.10941839963197708,
0.15552103519439697,
0.059663593769073486,
0.05664549767971039,
0.1015668585896492,
0.08682838082313538,
0.2168969064950943,
-0.16345466673374176,
-0.2139432430267334,
0.06923739612102509,
-0.021159019321203232,
0.09871816635131836,
0.1349206417798996,
0.08780346810817719,
-0.1044435054063797,
0.08067791908979416,
-0.0468282550573349,
-0.22381040453910828,
-0.0012236200273036957,
0.05962144583463669,
-0.12102588266134262,
0.06117869168519974,
0.00541708804666996,
0.15497446060180664,
0.03386881574988365,
0.08774037659168243,
-0.19388531148433685,
0.008779003284871578,
-0.02734486013650894,
-0.09473589062690735,
0.09456360340118408,
0.06687277555465698,
0.001858311239629984,
0.02455727383494377,
-0.08414319157600403,
0.02671561948955059,
0.05067279189825058,
-0.12165987491607666,
-0.079926997423172,
-0.09686139225959778,
0.1793321669101715,
0.11126469075679779,
-0.08443111181259155,
0.0025344083551317453,
0.08328918367624283,
-0.03499499335885048,
0.07811710238456726,
0.09982556104660034,
-0.31463760137557983,
-0.0059025827795267105,
0.21529148519039154,
-0.06896671652793884,
0.07217366248369217,
-0.05664399638772011,
0.10259159654378891,
0.10200908035039902,
-0.034473076462745667,
-0.036721281707286835,
-0.00926691759377718,
-0.02111601084470749,
0.01845688186585903,
-0.07717736065387726,
-0.08809871226549149,
0.41381335258483887,
0.11495921015739441,
-0.02933025360107422,
-0.11238408088684082,
-0.08775001019239426,
-0.09844464808702469,
-0.06286037713289261,
-0.024537894874811172,
0.04644889384508133,
0.03147590532898903,
0.09263856709003448,
0.06652556359767914,
-0.11615518480539322,
-0.08318200707435608,
-0.16116727888584137,
0.17682769894599915,
-0.015191207639873028,
0.08711759001016617,
-0.1462211310863495,
0.01863669604063034,
-0.09864471107721329,
-0.09460612386465073,
-0.005015613045543432,
-0.047779690474271774,
-0.07010602951049805,
-0.04549984261393547,
0.04052629694342613,
0.09374961256980896,
0.07825706154108047,
0.037110522389411926,
-0.03019607998430729,
0.019485006108880043,
-0.06806431710720062,
0.06411410123109818,
0.10141829401254654,
0.1553986370563507,
-0.03872935101389885,
0.018508773297071457,
-0.014719072729349136,
-0.0800337940454483,
0.06879957765340805,
-0.030596600845456123,
-0.1561771184206009,
-0.045931968837976456,
0.06741568446159363,
0.06573089957237244,
-0.03232410177588463,
-0.03194783627986908,
-0.10528147965669632,
-0.040848951786756516,
0.13773073256015778,
-0.11966235190629959,
0.05649162828922272,
0.018231676891446114,
-0.028582314029335976,
0.049762237817049026,
-0.0649915561079979,
0.01642443984746933,
0.048977360129356384,
-0.009982443414628506,
-0.09492481499910355,
0.03377369046211243,
0.009073950350284576,
-0.09107960760593414,
0.07081707566976547,
-0.0793992131948471,
0.001970876008272171,
-0.06972955912351608,
-0.16321513056755066,
-0.02444739267230034,
-0.035149455070495605,
-0.0596969798207283,
-0.004421154968440533,
-0.03672564774751663,
-0.0796811431646347,
0.011748003773391247,
0.012439722195267677,
-0.04404103755950928,
-0.08425942063331604,
0.03457145392894745,
-0.0462651401758194,
0.07617169618606567,
-0.13052955269813538,
0.021045280620455742,
-0.08388170599937439,
0.031750261783599854,
-0.12238727509975433,
0.04530167579650879,
-0.05659050494432449,
0.05368863418698311,
-0.08172760158777237,
-0.052666500210762024,
0.036321867257356644,
-0.01733008213341236,
-0.09049858897924423,
0.20085062086582184,
-0.26218897104263306,
-0.020748713985085487,
0.24173657596111298,
-0.1743672639131546,
-0.14227335155010223,
0.03513903543353081,
-0.015767181292176247,
0.10093733668327332,
0.09651336073875427,
0.1496768295764923,
0.02212647721171379,
-0.12295295298099518,
-0.049037959426641464,
0.0878942534327507,
-0.05697987973690033,
-0.07737782597541809,
0.10760928690433502,
0.0017734745051711798,
0.028036780655384064,
0.028860880061984062,
0.05445634573698044,
-0.1320764720439911,
-0.038984667509794235,
-0.07847762852907181,
-0.05567934736609459,
0.037819843739271164,
0.0055391923524439335,
0.03441614657640457,
0.005618439055979252,
-0.04588480666279793,
0.010545841418206692,
0.01697094924747944,
0.04288826882839203,
0.018058529123663902,
-0.02814260497689247,
-0.06272844970226288,
0.09339545667171478,
-0.08783838152885437,
-0.060426194220781326,
-0.1401272416114807,
-0.11279577761888504,
0.030679715797305107,
0.026410020887851715,
0.03582485392689705,
0.08884511142969131,
-0.004348634742200375,
-0.0025823877658694983,
-0.008166098035871983,
0.00776453735306859,
0.020478446036577225,
0.0706063061952591,
-0.07848775386810303,
-0.1840342879295349,
-0.0071212416514754295,
-0.07197728008031845,
0.08556093275547028,
-0.08367406576871872,
0.012375026009976864,
0.19930744171142578,
0.08448275923728943,
0.027066733688116074,
0.041829369962215424,
0.05305341258645058,
0.00522585678845644,
-0.044597115367650986,
-0.04883217811584473,
0.07677089422941208,
-0.0435929112136364,
-0.07406029105186462,
0.015014052391052246,
-0.10669881850481033,
0.05125310644507408,
0.1391817182302475,
-0.03939444199204445,
-0.03359738737344742,
-0.12866538763046265,
0.002468039281666279,
-0.004019010812044144,
-0.11865166574716568,
0.011242032051086426,
-0.04215003550052643,
-0.035590559244155884,
0.060069091618061066,
-0.12357388436794281,
-0.01475691981613636,
0.040110185742378235,
-0.03980373218655586,
-0.14697504043579102,
0.126238152384758,
0.022032376378774643,
-0.2725570797920227,
0.14660438895225525,
0.2590562403202057,
0.15100671350955963,
0.07233098149299622,
-0.02724633924663067,
-0.03777376934885979,
-0.06625555455684662,
-0.011658110655844212,
-0.06106038764119148,
0.1355484426021576,
-0.09737636893987656,
-0.0062898313626646996,
0.07322512567043304,
0.045355863869190216,
0.0001760309824021533,
-0.2124367356300354,
-0.0016039011534303427,
-0.020015785470604897,
-0.0673900693655014,
-0.12232258915901184,
-0.023171909153461456,
0.028638329356908798,
0.15835769474506378,
0.024785945191979408,
-0.18632449209690094,
0.09060206264257431,
-0.052702996879816055,
-0.10503514111042023,
0.14776206016540527,
-0.09526252746582031,
-0.21235373616218567,
-0.16456522047519684,
-0.08806682378053665,
-0.07723572850227356,
0.04614943265914917,
0.0093881506472826,
-0.04667514190077782,
-0.01970669813454151,
-0.039878636598587036,
-0.10606294870376587,
-0.12303528189659119,
-0.04240206256508827,
-0.04902885854244232,
0.10527817904949188,
-0.11968754231929779,
-0.05803556740283966,
-0.08941733837127686,
-0.05719030648469925,
0.04021559655666351,
0.10314220935106277,
-0.1442558616399765,
0.07912652939558029,
0.27642300724983215,
-0.06768722087144852,
0.08406445384025574,
-0.046114783734083176,
0.06038257107138634,
-0.05106388032436371,
0.04616280645132065,
0.12229380011558533,
0.026455078274011612,
0.04372074455022812,
0.26418620347976685,
0.05687950178980827,
-0.12720288336277008,
-0.03176824375987053,
-0.08265862613916397,
-0.0912538543343544,
-0.19895854592323303,
-0.12073571234941483,
-0.03127911314368248,
0.02606063336133957,
0.06078697741031647,
0.0494479276239872,
0.05356986075639725,
0.046069368720054626,
0.006672089919447899,
-0.017030835151672363,
0.07224175333976746,
0.061317093670368195,
0.1318797469139099,
-0.016204314306378365,
0.08340819180011749,
-0.051608603447675705,
0.015603580512106419,
0.10780970007181168,
0.08837593346834183,
0.12403114885091782,
0.16805750131607056,
0.04301004111766815,
0.05984124913811684,
0.011715210042893887,
0.10546329617500305,
0.03216179087758064,
0.16806109249591827,
0.00045014856732450426,
-0.019741777330636978,
-0.08002264052629471,
-0.00917412992566824,
0.08939854055643082,
-0.02960924245417118,
-0.03748833015561104,
-0.07083138823509216,
-0.0643402487039566,
0.06997572630643845,
0.030455078929662704,
0.24540826678276062,
-0.23700502514839172,
-0.009108396247029305,
0.10993991792201996,
0.06293726712465286,
-0.08937141299247742,
0.09042628109455109,
0.03499647229909897,
-0.09833455085754395,
0.08237756788730621,
-0.013833052478730679,
0.13462404906749725,
-0.09260983765125275,
-0.03783990442752838,
-0.07214292883872986,
-0.08877462893724442,
-0.016756683588027954,
0.09556012600660324,
-0.09794285148382187,
0.3256774842739105,
0.055101532489061356,
-0.002716455841436982,
-0.054866306483745575,
-0.011921429075300694,
0.005822129547595978,
0.20730379223823547,
0.228072851896286,
0.019452247768640518,
-0.20188842713832855,
-0.14356327056884766,
-0.07462933659553528,
-0.015563243068754673,
0.11156296730041504,
-0.025045566260814667,
0.011566666886210442,
0.01883435808122158,
-0.0007002225611358881,
0.0008752553258091211,
0.022668085992336273,
-0.056318242102861404,
-0.020126134157180786,
0.013212321326136589,
0.1392814815044403,
-0.06586907804012299,
-0.01454099640250206,
-0.06779078394174576,
-0.1893748641014099,
0.1587807834148407,
-0.09337696433067322,
-0.06726424396038055,
-0.09341753274202347,
0.030000004917383194,
0.050740256905555725,
-0.022888051345944405,
-0.037074021995067596,
-0.06573738902807236,
0.13652248680591583,
-0.007026071194559336,
-0.10142672806978226,
0.11550518125295639,
-0.025137044489383698,
-0.06424032896757126,
-0.059801749885082245,
0.1710759550333023,
-0.018804268911480904,
-0.005180548410862684,
0.0850333422422409,
0.10499300807714462,
-0.019989298656582832,
-0.0966058000922203,
0.10124918818473816,
0.0711599662899971,
0.09772665053606033,
0.238583505153656,
-0.08841398358345032,
-0.2260236144065857,
-0.03784206882119179,
0.049773767590522766,
0.12013859301805496,
0.29893583059310913,
-0.10484432429075241,
0.09866145998239517,
0.09064412117004395,
-0.06599830090999603,
-0.19571040570735931,
-0.013635234907269478,
-0.15765716135501862,
0.019749047234654427,
-0.008802895434200764,
-0.027934841811656952,
0.11791527271270752,
0.06399759650230408,
-0.07798313349485397,
0.02667870745062828,
-0.2525365948677063,
-0.09142157435417175,
0.1551026999950409,
0.022523045539855957,
0.12821348011493683,
-0.06478366255760193,
-0.12781192362308502,
-0.08582594245672226,
-0.21471282839775085,
0.1827813982963562,
-0.027417363598942757,
0.07368627935647964,
-0.04709073528647423,
0.026739148423075676,
0.01752489060163498,
0.011012214235961437,
0.22720769047737122,
0.10682643949985504,
0.08924630284309387,
0.009303448721766472,
-0.16714201867580414,
0.19528135657310486,
-0.024645036086440086,
0.011005539447069168,
0.11377537250518799,
0.047499142587184906,
-0.1441519409418106,
-0.002204225165769458,
0.01026091631501913,
0.03780432045459747,
-0.05038941651582718,
-0.03938044607639313,
-0.10461662709712982,
-0.0052171386778354645,
-0.04741522669792175,
-0.04769420623779297,
0.27273425459861755,
-0.07167019695043564,
0.08208728581666946,
0.17156356573104858,
0.011814962141215801,
-0.08481104671955109,
0.04022468626499176,
-0.08640487492084503,
-0.084356389939785,
0.02890671230852604,
-0.21461719274520874,
0.05745045840740204,
0.1204901784658432,
0.07260700315237045,
0.14014506340026855,
0.09255300462245941,
0.0008512370986863971,
-0.02496616169810295,
0.08991961181163788,
-0.1190989688038826,
-0.12473656237125397,
0.00950278714299202,
-0.12344833463430405,
-0.012876291759312153,
0.04938974604010582,
0.08796587586402893,
0.0032340616453438997,
-0.018153676763176918,
0.014001276344060898,
0.05766304209828377,
-0.04090695083141327,
0.07784072309732437,
0.02796056866645813,
0.03029630519449711,
-0.1523865908384323,
0.1463545262813568,
0.08444318175315857,
0.005610158201307058,
-0.05340045690536499,
-0.04532702639698982,
-0.12444337457418442,
-0.035614460706710815,
-0.019545067101716995,
0.11369010806083679,
-0.11118902266025543,
-0.14068496227264404,
-0.061479583382606506,
-0.11059457063674927,
0.026939747855067253,
0.14853093028068542,
0.14053063094615936,
0.09295710176229477,
0.009221842512488365,
-0.1316208839416504,
0.00480642169713974,
0.08042436093091965,
-0.04476144164800644,
0.005653546657413244,
-0.20722931623458862,
0.07522379606962204,
-0.04503992944955826,
0.09077848494052887,
-0.07574796676635742,
-0.05319540202617645,
-0.09507279098033905,
-0.004533795174211264,
-0.009382938034832478,
0.10738098621368408,
-0.0749645084142685,
0.010501048527657986,
0.00006357932579703629,
-0.02416347526013851,
-0.07561273127794266,
-0.01526704803109169,
-0.07032597064971924,
0.047303542494773865,
-0.02181714028120041,
0.16322572529315948,
-0.14479170739650726,
-0.050067238509655,
0.06015126034617424,
-0.02184794656932354,
0.07515713572502136,
0.060578133910894394,
-0.004012261983007193,
0.05640859156847,
-0.2671622633934021,
0.018140017986297607,
0.11575053632259369,
0.022008532658219337,
0.07491134107112885,
-0.12874597311019897,
0.012259709648787975,
0.07429991662502289,
-0.07414320111274719,
0.08823484182357788,
-0.039880771189928055,
-0.09520293027162552,
-0.12290683388710022,
-0.15413898229599,
-0.11063500493764877,
-0.04517437145113945,
0.06379611045122147,
0.21139657497406006,
0.039123859256505966,
0.04828198254108429,
0.010651224292814732,
0.014157142490148544,
-0.08668142557144165,
-0.0073653096333146095,
-0.0578775480389595,
-0.10246476531028748,
-0.06458611786365509,
-0.009749162010848522,
0.007533086463809013,
-0.011012744158506393,
0.2677345275878906,
0.05913577601313591,
-0.02186712995171547,
0.06530637294054031,
0.1629881113767624,
-0.03229348734021187,
0.02761128358542919,
0.2822151780128479,
0.061185888946056366,
-0.03715880215167999,
0.08828181773424149,
0.035013504326343536,
0.010559005662798882,
0.03670568764209747,
0.18537920713424683,
0.11100553721189499,
-0.12566302716732025,
0.08145859837532043,
0.062070250511169434,
-0.019351942464709282,
-0.027438286691904068,
0.12763553857803345,
0.013637249357998371,
0.037408217787742615,
0.006020242813974619,
-0.05717619135975838,
0.11508233100175858,
-0.16527420282363892,
0.05935422703623772,
-0.029089100658893585,
-0.09670713543891907,
-0.19070491194725037,
-0.083146832883358,
-0.14102810621261597,
-0.03305967524647713,
0.00825184490531683,
-0.10792619735002518,
0.010539302602410316,
0.15457414090633392,
0.0034915348514914513,
-0.016695542261004448,
-0.022974655032157898,
-0.22809070348739624,
-0.0031535641755908728,
0.12016843259334564,
-0.0021304483525455,
0.023133935406804085,
-0.0791841670870781,
-0.028416458517313004,
0.058735352009534836,
-0.05264417082071304,
-0.015910394489765167,
0.015075448900461197,
0.12308859825134277,
-0.04269658029079437,
-0.1882440447807312,
-0.06867126375436783,
-0.055649857968091965,
-0.0009459181455895305,
0.00985723827034235,
-0.04211714491248131,
0.07757125794887543,
0.0004636018129531294,
0.05220466107130051,
0.26781564950942993,
-0.06285512447357178,
0.03949417173862457,
-0.07967673242092133,
0.19648650288581848,
-0.04056350886821747,
0.07333756983280182,
0.08352340757846832,
-0.0911887139081955,
0.0030493487138301134,
0.015510395169258118,
0.1144765317440033,
-0.00208986084908247,
-0.005579071585088968,
-0.0017945902654901147,
0.010535560548305511,
0.0670265331864357,
-0.006931856740266085,
-0.06604692339897156,
0.10930013656616211,
-0.029278377071022987,
0.04168007895350456,
-0.0633617416024208,
-0.03314436972141266,
-0.045224301517009735,
-0.037143152207136154,
0.07047173380851746,
-0.062048546969890594,
-0.10482839494943619,
0.22244180738925934,
-0.017562322318553925,
-0.05049007385969162,
0.22462214529514313,
-0.13700206577777863,
-0.0940466821193695,
0.03779815882444382,
0.01723710633814335,
0.007716486230492592,
0.041177231818437576,
-0.1300320327281952,
0.0238628052175045,
0.042222488671541214,
0.023805836215615273,
-0.18962717056274414,
-0.03217498958110809,
0.009518245235085487,
-0.11110500246286392,
0.12894879281520844,
-0.00017341475177090615,
0.21742179989814758,
0.08439909666776657,
-0.03406517952680588,
-0.07550061494112015,
0.07391870766878128,
0.005185352638363838,
0.04232226684689522,
0.030314527451992035,
0.047358546406030655,
-0.014165948145091534,
-0.06370387226343155,
0.13679224252700806,
-0.07685666531324387,
-0.007789865136146545,
-0.03377944231033325,
-0.09421944618225098,
-0.0896943211555481,
0.04984673485159874,
-0.10164156556129456,
0.0938340350985527,
0.04643802344799042,
-0.04007065296173096,
0.008775019086897373,
0.006249747704714537,
0.0707307904958725,
0.05244268476963043,
-0.05606837570667267,
0.04496746137738228,
-0.02405277080833912,
-0.010199222713708878,
0.06556174159049988,
0.03407134860754013,
-0.2005574107170105,
-0.034084197133779526,
-0.07523681968450546,
-0.00923463236540556,
-0.07367956638336182,
0.11896305531263351,
0.1066611260175705,
0.006325248163193464,
-0.04986944422125816,
-0.19753368198871613,
0.05391731113195419,
0.10191991180181503,
-0.05798300728201866,
-0.07816535234451294
] |
null | null |
spacy
|
| Feature | Description |
| --- | --- |
| **Name** | `hr_bertic_pipeline` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.1.3,<3.2.0` |
| **Default Pipeline** | `transformer`, `morphologizer`, `tagger`, `parser` |
| **Components** | `transformer`, `morphologizer`, `tagger`, `parser` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (1392 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=nominative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|POS=ADP`, `Case=locative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=instrumental\|POS=ADP`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Degree=positive\|POS=ADV\|Type=general`, `Number=singular\|POS=VERB\|Person=third\|Type=main\|VForm=present`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `POS=PUNCT`, `POS=PART\|Type=modal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `POS=SCONJ\|Type=subordinating`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=accusative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `POS=CCONJ\|Type=coordinating`, `Case=genitive\|POS=ADP`, `Case=dative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Number=plural\|POS=VERB\|Person=third\|Type=main\|VForm=present`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=present`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|POS=ADP`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Animate=no\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `POS=VERB\|Type=main\|VForm=infinitive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `POS=PART\|Type=negative`, `Case=accusative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Degree=comparative\|POS=ADV\|Type=general`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Gender=masculine\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=locative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Form=digit\|POS=ADJ\|Type=ordinal`, `Number=singular\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=present`, `Number=plural\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=present`, `Case=accusative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Gender=feminine\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Gender=neuter\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Degree=superlative\|POS=ADV\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Number=plural\|POS=VERB\|Person=first\|Type=main\|VForm=present`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Gender=feminine\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Gender=masculine\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Gender=masculine\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Form=digit\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Gender=feminine\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Gender=neuter\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=locative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Number=plural\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=aorist`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=aorist`, `POS=X`, `Case=genitive\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Form=letter\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `POS=X\|Type=foreign`, `Number=plural\|POS=VERB\|Person=second\|Type=main\|VForm=present`, `POS=PART\|Type=interrogative`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `POS=ADV\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=VERB\|Person=first\|Type=main\|VForm=present`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=dative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=yes\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Number=plural\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=present`, `POS=AUX\|Type=auxiliary\|VForm=infinitive`, `Case=locative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Gender=feminine\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Animate=no\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=dative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Number=plural\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=aorist`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `POS=NOUN`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=nominative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=present`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Number=singular\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=aorist`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=interrogative`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=no\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=instrumental\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|POS=ADP`, `Case=instrumental\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Gender=neuter\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Case=nominative\|Form=letter\|Gender=neuter\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=dative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Form=letter\|POS=NUM\|Type=special`, `Case=accusative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=genitive\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=genitive\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=nominative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Gender=masculine\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `POS=PROPN`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=locative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Gender=neuter\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Number=plural\|POS=VERB\|Person=second\|Type=main\|VForm=imperative`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Form=digit\|POS=SYM\|Type=special`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Form=digit\|POS=NUM\|Type=special`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=locative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=aorist`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `POS=SYM`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=vocative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Form=digit\|POS=NUM\|Type=multiple`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Animate=yes\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Number=plural\|POS=VERB\|Person=first\|Type=main\|VForm=imperative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=cardinal`, `Case=accusative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=accusative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=locative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Animate=no\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=dative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PRON\|Type=indefinite`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=locative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=locative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=accusative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=locative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=VERB\|Person=third\|Type=main\|VForm=aorist`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `POS=ADJ`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=dative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Number=singular\|POS=VERB\|Person=second\|Type=main\|VForm=imperative`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Form=roman\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=special`, `Case=locative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=genitive\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Form=roman\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=PROPN\|Type=proper`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=aorist`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|POS=SYM`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=nominative\|Gender=masculine\|POS=PRON\|Person=third\|Type=interrogative`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `POS=PART`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=dative\|Gender=masculine\|POS=PRON\|Person=third\|Type=interrogative`, `Case=instrumental\|Definiteness=no\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `POS=INTJ`, `Case=locative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `POS=PART\|Type=affirmative`, `Number=singular\|POS=VERB\|Person=second\|Type=main\|VForm=present`, `Case=dative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=neuter\|POS=NUM\|Type=special`, `Case=locative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=cardinal`, `Case=accusative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=locative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Number=singular\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=present`, `Case=vocative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=vocative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=vocative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=imperative`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=imperfect`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `POS=ADV`, `Case=locative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=PROPN\|Type=proper`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=vocative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=vocative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=vocative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive` |
| **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmply`, `Agcmpny`, `Agcmsany`, `Agcmsay`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpay`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsin`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmpvy`, `Agpmsan`, `Agpmsann`, `Agpmsany`, `Agpmsay`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmpvy`, `Agsmsany`, `Agsmsay`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfpiy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsiy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsayn`, `Aspmsayy`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsdn`, `Aspnsgn`, `Aspnsgy`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpl`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsl`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlomsv`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-d`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsmpn`, `Mlsn-n`, `Mrc`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npd`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sg`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pg`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp2-sv`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsi`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpd`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, `Ps1fsv`, `Ps1mpa`, `Ps1mpd`, `Ps1mpg`, `Ps1mpi`, `Ps1mpl`, `Ps1mpn`, `Ps1mpv`, `Ps1msan`, `Ps1msay`, `Ps1msd`, `Ps1msg`, `Ps1msi`, `Ps1msl`, `Ps1msn`, `Ps1msv`, `Ps1npd`, `Ps1npn`, `Ps1nsa`, `Ps1nsg`, `Ps1nsi`, `Ps1nsl`, `Ps1nsn`, `Ps2fpa`, `Ps2fpl`, `Ps2fpn`, `Ps2fsa`, `Ps2fsd`, `Ps2fsg`, `Ps2fsn`, `Ps2mpa`, `Ps2mpg`, `Ps2mpl`, `Ps2mpn`, `Ps2msan`, `Ps2msd`, `Ps2msg`, `Ps2msi`, `Ps2msl`, `Ps2msn`, `Ps2npn`, `Ps2nsa`, `Ps2nsg`, `Ps2nsi`, `Ps2nsl`, `Ps2nsn`, `Ps3fpa`, `Ps3fpg`, `Ps3fpl`, `Ps3fpn`, `Ps3fsa`, `Ps3fsd`, `Ps3fsg`, `Ps3fsi`, `Ps3fsl`, `Ps3fsn`, `Ps3mpa`, `Ps3mpd`, `Ps3mpg`, `Ps3mpi`, `Ps3mpl`, `Ps3mpn`, `Ps3msan`, `Ps3msay`, `Ps3msd`, `Ps3msg`, `Ps3msi`, `Ps3msl`, `Ps3msn`, `Ps3npa`, `Ps3npg`, `Ps3npl`, `Ps3npn`, `Ps3nsa`, `Ps3nsg`, `Ps3nsi`, `Ps3nsl`, `Ps3nsn`, `Px--sa`, `Px--sd`, `Px--sg`, `Px--si`, `Px--sl`, `Px-fpa`, `Px-fpg`, `Px-fpi`, `Px-fpl`, `Px-fpn`, `Px-fsa`, `Px-fsd`, `Px-fsg`, `Px-fsi`, `Px-fsl`, `Px-mpa`, `Px-mpd`, `Px-mpg`, `Px-mpi`, `Px-mpl`, `Px-msan`, `Px-msay`, `Px-msd`, `Px-msg`, `Px-msi`, `Px-msl`, `Px-npa`, `Px-npg`, `Px-npi`, `Px-npl`, `Px-nsa`, `Px-nsg`, `Px-nsi`, `Px-nsl`, `Qo`, `Qq`, `Qr`, `Qz`, `Rgc`, `Rgp`, `Rgs`, `Rr`, `Sa`, `Sd`, `Sg`, `Si`, `Sl`, `Vaa1p`, `Vaa1s`, `Vaa2p`, `Vaa2s`, `Vaa3p`, `Vaa3s`, `Vae3s`, `Vam2p`, `Van`, `Vap-pf`, `Vap-pm`, `Vap-pn`, `Vap-sf`, `Vap-sm`, `Vap-sn`, `Var1p`, `Var1s`, `Var2p`, `Var2s`, `Var3p`, `Var3s`, `Vma3s`, `Vmm1p`, `Vmm2p`, `Vmm2s`, `Vmn`, `Vmp-pf`, `Vmp-pm`, `Vmp-pn`, `Vmp-sf`, `Vmp-sm`, `Vmp-sn`, `Vmr1p`, `Vmr1s`, `Vmr2p`, `Vmr2s`, `Vmr3p`, `Vmr3s`, `X`, `Xf`, `Y`, `Z` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `goeswith`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `POS_ACC` | 98.70 |
| `MORPH_ACC` | 95.55 |
| `TAG_ACC` | 95.52 |
| `DEP_UAS` | 91.29 |
| `DEP_LAS` | 86.17 |
| `SENTS_P` | 95.36 |
| `SENTS_R` | 96.16 |
| `SENTS_F` | 95.76 |
| `TRANSFORMER_LOSS` | 24668298.17 |
| `MORPHOLOGIZER_LOSS` | 362811.40 |
| `TAGGER_LOSS` | 349660.11 |
| `PARSER_LOSS` | 2088768.64 |
|
{"language": ["hr"], "tags": ["spacy", "token-classification"]}
|
token-classification
|
danielvasic/hr_bertic_pipeline
|
[
"spacy",
"token-classification",
"hr",
"model-index",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"hr"
] |
TAGS
#spacy #token-classification #hr #model-index #region-us
|
### Label Scheme
View label scheme (1392 labels for 3 components)
### Accuracy
|
[
"### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)",
"### Accuracy"
] |
[
"TAGS\n#spacy #token-classification #hr #model-index #region-us \n",
"### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)",
"### Accuracy"
] |
[
21,
17,
5
] |
[
"passage: TAGS\n#spacy #token-classification #hr #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)### Accuracy"
] |
[
-0.0796990767121315,
0.09978848695755005,
-0.002440925221890211,
0.025016965344548225,
0.1024184450507164,
0.07309037446975708,
0.2068420946598053,
0.07676097750663757,
0.20966650545597076,
0.04694100096821785,
0.028043806552886963,
0.06893902271986008,
0.058413319289684296,
0.2409026324748993,
-0.11319645494222641,
-0.23179991543293,
0.09747600555419922,
-0.002382761798799038,
0.03473158925771713,
0.13475631177425385,
0.04419410228729248,
-0.13590650260448456,
0.0758470669388771,
-0.07364154607057571,
-0.20504331588745117,
0.041807547211647034,
0.021040314808487892,
-0.08807668834924698,
0.07284485548734665,
-0.041648972779512405,
0.2160262018442154,
0.03921559080481529,
0.08629351109266281,
-0.19826677441596985,
0.00048236289876513183,
-0.04483496770262718,
-0.04906124994158745,
0.077703557908535,
0.03082146868109703,
0.010677946731448174,
-0.0360332727432251,
-0.0850231871008873,
0.05062519386410713,
0.03083108365535736,
-0.11767493188381195,
-0.11279251426458359,
-0.06300169974565506,
0.17923232913017273,
0.11104610562324524,
-0.06348464637994766,
-0.00788150355219841,
0.10183898359537125,
-0.08501064032316208,
0.054728444665670395,
0.17800922691822052,
-0.28611981868743896,
-0.008457704447209835,
0.22839203476905823,
-0.061135049909353256,
0.1073150709271431,
-0.013252083212137222,
0.14156456291675568,
0.120869480073452,
-0.003779943799600005,
-0.019066529348492622,
-0.02504793368279934,
0.05470968410372734,
0.017511555925011635,
-0.12850452959537506,
-0.049714285880327225,
0.49731719493865967,
0.10250724107027054,
-0.021564261987805367,
-0.0797402560710907,
-0.08399004489183426,
-0.16479183733463287,
-0.08684160560369492,
-0.0746610090136528,
0.04858358949422836,
-0.02171107567846775,
0.13465633988380432,
0.10278148949146271,
-0.08915282040834427,
-0.06804108619689941,
-0.15083922445774078,
0.2626902461051941,
0.020426003262400627,
0.08641521632671356,
-0.14950546622276306,
0.012623373419046402,
-0.09562869369983673,
-0.07587146013975143,
0.011645780876278877,
-0.09743721783161163,
-0.0867866724729538,
-0.04825165867805481,
0.034961603581905365,
0.09327917546033859,
0.06875769793987274,
0.04268942400813103,
-0.0684969499707222,
0.0717272162437439,
0.001374275190755725,
0.04756812006235123,
0.11877849698066711,
0.15185080468654633,
-0.06912294030189514,
-0.02075222320854664,
-0.045324016362428665,
-0.04644985869526863,
0.049784135073423386,
-0.038273368030786514,
-0.1306450366973877,
-0.01307495404034853,
0.1198410764336586,
0.10092153400182724,
-0.08734522759914398,
-0.0348019078373909,
-0.11435294151306152,
-0.05987825244665146,
0.10836866497993469,
-0.1211816743016243,
0.006746399682015181,
0.00492544611915946,
-0.016911813989281654,
0.08114480972290039,
-0.12335904687643051,
-0.01672869734466076,
0.042544811964035034,
0.002668410539627075,
-0.0954449251294136,
-0.011042055673897266,
-0.007766404189169407,
-0.11001469939947128,
0.007407984230667353,
-0.0780925452709198,
0.014359074644744396,
-0.05049879103899002,
-0.09571575373411179,
-0.0171465165913105,
-0.022405020892620087,
-0.07277627289295197,
0.04561537876725197,
-0.0012798730749636889,
-0.0528179295361042,
-0.0017780769849196076,
0.01423276774585247,
-0.06743767112493515,
-0.080318883061409,
-0.017613662406802177,
0.0020895444322377443,
0.10247425734996796,
-0.0885273814201355,
0.017883997410535812,
-0.04636459797620773,
0.07571744173765182,
-0.19955779612064362,
0.016904737800359726,
-0.07276701927185059,
0.0834304541349411,
-0.053629565984010696,
-0.09986963123083115,
0.011838582344353199,
0.003219832433387637,
-0.09411729872226715,
0.16427192091941833,
-0.19330047070980072,
-0.05889757350087166,
0.19013798236846924,
-0.17577409744262695,
-0.11921219527721405,
0.01634799875319004,
0.003170120296999812,
0.02654755674302578,
0.08775296062231064,
0.1355028748512268,
0.035944823175668716,
-0.09736647456884384,
-0.0048798685893416405,
0.08526874333620071,
-0.051504768431186676,
-0.06650557368993759,
0.10091792047023773,
0.027473153546452522,
-0.03144529461860657,
0.02467074617743492,
0.027657508850097656,
-0.10941561311483383,
-0.06144468113780022,
-0.06306793540716171,
-0.003967857453972101,
0.01749355159699917,
0.04744255915284157,
0.03290381282567978,
0.04469561204314232,
-0.05689365789294243,
0.03295714035630226,
0.025571683421730995,
0.0533110573887825,
0.00617078086361289,
-0.054049573838710785,
-0.03697219863533974,
0.13343307375907898,
-0.10026950389146805,
-0.08217579126358032,
-0.15723399817943573,
-0.1610536128282547,
0.03972324728965759,
0.01751830242574215,
0.008182523772120476,
0.15316228568553925,
0.02447746880352497,
0.015856070443987846,
-0.023672766983509064,
-0.011155820451676846,
-0.004139026161283255,
0.08875614404678345,
-0.04911705106496811,
-0.18415044248104095,
-0.060425881296396255,
-0.08048706501722336,
0.03658926859498024,
-0.016428876668214798,
0.013272669166326523,
0.1527230590581894,
0.08524587750434875,
0.04046129062771797,
0.052629537880420685,
0.051357705146074295,
0.035383645445108414,
-0.02231455408036709,
-0.04755095764994621,
0.07200045883655548,
-0.10488791763782501,
-0.05697410926222801,
-0.06738942861557007,
-0.10863056033849716,
0.08854532986879349,
0.14101357758045197,
-0.07722289860248566,
-0.0642731711268425,
-0.06561628729104996,
0.0018892457010224462,
0.005037900060415268,
-0.08652655780315399,
0.0011797494953498244,
-0.10429254919290543,
-0.030428357422351837,
0.01541340071707964,
-0.07928778976202011,
-0.0343523807823658,
0.03117104433476925,
-0.030637020245194435,
-0.15685340762138367,
0.09859687089920044,
0.0023341996129602194,
-0.255545437335968,
0.13852618634700775,
0.22968937456607819,
0.16883143782615662,
0.07759567350149155,
-0.01581915281713009,
-0.03305353969335556,
-0.030186323449015617,
-0.009151422418653965,
-0.08830655366182327,
0.18868504464626312,
-0.16689613461494446,
-0.04687730222940445,
0.040831808000802994,
0.05303043872117996,
0.018262675032019615,
-0.18687720596790314,
-0.005169329233467579,
-0.013002411462366581,
-0.030854355543851852,
-0.08128299564123154,
-0.04336564615368843,
0.013047358021140099,
0.14133629202842712,
0.06773273646831512,
-0.1912141889333725,
0.046809688210487366,
-0.059137556701898575,
-0.07872813940048218,
0.17040680348873138,
-0.08273462951183319,
-0.2390545904636383,
-0.1327913999557495,
-0.08316357433795929,
-0.07659585773944855,
0.049775052815675735,
-0.03255840390920639,
-0.13582997024059296,
-0.052314918488264084,
0.01825147494673729,
-0.018408246338367462,
-0.13252507150173187,
-0.026865288615226746,
0.004131919704377651,
0.07385265082120895,
-0.12543416023254395,
-0.03238407522439957,
-0.10782390832901001,
-0.0986795425415039,
0.12663601338863373,
0.1021202951669693,
-0.19545315206050873,
0.09722518920898438,
0.2776281535625458,
-0.029584091156721115,
0.0916285514831543,
-0.003513708710670471,
0.11234395205974579,
-0.06572877615690231,
0.03906862437725067,
0.10078858584165573,
0.05555791035294533,
0.03547376021742821,
0.2648550868034363,
0.07953763008117676,
-0.15629249811172485,
-0.03462054580450058,
-0.05115513131022453,
-0.1052197590470314,
-0.14056262373924255,
-0.12975071370601654,
-0.0634174570441246,
-0.047115031629800797,
0.02441224828362465,
0.019757727161049843,
0.0058384304866194725,
0.06121378019452095,
0.013731386512517929,
-0.01513401698321104,
0.02984379231929779,
0.03212926536798477,
0.09365511685609818,
-0.04876966029405594,
0.07936334609985352,
-0.03679431602358818,
-0.06163459271192551,
0.09891609847545624,
0.08292149752378464,
0.18581518530845642,
0.16550303995609283,
0.0018193161813542247,
0.07427015155553818,
0.03421660512685776,
0.12148451805114746,
0.101702980697155,
0.1369778960943222,
-0.03331790864467621,
-0.019930744543671608,
-0.07035697251558304,
-0.0035176854580640793,
0.049692846834659576,
-0.03123752772808075,
-0.05657234415411949,
-0.07950318604707718,
-0.0491899810731411,
0.06560713052749634,
0.02053910680115223,
0.26516804099082947,
-0.241373211145401,
0.00817788578569889,
0.12371103465557098,
0.10508310049772263,
-0.08733067661523819,
0.08425100892782211,
0.03172433748841286,
-0.09857413917779922,
0.08766712248325348,
0.0029015722684562206,
0.10183168202638626,
-0.10800830274820328,
-0.010718139819800854,
-0.06039344146847725,
-0.055333882570266724,
-0.021794499829411507,
0.08527933061122894,
-0.036076176911592484,
0.33513468503952026,
0.03111046366393566,
-0.05744660273194313,
-0.057121723890304565,
-0.012726545333862305,
0.023651672527194023,
0.22745028138160706,
0.21016259491443634,
0.05834334343671799,
-0.188084214925766,
-0.25235486030578613,
-0.03316182270646095,
-0.011539499275386333,
0.15996776521205902,
-0.032365214079618454,
0.0418093204498291,
0.02098674699664116,
-0.00115579750854522,
-0.024018650874495506,
0.0342477485537529,
-0.0696147233247757,
0.0007738993153907359,
0.03168651461601257,
0.07997030019760132,
-0.10643088072538376,
-0.013355052098631859,
-0.09638208895921707,
-0.14020882546901703,
0.14884324371814728,
0.013729002326726913,
-0.11737439036369324,
-0.09733413904905319,
-0.01724502258002758,
0.11018932610750198,
-0.035646144300699234,
-0.03887610137462616,
-0.04478180781006813,
0.13515961170196533,
0.030301816761493683,
-0.11002827435731888,
0.13549557328224182,
-0.024516034871339798,
-0.02687986008822918,
-0.05070185661315918,
0.17233608663082123,
0.009210661053657532,
-0.0005572570953518152,
0.06449992954730988,
0.07329961657524109,
0.010208544321358204,
-0.11202266812324524,
0.09826560318470001,
-0.0012834130320698023,
0.06703731417655945,
0.3088286221027374,
-0.1022408977150917,
-0.16158024966716766,
-0.039316970854997635,
0.08970291912555695,
0.10866092890501022,
0.2138870656490326,
-0.07366011291742325,
0.050533268600702286,
0.0936591625213623,
-0.010898184962570667,
-0.19183115661144257,
-0.014077160507440567,
-0.1533866822719574,
0.03630044311285019,
-0.0363614447414875,
-0.04376356676220894,
0.1487272083759308,
0.043572477996349335,
-0.05645187944173813,
0.031246516853570938,
-0.2233593910932541,
-0.06501760333776474,
0.20365451276302338,
0.10217856615781784,
0.19416342675685883,
-0.0596412718296051,
-0.10311099886894226,
-0.08162536472082138,
-0.24841701984405518,
0.13089615106582642,
-0.020342746749520302,
0.09497517347335815,
-0.07576402276754379,
-0.006827430799603462,
0.027646701782941818,
-0.019082071259617805,
0.2258445769548416,
0.12230311334133148,
0.08587341755628586,
0.011682186275720596,
-0.1654091626405716,
0.20313802361488342,
-0.025668509304523468,
0.016688518226146698,
0.1796923130750656,
0.01732262223958969,
-0.13942638039588928,
-0.016191516071558,
-0.017801368609070778,
-0.01000824011862278,
-0.04800686240196228,
-0.065711110830307,
-0.07836052775382996,
0.02021894045174122,
-0.061558328568935394,
-0.06263308227062225,
0.26264795660972595,
-0.05181016027927399,
0.14029474556446075,
0.11999824643135071,
0.02182300016283989,
-0.15688472986221313,
0.016642604023218155,
-0.06631220877170563,
-0.060463450849056244,
0.04500500112771988,
-0.15323223173618317,
0.06464655697345734,
0.14061760902404785,
0.04749349504709244,
0.12413051724433899,
0.12634961307048798,
-0.0034603087697178125,
-0.04603702202439308,
0.13776372373104095,
-0.12740027904510498,
-0.1500125378370285,
-0.006942036561667919,
-0.260402649641037,
-0.012485927902162075,
0.10127070546150208,
0.0671519786119461,
0.038971688598394394,
-0.024432478472590446,
0.0036809451412409544,
0.030605025589466095,
-0.0731736347079277,
0.14248140156269073,
0.02724863588809967,
0.06654386967420578,
-0.15756163001060486,
0.11269237846136093,
0.03929625824093819,
0.03973851352930069,
-0.06611838191747665,
-0.01263917051255703,
-0.15220090746879578,
-0.04251343756914139,
0.031012337654829025,
0.14924252033233643,
-0.13954204320907593,
-0.11203843355178833,
-0.10749940574169159,
-0.19061805307865143,
0.020030101761221886,
0.10862293094396591,
0.15736356377601624,
0.09818170219659805,
0.007407978177070618,
-0.1185298040509224,
0.033052265644073486,
0.02857813611626625,
-0.03242200240492821,
0.03070211224257946,
-0.2450118511915207,
0.017254773527383804,
-0.03930428624153137,
0.1273115873336792,
-0.11268088966608047,
-0.07596297562122345,
-0.13825814425945282,
0.013491646386682987,
-0.12772813439369202,
0.040572892874479294,
-0.05342956632375717,
0.0036058425903320312,
-0.02137892134487629,
-0.006323239300400019,
-0.07625968009233475,
-0.0005975831882096827,
-0.10194351524114609,
0.058591634035110474,
-0.003749316791072488,
0.13184480369091034,
-0.09182517230510712,
-0.006720780860632658,
0.07491664588451385,
-0.03294168412685394,
0.07034563273191452,
0.056262437254190445,
0.0255753006786108,
0.08529896289110184,
-0.1299351155757904,
-0.021333061158657074,
0.1098790094256401,
0.0299514252692461,
0.11073616147041321,
-0.12957243621349335,
-0.011890582740306854,
0.030174843966960907,
-0.05009019374847412,
0.10792534053325653,
-0.05486202612519264,
-0.08290152996778488,
-0.11305176466703415,
-0.1816343367099762,
-0.1342238485813141,
-0.03261043131351471,
0.04308926686644554,
0.23073282837867737,
0.045416250824928284,
-0.011655588634312153,
0.04710335284471512,
0.0016395847778767347,
-0.07006509602069855,
-0.018530715256929398,
-0.04084832966327667,
-0.09674190729856491,
-0.03163493797183037,
-0.007405618671327829,
0.020799703896045685,
-0.025025898590683937,
0.3315463662147522,
0.017635535448789597,
0.06567379832267761,
0.04897279292345047,
0.18914242088794708,
-0.012874415144324303,
0.032333191484212875,
0.22814129292964935,
0.06219802796840668,
-0.0797601193189621,
0.08394018560647964,
0.05624765902757645,
0.020643917843699455,
0.03993133455514908,
0.2163984328508377,
0.0760151669383049,
-0.11067201942205429,
0.059901975095272064,
0.03624134138226509,
0.014492333866655827,
-0.05605338513851166,
0.04017096012830734,
0.027951041236519814,
0.01280610729008913,
0.07079686224460602,
-0.09521188586950302,
0.11536251753568649,
-0.1878827065229416,
0.11112774163484573,
-0.03987859934568405,
-0.10897580534219742,
-0.19059060513973236,
-0.043856553733348846,
-0.09631509333848953,
-0.06445233523845673,
0.0020729717798531055,
-0.1300416886806488,
-0.07978102564811707,
0.20316973328590393,
0.04356473311781883,
0.02128118835389614,
0.07355420291423798,
-0.21636082231998444,
0.002238526940345764,
0.09915349632501602,
0.02250896580517292,
0.0074397362768650055,
-0.0295583326369524,
-0.013914009556174278,
0.027383221313357353,
-0.061533715575933456,
-0.03530443087220192,
-0.03957279771566391,
0.022182729095220566,
-0.048860058188438416,
-0.1501423865556717,
-0.07737291604280472,
-0.055411919951438904,
-0.014628012664616108,
-0.00006360495899571106,
-0.09388518333435059,
0.030470283702015877,
-0.024807395413517952,
0.01398632675409317,
0.261669784784317,
-0.06869842857122421,
0.05250438302755356,
-0.07920503616333008,
0.24525633454322815,
-0.042446549981832504,
0.09129966050386429,
0.07246566563844681,
-0.0630195140838623,
-0.047964416444301605,
0.08940569311380386,
0.16729284822940826,
-0.0018902731826528907,
-0.00013601293903775513,
0.006887298543006182,
0.020688697695732117,
0.04539439082145691,
0.0263198409229517,
-0.028400905430316925,
0.11624118685722351,
-0.04719448462128639,
0.07303697615861893,
-0.07170523703098297,
-0.045033495873212814,
-0.04712771251797676,
-0.053188253194093704,
0.16946814954280853,
-0.044288408011198044,
-0.14042960107326508,
0.2103784829378128,
-0.02594730630517006,
0.0013883606297895312,
0.25540030002593994,
-0.15532298386096954,
-0.12899795174598694,
-0.008265485055744648,
-0.002696485724300146,
-0.009386763907968998,
0.06097524240612984,
-0.12037501484155655,
0.006154727656394243,
0.03425805643200874,
0.04548594355583191,
-0.2074056714773178,
-0.11501093208789825,
0.05152744799852371,
-0.00897617544978857,
0.05672334134578705,
-0.0033412768971174955,
0.14107011258602142,
0.08958204090595245,
-0.03976847976446152,
-0.05171399563550949,
0.06979141384363174,
0.004669857211410999,
0.04379357025027275,
-0.012172376736998558,
0.09602151811122894,
-0.016468266025185585,
-0.09321869909763336,
0.10264790803194046,
-0.12399845570325851,
-0.04047570750117302,
-0.008770852349698544,
-0.06699226051568985,
-0.05355291813611984,
0.03443155437707901,
-0.10788882523775101,
0.10262510180473328,
0.11548876017332077,
-0.007692517247051001,
0.0054726689122617245,
0.012302475050091743,
0.07788091897964478,
0.0832291767001152,
-0.0577276237308979,
-0.00017110517364926636,
-0.03271262347698212,
-0.029600363224744797,
0.0625314861536026,
-0.03435911238193512,
-0.21214282512664795,
-0.027109015733003616,
-0.09483689069747925,
0.03975595161318779,
-0.051447879523038864,
0.11786560714244843,
0.10557689517736435,
0.058350563049316406,
-0.03988077864050865,
-0.19556836783885956,
0.04556624963879585,
0.11069678515195847,
-0.10321944952011108,
-0.07066752016544342
] |
null | null |
spacy
|
| Feature | Description |
| --- | --- |
| **Name** | `hr_hroberta_pipeline` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.1.3,<3.2.0` |
| **Default Pipeline** | `transformer`, `morphologizer`, `tagger`, `parser` |
| **Components** | `transformer`, `morphologizer`, `tagger`, `parser` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | HR500k |
| **License** | CC BY-SA 4.0 |
| **Author** | [Daniel VasiΔ](https://github.com/danielvasic) |
### Label Scheme
<details>
<summary>View label scheme (1392 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=nominative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|POS=ADP`, `Case=locative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=instrumental\|POS=ADP`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Degree=positive\|POS=ADV\|Type=general`, `Number=singular\|POS=VERB\|Person=third\|Type=main\|VForm=present`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `POS=PUNCT`, `POS=PART\|Type=modal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `POS=SCONJ\|Type=subordinating`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=accusative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `POS=CCONJ\|Type=coordinating`, `Case=genitive\|POS=ADP`, `Case=dative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Number=plural\|POS=VERB\|Person=third\|Type=main\|VForm=present`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=present`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|POS=ADP`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Animate=no\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `POS=VERB\|Type=main\|VForm=infinitive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `POS=PART\|Type=negative`, `Case=accusative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Degree=comparative\|POS=ADV\|Type=general`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Gender=masculine\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=locative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Form=digit\|POS=ADJ\|Type=ordinal`, `Number=singular\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=present`, `Number=plural\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=present`, `Case=accusative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Gender=feminine\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Gender=neuter\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Degree=superlative\|POS=ADV\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Number=plural\|POS=VERB\|Person=first\|Type=main\|VForm=present`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Gender=feminine\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Gender=masculine\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Gender=masculine\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Form=digit\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Gender=feminine\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Gender=neuter\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=locative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Number=plural\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=aorist`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=aorist`, `POS=X`, `Case=genitive\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Form=letter\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `POS=X\|Type=foreign`, `Number=plural\|POS=VERB\|Person=second\|Type=main\|VForm=present`, `POS=PART\|Type=interrogative`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `POS=ADV\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=VERB\|Person=first\|Type=main\|VForm=present`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=dative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=yes\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Number=plural\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=present`, `POS=AUX\|Type=auxiliary\|VForm=infinitive`, `Case=locative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Gender=feminine\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Animate=no\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=dative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Number=plural\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=aorist`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `POS=NOUN`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=nominative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=present`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Number=singular\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=aorist`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=interrogative`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=no\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=instrumental\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|POS=ADP`, `Case=instrumental\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Gender=neuter\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Case=nominative\|Form=letter\|Gender=neuter\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=dative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Form=letter\|POS=NUM\|Type=special`, `Case=accusative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=genitive\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=genitive\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=nominative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Gender=masculine\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `POS=PROPN`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=locative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Gender=neuter\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Number=plural\|POS=VERB\|Person=second\|Type=main\|VForm=imperative`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Form=digit\|POS=SYM\|Type=special`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Form=digit\|POS=NUM\|Type=special`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=locative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=aorist`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `POS=SYM`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=vocative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Form=digit\|POS=NUM\|Type=multiple`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Animate=yes\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Number=plural\|POS=VERB\|Person=first\|Type=main\|VForm=imperative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=cardinal`, `Case=accusative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=accusative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=locative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Animate=no\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=dative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PRON\|Type=indefinite`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=locative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=locative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=accusative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=locative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=VERB\|Person=third\|Type=main\|VForm=aorist`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `POS=ADJ`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=dative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Number=singular\|POS=VERB\|Person=second\|Type=main\|VForm=imperative`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Form=roman\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=special`, `Case=locative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=genitive\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Form=roman\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=PROPN\|Type=proper`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=aorist`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|POS=SYM`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=nominative\|Gender=masculine\|POS=PRON\|Person=third\|Type=interrogative`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `POS=PART`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=dative\|Gender=masculine\|POS=PRON\|Person=third\|Type=interrogative`, `Case=instrumental\|Definiteness=no\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `POS=INTJ`, `Case=locative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `POS=PART\|Type=affirmative`, `Number=singular\|POS=VERB\|Person=second\|Type=main\|VForm=present`, `Case=dative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=neuter\|POS=NUM\|Type=special`, `Case=locative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=cardinal`, `Case=accusative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=locative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Number=singular\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=present`, `Case=vocative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=vocative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=vocative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=imperative`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=imperfect`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `POS=ADV`, `Case=locative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=PROPN\|Type=proper`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=vocative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=vocative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=vocative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive` |
| **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmply`, `Agcmpny`, `Agcmsany`, `Agcmsay`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpay`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsin`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmpvy`, `Agpmsan`, `Agpmsann`, `Agpmsany`, `Agpmsay`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmpvy`, `Agsmsany`, `Agsmsay`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfpiy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsiy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsayn`, `Aspmsayy`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsdn`, `Aspnsgn`, `Aspnsgy`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpl`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsl`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlomsv`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-d`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsmpn`, `Mlsn-n`, `Mrc`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npd`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sg`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pg`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp2-sv`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsi`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpd`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, `Ps1fsv`, `Ps1mpa`, `Ps1mpd`, `Ps1mpg`, `Ps1mpi`, `Ps1mpl`, `Ps1mpn`, `Ps1mpv`, `Ps1msan`, `Ps1msay`, `Ps1msd`, `Ps1msg`, `Ps1msi`, `Ps1msl`, `Ps1msn`, `Ps1msv`, `Ps1npd`, `Ps1npn`, `Ps1nsa`, `Ps1nsg`, `Ps1nsi`, `Ps1nsl`, `Ps1nsn`, `Ps2fpa`, `Ps2fpl`, `Ps2fpn`, `Ps2fsa`, `Ps2fsd`, `Ps2fsg`, `Ps2fsn`, `Ps2mpa`, `Ps2mpg`, `Ps2mpl`, `Ps2mpn`, `Ps2msan`, `Ps2msd`, `Ps2msg`, `Ps2msi`, `Ps2msl`, `Ps2msn`, `Ps2npn`, `Ps2nsa`, `Ps2nsg`, `Ps2nsi`, `Ps2nsl`, `Ps2nsn`, `Ps3fpa`, `Ps3fpg`, `Ps3fpl`, `Ps3fpn`, `Ps3fsa`, `Ps3fsd`, `Ps3fsg`, `Ps3fsi`, `Ps3fsl`, `Ps3fsn`, `Ps3mpa`, `Ps3mpd`, `Ps3mpg`, `Ps3mpi`, `Ps3mpl`, `Ps3mpn`, `Ps3msan`, `Ps3msay`, `Ps3msd`, `Ps3msg`, `Ps3msi`, `Ps3msl`, `Ps3msn`, `Ps3npa`, `Ps3npg`, `Ps3npl`, `Ps3npn`, `Ps3nsa`, `Ps3nsg`, `Ps3nsi`, `Ps3nsl`, `Ps3nsn`, `Px--sa`, `Px--sd`, `Px--sg`, `Px--si`, `Px--sl`, `Px-fpa`, `Px-fpg`, `Px-fpi`, `Px-fpl`, `Px-fpn`, `Px-fsa`, `Px-fsd`, `Px-fsg`, `Px-fsi`, `Px-fsl`, `Px-mpa`, `Px-mpd`, `Px-mpg`, `Px-mpi`, `Px-mpl`, `Px-msan`, `Px-msay`, `Px-msd`, `Px-msg`, `Px-msi`, `Px-msl`, `Px-npa`, `Px-npg`, `Px-npi`, `Px-npl`, `Px-nsa`, `Px-nsg`, `Px-nsi`, `Px-nsl`, `Qo`, `Qq`, `Qr`, `Qz`, `Rgc`, `Rgp`, `Rgs`, `Rr`, `Sa`, `Sd`, `Sg`, `Si`, `Sl`, `Vaa1p`, `Vaa1s`, `Vaa2p`, `Vaa2s`, `Vaa3p`, `Vaa3s`, `Vae3s`, `Vam2p`, `Van`, `Vap-pf`, `Vap-pm`, `Vap-pn`, `Vap-sf`, `Vap-sm`, `Vap-sn`, `Var1p`, `Var1s`, `Var2p`, `Var2s`, `Var3p`, `Var3s`, `Vma3s`, `Vmm1p`, `Vmm2p`, `Vmm2s`, `Vmn`, `Vmp-pf`, `Vmp-pm`, `Vmp-pn`, `Vmp-sf`, `Vmp-sm`, `Vmp-sn`, `Vmr1p`, `Vmr1s`, `Vmr2p`, `Vmr2s`, `Vmr3p`, `Vmr3s`, `X`, `Xf`, `Y`, `Z` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `goeswith`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `POS_ACC` | 97.94 |
| `MORPH_ACC` | 93.45 |
| `TAG_ACC` | 93.42 |
| `DEP_UAS` | 88.33 |
| `DEP_LAS` | 82.92 |
| `SENTS_P` | 96.67 |
| `SENTS_R` | 96.83 |
| `SENTS_F` | 96.75 |
| `TRANSFORMER_LOSS` | 3301725.19 |
| `MORPHOLOGIZER_LOSS` | 410128.51 |
| `TAGGER_LOSS` | 393243.89 |
| `PARSER_LOSS` | 3074279.42 |
|
{"language": ["hr"], "license": "cc", "library_name": "spacy", "tags": ["spacy", "token-classification"], "datasets": ["classla/hr500k"], "metrics": ["f1", "accuracy"], "pipeline_tag": "token-classification"}
|
token-classification
|
danielvasic/hr_hroberta_pipeline
|
[
"spacy",
"token-classification",
"hr",
"dataset:classla/hr500k",
"license:cc",
"model-index",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"hr"
] |
TAGS
#spacy #token-classification #hr #dataset-classla/hr500k #license-cc #model-index #region-us
|
### Label Scheme
View label scheme (1392 labels for 3 components)
### Accuracy
|
[
"### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)",
"### Accuracy"
] |
[
"TAGS\n#spacy #token-classification #hr #dataset-classla/hr500k #license-cc #model-index #region-us \n",
"### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)",
"### Accuracy"
] |
[
36,
17,
5
] |
[
"passage: TAGS\n#spacy #token-classification #hr #dataset-classla/hr500k #license-cc #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)### Accuracy"
] |
[
-0.10042384266853333,
0.14356568455696106,
-0.0008400313672609627,
0.06652381271123886,
0.09397587180137634,
0.06794865429401398,
0.23594799637794495,
0.08842702209949493,
0.17497128248214722,
0.03832004964351654,
0.05174848809838295,
0.09169356524944305,
0.07969111949205399,
0.20906707644462585,
-0.10120546817779541,
-0.1940533071756363,
0.08402541279792786,
-0.011265053413808346,
0.034070197492837906,
0.11941245198249817,
0.07664044201374054,
-0.1298520714044571,
0.1099897101521492,
-0.04562447592616081,
-0.20454087853431702,
0.02684767171740532,
0.036028824746608734,
-0.09834688901901245,
0.07467035949230194,
-0.014561733230948448,
0.18382233381271362,
0.05974079668521881,
0.1290382444858551,
-0.18063539266586304,
-0.003913729917258024,
-0.05547763407230377,
-0.07165031880140305,
0.07639708369970322,
0.01991949789226055,
0.03082025796175003,
-0.015700602903962135,
-0.08084145188331604,
0.04468654468655586,
0.033581946045160294,
-0.10714800655841827,
-0.09888649731874466,
-0.11159303039312363,
0.1922662854194641,
0.10585016012191772,
-0.04467380419373512,
0.01127586979418993,
0.09010523557662964,
-0.08995763957500458,
0.04794848710298538,
0.1626814305782318,
-0.3403674364089966,
0.0019244180293753743,
0.2628185451030731,
-0.050924625247716904,
0.06976570188999176,
-0.035288188606500626,
0.1325111985206604,
0.12459062039852142,
-0.011415739543735981,
0.008457559160888195,
-0.02272704616189003,
0.002025271998718381,
0.02944488823413849,
-0.097885362803936,
-0.046717092394828796,
0.49739307165145874,
0.09283408522605896,
-0.026286553591489792,
-0.09138529747724533,
-0.03642123565077782,
-0.1682213693857193,
-0.07253636419773102,
-0.04888299107551575,
0.05884415656328201,
-0.003587923478335142,
0.08631782978773117,
0.10733113437891006,
-0.09233054518699646,
-0.07216835021972656,
-0.143684983253479,
0.15352466702461243,
0.017967980355024338,
0.08187831938266754,
-0.11325433850288391,
0.03410064056515694,
-0.04844885319471359,
-0.06674572080373764,
-0.014003933407366276,
-0.06355063617229462,
-0.058850500732660294,
-0.0439567007124424,
0.03617824614048004,
0.14211754500865936,
0.08139505982398987,
0.06558462232351303,
-0.044799670577049255,
0.029540453106164932,
0.03282388672232628,
0.046352338045835495,
0.07946489751338959,
0.12292611598968506,
-0.06758080422878265,
-0.033919431269168854,
-0.019421420991420746,
-0.04873408004641533,
0.06362228840589523,
-0.030450286343693733,
-0.1395556926727295,
-0.021348487585783005,
0.0768684446811676,
0.11544644832611084,
-0.076728455722332,
-0.011566263623535633,
-0.11760716140270233,
-0.026494015008211136,
0.11354312300682068,
-0.1234653890132904,
0.018113739788532257,
-0.006205657962709665,
-0.026215262711048126,
0.034923940896987915,
-0.08492332696914673,
-0.009606302715837955,
0.05250951275229454,
-0.003980291076004505,
-0.10291533172130585,
-0.02008478343486786,
-0.011409874074161053,
-0.09379256516695023,
0.04136345162987709,
-0.08312179893255234,
0.013563226908445358,
-0.05675977095961571,
-0.15135236084461212,
-0.01591440849006176,
-0.010755700059235096,
-0.08024492114782333,
-0.006284644361585379,
-0.011715554632246494,
-0.07290322333574295,
0.016596224159002304,
-0.0046129063703119755,
-0.049796320497989655,
-0.07782505452632904,
-0.00044002983486279845,
-0.022868819534778595,
0.08496430516242981,
-0.11756405979394913,
0.019837437197566032,
-0.06367001682519913,
0.055868424475193024,
-0.13157881796360016,
0.01416450459510088,
-0.0872577354311943,
0.07191137969493866,
-0.06465054303407669,
-0.09374938160181046,
0.05939362943172455,
-0.0027809899765998125,
-0.07485856860876083,
0.15158788859844208,
-0.23514391481876373,
-0.022991588339209557,
0.15932883322238922,
-0.16849935054779053,
-0.1629858762025833,
0.00742126302793622,
-0.008470556698739529,
0.05900057032704353,
0.09905458986759186,
0.11294540017843246,
0.014874952845275402,
-0.13143308460712433,
-0.04196363314986229,
0.0769893229007721,
-0.03840789198875427,
-0.11594285815954208,
0.11591751873493195,
0.008737043477594852,
-0.00507100997492671,
0.03832496702671051,
0.005424669943749905,
-0.11222518980503082,
-0.05063924938440323,
-0.09668438881635666,
-0.027786213904619217,
0.015290536917746067,
-0.007676233537495136,
0.03253673389554024,
0.024125490337610245,
-0.054032787680625916,
0.024299081414937973,
0.05032318830490112,
0.06820375472307205,
0.0065590268932282925,
-0.05234881490468979,
-0.05724446475505829,
0.13187220692634583,
-0.07846011966466904,
-0.08669011294841766,
-0.11513743549585342,
-0.15703019499778748,
0.02197839505970478,
-0.00460535055026412,
0.01927262730896473,
0.12950557470321655,
-0.007412085309624672,
0.016081003472208977,
-0.029814861714839935,
0.010145192965865135,
0.014559527859091759,
0.09305781126022339,
-0.0464266799390316,
-0.2102605104446411,
-0.0633612796664238,
-0.04681272432208061,
0.06641159951686859,
-0.04747946932911873,
0.015762869268655777,
0.16720612347126007,
0.07357794046401978,
0.01647454872727394,
0.05624866485595703,
0.02524081990122795,
0.0389820821583271,
-0.03618156537413597,
-0.057925913482904434,
0.0718989297747612,
-0.07076869159936905,
-0.058996230363845825,
-0.03201619163155556,
-0.06668341904878616,
0.05385389178991318,
0.156655415892601,
-0.02203468792140484,
-0.0649895891547203,
-0.08005892485380173,
0.0022773267701268196,
0.010134636424481869,
-0.09234832972288132,
0.016529375687241554,
-0.11750105768442154,
-0.043568141758441925,
0.024549109861254692,
-0.1007649302482605,
-0.029599720612168312,
0.03156999126076698,
-0.02599770948290825,
-0.14073537290096283,
0.0879397839307785,
0.07950305938720703,
-0.2296316921710968,
0.15511181950569153,
0.21671731770038605,
0.13502568006515503,
0.07450494915246964,
-0.040128305554389954,
-0.024002743884921074,
-0.06559079140424728,
-0.023469040170311928,
-0.0698031410574913,
0.21299374103546143,
-0.09788581728935242,
-0.0368170365691185,
0.05073220655322075,
0.03390386328101158,
-0.007692929357290268,
-0.1973642259836197,
-0.015617242082953453,
-0.029283374547958374,
-0.04975726827979088,
-0.10362248867750168,
-0.028001731261610985,
-0.006934528239071369,
0.13143961131572723,
0.03998764604330063,
-0.194403275847435,
0.07058890908956528,
-0.05269039794802666,
-0.09134037792682648,
0.16462668776512146,
-0.0921216756105423,
-0.1927875280380249,
-0.13977093994617462,
-0.044973958283662796,
-0.08039054274559021,
0.028507236391305923,
-0.00569937052205205,
-0.09116213768720627,
-0.05175229161977768,
-0.01607004925608635,
-0.06852349638938904,
-0.08781968057155609,
-0.04030369967222214,
-0.02726105786859989,
0.07186394184827805,
-0.10878346860408783,
-0.07478567957878113,
-0.09965984523296356,
-0.0529475212097168,
0.07242526113986969,
0.08383115381002426,
-0.1391255259513855,
0.09870930016040802,
0.23969322443008423,
-0.034385453909635544,
0.07038933783769608,
-0.032753556966781616,
0.12147659808397293,
-0.04537227749824524,
0.05161421000957489,
0.1020176112651825,
0.09168151021003723,
0.024924051016569138,
0.2739245891571045,
0.09023887664079666,
-0.14684124290943146,
-0.036999136209487915,
-0.04979950562119484,
-0.09441573917865753,
-0.15941545367240906,
-0.12441561371088028,
-0.06273430585861206,
-0.04296204075217247,
0.029942860826849937,
0.02717546373605728,
-0.011918582022190094,
0.07300131767988205,
0.002502238843590021,
0.002105815103277564,
0.031813014298677444,
0.04366888478398323,
0.14658844470977783,
-0.02162649855017662,
0.09850369393825531,
-0.06462441384792328,
-0.02481093443930149,
0.09140083938837051,
0.10315237194299698,
0.19489902257919312,
0.13701346516609192,
0.02728966251015663,
0.10606078803539276,
0.10130561143159866,
0.09388744086027145,
0.06736032664775848,
0.13618193566799164,
-0.02744976617395878,
-0.014701935462653637,
-0.07924408465623856,
0.007487651892006397,
0.0567435622215271,
-0.04823726788163185,
-0.03360668197274208,
-0.07393292337656021,
-0.043814826756715775,
0.05401623994112015,
0.06760341674089432,
0.23977717757225037,
-0.27265608310699463,
0.002317523816600442,
0.10861718654632568,
0.10930968821048737,
-0.07470831274986267,
0.0868382528424263,
0.010697944089770317,
-0.11012840270996094,
0.10068820416927338,
0.00007753489626338705,
0.0924798771739006,
-0.06134398281574249,
-0.038069721311330795,
-0.022810470312833786,
-0.052613481879234314,
-0.017102226614952087,
0.09728004038333893,
-0.11030832678079605,
0.31468889117240906,
0.03596181422472,
-0.01225360855460167,
-0.058760352432727814,
-0.0194555576890707,
0.01760834828019142,
0.20083247125148773,
0.21536758542060852,
0.04882146045565605,
-0.1885034739971161,
-0.2382642924785614,
-0.03828729689121246,
-0.0047372872941195965,
0.10398836433887482,
-0.01924300193786621,
0.035300154238939285,
0.01978966034948826,
0.0012929195072501898,
-0.009160506539046764,
0.022803951054811478,
-0.10720843076705933,
-0.030739912763237953,
0.018790999427437782,
0.10574395954608917,
-0.07371614873409271,
-0.034369777888059616,
-0.09871033579111099,
-0.15905170142650604,
0.11568101495504379,
-0.05283736810088158,
-0.11172853410243988,
-0.09916388243436813,
-0.019479386508464813,
0.08559603989124298,
-0.03093176893889904,
-0.015821052715182304,
-0.030431222170591354,
0.1161140725016594,
0.020774107426404953,
-0.10186384618282318,
0.12506181001663208,
-0.03556782007217407,
-0.05910465493798256,
-0.0612986795604229,
0.143715962767601,
0.0007797377184033394,
0.008087240159511566,
0.08245992660522461,
0.0897076427936554,
0.0216839499771595,
-0.1107991635799408,
0.07191292196512222,
0.010612227953970432,
0.08143677562475204,
0.24116691946983337,
-0.11490236967802048,
-0.16545651853084564,
-0.02220192737877369,
0.03154543414711952,
0.10190284252166748,
0.23584085702896118,
-0.11227478086948395,
0.08319833874702454,
0.0930032730102539,
-0.037568025290966034,
-0.21431785821914673,
-0.013312973082065582,
-0.16096201539039612,
0.028136227279901505,
-0.007904580794274807,
-0.04187680780887604,
0.14858083426952362,
0.06111422926187515,
-0.07322234660387039,
0.023946790024638176,
-0.2435852587223053,
-0.09546557068824768,
0.17559213936328888,
0.1009824350476265,
0.1254284530878067,
-0.08083634823560715,
-0.09517405927181244,
-0.09499252587556839,
-0.2607782185077667,
0.17345713078975677,
-0.0150567926466465,
0.0878242775797844,
-0.07483798265457153,
0.01304742880165577,
0.0036398584488779306,
-0.007917225360870361,
0.2216363400220871,
0.12085923552513123,
0.09765221178531647,
-0.0019127848790958524,
-0.1358029544353485,
0.23658567667007446,
-0.0221102237701416,
0.05631097033619881,
0.08196471631526947,
0.020745038986206055,
-0.1265784353017807,
-0.007831943221390247,
-0.0010070748394355178,
0.025072600692510605,
-0.08140750974416733,
-0.0631052702665329,
-0.10079129785299301,
0.04308575764298439,
-0.04629174992442131,
-0.08210157603025436,
0.21565839648246765,
-0.024215633049607277,
0.09032780677080154,
0.10608099400997162,
0.017950110137462616,
-0.12446328997612,
-0.0015308719594031572,
-0.06062742695212364,
-0.07866179198026657,
0.047856368124485016,
-0.15460750460624695,
0.040504854172468185,
0.13194428384304047,
0.052525073289871216,
0.13312119245529175,
0.101213738322258,
-0.0063351914286613464,
-0.03704148530960083,
0.12191204726696014,
-0.10072062164545059,
-0.10616044700145721,
0.014737877063453197,
-0.20706236362457275,
-0.013823248445987701,
0.08184453845024109,
0.058099087327718735,
-0.004250723402947187,
-0.029498549178242683,
0.007260398007929325,
0.05013398826122284,
-0.06761422753334045,
0.13603471219539642,
0.03926770016551018,
0.055277932435274124,
-0.16259042918682098,
0.12354133278131485,
0.04079154133796692,
0.028335846960544586,
-0.042375437915325165,
-0.04735143855214119,
-0.1520390808582306,
-0.04460708424448967,
0.04980801045894623,
0.14880047738552094,
-0.1901223063468933,
-0.12107228487730026,
-0.10648341476917267,
-0.19965562224388123,
0.021189304068684578,
0.09498665481805801,
0.1478690505027771,
0.09039038419723511,
0.023722190409898758,
-0.13400481641292572,
0.020024467259645462,
0.0700836330652237,
-0.03826642408967018,
0.033970676362514496,
-0.2321934998035431,
0.04539266601204872,
-0.02293909527361393,
0.08205999433994293,
-0.08294938504695892,
-0.04202905297279358,
-0.131503626704216,
0.006207451689988375,
-0.09988664835691452,
0.056384939700365067,
-0.06553013622760773,
0.014711719937622547,
-0.013444425538182259,
-0.01833353191614151,
-0.07798723131418228,
0.014626954682171345,
-0.08117999881505966,
0.0441095232963562,
0.0066029685549438,
0.16713228821754456,
-0.12687848508358002,
-0.022804271429777145,
0.05977724492549896,
-0.020042093470692635,
0.05087381601333618,
0.018711164593696594,
0.03268445283174515,
0.07659868150949478,
-0.1477287858724594,
0.0023091970942914486,
0.07636803388595581,
0.040739692747592926,
0.10199271887540817,
-0.14020973443984985,
-0.003353734500706196,
0.06739174574613571,
-0.04333159327507019,
0.10781517624855042,
-0.0433933399617672,
-0.0843767523765564,
-0.13139328360557556,
-0.15764419734477997,
-0.09440506249666214,
-0.034206047654151917,
0.07074642181396484,
0.2482321709394455,
0.02774009294807911,
0.06155426800251007,
0.009506563656032085,
-0.029064808040857315,
-0.08934419602155685,
-0.025970881804823875,
-0.06050094962120056,
-0.07496707141399384,
-0.1008843332529068,
-0.015722250565886497,
0.015147416852414608,
-0.02362518012523651,
0.3188974857330322,
0.051113441586494446,
-0.026158032938838005,
0.05366213247179985,
0.18704889714717865,
-0.02693255804479122,
0.01500622183084488,
0.2720627784729004,
0.053667061030864716,
-0.03962945565581322,
0.07218419015407562,
0.05229756236076355,
-0.0027534428518265486,
0.03272639960050583,
0.20159649848937988,
0.09025032073259354,
-0.082655169069767,
0.05428490415215492,
0.07510192692279816,
-0.043428774923086166,
-0.0028699401300400496,
0.06567288190126419,
0.01984945312142372,
0.02835690975189209,
0.03440672904253006,
-0.05140036344528198,
0.1078905537724495,
-0.20361605286598206,
0.07808699458837509,
-0.06231562793254852,
-0.11023738980293274,
-0.18159162998199463,
-0.09972219169139862,
-0.09264303743839264,
-0.05517461523413658,
0.013970434665679932,
-0.11257462203502655,
-0.049706317484378815,
0.21689479053020477,
0.029932010918855667,
-0.00021751005260739475,
0.020125743001699448,
-0.23991627991199493,
0.018485553562641144,
0.05714210122823715,
0.030110854655504227,
-0.0016480428166687489,
-0.06441371142864227,
-0.00645283842459321,
0.03330133482813835,
-0.07167680561542511,
-0.04081742838025093,
-0.03007623367011547,
0.04595014825463295,
-0.031125200912356377,
-0.12009932100772858,
-0.05369693785905838,
-0.05042913928627968,
-0.019975291565060616,
0.036919381469488144,
-0.030636683106422424,
0.04194790869951248,
0.0022087490651756525,
0.03428181633353233,
0.2333717793226242,
-0.05229949206113815,
0.00766393868252635,
-0.07427531480789185,
0.20197466015815735,
-0.03565002605319023,
0.06683927029371262,
0.08663135021924973,
-0.07003752142190933,
-0.007327234372496605,
0.07800399512052536,
0.19484639167785645,
-0.009620314463973045,
-0.0033999388106167316,
-0.005809381138533354,
0.0002096025418723002,
0.007670060731470585,
0.036846622824668884,
-0.03195472061634064,
0.10666360706090927,
-0.0537744015455246,
0.07556004822254181,
-0.09917296469211578,
-0.02494347095489502,
-0.05260424315929413,
-0.04415401443839073,
0.11305499821901321,
-0.07072107493877411,
-0.10603488981723785,
0.1896428018808365,
-0.0025369920767843723,
-0.041729144752025604,
0.272734671831131,
-0.13359275460243225,
-0.12076082080602646,
-0.0013509240234270692,
-0.004674142692238092,
0.008305973373353481,
0.02919953688979149,
-0.1277300864458084,
0.04148869588971138,
0.07411692291498184,
0.03427903726696968,
-0.20461025834083557,
-0.11157834529876709,
0.06401941180229187,
-0.020819073542952538,
0.11354834586381912,
-0.012699881568551064,
0.19626614451408386,
0.10662763565778732,
-0.025814902037382126,
-0.08015706390142441,
0.09231149405241013,
0.022903481498360634,
0.0432417057454586,
0.024299535900354385,
0.016863126307725906,
-0.014097845181822777,
-0.03667254373431206,
0.09513456374406815,
-0.05461901053786278,
-0.0011404650285840034,
0.00940672680735588,
-0.06985151022672653,
-0.09260182827711105,
0.054225195199251175,
-0.1062120646238327,
0.10471376776695251,
0.08621371537446976,
-0.03533318638801575,
-0.0046050064265728,
0.00804159976541996,
0.07788950949907303,
0.09154052287340164,
-0.09310927987098694,
0.036410510540008545,
-0.03228907287120819,
0.011468946002423763,
0.01204474177211523,
-0.00741258030757308,
-0.21348479390144348,
-0.03451769798994064,
-0.10858148336410522,
-0.0028453953564167023,
-0.07184534519910812,
0.12667512893676758,
0.13433127105236053,
0.05371033400297165,
-0.04497136175632477,
-0.16648001968860626,
0.015778157860040665,
0.10257768630981445,
-0.09326663613319397,
-0.08063388615846634
] |
null | null |
transformers
|
# Michael Scott DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
danildany/DialoGPT-small-MichaelScott
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Michael Scott DialoGPT Model
|
[
"# Michael Scott DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Michael Scott DialoGPT Model"
] |
[
51,
8
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Michael Scott DialoGPT Model"
] |
[
-0.05219185724854469,
0.09866782277822495,
-0.005691746715456247,
0.014186694286763668,
0.1394561529159546,
-0.001829843153245747,
0.16353429853916168,
0.11410007625818253,
0.0003006179176736623,
-0.04741425812244415,
0.1353054791688919,
0.15719813108444214,
-0.014070987701416016,
0.08814262598752975,
-0.06975510716438293,
-0.2998508810997009,
0.039975605905056,
0.049550775438547134,
0.0006589151453226805,
0.12373805791139603,
0.09086789190769196,
-0.04772906005382538,
0.07793775945901871,
0.010827907361090183,
-0.15130233764648438,
0.00034275747020728886,
0.021106015890836716,
-0.10742229968309402,
0.11193658411502838,
0.057059239596128464,
0.011923723854124546,
0.05351797118782997,
-0.046079181134700775,
-0.12970955669879913,
0.037044789642095566,
-0.025121131911873817,
-0.03236977010965347,
0.04242695868015289,
0.025312280282378197,
-0.09374593198299408,
0.12003415822982788,
0.1303921341896057,
0.001079527661204338,
0.04427899792790413,
-0.16276776790618896,
0.016268204897642136,
-0.0005779521889053285,
0.04450548440217972,
0.08583608269691467,
0.12227486819028854,
-0.04295159503817558,
0.12185361236333847,
-0.0555940717458725,
0.11034291237592697,
0.06189177185297012,
-0.3160879909992218,
-0.01910942979156971,
0.10594988614320755,
0.01992202363908291,
0.05502206087112427,
-0.029418546706438065,
0.08084716647863388,
0.013392501510679722,
0.0037920791655778885,
-0.00698307016864419,
-0.07697310298681259,
-0.0839802697300911,
0.02420506812632084,
-0.09330907464027405,
-0.009450321085751057,
0.2700197696685791,
-0.02744600921869278,
0.072395920753479,
-0.08372221887111664,
-0.08785450458526611,
-0.022152839228510857,
-0.028888678178191185,
-0.0352373942732811,
-0.07969874143600464,
0.0692928358912468,
-0.02994782291352749,
-0.0891190692782402,
-0.12064703553915024,
-0.015572070144116879,
-0.1808616667985916,
0.1355033814907074,
0.02015385404229164,
0.04424908012151718,
-0.2066064178943634,
0.10033243149518967,
-0.0034225129056721926,
-0.09585415571928024,
0.025406567379832268,
-0.08791401237249374,
0.023702410981059074,
0.006199836265295744,
-0.03435196727514267,
-0.03682130575180054,
0.052537158131599426,
0.1017875000834465,
0.037624917924404144,
0.010535156354308128,
-0.0018888848135247827,
0.03797334060072899,
0.051690686494112015,
0.09864642471075058,
-0.012159604579210281,
-0.09275422245264053,
0.02472686767578125,
-0.07794763147830963,
-0.005519283004105091,
-0.058316051959991455,
-0.18736064434051514,
-0.015742581337690353,
0.0638531967997551,
0.044187113642692566,
0.038800206035375595,
0.12312106788158417,
-0.010700120590627193,
-0.04949404299259186,
0.030500246211886406,
-0.011449377983808517,
-0.04102412611246109,
0.0034441438037902117,
-0.006849803030490875,
0.12526994943618774,
0.026637904345989227,
0.04344993084669113,
-0.11248063296079636,
0.028229007497429848,
-0.057886455208063126,
-0.01740637980401516,
-0.009245701134204865,
-0.03968518599867821,
-0.012927724979817867,
-0.013261554762721062,
0.022976692765951157,
-0.14569568634033203,
-0.1517621874809265,
-0.01016512792557478,
-0.02071678265929222,
-0.03244677186012268,
-0.1160486489534378,
-0.10807818174362183,
-0.01673271879553795,
0.019136225804686546,
-0.06594734638929367,
-0.02844683639705181,
-0.0698276236653328,
0.08516715466976166,
-0.018525948747992516,
0.08600673824548721,
-0.10450328141450882,
0.08221111446619034,
-0.08476737141609192,
-0.03818882256746292,
-0.09571085125207901,
0.13696692883968353,
0.013556249439716339,
0.0781843289732933,
-0.018449140712618828,
-0.02062518522143364,
-0.0882476195693016,
0.059506144374608994,
-0.04792816564440727,
0.2627614736557007,
-0.05373995751142502,
-0.12228331714868546,
0.25644850730895996,
-0.04264277219772339,
-0.1323377937078476,
0.12074649333953857,
-0.011831019073724747,
0.10573146492242813,
0.1418948471546173,
0.19843782484531403,
0.02438964881002903,
-0.015437912195920944,
0.08063486218452454,
0.11468730866909027,
-0.07269655913114548,
-0.025499138981103897,
0.021268967539072037,
-0.013782723806798458,
-0.08294597268104553,
0.04756487160921097,
0.0545177198946476,
0.06714420020580292,
-0.061176858842372894,
-0.018936485052108765,
0.008749358355998993,
-0.012960782274603844,
0.07812909036874771,
-0.03309756517410278,
0.13732872903347015,
-0.023552410304546356,
-0.04682721197605133,
0.022938000038266182,
0.0061576031148433685,
-0.03251919895410538,
0.029665304347872734,
-0.0829462856054306,
0.06871046125888824,
-0.03380677103996277,
0.046204015612602234,
-0.1479959934949875,
-0.06659089773893356,
-0.0554286427795887,
0.19006399810314178,
0.0666101947426796,
0.11865320801734924,
0.050943177193403244,
-0.050719913095235825,
-0.022334067150950432,
0.026607545092701912,
0.1764538288116455,
-0.00432533398270607,
-0.08827561140060425,
-0.0893583744764328,
0.10425122827291489,
-0.050604887306690216,
0.14028102159500122,
-0.04839342460036278,
0.02007957734167576,
0.0026882649399340153,
0.08945371210575104,
-0.01477344986051321,
0.026225006207823753,
0.02395329251885414,
-0.023401744663715363,
-0.03615526854991913,
0.002531831618398428,
0.09866794943809509,
0.01095353439450264,
-0.10495016723871231,
0.21652550995349884,
-0.17865079641342163,
0.1712048351764679,
0.1963411271572113,
-0.23899659514427185,
-0.0015646020183339715,
-0.11911866068840027,
-0.028263965621590614,
0.001987667288631201,
0.06021636724472046,
-0.0393366664648056,
0.22000858187675476,
-0.016854142770171165,
0.17416520416736603,
-0.02770877256989479,
-0.040796905755996704,
-0.037516918033361435,
-0.03281911462545395,
0.006335647311061621,
0.10647379606962204,
0.11007938534021378,
-0.15187709033489227,
0.16408798098564148,
0.11575789749622345,
0.0780109092593193,
0.17331485450267792,
0.034749943763017654,
-0.0032106752041727304,
0.05403655767440796,
-0.016047578305006027,
-0.058072831481695175,
-0.054366856813430786,
-0.2821202278137207,
-0.022700391709804535,
0.06727944314479828,
0.03511533513665199,
0.1157771497964859,
-0.09771660715341568,
-0.03510351851582527,
0.007726206444203854,
-0.004056483972817659,
-0.011832889169454575,
0.11260128766298294,
0.024472780525684357,
0.11891433596611023,
-0.014555193483829498,
-0.049464691430330276,
0.06548446416854858,
0.015799861401319504,
-0.0911889299750328,
0.1808817833662033,
-0.1293938159942627,
-0.31928402185440063,
-0.11005263775587082,
-0.1739242821931839,
-0.06692400574684143,
0.044659167528152466,
0.089129239320755,
-0.0986839309334755,
-0.012885700911283493,
-0.010432631708681583,
0.10299661755561829,
-0.1042117103934288,
-0.00021655845921486616,
-0.024086903780698776,
-0.008923182263970375,
-0.12579397857189178,
-0.09363239258527756,
-0.05231120064854622,
-0.047037553042173386,
-0.056600943207740784,
0.12313047051429749,
-0.16023315489292145,
0.016609620302915573,
0.23161454498767853,
0.0652986690402031,
0.057193268090486526,
-0.03880190849304199,
0.2495022416114807,
-0.10808973759412766,
-0.0023339898325502872,
0.18616418540477753,
-0.04433102160692215,
0.05136839672923088,
0.11985351145267487,
-0.0136415995657444,
-0.06612838804721832,
0.02638145536184311,
-0.026510832831263542,
-0.06462612748146057,
-0.20766602456569672,
-0.12633801996707916,
-0.10652592033147812,
0.09661045670509338,
0.014828304760158062,
0.031906623393297195,
0.13614897429943085,
0.06607432663440704,
-0.028223717585206032,
-0.021433252841234207,
0.051379118114709854,
0.0797564685344696,
0.2964741587638855,
-0.08455753326416016,
0.1417170912027359,
-0.013198381289839745,
-0.15605655312538147,
0.07814671099185944,
0.044270530343055725,
0.0715622529387474,
0.06255177408456802,
0.05851732939481735,
-0.0010256161913275719,
0.04383862763643265,
0.10823048651218414,
0.06493564695119858,
0.03111851029098034,
-0.03486765921115875,
-0.04263158515095711,
-0.04394565895199776,
-0.024241000413894653,
0.04993441700935364,
0.07002178579568863,
-0.1495700478553772,
-0.028503501787781715,
-0.01351531594991684,
0.05873153731226921,
0.051203496754169464,
0.10058362036943436,
-0.1801169514656067,
-0.0331742949783802,
0.06462137401103973,
-0.03960053250193596,
-0.1126687154173851,
0.08458040654659271,
0.020008135586977005,
-0.12716439366340637,
0.05063258856534958,
-0.005617031827569008,
0.11739388853311539,
-0.07477667927742004,
0.07746375352144241,
-0.11893178522586823,
-0.09835978597402573,
-0.0009378000977449119,
0.09371139109134674,
-0.25335580110549927,
0.20636585354804993,
-0.0014321436174213886,
-0.06408964097499847,
-0.09884043782949448,
-0.01885804533958435,
0.02359641157090664,
0.13839443027973175,
0.1132744550704956,
-0.009273536503314972,
0.030854539945721626,
0.005529241636395454,
-0.08657826483249664,
0.026634985581040382,
0.0939711406826973,
-0.053410161286592484,
-0.007721978239715099,
-0.03209467604756355,
-0.005074217449873686,
-0.00485841603949666,
-0.08350344747304916,
0.02240070514380932,
-0.18551349639892578,
0.09220478683710098,
0.0513395220041275,
0.0812494307756424,
0.042932961136102676,
-0.03902555629611015,
-0.08352344483137131,
0.2238694131374359,
-0.017721988260746002,
-0.10115890949964523,
-0.09303940832614899,
-0.01734204962849617,
0.04749097675085068,
-0.060149773955345154,
0.01021429430693388,
-0.04765286669135094,
0.014978951774537563,
-0.05359692499041557,
-0.18430352210998535,
0.11967626214027405,
-0.08449894189834595,
-0.035681381821632385,
-0.027693649753928185,
0.23086680471897125,
-0.024970047175884247,
0.018091564998030663,
0.034332241863012314,
0.0026490986347198486,
-0.11853642761707306,
-0.09563998878002167,
0.012357753701508045,
0.003760053077712655,
-0.0007214160868898034,
0.034301016479730606,
-0.016425905749201775,
-0.06487460434436798,
-0.05784493684768677,
-0.01362778339534998,
0.3071885406970978,
0.13983532786369324,
-0.04023562744259834,
0.15182597935199738,
0.11129388213157654,
-0.059501636773347855,
-0.269977331161499,
-0.05761236697435379,
-0.09105021506547928,
-0.04330240562558174,
-0.03144540265202522,
-0.1561248004436493,
0.1035873144865036,
-0.043056048452854156,
-0.00868955347687006,
0.1129111498594284,
-0.2777594029903412,
-0.1097259521484375,
0.17846046388149261,
-0.030682211741805077,
0.4436364769935608,
-0.09721767902374268,
-0.07306288927793503,
-0.04873170331120491,
-0.2055576592683792,
0.13611987233161926,
0.011453157290816307,
0.1054515689611435,
-0.0006767508457414806,
0.18992725014686584,
0.05275087431073189,
-0.0010212045162916183,
0.07581665366888046,
0.018801437690854073,
-0.06132015958428383,
-0.08938997983932495,
-0.10635406523942947,
0.005542214959859848,
0.02234536036849022,
0.015152977779507637,
-0.0446556881070137,
0.03197968378663063,
-0.13170892000198364,
-0.0657021701335907,
-0.08875783532857895,
0.03514505550265312,
0.02016925998032093,
-0.06620988994836807,
0.01154492050409317,
-0.040027666836977005,
-0.003320010844618082,
-0.009548322297632694,
0.10755529999732971,
-0.12642329931259155,
0.12724217772483826,
0.07259592413902283,
0.14272688329219818,
-0.13762855529785156,
-0.02596178464591503,
-0.05356896296143532,
-0.06463674455881119,
0.06073172017931938,
-0.09363619238138199,
0.02392594702541828,
0.1137228012084961,
-0.02330799214541912,
0.07304049283266068,
0.09772489964962006,
0.006532188504934311,
0.011307611130177975,
0.08549375832080841,
-0.2518516778945923,
-0.09829720854759216,
-0.08842265605926514,
-0.006847918499261141,
0.07912944257259369,
0.10351879149675369,
0.21049904823303223,
-0.011108608916401863,
-0.028110411018133163,
0.015511404722929,
0.012660179287195206,
-0.02552294172346592,
0.0629696473479271,
-0.013685106299817562,
0.011273954063653946,
-0.142191544175148,
0.04728856310248375,
-0.010115091688930988,
-0.10728852450847626,
0.0070778122171759605,
0.11895912885665894,
-0.11085338890552521,
-0.1132420152425766,
-0.08729799091815948,
0.11374850571155548,
-0.11740808933973312,
0.01583920791745186,
-0.04273713007569313,
-0.14329342544078827,
0.06087562441825867,
0.12644949555397034,
0.05289270728826523,
0.054770201444625854,
-0.09863127022981644,
-0.017707131803035736,
-0.01886041834950447,
0.008445576764643192,
0.045651089400053024,
-0.029413091018795967,
-0.04314618930220604,
0.08987950533628464,
-0.0398998036980629,
0.12349136173725128,
-0.08804872632026672,
-0.10643022507429123,
-0.13970406353473663,
0.036211591213941574,
-0.09100706875324249,
-0.1015876904129982,
-0.09673352539539337,
-0.0404139868915081,
-0.015968140214681625,
-0.033703241497278214,
-0.04924946650862694,
-0.04616044834256172,
-0.11585718393325806,
0.04197810962796211,
-0.035671547055244446,
0.002554558916017413,
-0.06397118419408798,
0.03164825960993767,
0.057608336210250854,
-0.029087256640195847,
0.16798870265483856,
0.14900587499141693,
-0.113084577023983,
0.08678457140922546,
-0.10599664598703384,
-0.08436369150876999,
0.09296881407499313,
0.015673324465751648,
0.050969187170267105,
0.05570908635854721,
0.0008179193246178329,
0.05604454129934311,
0.06767231225967407,
0.05749130994081497,
0.05125901848077774,
-0.0781613439321518,
0.026795929297804832,
-0.0353478379547596,
-0.10971686244010925,
-0.05053088814020157,
-0.032386112958192825,
0.0321459099650383,
0.03835080564022064,
0.10419028252363205,
-0.05157046392560005,
0.07967690378427505,
-0.06761150062084198,
0.04166098311543465,
0.02458209916949272,
-0.17817717790603638,
-0.011017074808478355,
-0.08725284785032272,
0.062094446271657944,
0.010369001887738705,
0.22922518849372864,
0.0010608482407405972,
-0.016776392236351967,
0.04306100308895111,
0.09107155352830887,
0.039415836334228516,
-0.008862773887813091,
0.17689786851406097,
0.11348211020231247,
-0.04523318260908127,
-0.08200377225875854,
0.09221187978982925,
0.028359251096844673,
0.0636616051197052,
0.1533689647912979,
-0.009847167879343033,
-0.029553398489952087,
0.08961945027112961,
-0.00820152461528778,
0.04360003024339676,
-0.11889488995075226,
-0.17109516263008118,
-0.035233404487371445,
0.07828069478273392,
-0.054776258766651154,
0.125512033700943,
0.12796565890312195,
-0.02143034152686596,
0.02544325962662697,
-0.02652924321591854,
-0.06300850212574005,
-0.18642783164978027,
-0.15833324193954468,
-0.07247349619865417,
-0.1361551433801651,
0.003649224527180195,
-0.12954506278038025,
0.034160468727350235,
0.03228195384144783,
0.09627309441566467,
-0.07396618276834488,
0.07815251499414444,
0.009733840823173523,
-0.11123551428318024,
0.09365225583314896,
-0.03206063434481621,
0.08423103392124176,
-0.05801235884428024,
0.008146187290549278,
-0.07326289266347885,
0.061165083199739456,
0.005733943078666925,
0.024489792063832283,
-0.06499718874692917,
0.0006845087045803666,
-0.12899963557720184,
-0.08145640790462494,
-0.07403001189231873,
0.07683531194925308,
-0.00021575485880021006,
0.14871475100517273,
0.0007607350125908852,
-0.024332456290721893,
0.022351602092385292,
0.2547334134578705,
-0.0823284238576889,
-0.1065358966588974,
-0.0760388895869255,
0.1612902730703354,
-0.01100313849747181,
0.09074048697948456,
-0.027294078841805458,
0.005724847782403231,
-0.07292640954256058,
0.3486209213733673,
0.31385937333106995,
-0.12144593149423599,
0.008552278392016888,
0.004036948550492525,
0.042547158896923065,
0.12109120190143585,
0.08933079242706299,
0.08928026258945465,
0.29122135043144226,
-0.06460609287023544,
-0.029492847621440887,
-0.01038265135139227,
-0.028137030079960823,
-0.03290077671408653,
0.061318300664424896,
0.06818705052137375,
-0.06311694532632828,
-0.037182971835136414,
0.11344512552022934,
-0.24985961616039276,
0.07765885442495346,
-0.16423965990543365,
-0.19129236042499542,
-0.0909482091665268,
-0.005408334545791149,
0.09333501011133194,
0.025192279368638992,
0.08434837311506271,
-0.004080671351402998,
-0.05664246529340744,
0.06709237396717072,
0.018763625994324684,
-0.2031526118516922,
-0.014244482852518559,
0.09505189210176468,
-0.03442936763167381,
-0.05224468931555748,
-0.013855420984327793,
0.06696508079767227,
0.06307736784219742,
0.05825239419937134,
-0.015055189840495586,
0.04039718955755234,
-0.0020734043791890144,
-0.07968246936798096,
0.021742230281233788,
0.029902489855885506,
0.01116474624723196,
-0.06253565847873688,
0.07943971455097198,
-0.1343110054731369,
0.053404469043016434,
-0.023831099271774292,
-0.06456206738948822,
-0.028253937140107155,
0.022574080154299736,
-0.06423580646514893,
0.0817347913980484,
0.10829576104879379,
-0.021677108481526375,
-0.018034711480140686,
-0.018499786034226418,
-0.023955125361680984,
-0.022458717226982117,
-0.06042034551501274,
-0.09595854580402374,
-0.16020077466964722,
-0.1087728962302208,
0.06417213380336761,
-0.0026469272561371326,
-0.2069835513830185,
0.0078546442091465,
-0.12910261750221252,
0.05230732262134552,
-0.10699926316738129,
0.12214474380016327,
0.07983854413032532,
0.01550530269742012,
0.0022410741075873375,
0.00903013814240694,
0.0417785719037056,
0.09253215044736862,
-0.1290154904127121,
-0.08394894748926163
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-xxlarge-v2-finetuned-csqa-ih
This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5694
- Accuracy: 0.8026
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8032 | 1.0 | 532 | 0.5217 | 0.8043 |
| 0.3182 | 2.0 | 1064 | 0.6313 | 0.7985 |
| 0.0668 | 3.0 | 1596 | 1.2971 | 0.7969 |
| 0.0131 | 4.0 | 2128 | 1.4671 | 0.8026 |
| 0.0046 | 5.0 | 2660 | 1.5694 | 0.8026 |
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0
- Datasets 1.10.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model_index": {"name": "albert-xxlarge-v2-finetuned-csqa-ih"}}
|
multiple-choice
|
danlou/albert-xxlarge-v2-finetuned-csqa-ih
|
[
"transformers",
"pytorch",
"albert",
"multiple-choice",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #albert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
|
albert-xxlarge-v2-finetuned-csqa-ih
===================================
This model is a fine-tuned version of albert-xxlarge-v2 on an unkown dataset.
It achieves the following results on the evaluation set:
* Loss: 1.5694
* Accuracy: 0.8026
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.8.2
* Pytorch 1.9.0
* Datasets 1.10.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #albert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
45,
113,
4,
31
] |
[
"passage: TAGS\n#transformers #pytorch #albert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
-0.07461700588464737,
0.010397160425782204,
-0.0022309976629912853,
0.09317922592163086,
0.1804187297821045,
0.03428122028708458,
0.12409866601228714,
0.10125970840454102,
-0.10690811276435852,
0.016243236139416695,
0.08903932571411133,
0.1594969481229782,
0.019060153514146805,
0.09681719541549683,
-0.04801539331674576,
-0.2514762580394745,
0.01481617521494627,
0.0249700415879488,
-0.05822109803557396,
0.12565404176712036,
0.07857062667608261,
-0.14087064564228058,
0.06580238789319992,
0.005107985343784094,
-0.20141226053237915,
0.030383657664060593,
0.010156497359275818,
-0.05180198326706886,
0.14391793310642242,
0.02091699279844761,
0.1317889392375946,
-0.004106101114302874,
0.08056735247373581,
-0.24182267487049103,
0.008409381844103336,
0.05950474366545677,
0.013124427758157253,
0.05379107594490051,
0.06167406961321831,
-0.01434355042874813,
0.11540387570858002,
-0.07240096479654312,
0.06766075640916824,
0.020896179601550102,
-0.14040014147758484,
-0.2844333052635193,
-0.10049450397491455,
-0.00621719378978014,
0.06754369288682938,
0.09557730704545975,
-0.006590139586478472,
0.15559276938438416,
-0.11119848489761353,
0.08113781362771988,
0.27466699481010437,
-0.28126201033592224,
-0.06584079563617706,
0.017932042479515076,
0.009834075346589088,
0.07799838483333588,
-0.09313711524009705,
-0.028637977316975594,
0.051468413323163986,
0.05564889684319496,
0.13442477583885193,
-0.03168529272079468,
-0.12475776672363281,
0.02278313785791397,
-0.1490330696105957,
-0.014816448092460632,
0.09339714050292969,
0.05814828723669052,
-0.033024754375219345,
-0.007479759398847818,
-0.04559753090143204,
-0.1352495700120926,
-0.051361508667469025,
-0.007208611350506544,
0.07528599351644516,
-0.035423874855041504,
-0.048003457486629486,
0.02044849470257759,
-0.08476944267749786,
-0.060212261974811554,
-0.06827608495950699,
0.17262335121631622,
0.052152104675769806,
0.02262541651725769,
-0.02025548927485943,
0.0895736813545227,
-0.04436220973730087,
-0.1271335482597351,
0.026403803378343582,
0.02738487720489502,
-0.037264224141836166,
-0.04338611662387848,
-0.08474172651767731,
-0.034061234444379807,
0.02167491987347603,
0.11319591104984283,
-0.053362347185611725,
0.06139877066016197,
0.014950857497751713,
0.03133436292409897,
-0.11446323245763779,
0.18072636425495148,
-0.05021980032324791,
-0.004734014626592398,
-0.004187291022390127,
0.03933596611022949,
0.017933150753378868,
0.0021686479449272156,
-0.08098311722278595,
0.024214087054133415,
0.0841621682047844,
0.008927145041525364,
-0.0913318544626236,
0.04332897067070007,
-0.07120996713638306,
-0.012213330715894699,
-0.03314168006181717,
-0.1003781333565712,
0.04673061519861221,
0.001106130424886942,
-0.08467569947242737,
0.024466900154948235,
0.005407100543379784,
0.034792639315128326,
-0.014805680140852928,
0.13624307513237,
-0.06983475387096405,
0.06773368269205093,
-0.11693445593118668,
-0.12636429071426392,
0.024994488805532455,
-0.02846762351691723,
0.03228148818016052,
-0.07578276097774506,
-0.1514004021883011,
-0.008445793762803078,
0.0688328742980957,
-0.02907308004796505,
-0.03342892974615097,
-0.03579233959317207,
-0.07315356284379959,
-0.004133614711463451,
-0.026179024949669838,
0.15409190952777863,
-0.07779376953840256,
0.09651882201433182,
0.04371226206421852,
0.06329536437988281,
-0.055950477719306946,
0.06057212874293327,
-0.08706196397542953,
0.0009568864479660988,
-0.2104703038930893,
0.04216499999165535,
-0.0648203045129776,
0.08536913990974426,
-0.08449424058198929,
-0.11497250199317932,
0.03248966485261917,
-0.005585046485066414,
0.09490792453289032,
0.07885883003473282,
-0.16654281318187714,
-0.07673870027065277,
0.16468191146850586,
-0.06922588497400284,
-0.11335776001214981,
0.10695091634988785,
-0.06453979015350342,
0.004552475176751614,
0.0915985032916069,
0.1576085239648819,
0.0311623252928257,
-0.09949370473623276,
0.044218700379133224,
-0.030991850420832634,
0.0697316899895668,
-0.04615715146064758,
0.07183260470628738,
0.010111706331372261,
-0.007844686508178711,
0.03530627861618996,
-0.029661834239959717,
0.0831022635102272,
-0.11303164809942245,
-0.08432096987962723,
-0.043026551604270935,
-0.09388521313667297,
0.008072585798799992,
0.06489518284797668,
0.06945522874593735,
-0.12659475207328796,
-0.07353585958480835,
0.08994552493095398,
0.07099024951457977,
-0.050565026700496674,
0.04137507826089859,
-0.049530986696481705,
0.04028981924057007,
-0.02876248210668564,
-0.01722613535821438,
-0.18611934781074524,
-0.01340405736118555,
0.013580488972365856,
-0.03152115270495415,
0.019440215080976486,
0.022842884063720703,
0.06447641551494598,
0.05529202148318291,
-0.06300657242536545,
-0.012063865549862385,
-0.05916948989033699,
-0.0017859437502920628,
-0.11212002485990524,
-0.207251638174057,
-0.02592911757528782,
-0.012902737595140934,
0.09665410965681076,
-0.17091262340545654,
0.02665604278445244,
-0.04852241650223732,
0.07090973109006882,
0.0037054456770420074,
-0.008221099153161049,
-0.05425297096371651,
0.10830279439687729,
-0.0074127232655882835,
-0.05355813354253769,
0.0672745332121849,
0.0016761700389906764,
-0.08448763191699982,
-0.05087021738290787,
-0.08378329873085022,
0.1797175109386444,
0.14019151031970978,
-0.15366585552692413,
-0.061275966465473175,
0.03171675279736519,
-0.04677582159638405,
-0.03334560990333557,
-0.054135482758283615,
0.062450747936964035,
0.18431346118450165,
0.001824402017518878,
0.13539937138557434,
-0.07339277863502502,
-0.02355821616947651,
0.010034277103841305,
-0.02621328830718994,
0.05282771587371826,
0.11209491640329361,
0.10866675525903702,
-0.03450475260615349,
0.12487920373678207,
0.16625837981700897,
-0.09065189957618713,
0.07567984610795975,
-0.058775994926691055,
-0.08233538269996643,
-0.017961986362934113,
-0.014915680512785912,
-0.01198602095246315,
0.09377692639827728,
-0.12104353308677673,
0.015311512164771557,
0.012528500519692898,
0.04269115626811981,
0.013254478573799133,
-0.24562454223632812,
-0.042591918259859085,
0.03310241550207138,
-0.04534444957971573,
-0.04063662886619568,
-0.03515003249049187,
0.018049711361527443,
0.10550820827484131,
-0.008276907727122307,
-0.06977517157793045,
0.01668996550142765,
-0.011210387572646141,
-0.06406048685312271,
0.20711638033390045,
-0.10720721632242203,
-0.10486496239900589,
-0.08616296201944351,
-0.11048250645399094,
-0.047617245465517044,
-0.0071157473139464855,
0.08160321414470673,
-0.10129547119140625,
-0.03445423021912575,
-0.049296170473098755,
0.05751796439290047,
-0.01251743733882904,
0.019692344591021538,
0.02966109849512577,
-0.015900833532214165,
0.08232010900974274,
-0.11843188107013702,
-0.01609809696674347,
-0.05500418320298195,
-0.07232696563005447,
0.05323063209652901,
0.0643373429775238,
0.09732834994792938,
0.13846220076084137,
-0.01578674651682377,
-0.002273360500112176,
-0.02638777531683445,
0.24199365079402924,
-0.04231865331530571,
-0.0665472000837326,
0.11146432906389236,
0.003167001297697425,
0.05807967856526375,
0.10657385736703873,
0.08499640226364136,
-0.11700277775526047,
0.008062074892222881,
0.05385099723935127,
-0.026970643550157547,
-0.2392341047525406,
-0.03079902194440365,
-0.05355409160256386,
-0.0810372456908226,
0.05414203181862831,
0.01324421726167202,
-0.0028137555345892906,
0.04316969960927963,
0.04020664840936661,
0.0778663158416748,
-0.03650043532252312,
0.049999989569187164,
0.14037339389324188,
0.05215354263782501,
0.1177753359079361,
-0.05176636576652527,
-0.05899946391582489,
0.037702322006225586,
-0.03213886171579361,
0.2557956874370575,
0.031132502481341362,
0.09671683609485626,
0.07874804735183716,
0.1642836183309555,
-0.011770759709179401,
0.09175606817007065,
0.015031782910227776,
-0.04983685165643692,
-0.022751016542315483,
-0.038386765867471695,
-0.02982523664832115,
0.012592305429279804,
-0.07069690525531769,
0.06902997940778732,
-0.12180256098508835,
-0.05244588106870651,
0.05862104892730713,
0.2932600975036621,
0.008190070278942585,
-0.2842090427875519,
-0.050101324915885925,
0.010995457880198956,
-0.06415648013353348,
0.0035851714201271534,
0.02195258066058159,
0.06733988970518112,
-0.0866304337978363,
0.06840308755636215,
-0.055439725518226624,
0.11120908707380295,
-0.00273319729603827,
0.04700269550085068,
0.055629219859838486,
0.10581925511360168,
0.009618272073566914,
0.06483789533376694,
-0.34982195496559143,
0.2878039479255676,
-0.001328979036770761,
0.0781184732913971,
-0.059514984488487244,
0.00413504708558321,
0.044057831168174744,
0.04342272877693176,
0.019011685624718666,
-0.012889678589999676,
-0.0462869368493557,
-0.1873587816953659,
-0.01603092812001705,
0.04785263538360596,
0.09604356437921524,
0.00254410644993186,
0.09902055561542511,
-0.015302016399800777,
0.016412686556577682,
0.07934003323316574,
0.03408224508166313,
-0.10185150057077408,
-0.07113998383283615,
-0.026360979303717613,
0.026970745995640755,
-0.03278953209519386,
-0.0781947672367096,
-0.11859949678182602,
-0.1368451863527298,
0.10176179558038712,
0.042643748223781586,
-0.02005016803741455,
-0.11150754988193512,
0.09561870992183685,
0.08925094455480576,
-0.07297678291797638,
0.030628027394413948,
0.016831867396831512,
0.04247620329260826,
0.04317880794405937,
-0.06483791023492813,
0.11018484085798264,
-0.05785497650504112,
-0.1415906399488449,
-0.04743567109107971,
0.08514652401208878,
0.03666481748223305,
0.07894887030124664,
-0.03506208211183548,
0.013459255918860435,
-0.01699189469218254,
-0.10193546861410141,
0.013210289180278778,
-0.005827368702739477,
0.04445839300751686,
0.06645260006189346,
-0.06013469770550728,
0.011677158996462822,
-0.06370888650417328,
-0.036443356424570084,
0.17290620505809784,
0.28452128171920776,
-0.07676204293966293,
0.012192838825285435,
0.021671758964657784,
-0.07161334156990051,
-0.14680372178554535,
0.0621977299451828,
0.07093268632888794,
-0.004213047679513693,
0.06662880629301071,
-0.1847018301486969,
0.14186157286167145,
0.1318690925836563,
-0.007558576762676239,
0.09726399928331375,
-0.3195955455303192,
-0.11581619828939438,
0.08929067850112915,
0.17867915332317352,
0.16981050372123718,
-0.17421428859233856,
-0.010700475424528122,
-0.038981176912784576,
-0.17367635667324066,
0.088090680539608,
-0.07842682301998138,
0.11531838029623032,
-0.025288090109825134,
0.06989048421382904,
-0.00525726517662406,
-0.04362299665808678,
0.13905765116214752,
0.02877696044743061,
0.12810464203357697,
-0.049599554389715195,
0.023225098848342896,
0.05479723960161209,
-0.022333666682243347,
-0.016506215557456017,
-0.07298404723405838,
0.006413614377379417,
-0.0784105658531189,
-0.018095584586262703,
-0.09274303913116455,
0.014516904950141907,
-0.029245441779494286,
-0.04273723065853119,
-0.02754412591457367,
0.012319729663431644,
0.07727275043725967,
-0.01382110919803381,
0.1260664016008377,
0.014838089235126972,
0.16417934000492096,
0.037520576268434525,
0.05149516090750694,
-0.08383290469646454,
-0.06040029227733612,
-0.018629934638738632,
-0.0084571223706007,
0.04845087602734566,
-0.1473853439092636,
0.03213971108198166,
0.1448233723640442,
0.010831144638359547,
0.1365206390619278,
0.0846758559346199,
-0.04043063521385193,
0.017386168241500854,
0.06376231461763382,
-0.13086561858654022,
-0.10238219797611237,
0.0214354507625103,
-0.02844258025288582,
-0.06830660253763199,
0.03820089250802994,
0.07432831823825836,
-0.06293033063411713,
-0.01834651455283165,
-0.021488970145583153,
0.00155333720613271,
-0.08948114514350891,
0.20654882490634918,
0.029086168855428696,
0.04578538239002228,
-0.12577243149280548,
0.09099400788545609,
0.043936073780059814,
-0.09695835411548615,
-0.008051515556871891,
0.06566725671291351,
-0.058155305683612823,
-0.02498055063188076,
0.1271556317806244,
0.20532076060771942,
-0.042970169335603714,
-0.04697100445628166,
-0.13968001306056976,
-0.14440816640853882,
0.08604102581739426,
0.16091565787792206,
0.11763569712638855,
0.00021807391021866351,
-0.028632842004299164,
0.014934653416275978,
-0.09529168903827667,
0.0549587681889534,
0.046092547476291656,
0.061232250183820724,
-0.12337055802345276,
0.1339581310749054,
0.03204389661550522,
0.028820272535085678,
-0.016491247341036797,
0.027496283873915672,
-0.1008603498339653,
0.034068480134010315,
-0.169951394200325,
-0.03416803479194641,
-0.02402852661907673,
0.009890406392514706,
0.011499046348035336,
-0.08386507630348206,
-0.07689402997493744,
0.017567455768585205,
-0.1471061408519745,
-0.029239075258374214,
0.02551112323999405,
0.06862682104110718,
-0.1126653328537941,
-0.05041319131851196,
0.026428623124957085,
-0.0636853352189064,
0.042218275368213654,
0.06255225092172623,
0.003785019973292947,
0.0874081701040268,
-0.17692546546459198,
-0.03450116887688637,
0.07340364158153534,
0.008048014715313911,
0.06584146618843079,
-0.1069604828953743,
-0.003811052767559886,
0.014062329195439816,
0.0845903530716896,
0.007244102191179991,
0.03628484159708023,
-0.13990135490894318,
-0.0526776984333992,
-0.032129574567079544,
-0.1075243428349495,
-0.03962085023522377,
-0.008631084114313126,
0.1012890562415123,
0.021629780530929565,
0.19023409485816956,
-0.07361946254968643,
0.044385310262441635,
-0.20964792370796204,
-0.012710129842162132,
-0.02702939882874489,
-0.10744882375001907,
-0.12593308091163635,
-0.07220464199781418,
0.06708990037441254,
-0.040950339287519455,
0.17062340676784515,
0.002183619886636734,
0.07760423421859741,
0.02948237769305706,
-0.04360179230570793,
0.010017643682658672,
0.03196629881858826,
0.24415744841098785,
0.03612411022186279,
-0.02707843855023384,
0.0837198793888092,
0.05069710686802864,
0.10048872232437134,
0.10746055096387863,
0.21084021031856537,
0.20407305657863617,
0.019515153020620346,
0.09638354927301407,
0.03475528955459595,
-0.06459555774927139,
-0.10775862634181976,
0.029523583129048347,
-0.02134288102388382,
0.10123946517705917,
-0.0249655582010746,
0.2291536033153534,
0.04088302701711655,
-0.17534556984901428,
0.07039859145879745,
-0.05955154821276665,
-0.06684413552284241,
-0.11167867481708527,
0.029576357454061508,
-0.08079779893159866,
-0.1909976601600647,
0.010591267608106136,
-0.11468625068664551,
0.04267953336238861,
0.17261773347854614,
0.013379694893956184,
-0.0015944924671202898,
0.13896778225898743,
0.02986111491918564,
0.02362743206322193,
0.0602082759141922,
-0.013460589572787285,
-0.03981557860970497,
-0.08402809500694275,
-0.08098866045475006,
-0.00024340691743418574,
-0.03009636700153351,
0.03219733014702797,
-0.03967013210058212,
-0.09479493647813797,
0.04024895280599594,
-0.04705091193318367,
-0.10429980605840683,
0.032172635197639465,
0.004863224923610687,
0.07491301745176315,
0.05250028148293495,
0.01003623753786087,
0.013886537402868271,
-0.013185117393732071,
0.22613593935966492,
-0.08417113870382309,
-0.09154510498046875,
-0.10147129744291306,
0.26356250047683716,
0.057894084602594376,
-0.007085946388542652,
0.032818663865327835,
-0.05199681967496872,
-0.018338162451982498,
0.21231912076473236,
0.14712080359458923,
-0.09121078252792358,
-0.018242649734020233,
-0.006419191136956215,
-0.014623505063354969,
-0.03331240266561508,
0.1257258653640747,
0.14798349142074585,
-0.01461730245500803,
-0.11200329661369324,
-0.03745563328266144,
-0.0722334235906601,
-0.019568905234336853,
-0.049296893179416656,
0.0316372811794281,
0.052293531596660614,
-0.01062480267137289,
-0.03419247269630432,
0.0752880871295929,
-0.03387646749615669,
-0.10917329788208008,
0.08029676228761673,
-0.18678928911685944,
-0.1686682105064392,
-0.026821857318282127,
0.10618993639945984,
0.022087253630161285,
0.06413695961236954,
-0.029992906376719475,
0.0026864197570830584,
0.09115177392959595,
-0.025858048349618912,
-0.07843656092882156,
-0.13111282885074615,
0.10777381807565689,
-0.12230357527732849,
0.1665773093700409,
-0.02829551137983799,
0.06396970897912979,
0.12530609965324402,
0.07792329788208008,
-0.05088259279727936,
0.09818714112043381,
0.035715747624635696,
-0.11083093285560608,
0.004879093263298273,
0.08847406506538391,
-0.04507274553179741,
0.05233690142631531,
0.038318853825330734,
-0.120399110019207,
0.029518432915210724,
-0.054652728140354156,
-0.06244610622525215,
-0.027382802218198776,
-0.057270728051662445,
-0.0693996399641037,
0.10065768659114838,
0.2292400300502777,
-0.027384888380765915,
0.0247169379144907,
-0.07443223148584366,
0.020259682089090347,
0.0486692376434803,
0.061019524931907654,
-0.0935746505856514,
-0.23727929592132568,
0.026776175945997238,
0.06725719571113586,
-0.021358419209718704,
-0.19758495688438416,
-0.09392891824245453,
0.01733202114701271,
-0.07282337546348572,
-0.10025181621313095,
0.09529022127389908,
0.0702715739607811,
0.04887061566114426,
-0.05316290631890297,
-0.1994830220937729,
-0.07395243644714355,
0.18323273956775665,
-0.13567252457141876,
-0.08282924443483353
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-xxlarge-v2-finetuned-csqa
This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on the commonsense_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6177
- Accuracy: 0.7871
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7464 | 1.0 | 609 | 0.5319 | 0.7985 |
| 0.3116 | 2.0 | 1218 | 0.6422 | 0.7936 |
| 0.0769 | 3.0 | 1827 | 1.2674 | 0.7952 |
| 0.0163 | 4.0 | 2436 | 1.4839 | 0.7903 |
| 0.0122 | 5.0 | 3045 | 1.6177 | 0.7871 |
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0
- Datasets 1.10.2
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["commonsense_qa"], "metrics": ["accuracy"], "model_index": [{"name": "albert-xxlarge-v2-finetuned-csqa", "results": [{"dataset": {"name": "commonsense_qa", "type": "commonsense_qa", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.7870597839355469}}]}]}
|
multiple-choice
|
danlou/albert-xxlarge-v2-finetuned-csqa
|
[
"transformers",
"pytorch",
"albert",
"multiple-choice",
"generated_from_trainer",
"dataset:commonsense_qa",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #albert #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-apache-2.0 #endpoints_compatible #region-us
|
albert-xxlarge-v2-finetuned-csqa
================================
This model is a fine-tuned version of albert-xxlarge-v2 on the commonsense\_qa dataset.
It achieves the following results on the evaluation set:
* Loss: 1.6177
* Accuracy: 0.7871
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.8.2
* Pytorch 1.9.0
* Datasets 1.10.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #albert #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
54,
113,
4,
31
] |
[
"passage: TAGS\n#transformers #pytorch #albert #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
-0.0963519886136055,
0.027724355459213257,
-0.0018494362011551857,
0.09315092116594315,
0.16298450529575348,
0.04034257307648659,
0.11382833868265152,
0.12219134718179703,
-0.09015464782714844,
0.0046377708204090595,
0.10004337131977081,
0.14040619134902954,
0.025108715519309044,
0.08961105346679688,
-0.03889056295156479,
-0.259052038192749,
0.012524943798780441,
0.024790100753307343,
-0.07523098587989807,
0.13047392666339874,
0.0877496674656868,
-0.136525496840477,
0.068617083132267,
0.012977282516658306,
-0.16923119127750397,
0.016427675262093544,
0.005885991267859936,
-0.04900965094566345,
0.1557493358850479,
0.03286917880177498,
0.11686787009239197,
0.013657959178090096,
0.07401638478040695,
-0.2545584440231323,
0.014587379060685635,
0.04169398546218872,
0.011949836276471615,
0.057817500084638596,
0.059104692190885544,
-0.0028073606081306934,
0.12253093719482422,
-0.07491426169872284,
0.06502585858106613,
0.03173210471868515,
-0.14061331748962402,
-0.2690357565879822,
-0.09471329301595688,
0.0008928660536184907,
0.07276169955730438,
0.0975618064403534,
-0.008387078531086445,
0.13305313885211945,
-0.11733847856521606,
0.07591433823108673,
0.23762136697769165,
-0.3052469789981842,
-0.060966577380895615,
0.014582197181880474,
0.026563216000795364,
0.07865655422210693,
-0.10719314217567444,
-0.030925460159778595,
0.03272388502955437,
0.0481996163725853,
0.1409982293844223,
-0.03588152676820755,
-0.0913608968257904,
0.03948569670319557,
-0.14163997769355774,
-0.03713192045688629,
0.14165492355823517,
0.06826412677764893,
-0.033085983246564865,
-0.0355248786509037,
-0.027402883395552635,
-0.13700561225414276,
-0.03742760792374611,
0.014346209354698658,
0.05164425075054169,
-0.03245694190263748,
-0.06924585998058319,
0.004077243618667126,
-0.0971638485789299,
-0.07279003411531448,
-0.05694655328989029,
0.1385524421930313,
0.03908644616603851,
0.0173545740544796,
-0.0099400095641613,
0.10506977885961533,
-0.018393317237496376,
-0.12928906083106995,
0.00985033717006445,
0.0149117112159729,
-0.061542633920907974,
-0.03483328968286514,
-0.07372624427080154,
-0.029072480276226997,
0.023324642330408096,
0.09262467175722122,
-0.01846751570701599,
0.05779384449124336,
0.030447369441390038,
0.0352996289730072,
-0.10868436098098755,
0.1887398213148117,
-0.06342639029026031,
-0.01156536303460598,
-0.01630060374736786,
0.06025910750031471,
0.005315059330314398,
0.002145057078450918,
-0.0853104367852211,
0.012992637231945992,
0.07932832092046738,
0.018778491765260696,
-0.08741430938243866,
0.05543836951255798,
-0.06990616768598557,
-0.02901245281100273,
-0.011677724309265614,
-0.08719823509454727,
0.03281889855861664,
0.007809392176568508,
-0.08381083607673645,
-0.0130428746342659,
-0.0016535331960767508,
0.040747590363025665,
-0.007510478608310223,
0.10659199953079224,
-0.07114893943071365,
0.04282287135720253,
-0.09841588139533997,
-0.1280873864889145,
0.02169625647366047,
-0.030760684981942177,
0.03494728356599808,
-0.07780668884515762,
-0.16651709377765656,
-0.0015155909350141883,
0.06349314004182816,
-0.02271430194377899,
-0.04964304342865944,
-0.03886595368385315,
-0.059590429067611694,
-0.003959544003009796,
-0.015377268195152283,
0.16369087994098663,
-0.08138210326433182,
0.10879743099212646,
0.03163941577076912,
0.057346269488334656,
-0.034980207681655884,
0.062171000987291336,
-0.08491207659244537,
0.012807998806238174,
-0.17093095183372498,
0.06380362063646317,
-0.0638229176402092,
0.0764600932598114,
-0.0953829437494278,
-0.11360695213079453,
0.046050719916820526,
-0.014423305168747902,
0.08064885437488556,
0.08857038617134094,
-0.17885074019432068,
-0.06649607419967651,
0.15097029507160187,
-0.05587151646614075,
-0.13623814284801483,
0.11420132219791412,
-0.07681173086166382,
0.01375866774469614,
0.07420352101325989,
0.15726806223392487,
0.07426299899816513,
-0.08795683085918427,
0.0328969806432724,
-0.010049697943031788,
0.06612793356180191,
-0.05748100206255913,
0.10252489149570465,
0.020590266212821007,
-0.019885139539837837,
0.027326537296175957,
-0.041858311742544174,
0.08919649571180344,
-0.10233501344919205,
-0.09984390437602997,
-0.034846484661102295,
-0.10116907954216003,
0.03073681890964508,
0.05724361911416054,
0.06108156219124794,
-0.10550011694431305,
-0.08065763115882874,
0.052823446691036224,
0.08911202102899551,
-0.056184664368629456,
0.025340789929032326,
-0.055439166724681854,
0.02882528118789196,
-0.045513469725847244,
-0.016096439212560654,
-0.17371691763401031,
-0.021497774869203568,
0.011268747970461845,
-0.028304848819971085,
-0.0037067895755171776,
0.039384085685014725,
0.07189644873142242,
0.056917667388916016,
-0.06944886595010757,
-0.0315568670630455,
-0.061492227017879486,
0.0018217791803181171,
-0.10814391076564789,
-0.1960420459508896,
-0.04401423782110214,
-0.025786306709051132,
0.13444171845912933,
-0.17379620671272278,
0.025352587923407555,
-0.027917757630348206,
0.05719831585884094,
0.01525980792939663,
-0.010368392802774906,
-0.02801576256752014,
0.08853522688150406,
-0.007533068303018808,
-0.05416763573884964,
0.07032214105129242,
0.014114725403487682,
-0.11426746845245361,
-0.02607339806854725,
-0.07978574186563492,
0.16953718662261963,
0.11827319860458374,
-0.11006636917591095,
-0.04507524520158768,
-0.01214673276990652,
-0.05720444396138191,
-0.04267466440796852,
-0.05123544856905937,
0.05011469125747681,
0.19056792557239532,
0.012859136797487736,
0.13303469121456146,
-0.07412363588809967,
-0.029473064467310905,
0.01587805710732937,
-0.010792304761707783,
0.039537981152534485,
0.12445876002311707,
0.08736450225114822,
-0.06043771654367447,
0.11220553517341614,
0.15659940242767334,
-0.06760847568511963,
0.09903505444526672,
-0.0648699626326561,
-0.08302118629217148,
-0.02595123089849949,
-0.006000361405313015,
-0.004938166122883558,
0.11830069124698639,
-0.13809753954410553,
0.015637658536434174,
0.027684150263667107,
0.034880295395851135,
0.00655089458450675,
-0.23712854087352753,
-0.05856286361813545,
0.04091564938426018,
-0.05583886057138443,
-0.06708740442991257,
-0.030214473605155945,
0.008245822042226791,
0.09722461551427841,
0.002552307676523924,
-0.06849440187215805,
0.03256252408027649,
-0.011047459207475185,
-0.06970395147800446,
0.21323879063129425,
-0.09539853036403656,
-0.1223110482096672,
-0.10154756903648376,
-0.0922522321343422,
-0.045826807618141174,
-0.015493186190724373,
0.0754457414150238,
-0.08247720450162888,
-0.02022213488817215,
-0.058346185833215714,
0.04123838245868683,
-0.019617784768342972,
0.012124007567763329,
-0.00028458997257985175,
-0.011796305887401104,
0.08056430518627167,
-0.11068607121706009,
-0.006621750071644783,
-0.04473423585295677,
-0.07322239130735397,
0.05232711881399155,
0.042777128517627716,
0.11487334966659546,
0.130001962184906,
-0.009957087226212025,
0.008564434014260769,
-0.03670964390039444,
0.2406308650970459,
-0.05624660849571228,
-0.05616564676165581,
0.10717374086380005,
0.014261703938245773,
0.05138656497001648,
0.12091556191444397,
0.08127906173467636,
-0.08828093111515045,
0.006629045121371746,
0.04862381890416145,
-0.028406433761119843,
-0.23043183982372284,
-0.030890071764588356,
-0.06170482560992241,
-0.0627397894859314,
0.06407874822616577,
0.018930917605757713,
-0.002518437569960952,
0.05323764309287071,
0.034566450864076614,
0.058511313050985336,
-0.03897334635257721,
0.053503748029470444,
0.1264193207025528,
0.05218257009983063,
0.11411960422992706,
-0.05180690810084343,
-0.05251680314540863,
0.038602445274591446,
-0.0004972565802745521,
0.2636980712413788,
0.010710167698562145,
0.13660745322704315,
0.07745545357465744,
0.17398187518119812,
-0.0040415870025753975,
0.09169901907444,
0.012940563261508942,
-0.046631280332803726,
-0.022269105538725853,
-0.03632630035281181,
-0.03488794341683388,
0.01901071146130562,
-0.04349290952086449,
0.06943101435899734,
-0.1337314248085022,
-0.036707304418087006,
0.05180389806628227,
0.3109738826751709,
0.027450352907180786,
-0.2827356457710266,
-0.06731788069009781,
0.012183061800897121,
-0.05538904294371605,
-0.0073641156777739525,
0.026315970346331596,
0.093901127576828,
-0.10115289688110352,
0.04500557854771614,
-0.07067010551691055,
0.10909976065158844,
-0.036320533603429794,
0.041407350450754166,
0.06248461827635765,
0.07345346361398697,
-0.002402061130851507,
0.08990266919136047,
-0.347540944814682,
0.29864874482154846,
0.00036998174618929625,
0.07580512762069702,
-0.06571013480424881,
-0.011826552450656891,
0.049417536705732346,
0.04805091395974159,
0.0493871308863163,
-0.009740105830132961,
-0.01715894602239132,
-0.20456986129283905,
-0.0349547304213047,
0.05575978383421898,
0.0636647567152977,
-0.021172678098082542,
0.1035461351275444,
-0.019874298945069313,
0.019211776554584503,
0.06928740441799164,
0.05490836501121521,
-0.08354465663433075,
-0.0924941822886467,
-0.016924962401390076,
0.03258785977959633,
-0.008581064641475677,
-0.08715052902698517,
-0.10972271859645844,
-0.10522626340389252,
0.09473379701375961,
0.004543425515294075,
-0.03301341459155083,
-0.11673466116189957,
0.07162339985370636,
0.09253153949975967,
-0.078952856361866,
0.024139726534485817,
0.016827011480927467,
0.05788577347993851,
0.03681895136833191,
-0.05221950262784958,
0.09309457242488861,
-0.0627717673778534,
-0.1445370316505432,
-0.04517709091305733,
0.0946335569024086,
0.03269320726394653,
0.08510889858007431,
-0.022471636533737183,
0.0059493049047887325,
-0.03351115435361862,
-0.10236511379480362,
0.020866185426712036,
-0.023698750883340836,
0.05074379965662956,
0.046028539538383484,
-0.05658326297998428,
0.05412527918815613,
-0.06568343192338943,
-0.03765295818448067,
0.1946820467710495,
0.2600395381450653,
-0.08607226610183716,
0.022292431443929672,
0.02136792615056038,
-0.059554748237133026,
-0.14581888914108276,
0.03365004435181618,
0.06609611958265305,
0.012725122272968292,
0.06480509787797928,
-0.19648075103759766,
0.10053275525569916,
0.1190861314535141,
-0.008729580789804459,
0.07035039365291595,
-0.325878381729126,
-0.10520685464143753,
0.10069186240434647,
0.16332504153251648,
0.13455605506896973,
-0.16588325798511505,
-0.016832560300827026,
-0.024892503395676613,
-0.16246162354946136,
0.0808209627866745,
-0.07295689731836319,
0.128461554646492,
-0.0325910709798336,
0.07829812914133072,
0.00044161779806017876,
-0.049827706068754196,
0.15094727277755737,
0.025418119505047798,
0.11382594704627991,
-0.038092803210020065,
-0.0035703126341104507,
0.057161711156368256,
-0.03997453674674034,
-0.01590072177350521,
-0.10222237557172775,
0.01833452843129635,
-0.12771281599998474,
-0.023732608184218407,
-0.0969262346625328,
0.007723709102720022,
-0.02502775378525257,
-0.05661562457680702,
-0.024812448769807816,
0.03376801684498787,
0.07638198137283325,
-0.010023166425526142,
0.12196879088878632,
0.006778355687856674,
0.13990363478660583,
0.053717415779829025,
0.06645429134368896,
-0.05285211279988289,
-0.08648128062486649,
-0.03468134254217148,
-0.00734675582498312,
0.050137005746364594,
-0.15145473182201385,
0.035028085112571716,
0.14630645513534546,
0.01733226887881756,
0.15607930719852448,
0.07849609106779099,
-0.03795153275132179,
0.03088531270623207,
0.05784427374601364,
-0.12467803061008453,
-0.12860648334026337,
-0.004346971865743399,
-0.011802931316196918,
-0.10457384586334229,
0.02302107773721218,
0.06835326552391052,
-0.060633718967437744,
-0.014913198538124561,
-0.019070031121373177,
0.002596914069727063,
-0.08077329397201538,
0.20639516413211823,
0.03084433637559414,
0.0660456046462059,
-0.12179839611053467,
0.08137981593608856,
0.048246756196022034,
-0.09380075335502625,
-0.011198246851563454,
0.04381586238741875,
-0.06846727430820465,
-0.038394540548324585,
0.09767960757017136,
0.19531279802322388,
-0.03852633759379387,
-0.050637632608413696,
-0.13712568581104279,
-0.14609181880950928,
0.087881900370121,
0.13914118707180023,
0.10355287790298462,
0.017777081578969955,
-0.04273737967014313,
-0.004639292601495981,
-0.0942058190703392,
0.07792849093675613,
0.042538922280073166,
0.048460863530635834,
-0.12913593649864197,
0.12365659326314926,
0.017870943993330002,
0.048561375588178635,
-0.009313801303505898,
0.008035831153392792,
-0.08677523583173752,
0.029968684539198875,
-0.1922665238380432,
-0.02210603468120098,
-0.031691163778305054,
0.018389984965324402,
-0.001854864414781332,
-0.07599174976348877,
-0.06505979597568512,
0.014045925810933113,
-0.1393529176712036,
-0.02776241861283779,
0.022724656388163567,
0.07730033248662949,
-0.11033252626657486,
-0.057656437158584595,
0.02966924011707306,
-0.06575483083724976,
0.06275054067373276,
0.04619273170828819,
0.013523373752832413,
0.06083235889673233,
-0.12526611983776093,
-0.014090521261096,
0.05389636009931564,
0.010415093973279,
0.05666235461831093,
-0.1191129982471466,
-0.0005648229853250086,
-0.00013594051415566355,
0.0429324135184288,
0.00970261450856924,
0.03308303281664848,
-0.13949300348758698,
-0.038116928189992905,
-0.023407461121678352,
-0.08488404750823975,
-0.05561940371990204,
0.0150652676820755,
0.09428421407938004,
0.032319530844688416,
0.1947762668132782,
-0.07123847305774689,
0.045580971986055374,
-0.2094699889421463,
-0.013005321845412254,
-0.01835613325238228,
-0.10087533295154572,
-0.1252717822790146,
-0.07353099435567856,
0.062228865921497345,
-0.04706629738211632,
0.1611054390668869,
-0.005203118547797203,
0.0712333396077156,
0.023505058139562607,
-0.03325521573424339,
0.03352218493819237,
0.019489560276269913,
0.25424304604530334,
0.03325539082288742,
-0.033345289528369904,
0.0960119217634201,
0.04879210516810417,
0.07998745143413544,
0.15885448455810547,
0.1868281215429306,
0.18863533437252045,
0.02723897621035576,
0.08195041120052338,
0.040879301726818085,
-0.06689969450235367,
-0.10019268095493317,
0.035123735666275024,
-0.00873776525259018,
0.10192170739173889,
-0.02591576799750328,
0.22936522960662842,
0.05324860289692879,
-0.1873546689748764,
0.06869225203990936,
-0.04822918027639389,
-0.07697787880897522,
-0.0945352166891098,
-0.0008983436855487525,
-0.07407516986131668,
-0.16685469448566437,
0.00012493820395320654,
-0.1179923266172409,
0.027180615812540054,
0.16167105734348297,
0.0124822361394763,
-0.0021501448936760426,
0.13681572675704956,
0.032689258456230164,
0.025252453982830048,
0.07233291119337082,
-0.011529860086739063,
-0.029231926426291466,
-0.09079497307538986,
-0.06555912643671036,
0.021662674844264984,
-0.05661842226982117,
0.025942839682102203,
-0.04298864305019379,
-0.07791004329919815,
0.03752674162387848,
-0.0425894670188427,
-0.10858447849750519,
0.021775489673018456,
0.002172311535105109,
0.08173828572034836,
0.06172391027212143,
0.0238601453602314,
0.018682869151234627,
-0.008860066533088684,
0.2420741617679596,
-0.07298234105110168,
-0.07637229561805725,
-0.11162721365690231,
0.23929911851882935,
0.047035422176122665,
-0.015721363946795464,
0.045764580368995667,
-0.059875473380088806,
0.002589584095403552,
0.22468800842761993,
0.15744945406913757,
-0.09121513366699219,
-0.018843306228518486,
-0.00684158131480217,
-0.014629116281867027,
-0.018098121508955956,
0.11523410677909851,
0.11878316849470139,
-0.008387166075408459,
-0.11650136858224869,
-0.033662229776382446,
-0.07075536251068115,
-0.027228567749261856,
-0.025016600266098976,
0.06197138875722885,
0.06960777193307877,
-0.008914501406252384,
-0.041546232998371124,
0.07596544176340103,
-0.03907228261232376,
-0.08449190109968185,
0.06590694189071655,
-0.173580601811409,
-0.16516290605068207,
-0.04311032220721245,
0.08090393990278244,
0.03229571878910065,
0.0685257613658905,
-0.031448476016521454,
0.011623592115938663,
0.09277277439832687,
-0.018028499558568,
-0.0918441042304039,
-0.11633502691984177,
0.11748320609331131,
-0.07542495429515839,
0.1723354309797287,
-0.03180371969938278,
0.050335247069597244,
0.1303817182779312,
0.06372492015361786,
-0.06674585491418839,
0.10053985565900803,
0.04790375381708145,
-0.097039595246315,
0.013054197654128075,
0.09047719836235046,
-0.03724832460284233,
0.07182979583740234,
0.0349789559841156,
-0.11302606016397476,
0.038541752845048904,
-0.06825491786003113,
-0.05774335190653801,
-0.032508790493011475,
-0.038495179265737534,
-0.04253121837973595,
0.11558430641889572,
0.22527499496936798,
-0.03627406060695648,
0.02094539999961853,
-0.07050467282533646,
0.01870564930140972,
0.06308396905660629,
0.058658234775066376,
-0.07999332249164581,
-0.2023112028837204,
0.015983114019036293,
0.04005855694413185,
-0.02373080886900425,
-0.23545661568641663,
-0.10079764574766159,
0.01421445980668068,
-0.07038968801498413,
-0.0670652762055397,
0.10225879400968552,
0.07882580906152725,
0.05095046013593674,
-0.05859871953725815,
-0.13225775957107544,
-0.06981716305017471,
0.16760055720806122,
-0.13648712635040283,
-0.08026175200939178
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aristo-roberta-finetuned-csqa
This model is a fine-tuned version of [LIAMF-USP/aristo-roberta](https://huggingface.co/LIAMF-USP/aristo-roberta) on the commonsense_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2187
- Accuracy: 0.7305
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.131 | 1.0 | 609 | 0.7109 | 0.7232 |
| 0.6957 | 2.0 | 1218 | 0.6912 | 0.7346 |
| 0.459 | 3.0 | 1827 | 0.8364 | 0.7305 |
| 0.3063 | 4.0 | 2436 | 1.0595 | 0.7322 |
| 0.2283 | 5.0 | 3045 | 1.2187 | 0.7305 |
### Framework versions
- Transformers 4.9.0
- Pytorch 1.9.0
- Datasets 1.10.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["commonsense_qa"], "metrics": ["accuracy"], "model_index": [{"name": "aristo-roberta-finetuned-csqa", "results": [{"dataset": {"name": "commonsense_qa", "type": "commonsense_qa", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.7305487394332886}}]}]}
|
multiple-choice
|
danlou/aristo-roberta-finetuned-csqa
|
[
"transformers",
"pytorch",
"roberta",
"multiple-choice",
"generated_from_trainer",
"dataset:commonsense_qa",
"license:mit",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us
|
aristo-roberta-finetuned-csqa
=============================
This model is a fine-tuned version of LIAMF-USP/aristo-roberta on the commonsense\_qa dataset.
It achieves the following results on the evaluation set:
* Loss: 1.2187
* Accuracy: 0.7305
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.9.0
* Pytorch 1.9.0
* Datasets 1.10.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
51,
113,
4,
32
] |
[
"passage: TAGS\n#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
-0.09765328466892242,
0.04044581949710846,
-0.0020228009670972824,
0.0912572368979454,
0.17281223833560944,
0.03972447291016579,
0.09181512892246246,
0.11879517883062363,
-0.09186030179262161,
0.015430063009262085,
0.10662466287612915,
0.16499237716197968,
0.01889972575008869,
0.12703706324100494,
-0.04801655188202858,
-0.2661054730415344,
0.00412791920825839,
0.033399589359760284,
-0.07401911914348602,
0.13578243553638458,
0.10193255543708801,
-0.1535404771566391,
0.06459138542413712,
0.01259590033441782,
-0.19954809546470642,
0.011589796282351017,
0.009764440357685089,
-0.04046677425503731,
0.14821457862854004,
0.020436251536011696,
0.12813980877399445,
0.00978024210780859,
0.08195421099662781,
-0.22842037677764893,
0.01651301421225071,
0.03988126292824745,
0.014555448666214943,
0.0615498386323452,
0.05159929022192955,
-0.010107427835464478,
0.11421749740839005,
-0.07402566075325012,
0.061444301158189774,
0.012356281280517578,
-0.13220085203647614,
-0.2531159520149231,
-0.08810273557901382,
0.0066312882117927074,
0.05801946669816971,
0.09158049523830414,
-0.013737693428993225,
0.15237711369991302,
-0.11922582983970642,
0.08482438325881958,
0.20859944820404053,
-0.28276216983795166,
-0.06512404978275299,
0.02438638173043728,
0.01545619498938322,
0.08174271136522293,
-0.11525698006153107,
-0.03908475860953331,
0.03729039430618286,
0.051884498447179794,
0.1282631903886795,
-0.0333729013800621,
-0.09386859834194183,
0.03270994499325752,
-0.14445385336875916,
-0.025170372799038887,
0.12229989469051361,
0.05851099267601967,
-0.02907012775540352,
-0.030228199437260628,
-0.023436015471816063,
-0.13778914511203766,
-0.04166913777589798,
0.00013070058776065707,
0.04175221174955368,
-0.041589006781578064,
-0.09728561341762543,
0.01155912782996893,
-0.09604160487651825,
-0.062152039259672165,
-0.0605795755982399,
0.14617867767810822,
0.04627131298184395,
0.01618668995797634,
-0.015592704527080059,
0.09514179080724716,
-0.04763220623135567,
-0.1219346821308136,
0.01586323417723179,
0.0065361857414245605,
-0.04959932714700699,
-0.05730457603931427,
-0.07635138928890228,
-0.04219724237918854,
0.027693314477801323,
0.08103004097938538,
-0.0619279146194458,
0.05800081044435501,
0.0417604073882103,
0.026133883744478226,
-0.08599971234798431,
0.16490940749645233,
-0.0607558898627758,
-0.006679923739284277,
-0.01275074016302824,
0.05179246515035629,
-0.02120199054479599,
0.008139061741530895,
-0.08580706268548965,
0.009429492056369781,
0.10522330552339554,
0.006815433967858553,
-0.08744174987077713,
0.06924820691347122,
-0.05805497244000435,
-0.02426190860569477,
-0.036745112389326096,
-0.08444280177354813,
0.03279459476470947,
-0.0008580312714911997,
-0.09180980920791626,
-0.01698240265250206,
-0.01826828345656395,
0.033924657851457596,
-0.006013394799083471,
0.11171488463878632,
-0.08909747749567032,
0.04801391810178757,
-0.10532277077436447,
-0.1313607096672058,
0.010580799542367458,
-0.038173846900463104,
0.03685704618692398,
-0.08365528285503387,
-0.16414034366607666,
-0.014632869511842728,
0.05203182250261307,
-0.030600355938076973,
-0.046885550022125244,
-0.0439896360039711,
-0.05950646474957466,
-0.010900497436523438,
-0.02016318030655384,
0.16385214030742645,
-0.07311751693487167,
0.1258995532989502,
0.032100699841976166,
0.05775580555200577,
-0.032374005764722824,
0.05569426342844963,
-0.08952248096466064,
0.006412395276129246,
-0.1781405210494995,
0.07239004969596863,
-0.06242550164461136,
0.08591238409280777,
-0.08897697180509567,
-0.13097381591796875,
0.016896510496735573,
-0.010524669662117958,
0.09068786352872849,
0.0853547602891922,
-0.16953715682029724,
-0.06192491948604584,
0.16852159798145294,
-0.05818543955683708,
-0.12186399847269058,
0.1102917417883873,
-0.08755195885896683,
0.03979033604264259,
0.08545146882534027,
0.19862577319145203,
0.0813409760594368,
-0.08792123943567276,
0.02979903668165207,
-0.027085447683930397,
0.05312364920973778,
-0.056639254093170166,
0.06993564963340759,
0.02775556407868862,
-0.004219917114824057,
0.028101729229092598,
-0.030250338837504387,
0.08175916224718094,
-0.12358915060758591,
-0.08957856148481369,
-0.028811683878302574,
-0.11283949762582779,
0.0370977520942688,
0.06286439299583435,
0.07681659609079361,
-0.11580587178468704,
-0.06607548892498016,
0.07174211740493774,
0.08640148490667343,
-0.06220795959234238,
0.01832902617752552,
-0.06380464881658554,
0.05499304458498955,
-0.03956178203225136,
-0.029679210856556892,
-0.18931838870048523,
-0.02718554064631462,
0.004662463441491127,
0.01084995735436678,
0.017193058505654335,
0.030041879042983055,
0.07122477144002914,
0.04926474392414093,
-0.06127403303980827,
-0.018778754398226738,
-0.032655082643032074,
0.00475666206330061,
-0.11459044367074966,
-0.18663795292377472,
-0.03187652677297592,
-0.02628997340798378,
0.11682207137346268,
-0.18913373351097107,
0.02242014929652214,
-0.01991790346801281,
0.0694412887096405,
0.006680967286229134,
-0.01647227816283703,
-0.02892264351248741,
0.0951211228966713,
-0.0037590069696307182,
-0.04852190613746643,
0.07273944467306137,
0.011535122990608215,
-0.09634295850992203,
-0.05359191820025444,
-0.07591919600963593,
0.16689500212669373,
0.11797156184911728,
-0.11837384104728699,
-0.07553242146968842,
-0.031597547233104706,
-0.05712487921118736,
-0.027496080845594406,
-0.048211079090833664,
0.054654087871313095,
0.17538690567016602,
-0.0016203859122470021,
0.1276731938123703,
-0.07718857377767563,
-0.028965573757886887,
0.012170963920652866,
-0.022138604894280434,
0.03921607881784439,
0.12164155393838882,
0.09288490563631058,
-0.0992211103439331,
0.12066999822854996,
0.12425914406776428,
-0.0628354474902153,
0.12162967026233673,
-0.05792451649904251,
-0.07253451645374298,
-0.027915531769394875,
-0.0036705092061311007,
-0.019984129816293716,
0.10839967429637909,
-0.1218637079000473,
0.010790678672492504,
0.023843923583626747,
0.03802390769124031,
0.01620822586119175,
-0.2305901199579239,
-0.058673225343227386,
0.027017395943403244,
-0.043122127652168274,
-0.05905645713210106,
-0.019671468064188957,
0.021675188094377518,
0.10436709225177765,
0.004364846274256706,
-0.053309887647628784,
0.028963787481188774,
-0.005049432627856731,
-0.06613633781671524,
0.21752244234085083,
-0.09662871807813644,
-0.10894015431404114,
-0.07516008615493774,
-0.08916176855564117,
-0.03046320378780365,
-0.013250908814370632,
0.06433754414319992,
-0.08530411124229431,
-0.015925845131278038,
-0.042672622948884964,
0.03697308897972107,
-0.017393510788679123,
0.017887001857161522,
-0.00918295793235302,
-0.003727180417627096,
0.06983823329210281,
-0.11006224900484085,
-0.007761284708976746,
-0.0558861568570137,
-0.060660552233457565,
0.06570539623498917,
0.036040786653757095,
0.11196152865886688,
0.1251630336046219,
-0.030033357441425323,
0.014624539762735367,
-0.042608581483364105,
0.2733503580093384,
-0.0657431036233902,
-0.04944522678852081,
0.10433000326156616,
0.01993890106678009,
0.05307180434465408,
0.12848563492298126,
0.07327082008123398,
-0.09995101392269135,
0.009185383096337318,
0.0418650358915329,
-0.030054399743676186,
-0.20998486876487732,
-0.040411874651908875,
-0.05974287912249565,
-0.08053134381771088,
0.0663808286190033,
0.013964232988655567,
-0.004824260715395212,
0.06619593501091003,
0.04463117569684982,
0.03873177617788315,
-0.04397595301270485,
0.05504237487912178,
0.13715234398841858,
0.05417407304048538,
0.1276119351387024,
-0.04224485903978348,
-0.06097816303372383,
0.034652967005968094,
-0.0026535012293606997,
0.276290625333786,
-0.007607859559357166,
0.10399024188518524,
0.08461591601371765,
0.19832080602645874,
-0.002072681440040469,
0.08100374042987823,
0.0041134594939649105,
-0.04697743430733681,
-0.019378624856472015,
-0.02459382824599743,
-0.03736511990427971,
0.009703056886792183,
-0.024653997272253036,
0.040848180651664734,
-0.1304330676794052,
-0.042094726115465164,
0.059247586876153946,
0.26371216773986816,
0.02170049026608467,
-0.2908543646335602,
-0.07975778728723526,
0.0007182887056842446,
-0.05743928998708725,
-0.008333923295140266,
0.016637565568089485,
0.09231052547693253,
-0.10551078617572784,
0.04076116532087326,
-0.06692422926425934,
0.1039975956082344,
-0.02820744551718235,
0.04279102012515068,
0.05609622225165367,
0.09288340061903,
-0.011524000205099583,
0.08835029602050781,
-0.33354058861732483,
0.3009815812110901,
0.002276415005326271,
0.08276975899934769,
-0.07018563151359558,
-0.02629002183675766,
0.02747519500553608,
0.0439264290034771,
0.042351216077804565,
-0.011828277260065079,
-0.04892352968454361,
-0.21086186170578003,
-0.002812980441376567,
0.05202743783593178,
0.0877453088760376,
0.00369101669639349,
0.1113172397017479,
-0.017026064917445183,
0.03223226219415665,
0.06637559831142426,
0.015530571341514587,
-0.06931430101394653,
-0.0815705806016922,
-0.02850658819079399,
0.0220013540238142,
-0.003737648483365774,
-0.07315655797719955,
-0.1072695255279541,
-0.10948294401168823,
0.09868672490119934,
0.025103989988565445,
-0.041467826813459396,
-0.11689362674951553,
0.1088128387928009,
0.0985698401927948,
-0.07918907701969147,
0.026172930374741554,
0.01825609803199768,
0.053514569997787476,
0.03653866797685623,
-0.04062478244304657,
0.09099900722503662,
-0.05193981155753136,
-0.13894085586071014,
-0.040053050965070724,
0.09323474019765854,
0.04130991920828819,
0.076805479824543,
-0.010968861170113087,
0.005690377671271563,
-0.04091561585664749,
-0.10467918962240219,
0.015394282527267933,
-0.05466413497924805,
0.0673169270157814,
0.044444404542446136,
-0.055258046835660934,
0.03966698795557022,
-0.06652633845806122,
-0.03238021209836006,
0.19132542610168457,
0.2565009891986847,
-0.08711034059524536,
0.019144469872117043,
0.03158639743924141,
-0.058471471071243286,
-0.15067647397518158,
0.050405777990818024,
0.08197303116321564,
0.0128439636901021,
0.06436454504728317,
-0.18185769021511078,
0.09999752789735794,
0.11090532690286636,
-0.0008244015625678003,
0.06857781112194061,
-0.31276071071624756,
-0.10773146897554398,
0.08410277217626572,
0.17578540742397308,
0.12631888687610626,
-0.15748170018196106,
-0.00881507433950901,
-0.007307243067771196,
-0.14858396351337433,
0.1037348285317421,
-0.05235088989138603,
0.1258871853351593,
-0.018447473645210266,
0.12560275197029114,
0.010381486266851425,
-0.053658436983823776,
0.12939247488975525,
0.023690063506364822,
0.11564719676971436,
-0.04911888390779495,
-0.019398771226406097,
0.05611880496144295,
-0.022240089252591133,
-0.01202647015452385,
-0.05761774629354477,
0.025591742247343063,
-0.10878311842679977,
-0.028118742629885674,
-0.11364305764436722,
0.010508214123547077,
-0.021188223734498024,
-0.06445829570293427,
-0.040615834295749664,
0.05601619929075241,
0.06909376382827759,
-0.01646372862160206,
0.09891913831233978,
-0.006011316552758217,
0.16392187774181366,
0.04550949111580849,
0.0721575990319252,
-0.061374712735414505,
-0.06732821464538574,
-0.01845824532210827,
-0.006265225820243359,
0.03546096384525299,
-0.13833989202976227,
0.029540274292230606,
0.15293394029140472,
0.022118348628282547,
0.14773917198181152,
0.08141259104013443,
-0.035379186272621155,
0.034323155879974365,
0.06835298985242844,
-0.1289864182472229,
-0.11633780598640442,
0.011700538918375969,
-0.040453359484672546,
-0.09877357631921768,
0.025028781965374947,
0.07369642704725266,
-0.05455448105931282,
-0.021400362253189087,
-0.028753133490681648,
-0.003497085301205516,
-0.07519803196191788,
0.2150840014219284,
0.05820441618561745,
0.06114078685641289,
-0.115081787109375,
0.05779239907860756,
0.048973631113767624,
-0.08417001366615295,
-0.0023456052877008915,
0.04683448746800423,
-0.07752323895692825,
-0.03515443205833435,
0.08891367167234421,
0.18288345634937286,
-0.05631815269589424,
-0.03925330191850662,
-0.12822842597961426,
-0.13081595301628113,
0.08453996479511261,
0.14839787781238556,
0.09968598932027817,
0.0077268886379897594,
-0.039979640394449234,
-0.0035080609377473593,
-0.11512981355190277,
0.0750468447804451,
0.04992857575416565,
0.04062972590327263,
-0.1318075805902481,
0.16450269520282745,
-0.0031047079246491194,
0.05210214480757713,
-0.01709200069308281,
0.016116591170430183,
-0.10574866086244583,
0.030446263030171394,
-0.1512969732284546,
-0.030003519728779793,
-0.04108938202261925,
0.014139174483716488,
-0.0003449339128565043,
-0.08530495315790176,
-0.06968630105257034,
0.010182110592722893,
-0.14041005074977875,
-0.016002770513296127,
0.031657684594392776,
0.06163185462355614,
-0.1072327271103859,
-0.053516924381256104,
0.0207867082208395,
-0.043504420667886734,
0.05649963766336441,
0.04591910541057587,
0.010334757156670094,
0.06491342186927795,
-0.13349825143814087,
-0.014069153927266598,
0.0488729365170002,
-0.00009144112118519843,
0.06120843067765236,
-0.10725002735853195,
0.006146361120045185,
0.008504526689648628,
0.06441498547792435,
0.022272735834121704,
0.03287919983267784,
-0.13282056152820587,
-0.023498307913541794,
-0.028579862788319588,
-0.08060406893491745,
-0.06041015312075615,
0.021275535225868225,
0.08146695792675018,
0.03086809068918228,
0.18865516781806946,
-0.07336816936731339,
0.04153991863131523,
-0.20885129272937775,
-0.02068595588207245,
-0.018162116408348083,
-0.10295692086219788,
-0.10711468756198883,
-0.07596832513809204,
0.07212376594543457,
-0.04118652269244194,
0.16084100306034088,
0.014432206749916077,
0.0647682398557663,
0.025144200772047043,
-0.034203290939331055,
0.016082294285297394,
0.019069714471697807,
0.24886582791805267,
0.019435208290815353,
-0.036473874002695084,
0.08813813328742981,
0.06444689631462097,
0.06849438697099686,
0.14458714425563812,
0.19011123478412628,
0.1848195642232895,
0.024053309112787247,
0.05670926719903946,
0.03410819172859192,
-0.05355551838874817,
-0.10187877714633942,
0.038921721279621124,
-0.013440149836242199,
0.07554630190134048,
-0.03300990164279938,
0.22540827095508575,
0.05291277915239334,
-0.18924233317375183,
0.07015664875507355,
-0.058174874633550644,
-0.09261640906333923,
-0.08954811841249466,
-0.02174297347664833,
-0.0801069438457489,
-0.1654403656721115,
0.013712484389543533,
-0.12788592278957367,
0.02646646462380886,
0.14675188064575195,
0.020130325108766556,
-0.013344565406441689,
0.14361028373241425,
0.02738521620631218,
0.017938712611794472,
0.06481845676898956,
-0.008691297844052315,
-0.020620904862880707,
-0.08913421630859375,
-0.06640546023845673,
0.0080906692892313,
-0.04857960715889931,
0.03176918625831604,
-0.05065915733575821,
-0.08352441340684891,
0.018803944811224937,
-0.04486212879419327,
-0.09777064621448517,
0.01730957441031933,
0.021902505308389664,
0.09056898951530457,
0.057556506246328354,
0.010903213173151016,
0.0071424334309995174,
-0.02146044373512268,
0.24638795852661133,
-0.057365234941244125,
-0.08856099098920822,
-0.11469783633947372,
0.2430477738380432,
0.04746580496430397,
-0.01169057097285986,
0.04851684346795082,
-0.060807786881923676,
0.02210979349911213,
0.23101140558719635,
0.16808339953422546,
-0.10814134776592255,
-0.010721865110099316,
-0.006385148968547583,
-0.013860972598195076,
-0.011623920872807503,
0.12268763035535812,
0.1206989660859108,
0.005009955260902643,
-0.11370832473039627,
-0.021828150376677513,
-0.07526326179504395,
-0.010142017155885696,
-0.034953244030475616,
0.05442512780427933,
0.06722640991210938,
-0.0001725073525449261,
-0.04944809898734093,
0.08769486099481583,
-0.056309156119823456,
-0.10811272263526917,
0.06377773731946945,
-0.18712981045246124,
-0.168585866689682,
-0.034453921020030975,
0.06988660991191864,
0.022933438420295715,
0.06439372152090073,
-0.03929542377591133,
0.01777326501905918,
0.06001026928424835,
-0.015370308421552181,
-0.0756007730960846,
-0.1107499748468399,
0.12420307099819183,
-0.06762287765741348,
0.15276452898979187,
-0.0393747016787529,
0.06224851682782173,
0.1343860775232315,
0.050327200442552567,
-0.0568745955824852,
0.10120120644569397,
0.05213507264852524,
-0.0896218940615654,
0.017200462520122528,
0.09549830853939056,
-0.03280841186642647,
0.06550668179988861,
0.04254616051912308,
-0.13847188651561737,
0.03563180938363075,
-0.07971428334712982,
-0.04683680087327957,
-0.041236646473407745,
-0.028614813461899757,
-0.0490388348698616,
0.1261739879846573,
0.22435764968395233,
-0.03346865996718407,
0.02636883221566677,
-0.07305032759904861,
0.02911851368844509,
0.06026502698659897,
0.06256330013275146,
-0.09022104740142822,
-0.23455287516117096,
0.005963288713246584,
0.06714122742414474,
-0.032632097601890564,
-0.22440411150455475,
-0.09041059017181396,
0.007789444178342819,
-0.0654812902212143,
-0.07104659080505371,
0.12265593558549881,
0.06767170131206512,
0.04511595144867897,
-0.05236629396677017,
-0.1145964115858078,
-0.08003636449575424,
0.1675487756729126,
-0.13670265674591064,
-0.07550950348377228
] |
null | null |
transformers
|
Testing
|
{}
|
text-classification
|
danlou/distilbert-base-uncased-finetuned-rte
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us
|
Testing
|
[] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
38
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.03533577919006348,
0.06443645805120468,
-0.007824759930372238,
0.02963758073747158,
0.21134145557880402,
0.0368538573384285,
0.06359195709228516,
0.10786357522010803,
0.047846585512161255,
-0.029699334874749184,
0.09624463319778442,
0.2456933856010437,
-0.04527274891734123,
0.11506538093090057,
-0.1315092295408249,
-0.2995516061782837,
0.0646483302116394,
0.06820031255483627,
0.01968790777027607,
0.11027561128139496,
0.08955937623977661,
-0.08577843010425568,
0.06416945904493332,
-0.03987749293446541,
-0.13028311729431152,
0.036934368312358856,
0.037670549005270004,
-0.12557227909564972,
0.08850666880607605,
0.03936105594038963,
0.16363440454006195,
0.029493317008018494,
-0.0571451373398304,
-0.13760130107402802,
0.03542056307196617,
0.003107793163508177,
-0.08173839002847672,
0.035451244562864304,
0.07971785217523575,
-0.13606007397174835,
0.03269175812602043,
0.01657985709607601,
0.028779901564121246,
0.05034712329506874,
-0.13549968600273132,
-0.06766978651285172,
-0.009825913235545158,
0.02846479043364525,
0.08123840391635895,
0.06563035398721695,
-0.00027321543893776834,
0.11571130156517029,
-0.14468228816986084,
0.13729768991470337,
0.08681581169366837,
-0.26667332649230957,
-0.01513616368174553,
0.09300960600376129,
0.014211298897862434,
0.03189397603273392,
-0.05005642771720886,
0.03387840837240219,
0.021587392315268517,
0.012041964568197727,
-0.005505601409822702,
-0.06911619752645493,
-0.12172640115022659,
0.01909228041768074,
-0.0760328620672226,
-0.039914727210998535,
0.2024218738079071,
-0.06752687692642212,
0.06574457883834839,
-0.03853347897529602,
-0.09920144081115723,
-0.04725521057844162,
-0.028420861810445786,
0.03284634277224541,
-0.05052020400762558,
0.06803859770298004,
0.04873250797390938,
0.02093963511288166,
-0.10541380196809769,
0.027895580977201462,
-0.2198127955198288,
0.21804359555244446,
0.00917235016822815,
0.04113364964723587,
-0.17035873234272003,
0.06059039384126663,
0.043774571269750595,
-0.10760118812322617,
0.049048252403736115,
-0.10497406870126724,
0.019541887566447258,
-0.04680290073156357,
-0.07833123207092285,
-0.044003088027238846,
0.0761561468243599,
0.15131190419197083,
0.024525625631213188,
0.0676354393362999,
-0.023907558992505074,
0.08125972747802734,
0.03615585342049599,
0.12704050540924072,
0.04965166375041008,
-0.030767392367124557,
0.03752761334180832,
-0.13245059549808502,
-0.00002132852932845708,
-0.07070981711149216,
-0.1520344465970993,
-0.028104213997721672,
0.058518148958683014,
0.07771685719490051,
0.007545619271695614,
0.09117837250232697,
-0.07305282354354858,
-0.03670652583241463,
0.09205243736505508,
-0.09038619697093964,
0.022389709949493408,
0.0189626757055521,
0.024910688400268555,
0.11437109857797623,
-0.01640472002327442,
-0.004441923461854458,
-0.08554866164922714,
0.15481221675872803,
-0.05412428826093674,
0.01906411163508892,
-0.027951309457421303,
-0.07562480866909027,
0.023844171315431595,
-0.16517141461372375,
0.024268588051199913,
-0.16968505084514618,
-0.12177367508411407,
0.0011497566010802984,
0.01497613824903965,
0.0003558929602149874,
-0.029599502682685852,
-0.034584347158670425,
0.0028823118191212416,
0.05339471623301506,
-0.05009040981531143,
-0.08925710618495941,
-0.0734119787812233,
0.09545788168907166,
-0.03665677830576897,
0.07958490401506424,
-0.12844105064868927,
0.0784672200679779,
-0.0987219363451004,
-0.0187049712985754,
-0.14024826884269714,
0.05743253231048584,
-0.04765705391764641,
0.18340644240379333,
0.01636499911546707,
-0.05442013591527939,
-0.05629796162247658,
0.05081459879875183,
-0.06792773306369781,
0.17081454396247864,
-0.10482346266508102,
-0.11688733100891113,
0.18975088000297546,
-0.09539731591939926,
-0.11199936270713806,
0.08214274048805237,
-0.012322766706347466,
-0.002544441493228078,
0.10592521727085114,
0.18774141371250153,
0.11772145330905914,
0.015394842252135277,
0.071439228951931,
0.1266816407442093,
-0.09738999605178833,
-0.10514426231384277,
-0.016195401549339294,
-0.010998358018696308,
-0.11682542413473129,
0.06311710923910141,
0.08283041417598724,
0.0693083181977272,
-0.04381299018859863,
-0.038738906383514404,
-0.015374792739748955,
-0.0029897931963205338,
0.14953550696372986,
0.06494788080453873,
0.11409911513328552,
-0.07472079247236252,
0.010434641502797604,
0.010832404717803001,
-0.008651630952954292,
0.016917014494538307,
0.02875317819416523,
-0.061046965420246124,
0.11194391548633575,
0.03876045346260071,
0.02736404910683632,
-0.24566538631916046,
-0.06682449579238892,
-0.011323003098368645,
0.1456235647201538,
-0.02446315996348858,
0.10121438652276993,
0.045561324805021286,
-0.0504569448530674,
-0.010978372767567635,
-0.029581138864159584,
0.17828664183616638,
0.022655870765447617,
-0.06422974169254303,
-0.0612877793610096,
0.0651540756225586,
-0.07150227576494217,
0.012235969305038452,
-0.07036937773227692,
0.020627280697226524,
0.08606486022472382,
0.12204300612211227,
0.010734139941632748,
0.06475073099136353,
-0.02579765021800995,
0.07209211587905884,
-0.07104320824146271,
0.019227510318160057,
0.11117701232433319,
-0.010595849715173244,
-0.07011682540178299,
0.13524381816387177,
-0.1373681277036667,
0.2673107087612152,
0.19483336806297302,
-0.2967563271522522,
0.0005786092369817197,
-0.04439404606819153,
-0.007282515522092581,
0.030610160902142525,
0.030042126774787903,
0.014859852381050587,
0.08437592536211014,
0.0014727829257026315,
0.20341786742210388,
-0.021047484129667282,
-0.03919289633631706,
-0.018922755494713783,
-0.04877391830086708,
-0.03148360177874565,
0.08788784593343735,
0.06451795995235443,
-0.192406564950943,
0.19050060212612152,
0.21731194853782654,
0.010114802047610283,
0.16024211049079895,
-0.010486523620784283,
0.043989237397909164,
0.09252246469259262,
-0.03757351264357567,
-0.024272754788398743,
-0.08932791650295258,
-0.1848243772983551,
-0.03918878361582756,
0.07472185045480728,
0.03010893426835537,
0.06895712018013,
-0.10219920426607132,
-0.027038687840104103,
0.0004840063920710236,
0.021132981404662132,
-0.01947878859937191,
0.08704918622970581,
0.08203180879354477,
0.1052171140909195,
-0.017219819128513336,
-0.07267280668020248,
0.11330383270978928,
-0.0011106154415756464,
-0.07149384170770645,
0.18412140011787415,
-0.15954560041427612,
-0.36233094334602356,
-0.1530739665031433,
-0.20456592738628387,
-0.02883506752550602,
0.06615062057971954,
0.10685895383358002,
-0.12165717035531998,
-0.048558108508586884,
0.0375000461935997,
-0.013693227432668209,
-0.04041895270347595,
0.03981194645166397,
-0.05303730443120003,
0.07329315692186356,
-0.05222955346107483,
-0.06364883482456207,
-0.06660815328359604,
-0.03131863474845886,
-0.004695216193795204,
0.16393853724002838,
-0.12483653426170349,
0.06658802926540375,
0.1819998174905777,
0.0010995424818247557,
0.06644674390554428,
-0.032483141869306564,
0.1697184294462204,
-0.08651559799909592,
-0.02343188226222992,
0.1893177032470703,
-0.07345744967460632,
0.07808925211429596,
0.15666639804840088,
0.020104380324482918,
-0.0712679922580719,
0.0352557972073555,
-0.035343270748853683,
-0.08934015780687332,
-0.2058166265487671,
-0.1703205555677414,
-0.12546730041503906,
0.05237005278468132,
0.0663270428776741,
0.07582127302885056,
0.12632738053798676,
0.06528977304697037,
0.00627241050824523,
0.010700550861656666,
0.006936580874025822,
0.07483439892530441,
0.24698598682880402,
-0.0010819705203175545,
0.14767786860466003,
-0.057353224605321884,
-0.13245494663715363,
0.08233633637428284,
0.000922833161894232,
0.1185675784945488,
0.08539658784866333,
0.017674902454018593,
0.005295653361827135,
0.05462205410003662,
0.164198637008667,
0.1299368292093277,
0.04298880323767662,
-0.013622048310935497,
-0.01172587089240551,
0.0032578855752944946,
-0.0797785148024559,
0.006457295268774033,
0.07906489074230194,
-0.14195358753204346,
-0.08270972222089767,
-0.11039547622203827,
0.10006770491600037,
0.08380265533924103,
0.042938295751810074,
-0.2052999883890152,
0.005745685659348965,
0.09206069260835648,
-0.027502331882715225,
-0.09957162290811539,
0.06463603675365448,
-0.04812092334032059,
-0.13455109298229218,
0.10769277811050415,
-0.029609164223074913,
0.13354617357254028,
-0.0870715081691742,
0.08272852748632431,
-0.0378170944750309,
-0.11202792823314667,
0.03467349335551262,
0.10786684602499008,
-0.27751585841178894,
0.2031957507133484,
0.007435075007379055,
-0.06144534796476364,
-0.07824365049600601,
-0.015199865214526653,
0.039944443851709366,
0.22591036558151245,
0.06934285908937454,
0.004277070518583059,
-0.05739999935030937,
-0.1865520477294922,
-0.009981787763535976,
-0.008337096311151981,
0.12231403589248657,
-0.03427664935588837,
-0.01814279891550541,
-0.036011241376399994,
-0.030255382880568504,
-0.03578435257077217,
-0.06897740066051483,
0.02666986919939518,
-0.17997102439403534,
0.056329283863306046,
0.034454237669706345,
0.05416429787874222,
0.01469043642282486,
-0.04343695193529129,
-0.11887014657258987,
0.19838201999664307,
-0.10767136514186859,
-0.09184177964925766,
-0.11828504502773285,
-0.07852382957935333,
0.02535579912364483,
-0.08476060628890991,
0.06807194650173187,
-0.08172672241926193,
0.018900277093052864,
-0.06600436568260193,
-0.20524995028972626,
0.11596046388149261,
-0.10182060301303864,
-0.03258875012397766,
-0.058350928127765656,
0.1526644378900528,
-0.07479622215032578,
0.010474151000380516,
0.03318091109395027,
0.02239469438791275,
-0.08559903502464294,
-0.08446884155273438,
-0.018381169065833092,
0.03129338473081589,
0.06142119690775871,
0.08739607781171799,
-0.09792511910200119,
-0.07674866914749146,
-0.03134889155626297,
0.02817792072892189,
0.2929084002971649,
0.1401015967130661,
-0.06586769968271255,
0.1629326492547989,
0.10387758165597916,
-0.06942285597324371,
-0.3373493552207947,
-0.09150945395231247,
-0.09645266830921173,
-0.03972399979829788,
-0.042589932680130005,
-0.16358928382396698,
0.13413257896900177,
-0.004249863792210817,
-0.010055972263216972,
0.08473600447177887,
-0.16361457109451294,
-0.08480892330408096,
0.19654500484466553,
-0.0355062410235405,
0.36373743414878845,
-0.09189414978027344,
-0.09806639701128006,
-0.07035496085882187,
-0.1232207641005516,
0.12262474000453949,
0.007738110609352589,
0.08150525391101837,
-0.02050303854048252,
0.04451111704111099,
0.04815887659788132,
-0.03690929710865021,
0.10097026824951172,
0.036669690161943436,
0.025901002809405327,
-0.11938466131687164,
-0.09219347685575485,
0.023168733343482018,
-0.019243339076638222,
-0.007111898623406887,
-0.01547485776245594,
0.01685570739209652,
-0.17164339125156403,
-0.04131095111370087,
-0.07032524049282074,
0.05912882834672928,
0.04161927476525307,
-0.029813537374138832,
0.012351144105196,
-0.020498499274253845,
-0.000361355283530429,
0.006620287895202637,
0.251852810382843,
-0.03737054020166397,
0.1604781597852707,
0.08527542650699615,
0.141584113240242,
-0.15723979473114014,
0.01194052491337061,
-0.07652142643928528,
-0.05061504244804382,
0.06191904842853546,
-0.06635212153196335,
0.07575498521327972,
0.13591395318508148,
-0.05730273202061653,
0.07247055321931839,
0.11612356454133987,
0.07706465572118759,
-0.034392137080430984,
0.16330119967460632,
-0.2292891889810562,
0.04589579999446869,
-0.050483379513025284,
-0.033954232931137085,
0.06465915590524673,
0.0655360221862793,
0.1258573830127716,
0.06694923341274261,
-0.04017629101872444,
0.005630772560834885,
0.00028037314768880606,
0.005372054409235716,
0.07443340867757797,
0.04748379439115524,
0.04316747188568115,
-0.14709694683551788,
0.05031560733914375,
0.05119774490594864,
-0.15819577872753143,
-0.022534551098942757,
0.1376158893108368,
-0.1704932600259781,
-0.1271103173494339,
-0.021827740594744682,
0.12368015199899673,
-0.09311434626579285,
-0.046253565698862076,
-0.07048245519399643,
-0.13402129709720612,
0.07112511247396469,
0.18836617469787598,
0.12805050611495972,
0.09663103520870209,
-0.06118634715676308,
-0.04969988390803337,
0.0036050756461918354,
-0.004089095629751682,
0.017009761184453964,
0.03120747022330761,
-0.12284451723098755,
0.046005018055438995,
-0.02090919390320778,
0.15390309691429138,
-0.09199176728725433,
-0.07624588906764984,
-0.1582917422056198,
0.04238278418779373,
-0.09195777773857117,
-0.023019742220640182,
-0.09330286085605621,
-0.01648246869444847,
0.0030273916199803352,
-0.030272169038653374,
-0.026145517826080322,
-0.06213071197271347,
-0.11623096466064453,
0.04011767357587814,
-0.028817979618906975,
0.04146858677268028,
-0.06920336186885834,
-0.04603973776102066,
0.09102679789066315,
-0.03833403438329697,
0.10358903557062149,
0.10654495656490326,
-0.0914529487490654,
0.0934479758143425,
-0.14121071994304657,
-0.1319282501935959,
0.1433861404657364,
0.030263781547546387,
0.07207431644201279,
0.07694290578365326,
0.03595962002873421,
0.07349478453397751,
0.004535248037427664,
0.06631990522146225,
0.06761990487575531,
-0.12337382882833481,
0.061452679336071014,
-0.046973392367362976,
-0.17189696431159973,
-0.05778007209300995,
-0.04047338292002678,
0.10660306364297867,
0.010234192945063114,
0.1720496565103531,
-0.05692226439714432,
0.1017514169216156,
-0.03180769085884094,
0.0038062711246311665,
-0.01604292169213295,
-0.20698778331279755,
-0.06364472210407257,
-0.08077114075422287,
0.026275143027305603,
0.005083381198346615,
0.23303534090518951,
0.061751753091812134,
0.033835094422101974,
0.04869496077299118,
0.09752455353736877,
-0.0014774927403777838,
0.023545393720269203,
0.17794077098369598,
0.10133370757102966,
-0.05567975342273712,
-0.05575546622276306,
0.05616139620542526,
0.029215605929493904,
0.006353367585688829,
0.14132826030254364,
0.07252193242311478,
-0.041009921580553055,
0.07551323622465134,
-0.03376345708966255,
0.04427867755293846,
-0.1321653574705124,
-0.16054923832416534,
-0.05143791809678078,
0.07023841142654419,
0.01740087941288948,
0.03448288515210152,
0.07088012248277664,
-0.028410857543349266,
0.05220868065953255,
-0.033101536333560944,
-0.05869230628013611,
-0.18244294822216034,
-0.09428907185792923,
-0.09423913061618805,
-0.09753676503896713,
0.0058974651619791985,
-0.07943454384803772,
-0.01026046834886074,
0.06547573953866959,
0.037508975714445114,
-0.05198773369193077,
0.07752657681703568,
0.003285798244178295,
-0.05593571066856384,
0.08687124401330948,
-0.045962750911712646,
0.02649652026593685,
0.00841206219047308,
-0.029707664623856544,
-0.1380927860736847,
-0.013390704058110714,
-0.04401649907231331,
0.040850814431905746,
-0.058590736240148544,
0.007230483461171389,
-0.1483704298734665,
-0.12039808928966522,
-0.019934508949518204,
0.0580129399895668,
-0.06074916571378708,
0.14175079762935638,
0.015395265072584152,
0.00611070916056633,
0.047287240624427795,
0.17810532450675964,
-0.0544942207634449,
-0.06539076566696167,
-0.04489162564277649,
0.24079638719558716,
0.09303659200668335,
0.10803006589412689,
0.0026883413083851337,
-0.013426939956843853,
-0.07931891828775406,
0.28847232460975647,
0.27526742219924927,
-0.04996299743652344,
0.054827310144901276,
0.007495596073567867,
0.03283945098519325,
0.15242771804332733,
0.1401364952325821,
0.09061526507139206,
0.24117816984653473,
-0.0521743968129158,
-0.05017128586769104,
-0.026741530746221542,
-0.03419290855526924,
-0.13402216136455536,
0.0581725612282753,
0.05382576957345009,
-0.0488528348505497,
-0.06285785138607025,
0.10921014845371246,
-0.21934591233730316,
0.16537490487098694,
0.019078493118286133,
-0.20565392076969147,
-0.06819386035203934,
-0.03284084051847458,
0.1365688294172287,
-0.0016830840613692999,
0.07499389350414276,
-0.00323955318890512,
-0.11883772164583206,
0.042848069220781326,
0.01306091621518135,
-0.20812170207500458,
-0.0041817850433290005,
0.06021128222346306,
-0.05781300365924835,
-0.0120098190382123,
-0.02640264853835106,
0.03757385164499283,
0.06560133397579193,
0.07958315312862396,
-0.0117155397310853,
0.04959989711642265,
-0.012948726303875446,
-0.030828366056084633,
0.029231732711195946,
0.02946082502603531,
0.0038178605027496815,
-0.09871038049459457,
0.06783884763717651,
-0.16667571663856506,
0.0549757145345211,
-0.05383889377117157,
-0.05352160334587097,
-0.019258368760347366,
0.04339629411697388,
-0.05456918105483055,
0.04438189044594765,
0.10450860112905502,
0.011940731666982174,
-0.025312455371022224,
-0.04523419588804245,
-0.04262804985046387,
-0.012295196764171124,
-0.1369558572769165,
-0.14967197179794312,
-0.09997987747192383,
-0.08965370059013367,
0.09313849359750748,
0.0034958450123667717,
-0.12975360453128815,
-0.006513827480375767,
-0.11122267693281174,
0.05365913361310959,
-0.16868756711483002,
0.09322161972522736,
0.0323028489947319,
0.015595607459545135,
-0.011563225649297237,
-0.040581803768873215,
0.04532773047685623,
0.07905946671962738,
-0.1267605572938919,
-0.08728102594614029
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-finetuned-csqa
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the commonsense_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9146
- Accuracy: 0.7330
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3903 | 1.0 | 609 | 0.8845 | 0.6642 |
| 0.8939 | 2.0 | 1218 | 0.7054 | 0.7281 |
| 0.6163 | 3.0 | 1827 | 0.7452 | 0.7314 |
| 0.4245 | 4.0 | 2436 | 0.8369 | 0.7355 |
| 0.3258 | 5.0 | 3045 | 0.9146 | 0.7330 |
### Framework versions
- Transformers 4.9.0
- Pytorch 1.9.0
- Datasets 1.10.2
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["commonsense_qa"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-large-finetuned-csqa", "results": [{"dataset": {"name": "commonsense_qa", "type": "commonsense_qa", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.7330057621002197}}]}]}
|
multiple-choice
|
danlou/roberta-large-finetuned-csqa
|
[
"transformers",
"pytorch",
"roberta",
"multiple-choice",
"generated_from_trainer",
"dataset:commonsense_qa",
"license:mit",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us
|
roberta-large-finetuned-csqa
============================
This model is a fine-tuned version of roberta-large on the commonsense\_qa dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9146
* Accuracy: 0.7330
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.9.0
* Pytorch 1.9.0
* Datasets 1.10.2
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
51,
113,
4,
32
] |
[
"passage: TAGS\n#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3"
] |
[
-0.09765328466892242,
0.04044581949710846,
-0.0020228009670972824,
0.0912572368979454,
0.17281223833560944,
0.03972447291016579,
0.09181512892246246,
0.11879517883062363,
-0.09186030179262161,
0.015430063009262085,
0.10662466287612915,
0.16499237716197968,
0.01889972575008869,
0.12703706324100494,
-0.04801655188202858,
-0.2661054730415344,
0.00412791920825839,
0.033399589359760284,
-0.07401911914348602,
0.13578243553638458,
0.10193255543708801,
-0.1535404771566391,
0.06459138542413712,
0.01259590033441782,
-0.19954809546470642,
0.011589796282351017,
0.009764440357685089,
-0.04046677425503731,
0.14821457862854004,
0.020436251536011696,
0.12813980877399445,
0.00978024210780859,
0.08195421099662781,
-0.22842037677764893,
0.01651301421225071,
0.03988126292824745,
0.014555448666214943,
0.0615498386323452,
0.05159929022192955,
-0.010107427835464478,
0.11421749740839005,
-0.07402566075325012,
0.061444301158189774,
0.012356281280517578,
-0.13220085203647614,
-0.2531159520149231,
-0.08810273557901382,
0.0066312882117927074,
0.05801946669816971,
0.09158049523830414,
-0.013737693428993225,
0.15237711369991302,
-0.11922582983970642,
0.08482438325881958,
0.20859944820404053,
-0.28276216983795166,
-0.06512404978275299,
0.02438638173043728,
0.01545619498938322,
0.08174271136522293,
-0.11525698006153107,
-0.03908475860953331,
0.03729039430618286,
0.051884498447179794,
0.1282631903886795,
-0.0333729013800621,
-0.09386859834194183,
0.03270994499325752,
-0.14445385336875916,
-0.025170372799038887,
0.12229989469051361,
0.05851099267601967,
-0.02907012775540352,
-0.030228199437260628,
-0.023436015471816063,
-0.13778914511203766,
-0.04166913777589798,
0.00013070058776065707,
0.04175221174955368,
-0.041589006781578064,
-0.09728561341762543,
0.01155912782996893,
-0.09604160487651825,
-0.062152039259672165,
-0.0605795755982399,
0.14617867767810822,
0.04627131298184395,
0.01618668995797634,
-0.015592704527080059,
0.09514179080724716,
-0.04763220623135567,
-0.1219346821308136,
0.01586323417723179,
0.0065361857414245605,
-0.04959932714700699,
-0.05730457603931427,
-0.07635138928890228,
-0.04219724237918854,
0.027693314477801323,
0.08103004097938538,
-0.0619279146194458,
0.05800081044435501,
0.0417604073882103,
0.026133883744478226,
-0.08599971234798431,
0.16490940749645233,
-0.0607558898627758,
-0.006679923739284277,
-0.01275074016302824,
0.05179246515035629,
-0.02120199054479599,
0.008139061741530895,
-0.08580706268548965,
0.009429492056369781,
0.10522330552339554,
0.006815433967858553,
-0.08744174987077713,
0.06924820691347122,
-0.05805497244000435,
-0.02426190860569477,
-0.036745112389326096,
-0.08444280177354813,
0.03279459476470947,
-0.0008580312714911997,
-0.09180980920791626,
-0.01698240265250206,
-0.01826828345656395,
0.033924657851457596,
-0.006013394799083471,
0.11171488463878632,
-0.08909747749567032,
0.04801391810178757,
-0.10532277077436447,
-0.1313607096672058,
0.010580799542367458,
-0.038173846900463104,
0.03685704618692398,
-0.08365528285503387,
-0.16414034366607666,
-0.014632869511842728,
0.05203182250261307,
-0.030600355938076973,
-0.046885550022125244,
-0.0439896360039711,
-0.05950646474957466,
-0.010900497436523438,
-0.02016318030655384,
0.16385214030742645,
-0.07311751693487167,
0.1258995532989502,
0.032100699841976166,
0.05775580555200577,
-0.032374005764722824,
0.05569426342844963,
-0.08952248096466064,
0.006412395276129246,
-0.1781405210494995,
0.07239004969596863,
-0.06242550164461136,
0.08591238409280777,
-0.08897697180509567,
-0.13097381591796875,
0.016896510496735573,
-0.010524669662117958,
0.09068786352872849,
0.0853547602891922,
-0.16953715682029724,
-0.06192491948604584,
0.16852159798145294,
-0.05818543955683708,
-0.12186399847269058,
0.1102917417883873,
-0.08755195885896683,
0.03979033604264259,
0.08545146882534027,
0.19862577319145203,
0.0813409760594368,
-0.08792123943567276,
0.02979903668165207,
-0.027085447683930397,
0.05312364920973778,
-0.056639254093170166,
0.06993564963340759,
0.02775556407868862,
-0.004219917114824057,
0.028101729229092598,
-0.030250338837504387,
0.08175916224718094,
-0.12358915060758591,
-0.08957856148481369,
-0.028811683878302574,
-0.11283949762582779,
0.0370977520942688,
0.06286439299583435,
0.07681659609079361,
-0.11580587178468704,
-0.06607548892498016,
0.07174211740493774,
0.08640148490667343,
-0.06220795959234238,
0.01832902617752552,
-0.06380464881658554,
0.05499304458498955,
-0.03956178203225136,
-0.029679210856556892,
-0.18931838870048523,
-0.02718554064631462,
0.004662463441491127,
0.01084995735436678,
0.017193058505654335,
0.030041879042983055,
0.07122477144002914,
0.04926474392414093,
-0.06127403303980827,
-0.018778754398226738,
-0.032655082643032074,
0.00475666206330061,
-0.11459044367074966,
-0.18663795292377472,
-0.03187652677297592,
-0.02628997340798378,
0.11682207137346268,
-0.18913373351097107,
0.02242014929652214,
-0.01991790346801281,
0.0694412887096405,
0.006680967286229134,
-0.01647227816283703,
-0.02892264351248741,
0.0951211228966713,
-0.0037590069696307182,
-0.04852190613746643,
0.07273944467306137,
0.011535122990608215,
-0.09634295850992203,
-0.05359191820025444,
-0.07591919600963593,
0.16689500212669373,
0.11797156184911728,
-0.11837384104728699,
-0.07553242146968842,
-0.031597547233104706,
-0.05712487921118736,
-0.027496080845594406,
-0.048211079090833664,
0.054654087871313095,
0.17538690567016602,
-0.0016203859122470021,
0.1276731938123703,
-0.07718857377767563,
-0.028965573757886887,
0.012170963920652866,
-0.022138604894280434,
0.03921607881784439,
0.12164155393838882,
0.09288490563631058,
-0.0992211103439331,
0.12066999822854996,
0.12425914406776428,
-0.0628354474902153,
0.12162967026233673,
-0.05792451649904251,
-0.07253451645374298,
-0.027915531769394875,
-0.0036705092061311007,
-0.019984129816293716,
0.10839967429637909,
-0.1218637079000473,
0.010790678672492504,
0.023843923583626747,
0.03802390769124031,
0.01620822586119175,
-0.2305901199579239,
-0.058673225343227386,
0.027017395943403244,
-0.043122127652168274,
-0.05905645713210106,
-0.019671468064188957,
0.021675188094377518,
0.10436709225177765,
0.004364846274256706,
-0.053309887647628784,
0.028963787481188774,
-0.005049432627856731,
-0.06613633781671524,
0.21752244234085083,
-0.09662871807813644,
-0.10894015431404114,
-0.07516008615493774,
-0.08916176855564117,
-0.03046320378780365,
-0.013250908814370632,
0.06433754414319992,
-0.08530411124229431,
-0.015925845131278038,
-0.042672622948884964,
0.03697308897972107,
-0.017393510788679123,
0.017887001857161522,
-0.00918295793235302,
-0.003727180417627096,
0.06983823329210281,
-0.11006224900484085,
-0.007761284708976746,
-0.0558861568570137,
-0.060660552233457565,
0.06570539623498917,
0.036040786653757095,
0.11196152865886688,
0.1251630336046219,
-0.030033357441425323,
0.014624539762735367,
-0.042608581483364105,
0.2733503580093384,
-0.0657431036233902,
-0.04944522678852081,
0.10433000326156616,
0.01993890106678009,
0.05307180434465408,
0.12848563492298126,
0.07327082008123398,
-0.09995101392269135,
0.009185383096337318,
0.0418650358915329,
-0.030054399743676186,
-0.20998486876487732,
-0.040411874651908875,
-0.05974287912249565,
-0.08053134381771088,
0.0663808286190033,
0.013964232988655567,
-0.004824260715395212,
0.06619593501091003,
0.04463117569684982,
0.03873177617788315,
-0.04397595301270485,
0.05504237487912178,
0.13715234398841858,
0.05417407304048538,
0.1276119351387024,
-0.04224485903978348,
-0.06097816303372383,
0.034652967005968094,
-0.0026535012293606997,
0.276290625333786,
-0.007607859559357166,
0.10399024188518524,
0.08461591601371765,
0.19832080602645874,
-0.002072681440040469,
0.08100374042987823,
0.0041134594939649105,
-0.04697743430733681,
-0.019378624856472015,
-0.02459382824599743,
-0.03736511990427971,
0.009703056886792183,
-0.024653997272253036,
0.040848180651664734,
-0.1304330676794052,
-0.042094726115465164,
0.059247586876153946,
0.26371216773986816,
0.02170049026608467,
-0.2908543646335602,
-0.07975778728723526,
0.0007182887056842446,
-0.05743928998708725,
-0.008333923295140266,
0.016637565568089485,
0.09231052547693253,
-0.10551078617572784,
0.04076116532087326,
-0.06692422926425934,
0.1039975956082344,
-0.02820744551718235,
0.04279102012515068,
0.05609622225165367,
0.09288340061903,
-0.011524000205099583,
0.08835029602050781,
-0.33354058861732483,
0.3009815812110901,
0.002276415005326271,
0.08276975899934769,
-0.07018563151359558,
-0.02629002183675766,
0.02747519500553608,
0.0439264290034771,
0.042351216077804565,
-0.011828277260065079,
-0.04892352968454361,
-0.21086186170578003,
-0.002812980441376567,
0.05202743783593178,
0.0877453088760376,
0.00369101669639349,
0.1113172397017479,
-0.017026064917445183,
0.03223226219415665,
0.06637559831142426,
0.015530571341514587,
-0.06931430101394653,
-0.0815705806016922,
-0.02850658819079399,
0.0220013540238142,
-0.003737648483365774,
-0.07315655797719955,
-0.1072695255279541,
-0.10948294401168823,
0.09868672490119934,
0.025103989988565445,
-0.041467826813459396,
-0.11689362674951553,
0.1088128387928009,
0.0985698401927948,
-0.07918907701969147,
0.026172930374741554,
0.01825609803199768,
0.053514569997787476,
0.03653866797685623,
-0.04062478244304657,
0.09099900722503662,
-0.05193981155753136,
-0.13894085586071014,
-0.040053050965070724,
0.09323474019765854,
0.04130991920828819,
0.076805479824543,
-0.010968861170113087,
0.005690377671271563,
-0.04091561585664749,
-0.10467918962240219,
0.015394282527267933,
-0.05466413497924805,
0.0673169270157814,
0.044444404542446136,
-0.055258046835660934,
0.03966698795557022,
-0.06652633845806122,
-0.03238021209836006,
0.19132542610168457,
0.2565009891986847,
-0.08711034059524536,
0.019144469872117043,
0.03158639743924141,
-0.058471471071243286,
-0.15067647397518158,
0.050405777990818024,
0.08197303116321564,
0.0128439636901021,
0.06436454504728317,
-0.18185769021511078,
0.09999752789735794,
0.11090532690286636,
-0.0008244015625678003,
0.06857781112194061,
-0.31276071071624756,
-0.10773146897554398,
0.08410277217626572,
0.17578540742397308,
0.12631888687610626,
-0.15748170018196106,
-0.00881507433950901,
-0.007307243067771196,
-0.14858396351337433,
0.1037348285317421,
-0.05235088989138603,
0.1258871853351593,
-0.018447473645210266,
0.12560275197029114,
0.010381486266851425,
-0.053658436983823776,
0.12939247488975525,
0.023690063506364822,
0.11564719676971436,
-0.04911888390779495,
-0.019398771226406097,
0.05611880496144295,
-0.022240089252591133,
-0.01202647015452385,
-0.05761774629354477,
0.025591742247343063,
-0.10878311842679977,
-0.028118742629885674,
-0.11364305764436722,
0.010508214123547077,
-0.021188223734498024,
-0.06445829570293427,
-0.040615834295749664,
0.05601619929075241,
0.06909376382827759,
-0.01646372862160206,
0.09891913831233978,
-0.006011316552758217,
0.16392187774181366,
0.04550949111580849,
0.0721575990319252,
-0.061374712735414505,
-0.06732821464538574,
-0.01845824532210827,
-0.006265225820243359,
0.03546096384525299,
-0.13833989202976227,
0.029540274292230606,
0.15293394029140472,
0.022118348628282547,
0.14773917198181152,
0.08141259104013443,
-0.035379186272621155,
0.034323155879974365,
0.06835298985242844,
-0.1289864182472229,
-0.11633780598640442,
0.011700538918375969,
-0.040453359484672546,
-0.09877357631921768,
0.025028781965374947,
0.07369642704725266,
-0.05455448105931282,
-0.021400362253189087,
-0.028753133490681648,
-0.003497085301205516,
-0.07519803196191788,
0.2150840014219284,
0.05820441618561745,
0.06114078685641289,
-0.115081787109375,
0.05779239907860756,
0.048973631113767624,
-0.08417001366615295,
-0.0023456052877008915,
0.04683448746800423,
-0.07752323895692825,
-0.03515443205833435,
0.08891367167234421,
0.18288345634937286,
-0.05631815269589424,
-0.03925330191850662,
-0.12822842597961426,
-0.13081595301628113,
0.08453996479511261,
0.14839787781238556,
0.09968598932027817,
0.0077268886379897594,
-0.039979640394449234,
-0.0035080609377473593,
-0.11512981355190277,
0.0750468447804451,
0.04992857575416565,
0.04062972590327263,
-0.1318075805902481,
0.16450269520282745,
-0.0031047079246491194,
0.05210214480757713,
-0.01709200069308281,
0.016116591170430183,
-0.10574866086244583,
0.030446263030171394,
-0.1512969732284546,
-0.030003519728779793,
-0.04108938202261925,
0.014139174483716488,
-0.0003449339128565043,
-0.08530495315790176,
-0.06968630105257034,
0.010182110592722893,
-0.14041005074977875,
-0.016002770513296127,
0.031657684594392776,
0.06163185462355614,
-0.1072327271103859,
-0.053516924381256104,
0.0207867082208395,
-0.043504420667886734,
0.05649963766336441,
0.04591910541057587,
0.010334757156670094,
0.06491342186927795,
-0.13349825143814087,
-0.014069153927266598,
0.0488729365170002,
-0.00009144112118519843,
0.06120843067765236,
-0.10725002735853195,
0.006146361120045185,
0.008504526689648628,
0.06441498547792435,
0.022272735834121704,
0.03287919983267784,
-0.13282056152820587,
-0.023498307913541794,
-0.028579862788319588,
-0.08060406893491745,
-0.06041015312075615,
0.021275535225868225,
0.08146695792675018,
0.03086809068918228,
0.18865516781806946,
-0.07336816936731339,
0.04153991863131523,
-0.20885129272937775,
-0.02068595588207245,
-0.018162116408348083,
-0.10295692086219788,
-0.10711468756198883,
-0.07596832513809204,
0.07212376594543457,
-0.04118652269244194,
0.16084100306034088,
0.014432206749916077,
0.0647682398557663,
0.025144200772047043,
-0.034203290939331055,
0.016082294285297394,
0.019069714471697807,
0.24886582791805267,
0.019435208290815353,
-0.036473874002695084,
0.08813813328742981,
0.06444689631462097,
0.06849438697099686,
0.14458714425563812,
0.19011123478412628,
0.1848195642232895,
0.024053309112787247,
0.05670926719903946,
0.03410819172859192,
-0.05355551838874817,
-0.10187877714633942,
0.038921721279621124,
-0.013440149836242199,
0.07554630190134048,
-0.03300990164279938,
0.22540827095508575,
0.05291277915239334,
-0.18924233317375183,
0.07015664875507355,
-0.058174874633550644,
-0.09261640906333923,
-0.08954811841249466,
-0.02174297347664833,
-0.0801069438457489,
-0.1654403656721115,
0.013712484389543533,
-0.12788592278957367,
0.02646646462380886,
0.14675188064575195,
0.020130325108766556,
-0.013344565406441689,
0.14361028373241425,
0.02738521620631218,
0.017938712611794472,
0.06481845676898956,
-0.008691297844052315,
-0.020620904862880707,
-0.08913421630859375,
-0.06640546023845673,
0.0080906692892313,
-0.04857960715889931,
0.03176918625831604,
-0.05065915733575821,
-0.08352441340684891,
0.018803944811224937,
-0.04486212879419327,
-0.09777064621448517,
0.01730957441031933,
0.021902505308389664,
0.09056898951530457,
0.057556506246328354,
0.010903213173151016,
0.0071424334309995174,
-0.02146044373512268,
0.24638795852661133,
-0.057365234941244125,
-0.08856099098920822,
-0.11469783633947372,
0.2430477738380432,
0.04746580496430397,
-0.01169057097285986,
0.04851684346795082,
-0.060807786881923676,
0.02210979349911213,
0.23101140558719635,
0.16808339953422546,
-0.10814134776592255,
-0.010721865110099316,
-0.006385148968547583,
-0.013860972598195076,
-0.011623920872807503,
0.12268763035535812,
0.1206989660859108,
0.005009955260902643,
-0.11370832473039627,
-0.021828150376677513,
-0.07526326179504395,
-0.010142017155885696,
-0.034953244030475616,
0.05442512780427933,
0.06722640991210938,
-0.0001725073525449261,
-0.04944809898734093,
0.08769486099481583,
-0.056309156119823456,
-0.10811272263526917,
0.06377773731946945,
-0.18712981045246124,
-0.168585866689682,
-0.034453921020030975,
0.06988660991191864,
0.022933438420295715,
0.06439372152090073,
-0.03929542377591133,
0.01777326501905918,
0.06001026928424835,
-0.015370308421552181,
-0.0756007730960846,
-0.1107499748468399,
0.12420307099819183,
-0.06762287765741348,
0.15276452898979187,
-0.0393747016787529,
0.06224851682782173,
0.1343860775232315,
0.050327200442552567,
-0.0568745955824852,
0.10120120644569397,
0.05213507264852524,
-0.0896218940615654,
0.017200462520122528,
0.09549830853939056,
-0.03280841186642647,
0.06550668179988861,
0.04254616051912308,
-0.13847188651561737,
0.03563180938363075,
-0.07971428334712982,
-0.04683680087327957,
-0.041236646473407745,
-0.028614813461899757,
-0.0490388348698616,
0.1261739879846573,
0.22435764968395233,
-0.03346865996718407,
0.02636883221566677,
-0.07305032759904861,
0.02911851368844509,
0.06026502698659897,
0.06256330013275146,
-0.09022104740142822,
-0.23455287516117096,
0.005963288713246584,
0.06714122742414474,
-0.032632097601890564,
-0.22440411150455475,
-0.09041059017181396,
0.007789444178342819,
-0.0654812902212143,
-0.07104659080505371,
0.12265593558549881,
0.06767170131206512,
0.04511595144867897,
-0.05236629396677017,
-0.1145964115858078,
-0.08003636449575424,
0.1675487756729126,
-0.13670265674591064,
-0.07550950348377228
] |
null | null |
transformers
|
#datnguyen
|
{"tags": ["conversational"]}
|
text-generation
|
danny481/DialoGPT-small-datnguyenchatbot
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#datnguyen
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null |
transformers
|
#Harry Potter DialoGPT
|
{"tags": ["conversational"]}
|
text-generation
|
danny481/DialoGPT-small-harrypotter
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Harry Potter DialoGPT
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null |
transformers
|
#ChatBot updated by datng
|
{"tags": ["conversational"]}
|
text-generation
|
danny481/Final_ChatBot
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#ChatBot updated by datng
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null |
transformers
|
## CALM
This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2).
Checkout our [Project website](https://inklab.usc.edu/calm-project) for details!
```bibtex
@inproceedings{CALM2021,
title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense},
author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren},
booktitle={ICLR},
year={2021}
}
```
|
{}
|
text2text-generation
|
danny911kr/calm-base
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## CALM
This model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.
Checkout our Project website for details!
|
[
"## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
48,
39
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
-0.02213875763118267,
-0.053692132234573364,
-0.0025661347899585962,
0.015831509605050087,
0.09639463573694229,
-0.02976060099899769,
0.23268507421016693,
0.07608936727046967,
-0.0715661495923996,
-0.013080974109470844,
0.1162995994091034,
0.12832635641098022,
-0.012100313790142536,
0.05936559662222862,
-0.11752409487962723,
-0.3118003010749817,
0.0212676003575325,
0.09420181065797806,
0.04369969666004181,
0.153020441532135,
0.13204173743724823,
-0.0819140374660492,
0.0455453060567379,
0.015504328534007072,
-0.14329181611537933,
-0.016385182738304138,
-0.00909272488206625,
-0.1094965785741806,
0.1173894926905632,
-0.005285979714244604,
0.14429645240306854,
0.11828535050153732,
0.004681583493947983,
-0.12633675336837769,
0.04294228181242943,
-0.018749145790934563,
-0.015094189904630184,
0.0716339722275734,
0.04892677441239357,
-0.04472779855132103,
0.21594929695129395,
0.004946357570588589,
0.0395478680729866,
0.027348732575774193,
-0.13733018934726715,
0.06642737984657288,
0.01898696832358837,
0.16843397915363312,
0.05167870968580246,
0.10676259547472,
-0.030619490891695023,
0.17372162640094757,
-0.058082737028598785,
0.15195584297180176,
0.12840527296066284,
-0.23820210993289948,
-0.042767543345689774,
0.017932241782546043,
0.012897558510303497,
0.05269491299986839,
-0.03702845051884651,
0.07650173455476761,
0.04189238324761391,
0.028593052178621292,
-0.02626916579902172,
-0.017777441069483757,
-0.11709718406200409,
-0.014971928671002388,
-0.160088449716568,
-0.05685902759432793,
0.264946848154068,
-0.05829567834734917,
0.017053816467523575,
-0.06256061792373657,
-0.1186247393488884,
-0.07242804020643234,
-0.03505663201212883,
-0.10137107223272324,
-0.07121593505144119,
0.02690543420612812,
-0.03525686264038086,
-0.07110963761806488,
-0.15772408246994019,
-0.011213449761271477,
-0.12063959240913391,
0.30448514223098755,
0.006424648221582174,
0.008893989026546478,
-0.20986869931221008,
0.11769037693738937,
0.1271514594554901,
-0.12634338438510895,
0.06516974419355392,
-0.036219920963048935,
0.05740749463438988,
-0.03364246338605881,
-0.046922557055950165,
-0.13769935071468353,
0.002939812373369932,
0.06480640172958374,
-0.015123008750379086,
-0.0022475773002952337,
0.019668135792016983,
0.05972519516944885,
0.05491073429584503,
0.08883417397737503,
-0.01049097254872322,
0.07905121892690659,
0.035565510392189026,
-0.0002724541409406811,
0.023388197645545006,
-0.03817138448357582,
-0.13736321032047272,
-0.029986834153532982,
0.09410113096237183,
0.06102295592427254,
-0.021877069026231766,
0.1076698750257492,
-0.00023742724442854524,
-0.05351882800459862,
0.06205885857343674,
-0.03260674327611923,
-0.04322608560323715,
0.019157562404870987,
0.0014344961382448673,
0.1893707662820816,
0.06991018354892731,
0.000963839702308178,
-0.1453278660774231,
0.0380861833691597,
-0.03120371513068676,
-0.03605009615421295,
-0.04310320317745209,
-0.061229407787323,
0.02193182334303856,
-0.030869528651237488,
0.01874038204550743,
-0.1608746498823166,
-0.2210007756948471,
0.03260831907391548,
0.0318647064268589,
-0.01827841065824032,
-0.009213225916028023,
-0.08320681750774384,
-0.09832381457090378,
0.008558406494557858,
-0.016378507018089294,
-0.0223667174577713,
-0.01793476939201355,
0.10655494034290314,
0.021374087780714035,
0.09125577658414841,
-0.12455855309963226,
0.04126850515604019,
-0.09531781077384949,
-0.03970421105623245,
-0.05437513068318367,
0.0687917172908783,
0.059697024524211884,
-0.007902228273451328,
-0.022269247099757195,
-0.053975362330675125,
-0.05069192871451378,
0.06274700909852982,
0.006063746754080057,
0.21367749571800232,
-0.08543553203344345,
-0.07120269536972046,
0.07157740741968155,
-0.14241521060466766,
-0.197284534573555,
0.13718822598457336,
-0.003927021753042936,
0.20684243738651276,
0.11294548213481903,
0.144310861825943,
-0.05454261973500252,
-0.011518247425556183,
-0.0012233714805915952,
0.04698266461491585,
-0.1154492124915123,
-0.02661997079849243,
-0.037486396729946136,
0.14035233855247498,
-0.11005157232284546,
0.03206806629896164,
0.014139273203909397,
0.022641276940703392,
-0.09517434239387512,
-0.040970128029584885,
-0.04073343053460121,
-0.01655869372189045,
0.09536156058311462,
0.013546488247811794,
0.10514288395643234,
-0.04445604234933853,
-0.03366793319582939,
0.09258734434843063,
0.028654370456933975,
-0.047135163098573685,
0.030454235151410103,
-0.06457594037055969,
0.036737121641635895,
-0.08682605624198914,
0.025279805064201355,
-0.21691074967384338,
-0.043462201952934265,
-0.05773052200675011,
0.19051501154899597,
0.12074965238571167,
0.12637807428836823,
0.06989112496376038,
-0.010427274741232395,
-0.05023663863539696,
-0.04923082888126373,
0.11174612492322922,
0.0014573324006050825,
-0.0899074599146843,
-0.16587790846824646,
0.0769534781575203,
-0.08418300002813339,
0.06057630106806755,
-0.11430615931749344,
0.06504978984594345,
0.06682535260915756,
0.13279230892658234,
-0.004007465671747923,
0.08147179335355759,
0.037075091153383255,
0.01296694204211235,
-0.060854099690914154,
0.010814069770276546,
0.08812350034713745,
-0.017087429761886597,
-0.08366617560386658,
0.09927123785018921,
-0.1207747608423233,
0.191177099943161,
0.18833282589912415,
-0.24446627497673035,
-0.056166425347328186,
-0.04306641221046448,
-0.03887525945901871,
0.005773721728473902,
-0.005621087271720171,
0.028667906299233437,
0.24396488070487976,
-0.02838079258799553,
0.1277797669172287,
-0.07070665806531906,
-0.053813301026821136,
-0.011936871334910393,
-0.08322979509830475,
-0.007763223256915808,
0.06647387892007828,
0.05686479061841965,
-0.20187711715698242,
0.10842813551425934,
0.133192241191864,
-0.03670424222946167,
0.18838216364383698,
-0.02052794210612774,
0.001011591055430472,
0.03546314314007759,
0.033614322543144226,
-0.011637121438980103,
0.01210803259164095,
-0.17794857919216156,
-0.04734756797552109,
0.04654732346534729,
-0.03613490238785744,
0.11010383814573288,
-0.1677226722240448,
0.01327742449939251,
0.023325566202402115,
0.007838121615350246,
-0.03165600076317787,
0.0921710953116417,
-0.008869682438671589,
0.13731417059898376,
-0.06149828061461449,
-0.0851721316576004,
0.07415911555290222,
0.030516598373651505,
-0.12148895859718323,
0.16661380231380463,
-0.020498886704444885,
-0.26435133814811707,
-0.12267584353685379,
0.02638532780110836,
-0.07947207242250443,
0.022162146866321564,
0.06118733063340187,
-0.11104977875947952,
-0.028784537687897682,
-0.051722053438425064,
0.09039226174354553,
-0.03153378888964653,
0.06950708478689194,
-0.05075317248702049,
0.03302796185016632,
-0.10192714631557465,
-0.11548737436532974,
-0.033472806215286255,
-0.03913964703679085,
0.024136977270245552,
0.07699747383594513,
-0.12834540009498596,
0.07205580919981003,
0.22683490812778473,
-0.044690169394016266,
0.05820087715983391,
-0.04178924486041069,
0.15154525637626648,
-0.10969559103250504,
0.06067090854048729,
0.17706778645515442,
-0.05725940689444542,
0.024582939222455025,
0.10237301886081696,
-0.013237337581813335,
-0.08532128483057022,
0.073553167283535,
-0.06856559962034225,
-0.07082600891590118,
-0.2298869490623474,
-0.07050113379955292,
-0.05503133684396744,
0.027494776993989944,
0.003926288336515427,
0.02473466284573078,
0.14955052733421326,
0.10385037213563919,
-0.057365722954273224,
0.006204094272106886,
-0.0047340611927211285,
0.10997804999351501,
0.19296492636203766,
-0.03780190274119377,
0.10694634914398193,
-0.08101260662078857,
-0.18132440745830536,
0.037267055362463,
-0.04404900223016739,
0.042710427194833755,
0.01843162626028061,
0.14118382334709167,
0.013549376279115677,
-0.04829089343547821,
0.16285660862922668,
0.22550025582313538,
-0.014016357250511646,
-0.02469935454428196,
-0.019953278824687004,
-0.038258541375398636,
-0.09838946908712387,
0.027846869081258774,
-0.04118996486067772,
0.011934615671634674,
-0.0801384225487709,
-0.01381471287459135,
0.10672082751989365,
0.0742652416229248,
-0.0065581658855080605,
-0.23659075796604156,
-0.052875958383083344,
0.0541938953101635,
-0.025925099849700928,
-0.0900956466794014,
0.08567054569721222,
0.010514434427022934,
-0.02309110388159752,
-0.018976924940943718,
-0.032130107283592224,
0.10321521759033203,
-0.13697701692581177,
0.06834174692630768,
-0.14658159017562866,
-0.02718435227870941,
-0.020369408652186394,
0.07554518431425095,
-0.2101621925830841,
0.18150129914283752,
-0.00017994928930420429,
0.027468757703900337,
-0.08687372505664825,
-0.06448948383331299,
-0.0073283519595861435,
0.20557419955730438,
0.030573640018701553,
-0.035777900367975235,
-0.00970118585973978,
-0.000966738210991025,
0.0023627039045095444,
0.0626191571354866,
0.15384474396705627,
-0.026911769062280655,
0.06435231864452362,
-0.013940917328000069,
0.002293296856805682,
0.06387174874544144,
-0.17204231023788452,
-0.10272736847400665,
-0.10881566256284714,
0.09995514154434204,
0.028177615255117416,
0.11247072368860245,
-0.0019187472062185407,
-0.09144146740436554,
-0.020635288208723068,
0.16116899251937866,
-0.011469284072518349,
-0.07970837503671646,
-0.1414356231689453,
-0.020087623968720436,
0.04751023277640343,
-0.05080182105302811,
-0.007146134972572327,
-0.024708237498998642,
0.045727960765361786,
-0.09156579524278641,
-0.10732904076576233,
0.09778636693954468,
-0.10136387497186661,
-0.15677320957183838,
-0.019665095955133438,
0.11737804859876633,
-0.022150786593556404,
0.002031112089753151,
0.013316788710653782,
-0.023414921015501022,
-0.0775085836648941,
-0.09471073746681213,
-0.03184086084365845,
-0.03982020914554596,
-0.02514430694282055,
-0.006699584890156984,
0.01431594043970108,
-0.03645009547472,
-0.05642728880047798,
0.0027186735533177853,
0.20622675120830536,
0.0870080441236496,
0.00516783120110631,
0.030505599454045296,
0.238352432847023,
-0.015094328671693802,
-0.25314244627952576,
-0.057250238955020905,
-0.051003433763980865,
-0.01649274118244648,
-0.15810665488243103,
-0.07706109434366226,
0.09528271108865738,
-0.1081964448094368,
-0.00884206872433424,
0.029298201203346252,
-0.2423953413963318,
-0.11002448201179504,
0.21705493330955505,
0.10459912568330765,
0.30326083302497864,
-0.14430153369903564,
-0.02328754961490631,
-0.03915722668170929,
-0.06326118111610413,
0.16376478970050812,
-0.13161545991897583,
0.10707247257232666,
-0.01868697814643383,
0.12406831979751587,
0.045381419360637665,
-0.028987254947423935,
0.05001193284988403,
-0.01920020766556263,
0.041439007967710495,
-0.06759390234947205,
-0.15419559180736542,
0.0653853490948677,
0.028693100437521935,
0.1369631290435791,
-0.020571522414684296,
0.063883937895298,
-0.03264327347278595,
-0.08574423938989639,
-0.06178612634539604,
0.067904032766819,
-0.00910107884556055,
-0.10068217664957047,
-0.012468229047954082,
-0.10618802905082703,
-0.03295028954744339,
-0.034261610358953476,
0.15274599194526672,
-0.05004609748721123,
-0.0026274004485458136,
0.17143765091896057,
0.23421624302864075,
-0.08529983460903168,
0.08941872417926788,
-0.013867142610251904,
-0.07954148948192596,
0.1136729046702385,
-0.12710034847259521,
-0.050296276807785034,
0.11080159991979599,
0.02141759730875492,
0.12523509562015533,
0.12511372566223145,
-0.011174503713846207,
-0.0478411503136158,
0.07432208955287933,
-0.24849051237106323,
-0.09135950356721878,
-0.10595564544200897,
0.07367799431085587,
-0.0016918517649173737,
0.15762484073638916,
0.1537594497203827,
-0.12486367672681808,
0.012159325182437897,
-0.009313134476542473,
0.000010316352017980535,
-0.012238902971148491,
0.026923799887299538,
0.07644633203744888,
0.03471684828400612,
-0.09692353755235672,
0.011561679653823376,
0.023897524923086166,
-0.22975066304206848,
0.007225350942462683,
0.10383493453264236,
-0.11177980899810791,
-0.13887028396129608,
0.05903320387005806,
0.15820762515068054,
-0.15019947290420532,
-0.07027184963226318,
-0.10134962201118469,
-0.18534806370735168,
0.05824577435851097,
0.2748497426509857,
0.06183844804763794,
0.022882157936692238,
-0.14824530482292175,
0.012566330842673779,
-0.11209627240896225,
0.059319738298654556,
0.048929549753665924,
0.04070516675710678,
-0.11177882552146912,
0.11358261108398438,
-0.0032591610215604305,
0.017657432705163956,
-0.09843011200428009,
-0.04000970721244812,
-0.13704092800617218,
0.03510091453790665,
-0.11784040927886963,
-0.05953672528266907,
-0.07796281576156616,
-0.054539792239665985,
0.020775049924850464,
-0.03633172810077667,
-0.013009238988161087,
-0.017535321414470673,
-0.08262551575899124,
0.06954925507307053,
0.02015267126262188,
0.02957284264266491,
-0.06958198547363281,
0.012243649922311306,
0.04368935152888298,
-0.06491665542125702,
0.10662896186113358,
0.12622393667697906,
-0.0900789424777031,
0.11353446543216705,
-0.168279230594635,
-0.02676147222518921,
0.09924117475748062,
0.008975216187536716,
0.03215603902935982,
-0.021858589723706245,
0.01665073074400425,
0.04284703731536865,
0.030410397797822952,
0.06179531291127205,
0.0947277694940567,
-0.05647394806146622,
0.090424545109272,
0.03028886392712593,
-0.059073250740766525,
-0.09275495260953903,
-0.008752304129302502,
0.06665243208408356,
0.019258510321378708,
0.14013345539569855,
-0.05714057385921478,
0.041408784687519073,
-0.05768198519945145,
0.0632602646946907,
0.02868085727095604,
-0.13940614461898804,
-0.04279302805662155,
-0.10686642676591873,
0.018865441903471947,
-0.06251451373100281,
0.12382908910512924,
-0.0460805781185627,
-0.020345333963632584,
0.012444902211427689,
0.07645802944898605,
-0.053407974541187286,
0.040975019335746765,
0.1671261489391327,
0.055532876402139664,
-0.02343684993684292,
-0.11846846342086792,
0.05144898593425751,
0.03180015832185745,
0.019686823710799217,
0.18077881634235382,
-0.007125234231352806,
-0.11105179786682129,
0.15338551998138428,
0.0032434279564768076,
0.11419302225112915,
-0.04489228501915932,
-0.12922309339046478,
-0.0037296866066753864,
-0.002600351581349969,
-0.05380576103925705,
0.005096116103231907,
0.24041587114334106,
0.03372606262564659,
0.004662740044295788,
0.007932222448289394,
-0.053245168179273605,
-0.09998001903295517,
-0.09900783747434616,
-0.07419785112142563,
-0.031681694090366364,
-0.031001633033156395,
-0.14222204685211182,
-0.024217786267399788,
0.0015480333240702748,
0.10277619957923889,
-0.050215646624565125,
0.1684381067752838,
0.06831615418195724,
-0.024862069636583328,
0.13661707937717438,
-0.012322935275733471,
0.030870385468006134,
-0.10586266964673996,
0.031954094767570496,
-0.1102369949221611,
-0.005975459236651659,
-0.03382172808051109,
0.051998838782310486,
-0.09734606742858887,
-0.03438122570514679,
-0.038231782615184784,
-0.11276402324438095,
-0.03837963938713074,
0.04360991343855858,
0.053977202624082565,
0.11050236970186234,
-0.0012400057166814804,
-0.052670080214738846,
0.014992836862802505,
0.153320774435997,
-0.08320330083370209,
-0.23761574923992157,
-0.07826130092144012,
0.20986197888851166,
-0.002490843180567026,
0.06367587298154831,
-0.0004892742144875228,
-0.05074427276849747,
-0.0669187605381012,
0.2680864930152893,
0.2665422856807709,
-0.06138007715344429,
0.03121078759431839,
0.010962327942252159,
0.04370040073990822,
0.04212661460042,
0.040505848824977875,
0.06922426074743271,
0.2543453574180603,
-0.09767557680606842,
-0.003757954342290759,
-0.08901038765907288,
-0.045193158090114594,
0.028579197824001312,
0.1069357618689537,
0.1133960485458374,
-0.029065918177366257,
-0.0767863318324089,
0.10518325865268707,
-0.23224171996116638,
-0.038946591317653656,
-0.13149891793727875,
-0.12052930891513824,
-0.014764676801860332,
0.0025718517135828733,
0.06131623685359955,
-0.028586018830537796,
0.08336449414491653,
-0.04574587941169739,
-0.06503473222255707,
0.02946355752646923,
0.04201240837574005,
-0.15830285847187042,
0.16518184542655945,
0.09398911148309708,
-0.12560611963272095,
-0.058426737785339355,
-0.002819398185238242,
0.10687534511089325,
0.11257357150316238,
-0.007484195753931999,
-0.06185157969594002,
0.10873045027256012,
0.018028317019343376,
-0.021228916943073273,
0.05555618181824684,
0.12432453781366348,
0.02281542867422104,
-0.06379246711730957,
0.03663169965147972,
-0.25234925746917725,
0.06887371093034744,
0.07105936855077744,
-0.03235042095184326,
-0.08316905051469803,
0.057837288826704025,
-0.00008388731657760218,
0.07480157911777496,
0.12389345467090607,
-0.014024480246007442,
0.0004072805168107152,
-0.02308136783540249,
0.010072981007397175,
0.005240286234766245,
-0.05468859523534775,
-0.007570766378194094,
-0.10873333364725113,
-0.08198985457420349,
0.07805029302835464,
-0.0038828758988529444,
-0.26926496624946594,
-0.0028692581690847874,
-0.07452522218227386,
-0.01644768752157688,
-0.14133213460445404,
0.013350661844015121,
0.17094071209430695,
0.034270837903022766,
0.023059943690896034,
0.0876203179359436,
-0.0013150705490261316,
0.10287047922611237,
-0.1438225656747818,
-0.06798245757818222
] |
null | null |
transformers
|
## CALM
This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2).
Checkout our [Project website](https://inklab.usc.edu/calm-project) for details!
```bibtex
@inproceedings{CALM2021,
title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense},
author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren},
booktitle={ICLR},
year={2021}
}
```
|
{}
|
text2text-generation
|
danny911kr/calm-large
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## CALM
This model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.
Checkout our Project website for details!
|
[
"## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
48,
39
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
-0.02213875763118267,
-0.053692132234573364,
-0.0025661347899585962,
0.015831509605050087,
0.09639463573694229,
-0.02976060099899769,
0.23268507421016693,
0.07608936727046967,
-0.0715661495923996,
-0.013080974109470844,
0.1162995994091034,
0.12832635641098022,
-0.012100313790142536,
0.05936559662222862,
-0.11752409487962723,
-0.3118003010749817,
0.0212676003575325,
0.09420181065797806,
0.04369969666004181,
0.153020441532135,
0.13204173743724823,
-0.0819140374660492,
0.0455453060567379,
0.015504328534007072,
-0.14329181611537933,
-0.016385182738304138,
-0.00909272488206625,
-0.1094965785741806,
0.1173894926905632,
-0.005285979714244604,
0.14429645240306854,
0.11828535050153732,
0.004681583493947983,
-0.12633675336837769,
0.04294228181242943,
-0.018749145790934563,
-0.015094189904630184,
0.0716339722275734,
0.04892677441239357,
-0.04472779855132103,
0.21594929695129395,
0.004946357570588589,
0.0395478680729866,
0.027348732575774193,
-0.13733018934726715,
0.06642737984657288,
0.01898696832358837,
0.16843397915363312,
0.05167870968580246,
0.10676259547472,
-0.030619490891695023,
0.17372162640094757,
-0.058082737028598785,
0.15195584297180176,
0.12840527296066284,
-0.23820210993289948,
-0.042767543345689774,
0.017932241782546043,
0.012897558510303497,
0.05269491299986839,
-0.03702845051884651,
0.07650173455476761,
0.04189238324761391,
0.028593052178621292,
-0.02626916579902172,
-0.017777441069483757,
-0.11709718406200409,
-0.014971928671002388,
-0.160088449716568,
-0.05685902759432793,
0.264946848154068,
-0.05829567834734917,
0.017053816467523575,
-0.06256061792373657,
-0.1186247393488884,
-0.07242804020643234,
-0.03505663201212883,
-0.10137107223272324,
-0.07121593505144119,
0.02690543420612812,
-0.03525686264038086,
-0.07110963761806488,
-0.15772408246994019,
-0.011213449761271477,
-0.12063959240913391,
0.30448514223098755,
0.006424648221582174,
0.008893989026546478,
-0.20986869931221008,
0.11769037693738937,
0.1271514594554901,
-0.12634338438510895,
0.06516974419355392,
-0.036219920963048935,
0.05740749463438988,
-0.03364246338605881,
-0.046922557055950165,
-0.13769935071468353,
0.002939812373369932,
0.06480640172958374,
-0.015123008750379086,
-0.0022475773002952337,
0.019668135792016983,
0.05972519516944885,
0.05491073429584503,
0.08883417397737503,
-0.01049097254872322,
0.07905121892690659,
0.035565510392189026,
-0.0002724541409406811,
0.023388197645545006,
-0.03817138448357582,
-0.13736321032047272,
-0.029986834153532982,
0.09410113096237183,
0.06102295592427254,
-0.021877069026231766,
0.1076698750257492,
-0.00023742724442854524,
-0.05351882800459862,
0.06205885857343674,
-0.03260674327611923,
-0.04322608560323715,
0.019157562404870987,
0.0014344961382448673,
0.1893707662820816,
0.06991018354892731,
0.000963839702308178,
-0.1453278660774231,
0.0380861833691597,
-0.03120371513068676,
-0.03605009615421295,
-0.04310320317745209,
-0.061229407787323,
0.02193182334303856,
-0.030869528651237488,
0.01874038204550743,
-0.1608746498823166,
-0.2210007756948471,
0.03260831907391548,
0.0318647064268589,
-0.01827841065824032,
-0.009213225916028023,
-0.08320681750774384,
-0.09832381457090378,
0.008558406494557858,
-0.016378507018089294,
-0.0223667174577713,
-0.01793476939201355,
0.10655494034290314,
0.021374087780714035,
0.09125577658414841,
-0.12455855309963226,
0.04126850515604019,
-0.09531781077384949,
-0.03970421105623245,
-0.05437513068318367,
0.0687917172908783,
0.059697024524211884,
-0.007902228273451328,
-0.022269247099757195,
-0.053975362330675125,
-0.05069192871451378,
0.06274700909852982,
0.006063746754080057,
0.21367749571800232,
-0.08543553203344345,
-0.07120269536972046,
0.07157740741968155,
-0.14241521060466766,
-0.197284534573555,
0.13718822598457336,
-0.003927021753042936,
0.20684243738651276,
0.11294548213481903,
0.144310861825943,
-0.05454261973500252,
-0.011518247425556183,
-0.0012233714805915952,
0.04698266461491585,
-0.1154492124915123,
-0.02661997079849243,
-0.037486396729946136,
0.14035233855247498,
-0.11005157232284546,
0.03206806629896164,
0.014139273203909397,
0.022641276940703392,
-0.09517434239387512,
-0.040970128029584885,
-0.04073343053460121,
-0.01655869372189045,
0.09536156058311462,
0.013546488247811794,
0.10514288395643234,
-0.04445604234933853,
-0.03366793319582939,
0.09258734434843063,
0.028654370456933975,
-0.047135163098573685,
0.030454235151410103,
-0.06457594037055969,
0.036737121641635895,
-0.08682605624198914,
0.025279805064201355,
-0.21691074967384338,
-0.043462201952934265,
-0.05773052200675011,
0.19051501154899597,
0.12074965238571167,
0.12637807428836823,
0.06989112496376038,
-0.010427274741232395,
-0.05023663863539696,
-0.04923082888126373,
0.11174612492322922,
0.0014573324006050825,
-0.0899074599146843,
-0.16587790846824646,
0.0769534781575203,
-0.08418300002813339,
0.06057630106806755,
-0.11430615931749344,
0.06504978984594345,
0.06682535260915756,
0.13279230892658234,
-0.004007465671747923,
0.08147179335355759,
0.037075091153383255,
0.01296694204211235,
-0.060854099690914154,
0.010814069770276546,
0.08812350034713745,
-0.017087429761886597,
-0.08366617560386658,
0.09927123785018921,
-0.1207747608423233,
0.191177099943161,
0.18833282589912415,
-0.24446627497673035,
-0.056166425347328186,
-0.04306641221046448,
-0.03887525945901871,
0.005773721728473902,
-0.005621087271720171,
0.028667906299233437,
0.24396488070487976,
-0.02838079258799553,
0.1277797669172287,
-0.07070665806531906,
-0.053813301026821136,
-0.011936871334910393,
-0.08322979509830475,
-0.007763223256915808,
0.06647387892007828,
0.05686479061841965,
-0.20187711715698242,
0.10842813551425934,
0.133192241191864,
-0.03670424222946167,
0.18838216364383698,
-0.02052794210612774,
0.001011591055430472,
0.03546314314007759,
0.033614322543144226,
-0.011637121438980103,
0.01210803259164095,
-0.17794857919216156,
-0.04734756797552109,
0.04654732346534729,
-0.03613490238785744,
0.11010383814573288,
-0.1677226722240448,
0.01327742449939251,
0.023325566202402115,
0.007838121615350246,
-0.03165600076317787,
0.0921710953116417,
-0.008869682438671589,
0.13731417059898376,
-0.06149828061461449,
-0.0851721316576004,
0.07415911555290222,
0.030516598373651505,
-0.12148895859718323,
0.16661380231380463,
-0.020498886704444885,
-0.26435133814811707,
-0.12267584353685379,
0.02638532780110836,
-0.07947207242250443,
0.022162146866321564,
0.06118733063340187,
-0.11104977875947952,
-0.028784537687897682,
-0.051722053438425064,
0.09039226174354553,
-0.03153378888964653,
0.06950708478689194,
-0.05075317248702049,
0.03302796185016632,
-0.10192714631557465,
-0.11548737436532974,
-0.033472806215286255,
-0.03913964703679085,
0.024136977270245552,
0.07699747383594513,
-0.12834540009498596,
0.07205580919981003,
0.22683490812778473,
-0.044690169394016266,
0.05820087715983391,
-0.04178924486041069,
0.15154525637626648,
-0.10969559103250504,
0.06067090854048729,
0.17706778645515442,
-0.05725940689444542,
0.024582939222455025,
0.10237301886081696,
-0.013237337581813335,
-0.08532128483057022,
0.073553167283535,
-0.06856559962034225,
-0.07082600891590118,
-0.2298869490623474,
-0.07050113379955292,
-0.05503133684396744,
0.027494776993989944,
0.003926288336515427,
0.02473466284573078,
0.14955052733421326,
0.10385037213563919,
-0.057365722954273224,
0.006204094272106886,
-0.0047340611927211285,
0.10997804999351501,
0.19296492636203766,
-0.03780190274119377,
0.10694634914398193,
-0.08101260662078857,
-0.18132440745830536,
0.037267055362463,
-0.04404900223016739,
0.042710427194833755,
0.01843162626028061,
0.14118382334709167,
0.013549376279115677,
-0.04829089343547821,
0.16285660862922668,
0.22550025582313538,
-0.014016357250511646,
-0.02469935454428196,
-0.019953278824687004,
-0.038258541375398636,
-0.09838946908712387,
0.027846869081258774,
-0.04118996486067772,
0.011934615671634674,
-0.0801384225487709,
-0.01381471287459135,
0.10672082751989365,
0.0742652416229248,
-0.0065581658855080605,
-0.23659075796604156,
-0.052875958383083344,
0.0541938953101635,
-0.025925099849700928,
-0.0900956466794014,
0.08567054569721222,
0.010514434427022934,
-0.02309110388159752,
-0.018976924940943718,
-0.032130107283592224,
0.10321521759033203,
-0.13697701692581177,
0.06834174692630768,
-0.14658159017562866,
-0.02718435227870941,
-0.020369408652186394,
0.07554518431425095,
-0.2101621925830841,
0.18150129914283752,
-0.00017994928930420429,
0.027468757703900337,
-0.08687372505664825,
-0.06448948383331299,
-0.0073283519595861435,
0.20557419955730438,
0.030573640018701553,
-0.035777900367975235,
-0.00970118585973978,
-0.000966738210991025,
0.0023627039045095444,
0.0626191571354866,
0.15384474396705627,
-0.026911769062280655,
0.06435231864452362,
-0.013940917328000069,
0.002293296856805682,
0.06387174874544144,
-0.17204231023788452,
-0.10272736847400665,
-0.10881566256284714,
0.09995514154434204,
0.028177615255117416,
0.11247072368860245,
-0.0019187472062185407,
-0.09144146740436554,
-0.020635288208723068,
0.16116899251937866,
-0.011469284072518349,
-0.07970837503671646,
-0.1414356231689453,
-0.020087623968720436,
0.04751023277640343,
-0.05080182105302811,
-0.007146134972572327,
-0.024708237498998642,
0.045727960765361786,
-0.09156579524278641,
-0.10732904076576233,
0.09778636693954468,
-0.10136387497186661,
-0.15677320957183838,
-0.019665095955133438,
0.11737804859876633,
-0.022150786593556404,
0.002031112089753151,
0.013316788710653782,
-0.023414921015501022,
-0.0775085836648941,
-0.09471073746681213,
-0.03184086084365845,
-0.03982020914554596,
-0.02514430694282055,
-0.006699584890156984,
0.01431594043970108,
-0.03645009547472,
-0.05642728880047798,
0.0027186735533177853,
0.20622675120830536,
0.0870080441236496,
0.00516783120110631,
0.030505599454045296,
0.238352432847023,
-0.015094328671693802,
-0.25314244627952576,
-0.057250238955020905,
-0.051003433763980865,
-0.01649274118244648,
-0.15810665488243103,
-0.07706109434366226,
0.09528271108865738,
-0.1081964448094368,
-0.00884206872433424,
0.029298201203346252,
-0.2423953413963318,
-0.11002448201179504,
0.21705493330955505,
0.10459912568330765,
0.30326083302497864,
-0.14430153369903564,
-0.02328754961490631,
-0.03915722668170929,
-0.06326118111610413,
0.16376478970050812,
-0.13161545991897583,
0.10707247257232666,
-0.01868697814643383,
0.12406831979751587,
0.045381419360637665,
-0.028987254947423935,
0.05001193284988403,
-0.01920020766556263,
0.041439007967710495,
-0.06759390234947205,
-0.15419559180736542,
0.0653853490948677,
0.028693100437521935,
0.1369631290435791,
-0.020571522414684296,
0.063883937895298,
-0.03264327347278595,
-0.08574423938989639,
-0.06178612634539604,
0.067904032766819,
-0.00910107884556055,
-0.10068217664957047,
-0.012468229047954082,
-0.10618802905082703,
-0.03295028954744339,
-0.034261610358953476,
0.15274599194526672,
-0.05004609748721123,
-0.0026274004485458136,
0.17143765091896057,
0.23421624302864075,
-0.08529983460903168,
0.08941872417926788,
-0.013867142610251904,
-0.07954148948192596,
0.1136729046702385,
-0.12710034847259521,
-0.050296276807785034,
0.11080159991979599,
0.02141759730875492,
0.12523509562015533,
0.12511372566223145,
-0.011174503713846207,
-0.0478411503136158,
0.07432208955287933,
-0.24849051237106323,
-0.09135950356721878,
-0.10595564544200897,
0.07367799431085587,
-0.0016918517649173737,
0.15762484073638916,
0.1537594497203827,
-0.12486367672681808,
0.012159325182437897,
-0.009313134476542473,
0.000010316352017980535,
-0.012238902971148491,
0.026923799887299538,
0.07644633203744888,
0.03471684828400612,
-0.09692353755235672,
0.011561679653823376,
0.023897524923086166,
-0.22975066304206848,
0.007225350942462683,
0.10383493453264236,
-0.11177980899810791,
-0.13887028396129608,
0.05903320387005806,
0.15820762515068054,
-0.15019947290420532,
-0.07027184963226318,
-0.10134962201118469,
-0.18534806370735168,
0.05824577435851097,
0.2748497426509857,
0.06183844804763794,
0.022882157936692238,
-0.14824530482292175,
0.012566330842673779,
-0.11209627240896225,
0.059319738298654556,
0.048929549753665924,
0.04070516675710678,
-0.11177882552146912,
0.11358261108398438,
-0.0032591610215604305,
0.017657432705163956,
-0.09843011200428009,
-0.04000970721244812,
-0.13704092800617218,
0.03510091453790665,
-0.11784040927886963,
-0.05953672528266907,
-0.07796281576156616,
-0.054539792239665985,
0.020775049924850464,
-0.03633172810077667,
-0.013009238988161087,
-0.017535321414470673,
-0.08262551575899124,
0.06954925507307053,
0.02015267126262188,
0.02957284264266491,
-0.06958198547363281,
0.012243649922311306,
0.04368935152888298,
-0.06491665542125702,
0.10662896186113358,
0.12622393667697906,
-0.0900789424777031,
0.11353446543216705,
-0.168279230594635,
-0.02676147222518921,
0.09924117475748062,
0.008975216187536716,
0.03215603902935982,
-0.021858589723706245,
0.01665073074400425,
0.04284703731536865,
0.030410397797822952,
0.06179531291127205,
0.0947277694940567,
-0.05647394806146622,
0.090424545109272,
0.03028886392712593,
-0.059073250740766525,
-0.09275495260953903,
-0.008752304129302502,
0.06665243208408356,
0.019258510321378708,
0.14013345539569855,
-0.05714057385921478,
0.041408784687519073,
-0.05768198519945145,
0.0632602646946907,
0.02868085727095604,
-0.13940614461898804,
-0.04279302805662155,
-0.10686642676591873,
0.018865441903471947,
-0.06251451373100281,
0.12382908910512924,
-0.0460805781185627,
-0.020345333963632584,
0.012444902211427689,
0.07645802944898605,
-0.053407974541187286,
0.040975019335746765,
0.1671261489391327,
0.055532876402139664,
-0.02343684993684292,
-0.11846846342086792,
0.05144898593425751,
0.03180015832185745,
0.019686823710799217,
0.18077881634235382,
-0.007125234231352806,
-0.11105179786682129,
0.15338551998138428,
0.0032434279564768076,
0.11419302225112915,
-0.04489228501915932,
-0.12922309339046478,
-0.0037296866066753864,
-0.002600351581349969,
-0.05380576103925705,
0.005096116103231907,
0.24041587114334106,
0.03372606262564659,
0.004662740044295788,
0.007932222448289394,
-0.053245168179273605,
-0.09998001903295517,
-0.09900783747434616,
-0.07419785112142563,
-0.031681694090366364,
-0.031001633033156395,
-0.14222204685211182,
-0.024217786267399788,
0.0015480333240702748,
0.10277619957923889,
-0.050215646624565125,
0.1684381067752838,
0.06831615418195724,
-0.024862069636583328,
0.13661707937717438,
-0.012322935275733471,
0.030870385468006134,
-0.10586266964673996,
0.031954094767570496,
-0.1102369949221611,
-0.005975459236651659,
-0.03382172808051109,
0.051998838782310486,
-0.09734606742858887,
-0.03438122570514679,
-0.038231782615184784,
-0.11276402324438095,
-0.03837963938713074,
0.04360991343855858,
0.053977202624082565,
0.11050236970186234,
-0.0012400057166814804,
-0.052670080214738846,
0.014992836862802505,
0.153320774435997,
-0.08320330083370209,
-0.23761574923992157,
-0.07826130092144012,
0.20986197888851166,
-0.002490843180567026,
0.06367587298154831,
-0.0004892742144875228,
-0.05074427276849747,
-0.0669187605381012,
0.2680864930152893,
0.2665422856807709,
-0.06138007715344429,
0.03121078759431839,
0.010962327942252159,
0.04370040073990822,
0.04212661460042,
0.040505848824977875,
0.06922426074743271,
0.2543453574180603,
-0.09767557680606842,
-0.003757954342290759,
-0.08901038765907288,
-0.045193158090114594,
0.028579197824001312,
0.1069357618689537,
0.1133960485458374,
-0.029065918177366257,
-0.0767863318324089,
0.10518325865268707,
-0.23224171996116638,
-0.038946591317653656,
-0.13149891793727875,
-0.12052930891513824,
-0.014764676801860332,
0.0025718517135828733,
0.06131623685359955,
-0.028586018830537796,
0.08336449414491653,
-0.04574587941169739,
-0.06503473222255707,
0.02946355752646923,
0.04201240837574005,
-0.15830285847187042,
0.16518184542655945,
0.09398911148309708,
-0.12560611963272095,
-0.058426737785339355,
-0.002819398185238242,
0.10687534511089325,
0.11257357150316238,
-0.007484195753931999,
-0.06185157969594002,
0.10873045027256012,
0.018028317019343376,
-0.021228916943073273,
0.05555618181824684,
0.12432453781366348,
0.02281542867422104,
-0.06379246711730957,
0.03663169965147972,
-0.25234925746917725,
0.06887371093034744,
0.07105936855077744,
-0.03235042095184326,
-0.08316905051469803,
0.057837288826704025,
-0.00008388731657760218,
0.07480157911777496,
0.12389345467090607,
-0.014024480246007442,
0.0004072805168107152,
-0.02308136783540249,
0.010072981007397175,
0.005240286234766245,
-0.05468859523534775,
-0.007570766378194094,
-0.10873333364725113,
-0.08198985457420349,
0.07805029302835464,
-0.0038828758988529444,
-0.26926496624946594,
-0.0028692581690847874,
-0.07452522218227386,
-0.01644768752157688,
-0.14133213460445404,
0.013350661844015121,
0.17094071209430695,
0.034270837903022766,
0.023059943690896034,
0.0876203179359436,
-0.0013150705490261316,
0.10287047922611237,
-0.1438225656747818,
-0.06798245757818222
] |
null | null |
transformers
|
## CALM
This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2).
Checkout our [Project website](https://inklab.usc.edu/calm-project) for details!
```bibtex
@inproceedings{CALM2021,
title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense},
author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren},
booktitle={ICLR},
year={2021}
}
```
|
{}
|
text2text-generation
|
danny911kr/calm-mix-base
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## CALM
This model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.
Checkout our Project website for details!
|
[
"## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
48,
39
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
-0.02213875763118267,
-0.053692132234573364,
-0.0025661347899585962,
0.015831509605050087,
0.09639463573694229,
-0.02976060099899769,
0.23268507421016693,
0.07608936727046967,
-0.0715661495923996,
-0.013080974109470844,
0.1162995994091034,
0.12832635641098022,
-0.012100313790142536,
0.05936559662222862,
-0.11752409487962723,
-0.3118003010749817,
0.0212676003575325,
0.09420181065797806,
0.04369969666004181,
0.153020441532135,
0.13204173743724823,
-0.0819140374660492,
0.0455453060567379,
0.015504328534007072,
-0.14329181611537933,
-0.016385182738304138,
-0.00909272488206625,
-0.1094965785741806,
0.1173894926905632,
-0.005285979714244604,
0.14429645240306854,
0.11828535050153732,
0.004681583493947983,
-0.12633675336837769,
0.04294228181242943,
-0.018749145790934563,
-0.015094189904630184,
0.0716339722275734,
0.04892677441239357,
-0.04472779855132103,
0.21594929695129395,
0.004946357570588589,
0.0395478680729866,
0.027348732575774193,
-0.13733018934726715,
0.06642737984657288,
0.01898696832358837,
0.16843397915363312,
0.05167870968580246,
0.10676259547472,
-0.030619490891695023,
0.17372162640094757,
-0.058082737028598785,
0.15195584297180176,
0.12840527296066284,
-0.23820210993289948,
-0.042767543345689774,
0.017932241782546043,
0.012897558510303497,
0.05269491299986839,
-0.03702845051884651,
0.07650173455476761,
0.04189238324761391,
0.028593052178621292,
-0.02626916579902172,
-0.017777441069483757,
-0.11709718406200409,
-0.014971928671002388,
-0.160088449716568,
-0.05685902759432793,
0.264946848154068,
-0.05829567834734917,
0.017053816467523575,
-0.06256061792373657,
-0.1186247393488884,
-0.07242804020643234,
-0.03505663201212883,
-0.10137107223272324,
-0.07121593505144119,
0.02690543420612812,
-0.03525686264038086,
-0.07110963761806488,
-0.15772408246994019,
-0.011213449761271477,
-0.12063959240913391,
0.30448514223098755,
0.006424648221582174,
0.008893989026546478,
-0.20986869931221008,
0.11769037693738937,
0.1271514594554901,
-0.12634338438510895,
0.06516974419355392,
-0.036219920963048935,
0.05740749463438988,
-0.03364246338605881,
-0.046922557055950165,
-0.13769935071468353,
0.002939812373369932,
0.06480640172958374,
-0.015123008750379086,
-0.0022475773002952337,
0.019668135792016983,
0.05972519516944885,
0.05491073429584503,
0.08883417397737503,
-0.01049097254872322,
0.07905121892690659,
0.035565510392189026,
-0.0002724541409406811,
0.023388197645545006,
-0.03817138448357582,
-0.13736321032047272,
-0.029986834153532982,
0.09410113096237183,
0.06102295592427254,
-0.021877069026231766,
0.1076698750257492,
-0.00023742724442854524,
-0.05351882800459862,
0.06205885857343674,
-0.03260674327611923,
-0.04322608560323715,
0.019157562404870987,
0.0014344961382448673,
0.1893707662820816,
0.06991018354892731,
0.000963839702308178,
-0.1453278660774231,
0.0380861833691597,
-0.03120371513068676,
-0.03605009615421295,
-0.04310320317745209,
-0.061229407787323,
0.02193182334303856,
-0.030869528651237488,
0.01874038204550743,
-0.1608746498823166,
-0.2210007756948471,
0.03260831907391548,
0.0318647064268589,
-0.01827841065824032,
-0.009213225916028023,
-0.08320681750774384,
-0.09832381457090378,
0.008558406494557858,
-0.016378507018089294,
-0.0223667174577713,
-0.01793476939201355,
0.10655494034290314,
0.021374087780714035,
0.09125577658414841,
-0.12455855309963226,
0.04126850515604019,
-0.09531781077384949,
-0.03970421105623245,
-0.05437513068318367,
0.0687917172908783,
0.059697024524211884,
-0.007902228273451328,
-0.022269247099757195,
-0.053975362330675125,
-0.05069192871451378,
0.06274700909852982,
0.006063746754080057,
0.21367749571800232,
-0.08543553203344345,
-0.07120269536972046,
0.07157740741968155,
-0.14241521060466766,
-0.197284534573555,
0.13718822598457336,
-0.003927021753042936,
0.20684243738651276,
0.11294548213481903,
0.144310861825943,
-0.05454261973500252,
-0.011518247425556183,
-0.0012233714805915952,
0.04698266461491585,
-0.1154492124915123,
-0.02661997079849243,
-0.037486396729946136,
0.14035233855247498,
-0.11005157232284546,
0.03206806629896164,
0.014139273203909397,
0.022641276940703392,
-0.09517434239387512,
-0.040970128029584885,
-0.04073343053460121,
-0.01655869372189045,
0.09536156058311462,
0.013546488247811794,
0.10514288395643234,
-0.04445604234933853,
-0.03366793319582939,
0.09258734434843063,
0.028654370456933975,
-0.047135163098573685,
0.030454235151410103,
-0.06457594037055969,
0.036737121641635895,
-0.08682605624198914,
0.025279805064201355,
-0.21691074967384338,
-0.043462201952934265,
-0.05773052200675011,
0.19051501154899597,
0.12074965238571167,
0.12637807428836823,
0.06989112496376038,
-0.010427274741232395,
-0.05023663863539696,
-0.04923082888126373,
0.11174612492322922,
0.0014573324006050825,
-0.0899074599146843,
-0.16587790846824646,
0.0769534781575203,
-0.08418300002813339,
0.06057630106806755,
-0.11430615931749344,
0.06504978984594345,
0.06682535260915756,
0.13279230892658234,
-0.004007465671747923,
0.08147179335355759,
0.037075091153383255,
0.01296694204211235,
-0.060854099690914154,
0.010814069770276546,
0.08812350034713745,
-0.017087429761886597,
-0.08366617560386658,
0.09927123785018921,
-0.1207747608423233,
0.191177099943161,
0.18833282589912415,
-0.24446627497673035,
-0.056166425347328186,
-0.04306641221046448,
-0.03887525945901871,
0.005773721728473902,
-0.005621087271720171,
0.028667906299233437,
0.24396488070487976,
-0.02838079258799553,
0.1277797669172287,
-0.07070665806531906,
-0.053813301026821136,
-0.011936871334910393,
-0.08322979509830475,
-0.007763223256915808,
0.06647387892007828,
0.05686479061841965,
-0.20187711715698242,
0.10842813551425934,
0.133192241191864,
-0.03670424222946167,
0.18838216364383698,
-0.02052794210612774,
0.001011591055430472,
0.03546314314007759,
0.033614322543144226,
-0.011637121438980103,
0.01210803259164095,
-0.17794857919216156,
-0.04734756797552109,
0.04654732346534729,
-0.03613490238785744,
0.11010383814573288,
-0.1677226722240448,
0.01327742449939251,
0.023325566202402115,
0.007838121615350246,
-0.03165600076317787,
0.0921710953116417,
-0.008869682438671589,
0.13731417059898376,
-0.06149828061461449,
-0.0851721316576004,
0.07415911555290222,
0.030516598373651505,
-0.12148895859718323,
0.16661380231380463,
-0.020498886704444885,
-0.26435133814811707,
-0.12267584353685379,
0.02638532780110836,
-0.07947207242250443,
0.022162146866321564,
0.06118733063340187,
-0.11104977875947952,
-0.028784537687897682,
-0.051722053438425064,
0.09039226174354553,
-0.03153378888964653,
0.06950708478689194,
-0.05075317248702049,
0.03302796185016632,
-0.10192714631557465,
-0.11548737436532974,
-0.033472806215286255,
-0.03913964703679085,
0.024136977270245552,
0.07699747383594513,
-0.12834540009498596,
0.07205580919981003,
0.22683490812778473,
-0.044690169394016266,
0.05820087715983391,
-0.04178924486041069,
0.15154525637626648,
-0.10969559103250504,
0.06067090854048729,
0.17706778645515442,
-0.05725940689444542,
0.024582939222455025,
0.10237301886081696,
-0.013237337581813335,
-0.08532128483057022,
0.073553167283535,
-0.06856559962034225,
-0.07082600891590118,
-0.2298869490623474,
-0.07050113379955292,
-0.05503133684396744,
0.027494776993989944,
0.003926288336515427,
0.02473466284573078,
0.14955052733421326,
0.10385037213563919,
-0.057365722954273224,
0.006204094272106886,
-0.0047340611927211285,
0.10997804999351501,
0.19296492636203766,
-0.03780190274119377,
0.10694634914398193,
-0.08101260662078857,
-0.18132440745830536,
0.037267055362463,
-0.04404900223016739,
0.042710427194833755,
0.01843162626028061,
0.14118382334709167,
0.013549376279115677,
-0.04829089343547821,
0.16285660862922668,
0.22550025582313538,
-0.014016357250511646,
-0.02469935454428196,
-0.019953278824687004,
-0.038258541375398636,
-0.09838946908712387,
0.027846869081258774,
-0.04118996486067772,
0.011934615671634674,
-0.0801384225487709,
-0.01381471287459135,
0.10672082751989365,
0.0742652416229248,
-0.0065581658855080605,
-0.23659075796604156,
-0.052875958383083344,
0.0541938953101635,
-0.025925099849700928,
-0.0900956466794014,
0.08567054569721222,
0.010514434427022934,
-0.02309110388159752,
-0.018976924940943718,
-0.032130107283592224,
0.10321521759033203,
-0.13697701692581177,
0.06834174692630768,
-0.14658159017562866,
-0.02718435227870941,
-0.020369408652186394,
0.07554518431425095,
-0.2101621925830841,
0.18150129914283752,
-0.00017994928930420429,
0.027468757703900337,
-0.08687372505664825,
-0.06448948383331299,
-0.0073283519595861435,
0.20557419955730438,
0.030573640018701553,
-0.035777900367975235,
-0.00970118585973978,
-0.000966738210991025,
0.0023627039045095444,
0.0626191571354866,
0.15384474396705627,
-0.026911769062280655,
0.06435231864452362,
-0.013940917328000069,
0.002293296856805682,
0.06387174874544144,
-0.17204231023788452,
-0.10272736847400665,
-0.10881566256284714,
0.09995514154434204,
0.028177615255117416,
0.11247072368860245,
-0.0019187472062185407,
-0.09144146740436554,
-0.020635288208723068,
0.16116899251937866,
-0.011469284072518349,
-0.07970837503671646,
-0.1414356231689453,
-0.020087623968720436,
0.04751023277640343,
-0.05080182105302811,
-0.007146134972572327,
-0.024708237498998642,
0.045727960765361786,
-0.09156579524278641,
-0.10732904076576233,
0.09778636693954468,
-0.10136387497186661,
-0.15677320957183838,
-0.019665095955133438,
0.11737804859876633,
-0.022150786593556404,
0.002031112089753151,
0.013316788710653782,
-0.023414921015501022,
-0.0775085836648941,
-0.09471073746681213,
-0.03184086084365845,
-0.03982020914554596,
-0.02514430694282055,
-0.006699584890156984,
0.01431594043970108,
-0.03645009547472,
-0.05642728880047798,
0.0027186735533177853,
0.20622675120830536,
0.0870080441236496,
0.00516783120110631,
0.030505599454045296,
0.238352432847023,
-0.015094328671693802,
-0.25314244627952576,
-0.057250238955020905,
-0.051003433763980865,
-0.01649274118244648,
-0.15810665488243103,
-0.07706109434366226,
0.09528271108865738,
-0.1081964448094368,
-0.00884206872433424,
0.029298201203346252,
-0.2423953413963318,
-0.11002448201179504,
0.21705493330955505,
0.10459912568330765,
0.30326083302497864,
-0.14430153369903564,
-0.02328754961490631,
-0.03915722668170929,
-0.06326118111610413,
0.16376478970050812,
-0.13161545991897583,
0.10707247257232666,
-0.01868697814643383,
0.12406831979751587,
0.045381419360637665,
-0.028987254947423935,
0.05001193284988403,
-0.01920020766556263,
0.041439007967710495,
-0.06759390234947205,
-0.15419559180736542,
0.0653853490948677,
0.028693100437521935,
0.1369631290435791,
-0.020571522414684296,
0.063883937895298,
-0.03264327347278595,
-0.08574423938989639,
-0.06178612634539604,
0.067904032766819,
-0.00910107884556055,
-0.10068217664957047,
-0.012468229047954082,
-0.10618802905082703,
-0.03295028954744339,
-0.034261610358953476,
0.15274599194526672,
-0.05004609748721123,
-0.0026274004485458136,
0.17143765091896057,
0.23421624302864075,
-0.08529983460903168,
0.08941872417926788,
-0.013867142610251904,
-0.07954148948192596,
0.1136729046702385,
-0.12710034847259521,
-0.050296276807785034,
0.11080159991979599,
0.02141759730875492,
0.12523509562015533,
0.12511372566223145,
-0.011174503713846207,
-0.0478411503136158,
0.07432208955287933,
-0.24849051237106323,
-0.09135950356721878,
-0.10595564544200897,
0.07367799431085587,
-0.0016918517649173737,
0.15762484073638916,
0.1537594497203827,
-0.12486367672681808,
0.012159325182437897,
-0.009313134476542473,
0.000010316352017980535,
-0.012238902971148491,
0.026923799887299538,
0.07644633203744888,
0.03471684828400612,
-0.09692353755235672,
0.011561679653823376,
0.023897524923086166,
-0.22975066304206848,
0.007225350942462683,
0.10383493453264236,
-0.11177980899810791,
-0.13887028396129608,
0.05903320387005806,
0.15820762515068054,
-0.15019947290420532,
-0.07027184963226318,
-0.10134962201118469,
-0.18534806370735168,
0.05824577435851097,
0.2748497426509857,
0.06183844804763794,
0.022882157936692238,
-0.14824530482292175,
0.012566330842673779,
-0.11209627240896225,
0.059319738298654556,
0.048929549753665924,
0.04070516675710678,
-0.11177882552146912,
0.11358261108398438,
-0.0032591610215604305,
0.017657432705163956,
-0.09843011200428009,
-0.04000970721244812,
-0.13704092800617218,
0.03510091453790665,
-0.11784040927886963,
-0.05953672528266907,
-0.07796281576156616,
-0.054539792239665985,
0.020775049924850464,
-0.03633172810077667,
-0.013009238988161087,
-0.017535321414470673,
-0.08262551575899124,
0.06954925507307053,
0.02015267126262188,
0.02957284264266491,
-0.06958198547363281,
0.012243649922311306,
0.04368935152888298,
-0.06491665542125702,
0.10662896186113358,
0.12622393667697906,
-0.0900789424777031,
0.11353446543216705,
-0.168279230594635,
-0.02676147222518921,
0.09924117475748062,
0.008975216187536716,
0.03215603902935982,
-0.021858589723706245,
0.01665073074400425,
0.04284703731536865,
0.030410397797822952,
0.06179531291127205,
0.0947277694940567,
-0.05647394806146622,
0.090424545109272,
0.03028886392712593,
-0.059073250740766525,
-0.09275495260953903,
-0.008752304129302502,
0.06665243208408356,
0.019258510321378708,
0.14013345539569855,
-0.05714057385921478,
0.041408784687519073,
-0.05768198519945145,
0.0632602646946907,
0.02868085727095604,
-0.13940614461898804,
-0.04279302805662155,
-0.10686642676591873,
0.018865441903471947,
-0.06251451373100281,
0.12382908910512924,
-0.0460805781185627,
-0.020345333963632584,
0.012444902211427689,
0.07645802944898605,
-0.053407974541187286,
0.040975019335746765,
0.1671261489391327,
0.055532876402139664,
-0.02343684993684292,
-0.11846846342086792,
0.05144898593425751,
0.03180015832185745,
0.019686823710799217,
0.18077881634235382,
-0.007125234231352806,
-0.11105179786682129,
0.15338551998138428,
0.0032434279564768076,
0.11419302225112915,
-0.04489228501915932,
-0.12922309339046478,
-0.0037296866066753864,
-0.002600351581349969,
-0.05380576103925705,
0.005096116103231907,
0.24041587114334106,
0.03372606262564659,
0.004662740044295788,
0.007932222448289394,
-0.053245168179273605,
-0.09998001903295517,
-0.09900783747434616,
-0.07419785112142563,
-0.031681694090366364,
-0.031001633033156395,
-0.14222204685211182,
-0.024217786267399788,
0.0015480333240702748,
0.10277619957923889,
-0.050215646624565125,
0.1684381067752838,
0.06831615418195724,
-0.024862069636583328,
0.13661707937717438,
-0.012322935275733471,
0.030870385468006134,
-0.10586266964673996,
0.031954094767570496,
-0.1102369949221611,
-0.005975459236651659,
-0.03382172808051109,
0.051998838782310486,
-0.09734606742858887,
-0.03438122570514679,
-0.038231782615184784,
-0.11276402324438095,
-0.03837963938713074,
0.04360991343855858,
0.053977202624082565,
0.11050236970186234,
-0.0012400057166814804,
-0.052670080214738846,
0.014992836862802505,
0.153320774435997,
-0.08320330083370209,
-0.23761574923992157,
-0.07826130092144012,
0.20986197888851166,
-0.002490843180567026,
0.06367587298154831,
-0.0004892742144875228,
-0.05074427276849747,
-0.0669187605381012,
0.2680864930152893,
0.2665422856807709,
-0.06138007715344429,
0.03121078759431839,
0.010962327942252159,
0.04370040073990822,
0.04212661460042,
0.040505848824977875,
0.06922426074743271,
0.2543453574180603,
-0.09767557680606842,
-0.003757954342290759,
-0.08901038765907288,
-0.045193158090114594,
0.028579197824001312,
0.1069357618689537,
0.1133960485458374,
-0.029065918177366257,
-0.0767863318324089,
0.10518325865268707,
-0.23224171996116638,
-0.038946591317653656,
-0.13149891793727875,
-0.12052930891513824,
-0.014764676801860332,
0.0025718517135828733,
0.06131623685359955,
-0.028586018830537796,
0.08336449414491653,
-0.04574587941169739,
-0.06503473222255707,
0.02946355752646923,
0.04201240837574005,
-0.15830285847187042,
0.16518184542655945,
0.09398911148309708,
-0.12560611963272095,
-0.058426737785339355,
-0.002819398185238242,
0.10687534511089325,
0.11257357150316238,
-0.007484195753931999,
-0.06185157969594002,
0.10873045027256012,
0.018028317019343376,
-0.021228916943073273,
0.05555618181824684,
0.12432453781366348,
0.02281542867422104,
-0.06379246711730957,
0.03663169965147972,
-0.25234925746917725,
0.06887371093034744,
0.07105936855077744,
-0.03235042095184326,
-0.08316905051469803,
0.057837288826704025,
-0.00008388731657760218,
0.07480157911777496,
0.12389345467090607,
-0.014024480246007442,
0.0004072805168107152,
-0.02308136783540249,
0.010072981007397175,
0.005240286234766245,
-0.05468859523534775,
-0.007570766378194094,
-0.10873333364725113,
-0.08198985457420349,
0.07805029302835464,
-0.0038828758988529444,
-0.26926496624946594,
-0.0028692581690847874,
-0.07452522218227386,
-0.01644768752157688,
-0.14133213460445404,
0.013350661844015121,
0.17094071209430695,
0.034270837903022766,
0.023059943690896034,
0.0876203179359436,
-0.0013150705490261316,
0.10287047922611237,
-0.1438225656747818,
-0.06798245757818222
] |
null | null |
transformers
|
## CALM
This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2).
Checkout our [Project website](https://inklab.usc.edu/calm-project) for details!
```bibtex
@inproceedings{CALM2021,
title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense},
author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren},
booktitle={ICLR},
year={2021}
}
```
|
{}
|
text2text-generation
|
danny911kr/calm-mix-large
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## CALM
This model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.
Checkout our Project website for details!
|
[
"## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
48,
39
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!"
] |
[
-0.02213875763118267,
-0.053692132234573364,
-0.0025661347899585962,
0.015831509605050087,
0.09639463573694229,
-0.02976060099899769,
0.23268507421016693,
0.07608936727046967,
-0.0715661495923996,
-0.013080974109470844,
0.1162995994091034,
0.12832635641098022,
-0.012100313790142536,
0.05936559662222862,
-0.11752409487962723,
-0.3118003010749817,
0.0212676003575325,
0.09420181065797806,
0.04369969666004181,
0.153020441532135,
0.13204173743724823,
-0.0819140374660492,
0.0455453060567379,
0.015504328534007072,
-0.14329181611537933,
-0.016385182738304138,
-0.00909272488206625,
-0.1094965785741806,
0.1173894926905632,
-0.005285979714244604,
0.14429645240306854,
0.11828535050153732,
0.004681583493947983,
-0.12633675336837769,
0.04294228181242943,
-0.018749145790934563,
-0.015094189904630184,
0.0716339722275734,
0.04892677441239357,
-0.04472779855132103,
0.21594929695129395,
0.004946357570588589,
0.0395478680729866,
0.027348732575774193,
-0.13733018934726715,
0.06642737984657288,
0.01898696832358837,
0.16843397915363312,
0.05167870968580246,
0.10676259547472,
-0.030619490891695023,
0.17372162640094757,
-0.058082737028598785,
0.15195584297180176,
0.12840527296066284,
-0.23820210993289948,
-0.042767543345689774,
0.017932241782546043,
0.012897558510303497,
0.05269491299986839,
-0.03702845051884651,
0.07650173455476761,
0.04189238324761391,
0.028593052178621292,
-0.02626916579902172,
-0.017777441069483757,
-0.11709718406200409,
-0.014971928671002388,
-0.160088449716568,
-0.05685902759432793,
0.264946848154068,
-0.05829567834734917,
0.017053816467523575,
-0.06256061792373657,
-0.1186247393488884,
-0.07242804020643234,
-0.03505663201212883,
-0.10137107223272324,
-0.07121593505144119,
0.02690543420612812,
-0.03525686264038086,
-0.07110963761806488,
-0.15772408246994019,
-0.011213449761271477,
-0.12063959240913391,
0.30448514223098755,
0.006424648221582174,
0.008893989026546478,
-0.20986869931221008,
0.11769037693738937,
0.1271514594554901,
-0.12634338438510895,
0.06516974419355392,
-0.036219920963048935,
0.05740749463438988,
-0.03364246338605881,
-0.046922557055950165,
-0.13769935071468353,
0.002939812373369932,
0.06480640172958374,
-0.015123008750379086,
-0.0022475773002952337,
0.019668135792016983,
0.05972519516944885,
0.05491073429584503,
0.08883417397737503,
-0.01049097254872322,
0.07905121892690659,
0.035565510392189026,
-0.0002724541409406811,
0.023388197645545006,
-0.03817138448357582,
-0.13736321032047272,
-0.029986834153532982,
0.09410113096237183,
0.06102295592427254,
-0.021877069026231766,
0.1076698750257492,
-0.00023742724442854524,
-0.05351882800459862,
0.06205885857343674,
-0.03260674327611923,
-0.04322608560323715,
0.019157562404870987,
0.0014344961382448673,
0.1893707662820816,
0.06991018354892731,
0.000963839702308178,
-0.1453278660774231,
0.0380861833691597,
-0.03120371513068676,
-0.03605009615421295,
-0.04310320317745209,
-0.061229407787323,
0.02193182334303856,
-0.030869528651237488,
0.01874038204550743,
-0.1608746498823166,
-0.2210007756948471,
0.03260831907391548,
0.0318647064268589,
-0.01827841065824032,
-0.009213225916028023,
-0.08320681750774384,
-0.09832381457090378,
0.008558406494557858,
-0.016378507018089294,
-0.0223667174577713,
-0.01793476939201355,
0.10655494034290314,
0.021374087780714035,
0.09125577658414841,
-0.12455855309963226,
0.04126850515604019,
-0.09531781077384949,
-0.03970421105623245,
-0.05437513068318367,
0.0687917172908783,
0.059697024524211884,
-0.007902228273451328,
-0.022269247099757195,
-0.053975362330675125,
-0.05069192871451378,
0.06274700909852982,
0.006063746754080057,
0.21367749571800232,
-0.08543553203344345,
-0.07120269536972046,
0.07157740741968155,
-0.14241521060466766,
-0.197284534573555,
0.13718822598457336,
-0.003927021753042936,
0.20684243738651276,
0.11294548213481903,
0.144310861825943,
-0.05454261973500252,
-0.011518247425556183,
-0.0012233714805915952,
0.04698266461491585,
-0.1154492124915123,
-0.02661997079849243,
-0.037486396729946136,
0.14035233855247498,
-0.11005157232284546,
0.03206806629896164,
0.014139273203909397,
0.022641276940703392,
-0.09517434239387512,
-0.040970128029584885,
-0.04073343053460121,
-0.01655869372189045,
0.09536156058311462,
0.013546488247811794,
0.10514288395643234,
-0.04445604234933853,
-0.03366793319582939,
0.09258734434843063,
0.028654370456933975,
-0.047135163098573685,
0.030454235151410103,
-0.06457594037055969,
0.036737121641635895,
-0.08682605624198914,
0.025279805064201355,
-0.21691074967384338,
-0.043462201952934265,
-0.05773052200675011,
0.19051501154899597,
0.12074965238571167,
0.12637807428836823,
0.06989112496376038,
-0.010427274741232395,
-0.05023663863539696,
-0.04923082888126373,
0.11174612492322922,
0.0014573324006050825,
-0.0899074599146843,
-0.16587790846824646,
0.0769534781575203,
-0.08418300002813339,
0.06057630106806755,
-0.11430615931749344,
0.06504978984594345,
0.06682535260915756,
0.13279230892658234,
-0.004007465671747923,
0.08147179335355759,
0.037075091153383255,
0.01296694204211235,
-0.060854099690914154,
0.010814069770276546,
0.08812350034713745,
-0.017087429761886597,
-0.08366617560386658,
0.09927123785018921,
-0.1207747608423233,
0.191177099943161,
0.18833282589912415,
-0.24446627497673035,
-0.056166425347328186,
-0.04306641221046448,
-0.03887525945901871,
0.005773721728473902,
-0.005621087271720171,
0.028667906299233437,
0.24396488070487976,
-0.02838079258799553,
0.1277797669172287,
-0.07070665806531906,
-0.053813301026821136,
-0.011936871334910393,
-0.08322979509830475,
-0.007763223256915808,
0.06647387892007828,
0.05686479061841965,
-0.20187711715698242,
0.10842813551425934,
0.133192241191864,
-0.03670424222946167,
0.18838216364383698,
-0.02052794210612774,
0.001011591055430472,
0.03546314314007759,
0.033614322543144226,
-0.011637121438980103,
0.01210803259164095,
-0.17794857919216156,
-0.04734756797552109,
0.04654732346534729,
-0.03613490238785744,
0.11010383814573288,
-0.1677226722240448,
0.01327742449939251,
0.023325566202402115,
0.007838121615350246,
-0.03165600076317787,
0.0921710953116417,
-0.008869682438671589,
0.13731417059898376,
-0.06149828061461449,
-0.0851721316576004,
0.07415911555290222,
0.030516598373651505,
-0.12148895859718323,
0.16661380231380463,
-0.020498886704444885,
-0.26435133814811707,
-0.12267584353685379,
0.02638532780110836,
-0.07947207242250443,
0.022162146866321564,
0.06118733063340187,
-0.11104977875947952,
-0.028784537687897682,
-0.051722053438425064,
0.09039226174354553,
-0.03153378888964653,
0.06950708478689194,
-0.05075317248702049,
0.03302796185016632,
-0.10192714631557465,
-0.11548737436532974,
-0.033472806215286255,
-0.03913964703679085,
0.024136977270245552,
0.07699747383594513,
-0.12834540009498596,
0.07205580919981003,
0.22683490812778473,
-0.044690169394016266,
0.05820087715983391,
-0.04178924486041069,
0.15154525637626648,
-0.10969559103250504,
0.06067090854048729,
0.17706778645515442,
-0.05725940689444542,
0.024582939222455025,
0.10237301886081696,
-0.013237337581813335,
-0.08532128483057022,
0.073553167283535,
-0.06856559962034225,
-0.07082600891590118,
-0.2298869490623474,
-0.07050113379955292,
-0.05503133684396744,
0.027494776993989944,
0.003926288336515427,
0.02473466284573078,
0.14955052733421326,
0.10385037213563919,
-0.057365722954273224,
0.006204094272106886,
-0.0047340611927211285,
0.10997804999351501,
0.19296492636203766,
-0.03780190274119377,
0.10694634914398193,
-0.08101260662078857,
-0.18132440745830536,
0.037267055362463,
-0.04404900223016739,
0.042710427194833755,
0.01843162626028061,
0.14118382334709167,
0.013549376279115677,
-0.04829089343547821,
0.16285660862922668,
0.22550025582313538,
-0.014016357250511646,
-0.02469935454428196,
-0.019953278824687004,
-0.038258541375398636,
-0.09838946908712387,
0.027846869081258774,
-0.04118996486067772,
0.011934615671634674,
-0.0801384225487709,
-0.01381471287459135,
0.10672082751989365,
0.0742652416229248,
-0.0065581658855080605,
-0.23659075796604156,
-0.052875958383083344,
0.0541938953101635,
-0.025925099849700928,
-0.0900956466794014,
0.08567054569721222,
0.010514434427022934,
-0.02309110388159752,
-0.018976924940943718,
-0.032130107283592224,
0.10321521759033203,
-0.13697701692581177,
0.06834174692630768,
-0.14658159017562866,
-0.02718435227870941,
-0.020369408652186394,
0.07554518431425095,
-0.2101621925830841,
0.18150129914283752,
-0.00017994928930420429,
0.027468757703900337,
-0.08687372505664825,
-0.06448948383331299,
-0.0073283519595861435,
0.20557419955730438,
0.030573640018701553,
-0.035777900367975235,
-0.00970118585973978,
-0.000966738210991025,
0.0023627039045095444,
0.0626191571354866,
0.15384474396705627,
-0.026911769062280655,
0.06435231864452362,
-0.013940917328000069,
0.002293296856805682,
0.06387174874544144,
-0.17204231023788452,
-0.10272736847400665,
-0.10881566256284714,
0.09995514154434204,
0.028177615255117416,
0.11247072368860245,
-0.0019187472062185407,
-0.09144146740436554,
-0.020635288208723068,
0.16116899251937866,
-0.011469284072518349,
-0.07970837503671646,
-0.1414356231689453,
-0.020087623968720436,
0.04751023277640343,
-0.05080182105302811,
-0.007146134972572327,
-0.024708237498998642,
0.045727960765361786,
-0.09156579524278641,
-0.10732904076576233,
0.09778636693954468,
-0.10136387497186661,
-0.15677320957183838,
-0.019665095955133438,
0.11737804859876633,
-0.022150786593556404,
0.002031112089753151,
0.013316788710653782,
-0.023414921015501022,
-0.0775085836648941,
-0.09471073746681213,
-0.03184086084365845,
-0.03982020914554596,
-0.02514430694282055,
-0.006699584890156984,
0.01431594043970108,
-0.03645009547472,
-0.05642728880047798,
0.0027186735533177853,
0.20622675120830536,
0.0870080441236496,
0.00516783120110631,
0.030505599454045296,
0.238352432847023,
-0.015094328671693802,
-0.25314244627952576,
-0.057250238955020905,
-0.051003433763980865,
-0.01649274118244648,
-0.15810665488243103,
-0.07706109434366226,
0.09528271108865738,
-0.1081964448094368,
-0.00884206872433424,
0.029298201203346252,
-0.2423953413963318,
-0.11002448201179504,
0.21705493330955505,
0.10459912568330765,
0.30326083302497864,
-0.14430153369903564,
-0.02328754961490631,
-0.03915722668170929,
-0.06326118111610413,
0.16376478970050812,
-0.13161545991897583,
0.10707247257232666,
-0.01868697814643383,
0.12406831979751587,
0.045381419360637665,
-0.028987254947423935,
0.05001193284988403,
-0.01920020766556263,
0.041439007967710495,
-0.06759390234947205,
-0.15419559180736542,
0.0653853490948677,
0.028693100437521935,
0.1369631290435791,
-0.020571522414684296,
0.063883937895298,
-0.03264327347278595,
-0.08574423938989639,
-0.06178612634539604,
0.067904032766819,
-0.00910107884556055,
-0.10068217664957047,
-0.012468229047954082,
-0.10618802905082703,
-0.03295028954744339,
-0.034261610358953476,
0.15274599194526672,
-0.05004609748721123,
-0.0026274004485458136,
0.17143765091896057,
0.23421624302864075,
-0.08529983460903168,
0.08941872417926788,
-0.013867142610251904,
-0.07954148948192596,
0.1136729046702385,
-0.12710034847259521,
-0.050296276807785034,
0.11080159991979599,
0.02141759730875492,
0.12523509562015533,
0.12511372566223145,
-0.011174503713846207,
-0.0478411503136158,
0.07432208955287933,
-0.24849051237106323,
-0.09135950356721878,
-0.10595564544200897,
0.07367799431085587,
-0.0016918517649173737,
0.15762484073638916,
0.1537594497203827,
-0.12486367672681808,
0.012159325182437897,
-0.009313134476542473,
0.000010316352017980535,
-0.012238902971148491,
0.026923799887299538,
0.07644633203744888,
0.03471684828400612,
-0.09692353755235672,
0.011561679653823376,
0.023897524923086166,
-0.22975066304206848,
0.007225350942462683,
0.10383493453264236,
-0.11177980899810791,
-0.13887028396129608,
0.05903320387005806,
0.15820762515068054,
-0.15019947290420532,
-0.07027184963226318,
-0.10134962201118469,
-0.18534806370735168,
0.05824577435851097,
0.2748497426509857,
0.06183844804763794,
0.022882157936692238,
-0.14824530482292175,
0.012566330842673779,
-0.11209627240896225,
0.059319738298654556,
0.048929549753665924,
0.04070516675710678,
-0.11177882552146912,
0.11358261108398438,
-0.0032591610215604305,
0.017657432705163956,
-0.09843011200428009,
-0.04000970721244812,
-0.13704092800617218,
0.03510091453790665,
-0.11784040927886963,
-0.05953672528266907,
-0.07796281576156616,
-0.054539792239665985,
0.020775049924850464,
-0.03633172810077667,
-0.013009238988161087,
-0.017535321414470673,
-0.08262551575899124,
0.06954925507307053,
0.02015267126262188,
0.02957284264266491,
-0.06958198547363281,
0.012243649922311306,
0.04368935152888298,
-0.06491665542125702,
0.10662896186113358,
0.12622393667697906,
-0.0900789424777031,
0.11353446543216705,
-0.168279230594635,
-0.02676147222518921,
0.09924117475748062,
0.008975216187536716,
0.03215603902935982,
-0.021858589723706245,
0.01665073074400425,
0.04284703731536865,
0.030410397797822952,
0.06179531291127205,
0.0947277694940567,
-0.05647394806146622,
0.090424545109272,
0.03028886392712593,
-0.059073250740766525,
-0.09275495260953903,
-0.008752304129302502,
0.06665243208408356,
0.019258510321378708,
0.14013345539569855,
-0.05714057385921478,
0.041408784687519073,
-0.05768198519945145,
0.0632602646946907,
0.02868085727095604,
-0.13940614461898804,
-0.04279302805662155,
-0.10686642676591873,
0.018865441903471947,
-0.06251451373100281,
0.12382908910512924,
-0.0460805781185627,
-0.020345333963632584,
0.012444902211427689,
0.07645802944898605,
-0.053407974541187286,
0.040975019335746765,
0.1671261489391327,
0.055532876402139664,
-0.02343684993684292,
-0.11846846342086792,
0.05144898593425751,
0.03180015832185745,
0.019686823710799217,
0.18077881634235382,
-0.007125234231352806,
-0.11105179786682129,
0.15338551998138428,
0.0032434279564768076,
0.11419302225112915,
-0.04489228501915932,
-0.12922309339046478,
-0.0037296866066753864,
-0.002600351581349969,
-0.05380576103925705,
0.005096116103231907,
0.24041587114334106,
0.03372606262564659,
0.004662740044295788,
0.007932222448289394,
-0.053245168179273605,
-0.09998001903295517,
-0.09900783747434616,
-0.07419785112142563,
-0.031681694090366364,
-0.031001633033156395,
-0.14222204685211182,
-0.024217786267399788,
0.0015480333240702748,
0.10277619957923889,
-0.050215646624565125,
0.1684381067752838,
0.06831615418195724,
-0.024862069636583328,
0.13661707937717438,
-0.012322935275733471,
0.030870385468006134,
-0.10586266964673996,
0.031954094767570496,
-0.1102369949221611,
-0.005975459236651659,
-0.03382172808051109,
0.051998838782310486,
-0.09734606742858887,
-0.03438122570514679,
-0.038231782615184784,
-0.11276402324438095,
-0.03837963938713074,
0.04360991343855858,
0.053977202624082565,
0.11050236970186234,
-0.0012400057166814804,
-0.052670080214738846,
0.014992836862802505,
0.153320774435997,
-0.08320330083370209,
-0.23761574923992157,
-0.07826130092144012,
0.20986197888851166,
-0.002490843180567026,
0.06367587298154831,
-0.0004892742144875228,
-0.05074427276849747,
-0.0669187605381012,
0.2680864930152893,
0.2665422856807709,
-0.06138007715344429,
0.03121078759431839,
0.010962327942252159,
0.04370040073990822,
0.04212661460042,
0.040505848824977875,
0.06922426074743271,
0.2543453574180603,
-0.09767557680606842,
-0.003757954342290759,
-0.08901038765907288,
-0.045193158090114594,
0.028579197824001312,
0.1069357618689537,
0.1133960485458374,
-0.029065918177366257,
-0.0767863318324089,
0.10518325865268707,
-0.23224171996116638,
-0.038946591317653656,
-0.13149891793727875,
-0.12052930891513824,
-0.014764676801860332,
0.0025718517135828733,
0.06131623685359955,
-0.028586018830537796,
0.08336449414491653,
-0.04574587941169739,
-0.06503473222255707,
0.02946355752646923,
0.04201240837574005,
-0.15830285847187042,
0.16518184542655945,
0.09398911148309708,
-0.12560611963272095,
-0.058426737785339355,
-0.002819398185238242,
0.10687534511089325,
0.11257357150316238,
-0.007484195753931999,
-0.06185157969594002,
0.10873045027256012,
0.018028317019343376,
-0.021228916943073273,
0.05555618181824684,
0.12432453781366348,
0.02281542867422104,
-0.06379246711730957,
0.03663169965147972,
-0.25234925746917725,
0.06887371093034744,
0.07105936855077744,
-0.03235042095184326,
-0.08316905051469803,
0.057837288826704025,
-0.00008388731657760218,
0.07480157911777496,
0.12389345467090607,
-0.014024480246007442,
0.0004072805168107152,
-0.02308136783540249,
0.010072981007397175,
0.005240286234766245,
-0.05468859523534775,
-0.007570766378194094,
-0.10873333364725113,
-0.08198985457420349,
0.07805029302835464,
-0.0038828758988529444,
-0.26926496624946594,
-0.0028692581690847874,
-0.07452522218227386,
-0.01644768752157688,
-0.14133213460445404,
0.013350661844015121,
0.17094071209430695,
0.034270837903022766,
0.023059943690896034,
0.0876203179359436,
-0.0013150705490261316,
0.10287047922611237,
-0.1438225656747818,
-0.06798245757818222
] |
null | null |
transformers
|
# Wav2Vec2-Large-XLSR-53-or
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on odia using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "or", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the odia test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "or", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\β]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
\twith torch.no_grad():
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
\tpred_ids = torch.argmax(logits, dim=-1)
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\treturn batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 54.6 %
## Training
The Common Voice `train`, `validation`, and test datasets were used for training as well as prediction and testing
The script used for training can be found [https://github.com/rahul-art/wav2vec2_or]
|
{"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "odia XLSR Wav2Vec2 Large 2000", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 54.6, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
danurahul/wav2vec2-large-xlsr-or
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"or",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"or"
] |
TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# Wav2Vec2-Large-XLSR-53-or
Fine-tuned facebook/wav2vec2-large-xlsr-53 on odia using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the odia test data of Common Voice.
Test Result: 54.6 %
## Training
The Common Voice 'train', 'validation', and test datasets were used for training as well as prediction and testing
The script used for training can be found [URL
|
[
"# Wav2Vec2-Large-XLSR-53-or \nFine-tuned facebook/wav2vec2-large-xlsr-53 on odia using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the odia test data of Common Voice. \n\n\n\nTest Result: 54.6 %",
"## Training\n\nThe Common Voice 'train', 'validation', and test datasets were used for training as well as prediction and testing \n\nThe script used for training can be found [URL"
] |
[
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# Wav2Vec2-Large-XLSR-53-or \nFine-tuned facebook/wav2vec2-large-xlsr-53 on odia using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the odia test data of Common Voice. \n\n\n\nTest Result: 54.6 %",
"## Training\n\nThe Common Voice 'train', 'validation', and test datasets were used for training as well as prediction and testing \n\nThe script used for training can be found [URL"
] |
[
80,
61,
20,
28,
42
] |
[
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-or \nFine-tuned facebook/wav2vec2-large-xlsr-53 on odia using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the odia test data of Common Voice. \n\n\n\nTest Result: 54.6 %## Training\n\nThe Common Voice 'train', 'validation', and test datasets were used for training as well as prediction and testing \n\nThe script used for training can be found [URL"
] |
[
-0.14956606924533844,
0.010196153074502945,
-0.0024513662792742252,
-0.006969436537474394,
0.08672173321247101,
-0.02273184061050415,
0.16447648406028748,
0.10758186876773834,
0.06858183443546295,
-0.020997390151023865,
0.048398200422525406,
-0.003143549431115389,
0.02444583550095558,
0.06450206786394119,
0.007907899096608162,
-0.14676737785339355,
-0.03445340692996979,
0.01277224626392126,
0.04858866706490517,
0.15478365123271942,
0.08745191246271133,
-0.0724998489022255,
-0.005077844485640526,
0.10293421894311905,
-0.13838310539722443,
0.04700326547026634,
0.023978732526302338,
-0.12593510746955872,
0.12680737674236298,
0.04794755205512047,
0.09918969124555588,
0.04390285536646843,
0.1035996600985527,
-0.1862843781709671,
0.02276897430419922,
0.030419934540987015,
0.05437919870018959,
0.02687850594520569,
0.06723146140575409,
-0.043273407965898514,
0.04945209249854088,
0.15320231020450592,
0.029511811211705208,
0.06582777202129364,
-0.037664853036403656,
-0.18089012801647186,
0.014980913139879704,
-0.03033706173300743,
0.07054641097784042,
0.17095690965652466,
-0.0571831576526165,
0.1447615772485733,
-0.17156602442264557,
0.08534085750579834,
0.1336091160774231,
-0.1500733196735382,
-0.004927497357130051,
0.09907083958387375,
0.09515286237001419,
0.04916899651288986,
-0.03845249488949776,
-0.008155478164553642,
0.03001929447054863,
0.03738788142800331,
0.013449334539473057,
-0.022593824192881584,
-0.15831412374973297,
-0.026855451986193657,
-0.13717812299728394,
-0.04208478331565857,
0.24054864048957825,
-0.02097589708864689,
-0.09324339032173157,
-0.12404172122478485,
0.023191755637526512,
0.010315535590052605,
0.006398700177669525,
-0.06272949278354645,
-0.008805018849670887,
0.0028523080982267857,
-0.018365902826189995,
-0.023768294602632523,
-0.1042739674448967,
-0.1927461177110672,
0.03276456519961357,
0.12744218111038208,
0.03585432842373848,
0.012800083495676517,
-0.1596582978963852,
0.12794235348701477,
-0.024964336305856705,
-0.08566036075353622,
-0.04042212665081024,
0.017139915376901627,
-0.07323229312896729,
-0.01811210811138153,
-0.0948047786951065,
-0.17938902974128723,
0.029217926785349846,
0.019554948434233665,
0.11428723484277725,
0.05830695852637291,
-0.04446754232048988,
0.06926897168159485,
0.03944472596049309,
0.127344012260437,
-0.010960523039102554,
0.009632769972085953,
0.04093603044748306,
0.09093408286571503,
-0.08317487686872482,
-0.0014383556554093957,
-0.054219990968704224,
-0.04472431167960167,
0.02690356969833374,
0.07070770114660263,
-0.020014388486742973,
-0.009119096212089062,
-0.07022108137607574,
-0.03798303380608559,
-0.011011442169547081,
-0.12627699971199036,
-0.04242144152522087,
0.10593322664499283,
-0.05533267930150032,
0.03667929023504257,
0.07626111805438995,
0.021152280271053314,
-0.06688282638788223,
-0.03564334288239479,
0.02075650542974472,
0.0675639659166336,
-0.06094907224178314,
-0.06260226666927338,
-0.002393179340288043,
0.09310553222894669,
-0.016766071319580078,
-0.10841745138168335,
-0.1375875622034073,
-0.10512492060661316,
-0.0066872104071080685,
0.030844373628497124,
0.008589288219809532,
-0.09142890572547913,
-0.0003735916980076581,
-0.05828619748353958,
-0.06030125543475151,
0.08303645253181458,
-0.04299090430140495,
0.0858640968799591,
0.09299872070550919,
0.0346895307302475,
0.1376008242368698,
0.06194527447223663,
-0.11696052551269531,
-0.06577783077955246,
0.03904251381754875,
0.1421044021844864,
-0.05278336629271507,
-0.04997565597295761,
-0.07234974205493927,
-0.0953368991613388,
-0.0791005939245224,
0.09009290486574173,
0.05751565471291542,
0.11890475451946259,
-0.22115036845207214,
-0.06874994933605194,
0.25214090943336487,
-0.10266873985528946,
-0.088782899081707,
0.19946947693824768,
-0.03508106246590614,
0.12832581996917725,
0.10927356034517288,
0.17562884092330933,
0.15710844099521637,
-0.19721227884292603,
0.09885787963867188,
0.025389414280653,
0.013140046037733555,
-0.008657511323690414,
0.0902564525604248,
-0.02526826038956642,
-0.07073134928941727,
0.02960681915283203,
-0.11773501336574554,
0.06894256174564362,
-0.02521069161593914,
-0.06340048462152481,
-0.029481232166290283,
-0.07390210777521133,
0.03099079057574272,
0.0520295612514019,
0.013636138290166855,
-0.032700568437576294,
-0.08801991492509842,
0.01378822885453701,
0.1401309221982956,
-0.13844770193099976,
0.024923324584960938,
-0.1348848044872284,
0.05783491209149361,
-0.04753458872437477,
-0.022256677970290184,
-0.1832178831100464,
0.12663495540618896,
0.004400018602609634,
0.011126215569674969,
0.048942942172288895,
0.1621149778366089,
0.017357835546135902,
0.006731994915753603,
0.0017592593794688582,
-0.032782673835754395,
-0.020656930282711983,
-0.04977530613541603,
-0.030728520825505257,
-0.05807046964764595,
-0.027603013440966606,
-0.07467992603778839,
0.05145420506596565,
-0.19172993302345276,
0.006019155960530043,
-0.017442958429455757,
-0.03412941098213196,
-0.002139838645234704,
-0.018281375989317894,
0.07644790410995483,
0.09434980154037476,
-0.003822136903181672,
0.004880931694060564,
0.03307271748781204,
0.014033135958015919,
-0.08600888401269913,
0.07605969905853271,
-0.11144009977579117,
0.03012600541114807,
0.08554995059967041,
-0.0670209750533104,
-0.039880964905023575,
0.04228908568620682,
-0.03404909372329712,
0.0028173313476145267,
-0.10809393227100372,
-0.01287058088928461,
0.32382267713546753,
0.0031064634677022696,
0.10897327214479446,
-0.1219458132982254,
0.0005460591637529433,
0.0015245851827785373,
-0.09575678408145905,
0.08674649149179459,
0.06307636201381683,
0.0053345817141234875,
0.051434457302093506,
-0.009993561543524265,
-0.04520969092845917,
-0.140894815325737,
0.2002713829278946,
-0.030492261052131653,
-0.09395764023065567,
0.03386636823415756,
0.0007963483803905547,
-0.028664328157901764,
0.019774483516812325,
-0.16932256519794464,
-0.0425354540348053,
0.030280334874987602,
0.06007610633969307,
0.05991797149181366,
-0.168146014213562,
0.009666592814028263,
0.03180398419499397,
-0.10240684449672699,
-0.166673481464386,
0.05709018185734749,
-0.044403016567230225,
0.03785902261734009,
-0.0951448604464531,
-0.06505244225263596,
0.0015763627598062158,
-0.05917752906680107,
-0.18154196441173553,
0.16544122993946075,
-0.027881667017936707,
-0.2100220024585724,
-0.12321661412715912,
0.07086513936519623,
0.059972185641527176,
0.0058915503323078156,
0.08792828023433685,
-0.08332870900630951,
0.004840342793613672,
-0.06069154664874077,
0.04205920919775963,
-0.0014103661524131894,
-0.06251101940870285,
-0.036451175808906555,
0.03320835530757904,
0.07650535553693771,
-0.14423051476478577,
0.007385801058262587,
-0.0301319919526577,
-0.07668206095695496,
0.0053707631304860115,
-0.00641843443736434,
0.0008181989542208612,
0.16073937714099884,
0.02611115388572216,
0.02405831590294838,
-0.019946755841374397,
0.15525519847869873,
-0.10046189278364182,
-0.07497239857912064,
0.22539299726486206,
-0.020431390032172203,
-0.024762796238064766,
0.020400917157530785,
0.0297324750572443,
-0.09151247888803482,
0.02918083593249321,
-0.03687410429120064,
-0.07800842821598053,
-0.252674400806427,
-0.0908888652920723,
-0.03772245720028877,
-0.07311404496431351,
0.0033928961493074894,
-0.008660683408379555,
0.025051862001419067,
0.026182668283581734,
0.016149289906024933,
-0.1284126192331314,
0.04581935331225395,
0.0006354143260978162,
0.07500829547643661,
0.005499560851603746,
0.10022490471601486,
-0.020686879754066467,
-0.024528853595256805,
-0.019705384969711304,
0.03170078247785568,
0.15444335341453552,
0.0252371933311224,
0.0671025812625885,
0.11223499476909637,
0.08758570998907089,
0.09495075792074203,
0.0320904478430748,
-0.04353271797299385,
-0.00782405212521553,
0.01866091974079609,
-0.05397477373480797,
-0.05826897919178009,
0.017339054495096207,
0.09300953149795532,
-0.02301962301135063,
-0.03514977544546127,
-0.06263701617717743,
-0.002353724790737033,
0.15624992549419403,
0.03779115155339241,
-0.2421707808971405,
-0.061896875500679016,
-0.05454867705702782,
-0.08713413029909134,
0.005951086990535259,
0.0776551216840744,
0.10343626886606216,
-0.16039420664310455,
-0.006034619640558958,
-0.012077282182872295,
0.1017860621213913,
0.01616237498819828,
0.012094084173440933,
-0.06044987961649895,
0.035841844975948334,
0.0033487591426819563,
0.12714405357837677,
-0.31701070070266724,
0.18675446510314941,
-0.01701032556593418,
0.13511663675308228,
-0.04762100428342819,
0.00046683911932632327,
0.036672014743089676,
0.04220336303114891,
0.12449973076581955,
-0.027102556079626083,
0.07195203751325607,
-0.1029844582080841,
-0.056744080036878586,
0.08661874383687973,
-0.028410015627741814,
-0.0039004392456263304,
0.05961381271481514,
0.008324112743139267,
0.023700768128037453,
0.006937663536518812,
-0.1200232058763504,
-0.17263880372047424,
-0.020384760573506355,
-0.004893534351140261,
0.08864295482635498,
0.09753452986478806,
-0.041610896587371826,
-0.09214308112859726,
-0.07722197473049164,
0.008974498137831688,
-0.08357025682926178,
-0.03882279992103577,
-0.04396796599030495,
-0.00003899859439115971,
0.08243924379348755,
-0.05552447587251663,
-0.032372187823057175,
0.10638738423585892,
0.11793702095746994,
-0.0012341112596914172,
-0.03805888816714287,
0.022271480411291122,
-0.13522803783416748,
-0.1362389624118805,
-0.028242211788892746,
0.16960744559764862,
0.1253083199262619,
0.06793002784252167,
0.06524764746427536,
-0.005621204152703285,
-0.030794953927397728,
-0.0421459786593914,
-0.021025849506258965,
0.09610123932361603,
-0.08091176301240921,
0.023484788835048676,
0.011764376424252987,
-0.1160769909620285,
-0.11413192749023438,
-0.026908325031399727,
0.14731921255588531,
0.03403154015541077,
-0.018529077991843224,
0.12787176668643951,
0.18966224789619446,
-0.10434421896934509,
-0.1851276010274887,
0.0066530113108456135,
0.15378016233444214,
0.13314826786518097,
0.039168693125247955,
-0.2070031613111496,
0.09460334479808807,
0.0024179164320230484,
-0.03956042602658272,
-0.008058070205152035,
-0.31654372811317444,
-0.1280161291360855,
0.16943657398223877,
0.007707121782004833,
0.08803123980760574,
-0.014154196716845036,
0.0020383496303111315,
0.00816703774034977,
-0.024201640859246254,
0.0148406270891428,
-0.06322000920772552,
0.1173020675778389,
-0.0008282774942927063,
0.08045455068349838,
0.0487147681415081,
-0.04486236721277237,
0.07289702445268631,
0.059361543506383896,
0.009475280530750751,
0.015734650194644928,
0.10390482097864151,
0.00649431673809886,
0.006100732367485762,
0.14511674642562866,
-0.09791892021894455,
0.06660094112157822,
-0.1056002601981163,
-0.12100344896316528,
-0.07429182529449463,
0.08471501618623734,
0.02625424973666668,
-0.011346962302923203,
0.0228255707770586,
-0.03503226116299629,
-0.006941464729607105,
0.006539220921695232,
-0.07368407398462296,
-0.15135294198989868,
0.03388774022459984,
0.11544463038444519,
0.24640299379825592,
0.0003384652372915298,
-0.1585211604833603,
-0.00416450435295701,
-0.013315828517079353,
0.1435522884130478,
-0.11732451617717743,
0.030480243265628815,
0.07589099556207657,
0.06685948371887207,
0.11134494841098785,
0.03302982822060585,
-0.11446455121040344,
0.08036816120147705,
0.020620301365852356,
-0.029635904356837273,
-0.08398664742708206,
-0.044686391949653625,
-0.028700770810246468,
-0.07144821435213089,
-0.002280868822708726,
0.0700506642460823,
-0.08652348816394806,
-0.03409812971949577,
-0.009888512082397938,
-0.007853684015572071,
-0.11624078452587128,
0.2380671501159668,
0.024268530309200287,
0.08253903687000275,
-0.08598197251558304,
0.0030732383020222187,
-0.04284146800637245,
-0.023245060816407204,
0.04390132054686546,
-0.022494981065392494,
-0.07632926106452942,
-0.07981063425540924,
-0.03405781462788582,
0.13540038466453552,
0.08190130442380905,
-0.11686503142118454,
-0.09418713301420212,
-0.05628592148423195,
-0.007766419090330601,
0.07396997511386871,
0.08306542038917542,
0.0012265017721801996,
-0.09995640814304352,
-0.037029992789030075,
-0.09310001134872437,
0.08308480679988861,
0.11087669432163239,
-0.01614285819232464,
-0.11430402100086212,
0.16828404366970062,
0.09660223871469498,
0.031955551356077194,
-0.03872326388955116,
-0.0851755365729332,
-0.024799922481179237,
0.13099908828735352,
-0.0894622653722763,
0.007670059334486723,
-0.02334345132112503,
0.02420562505722046,
0.01990644820034504,
-0.0545201413333416,
0.011823398061096668,
0.09376949071884155,
-0.10276369750499725,
0.04920950531959534,
0.013078110292553902,
0.07711292058229446,
-0.07638818770647049,
0.028577610850334167,
0.04068990796804428,
-0.07690554857254028,
0.0496673509478569,
0.11056098341941833,
-0.11555960774421692,
0.11083328723907471,
-0.209294393658638,
-0.01990942656993866,
0.0603579580783844,
0.0877041444182396,
-0.05791349336504936,
-0.10831442475318909,
0.07096336036920547,
0.08337436616420746,
0.060945648699998856,
-0.004803352057933807,
0.08569621294736862,
-0.08767806738615036,
0.005029961001127958,
-0.016576219350099564,
-0.0034953118301928043,
-0.03775351122021675,
0.03494812175631523,
0.03968280553817749,
0.16365204751491547,
0.1713789403438568,
-0.09595973044633865,
0.11745966225862503,
-0.15029916167259216,
0.0018306659767404199,
-0.023487282916903496,
0.025421546772122383,
-0.13173478841781616,
-0.06925796717405319,
0.08830500394105911,
-0.05991817265748978,
0.12469174712896347,
0.03549640625715256,
0.06207461282610893,
-0.02814524993300438,
-0.08800145983695984,
0.08441127091646194,
-0.012615024112164974,
0.18439967930316925,
0.03048945963382721,
0.02860470488667488,
-0.0015698244096711278,
-0.024368610233068466,
-0.0010448263492435217,
0.024682974442839622,
-0.01660224050283432,
0.16948197782039642,
-0.03516583889722824,
0.05681334063410759,
0.08823113143444061,
-0.041082657873630524,
-0.038491375744342804,
-0.06166040524840355,
-0.1028711348772049,
0.049833230674266815,
-0.04546027258038521,
0.17306141555309296,
0.11455231159925461,
-0.03665754199028015,
0.087306909263134,
0.0015645603416487575,
-0.08732040971517563,
-0.15448138117790222,
-0.10267863422632217,
-0.06517387181520462,
-0.13760867714881897,
0.042283765971660614,
-0.06689602881669998,
-0.011330032721161842,
0.058783262968063354,
0.03578408434987068,
-0.05635032430291176,
0.19304783642292023,
0.06886860728263855,
-0.10809718817472458,
0.06900948286056519,
-0.10458289086818695,
-0.010162261314690113,
-0.08305683732032776,
0.02244371734559536,
0.1736249476671219,
-0.0006599353509955108,
0.06766637414693832,
-0.008482576347887516,
-0.0923016294836998,
0.017264777794480324,
-0.0823880136013031,
-0.0584169439971447,
-0.005777478218078613,
-0.01455678977072239,
0.07926800101995468,
0.09254536032676697,
0.10348647087812424,
-0.048014797270298004,
0.010080267675220966,
0.14875590801239014,
-0.03339238092303276,
-0.12763364613056183,
-0.16175217926502228,
0.1869203746318817,
0.02971380390226841,
-0.017030220478773117,
-0.005678475368767977,
-0.008835324086248875,
0.00016672408673912287,
0.2441522479057312,
0.17565663158893585,
0.03637184947729111,
0.008751212619245052,
0.007768035400658846,
-0.013009004294872284,
-0.03457885980606079,
0.08184339106082916,
0.06807728111743927,
0.19661368429660797,
-0.012061999179422855,
0.017183279618620872,
-0.056411050260066986,
-0.06811483949422836,
0.028147274628281593,
0.010770328342914581,
-0.04531821608543396,
-0.07508213818073273,
-0.024987883865833282,
0.12144128233194351,
-0.038366518914699554,
-0.11609945446252823,
-0.06673479825258255,
-0.02109440043568611,
-0.08938489109277725,
-0.02710227482020855,
0.0163503997027874,
0.06705153733491898,
0.027727197855710983,
-0.07246093451976776,
0.008444664068520069,
0.11153034120798111,
-0.03583556041121483,
-0.017578301951289177,
-0.06938949227333069,
0.04081891477108002,
-0.10794081538915634,
0.05394855886697769,
-0.005545655265450478,
0.23431408405303955,
0.01310786698013544,
0.07418105006217957,
-0.01598644070327282,
0.14491988718509674,
-0.005538850091397762,
-0.03017299994826317,
0.042248524725437164,
0.11063007265329361,
-0.009242621250450611,
0.11086279898881912,
0.018638625741004944,
-0.1286381185054779,
0.0348166897892952,
-0.18479371070861816,
-0.01635104790329933,
-0.15716347098350525,
0.06282635778188705,
-0.01869436912238598,
0.07214364409446716,
0.10064627230167389,
-0.07736518234014511,
-0.04274493828415871,
-0.04769200459122658,
0.08958149701356888,
0.03308532387018204,
-0.03525989502668381,
-0.04702905938029289,
-0.23532888293266296,
-0.01006203144788742,
-0.08371943980455399,
-0.045354850590229034,
-0.2397756427526474,
-0.009854711592197418,
0.03756781294941902,
-0.10021400451660156,
0.06084081903100014,
0.020394187420606613,
0.08278325945138931,
0.04772583395242691,
0.005932740867137909,
-0.025856345891952515,
0.052724845707416534,
0.12941017746925354,
-0.19707199931144714,
-0.10972633212804794
] |
null | null |
transformers
|
# Wav2Vec2-Large-XLSR-53-Punjabi
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN")
model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Punjabi test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "pa-IN", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN")
model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN")
model.to("cuda")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\β\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\β\\\\\\\\\\\\\\\\β\\\\\\\\\\\\\\\\οΏ½]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 100 %
## Training
The Common Voice `train`, `validation` was used for training as well as validation and testing #
The script used for training can be found https://github.com/rahul-art/huggingface_wav2vec2_punjabi/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Punjabi_ASR_with_%F0%9F%A4%97_Transformers.ipynb
|
{"language": "pa-IN", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "danurahul/wav2vec2-large-xlsr-pa-IN", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pa-IN", "type": "common_voice", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 54.86, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
danurahul/wav2vec2-large-xlsr-pa-IN
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"pa-IN"
] |
TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# Wav2Vec2-Large-XLSR-53-Punjabi
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the Punjabi test data of Common Voice.
Test Result: 100 %
## Training
The Common Voice 'train', 'validation' was used for training as well as validation and testing #
The script used for training can be found URL
|
[
"# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Punjabi test data of Common Voice. \n\n\n\n\nTest Result: 100 %",
"## Training\n\nThe Common Voice 'train', 'validation' was used for training as well as validation and testing #\n\nThe script used for training can be found URL"
] |
[
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Punjabi test data of Common Voice. \n\n\n\n\nTest Result: 100 %",
"## Training\n\nThe Common Voice 'train', 'validation' was used for training as well as validation and testing #\n\nThe script used for training can be found URL"
] |
[
78,
62,
20,
26,
36
] |
[
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Punjabi test data of Common Voice. \n\n\n\n\nTest Result: 100 %## Training\n\nThe Common Voice 'train', 'validation' was used for training as well as validation and testing #\n\nThe script used for training can be found URL"
] |
[
-0.15284062922000885,
0.011862454935908318,
-0.000197313551325351,
0.003943963907659054,
0.08048006147146225,
-0.04566400498151779,
0.13513749837875366,
0.13537068665027618,
0.05690285563468933,
0.00009804427099879831,
0.055731114000082016,
0.046438101679086685,
0.027534930035471916,
0.06483705341815948,
0.038231026381254196,
-0.14385764300823212,
-0.019438371062278748,
0.037520211189985275,
0.08384689688682556,
0.16331800818443298,
0.09733208268880844,
-0.05887676775455475,
-0.02700268290936947,
0.07842514663934708,
-0.17560946941375732,
0.07142341881990433,
0.01901976205408573,
-0.11090817302465439,
0.12345658242702484,
0.024325089529156685,
0.09158920496702194,
0.05359242111444473,
0.09429536759853363,
-0.19850698113441467,
0.03409991413354874,
0.024086592718958855,
0.04350258409976959,
0.008213402703404427,
0.04310372471809387,
-0.015179314650595188,
0.08902782946825027,
0.1494346559047699,
-0.00907199177891016,
0.06899413466453552,
-0.003782892832532525,
-0.14956632256507874,
0.020665358752012253,
0.06596535444259644,
0.053766828030347824,
0.15801729261875153,
-0.04437870904803276,
0.12655781209468842,
-0.16102200746536255,
0.10979287326335907,
0.08712788671255112,
-0.16740682721138,
0.010615114122629166,
0.10431253165006638,
0.12626907229423523,
0.09333198517560959,
-0.07268628478050232,
-0.0004499743226915598,
0.05157487094402313,
0.01495511643588543,
-0.009570025838911533,
-0.04673141986131668,
-0.200517475605011,
-0.01937691681087017,
-0.1008852943778038,
-0.019207339733839035,
0.17856495082378387,
-0.038758836686611176,
-0.10081784427165985,
-0.06941679865121841,
-0.007294146344065666,
0.027834564447402954,
0.0005128231132403016,
-0.04961036518216133,
0.0048278807662427425,
0.03973710909485817,
-0.02430606447160244,
-0.03884893283247948,
-0.09239767491817474,
-0.18196222186088562,
0.06304261833429337,
0.10789438337087631,
0.05792280286550522,
0.005028851795941591,
-0.1548144817352295,
0.08732914179563522,
-0.003535750089213252,
-0.06311976909637451,
-0.06421858072280884,
0.05074963718652725,
-0.019105931743979454,
0.005607927683740854,
-0.08869197219610214,
-0.1867803931236267,
0.03922254592180252,
0.017980504781007767,
0.07571199536323547,
0.06576891988515854,
-0.0622544139623642,
0.0831267461180687,
-0.003383353818207979,
0.1476670205593109,
0.013241845183074474,
0.033810414373874664,
0.07298356294631958,
0.09097698330879211,
-0.032585036009550095,
0.00943664275109768,
-0.03334278613328934,
-0.05830841511487961,
0.042081303894519806,
0.07703514397144318,
-0.05518530681729317,
0.007040886674076319,
-0.03833068162202835,
0.0071835704147815704,
0.03328610956668854,
-0.14229437708854675,
-0.027000360190868378,
0.07405172288417816,
-0.02131648175418377,
0.07990957796573639,
0.08590398728847504,
-0.010954049415886402,
-0.09307493269443512,
-0.09183035790920258,
-0.00039477640530094504,
0.100820392370224,
-0.05888284742832184,
-0.056616101413965225,
0.011454500257968903,
0.06968503445386887,
-0.04247147589921951,
-0.1325283944606781,
-0.14333753287792206,
-0.06820517778396606,
-0.016111066564917564,
0.04245707392692566,
0.0364547036588192,
-0.1026143953204155,
0.0160878524184227,
-0.05077754333615303,
-0.05529499426484108,
0.028148146346211433,
-0.043052349239587784,
0.11173868179321289,
0.0748547688126564,
0.056204792112112045,
0.10632853209972382,
0.07051119208335876,
-0.10457251965999603,
-0.05671357363462448,
0.03214925155043602,
0.12296679615974426,
-0.06327860057353973,
-0.038500942289829254,
-0.08347565680742264,
-0.07724685966968536,
-0.03604131564497948,
0.08402179181575775,
0.051634758710861206,
0.11790721863508224,
-0.1671120971441269,
-0.06483407318592072,
0.2696697413921356,
-0.13318544626235962,
-0.07809294760227203,
0.19618836045265198,
-0.00758237624540925,
0.1488732546567917,
0.10369718074798584,
0.1934758871793747,
0.13799931108951569,
-0.19745171070098877,
0.06983932852745056,
0.060248829424381256,
-0.00317327375523746,
-0.056255701929330826,
0.07792672514915466,
-0.05328135937452316,
-0.0540551021695137,
0.023570194840431213,
-0.12354326248168945,
0.059766944497823715,
-0.0275801420211792,
-0.04408997669816017,
-0.04783986136317253,
-0.08033393323421478,
0.023611964657902718,
0.0359349325299263,
0.03707299008965492,
-0.030161503702402115,
-0.07825424522161484,
0.04592771828174591,
0.1449778527021408,
-0.14870835840702057,
0.07697413116693497,
-0.12906639277935028,
0.08932770043611526,
-0.09257620573043823,
-0.00726674310863018,
-0.16449472308158875,
0.177137553691864,
0.018238702788949013,
0.008868006989359856,
0.03905992582440376,
0.09086005389690399,
0.0063792867586016655,
-0.0032829095143824816,
-0.009978735819458961,
-0.03098895400762558,
0.005503736902028322,
-0.04384877160191536,
-0.05570375174283981,
-0.03628527373075485,
-0.03262963518500328,
-0.07013794779777527,
0.03230387344956398,
-0.18607023358345032,
0.013140512630343437,
-0.039898648858070374,
-0.02411864884197712,
-0.03473058342933655,
-0.010033449158072472,
0.0887182429432869,
0.08730120956897736,
-0.004680424928665161,
0.0006959770689718425,
0.04940163716673851,
0.02860456146299839,
-0.08612289279699326,
0.11029895395040512,
-0.0639411062002182,
0.009632378816604614,
0.06647682934999466,
-0.14849580824375153,
-0.03985710069537163,
0.05869021639227867,
-0.018794849514961243,
-0.006209465209394693,
-0.06359511613845825,
-0.03631941229104996,
0.25342482328414917,
-0.01841719262301922,
0.16123472154140472,
-0.11963383108377457,
-0.00056984752882272,
-0.018600869923830032,
-0.11777523905038834,
0.07482052594423294,
0.05529462546110153,
-0.005322000943124294,
0.047389157116413116,
0.01022964995354414,
-0.047122180461883545,
-0.14771981537342072,
0.18216148018836975,
-0.030816787853837013,
-0.0947006568312645,
0.0563591793179512,
0.05838413164019585,
-0.04071815311908722,
-0.008546356111764908,
-0.15453070402145386,
-0.08501055836677551,
0.011087372899055481,
0.040400389581918716,
0.05041653290390968,
-0.17164763808250427,
0.017379682511091232,
0.024081740528345108,
-0.1205981969833374,
-0.2022792100906372,
0.07856834679841995,
-0.07519624382257462,
0.03295131027698517,
-0.09661821275949478,
-0.018780816346406937,
0.019682861864566803,
-0.02865416556596756,
-0.2012658566236496,
0.17805218696594238,
-0.06746802479028702,
-0.1938299983739853,
-0.15746253728866577,
0.058931875973939896,
0.09964025020599365,
-0.0011345533421263099,
0.0992060974240303,
-0.15068434178829193,
0.004875958431512117,
-0.06031527370214462,
0.034218572080135345,
0.008573485538363457,
-0.059967849403619766,
-0.0609276257455349,
0.007168554235249758,
0.0696449801325798,
-0.16180361807346344,
0.0016591898165643215,
0.0009955100249499083,
-0.08776861429214478,
0.018365219235420227,
-0.035763464868068695,
0.006465098820626736,
0.1413733959197998,
-0.0191317331045866,
0.01235671155154705,
-0.013337232172489166,
0.09036839008331299,
-0.07620778679847717,
-0.010064727626740932,
0.23255133628845215,
-0.0071621062234044075,
-0.011347816325724125,
0.018003802746534348,
0.004513902589678764,
-0.06812813878059387,
0.02116513065993786,
-0.05849650874733925,
-0.06715776771306992,
-0.2658608853816986,
-0.051601435989141464,
-0.03416770324110985,
-0.08805479109287262,
-0.019428089261054993,
0.025186868384480476,
0.00949086993932724,
0.04398765042424202,
0.010851012542843819,
-0.09952337294816971,
0.012460314668715,
0.022488141432404518,
0.07565119117498398,
0.0024346306454390287,
0.09477503597736359,
-0.0728805884718895,
0.023195849731564522,
-0.039641860872507095,
0.0547921359539032,
0.14677299559116364,
0.04140067100524902,
0.07802916318178177,
0.1223142147064209,
0.1317114382982254,
0.10821771621704102,
0.02738441526889801,
-0.04564713314175606,
-0.017024779692292213,
0.05028098449110985,
-0.04525894671678543,
-0.07768493890762329,
0.020396867766976357,
0.06444606930017471,
-0.012187534943223,
-0.026684595271945,
-0.06133111193776131,
0.016870323568582535,
0.1353851705789566,
0.017989177256822586,
-0.21321354806423187,
-0.09261923283338547,
-0.05830603837966919,
-0.10415230691432953,
0.011012962087988853,
0.06251852214336395,
0.09201140701770782,
-0.13370291888713837,
-0.022445272654294968,
-0.00767027260735631,
0.10913178324699402,
0.022077832370996475,
0.009929333813488483,
-0.06728371232748032,
-0.00714003574103117,
0.005377769935876131,
0.09660171717405319,
-0.3121642768383026,
0.2024901956319809,
0.000358077377313748,
0.14011751115322113,
-0.009612629190087318,
-0.0003400518908165395,
0.03473515808582306,
0.07519827783107758,
0.10590878874063492,
-0.011455521918833256,
0.08133609592914581,
-0.1360216587781906,
-0.012715993449091911,
0.08589951694011688,
0.013806759379804134,
0.08035899698734283,
0.06941065937280655,
-0.007423747796565294,
0.02558397315442562,
-0.012578320689499378,
-0.09069059789180756,
-0.17899508774280548,
-0.0022156364284455776,
-0.017776191234588623,
0.08982409536838531,
0.09678256511688232,
-0.04802146553993225,
-0.08947894722223282,
-0.10053329169750214,
0.06441240757703781,
-0.12409796565771103,
-0.07454627007246017,
-0.02879532054066658,
-0.005123344715684652,
0.03255021572113037,
-0.08321789652109146,
-0.00991077721118927,
0.06452086567878723,
0.050467632710933685,
-0.0012167528038844466,
-0.036225248128175735,
-0.000845019705593586,
-0.10096722096204758,
-0.09343958646059036,
-0.006284979172050953,
0.16431283950805664,
0.07121957838535309,
0.04344138503074646,
0.06711117923259735,
-0.007337226532399654,
-0.021965129300951958,
-0.0386631153523922,
-0.03903519734740257,
0.07090147584676743,
-0.11670617014169693,
0.018610356375575066,
-0.05671878159046173,
-0.08434667438268661,
-0.08470674604177475,
-0.063178651034832,
0.14450964331626892,
0.0605534203350544,
-0.005807381123304367,
0.11411228775978088,
0.25995755195617676,
-0.12541227042675018,
-0.2050522416830063,
-0.005526118446141481,
0.07537239044904709,
0.10741577297449112,
-0.026063531637191772,
-0.1807844638824463,
0.09266863018274307,
0.005736475810408592,
-0.029747802764177322,
-0.023782877251505852,
-0.2888506352901459,
-0.1347809135913849,
0.13451147079467773,
0.036519553512334824,
0.10470173507928848,
-0.06477200239896774,
-0.03030525892972946,
-0.003503806423395872,
-0.06113028898835182,
-0.07935961335897446,
-0.06648529320955276,
0.12083017826080322,
-0.020148608833551407,
0.08781764656305313,
0.03001757152378559,
-0.0470641665160656,
0.05340845137834549,
0.045408736914396286,
-0.019528744742274284,
-0.01696186326444149,
0.0917380079627037,
0.05327412113547325,
0.029540324583649635,
0.17883610725402832,
-0.14622092247009277,
0.055542025715112686,
-0.10439801961183548,
-0.09363885968923569,
-0.07426415383815765,
0.057175878435373306,
0.012033659033477306,
-0.012685173191130161,
0.004476931411772966,
-0.038411695510149,
0.009409596212208271,
0.013181379996240139,
-0.065888412296772,
-0.14810052514076233,
0.11305808275938034,
0.11512135714292526,
0.1974434107542038,
-0.016500739380717278,
-0.1183229386806488,
-0.024028241634368896,
-0.03794896975159645,
0.14680254459381104,
-0.18578451871871948,
0.0012203706428408623,
0.06281689554452896,
0.07770631462335587,
0.12557265162467957,
0.0149454390630126,
-0.0686032846570015,
0.10871856659650803,
0.04304374009370804,
0.03277388960123062,
-0.08929671347141266,
0.017022745683789253,
-0.07254338264465332,
-0.051124367862939835,
0.01724664866924286,
0.07397617399692535,
-0.11876191198825836,
-0.032686084508895874,
-0.02357078529894352,
-0.007951818406581879,
-0.14895330369472504,
0.2139463871717453,
0.060408975929021835,
0.08052867650985718,
-0.0700468122959137,
0.03554743900895119,
-0.039125703275203705,
-0.03343195840716362,
0.031246911734342575,
0.0230393186211586,
-0.0949205681681633,
-0.09135843813419342,
-0.02303742803633213,
0.0937703400850296,
0.027195049449801445,
-0.10093441605567932,
-0.11145059019327164,
-0.035979632288217545,
-0.0015468416968360543,
0.061989687383174896,
0.045986030250787735,
0.016899721696972847,
-0.10866007953882217,
-0.018846100196242332,
-0.0853196382522583,
0.06024504452943802,
0.07702267169952393,
-0.00736510893329978,
-0.09226899594068527,
0.18869216740131378,
0.09631886333227158,
0.06421570479869843,
-0.044598326086997986,
-0.07612543553113937,
-0.02913052961230278,
0.11724162846803665,
-0.1265370398759842,
0.014614415355026722,
-0.03942904248833656,
-0.00023649480135645717,
0.005811614915728569,
-0.05068633332848549,
0.015514411963522434,
0.10761825740337372,
-0.08367264270782471,
0.02699628286063671,
0.023007575422525406,
0.08002889156341553,
-0.09933137148618698,
0.03855593129992485,
0.04751834273338318,
-0.042958423495292664,
0.0427825041115284,
0.08950062841176987,
-0.15699170529842377,
0.1319853812456131,
-0.22313368320465088,
-0.00746522843837738,
0.04214946925640106,
0.05858286842703819,
-0.0507623665034771,
-0.03229653090238571,
0.08262655884027481,
0.09269192069768906,
0.05575226619839668,
0.015380063094198704,
0.14370331168174744,
-0.06356967240571976,
0.012383587658405304,
-0.10523016005754471,
0.02021281234920025,
-0.06403359770774841,
0.08043025434017181,
0.03001476638019085,
0.1479433923959732,
0.14665256440639496,
-0.14120477437973022,
0.06845235824584961,
-0.1290234625339508,
-0.0077718584798276424,
-0.014175535179674625,
0.007719031535089016,
-0.1669599711894989,
-0.08030103147029877,
0.06484916806221008,
-0.07132674008607864,
0.09549841284751892,
-0.0374050997197628,
0.04416505992412567,
-0.005708000157028437,
-0.07098835706710815,
0.054384324699640274,
-0.042599186301231384,
0.2410522848367691,
0.03696896880865097,
0.025918977335095406,
-0.021841546520590782,
-0.0349813774228096,
-0.012145663611590862,
-0.026392774656414986,
-0.04937400296330452,
0.21153171360492706,
-0.028687410056591034,
0.0984107181429863,
0.05444728955626488,
-0.023328011855483055,
-0.07451482117176056,
-0.10900753736495972,
-0.10605847835540771,
0.05093667656183243,
-0.03289840742945671,
0.1960752159357071,
0.19091087579727173,
-0.030629778280854225,
0.0891093984246254,
0.02689862810075283,
-0.08766283094882965,
-0.13093054294586182,
-0.1066603884100914,
-0.0644155740737915,
-0.1388976126909256,
0.05610739439725876,
-0.0370241180062294,
0.003087728749960661,
0.049983929842710495,
0.0328255221247673,
-0.05468975007534027,
0.22401344776153564,
0.07685765624046326,
-0.12129494547843933,
0.054636016488075256,
-0.11375559866428375,
0.01632905937731266,
-0.06863681972026825,
0.007807627320289612,
0.17948541045188904,
-0.024618512019515038,
0.07305289059877396,
0.027732092887163162,
-0.06146016716957092,
0.02623695507645607,
-0.1280142068862915,
-0.03946949914097786,
0.010017265565693378,
0.025615017861127853,
0.07109757512807846,
0.14357034862041473,
0.0958959311246872,
-0.06731709837913513,
0.0040429942309856415,
0.11971656233072281,
-0.011973010376095772,
-0.12376762181520462,
-0.12277314811944962,
0.23729749023914337,
0.05067038536071777,
-0.01463882252573967,
-0.015364459715783596,
-0.0035953656770288944,
-0.012956224381923676,
0.2444576472043991,
0.1609565019607544,
0.0312152411788702,
0.030202478170394897,
-0.008373665623366833,
-0.014888672158122063,
-0.0424639955163002,
0.12102770060300827,
0.08782612532377243,
0.1321226954460144,
-0.012078824453055859,
-0.0007473449222743511,
-0.08538854122161865,
-0.08102947473526001,
-0.045567452907562256,
-0.0007689230842515826,
-0.0782533809542656,
-0.06442424654960632,
-0.03347019851207733,
0.11227889358997345,
-0.03157808259129524,
-0.0853494182229042,
-0.07159081846475601,
-0.016633205115795135,
-0.07084094732999802,
-0.026944154873490334,
-0.024670908227562904,
0.0697217509150505,
-0.01442132517695427,
-0.04596724361181259,
0.04740747809410095,
0.095821812748909,
-0.022261057049036026,
0.006147553212940693,
-0.07942412048578262,
0.04467504844069481,
-0.12252582609653473,
0.018940508365631104,
0.009769603610038757,
0.21560122072696686,
0.024631105363368988,
0.09927859902381897,
-0.0063362400978803635,
0.20015451312065125,
0.012446830049157143,
-0.043282076716423035,
0.0322716161608696,
0.09582757949829102,
0.005630562547594309,
0.09690606594085693,
0.0172912385314703,
-0.045959699898958206,
0.03581894934177399,
-0.176799476146698,
-0.003261144971475005,
-0.18300671875476837,
0.04669991880655289,
-0.028198430314660072,
0.07639982551336288,
0.10993022471666336,
-0.07005893439054489,
-0.048515819013118744,
-0.07400424778461456,
0.0562998466193676,
0.033528540283441544,
-0.10503674298524857,
-0.06237722560763359,
-0.23866021633148193,
0.003076025051996112,
-0.10347944498062134,
-0.024459445849061012,
-0.22571562230587006,
-0.025280239060521126,
0.00002679632234503515,
-0.07380371540784836,
0.03490676358342171,
0.05553899705410004,
0.08628950268030167,
0.06242108345031738,
0.030086778104305267,
-0.14380094408988953,
0.07201901823282242,
0.13504958152770996,
-0.20055200159549713,
-0.1097952127456665
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9302
- Mae: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1253 | 1.0 | 235 | 0.9756 | 0.5488 |
| 0.9465 | 2.0 | 470 | 0.9302 | 0.5 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
|
text-classification
|
danwilbury/xlm-roberta-base-finetuned-marc-en
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
xlm-roberta-base-finetuned-marc-en
==================================
This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9302
* Mae: 0.5
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.14.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
67,
98,
4,
34
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
-0.09092789888381958,
0.08008227497339249,
-0.0020140453707426786,
0.11630697548389435,
0.18312716484069824,
0.042973749339580536,
0.15040470659732819,
0.11954569816589355,
-0.09022784978151321,
-0.0003494977136142552,
0.11352355778217316,
0.17042438685894012,
0.007949714548885822,
0.1317906379699707,
-0.06562875211238861,
-0.25790008902549744,
-0.012251557782292366,
0.05035068839788437,
-0.04488401114940643,
0.1443592607975006,
0.10154645889997482,
-0.1380293369293213,
0.09442190825939178,
-0.0014341471251100302,
-0.19770415127277374,
-0.006765956524759531,
0.029228247702121735,
-0.06890206784009933,
0.13384534418582916,
0.03764583170413971,
0.13645893335342407,
0.008102459833025932,
0.07276447862386703,
-0.19063866138458252,
0.020796533674001694,
0.040146905928850174,
0.00358709879219532,
0.0915832370519638,
0.030548246577382088,
-0.01468250248581171,
0.1342829167842865,
-0.060973599553108215,
0.07154899835586548,
0.018368558958172798,
-0.11795462667942047,
-0.2320529818534851,
-0.08308214694261551,
0.035912688821554184,
0.056772612035274506,
0.09991798549890518,
-0.010324102826416492,
0.15634198486804962,
-0.07674280554056168,
0.10339420288801193,
0.23605166375637054,
-0.2893300950527191,
-0.07612571865320206,
0.032290682196617126,
0.043305903673172,
0.08403892815113068,
-0.10349797457456589,
-0.023395158350467682,
0.05919168144464493,
0.05649252235889435,
0.12055753171443939,
-0.0452197901904583,
-0.0962030366063118,
0.01583736389875412,
-0.1441667675971985,
-0.02332693338394165,
0.2023565173149109,
0.03447432816028595,
-0.0476268008351326,
-0.051082272082567215,
-0.032434288412332535,
-0.15748977661132812,
-0.03979404643177986,
-0.0009673985186964273,
0.050246383994817734,
-0.06319781392812729,
-0.08705104142427444,
-0.013781961984932423,
-0.11613631248474121,
-0.05173107236623764,
-0.06630995124578476,
0.1457367241382599,
0.04109196364879608,
0.01682303659617901,
-0.03500403091311455,
0.10437536239624023,
0.021311579272150993,
-0.10318823158740997,
0.012504742480814457,
0.007507571950554848,
-0.010289235971868038,
-0.047606464475393295,
-0.05751515179872513,
-0.07956288009881973,
0.002544892020523548,
0.11920338124036789,
-0.04774501919746399,
0.03242870792746544,
0.03772571310400963,
0.057246528565883636,
-0.07498431205749512,
0.19655898213386536,
-0.028955459594726562,
-0.005452427081763744,
-0.004732458386570215,
0.04949004575610161,
0.015602247789502144,
-0.010551849380135536,
-0.12953022122383118,
0.007022026460617781,
0.08074092119932175,
0.013663754798471928,
-0.07587581127882004,
0.06431995332241058,
-0.06985332071781158,
-0.04672382026910782,
-0.007498918566852808,
-0.07484535127878189,
0.031198130920529366,
-0.008710284717381,
-0.06582239270210266,
-0.02350885048508644,
0.023388126865029335,
0.017721518874168396,
-0.011746599338948727,
0.13322429358959198,
-0.08970562368631363,
0.0364038459956646,
-0.09379757940769196,
-0.10690733790397644,
0.021213319152593613,
-0.07686057686805725,
0.0376054085791111,
-0.10856878012418747,
-0.16822496056556702,
-0.03304174169898033,
0.0522976890206337,
-0.018100610002875328,
-0.060430899262428284,
-0.03577180206775665,
-0.06308238208293915,
0.01012183167040348,
-0.014289181679487228,
0.1470746546983719,
-0.07050348073244095,
0.11098764836788177,
0.03432513028383255,
0.05846457928419113,
-0.04605408012866974,
0.04961748793721199,
-0.09303298592567444,
-0.008509560488164425,
-0.15352317690849304,
0.03393903747200966,
-0.04447499290108681,
0.058807726949453354,
-0.07169647514820099,
-0.11825202405452728,
0.013603618368506432,
0.019700555130839348,
0.04256633669137955,
0.07442475855350494,
-0.1713005006313324,
-0.07580258697271347,
0.14970633387565613,
-0.06509901583194733,
-0.12265316396951675,
0.11653491109609604,
-0.08050192892551422,
0.06815876066684723,
0.07918455451726913,
0.16007547080516815,
0.07368943095207214,
-0.07665113359689713,
0.02364281751215458,
-0.009748673066496849,
0.030511032789945602,
-0.06656751781702042,
0.07645123451948166,
0.023808009922504425,
-0.011088239029049873,
0.031931594014167786,
-0.03572938218712807,
0.036782167851924896,
-0.09431610256433487,
-0.08854455500841141,
-0.03681464493274689,
-0.09542662650346756,
0.05960068479180336,
0.07206001877784729,
0.07265763729810715,
-0.11765731126070023,
-0.07257198542356491,
0.07150136679410934,
0.0861012265086174,
-0.055003076791763306,
0.018849531188607216,
-0.05219917744398117,
0.06374433636665344,
-0.034731317311525345,
-0.022515803575515747,
-0.17951369285583496,
-0.029770378023386,
0.014603286981582642,
0.005661679431796074,
0.032073505222797394,
0.040834296494722366,
0.05372710898518562,
0.04150041192770004,
-0.07131427526473999,
-0.011015200987458229,
-0.050375696271657944,
-0.00942130945622921,
-0.1230582743883133,
-0.19584792852401733,
-0.018969720229506493,
-0.023339437320828438,
0.11454646289348602,
-0.224257692694664,
0.03413281589746475,
-0.04092243313789368,
0.05761338770389557,
0.041867028921842575,
-0.010956901125609875,
-0.02053735964000225,
0.0860079899430275,
-0.03713130205869675,
-0.0327489897608757,
0.07592474669218063,
0.012195399962365627,
-0.10368473827838898,
-0.007822113111615181,
-0.09257585555315018,
0.19031088054180145,
0.1289455145597458,
-0.09699749946594238,
-0.0888260006904602,
0.010719056241214275,
-0.054551877081394196,
-0.03350850194692612,
-0.08110085129737854,
0.03831710293889046,
0.1832561194896698,
-0.00408615218475461,
0.1422782838344574,
-0.08589011430740356,
-0.04746617004275322,
0.027460463345050812,
-0.04416185989975929,
0.026127975434064865,
0.14056192338466644,
0.12522448599338531,
-0.0920635238289833,
0.1394202560186386,
0.14817063510417938,
-0.07915978133678436,
0.1658279448747635,
-0.03801234811544418,
-0.059139613062143326,
-0.024806562811136246,
-0.03590410575270653,
-0.011826027184724808,
0.1085469201207161,
-0.12760300934314728,
0.00472189811989665,
0.03235438093543053,
0.009446932934224606,
0.01708807982504368,
-0.23087909817695618,
-0.04802200570702553,
0.035222526639699936,
-0.040130965411663055,
-0.011457022279500961,
0.006225543096661568,
0.01636500284075737,
0.11100597679615021,
-0.00038215177482925355,
-0.061102356761693954,
0.04150799661874771,
0.007206903304904699,
-0.09109006822109222,
0.21807080507278442,
-0.0752849280834198,
-0.18252205848693848,
-0.13199250400066376,
-0.0493457093834877,
-0.04442271217703819,
-0.00279906764626503,
0.06433742493391037,
-0.07138606905937195,
-0.02895044907927513,
-0.06548784673213959,
0.00514746131375432,
-0.006640486419200897,
0.016602864488959312,
-0.018567554652690887,
0.023830769583582878,
0.03936237096786499,
-0.10331819206476212,
-0.012889090925455093,
-0.061911795288324356,
-0.040967509150505066,
0.053883109241724014,
0.04405555874109268,
0.10898144543170929,
0.14961715042591095,
-0.025291262194514275,
-0.003893762594088912,
-0.03315175324678421,
0.21485087275505066,
-0.08689753711223602,
-0.04712153226137161,
0.13125620782375336,
-0.009326517581939697,
0.03263324499130249,
0.1212800070643425,
0.0720895454287529,
-0.09237991273403168,
0.017520809546113014,
0.02917098067700863,
-0.03997639939188957,
-0.27003076672554016,
-0.03821174427866936,
-0.053288307040929794,
0.0005041555850766599,
0.07316083461046219,
0.026278546079993248,
0.005705300718545914,
0.06592023372650146,
0.04250522330403328,
0.0648341029882431,
-0.02982121892273426,
0.06391338258981705,
0.1108853667974472,
0.03844940662384033,
0.13148561120033264,
-0.05558411031961441,
-0.06147214397788048,
0.05758168175816536,
-0.00863972119987011,
0.24782785773277283,
0.011279144324362278,
0.1309511810541153,
0.07623305916786194,
0.12350870668888092,
0.017918558791279793,
0.05768585205078125,
0.018591217696666718,
-0.03858204931020737,
-0.019616344943642616,
-0.025811797007918358,
-0.029816756024956703,
0.0286216102540493,
-0.04727308079600334,
0.048704832792282104,
-0.13749583065509796,
-0.01498402375727892,
0.06358642131090164,
0.23906491696834564,
0.016769928857684135,
-0.30908310413360596,
-0.10424860566854477,
0.010606772266328335,
-0.05240930989384651,
-0.009383879601955414,
0.026137301698327065,
0.10281414538621902,
-0.12598705291748047,
0.03643062710762024,
-0.08053163439035416,
0.09221653640270233,
-0.0863085463643074,
0.04050378501415253,
0.0738224908709526,
0.0681130588054657,
-0.003933573141694069,
0.07893651723861694,
-0.307219922542572,
0.2819614112377167,
-0.005618869327008724,
0.060745105147361755,
-0.06372545659542084,
-0.025851668789982796,
0.023402828723192215,
0.05463678762316704,
0.06036457046866417,
-0.005185297690331936,
-0.05821243301033974,
-0.17296744883060455,
-0.029245417565107346,
0.025523608550429344,
0.07566779851913452,
-0.01468990370631218,
0.08854345232248306,
-0.0285579115152359,
0.004089497961103916,
0.05787508934736252,
-0.027434229850769043,
-0.05153360217809677,
-0.09460210800170898,
-0.004334294702857733,
0.020693570375442505,
-0.05909181386232376,
-0.06367843598127365,
-0.13336031138896942,
-0.08024092018604279,
0.13815522193908691,
-0.014427115209400654,
-0.04591428115963936,
-0.09696020931005478,
0.07496039569377899,
0.06935662031173706,
-0.0799306333065033,
0.03762155771255493,
0.014699560590088367,
0.0846717432141304,
0.024481261149048805,
-0.047440964728593826,
0.09554848819971085,
-0.05173030123114586,
-0.1872195154428482,
-0.0632166862487793,
0.11352117359638214,
0.028094131499528885,
0.06719598174095154,
-0.023858340457081795,
0.0004107730055693537,
-0.04823746904730797,
-0.08825484663248062,
0.02258949913084507,
0.007237046025693417,
0.08538832515478134,
0.04420587047934532,
-0.06016400828957558,
0.003088439116254449,
-0.0743371769785881,
-0.05789945647120476,
0.20305874943733215,
0.20633313059806824,
-0.09303376823663712,
0.032080233097076416,
0.01414012722671032,
-0.08177021145820618,
-0.17220793664455414,
0.03629900887608528,
0.07108122855424881,
0.012489903718233109,
0.05826587229967117,
-0.15110467374324799,
0.11386826634407043,
0.09753286093473434,
-0.008590045385062695,
0.13361698389053345,
-0.323248952627182,
-0.13557180762290955,
0.09210297465324402,
0.15564033389091492,
0.12722596526145935,
-0.13530485332012177,
-0.012024758383631706,
-0.029694128781557083,
-0.12655147910118103,
0.13825254142284393,
-0.08200353384017944,
0.14067378640174866,
-0.03298668563365936,
0.10618506371974945,
0.0052995807491242886,
-0.05460384488105774,
0.11506109684705734,
0.01607188954949379,
0.10979824513196945,
-0.05073171481490135,
-0.046968698501586914,
0.018168210983276367,
-0.03173650801181793,
0.017488637939095497,
-0.07388205081224442,
0.019537346437573433,
-0.09553373605012894,
-0.037904515862464905,
-0.07616972178220749,
0.03510139882564545,
-0.04053482040762901,
-0.05432239547371864,
-0.04073890298604965,
0.035612355917692184,
0.02205091342329979,
-0.017490994185209274,
0.14471615850925446,
0.005916844122111797,
0.14710642397403717,
0.06948163360357285,
0.09639938920736313,
-0.05343913659453392,
-0.09279846400022507,
-0.03582580387592316,
-0.021688245236873627,
0.049793485552072525,
-0.15473158657550812,
0.02326696179807186,
0.14285890758037567,
0.012413830496370792,
0.15901656448841095,
0.07501823455095291,
-0.028941627591848373,
0.015591477043926716,
0.06824849545955658,
-0.15109407901763916,
-0.0993746891617775,
-0.015658222138881683,
-0.09098188579082489,
-0.11272766441106796,
0.04547811672091484,
0.11424396187067032,
-0.06779132783412933,
-0.027168378233909607,
-0.013252581469714642,
0.009434499777853489,
-0.04961276799440384,
0.19228704273700714,
0.0712907612323761,
0.049355633556842804,
-0.10086462646722794,
0.08726470172405243,
0.05299781262874603,
-0.07277260720729828,
0.009131514467298985,
0.07398980855941772,
-0.0851946696639061,
-0.06054844334721565,
0.06302937865257263,
0.1840636432170868,
-0.06436847895383835,
-0.05052271485328674,
-0.14428043365478516,
-0.12239868193864822,
0.08020304143428802,
0.15456198155879974,
0.1154261901974678,
0.01174027007073164,
-0.04472504183650017,
-0.009678967297077179,
-0.10332822054624557,
0.10373563319444656,
0.06035935878753662,
0.06799294799566269,
-0.15564770996570587,
0.11893093585968018,
0.0298626646399498,
0.0544048435986042,
-0.021874960511922836,
0.03503105044364929,
-0.11320466548204422,
0.016281502321362495,
-0.11635188013315201,
-0.004599275998771191,
-0.01955498568713665,
0.0156586654484272,
0.00008569054625695571,
-0.056630246341228485,
-0.06948243826627731,
0.011811119504272938,
-0.12271115183830261,
-0.015396937727928162,
0.041357602924108505,
0.07619098573923111,
-0.08720040321350098,
-0.03770965710282326,
0.024497678503394127,
-0.04467649757862091,
0.07077261805534363,
0.04765259474515915,
0.00999519880861044,
0.0638277679681778,
-0.1326751559972763,
0.03493008390069008,
0.05847730115056038,
0.016229216009378433,
0.048695411533117294,
-0.1218823567032814,
0.00844301376491785,
0.004147431813180447,
0.07234194129705429,
0.02527628093957901,
0.06878162175416946,
-0.1595860719680786,
-0.003925286699086428,
-0.011753080412745476,
-0.08088759332895279,
-0.0604778528213501,
0.02060185931622982,
0.06034849211573601,
0.033461686223745346,
0.21250495314598083,
-0.08307280391454697,
0.04318675398826599,
-0.19975832104682922,
0.00521842809394002,
-0.01949070766568184,
-0.1242818534374237,
-0.12428144365549088,
-0.0736192986369133,
0.05655497685074806,
-0.0671464130282402,
0.1680191457271576,
0.04778936877846718,
0.05581874027848244,
0.02484714426100254,
-0.020287757739424706,
-0.0074821035377681255,
0.016732243821024895,
0.17049984633922577,
0.007073113229125738,
-0.04048845171928406,
0.0606084018945694,
0.047959793359041214,
0.1063975840806961,
0.10674457252025604,
0.20010076463222504,
0.1684790700674057,
0.009575174190104008,
0.08692093193531036,
0.03743763640522957,
-0.03279959410429001,
-0.13300663232803345,
0.03713468834757805,
-0.025708554312586784,
0.11290872097015381,
-0.026694100350141525,
0.20042958855628967,
0.07072245329618454,
-0.16473351418972015,
0.04714856669306755,
-0.05892984941601753,
-0.08779802173376083,
-0.11389470845460892,
-0.055804088711738586,
-0.09887007623910904,
-0.1443217545747757,
0.005623009521514177,
-0.130331888794899,
-0.001939242472872138,
0.09170602262020111,
0.007379705086350441,
-0.04041507467627525,
0.11972035467624664,
0.02042819932103157,
0.011828257702291012,
0.08732693642377853,
0.013573730364441872,
-0.03270769864320755,
-0.10997237265110016,
-0.04921284690499306,
-0.03101533092558384,
-0.025611599907279015,
0.023357538506388664,
-0.05341451242566109,
-0.06802772730588913,
0.024218278005719185,
-0.026913153007626534,
-0.10152031481266022,
0.014489524997770786,
0.02225584164261818,
0.07951844483613968,
0.03816826641559601,
0.015252734534442425,
0.008539740927517414,
-0.0018916655099019408,
0.2537987232208252,
-0.06090321019291878,
-0.059095606207847595,
-0.12073633074760437,
0.23759934306144714,
0.04082411155104637,
-0.027152735739946365,
0.0369359627366066,
-0.0620994009077549,
0.004789397120475769,
0.250545471906662,
0.23370525240898132,
-0.07233811914920807,
-0.008881565183401108,
0.016480514779686928,
-0.005681920796632767,
-0.014903892762959003,
0.12409383058547974,
0.11327847838401794,
0.043661732226610184,
-0.07554518431425095,
-0.03618474677205086,
-0.053929403424263,
0.002410672837868333,
-0.017594728618860245,
0.06780397146940231,
0.05220600590109825,
0.005234327167272568,
-0.041317231953144073,
0.0750744640827179,
-0.08238773792982101,
-0.11706630140542984,
0.04748406261205673,
-0.2140689343214035,
-0.17265373468399048,
-0.01564285345375538,
0.09141164273023605,
-0.0005080309347249568,
0.06623675674200058,
-0.025556398555636406,
-0.014778113923966885,
0.07295584678649902,
-0.016154099255800247,
-0.1069135069847107,
-0.08071832358837128,
0.09760671108961105,
-0.1033845841884613,
0.18947070837020874,
-0.05197722837328911,
0.05551624298095703,
0.12156101316213608,
0.06087696552276611,
-0.06552910804748535,
0.07936710119247437,
0.036825064569711685,
-0.040335942059755325,
0.04746859520673752,
0.10013407468795776,
-0.03197331726551056,
0.07261445373296738,
0.05393337458372116,
-0.12573927640914917,
0.016867447644472122,
-0.0939512848854065,
-0.04653635248541832,
-0.056750234216451645,
-0.011542480438947678,
-0.07443743944168091,
0.12872548401355743,
0.23667973279953003,
-0.03721931204199791,
-0.007397593930363655,
-0.05932502821087837,
0.02578439563512802,
0.06336025893688202,
0.041056301444768906,
-0.047882936894893646,
-0.22828209400177002,
0.009885349310934544,
0.07289337366819382,
-0.015281859785318375,
-0.26788604259490967,
-0.070579893887043,
0.0017346341628581285,
-0.07060904800891876,
-0.07644132524728775,
0.08083239942789078,
0.07705751806497574,
0.044927142560482025,
-0.06221795082092285,
-0.06259375810623169,
-0.06772700697183609,
0.1547669768333435,
-0.15244202315807343,
-0.0954475924372673
] |
null | null |
transformers
|
Sample usage:
```python
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_answering_squad2")
input_ids = tokenizer.encode("There are two apples on the counter. Q: How many apples? A:", return_tensors="pt")
outputs = model.generate(input_ids)
print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Which should produce this:
```
Generated: There are two apples on the counter. Q: How many apples? A: two
```
|
{}
|
text-generation
|
danyaljj/gpt2_question_answering_squad2
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Sample usage:
Which should produce this:
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
47
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.027653997763991356,
0.02414041943848133,
-0.0068230400793254375,
0.010564634576439857,
0.18164798617362976,
0.033704131841659546,
0.08821956068277359,
0.13570955395698547,
-0.0068973456509411335,
-0.013526750728487968,
0.1547490805387497,
0.20799952745437622,
-0.0026462990790605545,
0.0791444480419159,
-0.0664469450712204,
-0.2753458023071289,
0.05913490429520607,
0.0680282786488533,
-0.007687992881983519,
0.12075648456811905,
0.07187031954526901,
-0.0549883171916008,
0.0886516347527504,
-0.02030559629201889,
-0.17324471473693848,
0.01953965798020363,
0.04816993698477745,
-0.12518654763698578,
0.1176358312368393,
0.05111858248710632,
0.09795232862234116,
0.008365745656192303,
-0.06405694782733917,
-0.13635118305683136,
0.022147029638290405,
0.03033585101366043,
-0.058860234916210175,
0.0636059120297432,
0.1087222546339035,
-0.09939044713973999,
0.09311723709106445,
0.08541663736104965,
-0.0255570225417614,
0.05364618077874184,
-0.15825888514518738,
-0.06378549337387085,
-0.02499648556113243,
0.007804732769727707,
0.06256697326898575,
0.10073644667863846,
-0.017566369846463203,
0.10258800536394119,
-0.0975269079208374,
0.10333853214979172,
0.1500675231218338,
-0.3112771809101105,
0.009987793862819672,
0.09499151259660721,
0.04119991883635521,
0.03931105509400368,
-0.02533094584941864,
0.05045793950557709,
0.025268254801630974,
0.027277586981654167,
0.007437177933752537,
-0.0750175341963768,
-0.1137726753950119,
0.049895867705345154,
-0.09199702739715576,
-0.07458660751581192,
0.22324641048908234,
-0.07399588078260422,
0.060080595314502716,
-0.025852523744106293,
-0.11121725291013718,
-0.05274823680520058,
-0.013890148140490055,
0.018784796819090843,
-0.06587869673967361,
0.08765926212072372,
0.024050135165452957,
-0.06755640357732773,
-0.1323474794626236,
-0.04128742218017578,
-0.18628640472888947,
0.17943057417869568,
0.015332846902310848,
0.05883103236556053,
-0.1924149990081787,
0.11635245382785797,
-0.004000017885118723,
-0.08559784293174744,
0.024640021845698357,
-0.09488005936145782,
0.03717249631881714,
-0.005796557758003473,
-0.06343648582696915,
-0.07624655961990356,
0.078512042760849,
0.13449318706989288,
-0.0038929670117795467,
0.031459223479032516,
-0.03913462534546852,
0.08946967869997025,
0.023094916716217995,
0.11019261926412582,
-0.01329297386109829,
-0.00601809611544013,
0.043852973729372025,
-0.14449132978916168,
-0.008341594599187374,
-0.06913956254720688,
-0.1527271568775177,
-0.05108632892370224,
0.05306483805179596,
0.08953460305929184,
0.008545879274606705,
0.09067165106534958,
-0.04840036481618881,
-0.026439275592565536,
0.06191498041152954,
-0.07166212797164917,
-0.0057375445030629635,
0.0005479406099766493,
0.020326290279626846,
0.12346802651882172,
-0.006863993126899004,
0.01816580630838871,
-0.1344953328371048,
0.07597071677446365,
-0.0810447409749031,
0.0016609809827059507,
-0.037295255810022354,
-0.051307324320077896,
0.016753138974308968,
-0.09774310886859894,
0.014272624626755714,
-0.15190516412258148,
-0.18175770342350006,
0.015764877200126648,
0.0044948384165763855,
-0.03198384866118431,
-0.035312067717313766,
-0.03263629972934723,
-0.023609675467014313,
0.04306609928607941,
-0.06790579855442047,
0.009302832186222076,
-0.05678845942020416,
0.10395034402608871,
-0.032171644270420074,
0.06649759411811829,
-0.10738259553909302,
0.0829162523150444,
-0.12368609756231308,
-0.004673504736274481,
-0.09571383893489838,
0.07571588456630707,
-0.0049130916595458984,
0.11728651076555252,
-0.028541911393404007,
-0.03454771637916565,
-0.07556727528572083,
0.04999465495347977,
-0.02550712786614895,
0.18951213359832764,
-0.060080599039793015,
-0.12557648122310638,
0.2583121061325073,
-0.07503679394721985,
-0.1294521689414978,
0.09354755282402039,
0.013357079587876797,
0.03000263124704361,
0.08708256483078003,
0.17770351469516754,
0.03385210409760475,
0.011724604293704033,
0.08526027947664261,
0.1101398766040802,
-0.11245359480381012,
-0.0934135690331459,
0.01582467369735241,
-0.04410967230796814,
-0.14348545670509338,
0.0551721565425396,
0.06396481394767761,
0.08126390725374222,
-0.04889657348394394,
-0.02648499235510826,
-0.04211905598640442,
0.005280596204102039,
0.08378548920154572,
0.011136471293866634,
0.12981148064136505,
-0.04937934875488281,
-0.03142275661230087,
-0.018193937838077545,
-0.012411710806190968,
-0.03191297501325607,
0.03591127321124077,
-0.019667068496346474,
0.13700194656848907,
-0.048340748995542526,
0.053371917456388474,
-0.18971459567546844,
-0.07922437787055969,
0.0010099048959091306,
0.123023621737957,
-0.014106693677604198,
0.08013445883989334,
0.05753817409276962,
-0.018720267340540886,
-0.004700321704149246,
-0.01032867468893528,
0.1544346958398819,
-0.021616755053400993,
-0.06661882251501083,
-0.04162381589412689,
0.0662311464548111,
-0.05831345543265343,
-0.0033040468115359545,
-0.05776660889387131,
0.013589667156338692,
0.05048443749547005,
0.10443682968616486,
-0.0023575187660753727,
0.03253777325153351,
-0.02123248018324375,
0.018250472843647003,
-0.07885172218084335,
-0.0028943256475031376,
0.09839999675750732,
-0.003195167751982808,
-0.06114937365055084,
0.191707044839859,
-0.16508106887340546,
0.2123199850320816,
0.18989497423171997,
-0.2840019166469574,
0.008855658583343029,
-0.07930868119001389,
-0.03107025846838951,
0.019292673096060753,
0.04051336646080017,
-0.035391807556152344,
0.12321244925260544,
0.0030509934294968843,
0.1893225461244583,
-0.05120055004954338,
-0.054668959230184555,
-0.0003608512051869184,
-0.05736381933093071,
0.0013126746052876115,
0.06707432866096497,
0.11558198183774948,
-0.12564630806446075,
0.1973772495985031,
0.17830142378807068,
0.02446782775223255,
0.16028088331222534,
0.003589105326682329,
-0.02908729389309883,
0.07800903916358948,
0.001039333757944405,
-0.03403163328766823,
-0.08341804146766663,
-0.19453173875808716,
-0.01920945756137371,
0.08615871518850327,
0.05208343267440796,
0.11178864538669586,
-0.1340440809726715,
-0.039688125252723694,
-0.016580121591687202,
-0.013963420875370502,
0.004052120726555586,
0.08927994221448898,
0.05621529743075371,
0.11766386777162552,
-0.008479462936520576,
0.004914911463856697,
0.11690844595432281,
0.024292193353176117,
-0.0974007099866867,
0.20369629561901093,
-0.12859489023685455,
-0.35919657349586487,
-0.17192909121513367,
-0.16941924393177032,
-0.046767693012952805,
0.06603047996759415,
0.10566895455121994,
-0.11921820044517517,
-0.03283723443746567,
0.01984371617436409,
0.10511579364538193,
-0.0874844342470169,
0.025252653285861015,
-0.07854585349559784,
0.039858005940914154,
-0.08228866755962372,
-0.07852846384048462,
-0.058627899736166,
-0.02397638000547886,
-0.06844961643218994,
0.15293799340724945,
-0.10580270737409592,
0.04606963321566582,
0.19703397154808044,
0.035209350287914276,
0.05708123743534088,
-0.03352535888552666,
0.19375872611999512,
-0.09711813181638718,
-0.014181635342538357,
0.20692157745361328,
-0.04432303458452225,
0.08276087045669556,
0.10658510029315948,
-0.0009211950236931443,
-0.0905555859208107,
0.023672347888350487,
-0.03327333554625511,
-0.09995128959417343,
-0.2413795441389084,
-0.12423769384622574,
-0.12672755122184753,
0.07157120853662491,
0.06113129481673241,
0.06719478219747543,
0.1604551076889038,
0.09354656934738159,
-0.019843624904751778,
0.04505275562405586,
-0.0036725422833114862,
0.07906411588191986,
0.20365294814109802,
-0.0204415675252676,
0.13615357875823975,
-0.050657231360673904,
-0.13334059715270996,
0.09257177263498306,
0.06900633871555328,
0.15225820243358612,
0.054498545825481415,
0.05270633473992348,
0.006767008453607559,
0.06716175377368927,
0.1454283893108368,
0.13071000576019287,
0.014545821584761143,
-0.016409022733569145,
-0.021825823932886124,
-0.011036834679543972,
-0.05876464396715164,
0.04085689038038254,
0.02777833305299282,
-0.1610528975725174,
-0.05520197004079819,
-0.12001585215330124,
0.08774644136428833,
0.09219257533550262,
0.06569026410579681,
-0.2342914491891861,
0.007060535252094269,
0.08197256177663803,
-0.028898365795612335,
-0.1258426308631897,
0.08190665394067764,
-0.021697908639907837,
-0.14926569163799286,
0.0494246669113636,
-0.061497997492551804,
0.12161173671483994,
-0.07084709405899048,
0.08109014481306076,
-0.03937468305230141,
-0.062106676399707794,
0.020281726494431496,
0.1271398812532425,
-0.29730626940727234,
0.20356124639511108,
-0.001819691271521151,
-0.05869410187005997,
-0.11437822878360748,
0.01959572173655033,
0.01367559190839529,
0.11016108095645905,
0.10386832803487778,
0.005328167695552111,
-0.0475030355155468,
-0.12364684045314789,
-0.022924374788999557,
0.024910306558012962,
0.12441114336252213,
-0.05739542469382286,
-0.008891535922884941,
-0.044362228363752365,
-0.0058176638558506966,
-0.028876133263111115,
-0.053936153650283813,
0.025268638506531715,
-0.16888569295406342,
0.08389513194561005,
0.017658868804574013,
0.09978678822517395,
0.01261826977133751,
-0.013697084039449692,
-0.09944134950637817,
0.23519866168498993,
-0.07718266546726227,
-0.11035529524087906,
-0.1205357164144516,
-0.04611735790967941,
0.0686027929186821,
-0.0741099938750267,
0.0634869635105133,
-0.08208895474672318,
0.024847982451319695,
-0.047674816101789474,
-0.21411024034023285,
0.1248590424656868,
-0.09078147262334824,
-0.047217957675457,
-0.038028888404369354,
0.1873915195465088,
-0.07860055565834045,
0.003835690440610051,
0.01727161929011345,
0.03052649088203907,
-0.11501652747392654,
-0.10535892844200134,
0.02131424844264984,
-0.005508285015821457,
0.06073078140616417,
0.04357268661260605,
-0.06716573983430862,
0.01641303487122059,
-0.022389056161046028,
-0.006917606573551893,
0.32454678416252136,
0.14079391956329346,
-0.04770330339670181,
0.17363035678863525,
0.11376409232616425,
-0.08209476619958878,
-0.31482723355293274,
-0.08535979688167572,
-0.09984239190816879,
-0.03735451400279999,
-0.06232178583741188,
-0.21656104922294617,
0.09480288624763489,
0.04200942441821098,
-0.015409117564558983,
0.1568077802658081,
-0.24411429464817047,
-0.0795927420258522,
0.15950311720371246,
-0.007333407178521156,
0.3560895025730133,
-0.12491796165704727,
-0.11301901936531067,
-0.05532994866371155,
-0.1397564709186554,
0.15002089738845825,
-0.009417316876351833,
0.11106741428375244,
-0.03287123143672943,
0.10856477171182632,
0.048215944319963455,
-0.05544896051287651,
0.09160676598548889,
0.026295991614460945,
-0.003711326979100704,
-0.10597866773605347,
-0.01747799478471279,
0.043585844337940216,
0.006319248117506504,
0.031217962503433228,
-0.03127649053931236,
0.033463045954704285,
-0.12691029906272888,
-0.04727448150515556,
-0.08006873726844788,
0.05846472829580307,
0.052333541214466095,
-0.0737200528383255,
-0.0010956452460959554,
-0.06611854583024979,
-0.016030769795179367,
0.003143493551760912,
0.19045160710811615,
-0.03460016846656799,
0.14779594540596008,
0.0818052664399147,
0.09073434770107269,
-0.1361592561006546,
-0.0061243316158652306,
-0.06888517737388611,
-0.057741593569517136,
0.08706554025411606,
-0.10988334566354752,
0.06429524719715118,
0.11854783445596695,
-0.04650293290615082,
0.07134203612804413,
0.11840200424194336,
0.015247469767928123,
-0.0033181030303239822,
0.13015136122703552,
-0.2568117082118988,
0.019211336970329285,
-0.0754370167851448,
-0.03775216266512871,
0.08088402450084686,
0.07995659112930298,
0.16486960649490356,
0.036187540739774704,
-0.042049095034599304,
-0.003924929536879063,
0.009187355637550354,
-0.039663419127464294,
0.08243577927350998,
0.012240500189363956,
0.023174172267317772,
-0.15248477458953857,
0.071900375187397,
0.015580810606479645,
-0.12336304783821106,
0.011253113858401775,
0.1477922946214676,
-0.13801799714565277,
-0.11707340180873871,
-0.03374985232949257,
0.08742405474185944,
-0.14541642367839813,
-0.0241269338876009,
-0.04783749580383301,
-0.12825986742973328,
0.09339214116334915,
0.11613135039806366,
0.07497538626194,
0.10595441609621048,
-0.0529337078332901,
-0.02668607421219349,
-0.03682107478380203,
-0.022537073120474815,
-0.0017330512637272477,
0.032638516277074814,
-0.08304216712713242,
0.0579586885869503,
-0.020800847560167313,
0.14298540353775024,
-0.08964299410581589,
-0.07169508188962936,
-0.1581236720085144,
0.03564200550317764,
-0.12593989074230194,
-0.07035141438245773,
-0.08840593695640564,
-0.05227470397949219,
-0.007837125100195408,
-0.01494099572300911,
-0.0388214997947216,
-0.04472146928310394,
-0.12364204227924347,
0.01879296824336052,
-0.05806630104780197,
0.02100815810263157,
-0.07383234053850174,
0.00039667764212936163,
0.08932872861623764,
-0.0410015694797039,
0.13851116597652435,
0.13557660579681396,
-0.08107975125312805,
0.11907198280096054,
-0.13537484407424927,
-0.0908876284956932,
0.1157127171754837,
0.013428857550024986,
0.03907458856701851,
0.06849293410778046,
0.037317484617233276,
0.06514574587345123,
0.016511039808392525,
0.05237346887588501,
0.006972990930080414,
-0.1299850195646286,
0.03433857858181,
-0.042786743491888046,
-0.1481933295726776,
-0.05744143947958946,
-0.05092177540063858,
0.039562974125146866,
0.02438235841691494,
0.10801149904727936,
-0.03665049374103546,
0.11085481196641922,
-0.058541763573884964,
0.01499281544238329,
0.004919432103633881,
-0.18287403881549835,
-0.044654008001089096,
-0.07792776077985764,
0.02775009535253048,
0.022204352542757988,
0.2720205783843994,
0.0410233810544014,
0.020275471732020378,
0.017097288742661476,
0.11327627301216125,
0.057128578424453735,
0.015525308437645435,
0.214890718460083,
0.11996994912624359,
-0.06049320101737976,
-0.10806480050086975,
0.0858595222234726,
0.02164783701300621,
0.007426374591886997,
0.14070266485214233,
0.008503482677042484,
-0.015597577206790447,
0.0887407436966896,
-0.03357330709695816,
0.0031263602431863546,
-0.11658911406993866,
-0.13779941201210022,
-0.028487415984272957,
0.0629650130867958,
-0.0040870243683457375,
0.0956285297870636,
0.13609373569488525,
-0.026881180703639984,
0.03953414782881737,
-0.007877747528254986,
-0.054916199296712875,
-0.1785028725862503,
-0.15742821991443634,
-0.0790708139538765,
-0.13561099767684937,
0.014744875021278858,
-0.10368648171424866,
0.04369770362973213,
0.09560346603393555,
0.055915698409080505,
-0.05440305173397064,
0.10839936882257462,
0.060064028948545456,
-0.1045473963022232,
0.056569941341876984,
-0.032912541180849075,
0.06427399069070816,
-0.001812951872125268,
-0.02503552846610546,
-0.09098561853170395,
0.0020124134607613087,
0.0017788249533623457,
0.0514003150165081,
-0.05152478814125061,
0.024474015459418297,
-0.15132632851600647,
-0.09570280462503433,
-0.04949872940778732,
0.07316448539495468,
-0.06007300689816475,
0.1162300780415535,
-0.001420395914465189,
-0.017011309042572975,
0.03990921378135681,
0.2064858227968216,
-0.07188161462545395,
-0.04990030825138092,
-0.047407180070877075,
0.22449158132076263,
0.04847963526844978,
0.10619479417800903,
-0.013415440917015076,
-0.00436578830704093,
-0.07670432329177856,
0.36612021923065186,
0.2802904546260834,
-0.06149837002158165,
0.012722660787403584,
0.03524370491504669,
0.030115660279989243,
0.13885097205638885,
0.1454230099916458,
0.09396251291036606,
0.27579233050346375,
-0.08266803622245789,
-0.052018675953149796,
-0.015770163387060165,
-0.020211221650242805,
-0.09714096784591675,
0.11003416776657104,
0.04697350785136223,
-0.06982195377349854,
-0.044631510972976685,
0.09750646352767944,
-0.24107815325260162,
0.1615772694349289,
-0.07760030031204224,
-0.15214353799819946,
-0.06177033111453056,
0.012448563240468502,
0.10150322318077087,
0.00011545186134753749,
0.08784360438585281,
-0.009687529876828194,
-0.10291683673858643,
0.05749227851629257,
0.02730483002960682,
-0.23568211495876312,
-0.007146455347537994,
0.053680915385484695,
-0.04540037736296654,
0.013332240283489227,
-0.01917567476630211,
0.04910791665315628,
0.06717875599861145,
0.055140718817710876,
-0.0426395982503891,
0.03817736729979515,
-0.010196289978921413,
-0.05020907521247864,
0.029649224132299423,
0.044778332114219666,
0.017814766615629196,
-0.13065220415592194,
0.05277646332979202,
-0.13968263566493988,
0.041911475360393524,
-0.029653942212462425,
-0.027413733303546906,
-0.004670299123972654,
-0.019546283408999443,
-0.06313455104827881,
0.057941507548093796,
0.08424945920705795,
0.001472705160267651,
-0.007915833964943886,
-0.08050897717475891,
-0.011023934930562973,
-0.012819311581552029,
-0.08308050036430359,
-0.10086389631032944,
-0.1384236365556717,
-0.10634621232748032,
0.12701933085918427,
-0.017066750675439835,
-0.19125573337078094,
0.01284839678555727,
-0.09708964824676514,
0.060041818767786026,
-0.1797112077474594,
0.0843181237578392,
0.06071038171648979,
0.01623542606830597,
-0.004114143084734678,
-0.029135411605238914,
0.039420004934072495,
0.08210206776857376,
-0.10779064148664474,
-0.09044761955738068
] |
null | null |
transformers
|
Sample usage:
```python
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_generation_given_paragraph")
input_ids = tokenizer.encode("There are two apples on the counter. Q:", return_tensors="pt")
outputs = model.generate(input_ids)
print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Which should produce this:
```
Generated: There are two apples on the counter. Q: What is the name of the counter that is on
```
|
{}
|
text-generation
|
danyaljj/gpt2_question_generation_given_paragraph
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Sample usage:
Which should produce this:
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
47
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.027653997763991356,
0.02414041943848133,
-0.0068230400793254375,
0.010564634576439857,
0.18164798617362976,
0.033704131841659546,
0.08821956068277359,
0.13570955395698547,
-0.0068973456509411335,
-0.013526750728487968,
0.1547490805387497,
0.20799952745437622,
-0.0026462990790605545,
0.0791444480419159,
-0.0664469450712204,
-0.2753458023071289,
0.05913490429520607,
0.0680282786488533,
-0.007687992881983519,
0.12075648456811905,
0.07187031954526901,
-0.0549883171916008,
0.0886516347527504,
-0.02030559629201889,
-0.17324471473693848,
0.01953965798020363,
0.04816993698477745,
-0.12518654763698578,
0.1176358312368393,
0.05111858248710632,
0.09795232862234116,
0.008365745656192303,
-0.06405694782733917,
-0.13635118305683136,
0.022147029638290405,
0.03033585101366043,
-0.058860234916210175,
0.0636059120297432,
0.1087222546339035,
-0.09939044713973999,
0.09311723709106445,
0.08541663736104965,
-0.0255570225417614,
0.05364618077874184,
-0.15825888514518738,
-0.06378549337387085,
-0.02499648556113243,
0.007804732769727707,
0.06256697326898575,
0.10073644667863846,
-0.017566369846463203,
0.10258800536394119,
-0.0975269079208374,
0.10333853214979172,
0.1500675231218338,
-0.3112771809101105,
0.009987793862819672,
0.09499151259660721,
0.04119991883635521,
0.03931105509400368,
-0.02533094584941864,
0.05045793950557709,
0.025268254801630974,
0.027277586981654167,
0.007437177933752537,
-0.0750175341963768,
-0.1137726753950119,
0.049895867705345154,
-0.09199702739715576,
-0.07458660751581192,
0.22324641048908234,
-0.07399588078260422,
0.060080595314502716,
-0.025852523744106293,
-0.11121725291013718,
-0.05274823680520058,
-0.013890148140490055,
0.018784796819090843,
-0.06587869673967361,
0.08765926212072372,
0.024050135165452957,
-0.06755640357732773,
-0.1323474794626236,
-0.04128742218017578,
-0.18628640472888947,
0.17943057417869568,
0.015332846902310848,
0.05883103236556053,
-0.1924149990081787,
0.11635245382785797,
-0.004000017885118723,
-0.08559784293174744,
0.024640021845698357,
-0.09488005936145782,
0.03717249631881714,
-0.005796557758003473,
-0.06343648582696915,
-0.07624655961990356,
0.078512042760849,
0.13449318706989288,
-0.0038929670117795467,
0.031459223479032516,
-0.03913462534546852,
0.08946967869997025,
0.023094916716217995,
0.11019261926412582,
-0.01329297386109829,
-0.00601809611544013,
0.043852973729372025,
-0.14449132978916168,
-0.008341594599187374,
-0.06913956254720688,
-0.1527271568775177,
-0.05108632892370224,
0.05306483805179596,
0.08953460305929184,
0.008545879274606705,
0.09067165106534958,
-0.04840036481618881,
-0.026439275592565536,
0.06191498041152954,
-0.07166212797164917,
-0.0057375445030629635,
0.0005479406099766493,
0.020326290279626846,
0.12346802651882172,
-0.006863993126899004,
0.01816580630838871,
-0.1344953328371048,
0.07597071677446365,
-0.0810447409749031,
0.0016609809827059507,
-0.037295255810022354,
-0.051307324320077896,
0.016753138974308968,
-0.09774310886859894,
0.014272624626755714,
-0.15190516412258148,
-0.18175770342350006,
0.015764877200126648,
0.0044948384165763855,
-0.03198384866118431,
-0.035312067717313766,
-0.03263629972934723,
-0.023609675467014313,
0.04306609928607941,
-0.06790579855442047,
0.009302832186222076,
-0.05678845942020416,
0.10395034402608871,
-0.032171644270420074,
0.06649759411811829,
-0.10738259553909302,
0.0829162523150444,
-0.12368609756231308,
-0.004673504736274481,
-0.09571383893489838,
0.07571588456630707,
-0.0049130916595458984,
0.11728651076555252,
-0.028541911393404007,
-0.03454771637916565,
-0.07556727528572083,
0.04999465495347977,
-0.02550712786614895,
0.18951213359832764,
-0.060080599039793015,
-0.12557648122310638,
0.2583121061325073,
-0.07503679394721985,
-0.1294521689414978,
0.09354755282402039,
0.013357079587876797,
0.03000263124704361,
0.08708256483078003,
0.17770351469516754,
0.03385210409760475,
0.011724604293704033,
0.08526027947664261,
0.1101398766040802,
-0.11245359480381012,
-0.0934135690331459,
0.01582467369735241,
-0.04410967230796814,
-0.14348545670509338,
0.0551721565425396,
0.06396481394767761,
0.08126390725374222,
-0.04889657348394394,
-0.02648499235510826,
-0.04211905598640442,
0.005280596204102039,
0.08378548920154572,
0.011136471293866634,
0.12981148064136505,
-0.04937934875488281,
-0.03142275661230087,
-0.018193937838077545,
-0.012411710806190968,
-0.03191297501325607,
0.03591127321124077,
-0.019667068496346474,
0.13700194656848907,
-0.048340748995542526,
0.053371917456388474,
-0.18971459567546844,
-0.07922437787055969,
0.0010099048959091306,
0.123023621737957,
-0.014106693677604198,
0.08013445883989334,
0.05753817409276962,
-0.018720267340540886,
-0.004700321704149246,
-0.01032867468893528,
0.1544346958398819,
-0.021616755053400993,
-0.06661882251501083,
-0.04162381589412689,
0.0662311464548111,
-0.05831345543265343,
-0.0033040468115359545,
-0.05776660889387131,
0.013589667156338692,
0.05048443749547005,
0.10443682968616486,
-0.0023575187660753727,
0.03253777325153351,
-0.02123248018324375,
0.018250472843647003,
-0.07885172218084335,
-0.0028943256475031376,
0.09839999675750732,
-0.003195167751982808,
-0.06114937365055084,
0.191707044839859,
-0.16508106887340546,
0.2123199850320816,
0.18989497423171997,
-0.2840019166469574,
0.008855658583343029,
-0.07930868119001389,
-0.03107025846838951,
0.019292673096060753,
0.04051336646080017,
-0.035391807556152344,
0.12321244925260544,
0.0030509934294968843,
0.1893225461244583,
-0.05120055004954338,
-0.054668959230184555,
-0.0003608512051869184,
-0.05736381933093071,
0.0013126746052876115,
0.06707432866096497,
0.11558198183774948,
-0.12564630806446075,
0.1973772495985031,
0.17830142378807068,
0.02446782775223255,
0.16028088331222534,
0.003589105326682329,
-0.02908729389309883,
0.07800903916358948,
0.001039333757944405,
-0.03403163328766823,
-0.08341804146766663,
-0.19453173875808716,
-0.01920945756137371,
0.08615871518850327,
0.05208343267440796,
0.11178864538669586,
-0.1340440809726715,
-0.039688125252723694,
-0.016580121591687202,
-0.013963420875370502,
0.004052120726555586,
0.08927994221448898,
0.05621529743075371,
0.11766386777162552,
-0.008479462936520576,
0.004914911463856697,
0.11690844595432281,
0.024292193353176117,
-0.0974007099866867,
0.20369629561901093,
-0.12859489023685455,
-0.35919657349586487,
-0.17192909121513367,
-0.16941924393177032,
-0.046767693012952805,
0.06603047996759415,
0.10566895455121994,
-0.11921820044517517,
-0.03283723443746567,
0.01984371617436409,
0.10511579364538193,
-0.0874844342470169,
0.025252653285861015,
-0.07854585349559784,
0.039858005940914154,
-0.08228866755962372,
-0.07852846384048462,
-0.058627899736166,
-0.02397638000547886,
-0.06844961643218994,
0.15293799340724945,
-0.10580270737409592,
0.04606963321566582,
0.19703397154808044,
0.035209350287914276,
0.05708123743534088,
-0.03352535888552666,
0.19375872611999512,
-0.09711813181638718,
-0.014181635342538357,
0.20692157745361328,
-0.04432303458452225,
0.08276087045669556,
0.10658510029315948,
-0.0009211950236931443,
-0.0905555859208107,
0.023672347888350487,
-0.03327333554625511,
-0.09995128959417343,
-0.2413795441389084,
-0.12423769384622574,
-0.12672755122184753,
0.07157120853662491,
0.06113129481673241,
0.06719478219747543,
0.1604551076889038,
0.09354656934738159,
-0.019843624904751778,
0.04505275562405586,
-0.0036725422833114862,
0.07906411588191986,
0.20365294814109802,
-0.0204415675252676,
0.13615357875823975,
-0.050657231360673904,
-0.13334059715270996,
0.09257177263498306,
0.06900633871555328,
0.15225820243358612,
0.054498545825481415,
0.05270633473992348,
0.006767008453607559,
0.06716175377368927,
0.1454283893108368,
0.13071000576019287,
0.014545821584761143,
-0.016409022733569145,
-0.021825823932886124,
-0.011036834679543972,
-0.05876464396715164,
0.04085689038038254,
0.02777833305299282,
-0.1610528975725174,
-0.05520197004079819,
-0.12001585215330124,
0.08774644136428833,
0.09219257533550262,
0.06569026410579681,
-0.2342914491891861,
0.007060535252094269,
0.08197256177663803,
-0.028898365795612335,
-0.1258426308631897,
0.08190665394067764,
-0.021697908639907837,
-0.14926569163799286,
0.0494246669113636,
-0.061497997492551804,
0.12161173671483994,
-0.07084709405899048,
0.08109014481306076,
-0.03937468305230141,
-0.062106676399707794,
0.020281726494431496,
0.1271398812532425,
-0.29730626940727234,
0.20356124639511108,
-0.001819691271521151,
-0.05869410187005997,
-0.11437822878360748,
0.01959572173655033,
0.01367559190839529,
0.11016108095645905,
0.10386832803487778,
0.005328167695552111,
-0.0475030355155468,
-0.12364684045314789,
-0.022924374788999557,
0.024910306558012962,
0.12441114336252213,
-0.05739542469382286,
-0.008891535922884941,
-0.044362228363752365,
-0.0058176638558506966,
-0.028876133263111115,
-0.053936153650283813,
0.025268638506531715,
-0.16888569295406342,
0.08389513194561005,
0.017658868804574013,
0.09978678822517395,
0.01261826977133751,
-0.013697084039449692,
-0.09944134950637817,
0.23519866168498993,
-0.07718266546726227,
-0.11035529524087906,
-0.1205357164144516,
-0.04611735790967941,
0.0686027929186821,
-0.0741099938750267,
0.0634869635105133,
-0.08208895474672318,
0.024847982451319695,
-0.047674816101789474,
-0.21411024034023285,
0.1248590424656868,
-0.09078147262334824,
-0.047217957675457,
-0.038028888404369354,
0.1873915195465088,
-0.07860055565834045,
0.003835690440610051,
0.01727161929011345,
0.03052649088203907,
-0.11501652747392654,
-0.10535892844200134,
0.02131424844264984,
-0.005508285015821457,
0.06073078140616417,
0.04357268661260605,
-0.06716573983430862,
0.01641303487122059,
-0.022389056161046028,
-0.006917606573551893,
0.32454678416252136,
0.14079391956329346,
-0.04770330339670181,
0.17363035678863525,
0.11376409232616425,
-0.08209476619958878,
-0.31482723355293274,
-0.08535979688167572,
-0.09984239190816879,
-0.03735451400279999,
-0.06232178583741188,
-0.21656104922294617,
0.09480288624763489,
0.04200942441821098,
-0.015409117564558983,
0.1568077802658081,
-0.24411429464817047,
-0.0795927420258522,
0.15950311720371246,
-0.007333407178521156,
0.3560895025730133,
-0.12491796165704727,
-0.11301901936531067,
-0.05532994866371155,
-0.1397564709186554,
0.15002089738845825,
-0.009417316876351833,
0.11106741428375244,
-0.03287123143672943,
0.10856477171182632,
0.048215944319963455,
-0.05544896051287651,
0.09160676598548889,
0.026295991614460945,
-0.003711326979100704,
-0.10597866773605347,
-0.01747799478471279,
0.043585844337940216,
0.006319248117506504,
0.031217962503433228,
-0.03127649053931236,
0.033463045954704285,
-0.12691029906272888,
-0.04727448150515556,
-0.08006873726844788,
0.05846472829580307,
0.052333541214466095,
-0.0737200528383255,
-0.0010956452460959554,
-0.06611854583024979,
-0.016030769795179367,
0.003143493551760912,
0.19045160710811615,
-0.03460016846656799,
0.14779594540596008,
0.0818052664399147,
0.09073434770107269,
-0.1361592561006546,
-0.0061243316158652306,
-0.06888517737388611,
-0.057741593569517136,
0.08706554025411606,
-0.10988334566354752,
0.06429524719715118,
0.11854783445596695,
-0.04650293290615082,
0.07134203612804413,
0.11840200424194336,
0.015247469767928123,
-0.0033181030303239822,
0.13015136122703552,
-0.2568117082118988,
0.019211336970329285,
-0.0754370167851448,
-0.03775216266512871,
0.08088402450084686,
0.07995659112930298,
0.16486960649490356,
0.036187540739774704,
-0.042049095034599304,
-0.003924929536879063,
0.009187355637550354,
-0.039663419127464294,
0.08243577927350998,
0.012240500189363956,
0.023174172267317772,
-0.15248477458953857,
0.071900375187397,
0.015580810606479645,
-0.12336304783821106,
0.011253113858401775,
0.1477922946214676,
-0.13801799714565277,
-0.11707340180873871,
-0.03374985232949257,
0.08742405474185944,
-0.14541642367839813,
-0.0241269338876009,
-0.04783749580383301,
-0.12825986742973328,
0.09339214116334915,
0.11613135039806366,
0.07497538626194,
0.10595441609621048,
-0.0529337078332901,
-0.02668607421219349,
-0.03682107478380203,
-0.022537073120474815,
-0.0017330512637272477,
0.032638516277074814,
-0.08304216712713242,
0.0579586885869503,
-0.020800847560167313,
0.14298540353775024,
-0.08964299410581589,
-0.07169508188962936,
-0.1581236720085144,
0.03564200550317764,
-0.12593989074230194,
-0.07035141438245773,
-0.08840593695640564,
-0.05227470397949219,
-0.007837125100195408,
-0.01494099572300911,
-0.0388214997947216,
-0.04472146928310394,
-0.12364204227924347,
0.01879296824336052,
-0.05806630104780197,
0.02100815810263157,
-0.07383234053850174,
0.00039667764212936163,
0.08932872861623764,
-0.0410015694797039,
0.13851116597652435,
0.13557660579681396,
-0.08107975125312805,
0.11907198280096054,
-0.13537484407424927,
-0.0908876284956932,
0.1157127171754837,
0.013428857550024986,
0.03907458856701851,
0.06849293410778046,
0.037317484617233276,
0.06514574587345123,
0.016511039808392525,
0.05237346887588501,
0.006972990930080414,
-0.1299850195646286,
0.03433857858181,
-0.042786743491888046,
-0.1481933295726776,
-0.05744143947958946,
-0.05092177540063858,
0.039562974125146866,
0.02438235841691494,
0.10801149904727936,
-0.03665049374103546,
0.11085481196641922,
-0.058541763573884964,
0.01499281544238329,
0.004919432103633881,
-0.18287403881549835,
-0.044654008001089096,
-0.07792776077985764,
0.02775009535253048,
0.022204352542757988,
0.2720205783843994,
0.0410233810544014,
0.020275471732020378,
0.017097288742661476,
0.11327627301216125,
0.057128578424453735,
0.015525308437645435,
0.214890718460083,
0.11996994912624359,
-0.06049320101737976,
-0.10806480050086975,
0.0858595222234726,
0.02164783701300621,
0.007426374591886997,
0.14070266485214233,
0.008503482677042484,
-0.015597577206790447,
0.0887407436966896,
-0.03357330709695816,
0.0031263602431863546,
-0.11658911406993866,
-0.13779941201210022,
-0.028487415984272957,
0.0629650130867958,
-0.0040870243683457375,
0.0956285297870636,
0.13609373569488525,
-0.026881180703639984,
0.03953414782881737,
-0.007877747528254986,
-0.054916199296712875,
-0.1785028725862503,
-0.15742821991443634,
-0.0790708139538765,
-0.13561099767684937,
0.014744875021278858,
-0.10368648171424866,
0.04369770362973213,
0.09560346603393555,
0.055915698409080505,
-0.05440305173397064,
0.10839936882257462,
0.060064028948545456,
-0.1045473963022232,
0.056569941341876984,
-0.032912541180849075,
0.06427399069070816,
-0.001812951872125268,
-0.02503552846610546,
-0.09098561853170395,
0.0020124134607613087,
0.0017788249533623457,
0.0514003150165081,
-0.05152478814125061,
0.024474015459418297,
-0.15132632851600647,
-0.09570280462503433,
-0.04949872940778732,
0.07316448539495468,
-0.06007300689816475,
0.1162300780415535,
-0.001420395914465189,
-0.017011309042572975,
0.03990921378135681,
0.2064858227968216,
-0.07188161462545395,
-0.04990030825138092,
-0.047407180070877075,
0.22449158132076263,
0.04847963526844978,
0.10619479417800903,
-0.013415440917015076,
-0.00436578830704093,
-0.07670432329177856,
0.36612021923065186,
0.2802904546260834,
-0.06149837002158165,
0.012722660787403584,
0.03524370491504669,
0.030115660279989243,
0.13885097205638885,
0.1454230099916458,
0.09396251291036606,
0.27579233050346375,
-0.08266803622245789,
-0.052018675953149796,
-0.015770163387060165,
-0.020211221650242805,
-0.09714096784591675,
0.11003416776657104,
0.04697350785136223,
-0.06982195377349854,
-0.044631510972976685,
0.09750646352767944,
-0.24107815325260162,
0.1615772694349289,
-0.07760030031204224,
-0.15214353799819946,
-0.06177033111453056,
0.012448563240468502,
0.10150322318077087,
0.00011545186134753749,
0.08784360438585281,
-0.009687529876828194,
-0.10291683673858643,
0.05749227851629257,
0.02730483002960682,
-0.23568211495876312,
-0.007146455347537994,
0.053680915385484695,
-0.04540037736296654,
0.013332240283489227,
-0.01917567476630211,
0.04910791665315628,
0.06717875599861145,
0.055140718817710876,
-0.0426395982503891,
0.03817736729979515,
-0.010196289978921413,
-0.05020907521247864,
0.029649224132299423,
0.044778332114219666,
0.017814766615629196,
-0.13065220415592194,
0.05277646332979202,
-0.13968263566493988,
0.041911475360393524,
-0.029653942212462425,
-0.027413733303546906,
-0.004670299123972654,
-0.019546283408999443,
-0.06313455104827881,
0.057941507548093796,
0.08424945920705795,
0.001472705160267651,
-0.007915833964943886,
-0.08050897717475891,
-0.011023934930562973,
-0.012819311581552029,
-0.08308050036430359,
-0.10086389631032944,
-0.1384236365556717,
-0.10634621232748032,
0.12701933085918427,
-0.017066750675439835,
-0.19125573337078094,
0.01284839678555727,
-0.09708964824676514,
0.060041818767786026,
-0.1797112077474594,
0.0843181237578392,
0.06071038171648979,
0.01623542606830597,
-0.004114143084734678,
-0.029135411605238914,
0.039420004934072495,
0.08210206776857376,
-0.10779064148664474,
-0.09044761955738068
] |
null | null |
transformers
|
Sample usage:
```python
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_generation_given_paragraph_answer")
input_ids = tokenizer.encode("There are two apples on the counter. A: apples Q:", return_tensors="pt")
outputs = model.generate(input_ids)
print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Which should produce this:
```
Generated: There are two apples on the counter. A: apples Q: What is the name of the counter
```
|
{}
|
text-generation
|
danyaljj/gpt2_question_generation_given_paragraph_answer
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Sample usage:
Which should produce this:
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
47
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.027653997763991356,
0.02414041943848133,
-0.0068230400793254375,
0.010564634576439857,
0.18164798617362976,
0.033704131841659546,
0.08821956068277359,
0.13570955395698547,
-0.0068973456509411335,
-0.013526750728487968,
0.1547490805387497,
0.20799952745437622,
-0.0026462990790605545,
0.0791444480419159,
-0.0664469450712204,
-0.2753458023071289,
0.05913490429520607,
0.0680282786488533,
-0.007687992881983519,
0.12075648456811905,
0.07187031954526901,
-0.0549883171916008,
0.0886516347527504,
-0.02030559629201889,
-0.17324471473693848,
0.01953965798020363,
0.04816993698477745,
-0.12518654763698578,
0.1176358312368393,
0.05111858248710632,
0.09795232862234116,
0.008365745656192303,
-0.06405694782733917,
-0.13635118305683136,
0.022147029638290405,
0.03033585101366043,
-0.058860234916210175,
0.0636059120297432,
0.1087222546339035,
-0.09939044713973999,
0.09311723709106445,
0.08541663736104965,
-0.0255570225417614,
0.05364618077874184,
-0.15825888514518738,
-0.06378549337387085,
-0.02499648556113243,
0.007804732769727707,
0.06256697326898575,
0.10073644667863846,
-0.017566369846463203,
0.10258800536394119,
-0.0975269079208374,
0.10333853214979172,
0.1500675231218338,
-0.3112771809101105,
0.009987793862819672,
0.09499151259660721,
0.04119991883635521,
0.03931105509400368,
-0.02533094584941864,
0.05045793950557709,
0.025268254801630974,
0.027277586981654167,
0.007437177933752537,
-0.0750175341963768,
-0.1137726753950119,
0.049895867705345154,
-0.09199702739715576,
-0.07458660751581192,
0.22324641048908234,
-0.07399588078260422,
0.060080595314502716,
-0.025852523744106293,
-0.11121725291013718,
-0.05274823680520058,
-0.013890148140490055,
0.018784796819090843,
-0.06587869673967361,
0.08765926212072372,
0.024050135165452957,
-0.06755640357732773,
-0.1323474794626236,
-0.04128742218017578,
-0.18628640472888947,
0.17943057417869568,
0.015332846902310848,
0.05883103236556053,
-0.1924149990081787,
0.11635245382785797,
-0.004000017885118723,
-0.08559784293174744,
0.024640021845698357,
-0.09488005936145782,
0.03717249631881714,
-0.005796557758003473,
-0.06343648582696915,
-0.07624655961990356,
0.078512042760849,
0.13449318706989288,
-0.0038929670117795467,
0.031459223479032516,
-0.03913462534546852,
0.08946967869997025,
0.023094916716217995,
0.11019261926412582,
-0.01329297386109829,
-0.00601809611544013,
0.043852973729372025,
-0.14449132978916168,
-0.008341594599187374,
-0.06913956254720688,
-0.1527271568775177,
-0.05108632892370224,
0.05306483805179596,
0.08953460305929184,
0.008545879274606705,
0.09067165106534958,
-0.04840036481618881,
-0.026439275592565536,
0.06191498041152954,
-0.07166212797164917,
-0.0057375445030629635,
0.0005479406099766493,
0.020326290279626846,
0.12346802651882172,
-0.006863993126899004,
0.01816580630838871,
-0.1344953328371048,
0.07597071677446365,
-0.0810447409749031,
0.0016609809827059507,
-0.037295255810022354,
-0.051307324320077896,
0.016753138974308968,
-0.09774310886859894,
0.014272624626755714,
-0.15190516412258148,
-0.18175770342350006,
0.015764877200126648,
0.0044948384165763855,
-0.03198384866118431,
-0.035312067717313766,
-0.03263629972934723,
-0.023609675467014313,
0.04306609928607941,
-0.06790579855442047,
0.009302832186222076,
-0.05678845942020416,
0.10395034402608871,
-0.032171644270420074,
0.06649759411811829,
-0.10738259553909302,
0.0829162523150444,
-0.12368609756231308,
-0.004673504736274481,
-0.09571383893489838,
0.07571588456630707,
-0.0049130916595458984,
0.11728651076555252,
-0.028541911393404007,
-0.03454771637916565,
-0.07556727528572083,
0.04999465495347977,
-0.02550712786614895,
0.18951213359832764,
-0.060080599039793015,
-0.12557648122310638,
0.2583121061325073,
-0.07503679394721985,
-0.1294521689414978,
0.09354755282402039,
0.013357079587876797,
0.03000263124704361,
0.08708256483078003,
0.17770351469516754,
0.03385210409760475,
0.011724604293704033,
0.08526027947664261,
0.1101398766040802,
-0.11245359480381012,
-0.0934135690331459,
0.01582467369735241,
-0.04410967230796814,
-0.14348545670509338,
0.0551721565425396,
0.06396481394767761,
0.08126390725374222,
-0.04889657348394394,
-0.02648499235510826,
-0.04211905598640442,
0.005280596204102039,
0.08378548920154572,
0.011136471293866634,
0.12981148064136505,
-0.04937934875488281,
-0.03142275661230087,
-0.018193937838077545,
-0.012411710806190968,
-0.03191297501325607,
0.03591127321124077,
-0.019667068496346474,
0.13700194656848907,
-0.048340748995542526,
0.053371917456388474,
-0.18971459567546844,
-0.07922437787055969,
0.0010099048959091306,
0.123023621737957,
-0.014106693677604198,
0.08013445883989334,
0.05753817409276962,
-0.018720267340540886,
-0.004700321704149246,
-0.01032867468893528,
0.1544346958398819,
-0.021616755053400993,
-0.06661882251501083,
-0.04162381589412689,
0.0662311464548111,
-0.05831345543265343,
-0.0033040468115359545,
-0.05776660889387131,
0.013589667156338692,
0.05048443749547005,
0.10443682968616486,
-0.0023575187660753727,
0.03253777325153351,
-0.02123248018324375,
0.018250472843647003,
-0.07885172218084335,
-0.0028943256475031376,
0.09839999675750732,
-0.003195167751982808,
-0.06114937365055084,
0.191707044839859,
-0.16508106887340546,
0.2123199850320816,
0.18989497423171997,
-0.2840019166469574,
0.008855658583343029,
-0.07930868119001389,
-0.03107025846838951,
0.019292673096060753,
0.04051336646080017,
-0.035391807556152344,
0.12321244925260544,
0.0030509934294968843,
0.1893225461244583,
-0.05120055004954338,
-0.054668959230184555,
-0.0003608512051869184,
-0.05736381933093071,
0.0013126746052876115,
0.06707432866096497,
0.11558198183774948,
-0.12564630806446075,
0.1973772495985031,
0.17830142378807068,
0.02446782775223255,
0.16028088331222534,
0.003589105326682329,
-0.02908729389309883,
0.07800903916358948,
0.001039333757944405,
-0.03403163328766823,
-0.08341804146766663,
-0.19453173875808716,
-0.01920945756137371,
0.08615871518850327,
0.05208343267440796,
0.11178864538669586,
-0.1340440809726715,
-0.039688125252723694,
-0.016580121591687202,
-0.013963420875370502,
0.004052120726555586,
0.08927994221448898,
0.05621529743075371,
0.11766386777162552,
-0.008479462936520576,
0.004914911463856697,
0.11690844595432281,
0.024292193353176117,
-0.0974007099866867,
0.20369629561901093,
-0.12859489023685455,
-0.35919657349586487,
-0.17192909121513367,
-0.16941924393177032,
-0.046767693012952805,
0.06603047996759415,
0.10566895455121994,
-0.11921820044517517,
-0.03283723443746567,
0.01984371617436409,
0.10511579364538193,
-0.0874844342470169,
0.025252653285861015,
-0.07854585349559784,
0.039858005940914154,
-0.08228866755962372,
-0.07852846384048462,
-0.058627899736166,
-0.02397638000547886,
-0.06844961643218994,
0.15293799340724945,
-0.10580270737409592,
0.04606963321566582,
0.19703397154808044,
0.035209350287914276,
0.05708123743534088,
-0.03352535888552666,
0.19375872611999512,
-0.09711813181638718,
-0.014181635342538357,
0.20692157745361328,
-0.04432303458452225,
0.08276087045669556,
0.10658510029315948,
-0.0009211950236931443,
-0.0905555859208107,
0.023672347888350487,
-0.03327333554625511,
-0.09995128959417343,
-0.2413795441389084,
-0.12423769384622574,
-0.12672755122184753,
0.07157120853662491,
0.06113129481673241,
0.06719478219747543,
0.1604551076889038,
0.09354656934738159,
-0.019843624904751778,
0.04505275562405586,
-0.0036725422833114862,
0.07906411588191986,
0.20365294814109802,
-0.0204415675252676,
0.13615357875823975,
-0.050657231360673904,
-0.13334059715270996,
0.09257177263498306,
0.06900633871555328,
0.15225820243358612,
0.054498545825481415,
0.05270633473992348,
0.006767008453607559,
0.06716175377368927,
0.1454283893108368,
0.13071000576019287,
0.014545821584761143,
-0.016409022733569145,
-0.021825823932886124,
-0.011036834679543972,
-0.05876464396715164,
0.04085689038038254,
0.02777833305299282,
-0.1610528975725174,
-0.05520197004079819,
-0.12001585215330124,
0.08774644136428833,
0.09219257533550262,
0.06569026410579681,
-0.2342914491891861,
0.007060535252094269,
0.08197256177663803,
-0.028898365795612335,
-0.1258426308631897,
0.08190665394067764,
-0.021697908639907837,
-0.14926569163799286,
0.0494246669113636,
-0.061497997492551804,
0.12161173671483994,
-0.07084709405899048,
0.08109014481306076,
-0.03937468305230141,
-0.062106676399707794,
0.020281726494431496,
0.1271398812532425,
-0.29730626940727234,
0.20356124639511108,
-0.001819691271521151,
-0.05869410187005997,
-0.11437822878360748,
0.01959572173655033,
0.01367559190839529,
0.11016108095645905,
0.10386832803487778,
0.005328167695552111,
-0.0475030355155468,
-0.12364684045314789,
-0.022924374788999557,
0.024910306558012962,
0.12441114336252213,
-0.05739542469382286,
-0.008891535922884941,
-0.044362228363752365,
-0.0058176638558506966,
-0.028876133263111115,
-0.053936153650283813,
0.025268638506531715,
-0.16888569295406342,
0.08389513194561005,
0.017658868804574013,
0.09978678822517395,
0.01261826977133751,
-0.013697084039449692,
-0.09944134950637817,
0.23519866168498993,
-0.07718266546726227,
-0.11035529524087906,
-0.1205357164144516,
-0.04611735790967941,
0.0686027929186821,
-0.0741099938750267,
0.0634869635105133,
-0.08208895474672318,
0.024847982451319695,
-0.047674816101789474,
-0.21411024034023285,
0.1248590424656868,
-0.09078147262334824,
-0.047217957675457,
-0.038028888404369354,
0.1873915195465088,
-0.07860055565834045,
0.003835690440610051,
0.01727161929011345,
0.03052649088203907,
-0.11501652747392654,
-0.10535892844200134,
0.02131424844264984,
-0.005508285015821457,
0.06073078140616417,
0.04357268661260605,
-0.06716573983430862,
0.01641303487122059,
-0.022389056161046028,
-0.006917606573551893,
0.32454678416252136,
0.14079391956329346,
-0.04770330339670181,
0.17363035678863525,
0.11376409232616425,
-0.08209476619958878,
-0.31482723355293274,
-0.08535979688167572,
-0.09984239190816879,
-0.03735451400279999,
-0.06232178583741188,
-0.21656104922294617,
0.09480288624763489,
0.04200942441821098,
-0.015409117564558983,
0.1568077802658081,
-0.24411429464817047,
-0.0795927420258522,
0.15950311720371246,
-0.007333407178521156,
0.3560895025730133,
-0.12491796165704727,
-0.11301901936531067,
-0.05532994866371155,
-0.1397564709186554,
0.15002089738845825,
-0.009417316876351833,
0.11106741428375244,
-0.03287123143672943,
0.10856477171182632,
0.048215944319963455,
-0.05544896051287651,
0.09160676598548889,
0.026295991614460945,
-0.003711326979100704,
-0.10597866773605347,
-0.01747799478471279,
0.043585844337940216,
0.006319248117506504,
0.031217962503433228,
-0.03127649053931236,
0.033463045954704285,
-0.12691029906272888,
-0.04727448150515556,
-0.08006873726844788,
0.05846472829580307,
0.052333541214466095,
-0.0737200528383255,
-0.0010956452460959554,
-0.06611854583024979,
-0.016030769795179367,
0.003143493551760912,
0.19045160710811615,
-0.03460016846656799,
0.14779594540596008,
0.0818052664399147,
0.09073434770107269,
-0.1361592561006546,
-0.0061243316158652306,
-0.06888517737388611,
-0.057741593569517136,
0.08706554025411606,
-0.10988334566354752,
0.06429524719715118,
0.11854783445596695,
-0.04650293290615082,
0.07134203612804413,
0.11840200424194336,
0.015247469767928123,
-0.0033181030303239822,
0.13015136122703552,
-0.2568117082118988,
0.019211336970329285,
-0.0754370167851448,
-0.03775216266512871,
0.08088402450084686,
0.07995659112930298,
0.16486960649490356,
0.036187540739774704,
-0.042049095034599304,
-0.003924929536879063,
0.009187355637550354,
-0.039663419127464294,
0.08243577927350998,
0.012240500189363956,
0.023174172267317772,
-0.15248477458953857,
0.071900375187397,
0.015580810606479645,
-0.12336304783821106,
0.011253113858401775,
0.1477922946214676,
-0.13801799714565277,
-0.11707340180873871,
-0.03374985232949257,
0.08742405474185944,
-0.14541642367839813,
-0.0241269338876009,
-0.04783749580383301,
-0.12825986742973328,
0.09339214116334915,
0.11613135039806366,
0.07497538626194,
0.10595441609621048,
-0.0529337078332901,
-0.02668607421219349,
-0.03682107478380203,
-0.022537073120474815,
-0.0017330512637272477,
0.032638516277074814,
-0.08304216712713242,
0.0579586885869503,
-0.020800847560167313,
0.14298540353775024,
-0.08964299410581589,
-0.07169508188962936,
-0.1581236720085144,
0.03564200550317764,
-0.12593989074230194,
-0.07035141438245773,
-0.08840593695640564,
-0.05227470397949219,
-0.007837125100195408,
-0.01494099572300911,
-0.0388214997947216,
-0.04472146928310394,
-0.12364204227924347,
0.01879296824336052,
-0.05806630104780197,
0.02100815810263157,
-0.07383234053850174,
0.00039667764212936163,
0.08932872861623764,
-0.0410015694797039,
0.13851116597652435,
0.13557660579681396,
-0.08107975125312805,
0.11907198280096054,
-0.13537484407424927,
-0.0908876284956932,
0.1157127171754837,
0.013428857550024986,
0.03907458856701851,
0.06849293410778046,
0.037317484617233276,
0.06514574587345123,
0.016511039808392525,
0.05237346887588501,
0.006972990930080414,
-0.1299850195646286,
0.03433857858181,
-0.042786743491888046,
-0.1481933295726776,
-0.05744143947958946,
-0.05092177540063858,
0.039562974125146866,
0.02438235841691494,
0.10801149904727936,
-0.03665049374103546,
0.11085481196641922,
-0.058541763573884964,
0.01499281544238329,
0.004919432103633881,
-0.18287403881549835,
-0.044654008001089096,
-0.07792776077985764,
0.02775009535253048,
0.022204352542757988,
0.2720205783843994,
0.0410233810544014,
0.020275471732020378,
0.017097288742661476,
0.11327627301216125,
0.057128578424453735,
0.015525308437645435,
0.214890718460083,
0.11996994912624359,
-0.06049320101737976,
-0.10806480050086975,
0.0858595222234726,
0.02164783701300621,
0.007426374591886997,
0.14070266485214233,
0.008503482677042484,
-0.015597577206790447,
0.0887407436966896,
-0.03357330709695816,
0.0031263602431863546,
-0.11658911406993866,
-0.13779941201210022,
-0.028487415984272957,
0.0629650130867958,
-0.0040870243683457375,
0.0956285297870636,
0.13609373569488525,
-0.026881180703639984,
0.03953414782881737,
-0.007877747528254986,
-0.054916199296712875,
-0.1785028725862503,
-0.15742821991443634,
-0.0790708139538765,
-0.13561099767684937,
0.014744875021278858,
-0.10368648171424866,
0.04369770362973213,
0.09560346603393555,
0.055915698409080505,
-0.05440305173397064,
0.10839936882257462,
0.060064028948545456,
-0.1045473963022232,
0.056569941341876984,
-0.032912541180849075,
0.06427399069070816,
-0.001812951872125268,
-0.02503552846610546,
-0.09098561853170395,
0.0020124134607613087,
0.0017788249533623457,
0.0514003150165081,
-0.05152478814125061,
0.024474015459418297,
-0.15132632851600647,
-0.09570280462503433,
-0.04949872940778732,
0.07316448539495468,
-0.06007300689816475,
0.1162300780415535,
-0.001420395914465189,
-0.017011309042572975,
0.03990921378135681,
0.2064858227968216,
-0.07188161462545395,
-0.04990030825138092,
-0.047407180070877075,
0.22449158132076263,
0.04847963526844978,
0.10619479417800903,
-0.013415440917015076,
-0.00436578830704093,
-0.07670432329177856,
0.36612021923065186,
0.2802904546260834,
-0.06149837002158165,
0.012722660787403584,
0.03524370491504669,
0.030115660279989243,
0.13885097205638885,
0.1454230099916458,
0.09396251291036606,
0.27579233050346375,
-0.08266803622245789,
-0.052018675953149796,
-0.015770163387060165,
-0.020211221650242805,
-0.09714096784591675,
0.11003416776657104,
0.04697350785136223,
-0.06982195377349854,
-0.044631510972976685,
0.09750646352767944,
-0.24107815325260162,
0.1615772694349289,
-0.07760030031204224,
-0.15214353799819946,
-0.06177033111453056,
0.012448563240468502,
0.10150322318077087,
0.00011545186134753749,
0.08784360438585281,
-0.009687529876828194,
-0.10291683673858643,
0.05749227851629257,
0.02730483002960682,
-0.23568211495876312,
-0.007146455347537994,
0.053680915385484695,
-0.04540037736296654,
0.013332240283489227,
-0.01917567476630211,
0.04910791665315628,
0.06717875599861145,
0.055140718817710876,
-0.0426395982503891,
0.03817736729979515,
-0.010196289978921413,
-0.05020907521247864,
0.029649224132299423,
0.044778332114219666,
0.017814766615629196,
-0.13065220415592194,
0.05277646332979202,
-0.13968263566493988,
0.041911475360393524,
-0.029653942212462425,
-0.027413733303546906,
-0.004670299123972654,
-0.019546283408999443,
-0.06313455104827881,
0.057941507548093796,
0.08424945920705795,
0.001472705160267651,
-0.007915833964943886,
-0.08050897717475891,
-0.011023934930562973,
-0.012819311581552029,
-0.08308050036430359,
-0.10086389631032944,
-0.1384236365556717,
-0.10634621232748032,
0.12701933085918427,
-0.017066750675439835,
-0.19125573337078094,
0.01284839678555727,
-0.09708964824676514,
0.060041818767786026,
-0.1797112077474594,
0.0843181237578392,
0.06071038171648979,
0.01623542606830597,
-0.004114143084734678,
-0.029135411605238914,
0.039420004934072495,
0.08210206776857376,
-0.10779064148664474,
-0.09044761955738068
] |
null | null |
transformers
|
West et al.'s model from their "reflective decoding" paper.
Sample usage:
```python
import torch
from modeling_opengpt2 import OpenGPT2LMHeadModel
from padded_encoder import Encoder
path_to_backward = 'danyaljj/opengpt2_pytorch_backward'
encoder = Encoder()
model_backward = OpenGPT2LMHeadModel.from_pretrained(path_to_backward)
input = "until she finally won."
input_ids = encoder.encode(input)
input_ids = torch.tensor([input_ids[::-1] ], dtype=torch.int)
print(input_ids)
output = model_backward.generate(input_ids)
output_text = encoder.decode(output.tolist()[0][::-1])
print(output_text)
```
Download the additional files from here: https://github.com/peterwestuw/GPT2ForwardBackward
|
{}
| null |
danyaljj/opengpt2_pytorch_backward
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #endpoints_compatible #region-us
|
West et al.'s model from their "reflective decoding" paper.
Sample usage:
Download the additional files from here: URL
|
[] |
[
"TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n"
] |
[
21
] |
[
"passage: TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n"
] |
[
-0.0602605901658535,
-0.005646900739520788,
-0.009762155823409557,
-0.03966370224952698,
0.15944775938987732,
0.03070714697241783,
0.012395896948873997,
0.07867952436208725,
0.09419925510883331,
-0.019594743847846985,
0.09831016510725021,
0.2332964390516281,
-0.03786272928118706,
0.022073544561862946,
-0.06232732906937599,
-0.24905818700790405,
0.09407828003168106,
0.11313164979219437,
-0.06465978920459747,
0.09549489617347717,
0.039143070578575134,
-0.08911364525556564,
0.04947805404663086,
-0.032982707023620605,
-0.13527381420135498,
0.0467669740319252,
0.0237716156989336,
-0.078513965010643,
0.11869441717863083,
0.0077665625140070915,
0.19578197598457336,
0.01207544095814228,
-0.1299089938402176,
-0.18088726699352264,
0.02007104456424713,
0.022213434800505638,
-0.05996024236083031,
0.02314351126551628,
0.07312147319316864,
-0.10279249399900436,
0.02970288321375847,
0.03654928505420685,
0.002923935651779175,
0.03274611383676529,
-0.15513424575328827,
-0.1849449872970581,
-0.04425787553191185,
0.012871243990957737,
0.026669111102819443,
0.10506244748830795,
0.030372466892004013,
0.178822323679924,
-0.15745419263839722,
0.0945795327425003,
0.177890345454216,
-0.28603804111480713,
0.029024237766861916,
0.11024846136569977,
0.04829736799001694,
0.028134070336818695,
0.00996005441993475,
0.0189230814576149,
-0.009570286609232426,
0.03048190288245678,
-0.027967484667897224,
-0.07447972893714905,
-0.06405609101057053,
0.0814741775393486,
-0.09437224268913269,
-0.1216578483581543,
0.19255080819129944,
-0.05330982804298401,
0.0588051900267601,
0.03463263809680939,
-0.11766522377729416,
-0.05456177890300751,
0.0013563521206378937,
0.030292518436908722,
-0.017828812822699547,
0.07086412608623505,
0.031105060130357742,
-0.02373676560819149,
-0.12168543040752411,
0.028789518401026726,
-0.24090629816055298,
0.28345873951911926,
0.02996366284787655,
0.11018568277359009,
-0.2384001910686493,
0.07198631763458252,
-0.04607108235359192,
-0.06767431646585464,
0.023487936705350876,
-0.09875187277793884,
0.021371465176343918,
0.007170209661126137,
-0.0868486687541008,
0.025816135108470917,
0.0673765018582344,
0.11560594290494919,
-0.02462717518210411,
0.021296672523021698,
0.01767325960099697,
0.1089232936501503,
0.01622004434466362,
0.11334555596113205,
0.002745070494711399,
0.034500978887081146,
0.029799794778227806,
-0.18719491362571716,
-0.0026790881529450417,
-0.03489845618605614,
-0.08398842811584473,
-0.0881200060248375,
0.028418414294719696,
0.12114420533180237,
0.02183910645544529,
0.022260701283812523,
-0.07126972824335098,
-0.008312570862472057,
0.04512425512075424,
-0.06700387597084045,
-0.022145040333271027,
0.007661914918571711,
0.016494954004883766,
0.22294339537620544,
-0.02295338362455368,
-0.026225684210658073,
-0.07023988664150238,
0.11260082572698593,
-0.0656941682100296,
0.016149358823895454,
-0.0530007965862751,
-0.02928324043750763,
0.056476715952157974,
-0.15177644789218903,
0.06500709801912308,
-0.1516612023115158,
-0.09112907201051712,
0.028223685920238495,
0.03696250542998314,
0.028484180569648743,
0.02479529194533825,
0.015830792486667633,
-0.00879291258752346,
-0.03011348284780979,
-0.07923634350299835,
-0.08192402124404907,
-0.06342831254005432,
0.09921494126319885,
-0.0005941772251389921,
0.05436241999268532,
-0.11821827292442322,
0.07408127188682556,
-0.1076948270201683,
0.030249644070863724,
-0.13414455950260162,
-0.0221982691437006,
-0.02404189109802246,
0.1851358413696289,
0.0006879806751385331,
-0.0817047506570816,
-0.10663671791553497,
0.038237277418375015,
-0.04168618097901344,
0.13458840548992157,
-0.014303965494036674,
-0.11019430309534073,
0.26959696412086487,
-0.10667987167835236,
-0.1671270877122879,
0.05378620699048042,
0.009700759314000607,
-0.016868380829691887,
0.0561099536716938,
0.16616025567054749,
0.06831997632980347,
-0.07049598544836044,
0.09140615165233612,
0.1379895955324173,
-0.1851922571659088,
-0.20243999361991882,
0.01763749308884144,
-0.05203584209084511,
-0.11545780301094055,
0.04540516808629036,
-0.0058397711254656315,
0.09395778924226761,
-0.08503725379705429,
-0.007578795775771141,
-0.032015107572078705,
-0.016012731939554214,
0.07450172305107117,
0.06282669305801392,
0.09098648279905319,
-0.05122196301817894,
0.031217509880661964,
0.026435445994138718,
0.00463126040995121,
0.0063572051003575325,
0.05537392571568489,
-0.03592291474342346,
0.1321462094783783,
-0.06449703127145767,
0.00637860456481576,
-0.2316930741071701,
-0.11218059808015823,
-0.012119117192924023,
0.04616983234882355,
-0.05828554928302765,
0.16098164021968842,
0.09591125696897507,
-0.0814671590924263,
0.027995459735393524,
-0.03218327462673187,
0.10552480816841125,
0.02011469565331936,
-0.012835591100156307,
-0.0011234998237341642,
0.016821393743157387,
-0.0699923112988472,
-0.08323190361261368,
0.006836527958512306,
-0.0009020745637826622,
0.08346128463745117,
0.12389257550239563,
-0.0018713462632149458,
0.04892571270465851,
-0.025174804031848907,
0.07054726779460907,
-0.016440844163298607,
0.014167504385113716,
0.10722272843122482,
-0.011425090953707695,
-0.05193426087498665,
0.1583033800125122,
-0.11112764477729797,
0.3326278030872345,
0.20375320315361023,
-0.323421835899353,
0.04571422189474106,
-0.025362668558955193,
-0.017437715083360672,
0.021043121814727783,
0.09183337539434433,
0.005831574089825153,
0.08254498243331909,
0.05105554684996605,
0.13220374286174774,
-0.025855854153633118,
-0.015603546984493732,
-0.000933936215005815,
-0.06394030898809433,
-0.03657902777194977,
0.07155993580818176,
0.06678375601768494,
-0.12739983201026917,
0.17137302458286285,
0.2332899272441864,
0.034409500658512115,
0.08888798952102661,
-0.074738509953022,
-0.02466125227510929,
0.05307190865278244,
0.030478334054350853,
-0.05014907941222191,
-0.003522941842675209,
-0.24837985634803772,
-0.033807482570409775,
0.0835256576538086,
0.041713811457157135,
0.11864139884710312,
-0.15303030610084534,
-0.0535346120595932,
0.036216262727975845,
0.003446921007707715,
-0.07469423115253448,
0.0990411564707756,
0.07169649004936218,
0.06572583317756653,
0.006040885578840971,
-0.030352378264069557,
0.11742591857910156,
0.000851878838147968,
-0.05391429737210274,
0.17059999704360962,
-0.13313265144824982,
-0.29761773347854614,
-0.14319129288196564,
-0.1334514170885086,
0.010339286178350449,
0.017076298594474792,
0.08161275088787079,
-0.08419821411371231,
-0.034329503774642944,
0.09296482056379318,
0.05038211867213249,
-0.12507256865501404,
0.025089209899306297,
-0.04892471432685852,
0.06829681247472763,
-0.08489015698432922,
-0.07859387248754501,
-0.06656183302402496,
-0.05509684979915619,
-0.04375450685620308,
0.11071989685297012,
-0.12806063890457153,
0.08490876853466034,
0.13819533586502075,
0.031051602214574814,
0.07859103381633759,
0.001322271185927093,
0.13857795298099518,
-0.061774931848049164,
-0.08148285746574402,
0.23385483026504517,
-0.009697506204247475,
0.10181795805692673,
0.10921594500541687,
0.02137605845928192,
-0.06395251303911209,
-0.022054238244891167,
-0.07990756630897522,
-0.12127618491649628,
-0.2081342488527298,
-0.13152581453323364,
-0.147438645362854,
0.0003129298856947571,
0.0026985483709722757,
0.04901242256164551,
0.08136387914419174,
0.07752165198326111,
0.05862151086330414,
-0.08998161554336548,
-0.05513061210513115,
0.057605329900979996,
0.2182815968990326,
-0.01885073445737362,
0.07730096578598022,
-0.08762159198522568,
-0.0858968198299408,
0.07550632208585739,
0.0809127613902092,
0.22168903052806854,
0.0703313797712326,
0.03154223784804344,
0.06092943996191025,
0.1844511479139328,
0.15529003739356995,
0.17153839766979218,
0.015418988652527332,
-0.025812845677137375,
0.006589105818420649,
0.013138419017195702,
-0.09150379151105881,
-0.0042123449966311455,
0.1292845457792282,
-0.14540119469165802,
-0.07880084216594696,
-0.22943291068077087,
0.08157958835363388,
0.07344048470258713,
0.026414161548018456,
-0.17556782066822052,
-0.0015733868349343538,
0.05357646942138672,
0.006558762397617102,
-0.045512180775403976,
0.08496551215648651,
-0.022116927430033684,
-0.13344039022922516,
0.04287152364850044,
-0.058599162846803665,
0.10456542670726776,
-0.038338202983140945,
0.07373929768800735,
-0.024396726861596107,
-0.10900583118200302,
0.07474620640277863,
0.08851087838411331,
-0.23624686896800995,
0.27773332595825195,
-0.028285326436161995,
-0.07041611522436142,
-0.06830666214227676,
-0.024676870554685593,
-0.0017557048704475164,
0.17030403017997742,
0.08692118525505066,
0.03860539570450783,
-0.06731099635362625,
-0.1669522523880005,
0.04732859507203102,
0.02085104025900364,
0.12389091402292252,
-0.008113703690469265,
-0.030854588374495506,
-0.01338487584143877,
-0.019302181899547577,
-0.041759077459573746,
-0.003546249819919467,
0.10703662782907486,
-0.13412658870220184,
0.034535422921180725,
0.005309549160301685,
0.04036608338356018,
-0.0035966450814157724,
0.005690612830221653,
-0.05699379742145538,
0.13448239862918854,
-0.04070858657360077,
-0.07688865810632706,
-0.08865337073802948,
-0.17243140935897827,
0.13381044566631317,
-0.10238062590360641,
0.09249105304479599,
-0.09976985305547714,
-0.06192123889923096,
-0.0650167390704155,
-0.21104402840137482,
0.10917928814888,
-0.10513100028038025,
0.0401403047144413,
-0.016867417842149734,
0.202356219291687,
-0.08008989691734314,
-0.0209506843239069,
-0.0013599899830296636,
0.004461138043552637,
-0.12345174700021744,
-0.10132946074008942,
-0.01779748499393463,
0.029711758717894554,
0.08279082924127579,
0.10770376026630402,
-0.018299801275134087,
0.04191994294524193,
0.013882452622056007,
0.03635424003005028,
0.24111443758010864,
0.13711073994636536,
-0.04645780101418495,
0.11812267452478409,
0.16186927258968353,
-0.031571563333272934,
-0.2709476351737976,
-0.0868004634976387,
-0.16869930922985077,
-0.04678983986377716,
-0.037189606577157974,
-0.12448763102293015,
0.12788352370262146,
0.04586293175816536,
-0.011544082313776016,
0.1266224980354309,
-0.26594868302345276,
-0.03401912376284599,
0.1643364280462265,
0.027830148115754128,
0.48583653569221497,
-0.09991659969091415,
-0.0845755785703659,
0.018966181203722954,
-0.2915274500846863,
0.10791198909282684,
0.01369303185492754,
0.06487411260604858,
-0.034079212695360184,
0.10230494290590286,
0.044344354420900345,
-0.10719364136457443,
0.11951436847448349,
0.035276297479867935,
0.03043992444872856,
-0.08126169443130493,
-0.08180311322212219,
0.043867211788892746,
-0.020314449444413185,
0.016103362664580345,
0.09817174077033997,
0.036888349801301956,
-0.1322462111711502,
-0.022591179236769676,
-0.13765397667884827,
0.049294743686914444,
0.0620623379945755,
-0.0240910816937685,
-0.013253096491098404,
-0.036911722272634506,
-0.004203932359814644,
0.019186172634363174,
0.25098612904548645,
-0.012744947336614132,
0.1315464824438095,
0.042376402765512466,
0.046371813863515854,
-0.20250053703784943,
-0.14301706850528717,
-0.07346653193235397,
-0.04091315343976021,
0.0825582891702652,
-0.04023446887731552,
0.0523495189845562,
0.1589740812778473,
-0.02755962871015072,
-0.008571553975343704,
0.1279488205909729,
0.014891285449266434,
-0.03108718805015087,
0.12318851798772812,
-0.21083922684192657,
-0.042206212878227234,
-0.018448445945978165,
-0.05149201303720474,
0.1258767545223236,
0.12660184502601624,
0.08982381969690323,
0.07138726115226746,
-0.016965264454483986,
-0.03962934389710426,
-0.023878682404756546,
-0.0698867067694664,
0.014531198889017105,
0.041909199208021164,
0.03934765234589577,
-0.13099561631679535,
0.07754374295473099,
-0.018086964264512062,
-0.27273428440093994,
-0.06408093869686127,
0.09851112216711044,
-0.15818077325820923,
-0.10192093253135681,
-0.06077379360795021,
0.03578856587409973,
-0.1768866330385208,
-0.0624033585190773,
-0.0316467322409153,
-0.10826759040355682,
0.06394574791193008,
0.20973356068134308,
0.10992377996444702,
0.12001070380210876,
-0.023827049881219864,
-0.02570408768951893,
-0.00579385831952095,
-0.10135087370872498,
-0.012352810241281986,
0.013960975222289562,
-0.09324274212121964,
0.018809983506798744,
-0.009077025577425957,
0.17904941737651825,
-0.0752621665596962,
-0.08742223680019379,
-0.1552542746067047,
0.09289714694023132,
-0.1066979393362999,
-0.092626191675663,
-0.14189116656780243,
-0.06335672736167908,
0.023829210549592972,
-0.06568517535924911,
-0.01769612915813923,
-0.013204174116253853,
-0.14357970654964447,
0.06973201036453247,
0.01112452708184719,
-0.011419128626585007,
-0.057545971125364304,
-0.02905389852821827,
0.12901906669139862,
-0.0439501516520977,
0.08620632439851761,
0.19515031576156616,
-0.09635450690984726,
0.12672042846679688,
-0.10680265724658966,
-0.16728007793426514,
0.109873466193676,
0.011463385075330734,
0.08858676254749298,
0.05595776438713074,
0.033014263957738876,
0.0949346125125885,
0.01360013522207737,
0.040659237653017044,
-0.0074751065112650394,
-0.13721472024917603,
0.0005411148304119706,
0.014451061375439167,
-0.14818744361400604,
-0.051526814699172974,
-0.10024616122245789,
0.15037848055362701,
0.046998120844364166,
0.10320950299501419,
0.02188979648053646,
0.13145636022090912,
-0.006807954981923103,
-0.01749216392636299,
-0.007913168519735336,
-0.18110167980194092,
0.058051977306604385,
-0.04888135939836502,
0.00664436025545001,
0.004136093892157078,
0.29094672203063965,
-0.05342133343219757,
0.06421013921499252,
0.012430429458618164,
0.05440686270594597,
0.025291895493865013,
0.019776156172156334,
0.23332199454307556,
0.0909920483827591,
-0.040104810148477554,
-0.07203774154186249,
0.09381944686174393,
-0.027183765545487404,
-0.051167625933885574,
0.14428386092185974,
0.12433760613203049,
0.046564988791942596,
0.10233303159475327,
-0.010628857649862766,
0.0502619631588459,
-0.11714580655097961,
-0.29435333609580994,
-0.0017536553787067533,
0.02923153154551983,
0.013082349672913551,
0.09705042093992233,
0.12465932965278625,
-0.014661809429526329,
0.09902279824018478,
-0.0014873039908707142,
-0.026829617097973824,
-0.13841837644577026,
-0.08308025449514389,
-0.037351641803979874,
-0.1296062022447586,
0.01537085510790348,
-0.06261784583330154,
-0.0013676333473995328,
0.20482417941093445,
0.040537029504776,
-0.03484100475907326,
0.11699468642473221,
0.0698540061712265,
-0.06982901692390442,
0.02712978608906269,
-0.00757982861250639,
0.035655613988637924,
0.06632175296545029,
-0.023149633780121803,
-0.14352689683437347,
-0.08878929167985916,
-0.04016351327300072,
0.04570772126317024,
-0.0825280100107193,
0.007398216053843498,
-0.1344616711139679,
-0.09811436384916306,
-0.05467144027352333,
0.09024309366941452,
-0.076502226293087,
0.12816135585308075,
-0.010830878280103207,
0.010613616555929184,
0.01268461812287569,
0.18772324919700623,
-0.075274258852005,
-0.060353536158800125,
0.002831645542755723,
0.23638813197612762,
0.08521586656570435,
0.08294188231229782,
0.00997002050280571,
0.024029415100812912,
-0.09174544364213943,
0.3311961889266968,
0.24609249830245972,
-0.010904072783887386,
0.04334266111254692,
0.04531332477927208,
0.04185611754655838,
0.12315969169139862,
0.13169057667255402,
0.11807206273078918,
0.344115674495697,
-0.08338891714811325,
-0.031944580376148224,
-0.030247550457715988,
0.006968794856220484,
-0.13217425346374512,
0.026531271636486053,
0.01758533902466297,
-0.08070562034845352,
-0.07679492235183716,
0.11993145197629929,
-0.20403271913528442,
0.15280351042747498,
0.08174222707748413,
-0.19685740768909454,
-0.03396262973546982,
-0.05789715424180031,
0.18384911119937897,
-0.014278654009103775,
0.11859142035245895,
-0.04448321461677551,
-0.13445675373077393,
0.08106808364391327,
0.048652783036231995,
-0.2895694077014923,
-0.08014793694019318,
0.0981469452381134,
0.042115915566682816,
-0.0287695974111557,
-0.015584125183522701,
0.03546717017889023,
0.059928759932518005,
0.08986898511648178,
-0.03891289234161377,
0.04509701579809189,
0.020416583865880966,
-0.10908327251672745,
-0.08358649909496307,
-0.02032429538667202,
-0.00014163613377604634,
-0.1349317878484726,
0.016364745795726776,
-0.20526979863643646,
0.04226694256067276,
-0.010092525742948055,
0.01465508621186018,
-0.004206623882055283,
-0.03162108361721039,
-0.051075391471385956,
0.023095570504665375,
0.052028998732566833,
0.009046600200235844,
-0.017174653708934784,
-0.043978288769721985,
-0.01736217923462391,
0.04129228740930557,
-0.09392837435007095,
-0.15831652283668518,
-0.016197707504034042,
-0.08371548354625702,
0.10397595167160034,
-0.03304345905780792,
-0.046627145260572433,
-0.017865123227238655,
-0.02954019047319889,
0.04380740970373154,
-0.10989689826965332,
0.035784848034381866,
0.01109471544623375,
0.05120820179581642,
0.011953367851674557,
-0.01127829309552908,
0.039223846048116684,
0.07814694195985794,
-0.12265297025442123,
-0.1024811714887619
] |
null | null |
transformers
|
West et al.'s model from their "reflective decoding" paper.
Sample usage:
```python
import torch
from modeling_opengpt2 import OpenGPT2LMHeadModel
from padded_encoder import Encoder
path_to_forward = 'danyaljj/opengpt2_pytorch_forward'
encoder = Encoder()
model_backward = OpenGPT2LMHeadModel.from_pretrained(path_to_forward)
input = "She tried to win but"
input_ids = encoder.encode(input)
input_ids = torch.tensor([input_ids ], dtype=torch.int)
print(input_ids)
output = model_backward.generate(input_ids)
output_text = encoder.decode(output.tolist()[0])
print(output_text)
```
Download the additional files from here: https://github.com/peterwestuw/GPT2ForwardBackward
|
{}
| null |
danyaljj/opengpt2_pytorch_forward
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #endpoints_compatible #region-us
|
West et al.'s model from their "reflective decoding" paper.
Sample usage:
Download the additional files from here: URL
|
[] |
[
"TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n"
] |
[
21
] |
[
"passage: TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n"
] |
[
-0.0602605901658535,
-0.005646900739520788,
-0.009762155823409557,
-0.03966370224952698,
0.15944775938987732,
0.03070714697241783,
0.012395896948873997,
0.07867952436208725,
0.09419925510883331,
-0.019594743847846985,
0.09831016510725021,
0.2332964390516281,
-0.03786272928118706,
0.022073544561862946,
-0.06232732906937599,
-0.24905818700790405,
0.09407828003168106,
0.11313164979219437,
-0.06465978920459747,
0.09549489617347717,
0.039143070578575134,
-0.08911364525556564,
0.04947805404663086,
-0.032982707023620605,
-0.13527381420135498,
0.0467669740319252,
0.0237716156989336,
-0.078513965010643,
0.11869441717863083,
0.0077665625140070915,
0.19578197598457336,
0.01207544095814228,
-0.1299089938402176,
-0.18088726699352264,
0.02007104456424713,
0.022213434800505638,
-0.05996024236083031,
0.02314351126551628,
0.07312147319316864,
-0.10279249399900436,
0.02970288321375847,
0.03654928505420685,
0.002923935651779175,
0.03274611383676529,
-0.15513424575328827,
-0.1849449872970581,
-0.04425787553191185,
0.012871243990957737,
0.026669111102819443,
0.10506244748830795,
0.030372466892004013,
0.178822323679924,
-0.15745419263839722,
0.0945795327425003,
0.177890345454216,
-0.28603804111480713,
0.029024237766861916,
0.11024846136569977,
0.04829736799001694,
0.028134070336818695,
0.00996005441993475,
0.0189230814576149,
-0.009570286609232426,
0.03048190288245678,
-0.027967484667897224,
-0.07447972893714905,
-0.06405609101057053,
0.0814741775393486,
-0.09437224268913269,
-0.1216578483581543,
0.19255080819129944,
-0.05330982804298401,
0.0588051900267601,
0.03463263809680939,
-0.11766522377729416,
-0.05456177890300751,
0.0013563521206378937,
0.030292518436908722,
-0.017828812822699547,
0.07086412608623505,
0.031105060130357742,
-0.02373676560819149,
-0.12168543040752411,
0.028789518401026726,
-0.24090629816055298,
0.28345873951911926,
0.02996366284787655,
0.11018568277359009,
-0.2384001910686493,
0.07198631763458252,
-0.04607108235359192,
-0.06767431646585464,
0.023487936705350876,
-0.09875187277793884,
0.021371465176343918,
0.007170209661126137,
-0.0868486687541008,
0.025816135108470917,
0.0673765018582344,
0.11560594290494919,
-0.02462717518210411,
0.021296672523021698,
0.01767325960099697,
0.1089232936501503,
0.01622004434466362,
0.11334555596113205,
0.002745070494711399,
0.034500978887081146,
0.029799794778227806,
-0.18719491362571716,
-0.0026790881529450417,
-0.03489845618605614,
-0.08398842811584473,
-0.0881200060248375,
0.028418414294719696,
0.12114420533180237,
0.02183910645544529,
0.022260701283812523,
-0.07126972824335098,
-0.008312570862472057,
0.04512425512075424,
-0.06700387597084045,
-0.022145040333271027,
0.007661914918571711,
0.016494954004883766,
0.22294339537620544,
-0.02295338362455368,
-0.026225684210658073,
-0.07023988664150238,
0.11260082572698593,
-0.0656941682100296,
0.016149358823895454,
-0.0530007965862751,
-0.02928324043750763,
0.056476715952157974,
-0.15177644789218903,
0.06500709801912308,
-0.1516612023115158,
-0.09112907201051712,
0.028223685920238495,
0.03696250542998314,
0.028484180569648743,
0.02479529194533825,
0.015830792486667633,
-0.00879291258752346,
-0.03011348284780979,
-0.07923634350299835,
-0.08192402124404907,
-0.06342831254005432,
0.09921494126319885,
-0.0005941772251389921,
0.05436241999268532,
-0.11821827292442322,
0.07408127188682556,
-0.1076948270201683,
0.030249644070863724,
-0.13414455950260162,
-0.0221982691437006,
-0.02404189109802246,
0.1851358413696289,
0.0006879806751385331,
-0.0817047506570816,
-0.10663671791553497,
0.038237277418375015,
-0.04168618097901344,
0.13458840548992157,
-0.014303965494036674,
-0.11019430309534073,
0.26959696412086487,
-0.10667987167835236,
-0.1671270877122879,
0.05378620699048042,
0.009700759314000607,
-0.016868380829691887,
0.0561099536716938,
0.16616025567054749,
0.06831997632980347,
-0.07049598544836044,
0.09140615165233612,
0.1379895955324173,
-0.1851922571659088,
-0.20243999361991882,
0.01763749308884144,
-0.05203584209084511,
-0.11545780301094055,
0.04540516808629036,
-0.0058397711254656315,
0.09395778924226761,
-0.08503725379705429,
-0.007578795775771141,
-0.032015107572078705,
-0.016012731939554214,
0.07450172305107117,
0.06282669305801392,
0.09098648279905319,
-0.05122196301817894,
0.031217509880661964,
0.026435445994138718,
0.00463126040995121,
0.0063572051003575325,
0.05537392571568489,
-0.03592291474342346,
0.1321462094783783,
-0.06449703127145767,
0.00637860456481576,
-0.2316930741071701,
-0.11218059808015823,
-0.012119117192924023,
0.04616983234882355,
-0.05828554928302765,
0.16098164021968842,
0.09591125696897507,
-0.0814671590924263,
0.027995459735393524,
-0.03218327462673187,
0.10552480816841125,
0.02011469565331936,
-0.012835591100156307,
-0.0011234998237341642,
0.016821393743157387,
-0.0699923112988472,
-0.08323190361261368,
0.006836527958512306,
-0.0009020745637826622,
0.08346128463745117,
0.12389257550239563,
-0.0018713462632149458,
0.04892571270465851,
-0.025174804031848907,
0.07054726779460907,
-0.016440844163298607,
0.014167504385113716,
0.10722272843122482,
-0.011425090953707695,
-0.05193426087498665,
0.1583033800125122,
-0.11112764477729797,
0.3326278030872345,
0.20375320315361023,
-0.323421835899353,
0.04571422189474106,
-0.025362668558955193,
-0.017437715083360672,
0.021043121814727783,
0.09183337539434433,
0.005831574089825153,
0.08254498243331909,
0.05105554684996605,
0.13220374286174774,
-0.025855854153633118,
-0.015603546984493732,
-0.000933936215005815,
-0.06394030898809433,
-0.03657902777194977,
0.07155993580818176,
0.06678375601768494,
-0.12739983201026917,
0.17137302458286285,
0.2332899272441864,
0.034409500658512115,
0.08888798952102661,
-0.074738509953022,
-0.02466125227510929,
0.05307190865278244,
0.030478334054350853,
-0.05014907941222191,
-0.003522941842675209,
-0.24837985634803772,
-0.033807482570409775,
0.0835256576538086,
0.041713811457157135,
0.11864139884710312,
-0.15303030610084534,
-0.0535346120595932,
0.036216262727975845,
0.003446921007707715,
-0.07469423115253448,
0.0990411564707756,
0.07169649004936218,
0.06572583317756653,
0.006040885578840971,
-0.030352378264069557,
0.11742591857910156,
0.000851878838147968,
-0.05391429737210274,
0.17059999704360962,
-0.13313265144824982,
-0.29761773347854614,
-0.14319129288196564,
-0.1334514170885086,
0.010339286178350449,
0.017076298594474792,
0.08161275088787079,
-0.08419821411371231,
-0.034329503774642944,
0.09296482056379318,
0.05038211867213249,
-0.12507256865501404,
0.025089209899306297,
-0.04892471432685852,
0.06829681247472763,
-0.08489015698432922,
-0.07859387248754501,
-0.06656183302402496,
-0.05509684979915619,
-0.04375450685620308,
0.11071989685297012,
-0.12806063890457153,
0.08490876853466034,
0.13819533586502075,
0.031051602214574814,
0.07859103381633759,
0.001322271185927093,
0.13857795298099518,
-0.061774931848049164,
-0.08148285746574402,
0.23385483026504517,
-0.009697506204247475,
0.10181795805692673,
0.10921594500541687,
0.02137605845928192,
-0.06395251303911209,
-0.022054238244891167,
-0.07990756630897522,
-0.12127618491649628,
-0.2081342488527298,
-0.13152581453323364,
-0.147438645362854,
0.0003129298856947571,
0.0026985483709722757,
0.04901242256164551,
0.08136387914419174,
0.07752165198326111,
0.05862151086330414,
-0.08998161554336548,
-0.05513061210513115,
0.057605329900979996,
0.2182815968990326,
-0.01885073445737362,
0.07730096578598022,
-0.08762159198522568,
-0.0858968198299408,
0.07550632208585739,
0.0809127613902092,
0.22168903052806854,
0.0703313797712326,
0.03154223784804344,
0.06092943996191025,
0.1844511479139328,
0.15529003739356995,
0.17153839766979218,
0.015418988652527332,
-0.025812845677137375,
0.006589105818420649,
0.013138419017195702,
-0.09150379151105881,
-0.0042123449966311455,
0.1292845457792282,
-0.14540119469165802,
-0.07880084216594696,
-0.22943291068077087,
0.08157958835363388,
0.07344048470258713,
0.026414161548018456,
-0.17556782066822052,
-0.0015733868349343538,
0.05357646942138672,
0.006558762397617102,
-0.045512180775403976,
0.08496551215648651,
-0.022116927430033684,
-0.13344039022922516,
0.04287152364850044,
-0.058599162846803665,
0.10456542670726776,
-0.038338202983140945,
0.07373929768800735,
-0.024396726861596107,
-0.10900583118200302,
0.07474620640277863,
0.08851087838411331,
-0.23624686896800995,
0.27773332595825195,
-0.028285326436161995,
-0.07041611522436142,
-0.06830666214227676,
-0.024676870554685593,
-0.0017557048704475164,
0.17030403017997742,
0.08692118525505066,
0.03860539570450783,
-0.06731099635362625,
-0.1669522523880005,
0.04732859507203102,
0.02085104025900364,
0.12389091402292252,
-0.008113703690469265,
-0.030854588374495506,
-0.01338487584143877,
-0.019302181899547577,
-0.041759077459573746,
-0.003546249819919467,
0.10703662782907486,
-0.13412658870220184,
0.034535422921180725,
0.005309549160301685,
0.04036608338356018,
-0.0035966450814157724,
0.005690612830221653,
-0.05699379742145538,
0.13448239862918854,
-0.04070858657360077,
-0.07688865810632706,
-0.08865337073802948,
-0.17243140935897827,
0.13381044566631317,
-0.10238062590360641,
0.09249105304479599,
-0.09976985305547714,
-0.06192123889923096,
-0.0650167390704155,
-0.21104402840137482,
0.10917928814888,
-0.10513100028038025,
0.0401403047144413,
-0.016867417842149734,
0.202356219291687,
-0.08008989691734314,
-0.0209506843239069,
-0.0013599899830296636,
0.004461138043552637,
-0.12345174700021744,
-0.10132946074008942,
-0.01779748499393463,
0.029711758717894554,
0.08279082924127579,
0.10770376026630402,
-0.018299801275134087,
0.04191994294524193,
0.013882452622056007,
0.03635424003005028,
0.24111443758010864,
0.13711073994636536,
-0.04645780101418495,
0.11812267452478409,
0.16186927258968353,
-0.031571563333272934,
-0.2709476351737976,
-0.0868004634976387,
-0.16869930922985077,
-0.04678983986377716,
-0.037189606577157974,
-0.12448763102293015,
0.12788352370262146,
0.04586293175816536,
-0.011544082313776016,
0.1266224980354309,
-0.26594868302345276,
-0.03401912376284599,
0.1643364280462265,
0.027830148115754128,
0.48583653569221497,
-0.09991659969091415,
-0.0845755785703659,
0.018966181203722954,
-0.2915274500846863,
0.10791198909282684,
0.01369303185492754,
0.06487411260604858,
-0.034079212695360184,
0.10230494290590286,
0.044344354420900345,
-0.10719364136457443,
0.11951436847448349,
0.035276297479867935,
0.03043992444872856,
-0.08126169443130493,
-0.08180311322212219,
0.043867211788892746,
-0.020314449444413185,
0.016103362664580345,
0.09817174077033997,
0.036888349801301956,
-0.1322462111711502,
-0.022591179236769676,
-0.13765397667884827,
0.049294743686914444,
0.0620623379945755,
-0.0240910816937685,
-0.013253096491098404,
-0.036911722272634506,
-0.004203932359814644,
0.019186172634363174,
0.25098612904548645,
-0.012744947336614132,
0.1315464824438095,
0.042376402765512466,
0.046371813863515854,
-0.20250053703784943,
-0.14301706850528717,
-0.07346653193235397,
-0.04091315343976021,
0.0825582891702652,
-0.04023446887731552,
0.0523495189845562,
0.1589740812778473,
-0.02755962871015072,
-0.008571553975343704,
0.1279488205909729,
0.014891285449266434,
-0.03108718805015087,
0.12318851798772812,
-0.21083922684192657,
-0.042206212878227234,
-0.018448445945978165,
-0.05149201303720474,
0.1258767545223236,
0.12660184502601624,
0.08982381969690323,
0.07138726115226746,
-0.016965264454483986,
-0.03962934389710426,
-0.023878682404756546,
-0.0698867067694664,
0.014531198889017105,
0.041909199208021164,
0.03934765234589577,
-0.13099561631679535,
0.07754374295473099,
-0.018086964264512062,
-0.27273428440093994,
-0.06408093869686127,
0.09851112216711044,
-0.15818077325820923,
-0.10192093253135681,
-0.06077379360795021,
0.03578856587409973,
-0.1768866330385208,
-0.0624033585190773,
-0.0316467322409153,
-0.10826759040355682,
0.06394574791193008,
0.20973356068134308,
0.10992377996444702,
0.12001070380210876,
-0.023827049881219864,
-0.02570408768951893,
-0.00579385831952095,
-0.10135087370872498,
-0.012352810241281986,
0.013960975222289562,
-0.09324274212121964,
0.018809983506798744,
-0.009077025577425957,
0.17904941737651825,
-0.0752621665596962,
-0.08742223680019379,
-0.1552542746067047,
0.09289714694023132,
-0.1066979393362999,
-0.092626191675663,
-0.14189116656780243,
-0.06335672736167908,
0.023829210549592972,
-0.06568517535924911,
-0.01769612915813923,
-0.013204174116253853,
-0.14357970654964447,
0.06973201036453247,
0.01112452708184719,
-0.011419128626585007,
-0.057545971125364304,
-0.02905389852821827,
0.12901906669139862,
-0.0439501516520977,
0.08620632439851761,
0.19515031576156616,
-0.09635450690984726,
0.12672042846679688,
-0.10680265724658966,
-0.16728007793426514,
0.109873466193676,
0.011463385075330734,
0.08858676254749298,
0.05595776438713074,
0.033014263957738876,
0.0949346125125885,
0.01360013522207737,
0.040659237653017044,
-0.0074751065112650394,
-0.13721472024917603,
0.0005411148304119706,
0.014451061375439167,
-0.14818744361400604,
-0.051526814699172974,
-0.10024616122245789,
0.15037848055362701,
0.046998120844364166,
0.10320950299501419,
0.02188979648053646,
0.13145636022090912,
-0.006807954981923103,
-0.01749216392636299,
-0.007913168519735336,
-0.18110167980194092,
0.058051977306604385,
-0.04888135939836502,
0.00664436025545001,
0.004136093892157078,
0.29094672203063965,
-0.05342133343219757,
0.06421013921499252,
0.012430429458618164,
0.05440686270594597,
0.025291895493865013,
0.019776156172156334,
0.23332199454307556,
0.0909920483827591,
-0.040104810148477554,
-0.07203774154186249,
0.09381944686174393,
-0.027183765545487404,
-0.051167625933885574,
0.14428386092185974,
0.12433760613203049,
0.046564988791942596,
0.10233303159475327,
-0.010628857649862766,
0.0502619631588459,
-0.11714580655097961,
-0.29435333609580994,
-0.0017536553787067533,
0.02923153154551983,
0.013082349672913551,
0.09705042093992233,
0.12465932965278625,
-0.014661809429526329,
0.09902279824018478,
-0.0014873039908707142,
-0.026829617097973824,
-0.13841837644577026,
-0.08308025449514389,
-0.037351641803979874,
-0.1296062022447586,
0.01537085510790348,
-0.06261784583330154,
-0.0013676333473995328,
0.20482417941093445,
0.040537029504776,
-0.03484100475907326,
0.11699468642473221,
0.0698540061712265,
-0.06982901692390442,
0.02712978608906269,
-0.00757982861250639,
0.035655613988637924,
0.06632175296545029,
-0.023149633780121803,
-0.14352689683437347,
-0.08878929167985916,
-0.04016351327300072,
0.04570772126317024,
-0.0825280100107193,
0.007398216053843498,
-0.1344616711139679,
-0.09811436384916306,
-0.05467144027352333,
0.09024309366941452,
-0.076502226293087,
0.12816135585308075,
-0.010830878280103207,
0.010613616555929184,
0.01268461812287569,
0.18772324919700623,
-0.075274258852005,
-0.060353536158800125,
0.002831645542755723,
0.23638813197612762,
0.08521586656570435,
0.08294188231229782,
0.00997002050280571,
0.024029415100812912,
-0.09174544364213943,
0.3311961889266968,
0.24609249830245972,
-0.010904072783887386,
0.04334266111254692,
0.04531332477927208,
0.04185611754655838,
0.12315969169139862,
0.13169057667255402,
0.11807206273078918,
0.344115674495697,
-0.08338891714811325,
-0.031944580376148224,
-0.030247550457715988,
0.006968794856220484,
-0.13217425346374512,
0.026531271636486053,
0.01758533902466297,
-0.08070562034845352,
-0.07679492235183716,
0.11993145197629929,
-0.20403271913528442,
0.15280351042747498,
0.08174222707748413,
-0.19685740768909454,
-0.03396262973546982,
-0.05789715424180031,
0.18384911119937897,
-0.014278654009103775,
0.11859142035245895,
-0.04448321461677551,
-0.13445675373077393,
0.08106808364391327,
0.048652783036231995,
-0.2895694077014923,
-0.08014793694019318,
0.0981469452381134,
0.042115915566682816,
-0.0287695974111557,
-0.015584125183522701,
0.03546717017889023,
0.059928759932518005,
0.08986898511648178,
-0.03891289234161377,
0.04509701579809189,
0.020416583865880966,
-0.10908327251672745,
-0.08358649909496307,
-0.02032429538667202,
-0.00014163613377604634,
-0.1349317878484726,
0.016364745795726776,
-0.20526979863643646,
0.04226694256067276,
-0.010092525742948055,
0.01465508621186018,
-0.004206623882055283,
-0.03162108361721039,
-0.051075391471385956,
0.023095570504665375,
0.052028998732566833,
0.009046600200235844,
-0.017174653708934784,
-0.043978288769721985,
-0.01736217923462391,
0.04129228740930557,
-0.09392837435007095,
-0.15831652283668518,
-0.016197707504034042,
-0.08371548354625702,
0.10397595167160034,
-0.03304345905780792,
-0.046627145260572433,
-0.017865123227238655,
-0.02954019047319889,
0.04380740970373154,
-0.10989689826965332,
0.035784848034381866,
0.01109471544623375,
0.05120820179581642,
0.011953367851674557,
-0.01127829309552908,
0.039223846048116684,
0.07814694195985794,
-0.12265297025442123,
-0.1024811714887619
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.12.3
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilgpt2-finetuned-wikitext2", "results": []}]}
|
text-generation
|
daqiao202/distilgpt2-finetuned-wikitext2
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of distilgpt2 on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.12.3
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
[
"# distilgpt2-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0",
"### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# distilgpt2-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0",
"### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] |
[
66,
35,
6,
12,
8,
3,
90,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# distilgpt2-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3"
] |
[
-0.05767754465341568,
0.053413260728120804,
-0.002334789140149951,
0.07378275692462921,
0.1810668259859085,
0.032286517322063446,
0.12898963689804077,
0.09076167643070221,
-0.1368378847837448,
0.036579426378011703,
0.056055549532175064,
0.11083249747753143,
0.030632730573415756,
0.10504499822854996,
-0.04491505026817322,
-0.25494056940078735,
0.010764596052467823,
0.015048669651150703,
-0.10199642181396484,
0.10552936792373657,
0.09953317791223526,
-0.10667816549539566,
0.07019686698913574,
0.011118890717625618,
-0.23233255743980408,
0.02804907225072384,
-0.0007057092152535915,
-0.0483708530664444,
0.10827407240867615,
0.018321281298995018,
0.1193327009677887,
0.0036068602930754423,
0.127136692404747,
-0.2034541219472885,
0.002707522362470627,
0.10190647840499878,
0.04021085798740387,
0.07180726528167725,
0.046084918081760406,
0.017646104097366333,
0.14962707459926605,
-0.12276116013526917,
0.08183614909648895,
0.02974190190434456,
-0.07069001346826553,
-0.15156395733356476,
-0.07826098054647446,
0.04639028012752533,
0.08656024932861328,
0.10794466733932495,
0.010218373499810696,
0.1352284699678421,
-0.08402922749519348,
0.07722895592451096,
0.1919832080602646,
-0.26665228605270386,
-0.08787283301353455,
0.0896202027797699,
0.03563418611884117,
0.07816018909215927,
-0.08412430435419083,
0.006278043147176504,
0.045417170971632004,
0.056796636432409286,
0.11968739330768585,
-0.03157319501042366,
-0.112131267786026,
-0.021211115643382072,
-0.14359121024608612,
0.022653944790363312,
0.15215890109539032,
0.0199494156986475,
-0.03206092491745949,
-0.05147579312324524,
-0.07688435167074203,
-0.050778117030858994,
-0.02912718430161476,
-0.07075468450784683,
0.05633154511451721,
-0.025379955768585205,
-0.049326688051223755,
-0.07976895570755005,
-0.07634970545768738,
-0.049766406416893005,
-0.04376554489135742,
0.13446734845638275,
0.04241614043712616,
0.01715930551290512,
-0.052588362246751785,
0.08798306435346603,
-0.012418140657246113,
-0.10275404900312424,
0.012278757058084011,
-0.003936092834919691,
-0.03283750265836716,
-0.06900903582572937,
-0.0668279230594635,
-0.04880896210670471,
0.014248421415686607,
0.1287081241607666,
-0.10420770943164825,
0.0704837292432785,
0.013848318718373775,
0.011187339201569557,
-0.04298834875226021,
0.13331715762615204,
-0.03894724324345589,
-0.045126885175704956,
0.017804861068725586,
0.056814756244421005,
0.02825220674276352,
-0.010187709704041481,
-0.10326605290174484,
-0.0054772584699094296,
0.08169329911470413,
0.03305819630622864,
-0.05347798764705658,
0.04865778610110283,
-0.013061595149338245,
-0.04410504922270775,
-0.021204115822911263,
-0.11829760670661926,
0.043868329375982285,
-0.025253886356949806,
-0.06517808884382248,
0.053428441286087036,
0.013757350854575634,
0.019423624500632286,
-0.04256159067153931,
0.11576525121927261,
-0.09155897051095963,
0.03667760267853737,
-0.11601683497428894,
-0.08926450461149216,
0.005346681922674179,
-0.06784147769212723,
-0.012091102078557014,
-0.0858645960688591,
-0.18717920780181885,
-0.030575279146432877,
0.06517425924539566,
-0.03663892671465874,
-0.04258891940116882,
-0.04045504704117775,
-0.07890652865171432,
0.003016829025000334,
-0.011964157223701477,
0.13419374823570251,
-0.048392824828624725,
0.05444825440645218,
0.015743140131235123,
0.03349856287240982,
-0.050108131021261215,
0.03557464852929115,
-0.08025742322206497,
0.009189138188958168,
-0.16048018634319305,
0.06695043295621872,
-0.06269834190607071,
0.03852119296789169,
-0.09153317660093307,
-0.10941469669342041,
-0.013337284326553345,
-0.0037254076451063156,
0.05723835527896881,
0.08022302389144897,
-0.18393398821353912,
-0.048689160495996475,
0.14210592210292816,
-0.082310251891613,
-0.07833685725927353,
0.08682865649461746,
-0.03684619441628456,
0.050583209842443466,
0.07737404853105545,
0.15116345882415771,
0.0744820162653923,
-0.1229468509554863,
-0.008696970529854298,
0.005568881519138813,
0.05029625818133354,
-0.011446810327470303,
0.0298068318516016,
0.0034475899301469326,
0.03870666027069092,
0.02124469168484211,
-0.060966700315475464,
0.0033405229914933443,
-0.08404478430747986,
-0.07825024425983429,
-0.06366012990474701,
-0.08952363580465317,
0.012046286836266518,
0.042530570179224014,
0.06274653971195221,
-0.07372340559959412,
-0.09527371823787689,
0.18360383808612823,
0.10982873290777206,
-0.07345408946275711,
0.03651434928178787,
-0.06852898746728897,
0.03487026318907738,
-0.019560115411877632,
-0.007675783708691597,
-0.21173135936260223,
-0.11500455439090729,
0.007955167442560196,
-0.03336804732680321,
0.057195425033569336,
0.032795149832963943,
0.054094258695840836,
0.06940743327140808,
-0.05171540006995201,
0.020130423828959465,
-0.06765025109052658,
0.0043139467015862465,
-0.10975556075572968,
-0.20628225803375244,
-0.03248646482825279,
-0.006430448964238167,
0.15128089487552643,
-0.2156551480293274,
0.03233397379517555,
-0.04411657899618149,
0.11905186623334885,
0.0006927832728251815,
-0.0333588682115078,
-0.05689268931746483,
0.07756383717060089,
-0.026184553280472755,
-0.08276759088039398,
0.06410492956638336,
0.005089208483695984,
-0.049397051334381104,
-0.08831890672445297,
-0.1449011117219925,
0.0828702300786972,
0.11618181318044662,
-0.06611070036888123,
-0.06839822977781296,
0.0193305816501379,
-0.05775695666670799,
-0.03388508781790733,
-0.07200586050748825,
0.021383099257946014,
0.1785057932138443,
-0.015358449891209602,
0.1327325999736786,
-0.05494854599237442,
-0.0504022017121315,
-0.001739226863719523,
-0.01777344010770321,
0.012617147527635098,
0.04604243487119675,
0.13282212615013123,
-0.07119978964328766,
0.10805197060108185,
0.12000244855880737,
-0.10099125653505325,
0.124616838991642,
-0.024991516023874283,
-0.05659851059317589,
-0.004917562007904053,
-0.03366400673985481,
-0.020409300923347473,
0.08285675942897797,
-0.1186831071972847,
0.004910286050289869,
0.010336379520595074,
0.036341648548841476,
0.061717014759778976,
-0.19788993895053864,
0.007176593877375126,
0.009911683388054371,
-0.02988797053694725,
0.009662570431828499,
-0.027074327692389488,
0.021796291694045067,
0.09633798897266388,
0.017901472747325897,
-0.014929073862731457,
0.016372988000512123,
0.005426006857305765,
-0.0832442045211792,
0.18603652715682983,
-0.12676675617694855,
-0.15088647603988647,
-0.08887012302875519,
-0.00967378355562687,
-0.07811629772186279,
-0.016983000561594963,
0.025470083579421043,
-0.1053810864686966,
-0.058135297149419785,
-0.06779108196496964,
0.020137296989560127,
-0.030033782124519348,
-0.0015873864758759737,
0.07842406630516052,
0.012788374908268452,
0.07698872685432434,
-0.13012197613716125,
-0.0068702902644872665,
-0.03704121336340904,
-0.11535826325416565,
0.0021333140321075916,
0.06418386846780777,
0.09711286425590515,
0.16063529253005981,
-0.024324502795934677,
0.012276756577193737,
-0.023076673969626427,
0.23553749918937683,
-0.05660231411457062,
0.0012687323614954948,
0.15111632645130157,
0.019267819821834564,
0.04693151265382767,
0.0983615294098854,
0.05625520646572113,
-0.11246972531080246,
0.028505416586995125,
0.07870728522539139,
-0.02619023434817791,
-0.2232828140258789,
-0.06366678327322006,
-0.04400619864463806,
-0.0932234525680542,
0.06851519644260406,
0.03515832498669624,
0.03141601011157036,
0.05436769872903824,
0.01182377990335226,
0.09910521656274796,
-0.008909706957638264,
0.07594896852970123,
0.15707993507385254,
0.04783846065402031,
0.1274324208498001,
-0.038923654705286026,
-0.03025132045149803,
0.0627095103263855,
-0.01696183905005455,
0.2603047490119934,
-0.0037540721241384745,
0.035455115139484406,
0.06653149425983429,
0.11013244837522507,
-0.02224636822938919,
0.0318230576813221,
0.008711377158761024,
-0.020870625972747803,
0.0036958095151931047,
-0.05801577493548393,
-0.026796020567417145,
0.006346090696752071,
-0.07114790380001068,
0.037180058658123016,
-0.0808580219745636,
0.054017502814531326,
0.05708295479416847,
0.23501606285572052,
0.0036096395924687386,
-0.2895831763744354,
-0.08155738562345505,
0.013507161289453506,
-0.021065331995487213,
-0.03640640154480934,
0.012247049249708652,
0.09802411496639252,
-0.10848736763000488,
0.06812483817338943,
-0.06082170084118843,
0.10016481578350067,
-0.012684380635619164,
0.03544541448354721,
0.0840161144733429,
0.18840688467025757,
0.015694759786128998,
0.06865428388118744,
-0.26596924662590027,
0.1850351095199585,
0.018380241468548775,
0.1382373571395874,
-0.05615254119038582,
0.029612869024276733,
0.02402709424495697,
0.10967158526182175,
0.0401948019862175,
0.0019807966891676188,
-0.03540237993001938,
-0.1337309032678604,
-0.029814133420586586,
0.052381519228219986,
0.12993690371513367,
0.009413267485797405,
0.08179088681936264,
-0.06174466386437416,
0.015011229552328587,
0.06536705791950226,
-0.06695733964443207,
-0.17819450795650482,
-0.12384943664073944,
0.008023335598409176,
0.024178029969334602,
-0.06726738065481186,
-0.0613245889544487,
-0.1007741391658783,
-0.07648610323667526,
0.21299660205841064,
0.019100451841950417,
-0.03830304369330406,
-0.12857407331466675,
0.09834828972816467,
0.08706679195165634,
-0.05881860479712486,
0.02410755306482315,
0.010699045844376087,
0.10236116498708725,
0.03587150573730469,
-0.12037678062915802,
0.06183914467692375,
-0.08653926849365234,
-0.13562507927417755,
-0.034759532660245895,
0.08664534240961075,
0.0448588952422142,
0.04217009246349335,
-0.0004607218725141138,
0.020579343661665916,
0.009308691136538982,
-0.10745059698820114,
-0.017787542194128036,
0.09132566303014755,
0.07569809257984161,
0.04490217939019203,
-0.09779974818229675,
-0.014818132854998112,
-0.038906730711460114,
-0.014038968831300735,
0.12776876986026764,
0.1799343228340149,
-0.07619326561689377,
0.03872121497988701,
0.05860660597681999,
-0.10627678781747818,
-0.19180411100387573,
0.10343639552593231,
0.09256555885076523,
-0.016801364719867706,
0.033471643924713135,
-0.2000279575586319,
0.18093013763427734,
0.13975182175636292,
-0.010127359069883823,
0.08805318176746368,
-0.3362581431865692,
-0.13862642645835876,
0.05736896023154259,
0.13403423130512238,
0.08547883480787277,
-0.14972250163555145,
-0.018586989492177963,
-0.05783310532569885,
-0.15566004812717438,
0.14759992063045502,
-0.13686880469322205,
0.10238413512706757,
-0.0005402402603067458,
0.08289699256420135,
0.004808095283806324,
-0.03582271188497543,
0.12877458333969116,
0.024138478562235832,
0.08573851734399796,
-0.061959367245435715,
0.04723741114139557,
0.08746840804815292,
-0.045670077204704285,
0.018145348876714706,
-0.027586305513978004,
0.049210596829652786,
-0.060338813811540604,
-0.023794889450073242,
-0.07122977077960968,
0.061962150037288666,
-0.04408062994480133,
-0.07405503839254379,
-0.04774267598986626,
0.03059552051126957,
0.0560876689851284,
-0.028257936239242554,
0.08110648393630981,
0.018847409635782242,
0.14622808992862701,
0.055970851331949234,
0.10090450942516327,
-0.09370483458042145,
-0.06143173947930336,
-0.0007693292573094368,
-0.014130319468677044,
0.058980848640203476,
-0.12377795577049255,
0.02550514042377472,
0.13103105127811432,
0.027549609541893005,
0.1175200343132019,
0.07342929393053055,
-0.024235092103481293,
0.0051788748241961,
0.05178297311067581,
-0.1307544857263565,
-0.14170396327972412,
0.004479826427996159,
-0.06976640224456787,
-0.09591247141361237,
0.06270216405391693,
0.11826718598604202,
-0.06572353839874268,
-0.0029353343416005373,
-0.008914453908801079,
0.014400442130863667,
-0.049106717109680176,
0.18399293720722198,
0.02161223255097866,
0.04031187295913696,
-0.09202195703983307,
0.11233872175216675,
0.05154760181903839,
-0.06632886081933975,
0.03309198096394539,
0.09457163512706757,
-0.10109816491603851,
-0.023811371996998787,
0.07989383488893509,
0.13855807483196259,
-0.08205714821815491,
-0.04834241420030594,
-0.09622492641210556,
-0.11644627898931503,
0.041196104139089584,
0.13457126915454865,
0.07244309037923813,
-0.027516890317201614,
-0.05711383372545242,
0.05540637671947479,
-0.16064681112766266,
0.057081881910562515,
0.014897852204740047,
0.08182696253061295,
-0.15821555256843567,
0.15208201110363007,
0.03849170356988907,
0.03466178476810455,
-0.02885943464934826,
0.027369022369384766,
-0.10272644460201263,
-0.01681000553071499,
-0.15089061856269836,
-0.045845963060855865,
-0.03572507202625275,
-0.0020447997376322746,
-0.004090005997568369,
-0.037206295877695084,
-0.07203835994005203,
0.05200713500380516,
-0.0720919594168663,
-0.05236607789993286,
0.011938773095607758,
0.029786337167024612,
-0.13509228825569153,
0.018024252727627754,
0.0044046384282410145,
-0.08015621453523636,
0.0556068941950798,
0.058685243129730225,
0.014126027934253216,
0.07448405027389526,
-0.1560802459716797,
-0.030827077105641365,
0.062310781329870224,
0.03952426090836525,
0.08322962373495102,
-0.057500019669532776,
-0.011905805207788944,
0.013175446540117264,
0.10317951440811157,
0.022966913878917694,
0.08917557448148727,
-0.10872798413038254,
0.009506745263934135,
-0.07755962759256363,
-0.06771667301654816,
-0.05212441831827164,
0.030158396810293198,
0.11403802037239075,
0.03597964346408844,
0.18940362334251404,
-0.09031691402196884,
0.02191111259162426,
-0.1935565173625946,
-0.02352864481508732,
-0.0052644433453679085,
-0.04960686340928078,
-0.05851159989833832,
-0.045608945190906525,
0.07100988179445267,
-0.06221650540828705,
0.13250017166137695,
0.011969860643148422,
0.09756214916706085,
0.05038849636912346,
-0.02978973090648651,
-0.059141844511032104,
0.010250442661345005,
0.19079746305942535,
0.07201534509658813,
-0.008720296435058117,
0.07308909296989441,
0.028079241514205933,
0.08696923404932022,
0.04097725450992584,
0.24289776384830475,
0.13474681973457336,
-0.07541375607252121,
0.07912043482065201,
0.04801107943058014,
-0.08411016315221786,
-0.16836370527744293,
0.1104256734251976,
-0.06084757670760155,
0.11435922235250473,
-0.05719204246997833,
0.1635637879371643,
0.10541386902332306,
-0.15691381692886353,
0.03584953397512436,
-0.06988215446472168,
-0.10134408622980118,
-0.14184100925922394,
-0.023779060691595078,
-0.08271610736846924,
-0.14420688152313232,
0.010483460500836372,
-0.13583290576934814,
0.03779406100511551,
0.11198308318853378,
0.013973867520689964,
0.005029826890677214,
0.15259981155395508,
-0.03389550372958183,
0.0031620271038264036,
0.03146946802735329,
-0.0021237207110971212,
-0.019745824858546257,
-0.06912337243556976,
-0.06273312121629715,
0.0024248016998171806,
0.02054138481616974,
0.08119893074035645,
-0.042370669543743134,
-0.039602961391210556,
0.032560646533966064,
-0.03559871390461922,
-0.052706263959407806,
0.030306093394756317,
0.029980631545186043,
0.023854296654462814,
0.03166117146611214,
0.02737130969762802,
-0.027875808998942375,
-0.02898954413831234,
0.2729865312576294,
-0.080532006919384,
-0.13724157214164734,
-0.12031212449073792,
0.2555483281612396,
0.041319187730550766,
-0.01354887429624796,
0.05252625048160553,
-0.08676505833864212,
-0.03224460780620575,
0.20813508331775665,
0.189604714512825,
-0.09816279262304306,
-0.02753286063671112,
-0.007631762884557247,
-0.016702810302376747,
-0.06603317707777023,
0.16167686879634857,
0.13533145189285278,
0.0694461464881897,
-0.05231596529483795,
-0.02693142555654049,
-0.02199392579495907,
-0.014695735648274422,
-0.09898453205823898,
0.03294362127780914,
0.02640276774764061,
0.005593993701040745,
-0.008731188252568245,
0.06892841309309006,
-0.026329349726438522,
-0.14027714729309082,
0.03383972495794296,
-0.1536150872707367,
-0.16570945084095,
-0.011771593242883682,
0.09990358352661133,
-0.05655710771679878,
0.056541379541158676,
-0.019859323278069496,
-0.01483618002384901,
0.1197090744972229,
-0.026971887797117233,
-0.052497610449790955,
-0.08701876550912857,
0.09380345791578293,
-0.0972750335931778,
0.19673700630664825,
-0.02356594242155552,
0.07266554236412048,
0.11512617766857147,
0.04058253765106201,
-0.1009167730808258,
0.05759561061859131,
0.03292481228709221,
-0.08942651003599167,
0.02726159617304802,
0.1113857701420784,
-0.05537507310509682,
0.060326457023620605,
0.0537211149930954,
-0.13492900133132935,
-0.008359739556908607,
-0.027929134666919708,
-0.03771990165114403,
-0.04535830020904541,
-0.0289812833070755,
-0.0962851271033287,
0.1311664581298828,
0.20719413459300995,
-0.007497219368815422,
0.026998745277523994,
-0.09295520186424255,
0.030178183689713478,
0.04118269681930542,
0.11656463891267776,
-0.06313980370759964,
-0.24716126918792725,
0.014278440736234188,
0.014392460696399212,
-0.004432914778590202,
-0.21523207426071167,
-0.07866694778203964,
0.028956377878785133,
-0.04587678983807564,
-0.08914976567029953,
0.1033162847161293,
0.09176323562860489,
0.03946145996451378,
-0.049853917211294174,
-0.1348673552274704,
-0.06651085615158081,
0.16671395301818848,
-0.15985910594463348,
-0.06218515336513519
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
|
automatic-speech-recognition
|
dark-knight/wav2vec2-base-timit-demo-colab
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
|
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
[
"# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 2\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 2\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3"
] |
[
56,
39,
6,
12,
8,
3,
117,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 2\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3"
] |
[
-0.09822136908769608,
0.10031651705503464,
-0.0026886339765042067,
0.04869111627340317,
0.11540121585130692,
0.010075119324028492,
0.09506874531507492,
0.11104600876569748,
-0.04898194968700409,
0.08360990881919861,
0.08201102912425995,
0.03290941193699837,
0.07248392701148987,
0.1691625565290451,
-0.03142571076750755,
-0.21632321178913116,
0.02383321151137352,
-0.03942233324050903,
-0.07351218163967133,
0.09049592912197113,
0.07746371626853943,
-0.0995897650718689,
0.06436187028884888,
0.011982266791164875,
-0.1485293209552765,
0.01870468258857727,
-0.031696368008852005,
-0.07292451709508896,
0.1069280356168747,
0.017034681513905525,
0.062477465718984604,
0.0327269583940506,
0.13654473423957825,
-0.23204191029071808,
0.002700889715924859,
0.09739761054515839,
0.02475934848189354,
0.0709611251950264,
0.07499252259731293,
0.0008436324424110353,
0.1274024099111557,
-0.15606744587421417,
0.1044204831123352,
0.0492577888071537,
-0.08590315282344818,
-0.19359301030635834,
-0.08394429087638855,
0.07382650673389435,
0.1067831888794899,
0.09667292982339859,
-0.009762126952409744,
0.08022068440914154,
-0.08617869019508362,
0.06845884025096893,
0.20464220643043518,
-0.2361132949590683,
-0.061775460839271545,
0.005400059744715691,
0.05077572911977768,
0.026445860043168068,
-0.09951234608888626,
0.01707056537270546,
0.027651797980070114,
0.04418998211622238,
0.09451857954263687,
-0.011457045562565327,
-0.06190948560833931,
-0.019579220563173294,
-0.12389674782752991,
-0.0011641810415312648,
0.07924670726060867,
0.06532852351665497,
-0.047099143266677856,
-0.10532339662313461,
-0.04860866069793701,
-0.053679902106523514,
-0.02982310950756073,
-0.05898696556687355,
0.028312111273407936,
-0.03225298970937729,
-0.06963469833135605,
-0.042741261422634125,
-0.05858681723475456,
-0.05938218906521797,
0.01152423582971096,
0.10616740584373474,
0.020006433129310608,
0.02235669456422329,
-0.03467487171292305,
0.07623502612113953,
0.03915131837129593,
-0.10991568118333817,
0.012202080339193344,
-0.009963100776076317,
-0.11873573064804077,
-0.028797009959816933,
-0.03709086403250694,
0.009886185638606548,
0.0190399419516325,
0.11909637600183487,
-0.04805002734065056,
0.11245502531528473,
-0.005921510048210621,
-0.007243943400681019,
-0.02078690007328987,
0.11510112881660461,
-0.04139607399702072,
-0.0697672888636589,
-0.01946125738322735,
0.07229708880186081,
-0.006273468490689993,
-0.026991067454218864,
-0.058163873851299286,
-0.0070131332613527775,
0.06326840817928314,
0.05404510349035263,
-0.04081312566995621,
0.005009683780372143,
-0.04769463837146759,
-0.020183566957712173,
-0.0017046041321009398,
-0.11409901082515717,
0.053806181997060776,
0.026316579431295395,
-0.05295644327998161,
0.02711986005306244,
0.01866368018090725,
0.009520445950329304,
-0.04120416194200516,
0.09137341380119324,
-0.049791913479566574,
-0.016453556716442108,
-0.049243129789829254,
-0.053964294493198395,
0.021616699174046516,
-0.08175189048051834,
-0.025739867240190506,
-0.0766306146979332,
-0.1482309103012085,
-0.04794716462492943,
0.06736858189105988,
-0.06564580649137497,
-0.021822772920131683,
-0.039189912378787994,
-0.046149104833602905,
0.040579915046691895,
-0.02522807940840721,
0.170011967420578,
-0.05731501802802086,
0.04562753066420555,
-0.03967157006263733,
0.057252902537584305,
0.03468082845211029,
0.0466722808778286,
-0.0322311706840992,
0.03087524324655533,
-0.12335339933633804,
0.09097233414649963,
-0.09720088541507721,
0.007161931600421667,
-0.13756708800792694,
-0.08081597089767456,
0.008340618573129177,
-0.006121991202235222,
0.07988131046295166,
0.11850832402706146,
-0.23297660052776337,
-0.05336250737309456,
0.12414859980344772,
-0.08424724638462067,
-0.04758552834391594,
0.09182775020599365,
-0.03140738606452942,
0.005582988727837801,
0.055384561419487,
0.18087616562843323,
0.05819730833172798,
-0.1530810296535492,
-0.0005071160849183798,
-0.003525273874402046,
0.04462101683020592,
0.02532336674630642,
0.0301860012114048,
-0.032825224101543427,
0.02993590384721756,
-0.001679842360317707,
-0.01392425037920475,
-0.009235205128788948,
-0.07544253766536713,
-0.0717267170548439,
-0.035539411008358,
-0.08239813148975372,
0.013470390811562538,
-0.003960026428103447,
-0.0017672714311629534,
-0.07533589005470276,
-0.10312307626008987,
0.05521975830197334,
0.10635070502758026,
-0.0641513392329216,
0.03242538869380951,
-0.06839725375175476,
0.0036828890442848206,
0.037272099405527115,
-0.013570060953497887,
-0.17717869579792023,
-0.05983258783817291,
0.02415424771606922,
-0.10003339499235153,
0.023289430886507034,
0.026034772396087646,
0.050161611288785934,
0.04526452347636223,
-0.03606612607836723,
-0.01599663868546486,
-0.09820333123207092,
0.023347606882452965,
-0.0769529715180397,
-0.21496112644672394,
-0.05310135707259178,
-0.034566160291433334,
0.13169683516025543,
-0.20073966681957245,
-0.011233762837946415,
0.032816082239151,
0.1420471966266632,
0.03228545933961868,
-0.056993063539266586,
-0.011859849095344543,
0.047849807888269424,
0.03219752758741379,
-0.0962645411491394,
0.04576939716935158,
0.003276279428973794,
-0.07968458533287048,
-0.030282091349363327,
-0.12437830865383148,
0.010227963328361511,
0.09094203263521194,
0.05710923671722412,
-0.09047120064496994,
-0.003198579652234912,
-0.07118864357471466,
-0.0346372090280056,
-0.07600616663694382,
0.014399249106645584,
0.21318835020065308,
0.03716344013810158,
0.09260588884353638,
-0.05901993811130524,
-0.06577268987894058,
0.028873343020677567,
0.015655258670449257,
-0.021484769880771637,
0.09122425317764282,
0.09906816482543945,
-0.08166446536779404,
0.05569739639759064,
0.11397963762283325,
0.002351167378947139,
0.1289294958114624,
-0.03408857807517052,
-0.07067286968231201,
-0.01991141028702259,
-0.02733449824154377,
-0.018394919112324715,
0.12864921987056732,
-0.10225965082645416,
0.01159925851970911,
0.017011407762765884,
0.040411319583654404,
0.040834516286849976,
-0.15945041179656982,
0.015464622527360916,
0.00891919806599617,
-0.059362251311540604,
-0.024264540523290634,
-0.008080950006842613,
0.0269508995115757,
0.0831603929400444,
0.032386355102062225,
-0.012888866476714611,
0.00437599141150713,
-0.0229042898863554,
-0.0975509062409401,
0.1628226637840271,
-0.13145089149475098,
-0.18556436896324158,
-0.06746169179677963,
0.02551409788429737,
-0.04520226642489433,
-0.03614863008260727,
0.029790567234158516,
-0.11978790909051895,
-0.06811358034610748,
-0.08279606699943542,
0.02224750444293022,
-0.031023520976305008,
0.023362159729003906,
0.09588081389665604,
0.015280447900295258,
0.0765894278883934,
-0.11599595099687576,
-0.00790401455014944,
-0.04396669566631317,
-0.04402893781661987,
-0.01249193400144577,
0.08304499834775925,
0.05568902939558029,
0.10388395935297012,
0.012311676517128944,
0.0320957712829113,
-0.027783846482634544,
0.23719091713428497,
-0.07461174577474594,
0.04186456277966499,
0.13331465423107147,
-0.004235606640577316,
0.042962171137332916,
0.10556352138519287,
0.029766108840703964,
-0.1214379146695137,
0.03393588215112686,
0.07700977474451065,
-0.018706578761339188,
-0.23282620310783386,
-0.05695449560880661,
-0.03076130710542202,
-0.061121221631765366,
0.1031009703874588,
0.03499177470803261,
-0.055696845054626465,
0.01753094792366028,
0.01665269210934639,
0.004136728122830391,
0.005706354975700378,
0.050901446491479874,
0.08315332978963852,
0.040814608335494995,
0.09087428450584412,
-0.02155410870909691,
0.0068749841302633286,
0.08468039333820343,
-0.0237272996455431,
0.24382814764976501,
0.011901390738785267,
0.026533644646406174,
0.06433955579996109,
0.10978764295578003,
-0.01470277551561594,
0.041326578706502914,
0.02190753072500229,
-0.018678657710552216,
-0.002523388247936964,
-0.05771046504378319,
-0.01901262439787388,
0.02697214111685753,
0.015356127172708511,
-0.013114101253449917,
-0.10147380083799362,
0.03826991468667984,
0.02536952495574951,
0.2938023507595062,
0.055447548627853394,
-0.2405926138162613,
-0.05835244804620743,
-0.005123781971633434,
-0.06721394509077072,
-0.06282110512256622,
0.02398882433772087,
0.12383129447698593,
-0.12927113473415375,
0.10389399528503418,
-0.04461393877863884,
0.08518045395612717,
-0.028180982917547226,
0.02107875421643257,
0.052566926926374435,
0.12555080652236938,
-0.003337328787893057,
0.04449088126420975,
-0.21947915852069855,
0.22655893862247467,
0.014945420436561108,
0.1189904734492302,
-0.07006847858428955,
0.031154707074165344,
0.012877280823886395,
0.002680006669834256,
0.10319987684488297,
0.008288756012916565,
-0.11002355068922043,
-0.11091630160808563,
-0.07607074826955795,
0.0508323609828949,
0.1306571364402771,
-0.026512060314416885,
0.06221667677164078,
-0.026862237602472305,
0.0011341618373990059,
0.039492763578891754,
-0.01983671635389328,
-0.2029762864112854,
-0.125960573554039,
0.003051097271963954,
0.030549751594662666,
-0.010576593689620495,
-0.07572924345731735,
-0.08949828147888184,
-0.03630950674414635,
0.1399174928665161,
-0.006584739778190851,
-0.02290009893476963,
-0.15945017337799072,
0.05120998993515968,
0.13564454019069672,
-0.044369034469127655,
0.03598145395517349,
0.03045986220240593,
0.12792646884918213,
0.012541328556835651,
-0.09891251474618912,
0.06838274747133255,
-0.10281477868556976,
-0.1949223279953003,
-0.049256790429353714,
0.14016322791576385,
0.09628766030073166,
0.03168439865112305,
0.01433984562754631,
0.025936875492334366,
0.012620747089385986,
-0.1029796302318573,
0.07091005891561508,
0.09459003061056137,
0.039150670170784,
0.02432049624621868,
-0.0407414436340332,
-0.019861804321408272,
-0.02999381721019745,
-0.029118431732058525,
0.10945145040750504,
0.2341136485338211,
-0.08019962906837463,
0.1349755823612213,
0.11979645490646362,
-0.06845554709434509,
-0.1681833565235138,
0.06937072426080704,
0.11953451484441757,
0.01647830195724964,
0.038121312856674194,
-0.20105770230293274,
0.1232510507106781,
0.0995081439614296,
-0.008596292696893215,
0.02303393930196762,
-0.276645302772522,
-0.14000453054904938,
0.08687260746955872,
0.08640260249376297,
0.04022964835166931,
-0.07956040650606155,
-0.02416086755692959,
-0.06473786383867264,
-0.09876181930303574,
0.1451219916343689,
-0.12709662318229675,
0.09573256224393845,
0.011050279252231121,
0.07140462845563889,
0.0030769051518291235,
-0.025574706494808197,
0.12988808751106262,
0.0421256460249424,
0.07197012007236481,
-0.031485773622989655,
0.0735345110297203,
0.002351385774090886,
-0.055576931685209274,
0.019337845966219902,
-0.05114155262708664,
0.05617530643939972,
-0.1011941060423851,
-0.02338780276477337,
-0.08795051276683807,
0.06775130331516266,
-0.05599813163280487,
-0.05433350428938866,
-0.031054072082042694,
0.049596793949604034,
0.0761168971657753,
-0.0413966104388237,
-0.03364689275622368,
-0.01136021502315998,
0.08390020579099655,
0.10032602399587631,
0.10220123082399368,
-0.056393373757600784,
-0.06359633803367615,
0.005285021383315325,
-0.03273138031363487,
0.05156053230166435,
-0.07229377329349518,
0.030807435512542725,
0.11219735443592072,
0.02807730622589588,
0.12478308379650116,
0.037785448133945465,
-0.0777670219540596,
-0.011179354973137379,
0.034065280109643936,
-0.11598067730665207,
-0.12027881294488907,
0.01575176604092121,
-0.017183998599648476,
-0.08892185240983963,
0.008589740842580795,
0.13740018010139465,
-0.038180477917194366,
-0.004468736704438925,
-0.01444199588149786,
0.03395629674196243,
-0.03696875646710396,
0.17958690226078033,
0.025144027546048164,
0.0692799836397171,
-0.10012829303741455,
0.13885675370693207,
0.03408821299672127,
-0.10437273979187012,
0.09087605774402618,
0.09061688184738159,
-0.09067001193761826,
-0.014114908874034882,
0.0652497261762619,
0.16031131148338318,
0.012123444117605686,
-0.0563996359705925,
-0.0596541166305542,
-0.14278869330883026,
0.08401091396808624,
0.1525184065103531,
0.01618862897157669,
-0.019332636147737503,
-0.05087056756019592,
0.024368733167648315,
-0.11153512448072433,
0.05704215168952942,
0.050766535103321075,
0.02850606106221676,
-0.11544248461723328,
0.10819324851036072,
0.023228514939546585,
0.022524936124682426,
-0.01742381975054741,
0.01713494583964348,
-0.11409138143062592,
-0.00964105874300003,
-0.14491549134254456,
-0.021572478115558624,
-0.0355575866997242,
0.0064300778321921825,
-0.012400368228554726,
-0.04295984283089638,
-0.04913508892059326,
0.03295288607478142,
-0.07408600300550461,
-0.05139947682619095,
-0.0014766528038308024,
0.04166518896818161,
-0.14348620176315308,
0.010412323288619518,
0.018849747255444527,
-0.10154347866773605,
0.08705652505159378,
0.04607600346207619,
0.004003607667982578,
0.03592054918408394,
-0.12625941634178162,
-0.03352633863687515,
0.025249287486076355,
0.016713637858629227,
0.06894844770431519,
-0.12467393279075623,
-0.022248636931180954,
-0.020826326683163643,
0.04275868833065033,
0.022441605105996132,
0.09535302221775055,
-0.09026515483856201,
-0.013971519656479359,
-0.06784263998270035,
-0.06142374128103256,
-0.049867067486047745,
0.03538975119590759,
0.11849523335695267,
0.04944770410656929,
0.1476268172264099,
-0.09288802742958069,
0.05092686414718628,
-0.18175122141838074,
-0.034217264503240585,
-0.008655952289700508,
-0.003527014749124646,
-0.017079833894968033,
-0.035378966480493546,
0.10635527223348618,
-0.050542816519737244,
0.12132331728935242,
-0.013407708145678043,
0.07952001690864563,
0.0424182191491127,
-0.1137983500957489,
-0.10704958438873291,
0.023726463317871094,
0.15198352932929993,
0.050791021436452866,
-0.0009338112431578338,
0.07704338431358337,
-0.022728273645043373,
0.06264743953943253,
0.07107214629650116,
0.2378619760274887,
0.1737879514694214,
0.011111236177384853,
0.07081406563520432,
0.07121659070253372,
-0.13364776968955994,
-0.12340626120567322,
0.1425618827342987,
-0.0890885666012764,
0.13182416558265686,
-0.0662093237042427,
0.14215995371341705,
0.04664696007966995,
-0.18634817004203796,
0.048455722630023956,
-0.04060123860836029,
-0.09313292056322098,
-0.12648774683475494,
-0.033975835889577866,
-0.06838914006948471,
-0.13818301260471344,
0.024219080805778503,
-0.1024828553199768,
0.0526055172085762,
0.046099837869405746,
0.02947738766670227,
0.0285511277616024,
0.12071073800325394,
-0.043562497943639755,
-0.011424595490098,
0.09994730353355408,
0.03192519396543503,
-0.033641379326581955,
-0.04608900099992752,
-0.07280096411705017,
0.024450311437249184,
0.03612520918250084,
0.060514893382787704,
-0.02777894400060177,
-0.0625533014535904,
0.04369787126779556,
0.004536020569503307,
-0.06316788494586945,
0.03541624918580055,
-0.018644731491804123,
0.04077686369419098,
0.06473543494939804,
0.06504664570093155,
-0.018947327509522438,
-0.02947838418185711,
0.2463853508234024,
-0.08693532645702362,
-0.0846601352095604,
-0.14074502885341644,
0.16594216227531433,
0.009925712831318378,
-0.0011673979461193085,
0.0384908951818943,
-0.08624200522899628,
-0.053192317485809326,
0.17869527637958527,
0.13761354982852936,
-0.08130504190921783,
-0.006879032589495182,
-0.022966792806982994,
-0.01151210255920887,
-0.04400048404932022,
0.15757407248020172,
0.11187181621789932,
0.05133672431111336,
-0.04617568105459213,
-0.013581929728388786,
-0.020712455734610558,
-0.07328742742538452,
-0.06972701102495193,
0.10511774569749832,
0.010815433226525784,
-0.011811387725174427,
-0.02915598824620247,
0.09760849177837372,
-0.01443600282073021,
-0.220427006483078,
0.026369092985987663,
-0.15650130808353424,
-0.17470401525497437,
-0.01241168100386858,
0.05808364972472191,
-0.0035841623321175575,
0.04916897043585777,
0.0018046514596790075,
-0.00474971579387784,
0.13976019620895386,
-0.007502707187086344,
-0.017132755368947983,
-0.10902900993824005,
0.08140187710523605,
-0.08523951470851898,
0.18561366200447083,
-0.007250939030200243,
0.036997366696596146,
0.09325192123651505,
0.058304715901613235,
-0.12155425548553467,
0.037413500249385834,
0.05201146751642227,
-0.07922051101922989,
0.017334917560219765,
0.1514091193675995,
-0.05434528738260269,
0.07629355043172836,
0.059039875864982605,
-0.1332836151123047,
-0.015637701377272606,
-0.040696945041418076,
-0.027395354583859444,
-0.053305987268686295,
0.006770340725779533,
-0.07342703640460968,
0.14813032746315002,
0.17492744326591492,
-0.0429493673145771,
0.014749230816960335,
-0.07170068472623825,
0.04543095454573631,
0.006512448191642761,
0.0721341148018837,
-0.03209974244236946,
-0.22570498287677765,
0.030929679051041603,
0.01600499078631401,
0.020604930818080902,
-0.18761752545833588,
-0.09571290761232376,
0.031386781483888626,
-0.04300810024142265,
-0.057728830724954605,
0.11238758265972137,
0.016415126621723175,
0.02139434777200222,
-0.03570900484919548,
-0.09418381005525589,
-0.016033323481678963,
0.16115497052669525,
-0.15028181672096252,
-0.027642399072647095
] |
null | null |
transformers
|
# Chicken Bot's Jon Snow DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
darkzek/chickenbot-jon-snow
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Chicken Bot's Jon Snow DialoGPT Model
|
[
"# Chicken Bot's Jon Snow DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Chicken Bot's Jon Snow DialoGPT Model"
] |
[
51,
12
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Chicken Bot's Jon Snow DialoGPT Model"
] |
[
-0.012164096347987652,
0.12548579275608063,
-0.0020508691668510437,
0.021131398156285286,
0.09048929810523987,
0.010746951214969158,
0.1307479441165924,
0.11749953776597977,
-0.005824715364724398,
-0.09567778557538986,
0.1415189653635025,
0.18618382513523102,
0.033763203769922256,
0.11262229084968567,
-0.03624000772833824,
-0.2431916743516922,
0.04176326468586922,
0.03241255134344101,
-0.03028245083987713,
0.12735149264335632,
0.03212449699640274,
-0.030447226017713547,
0.06565528362989426,
0.032379209995269775,
-0.1233232393860817,
-0.016945581883192062,
0.028968393802642822,
-0.06268159300088882,
0.16159552335739136,
0.032165806740522385,
-0.0068315984681248665,
0.004310564137995243,
-0.03345116972923279,
-0.1080164760351181,
0.0439772792160511,
-0.017567748203873634,
-0.038353484123945236,
0.05129820853471756,
-0.02789352275431156,
-0.02581489086151123,
0.17851631343364716,
0.07035084813833237,
0.002383433748036623,
0.09649290144443512,
-0.09294383227825165,
-0.01109675969928503,
0.07393097877502441,
0.030318686738610268,
0.06430987268686295,
0.14434964954853058,
-0.03556519001722336,
0.111546590924263,
-0.06708794832229614,
0.15287794172763824,
0.0386025495827198,
-0.3269940912723541,
-0.0334930419921875,
0.1012423038482666,
-0.0032132526393979788,
0.01862667314708233,
-0.047017429023981094,
0.1001005619764328,
0.051107145845890045,
-0.009713702835142612,
-0.13851237297058105,
-0.033262286335229874,
-0.055394381284713745,
-0.012651769444346428,
-0.09092438220977783,
0.008856973610818386,
0.18084800243377686,
-0.03358267992734909,
0.03468974307179451,
-0.05910864099860191,
-0.09114353358745575,
-0.054594736546278,
-0.024312250316143036,
-0.061997946351766586,
-0.08477906882762909,
0.07610940933227539,
-0.09131032973527908,
-0.13359007239341736,
-0.09703008085489273,
-0.01882074400782585,
-0.13332174718379974,
0.17227427661418915,
0.007504707667976618,
0.04598762094974518,
-0.2506268620491028,
0.09760323911905289,
0.0877981036901474,
-0.08706258982419968,
-0.0018826669547706842,
-0.04628155753016472,
-0.007453437894582748,
0.011083136312663555,
-0.03250012919306755,
-0.08419723808765411,
0.0913911759853363,
0.14943043887615204,
0.045144520699977875,
0.03032722696661949,
-0.055593252182006836,
-0.02942822128534317,
0.02073490619659424,
0.05561637505888939,
0.03838324919342995,
-0.12177480012178421,
-0.009871875867247581,
-0.06376052647829056,
0.022853415459394455,
-0.07592914253473282,
-0.16423864662647247,
-0.02722340077161789,
0.07879450917243958,
0.026891613379120827,
0.11256354302167892,
0.0911201685667038,
-0.021562719717621803,
-0.018395205959677696,
0.03793129324913025,
0.004814582411199808,
-0.027405554428696632,
0.0541960746049881,
0.013271667063236237,
0.06771984696388245,
-0.04067695140838623,
0.10997278988361359,
-0.060530874878168106,
-0.038256365805864334,
-0.043119437992572784,
-0.028706392273306847,
0.0387447215616703,
-0.018803367391228676,
-0.025837810710072517,
-0.07641495764255524,
0.02183043211698532,
-0.13699576258659363,
-0.09597167372703552,
0.0197745431214571,
-0.049077536910772324,
-0.032449036836624146,
-0.171873077750206,
-0.14594514667987823,
-0.029008474200963974,
0.05322113260626793,
-0.009145185351371765,
0.03536825627088547,
-0.05683739483356476,
0.025478361174464226,
-0.07311812788248062,
0.09978663921356201,
-0.07477938383817673,
0.022806648164987564,
-0.10579785704612732,
-0.06946434080600739,
0.030843563377857208,
0.13947159051895142,
-0.015816709026694298,
0.10666388273239136,
-0.009656514972448349,
0.0156465545296669,
-0.08357633650302887,
-0.01906743086874485,
-0.06820252537727356,
0.3014201521873474,
-0.13552072644233704,
-0.10693137347698212,
0.18428188562393188,
-0.0573662705719471,
-0.08782728761434555,
0.15148994326591492,
0.021703945472836494,
0.06074215844273567,
0.20406866073608398,
0.2111181616783142,
-0.03557932376861572,
-0.021635044366121292,
0.09059508144855499,
0.1774815022945404,
-0.11437193304300308,
0.033840328454971313,
0.018519507721066475,
-0.00930134579539299,
-0.14667965471744537,
0.0027825268916785717,
0.1462477296590805,
0.1009313091635704,
-0.018184516578912735,
-0.06198330596089363,
0.022422509267926216,
-0.03318457305431366,
0.09392420947551727,
-0.006023176945745945,
0.09304866194725037,
-0.04839024692773819,
-0.040602974593639374,
-0.15913358330726624,
-0.0060797822661697865,
0.0046395184472203255,
0.06354790180921555,
-0.02805260382592678,
0.05372099205851555,
0.03485345095396042,
0.033767033368349075,
-0.09388186782598495,
-0.07667533308267593,
-0.0837867259979248,
0.10534117370843887,
0.11105193942785263,
0.15529631078243256,
0.07563339918851852,
-0.03277018666267395,
0.026602158322930336,
0.021569324657320976,
0.15919160842895508,
0.02606608346104622,
-0.14561201632022858,
-0.15415875613689423,
0.08408371359109879,
-0.059621360152959824,
0.25260254740715027,
-0.019263887777924538,
0.029301226139068604,
0.0511603057384491,
0.13904176652431488,
0.004825287032872438,
-0.01599174551665783,
0.061634618788957596,
-0.06365083903074265,
-0.05818353593349457,
0.021456124261021614,
0.09151242673397064,
-0.01255393773317337,
-0.2137448936700821,
0.18054307997226715,
-0.034405168145895004,
0.06909008324146271,
0.17206135392189026,
-0.12711133062839508,
0.007256857585161924,
-0.0408734492957592,
-0.02440508082509041,
-0.001246448140591383,
0.09608449041843414,
0.006533573381602764,
0.322070837020874,
0.0018391533521935344,
0.0975298061966896,
0.01485730241984129,
-0.02111157961189747,
-0.043725255876779556,
-0.02678791992366314,
-0.016772057861089706,
0.10263597965240479,
0.08155051618814468,
-0.17670127749443054,
0.10819874703884125,
0.061289895325899124,
0.1491304337978363,
0.23848901689052582,
0.06878961622714996,
0.05242249369621277,
0.06529273092746735,
-0.056838005781173706,
-0.06213683634996414,
-0.04608263075351715,
-0.2811989188194275,
0.013760428875684738,
0.04621272161602974,
-0.020045610144734383,
0.09908440709114075,
-0.1288001835346222,
-0.039598576724529266,
0.029130904003977776,
-0.026722287759184837,
0.02434968389570713,
0.0470750592648983,
-0.014159969054162502,
0.09782546013593674,
0.008207018487155437,
-0.14913587272167206,
0.07700346410274506,
0.008806053549051285,
-0.08233097195625305,
0.16177886724472046,
-0.14686065912246704,
-0.3422957956790924,
-0.08484727889299393,
-0.12025532871484756,
-0.09933030605316162,
0.027142804116010666,
0.11196781694889069,
-0.1775386929512024,
-0.0027111682575196028,
0.004396998323500156,
0.07990195602178574,
-0.08731863647699356,
0.05743345990777016,
-0.03643861413002014,
-0.02909412793815136,
-0.11352888494729996,
-0.10672685503959656,
-0.028493231162428856,
-0.08318709582090378,
-0.07074194401502609,
0.07241540402173996,
-0.08339249342679977,
0.037413340061903,
0.1617845892906189,
0.07437241822481155,
0.04246963933110237,
-0.038445036858320236,
0.2395605444908142,
-0.09736920893192291,
0.021724795922636986,
0.09510771930217743,
-0.0003962745831813663,
0.03833746165037155,
0.14819888770580292,
-0.020086081698536873,
-0.041618578135967255,
0.011941714212298393,
-0.044525276869535446,
-0.06184013560414314,
-0.1768461912870407,
-0.08007978647947311,
-0.09146057814359665,
0.18499426543712616,
0.06283710151910782,
0.040007393807172775,
0.13132059574127197,
0.08725902438163757,
-0.04043008014559746,
-0.07332862913608551,
0.07152529805898666,
0.05903288349509239,
0.21734540164470673,
-0.05555964261293411,
0.15206113457679749,
0.009339723736047745,
-0.13634797930717468,
0.0779295414686203,
-0.00572678679600358,
-0.02899722382426262,
0.1143125668168068,
0.07108744233846664,
-0.039154358208179474,
0.03767760843038559,
0.1169910654425621,
0.09054309129714966,
0.04539394751191139,
-0.026798268780112267,
-0.01626068353652954,
-0.02236616238951683,
-0.08914459496736526,
0.08493921160697937,
0.1202552542090416,
-0.12207084149122238,
0.028422825038433075,
0.12678217887878418,
0.01836947351694107,
0.08690749108791351,
0.12839746475219727,
-0.14350242912769318,
-0.03321612626314163,
0.03405222296714783,
-0.0639946460723877,
-0.07590939104557037,
0.11430580914020538,
-0.01488711591809988,
-0.14998796582221985,
0.0752556100487709,
-0.03544526919722557,
0.09198285639286041,
-0.01060796994715929,
0.09729953855276108,
-0.09645497798919678,
-0.12158170342445374,
-0.01489232573658228,
0.10412383079528809,
-0.2457808554172516,
0.1032402515411377,
-0.026034045964479446,
-0.06796392798423767,
-0.11818923056125641,
-0.02446865104138851,
0.01823519356548786,
0.1153501644730568,
0.08772174268960953,
-0.015048904344439507,
0.0345517061650753,
0.0006246306584216654,
-0.1557631939649582,
0.0521913506090641,
0.04237792268395424,
-0.07979170233011246,
-0.008215492591261864,
-0.027616465464234352,
0.015923840925097466,
-0.0006552894483320415,
-0.06739947944879532,
-0.023906100541353226,
-0.1920497566461563,
0.04683125019073486,
0.05445088818669319,
0.11008048802614212,
0.024708379060029984,
-0.10794714838266373,
-0.043120939284563065,
0.22701364755630493,
-0.03430880233645439,
-0.11693490296602249,
-0.09707516431808472,
0.01659192331135273,
-0.056251414120197296,
-0.07157979905605316,
-0.003795270575210452,
-0.06408284604549408,
0.018832525238394737,
-0.0819651409983635,
-0.1957363337278366,
0.12419744580984116,
-0.07322777062654495,
-0.0984896868467331,
0.024834536015987396,
0.1585044264793396,
0.012832144275307655,
0.09169121086597443,
0.051981568336486816,
0.04077991843223572,
-0.15009352564811707,
-0.0636371523141861,
-0.06108740344643593,
-0.05273117125034332,
-0.061861466616392136,
0.06190301477909088,
0.061917539685964584,
-0.15689173340797424,
-0.1196402907371521,
0.049082834273576736,
0.3650315999984741,
0.1495646834373474,
-0.06086205691099167,
0.23604455590248108,
0.07043375074863434,
-0.010557807050645351,
-0.24617373943328857,
-0.131824791431427,
-0.10223404318094254,
-0.024883460253477097,
-0.0718667283654213,
-0.1876521110534668,
0.2087678611278534,
-0.07068894803524017,
-0.015132087282836437,
0.1300935000181198,
-0.2483213096857071,
-0.11746861785650253,
0.16336895525455475,
-0.024991633370518684,
0.41389358043670654,
0.0009759673266671598,
-0.02489663101732731,
-0.010838037356734276,
-0.09869208186864853,
0.11294931173324585,
-0.07061309367418289,
0.11472739279270172,
-0.01236242987215519,
0.15566736459732056,
0.05181077867746353,
-0.005517043173313141,
0.05292794108390808,
0.08909977972507477,
-0.07834836840629578,
-0.06598001718521118,
-0.05660717189311981,
-0.05098378658294678,
0.06670030951499939,
-0.017954731360077858,
-0.1550585776567459,
0.021965837106108665,
-0.17138203978538513,
-0.06296910345554352,
-0.06330808252096176,
0.08820457011461258,
-0.0024032993242144585,
-0.07255660742521286,
-0.020442891865968704,
-0.04675060510635376,
0.048737820237874985,
0.02693062089383602,
0.20969118177890778,
-0.08963637799024582,
0.189652219414711,
0.16650457680225372,
0.13617055118083954,
-0.18490271270275116,
0.02476896531879902,
-0.06969893723726273,
-0.06326599419116974,
0.019760500639677048,
0.023900814354419708,
-0.0016951272264122963,
0.10456236451864243,
0.039881493896245956,
0.04998822137713432,
0.08898443728685379,
0.010156582109630108,
0.008421063423156738,
0.05606003478169441,
-0.2716611325740814,
-0.09567508101463318,
-0.07925926893949509,
-0.159230574965477,
0.045708540827035904,
0.07585708051919937,
0.25377219915390015,
0.004885740578174591,
-0.0388658232986927,
-0.024315783753991127,
0.0730767473578453,
-0.018911639228463173,
0.059189748018980026,
0.005426758900284767,
0.00739113986492157,
-0.16378726065158844,
-0.015388257801532745,
-0.03082873485982418,
-0.0602671280503273,
0.05948534980416298,
0.09152401238679886,
-0.13378842175006866,
-0.1055217757821083,
-0.09450025111436844,
0.15921106934547424,
-0.11348069459199905,
0.043636925518512726,
-0.055824894458055496,
-0.15622207522392273,
0.06364655494689941,
-0.03782006725668907,
0.0753883495926857,
0.04439588263630867,
-0.1508467197418213,
-0.06326491385698318,
0.007379166781902313,
0.07503834366798401,
0.03474334999918938,
-0.034078795462846756,
-0.03433520346879959,
0.10347652435302734,
-0.01546633243560791,
0.08019144088029861,
-0.09228607267141342,
-0.08734218031167984,
-0.10385701060295105,
-0.005758598912507296,
-0.09060969948768616,
-0.0670238807797432,
-0.07986032962799072,
0.01791759394109249,
-0.008094212971627712,
-0.05879972130060196,
-0.053360823541879654,
-0.022516565397381783,
-0.09924262762069702,
0.02337510883808136,
-0.03417181223630905,
-0.020039577037096024,
-0.09973722696304321,
0.05941230058670044,
0.012627475894987583,
-0.00724438764154911,
0.09949097782373428,
0.12422061711549759,
-0.07972383499145508,
0.07621976733207703,
0.004025404807180166,
-0.05687684565782547,
0.06693398207426071,
0.015364077873528004,
0.03991705924272537,
0.08841409534215927,
-0.02544178068637848,
0.037260349839925766,
0.0637725293636322,
0.07539885491132736,
0.10050484538078308,
-0.039296653121709824,
0.03719566762447357,
-0.015650257468223572,
-0.11455611139535904,
-0.05404418706893921,
-0.06396503001451492,
0.0018652958096936345,
0.019532935693860054,
0.22055771946907043,
-0.04894762486219406,
0.08806604892015457,
-0.03454744070768356,
0.02571798674762249,
-0.011467876844108105,
-0.13272759318351746,
-0.03556382656097412,
-0.10520217567682266,
0.04914604499936104,
0.003191536758095026,
0.10880530625581741,
0.039696965366601944,
0.005336576607078314,
0.03419046476483345,
0.0468481220304966,
0.0862487331032753,
-0.04670391231775284,
0.15801222622394562,
0.13078580796718597,
-0.022824684157967567,
0.02940969541668892,
0.0681992918252945,
0.05876223370432854,
0.05104072019457817,
0.19185778498649597,
-0.07266447693109512,
-0.04085691273212433,
0.08945732563734055,
-0.002808414865285158,
0.06406854093074799,
-0.14068520069122314,
-0.09079476445913315,
-0.1016421690583229,
0.07466599345207214,
0.02795659564435482,
0.13393957912921906,
0.13783130049705505,
-0.03940950706601143,
-0.04587196931242943,
0.03686249256134033,
-0.0395546555519104,
-0.18656839430332184,
-0.15546351671218872,
-0.07173315435647964,
-0.13234640657901764,
0.009628056548535824,
-0.10359546542167664,
-0.017679065465927124,
0.00439432030543685,
0.0969473272562027,
-0.008820275776088238,
0.11694801598787308,
0.02863486111164093,
-0.06356777995824814,
0.05859841778874397,
-0.015472237952053547,
0.0014895262429490685,
-0.04093926399946213,
-0.06544984132051468,
-0.05027763918042183,
0.06875071674585342,
-0.01800224743783474,
-0.029781917110085487,
-0.04538523778319359,
0.014899632893502712,
-0.08346480876207352,
-0.0982089638710022,
-0.055141936987638474,
0.04307599738240242,
0.02321569062769413,
0.1476002335548401,
0.07079098373651505,
-0.01350889727473259,
0.003330608131363988,
0.17563167214393616,
-0.058284420520067215,
-0.11943212151527405,
-0.0739721953868866,
0.265888512134552,
-0.05156164988875389,
0.07309505343437195,
-0.013256204314529896,
-0.016122035682201385,
-0.07320299744606018,
0.26329556107521057,
0.3545360863208771,
-0.14140231907367706,
0.011256842873990536,
-0.05897970497608185,
0.03569934144616127,
0.13289721310138702,
0.06431697309017181,
0.11129371076822281,
0.13577763736248016,
-0.04500172659754753,
-0.004131354857236147,
-0.02937912754714489,
-0.07434343546628952,
-0.11931066960096359,
-0.0389455109834671,
0.06889479607343674,
-0.07099851220846176,
-0.021449578925967216,
0.12013233453035355,
-0.2071537971496582,
0.036911215633153915,
-0.17365403473377228,
-0.1262623518705368,
-0.07975210249423981,
-0.01612996496260166,
0.1239045113325119,
0.06015041843056679,
0.10836473107337952,
0.030531633645296097,
-0.037582650780677795,
0.04124576225876808,
0.010024365969002247,
-0.27358782291412354,
0.037665437906980515,
0.09038304537534714,
-0.26869845390319824,
-0.00845066737383604,
-0.0321170911192894,
-0.006055166013538837,
0.09146832674741745,
0.03349748253822327,
-0.02512204460799694,
0.002917013131082058,
0.01621468923985958,
-0.051758550107479095,
0.004317141603678465,
0.03563590720295906,
0.03357045352458954,
-0.04094523563981056,
0.10609152913093567,
-0.14629484713077545,
0.007644366938620806,
0.02556874044239521,
0.0030951444059610367,
0.009755413047969341,
0.04228788986802101,
-0.05240515246987343,
0.10589157044887543,
0.14268068969249725,
-0.032192911952733994,
-0.007133410312235355,
0.015899689868092537,
-0.08083735406398773,
-0.06933867931365967,
-0.1525680273771286,
-0.12010471522808075,
-0.16587139666080475,
-0.15259283781051636,
-0.05532167851924896,
-0.005424403585493565,
-0.13354000449180603,
-0.03243360295891762,
-0.1927139163017273,
0.04237637296319008,
-0.09492653608322144,
0.10178664326667786,
0.060954056680202484,
-0.05265752598643303,
0.032608143985271454,
0.013113054446876049,
0.05129196494817734,
0.11414995789527893,
-0.1375149041414261,
-0.10899119079113007
] |
null | null |
transformers
|
# Pickle Rick DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
darthboii/DialoGPT-small-PickleRick
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Pickle Rick DialoGPT Model
|
[
"# Pickle Rick DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Pickle Rick DialoGPT Model"
] |
[
51,
9
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Pickle Rick DialoGPT Model"
] |
[
0.0058993385173380375,
0.1619562804698944,
-0.004587709438055754,
0.0385812371969223,
0.11588868498802185,
-0.017457257956266403,
0.09316802024841309,
0.15668858587741852,
0.07545545697212219,
-0.02798120118677616,
0.14093835651874542,
0.29368025064468384,
-0.027022473514080048,
0.1396280825138092,
-0.060662053525447845,
-0.32904529571533203,
0.06321495771408081,
0.07671381533145905,
-0.034521400928497314,
0.12581796944141388,
0.10196451097726822,
-0.03163152188062668,
0.07773653417825699,
-0.008280466310679913,
-0.1559668481349945,
-0.0022210367023944855,
0.011594783514738083,
-0.08917389810085297,
0.09171605110168457,
0.04315163195133209,
0.02517375908792019,
0.027167772874236107,
-0.060092661529779434,
-0.13026316463947296,
0.03929268568754196,
0.007671361789107323,
-0.04417162016034126,
0.06867704540491104,
0.008285324089229107,
-0.07503512501716614,
0.08596473932266235,
0.08800012618303299,
0.009898614138364792,
0.035116441547870636,
-0.12044626474380493,
0.01564759388566017,
-0.023345310240983963,
0.08170449733734131,
0.05755900219082832,
0.057269178330898285,
-0.020680608227849007,
0.1298748254776001,
-0.053844012320041656,
0.14535315334796906,
0.13121692836284637,
-0.25281015038490295,
-0.025971509516239166,
0.14663000404834747,
0.03530444949865341,
0.04637977108359337,
-0.03171122819185257,
0.08393704891204834,
0.01036533061414957,
-0.023528506979346275,
-0.081522136926651,
-0.0698234885931015,
-0.17471787333488464,
0.032362502068281174,
-0.08752668648958206,
-0.000162934185937047,
0.2652263045310974,
-0.03375345095992088,
0.04847963899374008,
-0.08833389729261398,
-0.08924433588981628,
-0.045371778309345245,
-0.05029955133795738,
-0.05710778385400772,
-0.0649331584572792,
0.059287551790475845,
-0.0261569581925869,
-0.08958372473716736,
-0.07659363746643066,
-0.04077419638633728,
-0.12047025561332703,
0.20310577750205994,
0.025158246979117393,
0.01060959231108427,
-0.1561371088027954,
0.0420084185898304,
0.008616884239017963,
-0.07542465627193451,
-0.007505746558308601,
-0.04265642538666725,
-0.0039015640504658222,
-0.032300788909196854,
-0.018529970198869705,
-0.04037284106016159,
0.09366095811128616,
0.09250497817993164,
0.015315008349716663,
0.049070652574300766,
-0.06864721328020096,
0.01959678903222084,
0.08221181482076645,
0.025242449715733528,
-0.010700326412916183,
0.050066132098436356,
-0.0015752939507365227,
-0.10591909289360046,
-0.018500572070479393,
-0.06274815648794174,
-0.1668626070022583,
0.005927858874201775,
0.059458907693624496,
0.04085804149508476,
0.046590130776166916,
0.13134393095970154,
-0.005633298773318529,
-0.07168418914079666,
0.07265260815620422,
-0.02112627401947975,
-0.03240225091576576,
0.010393179021775723,
-0.002702479250729084,
0.12603437900543213,
-0.021428145468235016,
0.06602418422698975,
-0.0939527228474617,
-0.005564493127167225,
-0.08638820797204971,
-0.009777053259313107,
-0.0009475352708250284,
-0.052499521523714066,
-0.002583494409918785,
-0.047065723687410355,
0.00014845095574855804,
-0.12080570310354233,
-0.20949827134609222,
-0.00951287243515253,
-0.00690437713637948,
-0.056546151638031006,
-0.1618029773235321,
-0.09912993758916855,
-0.007960542105138302,
0.022523632273077965,
-0.01786457560956478,
-0.06371623277664185,
-0.04386352375149727,
0.10283196717500687,
-0.08579278737306595,
0.06802897155284882,
-0.039671964943408966,
0.07774323225021362,
-0.06753021478652954,
-0.03952382877469063,
-0.1539383828639984,
0.13204719126224518,
-0.01215711236000061,
0.08754615485668182,
-0.06633497029542923,
-0.024492532014846802,
-0.09110807627439499,
0.05348900705575943,
-0.08458034694194794,
0.23766568303108215,
-0.14590497314929962,
-0.0984019860625267,
0.23342201113700867,
-0.038761675357818604,
-0.09964418411254883,
0.1271894872188568,
-0.02193457819521427,
0.09766336530447006,
0.12920738756656647,
0.26638728380203247,
0.10445629060268402,
0.022684678435325623,
0.09291891753673553,
0.1438002586364746,
-0.09099967777729034,
-0.037171900272369385,
0.011973484419286251,
-0.03724273666739464,
-0.14921912550926208,
0.020951315760612488,
0.05760779231786728,
0.04827747493982315,
-0.02330176904797554,
-0.006240669637918472,
0.002549842931330204,
-0.007153150625526905,
0.07376614958047867,
-0.019311092793941498,
0.11387014389038086,
-0.020048078149557114,
-0.03365037962794304,
-0.04371778666973114,
0.04054033383727074,
-0.05036790668964386,
0.02289513498544693,
-0.07071653008460999,
0.05727434530854225,
-0.012974729761481285,
0.042299479246139526,
-0.13735051453113556,
-0.09735013544559479,
-0.009532429277896881,
0.13487239181995392,
0.04192778095602989,
0.0798909068107605,
0.03146982565522194,
-0.06744115054607391,
0.05010773986577988,
0.03282007575035095,
0.2262941598892212,
-0.010226873680949211,
-0.08935389667749405,
-0.09492555260658264,
0.08711972087621689,
-0.060863591730594635,
0.009226953610777855,
-0.05720803141593933,
-0.007304414175450802,
0.03557156026363373,
0.1004762127995491,
-0.04019083082675934,
-0.009387343190610409,
0.025655347853899002,
-0.04025714471936226,
-0.04147520661354065,
-0.01095036044716835,
0.11008654534816742,
0.011473038233816624,
-0.04689908027648926,
0.22168554365634918,
-0.12869799137115479,
0.10685773938894272,
0.1274925023317337,
-0.17383867502212524,
-0.01994903013110161,
-0.14320646226406097,
-0.012550918385386467,
0.006810900755226612,
0.02129124477505684,
-0.0222553089261055,
0.2051335573196411,
-0.009014936164021492,
0.16195262968540192,
-0.04107201471924782,
-0.0639914721250534,
-0.02925150841474533,
-0.03398604691028595,
-0.017234163358807564,
0.09069791436195374,
0.08243148028850555,
-0.19299864768981934,
0.17240338027477264,
-0.01174830086529255,
0.08686590939760208,
0.1845824271440506,
0.025994503870606422,
0.06304411590099335,
0.05657156556844711,
0.06536659598350525,
-0.05513831973075867,
-0.11848551034927368,
-0.21264445781707764,
0.005392975173890591,
0.06092318892478943,
0.03239551931619644,
0.08168546855449677,
-0.054205723106861115,
-0.03595162183046341,
-0.0005732590798288584,
-0.030750777572393417,
0.009462516754865646,
0.13684925436973572,
0.008318529464304447,
0.10168953239917755,
-0.02004571631550789,
-0.058178193867206573,
0.0727427676320076,
0.009895402006804943,
-0.06887516379356384,
0.20407508313655853,
-0.1265125274658203,
-0.3043576776981354,
-0.08042750507593155,
-0.24734801054000854,
-0.02911240980029106,
0.05415266007184982,
0.0861324816942215,
-0.15681427717208862,
-0.027865415439009666,
0.008793490007519722,
0.011923201382160187,
-0.11198054254055023,
-0.004918746650218964,
-0.029646430164575577,
-0.03246663883328438,
-0.12929315865039825,
-0.1003405898809433,
-0.04409944266080856,
-0.03464546799659729,
-0.04040668532252312,
0.09967022389173508,
-0.14567501842975616,
-0.01291603222489357,
0.20842044055461884,
0.08145846426486969,
0.07038916647434235,
-0.037487320601940155,
0.20477619767189026,
-0.07316339015960693,
0.008328374475240707,
0.1635517179965973,
-0.03778360038995743,
0.06047655642032623,
0.1257275640964508,
-0.005820502992719412,
-0.06825295835733414,
0.040019456297159195,
-0.015698760747909546,
-0.0412236750125885,
-0.20728349685668945,
-0.12248402833938599,
-0.1120738834142685,
0.09471553564071655,
0.07910062372684479,
0.06573032587766647,
0.21120136976242065,
0.08776689320802689,
-0.04514183849096298,
0.06485791504383087,
0.04894191771745682,
0.0644625797867775,
0.2707473635673523,
-0.07259046286344528,
0.11253365874290466,
0.011623559519648552,
-0.15343467891216278,
0.051020510494709015,
0.055223263800144196,
0.07561230659484863,
0.07580104470252991,
0.21182438731193542,
-0.014472958631813526,
0.0367954820394516,
0.11827964335680008,
0.07789640128612518,
0.01991073042154312,
-0.019446661695837975,
-0.04347381740808487,
-0.0254607442766428,
-0.027989089488983154,
0.012957124039530754,
0.0960448682308197,
-0.18107828497886658,
0.012583152391016483,
0.021501202136278152,
0.02593543939292431,
0.09298407286405563,
0.020524082705378532,
-0.179819256067276,
0.027830950915813446,
0.05755043402314186,
-0.025499291718006134,
-0.10845643281936646,
0.08593711256980896,
-0.02538434788584709,
-0.13137543201446533,
0.018785113468766212,
-0.039150170981884,
0.09809329360723495,
-0.08765986561775208,
0.058995287865400314,
-0.07800676673650742,
-0.04816050827503204,
-0.01638617552816868,
0.13252319395542145,
-0.24168215692043304,
0.17275425791740417,
-0.021619943901896477,
-0.05688641220331192,
-0.08997846394777298,
-0.014482101425528526,
0.010080749168992043,
0.03957030177116394,
0.15056663751602173,
-0.0066594574600458145,
-0.009325491264462471,
0.016450408846139908,
-0.07363742589950562,
0.013033195398747921,
0.08612717688083649,
-0.07664351910352707,
-0.0133766308426857,
-0.08208399266004562,
0.002608823124319315,
0.0022308044135570526,
-0.09696725010871887,
0.02786606177687645,
-0.1663709580898285,
0.09006643295288086,
0.054728638380765915,
0.11423870921134949,
0.03192771226167679,
-0.02258547581732273,
-0.07055886834859848,
0.2314566969871521,
0.004537861794233322,
-0.10297058522701263,
-0.12628237903118134,
0.006670661270618439,
0.05771397054195404,
-0.07913409173488617,
0.009720549918711185,
-0.07962032407522202,
0.05253149941563606,
-0.039929237216711044,
-0.1687983125448227,
0.10029898583889008,
-0.09381435811519623,
-0.04212415963411331,
-0.023407001048326492,
0.17770633101463318,
-0.025441061705350876,
-0.002652012510225177,
0.04270473122596741,
0.037245213985443115,
-0.08491729944944382,
-0.08970969915390015,
-0.03011610358953476,
-0.06464488804340363,
-0.02935124933719635,
0.07574480772018433,
-0.04295804724097252,
0.04973316937685013,
-0.0787377879023552,
-0.0022486187517642975,
0.32607707381248474,
0.14009398221969604,
-0.02963980659842491,
0.22657468914985657,
0.08023352921009064,
-0.06348711252212524,
-0.26392894983291626,
-0.140398308634758,
-0.03353816270828247,
-0.08984290063381195,
-0.0459207184612751,
-0.23548126220703125,
0.1530275046825409,
-0.04426930844783783,
-0.02157759480178356,
0.0631156712770462,
-0.24130022525787354,
-0.08349213004112244,
0.19260439276695251,
-0.025778144598007202,
0.43061363697052,
-0.07461101561784744,
-0.08166572451591492,
-0.02757728286087513,
-0.12861183285713196,
0.19246847927570343,
0.05775083601474762,
0.09571715444326401,
-0.022816278040409088,
0.16579654812812805,
0.06837824732065201,
0.005156153813004494,
0.03685687854886055,
0.04982184246182442,
-0.04203634709119797,
-0.08357532322406769,
-0.12165859341621399,
-0.15737086534500122,
0.03258458897471428,
0.01868266426026821,
-0.065349280834198,
0.0626922994852066,
-0.1271257996559143,
-0.04898378252983093,
-0.09884925186634064,
0.046945977956056595,
0.03406780585646629,
-0.04725346341729164,
0.004668579436838627,
-0.04215443506836891,
0.02147863060235977,
0.022945566102862358,
0.2296273112297058,
-0.054780326783657074,
0.17888858914375305,
0.01791154220700264,
0.13198918104171753,
-0.0757002905011177,
-0.11493861675262451,
-0.06003217771649361,
-0.04145459830760956,
0.04801218956708908,
-0.06175670027732849,
0.02200544998049736,
0.07842299342155457,
0.008202793076634407,
0.087114118039608,
0.11483781039714813,
0.0074542127549648285,
-0.017749516293406487,
0.05507413670420647,
-0.2256474792957306,
-0.07865089923143387,
-0.0661136656999588,
0.005370344966650009,
0.022652268409729004,
0.013082947582006454,
0.19910287857055664,
0.012391654774546623,
-0.04069948196411133,
0.010455277748405933,
0.038765933364629745,
0.02340429276227951,
0.06539138406515121,
0.039739858359098434,
0.036004744470119476,
-0.15136489272117615,
0.031361162662506104,
0.021910127252340317,
-0.02660786174237728,
0.04703580588102341,
0.12731283903121948,
-0.11494383215904236,
-0.11393268406391144,
-0.014524124562740326,
0.10545110702514648,
-0.09152242541313171,
0.028855694457888603,
-0.039560992270708084,
-0.10328534990549088,
0.07031446695327759,
0.14485794305801392,
0.06466004997491837,
0.07046198844909668,
-0.10159176588058472,
-0.043476857244968414,
-0.057221077382564545,
0.03597358241677284,
0.021519895642995834,
-0.018700070679187775,
-0.0789683610200882,
0.02850303426384926,
-0.06092703342437744,
0.1397363841533661,
-0.07559560984373093,
-0.09968070685863495,
-0.1794380396604538,
-0.0069864606484770775,
0.0194862000644207,
-0.05742911249399185,
-0.0933806449174881,
-0.026015382260084152,
0.001588418148458004,
-0.02874007076025009,
-0.00093829445540905,
-0.024410223588347435,
-0.11236245930194855,
0.02535727620124817,
-0.03653137385845184,
0.03345096483826637,
-0.0819447934627533,
0.01867326907813549,
0.07993806153535843,
-0.020878633484244347,
0.11647039651870728,
0.10705878585577011,
-0.08709436655044556,
0.09975379705429077,
-0.16777752339839935,
-0.06759338080883026,
0.08623769879341125,
0.020343896001577377,
0.025853294879198074,
0.0008502770215272903,
0.008564434945583344,
0.026506302878260612,
0.06669393181800842,
0.03105955943465233,
0.05682208389043808,
-0.09290866553783417,
0.024626566097140312,
-0.08708344399929047,
-0.09172607213258743,
-0.08246500045061111,
-0.026453781872987747,
0.004742349497973919,
0.06040501594543457,
0.12181392312049866,
-0.04216815531253815,
0.07811149209737778,
-0.04875222221016884,
0.025668252259492874,
0.00814452487975359,
-0.17905527353286743,
-0.0252552293241024,
-0.048963941633701324,
0.040451161563396454,
0.01221546158194542,
0.1346043348312378,
0.059246309101581573,
-0.10409330576658249,
0.03695043921470642,
0.08198054134845734,
0.03934842348098755,
-0.023521751165390015,
0.20487447082996368,
0.10252969712018967,
-0.03863285109400749,
-0.05631063133478165,
0.07866846024990082,
0.03741810470819473,
-0.004008843097835779,
0.09066407382488251,
-0.009370210580527782,
-0.12897494435310364,
0.03742879629135132,
-0.026176609098911285,
-0.029477084055542946,
-0.06433921307325363,
-0.06758162379264832,
-0.04266534373164177,
0.03844607621431351,
-0.002260200446471572,
0.12513467669487,
0.10643286257982254,
-0.02939715050160885,
0.029996713623404503,
0.026119908317923546,
-0.0626700147986412,
-0.21140682697296143,
-0.19872358441352844,
-0.09302785992622375,
-0.1489015519618988,
0.015862541273236275,
-0.1426301896572113,
0.08218356966972351,
0.05705731362104416,
0.06612300872802734,
-0.004392270464450121,
0.03720344975590706,
0.0012386804446578026,
-0.09755164384841919,
0.05834505334496498,
-0.06159573793411255,
0.04834617301821709,
-0.048831358551979065,
-0.0010317061096429825,
-0.0868586003780365,
0.03777875378727913,
0.010687778703868389,
0.017999708652496338,
-0.015305832959711552,
0.028873784467577934,
-0.12865042686462402,
-0.11963684856891632,
-0.05817703902721405,
0.033665187656879425,
-0.024925190955400467,
0.1345517784357071,
0.025420941412448883,
-0.02768510766327381,
0.024296915158629417,
0.23714593052864075,
-0.039117731153964996,
-0.058524440973997116,
-0.05845203250646591,
0.1638999879360199,
0.03384474292397499,
0.0646592527627945,
-0.014833472669124603,
0.02441597543656826,
-0.05725857987999916,
0.32993292808532715,
0.23477110266685486,
-0.05748286843299866,
0.02130132168531418,
-0.017397046089172363,
0.0353742390871048,
0.18674492835998535,
0.11825889348983765,
0.09040585905313492,
0.2579461634159088,
-0.07512740045785904,
-0.009630825370550156,
-0.006932802964001894,
-0.04944128915667534,
-0.11401350796222687,
-0.020312508568167686,
0.07770278304815292,
-0.0692402720451355,
0.001985257025808096,
0.13597141206264496,
-0.26467692852020264,
0.09494927525520325,
-0.15388475358486176,
-0.11968517303466797,
-0.052025988698005676,
-0.04701850563287735,
0.0756668746471405,
0.014131045900285244,
0.08472657948732376,
-0.02845834195613861,
-0.08107288181781769,
0.09847420454025269,
0.016823993995785713,
-0.25171440839767456,
0.022406768053770065,
0.07454883307218552,
-0.03846339136362076,
-0.03355355188250542,
-0.020877519622445107,
0.08412244915962219,
0.057069726288318634,
0.007685428950935602,
-0.020370488986372948,
0.003955297637730837,
-0.02796817198395729,
-0.06616200506687164,
0.0536954328417778,
0.046934980899095535,
0.01222646702080965,
-0.06546832621097565,
0.05421752110123634,
-0.16331255435943604,
0.02677500620484352,
0.029947074130177498,
-0.013463260605931282,
-0.022783612832427025,
0.033932872116565704,
-0.07838812470436096,
0.0838930681347847,
0.1018618643283844,
-0.019496571272611618,
-0.015890222042798996,
-0.026159219443798065,
-0.036621324717998505,
-0.0044233547523617744,
-0.07234358787536621,
-0.09454478323459625,
-0.1775694489479065,
-0.14917884767055511,
0.022916661575436592,
-0.015957890078425407,
-0.15450972318649292,
0.015395762398838997,
-0.1583821326494217,
0.026083122938871384,
-0.11309610307216644,
0.1017133817076683,
0.08734823763370514,
0.018606944009661674,
-0.0008142292499542236,
0.1328551173210144,
0.011255539953708649,
0.07267436385154724,
-0.12730030715465546,
-0.08182208985090256
] |
null | null |
transformers
|
# Rick DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
darthboii/DialoGPT-small-Rick
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Rick DialoGPT Model
|
[
"# Rick DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Rick DialoGPT Model"
] |
[
51,
7
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick DialoGPT Model"
] |
[
-0.027243174612522125,
0.09208611398935318,
-0.005486058536916971,
0.01197603065520525,
0.13312271237373352,
-0.0006643096567131579,
0.14875547587871552,
0.13561291992664337,
-0.012389403767883778,
-0.048079900443553925,
0.13848258554935455,
0.20838283002376556,
-0.007769247982650995,
0.06212212145328522,
-0.07722679525613785,
-0.3253750503063202,
0.05440690368413925,
0.05986349284648895,
-0.02559526450932026,
0.11941008269786835,
0.10155656188726425,
-0.034638021141290665,
0.07502283155918121,
0.008745936676859856,
-0.1460564285516739,
0.011253442615270615,
0.020986590534448624,
-0.11265120655298233,
0.11301227658987045,
0.0699501633644104,
0.03311868757009506,
0.044131726026535034,
-0.04560676962137222,
-0.12763948738574982,
0.04502782225608826,
0.00030866602901369333,
-0.04332113638520241,
0.05997459217905998,
0.016281595453619957,
-0.09000954777002335,
0.11693226546049118,
0.12603440880775452,
-0.01263172086328268,
0.041781701147556305,
-0.1548357903957367,
-0.004369331523776054,
-0.01233562733978033,
0.06789606809616089,
0.06087101250886917,
0.10755407065153122,
-0.04065045714378357,
0.11729123443365097,
-0.06241777911782265,
0.11526333540678024,
0.1129850223660469,
-0.291816771030426,
-0.016308816149830818,
0.14326390624046326,
0.043570004403591156,
0.04201141744852066,
-0.04241296648979187,
0.09895236790180206,
0.01734745316207409,
-0.009189855307340622,
-0.04667704179883003,
-0.07920589298009872,
-0.0809992179274559,
0.022899743169546127,
-0.08393258601427078,
-0.009693359956145287,
0.24909301102161407,
-0.033697742968797684,
0.07867740839719772,
-0.07909003645181656,
-0.08747624605894089,
-0.011933685280382633,
-0.03604159876704216,
-0.03430533409118652,
-0.10349667817354202,
0.07883962988853455,
-0.03785189241170883,
-0.09532928466796875,
-0.11454451829195023,
-0.029063701629638672,
-0.16551746428012848,
0.1769428551197052,
0.028738701716065407,
0.03337583318352699,
-0.22648879885673523,
0.09508261829614639,
-0.012410550378262997,
-0.09879330545663834,
0.018604513257741928,
-0.08811058849096298,
0.012304049916565418,
0.017966609448194504,
-0.025972042232751846,
-0.002111254259943962,
0.08367783576250076,
0.11593183130025864,
0.01627914048731327,
0.018418017774820328,
-0.01303142961114645,
0.05024925619363785,
0.039101485162973404,
0.07016518712043762,
-0.018131986260414124,
-0.026958800852298737,
0.025394905358552933,
-0.09519384801387787,
-0.01311302836984396,
-0.06533002108335495,
-0.19878731667995453,
-0.008748088963329792,
0.05362382158637047,
0.059645626693964005,
0.040223345160484314,
0.1349429488182068,
0.005914759822189808,
-0.04811347648501396,
0.041568055748939514,
-0.017372997477650642,
-0.016568226739764214,
0.013325352221727371,
0.004558354616165161,
0.14832930266857147,
0.012210249900817871,
0.05107790604233742,
-0.11448643356561661,
0.0074756252579391,
-0.04443434625864029,
-0.019875049591064453,
-0.033431850373744965,
-0.05190093815326691,
-0.010580608621239662,
-0.024629589170217514,
0.015543424524366856,
-0.1382266879081726,
-0.1671048104763031,
-0.0113193579018116,
-0.006982414051890373,
-0.04376089945435524,
-0.11932645738124847,
-0.1048901304602623,
-0.03145192563533783,
0.04379252344369888,
-0.060927584767341614,
-0.0003760824038181454,
-0.04660411551594734,
0.09378229826688766,
-0.03543102741241455,
0.07682112604379654,
-0.10023638606071472,
0.0828537717461586,
-0.07001189142465591,
-0.04422231763601303,
-0.0734889879822731,
0.13164658844470978,
0.014363138936460018,
0.05487450957298279,
-0.031934577971696854,
-0.01827416382730007,
-0.10224048048257828,
0.07911752909421921,
-0.04339373856782913,
0.23623128235340118,
-0.09449771791696548,
-0.10362883657217026,
0.26979705691337585,
-0.053989510983228683,
-0.1375254988670349,
0.10795111209154129,
-0.015854641795158386,
0.11475867033004761,
0.12686948478221893,
0.18240338563919067,
0.06434911489486694,
0.007867260836064816,
0.07431085407733917,
0.11333738267421722,
-0.0774611383676529,
-0.018117602914571762,
0.014873803593218327,
-0.020292608067393303,
-0.07848027348518372,
0.023533256724476814,
0.07671299576759338,
0.05307117849588394,
-0.05429181456565857,
-0.015286878682672977,
0.00432937266305089,
0.004517627414315939,
0.05698307976126671,
-0.02530503273010254,
0.12313884496688843,
-0.029461434110999107,
-0.07295558601617813,
-0.029503753408789635,
0.027530280873179436,
-0.05828499048948288,
0.03278997913002968,
-0.08230485767126083,
0.03637091815471649,
-0.014406797476112843,
0.07024850696325302,
-0.16572508215904236,
-0.09323301911354065,
-0.05250932276248932,
0.1899155229330063,
0.06807822734117508,
0.11413464695215225,
0.05567482113838196,
-0.06841246038675308,
-0.0038719952572137117,
0.018287649378180504,
0.1991138458251953,
-0.01677977479994297,
-0.07748494297266006,
-0.09769339859485626,
0.10122697055339813,
-0.07130109518766403,
0.06141059845685959,
-0.050490207970142365,
0.017946461215615273,
0.020556224510073662,
0.1050461083650589,
-0.03456922993063927,
0.039413414895534515,
0.011159577406942844,
-0.034563858062028885,
-0.06218598783016205,
-0.004433273337781429,
0.09716981649398804,
0.0021626276429742575,
-0.10631977766752243,
0.24286337196826935,
-0.19168923795223236,
0.12176351994276047,
0.17641966044902802,
-0.19923987984657288,
-0.0002552573860157281,
-0.11963175982236862,
-0.026344671845436096,
0.011637656949460506,
0.037626978009939194,
-0.042151857167482376,
0.24314165115356445,
-0.00910688005387783,
0.16631373763084412,
-0.03389734402298927,
-0.04332707077264786,
-0.041059546172618866,
-0.046011339873075485,
0.010055569931864738,
0.11430004984140396,
0.1047205775976181,
-0.17159950733184814,
0.17967921495437622,
0.05867021903395653,
0.05177219957113266,
0.16841758787631989,
0.018001655116677284,
0.021052619442343712,
0.06948674470186234,
-0.003431870136409998,
-0.03584783151745796,
-0.07413756102323532,
-0.2106374204158783,
-0.023212855681777,
0.0793403834104538,
0.048357341438531876,
0.1068209707736969,
-0.1037900522351265,
-0.03368109092116356,
-0.010547412559390068,
-0.021230356767773628,
0.03035620041191578,
0.14086326956748962,
0.013085569255053997,
0.1286563277244568,
-0.024180158972740173,
-0.06866493821144104,
0.06965550780296326,
0.014881031587719917,
-0.08571527898311615,
0.19352088868618011,
-0.10702410340309143,
-0.34334462881088257,
-0.10363983362913132,
-0.18596062064170837,
-0.056601256132125854,
0.04553624242544174,
0.11461924016475677,
-0.14119702577590942,
-0.020731983706355095,
0.006813736632466316,
0.06912991404533386,
-0.11165751516819,
0.01017086487263441,
-0.03630850836634636,
-0.017619650810956955,
-0.13406261801719666,
-0.1034051924943924,
-0.05356309190392494,
-0.044913630932569504,
-0.05510649085044861,
0.12040390819311142,
-0.15435875952243805,
0.020806124433875084,
0.23555229604244232,
0.06075655668973923,
0.07018083333969116,
-0.03907359018921852,
0.17685799300670624,
-0.1052674949169159,
0.011976814828813076,
0.2128676474094391,
-0.03831172361969948,
0.06525631994009018,
0.11611197143793106,
-0.01394710224121809,
-0.0662488266825676,
0.036592915654182434,
-0.009823341853916645,
-0.07247381657361984,
-0.21345274150371552,
-0.1158827692270279,
-0.1087421104311943,
0.054685093462467194,
0.04713849350810051,
0.050020426511764526,
0.1613347977399826,
0.07427749037742615,
-0.04962149262428284,
-0.0022197163198143244,
0.06106492131948471,
0.0832381621003151,
0.2504972517490387,
-0.06253999471664429,
0.1427627056837082,
-0.025090228766202927,
-0.16789253056049347,
0.06259234994649887,
0.0661388710141182,
0.09291604906320572,
0.06118352338671684,
0.10224727541208267,
0.005179570056498051,
0.009344357997179031,
0.12825439870357513,
0.07115643471479416,
0.008030776865780354,
-0.03595518320798874,
-0.039997417479753494,
-0.03642706945538521,
-0.013250070624053478,
0.032193150371313095,
0.046790316700935364,
-0.16567666828632355,
-0.021018991246819496,
0.009807335212826729,
0.05824935808777809,
0.02185324765741825,
0.08615364134311676,
-0.18498282134532928,
-0.016169089823961258,
0.06576614826917648,
-0.011832303367555141,
-0.11644340306520462,
0.08480028808116913,
0.0007836486911401153,
-0.1121063381433487,
0.03723234683275223,
-0.027525627985596657,
0.13150714337825775,
-0.08457524329423904,
0.0741792693734169,
-0.12022519111633301,
-0.0374552421271801,
-0.010245736688375473,
0.12193918228149414,
-0.29501426219940186,
0.19123348593711853,
-0.009575535543262959,
-0.04439779743552208,
-0.1071409061551094,
-0.015645509585738182,
0.02963484264910221,
0.10361164063215256,
0.11110331863164902,
-0.020523378625512123,
-0.02764100395143032,
0.06007368490099907,
-0.07205203175544739,
0.0399978905916214,
0.09906689822673798,
-0.06730470806360245,
-0.013155711814761162,
-0.052545808255672455,
0.00039069546619430184,
0.010376452468335629,
-0.10966821759939194,
0.022783124819397926,
-0.19194799661636353,
0.08703918755054474,
0.08162695169448853,
0.09630028903484344,
0.037212129682302475,
-0.029887177050113678,
-0.07769683748483658,
0.2589099109172821,
0.009560960344970226,
-0.10013746470212936,
-0.10953836888074875,
0.008171502500772476,
0.04785030707716942,
-0.07699282467365265,
-0.016966527327895164,
-0.0694924145936966,
0.04450516775250435,
-0.06552471220493317,
-0.18611730635166168,
0.11722762882709503,
-0.09691806137561798,
-0.03250948712229729,
-0.036249466240406036,
0.21333028376102448,
-0.03155504912137985,
0.017869247123599052,
0.04537748545408249,
-0.00578570831567049,
-0.11741422116756439,
-0.10654788464307785,
0.0012778750387951732,
-0.004119161982089281,
0.016931969672441483,
0.023226622492074966,
-0.03199922665953636,
-0.009455137886106968,
-0.06797713041305542,
-0.014383019879460335,
0.3228513300418854,
0.12615877389907837,
-0.042267147451639175,
0.15242800116539001,
0.09877358376979828,
-0.06251336634159088,
-0.2941497564315796,
-0.11165541410446167,
-0.07421603053808212,
-0.05438753217458725,
-0.09733224660158157,
-0.18137554824352264,
0.08739634603261948,
-0.05383281409740448,
-0.013516134582459927,
0.09413999319076538,
-0.25194358825683594,
-0.10185287892818451,
0.2005643993616104,
-0.03753361105918884,
0.4304826855659485,
-0.11250142753124237,
-0.07815388590097427,
-0.04850279167294502,
-0.14005880057811737,
0.19035954773426056,
0.004324326757341623,
0.10461755096912384,
-0.0006430890643969178,
0.19764995574951172,
0.05591731518507004,
-0.0006032987730577588,
0.07056128233671188,
0.01866593211889267,
-0.057801030576229095,
-0.09095179289579391,
-0.0913778692483902,
-0.0337459035217762,
0.010270410217344761,
0.0292131919413805,
-0.07448325306177139,
0.04388400912284851,
-0.13094636797904968,
-0.05198022723197937,
-0.08626694977283478,
0.038746368139982224,
0.027130719274282455,
-0.06653520464897156,
-0.0030553280375897884,
-0.04914497584104538,
0.0004573945188894868,
0.007742773275822401,
0.21047258377075195,
-0.10902713984251022,
0.1467881053686142,
0.028732312843203545,
0.1500566452741623,
-0.09794784337282181,
-0.04768699035048485,
-0.06421241164207458,
-0.05478411167860031,
0.07145597785711288,
-0.12202182412147522,
0.03240978345274925,
0.1044924184679985,
-0.026888413354754448,
0.08732181787490845,
0.1105954647064209,
-0.010995322838425636,
0.005803761538118124,
0.08983830362558365,
-0.241703063249588,
-0.06713853776454926,
-0.08410414308309555,
0.05373041704297066,
0.05893997475504875,
0.10275863856077194,
0.20927143096923828,
0.007167487405240536,
-0.031165437772870064,
0.021489497274160385,
0.027375908568501472,
-0.017840299755334854,
0.05977841466665268,
0.010519524104893208,
0.030491052195429802,
-0.14741286635398865,
0.043485816568136215,
-0.013757874257862568,
-0.09077676385641098,
0.02600322663784027,
0.14754873514175415,
-0.10901660472154617,
-0.12182232737541199,
-0.03921690955758095,
0.13600249588489532,
-0.14775370061397552,
-0.009947444312274456,
-0.0477454848587513,
-0.12692049145698547,
0.06857728958129883,
0.1067143976688385,
0.0457911379635334,
0.04121949151158333,
-0.09239879250526428,
-0.027268609032034874,
-0.0535728819668293,
0.00003198942795279436,
0.028995376080274582,
-0.0204177163541317,
-0.05248761177062988,
0.040780652314424515,
-0.03588524088263512,
0.12051229178905487,
-0.08552545309066772,
-0.10064204037189484,
-0.16698434948921204,
0.03528384119272232,
-0.07174701243638992,
-0.08977310359477997,
-0.0871967226266861,
-0.03724304214119911,
0.006766482722014189,
-0.0405125692486763,
-0.02825779654085636,
-0.03461418300867081,
-0.1126255914568901,
0.03079685941338539,
-0.04579872637987137,
0.003088617930188775,
-0.07116411626338959,
0.029772473499178886,
0.0525958277285099,
-0.029091687873005867,
0.149556964635849,
0.14025014638900757,
-0.11192594468593597,
0.09547203034162521,
-0.1507159322500229,
-0.07066365331411362,
0.09605675935745239,
0.018403515219688416,
0.04981891065835953,
0.05175008252263069,
0.009065150283277035,
0.051755502820014954,
0.06169715151190758,
0.04307684674859047,
0.0153890922665596,
-0.07590135186910629,
0.06697173416614532,
-0.06090308725833893,
-0.10307016223669052,
-0.05066140368580818,
-0.003966273739933968,
0.015159476548433304,
0.07283487915992737,
0.10097057372331619,
-0.056661296635866165,
0.09506311267614365,
-0.05649305135011673,
0.04625694453716278,
0.024318000301718712,
-0.17797043919563293,
0.03397766128182411,
-0.08718447387218475,
0.05030312016606331,
0.010050542652606964,
0.1727033108472824,
0.02054430916905403,
-0.019508427008986473,
0.02473587542772293,
0.0719463899731636,
0.04261681064963341,
-0.013226886279881,
0.19012948870658875,
0.10657399147748947,
-0.03943915665149689,
-0.0805516242980957,
0.09759991616010666,
0.04438556358218193,
0.04173632711172104,
0.14543114602565765,
-0.05563090741634369,
-0.03441290557384491,
0.081944540143013,
-0.0026839920319616795,
0.010976077988743782,
-0.09896437078714371,
-0.13543705642223358,
-0.026787811890244484,
0.036508288234472275,
-0.03667739778757095,
0.10571453720331192,
0.15851758420467377,
-0.005720720160752535,
0.01726081222295761,
-0.01855739764869213,
-0.05729815363883972,
-0.1993623524904251,
-0.19528920948505402,
-0.083323635160923,
-0.13647840917110443,
0.0050200955010950565,
-0.13574683666229248,
0.04266147315502167,
0.026296362280845642,
0.09698255360126495,
-0.04634363576769829,
0.050944969058036804,
0.03791060671210289,
-0.11099781841039658,
0.058360110968351364,
-0.043620482087135315,
0.09173028916120529,
-0.03267880156636238,
0.014702340587973595,
-0.060175783932209015,
0.035412851721048355,
0.016039982438087463,
0.041373249143362045,
-0.02921622060239315,
0.019025372341275215,
-0.12458328902721405,
-0.08709227293729782,
-0.06697598844766617,
0.06596853584051132,
0.006195025984197855,
0.16954803466796875,
0.019531596451997757,
-0.027915386483073235,
0.028833186253905296,
0.23899038136005402,
-0.07318265736103058,
-0.09635625779628754,
-0.06982157379388809,
0.21012257039546967,
-0.009315763600170612,
0.08784335851669312,
-0.03747710958123207,
0.009438461624085903,
-0.08562079071998596,
0.3506644368171692,
0.29213622212409973,
-0.09391074627637863,
0.010968702845275402,
-0.0027621579356491566,
0.04181644320487976,
0.12788556516170502,
0.09239348024129868,
0.10824161767959595,
0.29070642590522766,
-0.06708572804927826,
-0.03647898510098457,
-0.006994254421442747,
-0.0254643727093935,
-0.055716969072818756,
0.0551714263856411,
0.05315792188048363,
-0.06511329114437103,
-0.01592782698571682,
0.11738577485084534,
-0.2489209920167923,
0.0614120177924633,
-0.15840938687324524,
-0.16190756857395172,
-0.07126864790916443,
-0.0001230158086400479,
0.0958227664232254,
0.01604771800339222,
0.09578458964824677,
-0.011418631300330162,
-0.06834693253040314,
0.04414822906255722,
0.020037546753883362,
-0.20774760842323303,
0.009963343851268291,
0.06968449801206589,
-0.051950447261333466,
-0.05526239052414894,
-0.017540784552693367,
0.07181108742952347,
0.0862373560667038,
0.031932324171066284,
-0.021655123680830002,
0.04088883846998215,
-0.011214682832360268,
-0.07533704489469528,
0.03916772082448006,
0.027806051075458527,
0.005651058629155159,
-0.08518505096435547,
0.07656224071979523,
-0.16369622945785522,
0.03412613272666931,
-0.0035786160733550787,
-0.048953261226415634,
-0.014727948233485222,
0.030175231397151947,
-0.061420172452926636,
0.08509553223848343,
0.0839199498295784,
-0.0171944722533226,
-0.016525855287909508,
-0.0222842525690794,
-0.012990890070796013,
-0.020874707028269768,
-0.0818524956703186,
-0.09698375314474106,
-0.15574125945568085,
-0.1261346936225891,
0.08575325459241867,
-0.00355695397593081,
-0.19997835159301758,
0.028783639892935753,
-0.12125882506370544,
0.04249454662203789,
-0.12142720073461533,
0.09701541811227798,
0.0825105607509613,
0.02303435280919075,
-0.0030652873683720827,
0.006164520047605038,
0.03737448528409004,
0.07968182861804962,
-0.13731823861598969,
-0.08554888516664505
] |
null | null |
transformers
|
Hi
|
{}
| null |
darubramha/hi-LyricsGPT2
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #endpoints_compatible #region-us
|
Hi
|
[] |
[
"TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n"
] |
[
21
] |
[
"passage: TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n"
] |
[
-0.0602605901658535,
-0.005646900739520788,
-0.009762155823409557,
-0.03966370224952698,
0.15944775938987732,
0.03070714697241783,
0.012395896948873997,
0.07867952436208725,
0.09419925510883331,
-0.019594743847846985,
0.09831016510725021,
0.2332964390516281,
-0.03786272928118706,
0.022073544561862946,
-0.06232732906937599,
-0.24905818700790405,
0.09407828003168106,
0.11313164979219437,
-0.06465978920459747,
0.09549489617347717,
0.039143070578575134,
-0.08911364525556564,
0.04947805404663086,
-0.032982707023620605,
-0.13527381420135498,
0.0467669740319252,
0.0237716156989336,
-0.078513965010643,
0.11869441717863083,
0.0077665625140070915,
0.19578197598457336,
0.01207544095814228,
-0.1299089938402176,
-0.18088726699352264,
0.02007104456424713,
0.022213434800505638,
-0.05996024236083031,
0.02314351126551628,
0.07312147319316864,
-0.10279249399900436,
0.02970288321375847,
0.03654928505420685,
0.002923935651779175,
0.03274611383676529,
-0.15513424575328827,
-0.1849449872970581,
-0.04425787553191185,
0.012871243990957737,
0.026669111102819443,
0.10506244748830795,
0.030372466892004013,
0.178822323679924,
-0.15745419263839722,
0.0945795327425003,
0.177890345454216,
-0.28603804111480713,
0.029024237766861916,
0.11024846136569977,
0.04829736799001694,
0.028134070336818695,
0.00996005441993475,
0.0189230814576149,
-0.009570286609232426,
0.03048190288245678,
-0.027967484667897224,
-0.07447972893714905,
-0.06405609101057053,
0.0814741775393486,
-0.09437224268913269,
-0.1216578483581543,
0.19255080819129944,
-0.05330982804298401,
0.0588051900267601,
0.03463263809680939,
-0.11766522377729416,
-0.05456177890300751,
0.0013563521206378937,
0.030292518436908722,
-0.017828812822699547,
0.07086412608623505,
0.031105060130357742,
-0.02373676560819149,
-0.12168543040752411,
0.028789518401026726,
-0.24090629816055298,
0.28345873951911926,
0.02996366284787655,
0.11018568277359009,
-0.2384001910686493,
0.07198631763458252,
-0.04607108235359192,
-0.06767431646585464,
0.023487936705350876,
-0.09875187277793884,
0.021371465176343918,
0.007170209661126137,
-0.0868486687541008,
0.025816135108470917,
0.0673765018582344,
0.11560594290494919,
-0.02462717518210411,
0.021296672523021698,
0.01767325960099697,
0.1089232936501503,
0.01622004434466362,
0.11334555596113205,
0.002745070494711399,
0.034500978887081146,
0.029799794778227806,
-0.18719491362571716,
-0.0026790881529450417,
-0.03489845618605614,
-0.08398842811584473,
-0.0881200060248375,
0.028418414294719696,
0.12114420533180237,
0.02183910645544529,
0.022260701283812523,
-0.07126972824335098,
-0.008312570862472057,
0.04512425512075424,
-0.06700387597084045,
-0.022145040333271027,
0.007661914918571711,
0.016494954004883766,
0.22294339537620544,
-0.02295338362455368,
-0.026225684210658073,
-0.07023988664150238,
0.11260082572698593,
-0.0656941682100296,
0.016149358823895454,
-0.0530007965862751,
-0.02928324043750763,
0.056476715952157974,
-0.15177644789218903,
0.06500709801912308,
-0.1516612023115158,
-0.09112907201051712,
0.028223685920238495,
0.03696250542998314,
0.028484180569648743,
0.02479529194533825,
0.015830792486667633,
-0.00879291258752346,
-0.03011348284780979,
-0.07923634350299835,
-0.08192402124404907,
-0.06342831254005432,
0.09921494126319885,
-0.0005941772251389921,
0.05436241999268532,
-0.11821827292442322,
0.07408127188682556,
-0.1076948270201683,
0.030249644070863724,
-0.13414455950260162,
-0.0221982691437006,
-0.02404189109802246,
0.1851358413696289,
0.0006879806751385331,
-0.0817047506570816,
-0.10663671791553497,
0.038237277418375015,
-0.04168618097901344,
0.13458840548992157,
-0.014303965494036674,
-0.11019430309534073,
0.26959696412086487,
-0.10667987167835236,
-0.1671270877122879,
0.05378620699048042,
0.009700759314000607,
-0.016868380829691887,
0.0561099536716938,
0.16616025567054749,
0.06831997632980347,
-0.07049598544836044,
0.09140615165233612,
0.1379895955324173,
-0.1851922571659088,
-0.20243999361991882,
0.01763749308884144,
-0.05203584209084511,
-0.11545780301094055,
0.04540516808629036,
-0.0058397711254656315,
0.09395778924226761,
-0.08503725379705429,
-0.007578795775771141,
-0.032015107572078705,
-0.016012731939554214,
0.07450172305107117,
0.06282669305801392,
0.09098648279905319,
-0.05122196301817894,
0.031217509880661964,
0.026435445994138718,
0.00463126040995121,
0.0063572051003575325,
0.05537392571568489,
-0.03592291474342346,
0.1321462094783783,
-0.06449703127145767,
0.00637860456481576,
-0.2316930741071701,
-0.11218059808015823,
-0.012119117192924023,
0.04616983234882355,
-0.05828554928302765,
0.16098164021968842,
0.09591125696897507,
-0.0814671590924263,
0.027995459735393524,
-0.03218327462673187,
0.10552480816841125,
0.02011469565331936,
-0.012835591100156307,
-0.0011234998237341642,
0.016821393743157387,
-0.0699923112988472,
-0.08323190361261368,
0.006836527958512306,
-0.0009020745637826622,
0.08346128463745117,
0.12389257550239563,
-0.0018713462632149458,
0.04892571270465851,
-0.025174804031848907,
0.07054726779460907,
-0.016440844163298607,
0.014167504385113716,
0.10722272843122482,
-0.011425090953707695,
-0.05193426087498665,
0.1583033800125122,
-0.11112764477729797,
0.3326278030872345,
0.20375320315361023,
-0.323421835899353,
0.04571422189474106,
-0.025362668558955193,
-0.017437715083360672,
0.021043121814727783,
0.09183337539434433,
0.005831574089825153,
0.08254498243331909,
0.05105554684996605,
0.13220374286174774,
-0.025855854153633118,
-0.015603546984493732,
-0.000933936215005815,
-0.06394030898809433,
-0.03657902777194977,
0.07155993580818176,
0.06678375601768494,
-0.12739983201026917,
0.17137302458286285,
0.2332899272441864,
0.034409500658512115,
0.08888798952102661,
-0.074738509953022,
-0.02466125227510929,
0.05307190865278244,
0.030478334054350853,
-0.05014907941222191,
-0.003522941842675209,
-0.24837985634803772,
-0.033807482570409775,
0.0835256576538086,
0.041713811457157135,
0.11864139884710312,
-0.15303030610084534,
-0.0535346120595932,
0.036216262727975845,
0.003446921007707715,
-0.07469423115253448,
0.0990411564707756,
0.07169649004936218,
0.06572583317756653,
0.006040885578840971,
-0.030352378264069557,
0.11742591857910156,
0.000851878838147968,
-0.05391429737210274,
0.17059999704360962,
-0.13313265144824982,
-0.29761773347854614,
-0.14319129288196564,
-0.1334514170885086,
0.010339286178350449,
0.017076298594474792,
0.08161275088787079,
-0.08419821411371231,
-0.034329503774642944,
0.09296482056379318,
0.05038211867213249,
-0.12507256865501404,
0.025089209899306297,
-0.04892471432685852,
0.06829681247472763,
-0.08489015698432922,
-0.07859387248754501,
-0.06656183302402496,
-0.05509684979915619,
-0.04375450685620308,
0.11071989685297012,
-0.12806063890457153,
0.08490876853466034,
0.13819533586502075,
0.031051602214574814,
0.07859103381633759,
0.001322271185927093,
0.13857795298099518,
-0.061774931848049164,
-0.08148285746574402,
0.23385483026504517,
-0.009697506204247475,
0.10181795805692673,
0.10921594500541687,
0.02137605845928192,
-0.06395251303911209,
-0.022054238244891167,
-0.07990756630897522,
-0.12127618491649628,
-0.2081342488527298,
-0.13152581453323364,
-0.147438645362854,
0.0003129298856947571,
0.0026985483709722757,
0.04901242256164551,
0.08136387914419174,
0.07752165198326111,
0.05862151086330414,
-0.08998161554336548,
-0.05513061210513115,
0.057605329900979996,
0.2182815968990326,
-0.01885073445737362,
0.07730096578598022,
-0.08762159198522568,
-0.0858968198299408,
0.07550632208585739,
0.0809127613902092,
0.22168903052806854,
0.0703313797712326,
0.03154223784804344,
0.06092943996191025,
0.1844511479139328,
0.15529003739356995,
0.17153839766979218,
0.015418988652527332,
-0.025812845677137375,
0.006589105818420649,
0.013138419017195702,
-0.09150379151105881,
-0.0042123449966311455,
0.1292845457792282,
-0.14540119469165802,
-0.07880084216594696,
-0.22943291068077087,
0.08157958835363388,
0.07344048470258713,
0.026414161548018456,
-0.17556782066822052,
-0.0015733868349343538,
0.05357646942138672,
0.006558762397617102,
-0.045512180775403976,
0.08496551215648651,
-0.022116927430033684,
-0.13344039022922516,
0.04287152364850044,
-0.058599162846803665,
0.10456542670726776,
-0.038338202983140945,
0.07373929768800735,
-0.024396726861596107,
-0.10900583118200302,
0.07474620640277863,
0.08851087838411331,
-0.23624686896800995,
0.27773332595825195,
-0.028285326436161995,
-0.07041611522436142,
-0.06830666214227676,
-0.024676870554685593,
-0.0017557048704475164,
0.17030403017997742,
0.08692118525505066,
0.03860539570450783,
-0.06731099635362625,
-0.1669522523880005,
0.04732859507203102,
0.02085104025900364,
0.12389091402292252,
-0.008113703690469265,
-0.030854588374495506,
-0.01338487584143877,
-0.019302181899547577,
-0.041759077459573746,
-0.003546249819919467,
0.10703662782907486,
-0.13412658870220184,
0.034535422921180725,
0.005309549160301685,
0.04036608338356018,
-0.0035966450814157724,
0.005690612830221653,
-0.05699379742145538,
0.13448239862918854,
-0.04070858657360077,
-0.07688865810632706,
-0.08865337073802948,
-0.17243140935897827,
0.13381044566631317,
-0.10238062590360641,
0.09249105304479599,
-0.09976985305547714,
-0.06192123889923096,
-0.0650167390704155,
-0.21104402840137482,
0.10917928814888,
-0.10513100028038025,
0.0401403047144413,
-0.016867417842149734,
0.202356219291687,
-0.08008989691734314,
-0.0209506843239069,
-0.0013599899830296636,
0.004461138043552637,
-0.12345174700021744,
-0.10132946074008942,
-0.01779748499393463,
0.029711758717894554,
0.08279082924127579,
0.10770376026630402,
-0.018299801275134087,
0.04191994294524193,
0.013882452622056007,
0.03635424003005028,
0.24111443758010864,
0.13711073994636536,
-0.04645780101418495,
0.11812267452478409,
0.16186927258968353,
-0.031571563333272934,
-0.2709476351737976,
-0.0868004634976387,
-0.16869930922985077,
-0.04678983986377716,
-0.037189606577157974,
-0.12448763102293015,
0.12788352370262146,
0.04586293175816536,
-0.011544082313776016,
0.1266224980354309,
-0.26594868302345276,
-0.03401912376284599,
0.1643364280462265,
0.027830148115754128,
0.48583653569221497,
-0.09991659969091415,
-0.0845755785703659,
0.018966181203722954,
-0.2915274500846863,
0.10791198909282684,
0.01369303185492754,
0.06487411260604858,
-0.034079212695360184,
0.10230494290590286,
0.044344354420900345,
-0.10719364136457443,
0.11951436847448349,
0.035276297479867935,
0.03043992444872856,
-0.08126169443130493,
-0.08180311322212219,
0.043867211788892746,
-0.020314449444413185,
0.016103362664580345,
0.09817174077033997,
0.036888349801301956,
-0.1322462111711502,
-0.022591179236769676,
-0.13765397667884827,
0.049294743686914444,
0.0620623379945755,
-0.0240910816937685,
-0.013253096491098404,
-0.036911722272634506,
-0.004203932359814644,
0.019186172634363174,
0.25098612904548645,
-0.012744947336614132,
0.1315464824438095,
0.042376402765512466,
0.046371813863515854,
-0.20250053703784943,
-0.14301706850528717,
-0.07346653193235397,
-0.04091315343976021,
0.0825582891702652,
-0.04023446887731552,
0.0523495189845562,
0.1589740812778473,
-0.02755962871015072,
-0.008571553975343704,
0.1279488205909729,
0.014891285449266434,
-0.03108718805015087,
0.12318851798772812,
-0.21083922684192657,
-0.042206212878227234,
-0.018448445945978165,
-0.05149201303720474,
0.1258767545223236,
0.12660184502601624,
0.08982381969690323,
0.07138726115226746,
-0.016965264454483986,
-0.03962934389710426,
-0.023878682404756546,
-0.0698867067694664,
0.014531198889017105,
0.041909199208021164,
0.03934765234589577,
-0.13099561631679535,
0.07754374295473099,
-0.018086964264512062,
-0.27273428440093994,
-0.06408093869686127,
0.09851112216711044,
-0.15818077325820923,
-0.10192093253135681,
-0.06077379360795021,
0.03578856587409973,
-0.1768866330385208,
-0.0624033585190773,
-0.0316467322409153,
-0.10826759040355682,
0.06394574791193008,
0.20973356068134308,
0.10992377996444702,
0.12001070380210876,
-0.023827049881219864,
-0.02570408768951893,
-0.00579385831952095,
-0.10135087370872498,
-0.012352810241281986,
0.013960975222289562,
-0.09324274212121964,
0.018809983506798744,
-0.009077025577425957,
0.17904941737651825,
-0.0752621665596962,
-0.08742223680019379,
-0.1552542746067047,
0.09289714694023132,
-0.1066979393362999,
-0.092626191675663,
-0.14189116656780243,
-0.06335672736167908,
0.023829210549592972,
-0.06568517535924911,
-0.01769612915813923,
-0.013204174116253853,
-0.14357970654964447,
0.06973201036453247,
0.01112452708184719,
-0.011419128626585007,
-0.057545971125364304,
-0.02905389852821827,
0.12901906669139862,
-0.0439501516520977,
0.08620632439851761,
0.19515031576156616,
-0.09635450690984726,
0.12672042846679688,
-0.10680265724658966,
-0.16728007793426514,
0.109873466193676,
0.011463385075330734,
0.08858676254749298,
0.05595776438713074,
0.033014263957738876,
0.0949346125125885,
0.01360013522207737,
0.040659237653017044,
-0.0074751065112650394,
-0.13721472024917603,
0.0005411148304119706,
0.014451061375439167,
-0.14818744361400604,
-0.051526814699172974,
-0.10024616122245789,
0.15037848055362701,
0.046998120844364166,
0.10320950299501419,
0.02188979648053646,
0.13145636022090912,
-0.006807954981923103,
-0.01749216392636299,
-0.007913168519735336,
-0.18110167980194092,
0.058051977306604385,
-0.04888135939836502,
0.00664436025545001,
0.004136093892157078,
0.29094672203063965,
-0.05342133343219757,
0.06421013921499252,
0.012430429458618164,
0.05440686270594597,
0.025291895493865013,
0.019776156172156334,
0.23332199454307556,
0.0909920483827591,
-0.040104810148477554,
-0.07203774154186249,
0.09381944686174393,
-0.027183765545487404,
-0.051167625933885574,
0.14428386092185974,
0.12433760613203049,
0.046564988791942596,
0.10233303159475327,
-0.010628857649862766,
0.0502619631588459,
-0.11714580655097961,
-0.29435333609580994,
-0.0017536553787067533,
0.02923153154551983,
0.013082349672913551,
0.09705042093992233,
0.12465932965278625,
-0.014661809429526329,
0.09902279824018478,
-0.0014873039908707142,
-0.026829617097973824,
-0.13841837644577026,
-0.08308025449514389,
-0.037351641803979874,
-0.1296062022447586,
0.01537085510790348,
-0.06261784583330154,
-0.0013676333473995328,
0.20482417941093445,
0.040537029504776,
-0.03484100475907326,
0.11699468642473221,
0.0698540061712265,
-0.06982901692390442,
0.02712978608906269,
-0.00757982861250639,
0.035655613988637924,
0.06632175296545029,
-0.023149633780121803,
-0.14352689683437347,
-0.08878929167985916,
-0.04016351327300072,
0.04570772126317024,
-0.0825280100107193,
0.007398216053843498,
-0.1344616711139679,
-0.09811436384916306,
-0.05467144027352333,
0.09024309366941452,
-0.076502226293087,
0.12816135585308075,
-0.010830878280103207,
0.010613616555929184,
0.01268461812287569,
0.18772324919700623,
-0.075274258852005,
-0.060353536158800125,
0.002831645542755723,
0.23638813197612762,
0.08521586656570435,
0.08294188231229782,
0.00997002050280571,
0.024029415100812912,
-0.09174544364213943,
0.3311961889266968,
0.24609249830245972,
-0.010904072783887386,
0.04334266111254692,
0.04531332477927208,
0.04185611754655838,
0.12315969169139862,
0.13169057667255402,
0.11807206273078918,
0.344115674495697,
-0.08338891714811325,
-0.031944580376148224,
-0.030247550457715988,
0.006968794856220484,
-0.13217425346374512,
0.026531271636486053,
0.01758533902466297,
-0.08070562034845352,
-0.07679492235183716,
0.11993145197629929,
-0.20403271913528442,
0.15280351042747498,
0.08174222707748413,
-0.19685740768909454,
-0.03396262973546982,
-0.05789715424180031,
0.18384911119937897,
-0.014278654009103775,
0.11859142035245895,
-0.04448321461677551,
-0.13445675373077393,
0.08106808364391327,
0.048652783036231995,
-0.2895694077014923,
-0.08014793694019318,
0.0981469452381134,
0.042115915566682816,
-0.0287695974111557,
-0.015584125183522701,
0.03546717017889023,
0.059928759932518005,
0.08986898511648178,
-0.03891289234161377,
0.04509701579809189,
0.020416583865880966,
-0.10908327251672745,
-0.08358649909496307,
-0.02032429538667202,
-0.00014163613377604634,
-0.1349317878484726,
0.016364745795726776,
-0.20526979863643646,
0.04226694256067276,
-0.010092525742948055,
0.01465508621186018,
-0.004206623882055283,
-0.03162108361721039,
-0.051075391471385956,
0.023095570504665375,
0.052028998732566833,
0.009046600200235844,
-0.017174653708934784,
-0.043978288769721985,
-0.01736217923462391,
0.04129228740930557,
-0.09392837435007095,
-0.15831652283668518,
-0.016197707504034042,
-0.08371548354625702,
0.10397595167160034,
-0.03304345905780792,
-0.046627145260572433,
-0.017865123227238655,
-0.02954019047319889,
0.04380740970373154,
-0.10989689826965332,
0.035784848034381866,
0.01109471544623375,
0.05120820179581642,
0.011953367851674557,
-0.01127829309552908,
0.039223846048116684,
0.07814694195985794,
-0.12265297025442123,
-0.1024811714887619
] |
null | null |
transformers
|
https://github.com/monologg/JointBERT
|
{}
| null |
databuzzword/JointBERT-atis
|
[
"transformers",
"pytorch",
"bert",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #endpoints_compatible #region-us
|
URL
|
[] |
[
"TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n"
] |
[
23
] |
[
"passage: TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n"
] |
[
-0.05582514405250549,
-0.0059938449412584305,
-0.0106970788910985,
-0.029046038165688515,
0.12276504933834076,
0.03318239748477936,
0.02372138574719429,
0.05814843624830246,
0.1283326894044876,
-0.008450702764093876,
0.13131918013095856,
0.20412099361419678,
-0.05518573895096779,
-0.0014659949811175466,
-0.060662250965833664,
-0.2503744065761566,
0.07448812574148178,
0.10944642126560211,
-0.05779325217008591,
0.09946653246879578,
0.033594902604818344,
-0.1090199276804924,
0.06034360080957413,
-0.031356219202280045,
-0.10178717225790024,
0.05382249876856804,
0.022958533838391304,
-0.07516350597143173,
0.12614554166793823,
0.017229093238711357,
0.18774759769439697,
0.02010849304497242,
-0.12349475175142288,
-0.16799280047416687,
0.028976095840334892,
0.0017078231321647763,
-0.06416994333267212,
0.029829638078808784,
0.067641980946064,
-0.0958416610956192,
0.011812526732683182,
0.04986337199807167,
0.005196088925004005,
0.029664115980267525,
-0.16331109404563904,
-0.1660199761390686,
-0.040016546845436096,
0.03566199541091919,
0.02647480182349682,
0.07168487459421158,
0.023379387333989143,
0.1733984798192978,
-0.15529543161392212,
0.08478239923715591,
0.18858951330184937,
-0.3070982098579407,
0.008051520213484764,
0.08039850741624832,
0.06561373919248581,
0.05102481693029404,
-0.0034548938274383545,
0.0508800707757473,
0.001212250324897468,
0.02218480594456196,
-0.026412250474095345,
-0.08552643656730652,
-0.013642089441418648,
0.08882433921098709,
-0.0965084433555603,
-0.09593788534402847,
0.201665997505188,
-0.035358089953660965,
0.051234010607004166,
0.048935793340206146,
-0.10587480664253235,
-0.04507492482662201,
-0.00264694239012897,
-0.006025178357958794,
-0.0201078150421381,
0.06390652805566788,
0.011368521489202976,
-0.024782819673419,
-0.11910133063793182,
0.039458055049180984,
-0.22834016382694244,
0.2708556354045868,
0.02697429433465004,
0.09296334534883499,
-0.22665227949619293,
0.06216507405042648,
-0.053294818848371506,
-0.07662333548069,
0.029203347861766815,
-0.09727942198514938,
0.0473918691277504,
0.005940338596701622,
-0.0753636509180069,
0.05180890113115311,
0.051905784755945206,
0.13826292753219604,
0.016379985958337784,
0.03267199918627739,
0.0194330383092165,
0.10806956142187119,
0.01739308051764965,
0.10608944296836853,
0.01434782799333334,
-0.0010544572724029422,
0.022262273356318474,
-0.16448475420475006,
-0.004203388001769781,
-0.04162668436765671,
-0.09218078851699829,
-0.0717039629817009,
0.031197229400277138,
0.09885258227586746,
0.010065644048154354,
0.0125453881919384,
-0.0785975456237793,
-0.002858554245904088,
0.0459388829767704,
-0.05210942402482033,
-0.005135030020028353,
0.013749269768595695,
0.03504934534430504,
0.21628758311271667,
-0.030476583167910576,
-0.027280736714601517,
-0.03371305391192436,
0.12695543467998505,
-0.07887829095125198,
-0.008509011007845402,
-0.04094306752085686,
-0.027221381664276123,
0.05422108992934227,
-0.14036667346954346,
0.07319435477256775,
-0.14634281396865845,
-0.0619744248688221,
0.04048692435026169,
0.04245685040950775,
0.017060942947864532,
0.031087180599570274,
0.014675622805953026,
-0.005929364822804928,
-0.019680023193359375,
-0.07101673632860184,
-0.06312412023544312,
-0.05892617255449295,
0.10866933315992355,
-0.0038128141313791275,
0.04870020970702171,
-0.11713949590921402,
0.06124676764011383,
-0.08538630604743958,
0.03670010715723038,
-0.13224002718925476,
-0.038841135799884796,
-0.027744892984628677,
0.1672174632549286,
0.006601573899388313,
-0.06774948537349701,
-0.1257120668888092,
0.047252584248781204,
-0.038980625569820404,
0.1608281284570694,
-0.026440229266881943,
-0.12333235889673233,
0.24205224215984344,
-0.09686779230833054,
-0.17037728428840637,
0.05819088593125343,
0.007297846022993326,
-0.0187822412699461,
0.08241696655750275,
0.17078529298305511,
0.03631723299622536,
-0.08738293498754501,
0.08095592260360718,
0.14191113412380219,
-0.13318699598312378,
-0.16365906596183777,
0.028528474271297455,
-0.0334528423845768,
-0.11907413601875305,
0.041265517473220825,
0.0034436413552612066,
0.08533528447151184,
-0.0921982154250145,
-0.004812197759747505,
-0.01293246354907751,
-0.015628160908818245,
0.0729161873459816,
0.058011963963508606,
0.09166673570871353,
-0.0677810087800026,
0.00991390272974968,
0.0398266464471817,
-0.011255721561610699,
0.03168392553925514,
0.058278635144233704,
-0.043341703712940216,
0.1279294639825821,
-0.06011424958705902,
0.0025730268098413944,
-0.2085462361574173,
-0.08715872466564178,
-0.011371874250471592,
0.09177418053150177,
-0.0393996424973011,
0.16790297627449036,
0.11040320247411728,
-0.0925755500793457,
0.00358761684037745,
-0.03143608197569847,
0.11512381583452225,
0.01712878979742527,
-0.030011799186468124,
-0.03772463649511337,
0.012738056480884552,
-0.07095976918935776,
-0.09710898995399475,
-0.02491631917655468,
-0.00627898471429944,
0.12167930603027344,
0.1264781653881073,
0.002507270546630025,
0.03385916352272034,
-0.04122108966112137,
0.059168342500925064,
-0.012312098406255245,
0.02199527993798256,
0.10435131192207336,
-0.017714541405439377,
-0.08321622759103775,
0.15026481449604034,
-0.08384737372398376,
0.36931121349334717,
0.2024332880973816,
-0.32852646708488464,
0.03981154039502144,
-0.02746942825615406,
-0.01390197966247797,
0.024579064920544624,
0.1122342124581337,
-0.02590859867632389,
0.0881802886724472,
0.04394598677754402,
0.11318054795265198,
-0.024956289678812027,
-0.04454986751079559,
0.0007368221413344145,
-0.047743842005729675,
-0.049511488527059555,
0.09542335569858551,
0.06248341128230095,
-0.13251787424087524,
0.1600245237350464,
0.28373822569847107,
0.04560614377260208,
0.09792512655258179,
-0.06133773550391197,
-0.022757407277822495,
0.039699189364910126,
0.015039279125630856,
-0.04576999694108963,
0.03373005613684654,
-0.26591286063194275,
-0.047633323818445206,
0.07407993823289871,
0.02055620402097702,
0.09061875939369202,
-0.1459200233221054,
-0.05993150174617767,
0.030102252960205078,
0.02484927326440811,
-0.07744612544775009,
0.09087593108415604,
0.04228215664625168,
0.07148098945617676,
0.012928525917232037,
-0.04512014612555504,
0.10244821012020111,
0.005629644729197025,
-0.04586281627416611,
0.16416428983211517,
-0.11823447793722153,
-0.2552604377269745,
-0.1193137839436531,
-0.15801620483398438,
0.02478799968957901,
0.012210648506879807,
0.074419766664505,
-0.09139055013656616,
-0.026302505284547806,
0.10130403935909271,
0.061081867665052414,
-0.15493257343769073,
0.044168904423713684,
-0.04580516368150711,
0.03345111384987831,
-0.08739827573299408,
-0.07113046199083328,
-0.07068533450365067,
-0.06981467455625534,
-0.04961463436484337,
0.10121359676122665,
-0.1246945932507515,
0.08166283369064331,
0.12132786959409714,
0.05094803124666214,
0.07646921277046204,
-0.0020916727371513844,
0.17505085468292236,
-0.06357396394014359,
-0.05962150916457176,
0.18625718355178833,
-0.039154816418886185,
0.10033397376537323,
0.09657420217990875,
0.044079359620809555,
-0.06951406598091125,
-0.033484332263469696,
-0.060933757573366165,
-0.10718005150556564,
-0.20763958990573883,
-0.10036817938089371,
-0.13023525476455688,
0.004751497879624367,
-0.000670114066451788,
0.042121771723032,
0.0700206607580185,
0.06631368398666382,
0.053532831370830536,
-0.0864759013056755,
-0.050034765154123306,
0.04923805594444275,
0.22149646282196045,
-0.035591885447502136,
0.07959269732236862,
-0.05890441685914993,
-0.08794771879911423,
0.08127860724925995,
0.060010988265275955,
0.1817447543144226,
0.10210268944501877,
0.022593215107917786,
0.06595935672521591,
0.16745993494987488,
0.15201883018016815,
0.1540367156267166,
-0.02193843014538288,
-0.03577892482280731,
-0.01526061724871397,
-0.00010030799603555351,
-0.06889137625694275,
0.0004913448356091976,
0.11326914280653,
-0.13479973375797272,
-0.0604836605489254,
-0.24327106773853302,
0.07084902375936508,
0.04919629916548729,
0.032679811120033264,
-0.15196309983730316,
-0.00040421399171464145,
0.07282399386167526,
-0.00041144643910229206,
-0.044284626841545105,
0.09084761887788773,
-0.0016829834785312414,
-0.11569281667470932,
0.050119396299123764,
-0.04132482036948204,
0.10694653540849686,
-0.02481699176132679,
0.08771265298128128,
-0.0358782634139061,
-0.12598921358585358,
0.0662776455283165,
0.06900722533464432,
-0.23785486817359924,
0.28764957189559937,
-0.015047562308609486,
-0.08228088170289993,
-0.048801977187395096,
-0.04197835922241211,
-0.003781283274292946,
0.1852884590625763,
0.1024385541677475,
0.04168209061026573,
-0.03920183330774307,
-0.15113374590873718,
0.043328672647476196,
0.033142901957035065,
0.1328010857105255,
-0.03353354334831238,
-0.04113762453198433,
0.0004659405385609716,
-0.012823380529880524,
-0.026963958516716957,
0.03337518498301506,
0.0776907280087471,
-0.1309017539024353,
0.04395826533436775,
-0.0019880991894751787,
0.028880812227725983,
-0.0074317543767392635,
-0.01322081871330738,
-0.06172190606594086,
0.11954687535762787,
-0.06683460623025894,
-0.05747222900390625,
-0.0848630890250206,
-0.1599932312965393,
0.1275681108236313,
-0.10324639081954956,
0.072115458548069,
-0.08794764429330826,
-0.06709247827529907,
-0.07358412444591522,
-0.1814906895160675,
0.12599299848079681,
-0.0998830795288086,
0.028712023049592972,
-0.036930546164512634,
0.2198343575000763,
-0.04788460582494736,
0.00006587969255633652,
-0.008528475649654865,
0.013039504177868366,
-0.11477264016866684,
-0.08884283155202866,
0.01379021629691124,
-0.015655362978577614,
0.05710950493812561,
0.041695158928632736,
-0.03288666531443596,
0.06880264729261398,
0.015344602055847645,
0.034568872302770615,
0.21396347880363464,
0.186134472489357,
-0.033745236694812775,
0.11985735595226288,
0.18027181923389435,
-0.033794477581977844,
-0.26661917567253113,
-0.0846354141831398,
-0.17172688245773315,
-0.047513436526060104,
-0.02810327708721161,
-0.14752227067947388,
0.142644464969635,
0.0381203256547451,
-0.020230794325470924,
0.12928421795368195,
-0.2486487627029419,
-0.049123749136924744,
0.1653672605752945,
0.0083856750279665,
0.5381866097450256,
-0.10660535097122192,
-0.09454790502786636,
0.02489558421075344,
-0.25975850224494934,
0.10427799820899963,
0.02520833909511566,
0.051780153065919876,
-0.021174505352973938,
0.09585968405008316,
0.036323096603155136,
-0.08304581791162491,
0.11906874924898148,
0.028275268152356148,
0.02357698790729046,
-0.06498955935239792,
-0.13870584964752197,
0.037250224500894547,
-0.013110331259667873,
-0.03493497520685196,
0.06826557219028473,
0.017235321924090385,
-0.14760255813598633,
-0.02404404617846012,
-0.13333261013031006,
0.05567457154393196,
0.036672841757535934,
-0.031218502670526505,
0.005919408518821001,
-0.03673669323325157,
-0.025360016152262688,
0.013563361018896103,
0.2656884491443634,
-0.02885071188211441,
0.13380834460258484,
0.004754696507006884,
0.06820327788591385,
-0.2138592153787613,
-0.11385384202003479,
-0.07559774816036224,
-0.052582528442144394,
0.08766578137874603,
-0.04031619429588318,
0.04227626696228981,
0.15855242311954498,
-0.016625750809907913,
-0.009202802553772926,
0.1196829304099083,
0.0072800288908183575,
-0.03377111256122589,
0.11844226717948914,
-0.22603391110897064,
-0.05008016526699066,
-0.02580120787024498,
-0.03263162076473236,
0.12460703402757645,
0.12217804044485092,
0.09506645798683167,
0.0754433125257492,
-0.022474301978945732,
-0.024322625249624252,
-0.03513093665242195,
-0.07823941111564636,
0.013863112777471542,
0.04773413762450218,
0.034937534481287,
-0.11898844689130783,
0.047177523374557495,
-0.02152738906443119,
-0.266872763633728,
-0.056712910532951355,
0.10026243329048157,
-0.13707385957241058,
-0.0934320017695427,
-0.07949313521385193,
0.07076770067214966,
-0.15040098130702972,
-0.04215400665998459,
-0.01284860447049141,
-0.11120935529470444,
0.07076677680015564,
0.250417560338974,
0.1062779352068901,
0.10727981477975845,
-0.032035890966653824,
-0.005367985460907221,
0.042143698781728745,
-0.07543303072452545,
-0.013991466723382473,
0.0121172945946455,
-0.08700574934482574,
-0.010479255579411983,
-0.013696597889065742,
0.15301570296287537,
-0.08327650278806686,
-0.07890510559082031,
-0.171699658036232,
0.08268199115991592,
-0.10711699724197388,
-0.10958558320999146,
-0.11338668316602707,
-0.06782516837120056,
0.011405235156416893,
-0.09893908351659775,
-0.03024802915751934,
-0.0328654907643795,
-0.13816463947296143,
0.07684630155563354,
0.03262607753276825,
0.005515735596418381,
-0.06403716653585434,
-0.035874143242836,
0.1498086303472519,
-0.05030526593327522,
0.09152921289205551,
0.18889226019382477,
-0.08515924215316772,
0.13183313608169556,
-0.10378775745630264,
-0.14850100874900818,
0.10374602675437927,
0.012674182653427124,
0.08053745329380035,
0.08146080374717712,
0.015140734612941742,
0.07422392815351486,
0.028560757637023926,
0.05162277817726135,
0.003286920255050063,
-0.1188889890909195,
0.016973691061139107,
0.04206009581685066,
-0.17900550365447998,
-0.02852419763803482,
-0.09733768552541733,
0.15730208158493042,
0.03292210027575493,
0.08486420661211014,
0.020920267328619957,
0.1054333969950676,
-0.023887382820248604,
0.009118972346186638,
0.011180376634001732,
-0.19744594395160675,
0.027193883433938026,
-0.05555891990661621,
0.006399804726243019,
0.0009134450228884816,
0.2835138142108917,
-0.07805345952510834,
0.031515587121248245,
0.03223814070224762,
0.053333036601543427,
-0.0018267212435603142,
0.019711701199412346,
0.23368167877197266,
0.1001359298825264,
-0.04224341735243797,
-0.09082697331905365,
0.08135782182216644,
-0.009332779794931412,
-0.035943757742643356,
0.1321525275707245,
0.12974345684051514,
0.06283511221408844,
0.0970291718840599,
-0.0061447578482329845,
0.06124432384967804,
-0.11149083077907562,
-0.2839953899383545,
0.005014513153582811,
0.04187164828181267,
0.007620683405548334,
0.13637039065361023,
0.11712085455656052,
-0.013480436988174915,
0.07515306025743484,
-0.01791444607079029,
-0.010756190866231918,
-0.1442539393901825,
-0.0785292312502861,
-0.036694128066301346,
-0.10411686450242996,
0.016604600474238396,
-0.05977771431207657,
-0.006930612958967686,
0.16422225534915924,
0.04799465835094452,
-0.02543029561638832,
0.11942467838525772,
0.060724616050720215,
-0.05485526844859123,
0.032888129353523254,
-0.004953940864652395,
0.02457866445183754,
0.03158317878842354,
-0.021798279136419296,
-0.1477023959159851,
-0.07525672018527985,
-0.06770733743906021,
0.031246397644281387,
-0.09311450272798538,
-0.024162618443369865,
-0.1108081042766571,
-0.10779142379760742,
-0.06457403302192688,
0.07176531851291656,
-0.06568951159715652,
0.1171649917960167,
-0.032683372497558594,
0.016234206035733223,
0.007168353535234928,
0.172343447804451,
-0.07198196649551392,
-0.024842115119099617,
0.017614079639315605,
0.2056950181722641,
0.049104735255241394,
0.1042415201663971,
0.0006923355394974351,
0.03809111937880516,
-0.08218837529420853,
0.3366861045360565,
0.24629603326320648,
-0.03666435182094574,
0.042452335357666016,
0.064607635140419,
0.050530221313238144,
0.11894407868385315,
0.10735389590263367,
0.10173739492893219,
0.3289482593536377,
-0.09050356596708298,
-0.03519318625330925,
-0.025250563398003578,
0.009432761929929256,
-0.09690305590629578,
0.0489007793366909,
0.039478812366724014,
-0.06709855049848557,
-0.08793099969625473,
0.10046962648630142,
-0.17121359705924988,
0.10175119340419769,
0.06997337937355042,
-0.2198277860879898,
-0.03783851116895676,
-0.060111887753009796,
0.181540384888649,
-0.012015782296657562,
0.129024475812912,
-0.03838730603456497,
-0.1459164023399353,
0.06123366579413414,
0.050386372953653336,
-0.27638113498687744,
-0.08839067071676254,
0.1257728487253189,
0.042554836720228195,
-0.00688927061855793,
-0.016768725588917732,
0.013223016634583473,
0.060327593237161636,
0.07101310789585114,
-0.025480445474386215,
-0.0019402769394218922,
0.04185595363378525,
-0.10931044816970825,
-0.12752482295036316,
-0.0229122806340456,
0.011525065638124943,
-0.09778720140457153,
0.027700234204530716,
-0.1871083378791809,
0.03940398618578911,
0.00809240061789751,
-0.03241167217493057,
-0.0014000540832057595,
0.0010574592743068933,
-0.057058386504650116,
0.013885253109037876,
0.04856681451201439,
0.014625655487179756,
-0.04175407066941261,
-0.04523738846182823,
-0.017677124589681625,
0.06060760095715523,
-0.08221389353275299,
-0.15152835845947266,
-0.019660353660583496,
-0.08916762471199036,
0.11470503360033035,
-0.03491480275988579,
-0.06863245368003845,
-0.022439386695623398,
-0.02936902828514576,
0.07283741235733032,
-0.12221226841211319,
0.023255428299307823,
0.016710588708519936,
0.04700179398059845,
0.0185729768127203,
-0.03645060583949089,
0.05477501451969147,
0.05671923607587814,
-0.11537165194749832,
-0.07711852341890335
] |
null | null |
transformers
|
https://github.com/monologg/JointBERT
|
{}
| null |
databuzzword/JointBERT-snips
|
[
"transformers",
"pytorch",
"bert",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #endpoints_compatible #region-us
|
URL
|
[] |
[
"TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n"
] |
[
23
] |
[
"passage: TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n"
] |
[
-0.05582514405250549,
-0.0059938449412584305,
-0.0106970788910985,
-0.029046038165688515,
0.12276504933834076,
0.03318239748477936,
0.02372138574719429,
0.05814843624830246,
0.1283326894044876,
-0.008450702764093876,
0.13131918013095856,
0.20412099361419678,
-0.05518573895096779,
-0.0014659949811175466,
-0.060662250965833664,
-0.2503744065761566,
0.07448812574148178,
0.10944642126560211,
-0.05779325217008591,
0.09946653246879578,
0.033594902604818344,
-0.1090199276804924,
0.06034360080957413,
-0.031356219202280045,
-0.10178717225790024,
0.05382249876856804,
0.022958533838391304,
-0.07516350597143173,
0.12614554166793823,
0.017229093238711357,
0.18774759769439697,
0.02010849304497242,
-0.12349475175142288,
-0.16799280047416687,
0.028976095840334892,
0.0017078231321647763,
-0.06416994333267212,
0.029829638078808784,
0.067641980946064,
-0.0958416610956192,
0.011812526732683182,
0.04986337199807167,
0.005196088925004005,
0.029664115980267525,
-0.16331109404563904,
-0.1660199761390686,
-0.040016546845436096,
0.03566199541091919,
0.02647480182349682,
0.07168487459421158,
0.023379387333989143,
0.1733984798192978,
-0.15529543161392212,
0.08478239923715591,
0.18858951330184937,
-0.3070982098579407,
0.008051520213484764,
0.08039850741624832,
0.06561373919248581,
0.05102481693029404,
-0.0034548938274383545,
0.0508800707757473,
0.001212250324897468,
0.02218480594456196,
-0.026412250474095345,
-0.08552643656730652,
-0.013642089441418648,
0.08882433921098709,
-0.0965084433555603,
-0.09593788534402847,
0.201665997505188,
-0.035358089953660965,
0.051234010607004166,
0.048935793340206146,
-0.10587480664253235,
-0.04507492482662201,
-0.00264694239012897,
-0.006025178357958794,
-0.0201078150421381,
0.06390652805566788,
0.011368521489202976,
-0.024782819673419,
-0.11910133063793182,
0.039458055049180984,
-0.22834016382694244,
0.2708556354045868,
0.02697429433465004,
0.09296334534883499,
-0.22665227949619293,
0.06216507405042648,
-0.053294818848371506,
-0.07662333548069,
0.029203347861766815,
-0.09727942198514938,
0.0473918691277504,
0.005940338596701622,
-0.0753636509180069,
0.05180890113115311,
0.051905784755945206,
0.13826292753219604,
0.016379985958337784,
0.03267199918627739,
0.0194330383092165,
0.10806956142187119,
0.01739308051764965,
0.10608944296836853,
0.01434782799333334,
-0.0010544572724029422,
0.022262273356318474,
-0.16448475420475006,
-0.004203388001769781,
-0.04162668436765671,
-0.09218078851699829,
-0.0717039629817009,
0.031197229400277138,
0.09885258227586746,
0.010065644048154354,
0.0125453881919384,
-0.0785975456237793,
-0.002858554245904088,
0.0459388829767704,
-0.05210942402482033,
-0.005135030020028353,
0.013749269768595695,
0.03504934534430504,
0.21628758311271667,
-0.030476583167910576,
-0.027280736714601517,
-0.03371305391192436,
0.12695543467998505,
-0.07887829095125198,
-0.008509011007845402,
-0.04094306752085686,
-0.027221381664276123,
0.05422108992934227,
-0.14036667346954346,
0.07319435477256775,
-0.14634281396865845,
-0.0619744248688221,
0.04048692435026169,
0.04245685040950775,
0.017060942947864532,
0.031087180599570274,
0.014675622805953026,
-0.005929364822804928,
-0.019680023193359375,
-0.07101673632860184,
-0.06312412023544312,
-0.05892617255449295,
0.10866933315992355,
-0.0038128141313791275,
0.04870020970702171,
-0.11713949590921402,
0.06124676764011383,
-0.08538630604743958,
0.03670010715723038,
-0.13224002718925476,
-0.038841135799884796,
-0.027744892984628677,
0.1672174632549286,
0.006601573899388313,
-0.06774948537349701,
-0.1257120668888092,
0.047252584248781204,
-0.038980625569820404,
0.1608281284570694,
-0.026440229266881943,
-0.12333235889673233,
0.24205224215984344,
-0.09686779230833054,
-0.17037728428840637,
0.05819088593125343,
0.007297846022993326,
-0.0187822412699461,
0.08241696655750275,
0.17078529298305511,
0.03631723299622536,
-0.08738293498754501,
0.08095592260360718,
0.14191113412380219,
-0.13318699598312378,
-0.16365906596183777,
0.028528474271297455,
-0.0334528423845768,
-0.11907413601875305,
0.041265517473220825,
0.0034436413552612066,
0.08533528447151184,
-0.0921982154250145,
-0.004812197759747505,
-0.01293246354907751,
-0.015628160908818245,
0.0729161873459816,
0.058011963963508606,
0.09166673570871353,
-0.0677810087800026,
0.00991390272974968,
0.0398266464471817,
-0.011255721561610699,
0.03168392553925514,
0.058278635144233704,
-0.043341703712940216,
0.1279294639825821,
-0.06011424958705902,
0.0025730268098413944,
-0.2085462361574173,
-0.08715872466564178,
-0.011371874250471592,
0.09177418053150177,
-0.0393996424973011,
0.16790297627449036,
0.11040320247411728,
-0.0925755500793457,
0.00358761684037745,
-0.03143608197569847,
0.11512381583452225,
0.01712878979742527,
-0.030011799186468124,
-0.03772463649511337,
0.012738056480884552,
-0.07095976918935776,
-0.09710898995399475,
-0.02491631917655468,
-0.00627898471429944,
0.12167930603027344,
0.1264781653881073,
0.002507270546630025,
0.03385916352272034,
-0.04122108966112137,
0.059168342500925064,
-0.012312098406255245,
0.02199527993798256,
0.10435131192207336,
-0.017714541405439377,
-0.08321622759103775,
0.15026481449604034,
-0.08384737372398376,
0.36931121349334717,
0.2024332880973816,
-0.32852646708488464,
0.03981154039502144,
-0.02746942825615406,
-0.01390197966247797,
0.024579064920544624,
0.1122342124581337,
-0.02590859867632389,
0.0881802886724472,
0.04394598677754402,
0.11318054795265198,
-0.024956289678812027,
-0.04454986751079559,
0.0007368221413344145,
-0.047743842005729675,
-0.049511488527059555,
0.09542335569858551,
0.06248341128230095,
-0.13251787424087524,
0.1600245237350464,
0.28373822569847107,
0.04560614377260208,
0.09792512655258179,
-0.06133773550391197,
-0.022757407277822495,
0.039699189364910126,
0.015039279125630856,
-0.04576999694108963,
0.03373005613684654,
-0.26591286063194275,
-0.047633323818445206,
0.07407993823289871,
0.02055620402097702,
0.09061875939369202,
-0.1459200233221054,
-0.05993150174617767,
0.030102252960205078,
0.02484927326440811,
-0.07744612544775009,
0.09087593108415604,
0.04228215664625168,
0.07148098945617676,
0.012928525917232037,
-0.04512014612555504,
0.10244821012020111,
0.005629644729197025,
-0.04586281627416611,
0.16416428983211517,
-0.11823447793722153,
-0.2552604377269745,
-0.1193137839436531,
-0.15801620483398438,
0.02478799968957901,
0.012210648506879807,
0.074419766664505,
-0.09139055013656616,
-0.026302505284547806,
0.10130403935909271,
0.061081867665052414,
-0.15493257343769073,
0.044168904423713684,
-0.04580516368150711,
0.03345111384987831,
-0.08739827573299408,
-0.07113046199083328,
-0.07068533450365067,
-0.06981467455625534,
-0.04961463436484337,
0.10121359676122665,
-0.1246945932507515,
0.08166283369064331,
0.12132786959409714,
0.05094803124666214,
0.07646921277046204,
-0.0020916727371513844,
0.17505085468292236,
-0.06357396394014359,
-0.05962150916457176,
0.18625718355178833,
-0.039154816418886185,
0.10033397376537323,
0.09657420217990875,
0.044079359620809555,
-0.06951406598091125,
-0.033484332263469696,
-0.060933757573366165,
-0.10718005150556564,
-0.20763958990573883,
-0.10036817938089371,
-0.13023525476455688,
0.004751497879624367,
-0.000670114066451788,
0.042121771723032,
0.0700206607580185,
0.06631368398666382,
0.053532831370830536,
-0.0864759013056755,
-0.050034765154123306,
0.04923805594444275,
0.22149646282196045,
-0.035591885447502136,
0.07959269732236862,
-0.05890441685914993,
-0.08794771879911423,
0.08127860724925995,
0.060010988265275955,
0.1817447543144226,
0.10210268944501877,
0.022593215107917786,
0.06595935672521591,
0.16745993494987488,
0.15201883018016815,
0.1540367156267166,
-0.02193843014538288,
-0.03577892482280731,
-0.01526061724871397,
-0.00010030799603555351,
-0.06889137625694275,
0.0004913448356091976,
0.11326914280653,
-0.13479973375797272,
-0.0604836605489254,
-0.24327106773853302,
0.07084902375936508,
0.04919629916548729,
0.032679811120033264,
-0.15196309983730316,
-0.00040421399171464145,
0.07282399386167526,
-0.00041144643910229206,
-0.044284626841545105,
0.09084761887788773,
-0.0016829834785312414,
-0.11569281667470932,
0.050119396299123764,
-0.04132482036948204,
0.10694653540849686,
-0.02481699176132679,
0.08771265298128128,
-0.0358782634139061,
-0.12598921358585358,
0.0662776455283165,
0.06900722533464432,
-0.23785486817359924,
0.28764957189559937,
-0.015047562308609486,
-0.08228088170289993,
-0.048801977187395096,
-0.04197835922241211,
-0.003781283274292946,
0.1852884590625763,
0.1024385541677475,
0.04168209061026573,
-0.03920183330774307,
-0.15113374590873718,
0.043328672647476196,
0.033142901957035065,
0.1328010857105255,
-0.03353354334831238,
-0.04113762453198433,
0.0004659405385609716,
-0.012823380529880524,
-0.026963958516716957,
0.03337518498301506,
0.0776907280087471,
-0.1309017539024353,
0.04395826533436775,
-0.0019880991894751787,
0.028880812227725983,
-0.0074317543767392635,
-0.01322081871330738,
-0.06172190606594086,
0.11954687535762787,
-0.06683460623025894,
-0.05747222900390625,
-0.0848630890250206,
-0.1599932312965393,
0.1275681108236313,
-0.10324639081954956,
0.072115458548069,
-0.08794764429330826,
-0.06709247827529907,
-0.07358412444591522,
-0.1814906895160675,
0.12599299848079681,
-0.0998830795288086,
0.028712023049592972,
-0.036930546164512634,
0.2198343575000763,
-0.04788460582494736,
0.00006587969255633652,
-0.008528475649654865,
0.013039504177868366,
-0.11477264016866684,
-0.08884283155202866,
0.01379021629691124,
-0.015655362978577614,
0.05710950493812561,
0.041695158928632736,
-0.03288666531443596,
0.06880264729261398,
0.015344602055847645,
0.034568872302770615,
0.21396347880363464,
0.186134472489357,
-0.033745236694812775,
0.11985735595226288,
0.18027181923389435,
-0.033794477581977844,
-0.26661917567253113,
-0.0846354141831398,
-0.17172688245773315,
-0.047513436526060104,
-0.02810327708721161,
-0.14752227067947388,
0.142644464969635,
0.0381203256547451,
-0.020230794325470924,
0.12928421795368195,
-0.2486487627029419,
-0.049123749136924744,
0.1653672605752945,
0.0083856750279665,
0.5381866097450256,
-0.10660535097122192,
-0.09454790502786636,
0.02489558421075344,
-0.25975850224494934,
0.10427799820899963,
0.02520833909511566,
0.051780153065919876,
-0.021174505352973938,
0.09585968405008316,
0.036323096603155136,
-0.08304581791162491,
0.11906874924898148,
0.028275268152356148,
0.02357698790729046,
-0.06498955935239792,
-0.13870584964752197,
0.037250224500894547,
-0.013110331259667873,
-0.03493497520685196,
0.06826557219028473,
0.017235321924090385,
-0.14760255813598633,
-0.02404404617846012,
-0.13333261013031006,
0.05567457154393196,
0.036672841757535934,
-0.031218502670526505,
0.005919408518821001,
-0.03673669323325157,
-0.025360016152262688,
0.013563361018896103,
0.2656884491443634,
-0.02885071188211441,
0.13380834460258484,
0.004754696507006884,
0.06820327788591385,
-0.2138592153787613,
-0.11385384202003479,
-0.07559774816036224,
-0.052582528442144394,
0.08766578137874603,
-0.04031619429588318,
0.04227626696228981,
0.15855242311954498,
-0.016625750809907913,
-0.009202802553772926,
0.1196829304099083,
0.0072800288908183575,
-0.03377111256122589,
0.11844226717948914,
-0.22603391110897064,
-0.05008016526699066,
-0.02580120787024498,
-0.03263162076473236,
0.12460703402757645,
0.12217804044485092,
0.09506645798683167,
0.0754433125257492,
-0.022474301978945732,
-0.024322625249624252,
-0.03513093665242195,
-0.07823941111564636,
0.013863112777471542,
0.04773413762450218,
0.034937534481287,
-0.11898844689130783,
0.047177523374557495,
-0.02152738906443119,
-0.266872763633728,
-0.056712910532951355,
0.10026243329048157,
-0.13707385957241058,
-0.0934320017695427,
-0.07949313521385193,
0.07076770067214966,
-0.15040098130702972,
-0.04215400665998459,
-0.01284860447049141,
-0.11120935529470444,
0.07076677680015564,
0.250417560338974,
0.1062779352068901,
0.10727981477975845,
-0.032035890966653824,
-0.005367985460907221,
0.042143698781728745,
-0.07543303072452545,
-0.013991466723382473,
0.0121172945946455,
-0.08700574934482574,
-0.010479255579411983,
-0.013696597889065742,
0.15301570296287537,
-0.08327650278806686,
-0.07890510559082031,
-0.171699658036232,
0.08268199115991592,
-0.10711699724197388,
-0.10958558320999146,
-0.11338668316602707,
-0.06782516837120056,
0.011405235156416893,
-0.09893908351659775,
-0.03024802915751934,
-0.0328654907643795,
-0.13816463947296143,
0.07684630155563354,
0.03262607753276825,
0.005515735596418381,
-0.06403716653585434,
-0.035874143242836,
0.1498086303472519,
-0.05030526593327522,
0.09152921289205551,
0.18889226019382477,
-0.08515924215316772,
0.13183313608169556,
-0.10378775745630264,
-0.14850100874900818,
0.10374602675437927,
0.012674182653427124,
0.08053745329380035,
0.08146080374717712,
0.015140734612941742,
0.07422392815351486,
0.028560757637023926,
0.05162277817726135,
0.003286920255050063,
-0.1188889890909195,
0.016973691061139107,
0.04206009581685066,
-0.17900550365447998,
-0.02852419763803482,
-0.09733768552541733,
0.15730208158493042,
0.03292210027575493,
0.08486420661211014,
0.020920267328619957,
0.1054333969950676,
-0.023887382820248604,
0.009118972346186638,
0.011180376634001732,
-0.19744594395160675,
0.027193883433938026,
-0.05555891990661621,
0.006399804726243019,
0.0009134450228884816,
0.2835138142108917,
-0.07805345952510834,
0.031515587121248245,
0.03223814070224762,
0.053333036601543427,
-0.0018267212435603142,
0.019711701199412346,
0.23368167877197266,
0.1001359298825264,
-0.04224341735243797,
-0.09082697331905365,
0.08135782182216644,
-0.009332779794931412,
-0.035943757742643356,
0.1321525275707245,
0.12974345684051514,
0.06283511221408844,
0.0970291718840599,
-0.0061447578482329845,
0.06124432384967804,
-0.11149083077907562,
-0.2839953899383545,
0.005014513153582811,
0.04187164828181267,
0.007620683405548334,
0.13637039065361023,
0.11712085455656052,
-0.013480436988174915,
0.07515306025743484,
-0.01791444607079029,
-0.010756190866231918,
-0.1442539393901825,
-0.0785292312502861,
-0.036694128066301346,
-0.10411686450242996,
0.016604600474238396,
-0.05977771431207657,
-0.006930612958967686,
0.16422225534915924,
0.04799465835094452,
-0.02543029561638832,
0.11942467838525772,
0.060724616050720215,
-0.05485526844859123,
0.032888129353523254,
-0.004953940864652395,
0.02457866445183754,
0.03158317878842354,
-0.021798279136419296,
-0.1477023959159851,
-0.07525672018527985,
-0.06770733743906021,
0.031246397644281387,
-0.09311450272798538,
-0.024162618443369865,
-0.1108081042766571,
-0.10779142379760742,
-0.06457403302192688,
0.07176531851291656,
-0.06568951159715652,
0.1171649917960167,
-0.032683372497558594,
0.016234206035733223,
0.007168353535234928,
0.172343447804451,
-0.07198196649551392,
-0.024842115119099617,
0.017614079639315605,
0.2056950181722641,
0.049104735255241394,
0.1042415201663971,
0.0006923355394974351,
0.03809111937880516,
-0.08218837529420853,
0.3366861045360565,
0.24629603326320648,
-0.03666435182094574,
0.042452335357666016,
0.064607635140419,
0.050530221313238144,
0.11894407868385315,
0.10735389590263367,
0.10173739492893219,
0.3289482593536377,
-0.09050356596708298,
-0.03519318625330925,
-0.025250563398003578,
0.009432761929929256,
-0.09690305590629578,
0.0489007793366909,
0.039478812366724014,
-0.06709855049848557,
-0.08793099969625473,
0.10046962648630142,
-0.17121359705924988,
0.10175119340419769,
0.06997337937355042,
-0.2198277860879898,
-0.03783851116895676,
-0.060111887753009796,
0.181540384888649,
-0.012015782296657562,
0.129024475812912,
-0.03838730603456497,
-0.1459164023399353,
0.06123366579413414,
0.050386372953653336,
-0.27638113498687744,
-0.08839067071676254,
0.1257728487253189,
0.042554836720228195,
-0.00688927061855793,
-0.016768725588917732,
0.013223016634583473,
0.060327593237161636,
0.07101310789585114,
-0.025480445474386215,
-0.0019402769394218922,
0.04185595363378525,
-0.10931044816970825,
-0.12752482295036316,
-0.0229122806340456,
0.011525065638124943,
-0.09778720140457153,
0.027700234204530716,
-0.1871083378791809,
0.03940398618578911,
0.00809240061789751,
-0.03241167217493057,
-0.0014000540832057595,
0.0010574592743068933,
-0.057058386504650116,
0.013885253109037876,
0.04856681451201439,
0.014625655487179756,
-0.04175407066941261,
-0.04523738846182823,
-0.017677124589681625,
0.06060760095715523,
-0.08221389353275299,
-0.15152835845947266,
-0.019660353660583496,
-0.08916762471199036,
0.11470503360033035,
-0.03491480275988579,
-0.06863245368003845,
-0.022439386695623398,
-0.02936902828514576,
0.07283741235733032,
-0.12221226841211319,
0.023255428299307823,
0.016710588708519936,
0.04700179398059845,
0.0185729768127203,
-0.03645060583949089,
0.05477501451969147,
0.05671923607587814,
-0.11537165194749832,
-0.07711852341890335
] |
null | null |
tensorflowtts
|
# Tacotron 2 with Guided Attention trained on Synpaflex (Fr)
This repository provides a pretrained [Tacotron2](https://arxiv.org/abs/1712.05884) trained with [Guided Attention](https://arxiv.org/abs/1710.08969) on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about
[TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS).
## Install TensorFlowTTS
First of all, please install TensorFlowTTS with the following command:
```
pip install TensorFlowTTS
```
### Converting your Text to Mel Spectrogram
```python
import numpy as np
import soundfile as sf
import yaml
import tensorflow as tf
from tensorflow_tts.inference import AutoProcessor
from tensorflow_tts.inference import TFAutoModel
processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr")
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr")
text = "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous Γ©tions amis"
input_ids = processor.text_to_sequence(text)
decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference(
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32),
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
)
```
#### Referencing Tacotron 2
```
@article{DBLP:journals/corr/abs-1712-05884,
author = {Jonathan Shen and
Ruoming Pang and
Ron J. Weiss and
Mike Schuster and
Navdeep Jaitly and
Zongheng Yang and
Zhifeng Chen and
Yu Zhang and
Yuxuan Wang and
R. J. Skerry{-}Ryan and
Rif A. Saurous and
Yannis Agiomyrgiannakis and
Yonghui Wu},
title = {Natural {TTS} Synthesis by Conditioning WaveNet on Mel Spectrogram
Predictions},
journal = {CoRR},
volume = {abs/1712.05884},
year = {2017},
url = {http://arxiv.org/abs/1712.05884},
archivePrefix = {arXiv},
eprint = {1712.05884},
timestamp = {Thu, 28 Nov 2019 08:59:52 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1712-05884.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
#### Referencing TensorFlowTTS
```
@misc{TFTTS,
author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata,
Trinh Le and Yunchao He},
title = {TensorflowTTS},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}},
}
```
|
{"language": "fr", "license": "apache-2.0", "tags": ["tensorflowtts", "audio", "text-to-speech", "text-to-mel"], "datasets": ["synpaflex"], "widget": [{"text": "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous \u00e9tions amis"}]}
|
text-to-speech
|
dathudeptrai/tts-tacotron2-synpaflex-fr
|
[
"tensorflowtts",
"audio",
"text-to-speech",
"text-to-mel",
"fr",
"dataset:synpaflex",
"arxiv:1712.05884",
"arxiv:1710.08969",
"license:apache-2.0",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1712.05884",
"1710.08969"
] |
[
"fr"
] |
TAGS
#tensorflowtts #audio #text-to-speech #text-to-mel #fr #dataset-synpaflex #arxiv-1712.05884 #arxiv-1710.08969 #license-apache-2.0 #has_space #region-us
|
# Tacotron 2 with Guided Attention trained on Synpaflex (Fr)
This repository provides a pretrained Tacotron2 trained with Guided Attention on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about
TensorFlowTTS.
## Install TensorFlowTTS
First of all, please install TensorFlowTTS with the following command:
### Converting your Text to Mel Spectrogram
#### Referencing Tacotron 2
#### Referencing TensorFlowTTS
|
[
"# Tacotron 2 with Guided Attention trained on Synpaflex (Fr)\nThis repository provides a pretrained Tacotron2 trained with Guided Attention on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about\nTensorFlowTTS.",
"## Install TensorFlowTTS\nFirst of all, please install TensorFlowTTS with the following command:",
"### Converting your Text to Mel Spectrogram",
"#### Referencing Tacotron 2",
"#### Referencing TensorFlowTTS"
] |
[
"TAGS\n#tensorflowtts #audio #text-to-speech #text-to-mel #fr #dataset-synpaflex #arxiv-1712.05884 #arxiv-1710.08969 #license-apache-2.0 #has_space #region-us \n",
"# Tacotron 2 with Guided Attention trained on Synpaflex (Fr)\nThis repository provides a pretrained Tacotron2 trained with Guided Attention on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about\nTensorFlowTTS.",
"## Install TensorFlowTTS\nFirst of all, please install TensorFlowTTS with the following command:",
"### Converting your Text to Mel Spectrogram",
"#### Referencing Tacotron 2",
"#### Referencing TensorFlowTTS"
] |
[
67,
67,
25,
12,
9,
11
] |
[
"passage: TAGS\n#tensorflowtts #audio #text-to-speech #text-to-mel #fr #dataset-synpaflex #arxiv-1712.05884 #arxiv-1710.08969 #license-apache-2.0 #has_space #region-us \n# Tacotron 2 with Guided Attention trained on Synpaflex (Fr)\nThis repository provides a pretrained Tacotron2 trained with Guided Attention on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about\nTensorFlowTTS.## Install TensorFlowTTS\nFirst of all, please install TensorFlowTTS with the following command:### Converting your Text to Mel Spectrogram#### Referencing Tacotron 2#### Referencing TensorFlowTTS"
] |
[
-0.09008412808179855,
0.0258724857121706,
-0.00243806722573936,
0.07238461077213287,
0.05397295206785202,
-0.012534987181425095,
0.05476726219058037,
0.10792107880115509,
0.013941964134573936,
0.07414314895868301,
0.06717416644096375,
0.005190798547118902,
0.07242222130298615,
0.07651147246360779,
-0.0053358436562120914,
-0.22178888320922852,
-0.06040631979703903,
-0.020393209531903267,
-0.027312178164720535,
0.06872083991765976,
0.07355931401252747,
-0.03623049333691597,
0.08305780589580536,
0.0061441753059625626,
-0.1246105507016182,
0.024767860770225525,
0.05419231951236725,
-0.0766570121049881,
0.08187184482812881,
0.041648004204034805,
0.027250008657574654,
0.05253071337938309,
0.059554532170295715,
-0.04076261818408966,
0.04045866057276726,
0.05934331193566322,
0.003942868206650019,
0.10201907157897949,
0.15523993968963623,
-0.02615879662334919,
0.07293012738227844,
-0.046090707182884216,
-0.006258465815335512,
0.06697013229131699,
-0.0946209728717804,
-0.0342579185962677,
-0.14668415486812592,
0.05519486591219902,
0.10478043556213379,
0.09572160243988037,
-0.0379018671810627,
0.10777004063129425,
0.07629947364330292,
0.054924819618463516,
0.16017240285873413,
-0.3758101165294647,
-0.07633166015148163,
0.009898591786623001,
0.04605954885482788,
0.01258257869631052,
-0.06555785983800888,
0.07083936035633087,
0.06381966173648834,
0.07328610867261887,
0.14129622280597687,
-0.1056506335735321,
-0.1280529499053955,
-0.07985042035579681,
-0.14696644246578217,
0.061200544238090515,
0.2532370686531067,
-0.026210568845272064,
-0.06640530377626419,
-0.009043024852871895,
-0.09702219814062119,
-0.09921107441186905,
-0.00235819723457098,
-0.0723644495010376,
0.029854893684387207,
0.03852424398064613,
0.09009020775556564,
-0.22235332429409027,
-0.1605713963508606,
-0.028383880853652954,
-0.16690219938755035,
0.06588409096002579,
0.009932443499565125,
-0.0005550715140998363,
-0.009906496852636337,
0.047480471432209015,
-0.16631841659545898,
-0.09113605320453644,
0.02226068638265133,
-0.04060335084795952,
-0.11424914747476578,
-0.017233408987522125,
-0.05431685224175453,
-0.3449349105358124,
-0.011941464617848396,
0.04825473204255104,
-0.06259171664714813,
0.03942359611392021,
-0.10102459788322449,
0.10806121677160263,
-0.016258999705314636,
0.045655857771635056,
-0.06569290906190872,
0.016818741336464882,
0.03972400352358818,
-0.04957302659749985,
0.0642920434474945,
-0.01849251240491867,
-0.08126666396856308,
-0.02217266336083412,
-0.07429829984903336,
0.006046387366950512,
0.07265672832727432,
-0.018315808847546577,
-0.07003851979970932,
-0.032983582466840744,
-0.004705683793872595,
-0.09398651868104935,
0.046275511384010315,
-0.00894644483923912,
-0.04624718427658081,
0.0476623959839344,
0.14336024224758148,
0.062506303191185,
-0.046103786677122116,
0.014687972143292427,
-0.06671212613582611,
-0.0027986657805740833,
-0.042166005820035934,
-0.054897043853998184,
0.07018686085939407,
-0.11628362536430359,
-0.04496694728732109,
-0.1941966563463211,
-0.12202644348144531,
-0.033483635634183884,
0.07140901684761047,
-0.06305191665887833,
-0.008545617572963238,
0.027958065271377563,
-0.04650108516216278,
0.06798520684242249,
-0.025512127205729485,
0.13369420170783997,
-0.003958724904805422,
0.015164331533014774,
-0.06867142021656036,
0.11148887127637863,
-0.1257804036140442,
0.034213364124298096,
-0.06811798363924026,
0.05838242173194885,
-0.08674945682287216,
0.07606770843267441,
-0.07209911197423935,
-0.007652015425264835,
-0.17324002087116241,
0.01565503515303135,
-0.20160917937755585,
-0.0007921258802525699,
0.06291542202234268,
0.15397323668003082,
-0.23291543126106262,
0.020507263019680977,
0.14730526506900787,
-0.10598445683717728,
-0.02703160047531128,
0.15237125754356384,
0.06518369913101196,
0.12199648469686508,
0.04341433569788933,
0.276107519865036,
0.11053197830915451,
-0.23378747701644897,
-0.03777599707245827,
0.051895976066589355,
-0.08659948408603668,
0.015380618162453175,
0.051094651222229004,
-0.01684313639998436,
0.01188942976295948,
-0.03016238659620285,
-0.017635000869631767,
0.050571147352457047,
-0.014152158983051777,
-0.052687983959913254,
-0.058415137231349945,
-0.09245716780424118,
0.09072820842266083,
-0.02679799683392048,
0.05798833817243576,
-0.008684666827321053,
-0.04165276885032654,
-0.03255171701312065,
0.04020119830965996,
0.012672248296439648,
0.07357656210660934,
-0.066359743475914,
0.02277117222547531,
-0.020149853080511093,
-0.0005512456991709769,
-0.14122460782527924,
-0.030601734295487404,
0.02150372788310051,
0.04847516864538193,
0.1287660449743271,
0.04119480401277542,
0.06861819326877594,
0.019276119768619537,
-0.05295456945896149,
0.017695384100079536,
0.05332427844405174,
-0.014912210404872894,
-0.050668515264987946,
-0.16705353558063507,
0.03377378359436989,
-0.07544521242380142,
0.09944043308496475,
-0.11492328345775604,
0.048131633549928665,
0.07403199374675751,
0.039438650012016296,
0.05006485432386398,
-0.020135637372732162,
0.08031793683767319,
0.008948151022195816,
-0.0023693693801760674,
-0.05264002084732056,
0.021016955375671387,
0.049149248749017715,
-0.03139352425932884,
0.1445310413837433,
-0.07549741119146347,
-0.023180438205599785,
0.10358358174562454,
0.07911613583564758,
-0.12385541200637817,
0.0296043548732996,
-0.02530725859105587,
-0.05994398146867752,
-0.07286973297595978,
-0.07717977464199066,
0.21296446025371552,
0.015464996919035912,
0.08200133591890335,
-0.021839002147316933,
0.007362842094153166,
0.05608144775032997,
-0.10740998387336731,
-0.07086698710918427,
0.05027301609516144,
0.04018033668398857,
-0.1838521659374237,
0.057029034942388535,
0.12197534739971161,
-0.07443815469741821,
0.06963052600622177,
-0.010442584753036499,
-0.08808699995279312,
-0.06543263792991638,
0.058382391929626465,
0.04825923964381218,
0.09594380110502243,
-0.0017802042420953512,
0.011071485467255116,
0.01626066491007805,
-0.020839713513851166,
0.03685353696346283,
-0.12135552614927292,
0.008677276782691479,
0.00036636204458773136,
-0.02902366779744625,
0.09137337654829025,
0.05302518606185913,
-0.08670731633901596,
0.07559265941381454,
-0.019145682454109192,
0.0036230601835995913,
-0.020552977919578552,
0.008297359570860863,
-0.1188637837767601,
0.0914262980222702,
-0.15000885725021362,
-0.2109031081199646,
-0.1322592794895172,
-0.01957518234848976,
0.008346457965672016,
0.04458354040980339,
0.07069014012813568,
-0.04183898866176605,
-0.04050645977258682,
-0.07168770581483841,
0.04550431668758392,
-0.0235726460814476,
0.020801503211259842,
-0.02431465871632099,
-0.01641257107257843,
0.04561276733875275,
-0.05193394422531128,
0.01641659438610077,
0.025638625025749207,
-0.014825730584561825,
0.046007174998521805,
0.026925330981612206,
0.0971587523818016,
0.1585828810930252,
0.025199275463819504,
-0.007526871282607317,
-0.04225330799818039,
0.09227772057056427,
-0.10429404675960541,
0.14804726839065552,
0.11981794238090515,
-0.03849177807569504,
0.03173191100358963,
0.0941169410943985,
0.030909912660717964,
-0.03881999850273132,
0.047255635261535645,
0.014323865063488483,
-0.06843294948339462,
-0.32623475790023804,
-0.06002183258533478,
-0.07319160550832748,
0.04990546405315399,
0.10439659655094147,
0.05914658308029175,
0.024802103638648987,
0.06575077772140503,
0.03916429728269577,
0.0412142351269722,
-0.010282307863235474,
0.024744953960180283,
0.09926486760377884,
-0.03780047222971916,
0.041425012052059174,
-0.07440806925296783,
0.034990016371011734,
0.14571471512317657,
0.06577534973621368,
0.18964122235774994,
0.029826276004314423,
0.12471040338277817,
0.09513024240732193,
0.12501823902130127,
0.0001336997956968844,
0.021141882985830307,
-0.0039352779276669025,
0.02739778347313404,
-0.008726261556148529,
-0.08494003862142563,
0.046347927302122116,
0.07213536649942398,
0.07997824251651764,
-0.018443863838911057,
0.007993323728442192,
0.01726035587489605,
0.01239314116537571,
0.2365749478340149,
0.024501264095306396,
-0.20622462034225464,
-0.045944202691316605,
0.01685239002108574,
-0.02565889060497284,
-0.030825380235910416,
0.024940840899944305,
0.20165108144283295,
-0.033755891025066376,
0.09148725122213364,
-0.05507848039269447,
0.07336487621068954,
-0.012304109521210194,
-0.04642944410443306,
0.026654750108718872,
0.06105012074112892,
0.002444553654640913,
-0.0026029194705188274,
-0.16774901747703552,
0.17415133118629456,
0.043583113700151443,
0.043044183403253555,
0.025554897263646126,
0.023983009159564972,
0.06894330680370331,
0.08622973412275314,
0.1716889590024948,
0.013849293813109398,
-0.04156898707151413,
0.006633217912167311,
-0.1577315628528595,
-0.05539841204881668,
0.06312982738018036,
0.0007249930058605969,
0.005036025773733854,
0.011738610453903675,
-0.05344324931502342,
0.011016065254807472,
0.07243704795837402,
-0.1625259667634964,
-0.07169058918952942,
0.05389082804322243,
0.08216436952352524,
-0.026297641918063164,
-0.03359241038560867,
-0.08198627829551697,
-0.0954812541604042,
0.06868118047714233,
-0.050063613802194595,
-0.02729552425444126,
-0.10636435449123383,
0.02585543692111969,
0.08344674855470657,
-0.040996160358190536,
0.05195217579603195,
0.03278706967830658,
0.045886944979429245,
-0.09193810820579529,
-0.09967807680368423,
0.08124428987503052,
-0.07611896842718124,
-0.018845384940505028,
-0.06559673696756363,
0.19254298508167267,
0.04581845551729202,
0.08011722564697266,
0.033654943108558655,
0.033941518515348434,
0.0292622372508049,
-0.06797877699136734,
0.12857817113399506,
-0.009005838073790073,
-0.025674335658550262,
-0.023554809391498566,
-0.04775379225611687,
-0.19632722437381744,
-0.0550331249833107,
-0.027026116847991943,
0.1896166354417801,
0.11847418546676636,
-0.10829034447669983,
0.127263605594635,
0.029279543086886406,
-0.12153609842061996,
-0.24062147736549377,
0.07041104882955551,
0.10551903396844864,
0.024604743346571922,
0.07183177024126053,
-0.1893896460533142,
0.021441219374537468,
0.05328869819641113,
-0.04522626847028732,
0.14884722232818604,
-0.3746047914028168,
-0.09291861206293106,
0.08035865426063538,
0.015011658892035484,
0.03987474367022514,
-0.18512171506881714,
-0.12077368050813675,
0.036241669207811356,
0.0776883065700531,
0.14745384454727173,
-0.340964674949646,
0.10913529247045517,
0.07387758791446686,
0.01789923943579197,
0.00583108514547348,
-0.006348820868879557,
0.10988382250070572,
-0.026801202446222305,
-0.0296261515468359,
-0.031699929386377335,
0.0874210074543953,
0.1190064549446106,
-0.012449224479496479,
0.12758471071720123,
0.09813124686479568,
-0.010116112418472767,
-0.01423422247171402,
-0.0044892639853060246,
-0.05847941339015961,
0.15097570419311523,
-0.007626051548868418,
-0.042584262788295746,
-0.02175927348434925,
0.009230392053723335,
0.045688413083553314,
-0.04428285360336304,
-0.03964775800704956,
-0.03442840650677681,
0.03546365350484848,
0.2986820936203003,
0.09171147644519806,
0.13143207132816315,
-0.1555759459733963,
0.004394426941871643,
-0.09467937797307968,
0.04065651074051857,
-0.2114468514919281,
-0.02217814140021801,
0.05457848310470581,
0.014892218634486198,
0.04059229791164398,
-0.01192486472427845,
-0.13688924908638,
0.06623361259698868,
0.08985612541437149,
-0.11813683062791824,
-0.13511164486408234,
-0.06018776446580887,
-0.000026176028768531978,
0.016285190358757973,
-0.01641537807881832,
0.20496124029159546,
-0.12898337841033936,
0.01756506785750389,
0.07748396694660187,
0.012478253804147243,
-0.11568789184093475,
0.14648368954658508,
0.08134610950946808,
-0.021044448018074036,
-0.03334876894950867,
0.14768236875534058,
0.07482055574655533,
-0.18244776129722595,
0.03770478442311287,
0.1824394017457962,
-0.06745292246341705,
-0.12011925876140594,
-0.1264837384223938,
-0.035397641360759735,
0.03907567262649536,
-0.05279378220438957,
0.04006461426615715,
-0.05631732940673828,
-0.021674783900380135,
0.13954779505729675,
-0.012467955239117146,
-0.011495577171444893,
-0.05659421160817146,
0.013827529735863209,
-0.0193032193928957,
0.07122977077960968,
0.07573528587818146,
0.06929303705692291,
-0.14078934490680695,
0.0926830992102623,
-0.0003103545750491321,
0.09888670593500137,
-0.070792056620121,
-0.016756316646933556,
-0.015926485881209373,
-0.01426905021071434,
0.01298768911510706,
0.06261792033910751,
-0.05211234092712402,
-0.05685470625758171,
-0.016930602490901947,
-0.037192728370428085,
-0.062097348272800446,
0.034143757075071335,
-0.05005376413464546,
-0.009224088862538338,
-0.0373673252761364,
0.04358232021331787,
-0.07290035486221313,
-0.04293296858668327,
0.02974369376897812,
-0.010275432839989662,
0.06534881889820099,
0.05443974584341049,
-0.06027631834149361,
-0.003599521704018116,
-0.10962117463350296,
-0.02093982882797718,
0.09049016237258911,
0.025881009176373482,
0.007364457473158836,
-0.10705256462097168,
-0.04833235964179039,
-0.056317418813705444,
0.04749288409948349,
-0.014755696058273315,
0.15649448335170746,
-0.08019373565912247,
0.004142459016293287,
-0.02689932845532894,
0.016345929354429245,
-0.0607728436589241,
0.025410598143935204,
0.08068861812353134,
0.07849866896867752,
0.07724150270223618,
-0.09798002988100052,
0.08062401413917542,
-0.09999970346689224,
0.0616464726626873,
-0.034416571259498596,
-0.04748089611530304,
0.0034872458782047033,
-0.04522048309445381,
0.044145070016384125,
-0.046454522758722305,
0.014931270852684975,
0.03415413200855255,
-0.024566171690821648,
0.02835443615913391,
-0.015544394962489605,
-0.134846031665802,
0.028616586700081825,
0.12313248217105865,
0.013595891185104847,
-0.03564849868416786,
-0.06962570548057556,
0.038015954196453094,
0.05266716331243515,
0.05670427158474922,
0.11167660355567932,
0.06282375007867813,
0.07629512250423431,
0.08391226083040237,
0.0148721719160676,
-0.07600297033786774,
-0.17087534070014954,
0.06658520549535751,
-0.09698843955993652,
0.07601569592952728,
-0.04672069475054741,
0.07293775677680969,
0.0929790511727333,
-0.13708460330963135,
0.042390573769807816,
-0.0028550191782414913,
-0.07012490183115005,
-0.09545042365789413,
-0.16772115230560303,
-0.04850366711616516,
-0.05015453323721886,
-0.05502248927950859,
-0.07553517818450928,
0.06101090461015701,
-0.020192284137010574,
0.036780208349227905,
0.024798957630991936,
0.25187382102012634,
-0.14359737932682037,
-0.1557026207447052,
0.1391534060239792,
0.040456462651491165,
0.0007666271994821727,
-0.11114350706338882,
-0.011323151178658009,
0.007255173288285732,
0.038788143545389175,
0.0020712765399366617,
0.06129984185099602,
0.06362927705049515,
0.06898569315671921,
-0.04390544816851616,
-0.06888466328382492,
-0.020200638100504875,
0.0701860785484314,
0.0213635191321373,
-0.0019913206342607737,
0.06250576674938202,
-0.06417413055896759,
0.010158360004425049,
0.2687273919582367,
-0.09434887766838074,
-0.015626685693860054,
-0.13115613162517548,
0.07187148183584213,
-0.05464478209614754,
-0.005014824215322733,
-0.05208158120512962,
-0.10759003460407257,
-0.02523312158882618,
0.27133142948150635,
0.2273862361907959,
-0.04035913199186325,
0.010653962381184101,
0.011000151745975018,
0.017390891909599304,
-0.015167055651545525,
0.10443609952926636,
0.029931696131825447,
0.1977694183588028,
-0.10051834583282471,
0.03512844815850258,
-0.048367906361818314,
0.0011592752998694777,
-0.11890880018472672,
0.08592026680707932,
-0.026340575888752937,
-0.006841112393885851,
-0.00866608414798975,
0.16556130349636078,
-0.08162251114845276,
-0.24244871735572815,
-0.05250338092446327,
-0.12280501425266266,
-0.08773817121982574,
-0.010253558866679668,
0.03756808117032051,
0.06832809746265411,
0.07345600426197052,
-0.04109250754117966,
0.016462156549096107,
0.10674536973237991,
0.018618879839777946,
-0.10867699980735779,
0.028569160029292107,
0.03044642135500908,
-0.1922663152217865,
0.1328621506690979,
-0.04772009328007698,
0.04151608422398567,
0.024141279980540276,
0.01551190298050642,
-0.1310943365097046,
-0.014595536515116692,
0.017975062131881714,
-0.08300881832838058,
0.02204934135079384,
0.13170325756072998,
-0.022889284417033195,
0.08215796947479248,
0.03188258409500122,
-0.09441592544317245,
-0.014873892068862915,
0.09848904609680176,
0.02446255087852478,
-0.03979111090302467,
0.04467136785387993,
-0.12173880636692047,
0.12044638395309448,
0.07806769758462906,
-0.015418235212564468,
-0.01569535583257675,
-0.04000775143504143,
-0.03718089684844017,
0.06806529313325882,
0.08350515365600586,
0.016244851052761078,
-0.13401378691196442,
-0.0131532559171319,
-0.026440013200044632,
0.06600864976644516,
-0.2627371847629547,
-0.054366521537303925,
-0.07413005083799362,
0.011037904769182205,
-0.08295360207557678,
0.04901047423481941,
0.09126588702201843,
-0.039012398570775986,
-0.0019267138559371233,
-0.12549421191215515,
0.046035248786211014,
0.07414639741182327,
-0.12154947221279144,
-0.04233516380190849
] |
null | null |
transformers
|
La descripciΓ³n en EspaΓ±ol se encuentra despuΓ©s de la descripciΓ³n en InglΓ©s.
# (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...)
GPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model.
It was trained on Spanish Wikipedia using **Transfer Learning and Fine-tuning techniques**. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data.
It was fine-tuned from the [English pre-trained GPT-2 small](https://huggingface.co/gpt2) using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the [fastai v2](https://dev.fast.ai/) Deep Learning framework. All the fine-tuning fastai v2 techniques were used.
The training is purely based on the [GPorTuguese-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese) model developed by Pierre Guillou. The training details are in this article: "[Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787)".
This preliminary version is now available on Hugging Face.
## Limitations and bias
(Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Authors
The model was trained and evaluated by [JosuΓ© Obregon](https://www.linkedin.com/in/josue-obregon/) and [Berny Carrera](https://www.linkedin.com/in/bernycarrera/), founders of [Datificate](https://datificate.com), a space for learning Machine Learning in Spanish.
The training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the [IAI Lab](http://iai.khu.ac.kr/) (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence.
As stated before, this work is mainly based in the work of [Pierre GUILLOU](https://www.linkedin.com/in/pierreguillou/).
# (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...)
GPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2.
FuΓ© entrenado con la Wikipedia en EspaΓ±ol usando **tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos**. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados.
Fue afinado del modelo en InglΓ©s [English pre-trained GPT-2 small](https://huggingface.co/gpt2) utilizando las librerΓas de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning [fastai v2](https://dev.fast.ai/). Se usaron tΓ©cnicas de afinamiento fino de fastai v2.
El entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s [GPorTuguese-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese) desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: "[Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787)".
La versiΓ³n preliminar del modelo se encuentra en Hugging Face.
## Limitaciones y sesgos
(Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en EspaΓ±ol. Se sabe que contiene bastante contenido no filtrado del internet, lo cual estΓ‘ lejos de ser neutral. Esto es seΓ±alado por el equipo desarrollador de openAI en su propia tarjeta de modelo:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Autores
El modelo fue entreando y evaluado por [JosuΓ© Obregon](https://www.linkedin.com/in/josue-obregon/) y [Berny Carrera](https://www.linkedin.com/in/bernycarrera/), fundadores de [Datificate](https://datificate.com), un espacio para aprender Machine Learning en EspaΓ±ol.
El entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial [IAI Lab](http://iai.khu.ac.kr/) (Universidad de Kyung Hee) al cual JosuΓ© pertenece como investigador postdoctoral en Inteligencia Artificial Industrial.
Como fue mencionado anteriormente, este trabajo estΓ‘ basado en el trabajo de [Pierre GUILLOU](https://www.linkedin.com/in/pierreguillou/).
|
{"language": "es", "license": "apache-2.0", "datasets": ["wikipedia"], "widget": [{"text": "La inteligencia artificial en lationoam\u00e9rica se ha desarrollado "}]}
|
text-generation
|
datificate/gpt2-small-spanish
|
[
"transformers",
"pytorch",
"tf",
"jax",
"gpt2",
"text-generation",
"es",
"dataset:wikipedia",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"es"
] |
TAGS
#transformers #pytorch #tf #jax #gpt2 #text-generation #es #dataset-wikipedia #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
La descripciΓ³n en EspaΓ±ol se encuentra despuΓ©s de la descripciΓ³n en InglΓ©s.
# (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...)
GPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model.
It was trained on Spanish Wikipedia using Transfer Learning and Fine-tuning techniques. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data.
It was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.
The training is purely based on the GPorTuguese-2 model developed by Pierre Guillou. The training details are in this article: "Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)".
This preliminary version is now available on Hugging Face.
## Limitations and bias
(Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Authors
The model was trained and evaluated by JosuΓ© Obregon and Berny Carrera, founders of Datificate, a space for learning Machine Learning in Spanish.
The training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the IAI Lab (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence.
As stated before, this work is mainly based in the work of Pierre GUILLOU.
# (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...)
GPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2.
FuΓ© entrenado con la Wikipedia en EspaΓ±ol usando tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados.
Fue afinado del modelo en InglΓ©s English pre-trained GPT-2 small utilizando las librerΓas de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning fastai v2. Se usaron tΓ©cnicas de afinamiento fino de fastai v2.
El entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s GPorTuguese-2 desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: "Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)".
La versiΓ³n preliminar del modelo se encuentra en Hugging Face.
## Limitaciones y sesgos
(Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en EspaΓ±ol. Se sabe que contiene bastante contenido no filtrado del internet, lo cual estΓ‘ lejos de ser neutral. Esto es seΓ±alado por el equipo desarrollador de openAI en su propia tarjeta de modelo:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Autores
El modelo fue entreando y evaluado por JosuΓ© Obregon y Berny Carrera, fundadores de Datificate, un espacio para aprender Machine Learning en EspaΓ±ol.
El entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial IAI Lab (Universidad de Kyung Hee) al cual JosuΓ© pertenece como investigador postdoctoral en Inteligencia Artificial Industrial.
Como fue mencionado anteriormente, este trabajo estΓ‘ basado en el trabajo de Pierre GUILLOU.
|
[
"# (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...)\nGPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. \n\nIt was trained on Spanish Wikipedia using Transfer Learning and Fine-tuning techniques. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. \n\nIt was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.\n\nThe training is purely based on the GPorTuguese-2 model developed by Pierre Guillou. The training details are in this article: \"Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nThis preliminary version is now available on Hugging Face.",
"## Limitations and bias\n\n(Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.",
"## Authors\n\nThe model was trained and evaluated by JosuΓ© Obregon and Berny Carrera, founders of Datificate, a space for learning Machine Learning in Spanish.\nThe training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the IAI Lab (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence.\n\nAs stated before, this work is mainly based in the work of Pierre GUILLOU.",
"# (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...)\n\nGPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2. \n\nFuΓ© entrenado con la Wikipedia en EspaΓ±ol usando tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. \n\nFue afinado del modelo en InglΓ©s English pre-trained GPT-2 small utilizando las librerΓas de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning fastai v2. Se usaron tΓ©cnicas de afinamiento fino de fastai v2.\n\nEl entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s GPorTuguese-2 desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: \"Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nLa versiΓ³n preliminar del modelo se encuentra en Hugging Face.",
"## Limitaciones y sesgos\n\n(Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en EspaΓ±ol. Se sabe que contiene bastante contenido no filtrado del internet, lo cual estΓ‘ lejos de ser neutral. Esto es seΓ±alado por el equipo desarrollador de openAI en su propia tarjeta de modelo:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.",
"## Autores\n\nEl modelo fue entreando y evaluado por JosuΓ© Obregon y Berny Carrera, fundadores de Datificate, un espacio para aprender Machine Learning en EspaΓ±ol.\n\nEl entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial IAI Lab (Universidad de Kyung Hee) al cual JosuΓ© pertenece como investigador postdoctoral en Inteligencia Artificial Industrial.\n\nComo fue mencionado anteriormente, este trabajo estΓ‘ basado en el trabajo de Pierre GUILLOU."
] |
[
"TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #es #dataset-wikipedia #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"# (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...)\nGPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. \n\nIt was trained on Spanish Wikipedia using Transfer Learning and Fine-tuning techniques. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. \n\nIt was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.\n\nThe training is purely based on the GPorTuguese-2 model developed by Pierre Guillou. The training details are in this article: \"Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nThis preliminary version is now available on Hugging Face.",
"## Limitations and bias\n\n(Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.",
"## Authors\n\nThe model was trained and evaluated by JosuΓ© Obregon and Berny Carrera, founders of Datificate, a space for learning Machine Learning in Spanish.\nThe training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the IAI Lab (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence.\n\nAs stated before, this work is mainly based in the work of Pierre GUILLOU.",
"# (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...)\n\nGPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2. \n\nFuΓ© entrenado con la Wikipedia en EspaΓ±ol usando tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. \n\nFue afinado del modelo en InglΓ©s English pre-trained GPT-2 small utilizando las librerΓas de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning fastai v2. Se usaron tΓ©cnicas de afinamiento fino de fastai v2.\n\nEl entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s GPorTuguese-2 desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: \"Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nLa versiΓ³n preliminar del modelo se encuentra en Hugging Face.",
"## Limitaciones y sesgos\n\n(Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en EspaΓ±ol. Se sabe que contiene bastante contenido no filtrado del internet, lo cual estΓ‘ lejos de ser neutral. Esto es seΓ±alado por el equipo desarrollador de openAI en su propia tarjeta de modelo:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.",
"## Autores\n\nEl modelo fue entreando y evaluado por JosuΓ© Obregon y Berny Carrera, fundadores de Datificate, un espacio para aprender Machine Learning en EspaΓ±ol.\n\nEl entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial IAI Lab (Universidad de Kyung Hee) al cual JosuΓ© pertenece como investigador postdoctoral en Inteligencia Artificial Industrial.\n\nComo fue mencionado anteriormente, este trabajo estΓ‘ basado en el trabajo de Pierre GUILLOU."
] |
[
72,
248,
234,
114,
271,
241,
122
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #es #dataset-wikipedia #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...)\nGPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. \n\nIt was trained on Spanish Wikipedia using Transfer Learning and Fine-tuning techniques. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. \n\nIt was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.\n\nThe training is purely based on the GPorTuguese-2 model developed by Pierre Guillou. The training details are in this article: \"Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nThis preliminary version is now available on Hugging Face.",
"passage: ## Limitations and bias\n\n(Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we donβt support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.## Authors\n\nThe model was trained and evaluated by JosuΓ© Obregon and Berny Carrera, founders of Datificate, a space for learning Machine Learning in Spanish.\nThe training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the IAI Lab (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence.\n\nAs stated before, this work is mainly based in the work of Pierre GUILLOU.# (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...)\n\nGPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2. \n\nFuΓ© entrenado con la Wikipedia en EspaΓ±ol usando tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. \n\nFue afinado del modelo en InglΓ©s English pre-trained GPT-2 small utilizando las librerΓas de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning fastai v2. Se usaron tΓ©cnicas de afinamiento fino de fastai v2.\n\nEl entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s GPorTuguese-2 desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: \"Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nLa versiΓ³n preliminar del modelo se encuentra en Hugging Face."
] |
[
-0.07866166532039642,
0.08810208737850189,
0.00017388787819072604,
0.12069486081600189,
0.060882873833179474,
0.05673392489552498,
0.09816969186067581,
0.11672138422727585,
-0.0010060779750347137,
0.022048506885766983,
0.02290458418428898,
-0.06930890679359436,
0.09962494671344757,
0.06334154307842255,
0.10436045378446579,
-0.2530663013458252,
0.03810705617070198,
-0.04828290268778801,
0.01837059110403061,
0.03637329488992691,
0.0831369012594223,
-0.034386880695819855,
0.0785430371761322,
0.01647043786942959,
-0.09330710023641586,
-0.062194276601076126,
0.0038001653738319874,
-0.04944995790719986,
0.12609073519706726,
0.06729593873023987,
0.07157400995492935,
-0.0019976478070020676,
0.08036664128303528,
-0.13225774466991425,
0.014523370191454887,
0.06896719336509705,
0.010329185053706169,
0.048766955733299255,
0.0711824893951416,
0.1086963340640068,
0.11561858654022217,
-0.06988909840583801,
0.05606534332036972,
0.05897393450140953,
-0.13410761952400208,
-0.14746300876140594,
-0.08854764699935913,
-0.05473608523607254,
0.022325752303004265,
0.03798259049654007,
-0.025021620094776154,
0.05569223314523697,
-0.06268687546253204,
0.006181700620800257,
0.1297965943813324,
-0.27563929557800293,
-0.05380885303020477,
0.051444731652736664,
0.021847402676939964,
0.033367060124874115,
-0.0655861496925354,
0.05057298764586449,
0.047765329480171204,
0.00949388649314642,
0.02370268478989601,
0.001715686172246933,
0.019243963062763214,
-0.03429992496967316,
-0.09213369339704514,
-0.016622629016637802,
-0.011445991694927216,
0.00953324232250452,
-0.07689552754163742,
-0.1708984673023224,
-0.03953036665916443,
-0.02328133024275303,
-0.03760752081871033,
-0.03921931982040405,
0.01988927274942398,
0.01366095058619976,
0.06745900213718414,
-0.0900079756975174,
-0.07341179251670837,
-0.07335123419761658,
-0.024422697722911835,
0.13631853461265564,
0.07429856061935425,
0.039811473339796066,
0.08928500860929489,
0.11668641865253448,
-0.02759304642677307,
-0.01559019647538662,
-0.03905688598752022,
-0.06701530516147614,
-0.08057983219623566,
0.006807435769587755,
-0.020463017746806145,
0.10375450551509857,
-0.028594881296157837,
0.033913224935531616,
-0.07995454221963882,
0.0176126416772604,
0.08734574168920517,
-0.00680096261203289,
-0.025725193321704865,
0.09430835396051407,
-0.06397717446088791,
-0.12084871530532837,
0.07342982292175293,
0.01023381482809782,
0.0006417222321033478,
-0.027422096580266953,
-0.08413805067539215,
-0.11338520050048828,
-0.0357624813914299,
0.04876402020454407,
-0.010524962097406387,
0.011470095254480839,
-0.03225027024745941,
-0.04066508635878563,
0.10290251672267914,
-0.04091472551226616,
0.028467856347560883,
-0.012626013718545437,
-0.07147951424121857,
-0.015319271013140678,
0.009366625919938087,
-0.01805230602622032,
-0.05929495766758919,
-0.11120708286762238,
-0.027189871296286583,
-0.024672895669937134,
-0.0823434442281723,
-0.11052991449832916,
0.014664988964796066,
-0.10284307599067688,
-0.0345461443066597,
-0.10907882452011108,
-0.1430615484714508,
-0.015795845538377762,
0.024513928219676018,
-0.09660086035728455,
0.02127806656062603,
-0.046390049159526825,
0.017535578459501266,
0.01191813312470913,
0.03358714282512665,
-0.015133656561374664,
-0.022188175469636917,
0.030004553496837616,
0.006188440136611462,
0.08970696479082108,
-0.014220738783478737,
-0.011075860820710659,
-0.0553663969039917,
-0.007908361032605171,
-0.08491300791501999,
0.106646828353405,
-0.03804190829396248,
-0.06299624592065811,
-0.03641226887702942,
-0.058010298758745193,
-0.09066568315029144,
0.05310962721705437,
0.04739776998758316,
0.11649197340011597,
-0.19396434724330902,
-0.00688830716535449,
0.18580585718154907,
-0.07863947749137878,
-0.007875850424170494,
0.20002129673957825,
-0.02279244363307953,
0.07710955291986465,
0.08404731750488281,
0.06858966499567032,
0.049966953694820404,
-0.08300963044166565,
-0.023704107850790024,
0.02922077104449272,
-0.016322661191225052,
0.050184670835733414,
0.07201795279979706,
0.019262995570898056,
0.029327193275094032,
0.034217286854982376,
-0.010882558301091194,
0.07238094508647919,
-0.029075395315885544,
-0.04730147495865822,
-0.01212406251579523,
-0.08187215030193329,
0.020274337381124496,
-0.004643099848181009,
0.022944891825318336,
-0.04691290482878685,
-0.10500183701515198,
-0.0990556925535202,
0.10804599523544312,
-0.06082044169306755,
0.007063588593155146,
-0.08122573792934418,
0.04744930937886238,
-0.04337986931204796,
-0.029996482655405998,
-0.0306519977748394,
-0.08404746651649475,
0.06171765923500061,
-0.05677613615989685,
0.03710188716650009,
0.06996934115886688,
0.043095435947179794,
0.10454655438661575,
-0.04795295000076294,
0.03579330071806908,
-0.083211749792099,
-0.05029115453362465,
-0.03619895130395889,
-0.05270662158727646,
0.005953909829258919,
-0.033236484974622726,
0.166342094540596,
-0.1074889749288559,
0.027031034231185913,
0.01977464184165001,
0.026834897696971893,
0.01342068426311016,
-0.04975466802716255,
0.0068759131245315075,
-0.02006225474178791,
0.014121972024440765,
-0.10947718471288681,
0.05649280920624733,
0.007139108143746853,
0.009387882426381111,
0.09451376646757126,
-0.12613555788993835,
-0.017500508576631546,
0.08257712423801422,
0.07676898688077927,
-0.06427860260009766,
-0.02956993505358696,
-0.010710669681429863,
-0.019598810002207756,
-0.061861928552389145,
0.01296382024884224,
0.19330555200576782,
0.005158375948667526,
0.08523474633693695,
-0.11986734718084335,
-0.002540057525038719,
0.013523584231734276,
-0.004911269061267376,
0.0071458034217357635,
0.00860015582293272,
0.044508300721645355,
-0.08102158457040787,
0.024109933525323868,
-0.06482784450054169,
0.046828802675008774,
0.1784445345401764,
0.04616863280534744,
-0.07239829748868942,
-0.022671738639473915,
-0.015119456686079502,
0.004011946730315685,
0.11042776703834534,
-0.023227620869874954,
-0.00952538475394249,
0.03631995618343353,
0.02624841034412384,
0.06874673813581467,
-0.13974124193191528,
0.009436409920454025,
0.013675760477781296,
-0.060742951929569244,
0.039894286543130875,
0.01835714653134346,
-0.0591086819767952,
0.07483825087547302,
0.06357048451900482,
0.013656879775226116,
-0.022340748459100723,
-0.028685294091701508,
-0.08019784092903137,
0.10742324590682983,
-0.07419906556606293,
-0.28955256938934326,
-0.0820065587759018,
0.05088737979531288,
-0.01465605292469263,
0.053433917462825775,
-0.0156593956053257,
-0.0870412066578865,
-0.01626419834792614,
-0.05294955521821976,
0.09464374929666519,
0.032246895134449005,
-0.0037834448739886284,
-0.03604859113693237,
0.0416247621178627,
-0.035356637090444565,
-0.13610830903053284,
0.012991838157176971,
-0.025309361517429352,
-0.13416939973831177,
-0.0018457151018083096,
-0.06623384356498718,
0.044699881225824356,
0.08428587019443512,
-0.009384358301758766,
-0.028285060077905655,
-0.039214037358760834,
0.21848514676094055,
-0.07131727784872055,
0.10604611784219742,
0.15094329416751862,
0.07045062631368637,
0.026946160942316055,
0.018551789224147797,
0.013591626659035683,
-0.11810162663459778,
0.019942738115787506,
0.025145936757326126,
-0.0466657355427742,
-0.1225944459438324,
-0.056713297963142395,
-0.05292145907878876,
0.013658732175827026,
0.06571637094020844,
0.008684578351676464,
-0.04745718836784363,
0.06069384887814522,
-0.05711613595485687,
0.09782053530216217,
0.0685756579041481,
0.06332395225763321,
0.026382386684417725,
0.0012617155443876982,
0.03429948538541794,
-0.06995855271816254,
-0.008684169501066208,
0.11277787387371063,
0.07863692939281464,
0.14737790822982788,
-0.06827841699123383,
0.11755163967609406,
0.018732186406850815,
0.09818844497203827,
0.05143380165100098,
0.02809450961649418,
-0.0027028624899685383,
-0.02332109957933426,
-0.06976569443941116,
-0.009575442411005497,
-0.09374253451824188,
0.05556555837392807,
0.024776941165328026,
-0.051594190299510956,
-0.03636772930622101,
0.06613253802061081,
0.04314100742340088,
0.1529863029718399,
0.05952967703342438,
-0.15476462244987488,
-0.09720472991466522,
0.010698739439249039,
-0.05342349410057068,
-0.12336816638708115,
0.025102538987994194,
0.13915880024433136,
-0.09242790192365646,
-0.026499751955270767,
-0.026740318164229393,
0.046105798333883286,
-0.12780605256557465,
-0.006158218719065189,
-0.0006637685000896454,
0.10952319204807281,
0.0065452829003334045,
0.06511059403419495,
-0.1365966796875,
0.06658157706260681,
0.023145832121372223,
0.11646995693445206,
-0.04934817925095558,
-0.005383784882724285,
0.05337297171354294,
0.011672637425363064,
0.08426841348409653,
0.014660762622952461,
0.019981006160378456,
-0.029367389157414436,
-0.09302707761526108,
0.024806737899780273,
0.04545235633850098,
0.02433163858950138,
0.04747280105948448,
-0.02934148907661438,
0.025979969650506973,
-0.00873661134392023,
0.0015297606587409973,
-0.10605626553297043,
-0.1637762188911438,
0.033977996557950974,
-0.070511594414711,
-0.03511449694633484,
-0.08661442995071411,
-0.03353634476661682,
-0.10985292494297028,
0.15126559138298035,
-0.020225588232278824,
-0.03322851285338402,
-0.09017769992351532,
0.022742625325918198,
0.09417232871055603,
-0.031675785779953,
0.09133143723011017,
0.022105494514107704,
0.13728271424770355,
-0.04932965338230133,
0.012011418119072914,
0.0478614866733551,
-0.09849253296852112,
-0.11936626583337784,
-0.03222043812274933,
0.03365583345293999,
0.052092164754867554,
0.07237708568572998,
0.013003517873585224,
-0.025910355150699615,
-0.011387212201952934,
-0.09581974148750305,
0.001998482272028923,
0.1314527839422226,
-0.06299370527267456,
-0.022933974862098694,
-0.034169409424066544,
0.04485855996608734,
-0.04759903997182846,
-0.028618842363357544,
0.12291727215051651,
0.2015669047832489,
-0.07407432049512863,
0.100613072514534,
0.11429666727781296,
-0.04887901991605759,
-0.20694172382354736,
0.05772922933101654,
0.047812171280384064,
0.0652620941400528,
-0.06053653359413147,
-0.17656514048576355,
-0.012631412595510483,
0.06330506503582001,
-0.012810410931706429,
0.024923739954829216,
-0.14672991633415222,
-0.11189877241849899,
0.022453876212239265,
0.05379960685968399,
0.11973175406455994,
0.0009555043652653694,
0.019229872152209282,
-0.03984823822975159,
-0.07480333000421524,
0.11612750589847565,
-0.04778468608856201,
0.12653711438179016,
-0.0027131186798214912,
-0.019978608936071396,
0.023120691999793053,
-0.025336643680930138,
0.14773324131965637,
-0.0937109887599945,
0.08079878985881805,
-0.023083781823515892,
0.04434382915496826,
0.02106652408838272,
-0.020071936771273613,
0.08022002875804901,
0.08926524221897125,
0.010561184957623482,
-0.06215230002999306,
-0.08599275350570679,
-0.06765111535787582,
0.01614176109433174,
-0.020810090005397797,
-0.07569731026887894,
-0.056592702865600586,
0.11786094307899475,
0.0496082678437233,
0.022520484402775764,
-0.1676253229379654,
-0.02652764320373535,
-0.10942329466342926,
-0.039705559611320496,
0.11790201812982559,
-0.00845031812787056,
0.06362224370241165,
-0.001751151867210865,
0.02066831849515438,
0.05793175846338272,
-0.08625292778015137,
-0.0033825559075921774,
0.040527570992708206,
-0.060970380902290344,
0.06344880163669586,
0.017352208495140076,
-0.11308097094297409,
0.003843093290925026,
0.05450152978301048,
-0.02330728806555271,
-0.11199051141738892,
-0.031758103519678116,
-0.08011431992053986,
-0.03322530537843704,
-0.08605362474918365,
0.07182106375694275,
-0.041847750544548035,
-0.046109892427921295,
-0.01679312437772751,
0.03225070238113403,
-0.017463957890868187,
0.0829131081700325,
0.04776506870985031,
-0.007543571759015322,
-0.06689230352640152,
0.15600615739822388,
0.017347825691103935,
-0.04715975001454353,
0.023770779371261597,
0.07939609885215759,
-0.11071144789457321,
-0.05417772755026817,
-0.051741816103458405,
0.0380275696516037,
-0.02736433781683445,
-0.06711811572313309,
-0.08764984458684921,
-0.04706818237900734,
-0.003859197720885277,
-0.039791520684957504,
0.014586897566914558,
0.029321834444999695,
-0.03590927645564079,
0.034615736454725266,
-0.0987078920006752,
0.02958454191684723,
0.007218579761683941,
-0.000053655821830034256,
-0.03668002039194107,
0.1407555341720581,
0.037339113652706146,
-0.008441837504506111,
-0.022699004039168358,
0.016536174342036247,
-0.07420884817838669,
-0.028012773022055626,
-0.08228106796741486,
-0.0005388427525758743,
-0.012401167303323746,
0.014159567654132843,
-0.020353667438030243,
-0.014000874012708664,
-0.02985072322189808,
0.009023078717291355,
-0.04991437494754791,
-0.014321336522698402,
-0.03623667731881142,
0.024383142590522766,
0.023107614368200302,
-0.010136594995856285,
0.03490445017814636,
-0.06348709762096405,
0.10998063534498215,
-0.026363946497440338,
0.00775325670838356,
0.02981283701956272,
-0.12245236337184906,
0.044805627316236496,
-0.02710714563727379,
0.022546984255313873,
-0.01387773733586073,
-0.0933157280087471,
0.05313270539045334,
-0.016855981200933456,
0.00011448049917817116,
-0.013739364221692085,
0.1088266670703888,
-0.022804150357842445,
0.046184178441762924,
-0.05026997998356819,
-0.0005457587540149689,
-0.061859965324401855,
0.036650244146585464,
0.07265818864107132,
0.023632854223251343,
0.027447504922747612,
-0.04123055934906006,
0.02200228162109852,
-0.11909104138612747,
-0.028634143993258476,
-0.016997812315821648,
0.006138060241937637,
0.005441140383481979,
-0.06048363447189331,
0.06099887192249298,
0.03478577733039856,
0.20695894956588745,
0.045712586492300034,
-0.06291011720895767,
-0.016074948012828827,
-0.032833389937877655,
-0.040780723094940186,
-0.010213926434516907,
0.03280298784375191,
0.026352517306804657,
-0.0006803565192967653,
-0.025539230555295944,
0.0658290684223175,
0.021906357258558273,
0.09811355173587799,
0.07108239084482193,
0.05077051371335983,
0.10640617460012436,
0.11569377779960632,
-0.016969317570328712,
-0.08643422275781631,
-0.024060843512415886,
0.13135220110416412,
-0.03455016016960144,
-0.03404298052191734,
-0.09775372594594955,
0.02305622771382332,
0.130219966173172,
-0.13464149832725525,
0.07589855790138245,
0.01640976220369339,
-0.07201040536165237,
-0.11639402061700821,
-0.09104087948799133,
-0.01709051802754402,
-0.04944077879190445,
0.036070503294467926,
-0.06942449510097504,
0.01493763830512762,
-0.0038823895156383514,
0.04578018561005592,
-0.024828456342220306,
0.14010855555534363,
-0.1088552176952362,
-0.05101852864027023,
0.08258774131536484,
0.028910664841532707,
0.0620696023106575,
-0.0006745192222297192,
-0.05356152355670929,
-0.02640097588300705,
0.02927844598889351,
0.08965952694416046,
-0.005905497819185257,
0.0035164107102900743,
0.024009298533201218,
0.026979820802807808,
-0.029598569497466087,
-0.022632665932178497,
-0.02657385542988777,
0.052852340042591095,
0.20562250912189484,
0.04639943689107895,
-0.05095706880092621,
0.020023921504616737,
0.16576535999774933,
-0.029997967183589935,
-0.08158347010612488,
-0.13009177148342133,
0.026739418506622314,
-0.029028477147221565,
0.015685174614191055,
-0.017954807728528976,
-0.055323608219623566,
0.02935699000954628,
0.18668438494205475,
0.15754541754722595,
-0.06592156738042831,
-0.027103878557682037,
0.04126129299402237,
-0.011199739761650562,
-0.04623132944107056,
0.1398666501045227,
0.006833653897047043,
0.18226610124111176,
-0.06929127871990204,
-0.014353662729263306,
0.013879228383302689,
-0.018260985612869263,
-0.01723535731434822,
0.15583482384681702,
-0.05508313700556755,
0.05650880187749863,
-0.08818022906780243,
-0.006143770180642605,
0.012491979636251926,
-0.19742906093597412,
0.07609175145626068,
-0.0548374317586422,
-0.07243303954601288,
0.03709312528371811,
-0.11952503770589828,
-0.004909048788249493,
0.08775858581066132,
0.008251781575381756,
0.042602576315402985,
0.08857042342424393,
0.003937857691198587,
-0.09669715166091919,
-0.008281723596155643,
0.05239909514784813,
0.030582495033740997,
0.2291249781847,
-0.0042578838765621185,
0.09276775270700455,
0.08329793065786362,
0.007195090409368277,
-0.11076962947845459,
0.05272384732961655,
-0.023160140961408615,
-0.0043260036036372185,
0.010956279933452606,
0.08209492266178131,
-0.018425285816192627,
-0.0038075861521065235,
0.06910544633865356,
-0.03153398633003235,
0.07051584869623184,
0.04960893839597702,
-0.049254726618528366,
-0.09114527702331543,
0.07143691927194595,
-0.08019757270812988,
0.17325888574123383,
0.12934526801109314,
-0.014735326170921326,
-0.02911866456270218,
-0.06158263981342316,
0.04031822085380554,
0.034319791942834854,
0.1451982855796814,
0.002157114678993821,
-0.15129417181015015,
-0.006301525980234146,
-0.006268245168030262,
0.016955839470028877,
-0.1386461853981018,
-0.06786109507083893,
-0.011194545775651932,
-0.07051632553339005,
-0.026890723034739494,
0.11259487271308899,
0.03810206428170204,
0.036239732056856155,
-0.028286613523960114,
-0.08184400200843811,
-0.01218776497989893,
0.05230597406625748,
-0.1119251400232315,
-0.08755430579185486
] |
null | null |
transformers
|
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese
Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phα»", is a popular food in Vietnam):
- Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance.
- PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference.
The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744):
@article{phobert,
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
journal = {Findings of EMNLP},
year = {2020}
}
**Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software.
For further information or requests, please go to [PhoBERT's homepage](https://github.com/VinAIResearch/PhoBERT)!
### Installation <a name="install2"></a>
- Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)
- Install `transformers`:
- `git clone https://github.com/huggingface/transformers.git`
- `cd transformers`
- `pip3 install --upgrade .`
### Pre-trained models <a name="models2"></a>
Model | #params | Arch. | Pre-training data
---|---|---|---
`vinai/phobert-base` | 135M | base | 20GB of texts
`vinai/phobert-large` | 370M | large | 20GB of texts
### Example usage <a name="usage2"></a>
```python
import torch
from transformers import AutoModel, AutoTokenizer
phobert = AutoModel.from_pretrained("vinai/phobert-base")
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
line = "TΓ΄i lΓ sinh_viΓͺn trΖ°α»ng ΔαΊ‘i_hα»c CΓ΄ng_nghα» ."
input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad():
features = phobert(input_ids) # Models outputs are now tuples
## With TensorFlow 2.0+:
# from transformers import TFAutoModel
# phobert = TFAutoModel.from_pretrained("vinai/phobert-base")
```
|
{}
|
fill-mask
|
datnth1709/Phobert-classifier
|
[
"transformers",
"pytorch",
"tf",
"jax",
"roberta",
"fill-mask",
"arxiv:2003.00744",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00744"
] |
[] |
TAGS
#transformers #pytorch #tf #jax #roberta #fill-mask #arxiv-2003.00744 #autotrain_compatible #endpoints_compatible #region-us
|
PhoBERT: Pre-trained language models for Vietnamese
====================================================
Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese (Pho, i.e. "Phα»", is a popular food in Vietnam):
* Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on RoBERTa which optimizes the BERT pre-training procedure for more robust performance.
* PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference.
The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings paper:
```
@article{phobert,
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
journal = {Findings of EMNLP},
year = {2020}
}
```
Please CITE our paper when PhoBERT is used to help produce published results or is incorporated into other software.
For further information or requests, please go to PhoBERT's homepage!
### Installation
* Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)
* Install 'transformers':
- 'git clone URL
- 'cd transformers'
- 'pip3 install --upgrade .'
### Pre-trained models
### Example usage
|
[
"### Installation\n\n\n* Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)\n* Install 'transformers':\n- 'git clone URL\n- 'cd transformers'\n- 'pip3 install --upgrade .'",
"### Pre-trained models",
"### Example usage"
] |
[
"TAGS\n#transformers #pytorch #tf #jax #roberta #fill-mask #arxiv-2003.00744 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Installation\n\n\n* Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)\n* Install 'transformers':\n- 'git clone URL\n- 'cd transformers'\n- 'pip3 install --upgrade .'",
"### Pre-trained models",
"### Example usage"
] |
[
50,
55,
7,
5
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #roberta #fill-mask #arxiv-2003.00744 #autotrain_compatible #endpoints_compatible #region-us \n### Installation\n\n\n* Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)\n* Install 'transformers':\n- 'git clone URL\n- 'cd transformers'\n- 'pip3 install --upgrade .'### Pre-trained models### Example usage"
] |
[
-0.04414575174450874,
0.08479932695627213,
-0.00405694218352437,
0.03885379061102867,
0.15103554725646973,
0.042986027896404266,
0.08616321533918381,
0.09860148280858994,
-0.027658332139253616,
-0.0037029895465821028,
0.15180182456970215,
0.2376621961593628,
0.04449157789349556,
0.09056056290864944,
-0.009159989655017853,
-0.2640496492385864,
0.04679857939481735,
0.07202360033988953,
-0.09138421714305878,
0.1497434377670288,
0.08933109045028687,
-0.03132170811295509,
0.07829931378364563,
0.029568566009402275,
-0.16457651555538177,
-0.019596142694354057,
0.0869622603058815,
-0.12493271380662918,
0.09640876203775406,
0.031173592433333397,
0.1673932820558548,
0.021375220268964767,
0.021774528548121452,
-0.05427736043930054,
0.028564557433128357,
0.0826820433139801,
-0.008279095403850079,
0.10305490344762802,
0.05609205737709999,
-0.027279404923319817,
0.07234635949134827,
0.01863721013069153,
0.05435027554631233,
0.011799154803156853,
-0.08987840265035629,
-0.2259180247783661,
-0.07180905342102051,
0.11045438051223755,
0.03584843873977661,
0.09692544490098953,
0.0258820541203022,
0.2411838322877884,
-0.0051299091428518295,
0.08107993751764297,
0.16482770442962646,
-0.33026885986328125,
-0.03252502158284187,
0.043025046586990356,
0.07917580008506775,
0.007651626598089933,
0.04410989582538605,
0.02256745845079422,
-0.005074178334325552,
0.07099206745624542,
0.10623805969953537,
-0.040707916021347046,
-0.06479412317276001,
-0.06923284381628036,
-0.14817705750465393,
-0.07638663798570633,
0.15456447005271912,
-0.04039309546351433,
-0.04412548616528511,
-0.013244472444057465,
-0.11783333867788315,
-0.10843899101018906,
-0.026501724496483803,
-0.022403743118047714,
-0.04290897771716118,
-0.008510745130479336,
-0.059366755187511444,
-0.11719034612178802,
-0.09501921385526657,
-0.03938255086541176,
-0.12731894850730896,
0.2657167613506317,
0.07726624608039856,
0.07291220873594284,
-0.0647064819931984,
0.11503525078296661,
-0.039391420781612396,
-0.10996776819229126,
0.0413028821349144,
-0.08548536151647568,
0.04181083291769028,
0.02923857606947422,
-0.04684855043888092,
-0.10894136130809784,
0.01638965681195259,
0.18418234586715698,
0.03680229187011719,
-0.0025277570821344852,
0.015435585752129555,
0.09306932985782623,
-0.06653094291687012,
0.11048895120620728,
-0.14657223224639893,
0.08851312100887299,
0.09607412666082382,
-0.03057718090713024,
0.09408164024353027,
-0.035660915076732635,
-0.10875578969717026,
-0.03930245339870453,
0.05849853530526161,
0.03672194853425026,
0.07933143526315689,
0.10818227380514145,
-0.0520324781537056,
-0.07329444587230682,
0.05881008505821228,
-0.06994661688804626,
-0.03425099700689316,
-0.057110246270895004,
-0.03589564934372902,
0.09547162055969238,
0.15896624326705933,
0.006290837656706572,
-0.0848042443394661,
0.12792715430259705,
-0.061743248254060745,
-0.012486763298511505,
-0.08006371557712555,
-0.12531565129756927,
0.01626652665436268,
-0.0997585877776146,
0.03456380218267441,
-0.17795707285404205,
-0.15424871444702148,
0.0799933671951294,
0.08824366331100464,
-0.00484111625701189,
-0.1086415946483612,
0.12602800130844116,
-0.06171044707298279,
-0.0006329542375169694,
-0.050458408892154694,
0.05031885951757431,
-0.03125527501106262,
0.1446973979473114,
0.03393490985035896,
0.05879812315106392,
-0.0888652428984642,
0.047917574644088745,
-0.08407169580459595,
0.014158833771944046,
-0.2154661864042282,
-0.016207555308938026,
-0.07673046737909317,
0.004604276269674301,
-0.09683819860219955,
-0.12750868499279022,
-0.010089891031384468,
0.015179441310465336,
0.04432782530784607,
0.10365182161331177,
-0.015436475165188313,
-0.05618944764137268,
0.16164223849773407,
-0.1134154349565506,
-0.09635602682828903,
0.11593380570411682,
0.04630395770072937,
0.02604144811630249,
0.03380616381764412,
0.014081056229770184,
0.12726300954818726,
-0.22925955057144165,
0.05504908040165901,
0.10097654163837433,
-0.10169664770364761,
-0.09169822931289673,
0.05872407555580139,
0.025973767042160034,
-0.1505139023065567,
0.053433503955602646,
-0.11742625385522842,
0.12143799662590027,
-0.04339009150862694,
-0.04283304512500763,
-0.07534492015838623,
-0.07705473899841309,
0.09600193798542023,
0.026754597201943398,
0.06212633475661278,
0.00592305650934577,
-0.12461017817258835,
-0.050858210772275925,
0.07666458189487457,
0.0015079518780112267,
0.022691117599606514,
-0.07343702018260956,
0.1389814168214798,
-0.06391137093305588,
-0.007512453943490982,
-0.14978381991386414,
-0.07559581845998764,
0.009914495050907135,
0.02293655276298523,
0.020027369260787964,
0.006870395969599485,
0.06925185024738312,
0.025099623948335648,
-0.011468136683106422,
-0.03183057904243469,
0.027634453028440475,
-0.021724915131926537,
-0.01371126901358366,
-0.059290263801813126,
-0.047101691365242004,
-0.0135359400883317,
0.08284508436918259,
0.025222355499863625,
0.03563215583562851,
-0.1093737855553627,
0.11530938744544983,
-0.024868711829185486,
0.0047979773953557014,
0.000699468539096415,
0.005651173647493124,
-0.007709757424890995,
-0.05703357979655266,
0.08145398646593094,
0.04745521768927574,
-0.06868872791528702,
0.07322482019662857,
-0.09624803066253662,
0.20283524692058563,
0.1926385462284088,
-0.09020739793777466,
-0.0816517323255539,
0.11486639827489853,
-0.055067501962184906,
-0.013854299671947956,
0.004134203307330608,
-0.024729425087571144,
0.10025215893983841,
0.014522352255880833,
0.14484062790870667,
-0.04723576456308365,
-0.007977692410349846,
0.06697656214237213,
-0.06788384914398193,
-0.025940490886569023,
0.007115205284208059,
0.16094930469989777,
-0.04571156948804855,
0.1305895894765854,
0.12559746205806732,
-0.162797212600708,
0.04628986865282059,
0.0006664727116003633,
-0.04508669674396515,
-0.0034118215553462505,
0.01695287972688675,
0.01713993214070797,
0.07575762271881104,
-0.04952302202582359,
0.04508860409259796,
0.0996604859828949,
-0.08091916888952255,
0.04017706215381622,
-0.1638311892747879,
-0.03979520499706268,
-0.00605264026671648,
-0.011969033628702164,
-0.04316774383187294,
0.09087444096803665,
0.02465175837278366,
0.09381710737943649,
-0.008265651762485504,
-0.025915803387761116,
0.0912117063999176,
0.061796970665454865,
-0.05627238005399704,
0.1701963096857071,
-0.1349296271800995,
-0.32619088888168335,
-0.162458136677742,
-0.14080603420734406,
-0.031727567315101624,
0.005881402175873518,
0.024991311132907867,
-0.05442792549729347,
-0.06271519511938095,
0.03829333931207657,
0.10855185240507126,
-0.09403391927480698,
0.013788714073598385,
-0.1320030838251114,
-0.003180741099640727,
0.08893822133541107,
-0.08429229259490967,
-0.026667272672057152,
-0.0001421155029674992,
-0.07048414647579193,
0.11291669309139252,
0.019244832918047905,
0.03792713209986687,
0.12068110704421997,
-0.0023592032957822084,
0.0023309465032070875,
-0.0000017408062831236748,
0.18769989907741547,
-0.05256221815943718,
0.0077308048494160175,
0.2457973212003708,
-0.05334726348519325,
0.07096805423498154,
0.12534061074256897,
0.041481390595436096,
-0.008301777765154839,
0.006483882199972868,
-0.027170494198799133,
-0.06308729946613312,
-0.21324780583381653,
-0.09330584853887558,
-0.053970035165548325,
0.012280423194169998,
0.10733915865421295,
0.02037738636136055,
0.0906275063753128,
0.13899274170398712,
-0.05208353325724602,
0.05063192918896675,
-0.045498162508010864,
0.09099452197551727,
0.15383732318878174,
-0.025605499744415283,
0.14069367945194244,
-0.006138592027127743,
-0.08080301433801651,
0.04352416470646858,
0.03152098134160042,
0.11608043313026428,
-0.03875846043229103,
-0.021847836673259735,
0.06088601052761078,
0.24852080643177032,
0.08788658678531647,
0.0929141640663147,
0.04080480709671974,
-0.018195273354649544,
-0.0027580272872000933,
-0.02777380682528019,
-0.07130872458219528,
-0.011251411400735378,
0.023228103294968605,
-0.03248956799507141,
-0.036773014813661575,
-0.021571343764662743,
-0.022595994174480438,
0.18368420004844666,
-0.010346321389079094,
-0.3315461277961731,
-0.060537826269865036,
-0.022582123056054115,
-0.019394084811210632,
-0.09090787917375565,
0.002448796294629574,
-0.06454715132713318,
-0.13057027757167816,
0.06458015739917755,
-0.15372104942798615,
0.06109784170985222,
0.005501987878233194,
-0.008716944605112076,
0.05306391045451164,
0.14628197252750397,
0.04541506990790367,
0.05431433022022247,
-0.25660017132759094,
0.23301421105861664,
0.009781678207218647,
0.021065598353743553,
-0.0684749186038971,
0.051514796912670135,
0.026074321940541267,
0.07352263480424881,
0.13383226096630096,
-0.012564352713525295,
0.04621337354183197,
-0.08958353847265244,
-0.08060203492641449,
0.03521162271499634,
0.03831690177321434,
0.005981093272566795,
0.02121785469353199,
-0.039927683770656586,
-0.015152021311223507,
0.016982166096568108,
-0.019906407222151756,
-0.08082354813814163,
-0.10623360425233841,
0.09511417150497437,
-0.027893492951989174,
-0.04499560222029686,
-0.06438307464122772,
-0.09044740349054337,
-0.10740919411182404,
0.24000629782676697,
-0.033898208290338516,
-0.11937049776315689,
-0.10015953332185745,
0.08877947181463242,
0.14215654134750366,
-0.0961969867348671,
0.09894463419914246,
-0.10649832338094711,
0.02079084701836109,
-0.034283578395843506,
-0.1692507117986679,
0.05762019753456116,
-0.12620116770267487,
-0.05143974348902702,
-0.029676593840122223,
0.14964719116687775,
-0.06976395845413208,
0.056034717708826065,
-0.036801282316446304,
-0.0012755183270201087,
-0.04264555498957634,
-0.05484934523701668,
-0.0046482989564538,
0.009205038659274578,
0.045745138078927994,
0.036300867795944214,
-0.10800941288471222,
0.0016236546216532588,
-0.06447301059961319,
0.018950235098600388,
0.19598591327667236,
0.10270512849092484,
-0.09067484736442566,
0.06697036325931549,
0.03684196248650551,
-0.008092126809060574,
-0.2725757956504822,
-0.0913526639342308,
0.07489234954118729,
-0.019145026803016663,
-0.008153917267918587,
-0.1833561807870865,
0.08913016319274902,
0.05842849239706993,
-0.04262806847691536,
0.06499095261096954,
-0.27056387066841125,
-0.08097264170646667,
0.19111594557762146,
0.08580831438302994,
0.1996447890996933,
-0.1221776083111763,
-0.033541690558195114,
0.015542782843112946,
-0.10408985614776611,
0.1865168958902359,
-0.03751874342560768,
0.07945820689201355,
-0.00728766480460763,
0.1196252703666687,
0.030244778841733932,
-0.07823465764522552,
0.08361469209194183,
-0.10712704062461853,
-0.04619765654206276,
-0.06703776866197586,
0.015887921676039696,
0.013273198157548904,
0.011411425657570362,
0.052409827709198,
-0.0005458685918711126,
0.04182221367955208,
0.0009514447301626205,
-0.01893541030585766,
-0.12027182430028915,
0.1177477315068245,
-0.005223815329372883,
-0.053452055901288986,
-0.021768653765320778,
-0.014278455637395382,
-0.011333980597555637,
-0.04337141662836075,
0.08424604684114456,
0.05301794409751892,
0.11428665369749069,
0.08247069269418716,
0.0004499956557992846,
0.013208441436290741,
-0.18477016687393188,
-0.021361222490668297,
-0.054812487214803696,
0.09396827220916748,
-0.0906544178724289,
-0.005029649008065462,
0.08561430871486664,
0.007212705910205841,
0.03249979764223099,
0.04723208025097847,
-0.059065837413072586,
-0.03446762263774872,
0.07521454989910126,
-0.21798987686634064,
-0.05139733850955963,
-0.028260238468647003,
-0.017093488946557045,
-0.025779038667678833,
-0.01807737909257412,
0.1429229974746704,
-0.05779099836945534,
-0.044948775321245193,
0.044200796633958817,
-0.002512510633096099,
-0.08195210248231888,
0.138118714094162,
0.05515293776988983,
0.038740601390600204,
-0.11932408809661865,
0.05782973766326904,
0.018753869459033012,
-0.14707311987876892,
-0.028165483847260475,
0.05418052896857262,
-0.10167160630226135,
-0.09754542261362076,
0.0030631956178694963,
-0.08408915251493454,
-0.07244172692298889,
-0.030607379972934723,
-0.04825650528073311,
-0.07035932689905167,
0.012759895995259285,
0.07344652712345123,
0.07801904529333115,
-0.01098592672497034,
-0.04841943830251694,
-0.02421583980321884,
-0.09121820330619812,
0.05204320326447487,
0.09536030888557434,
0.06857980042695999,
-0.18237604200839996,
0.14043356478214264,
0.05666116997599602,
0.13477842509746552,
-0.054584961384534836,
0.031671833246946335,
-0.07891470193862915,
0.01318338606506586,
-0.05122319608926773,
-0.01628074236214161,
-0.03546946868300438,
-0.048792824149131775,
0.009117413312196732,
-0.06145193427801132,
-0.038771890103816986,
0.02359626814723015,
-0.11202060431241989,
-0.034593597054481506,
0.031184330582618713,
-0.044294361025094986,
-0.026892026886343956,
-0.04329489544034004,
0.07072402536869049,
-0.05421334505081177,
0.06633179634809494,
0.14562730491161346,
-0.04767075926065445,
0.07815447449684143,
-0.0679725855588913,
-0.07533921301364899,
0.08751542866230011,
0.039066072553396225,
0.018515482544898987,
-0.05882979556918144,
0.04992919787764549,
0.005617138929665089,
0.03301473334431648,
-0.017899001017212868,
0.17631688714027405,
-0.14653271436691284,
-0.025029923766851425,
0.02722560614347458,
-0.03468255326151848,
-0.07178835570812225,
-0.020898040384054184,
0.06957611441612244,
0.06273820251226425,
0.1685112863779068,
-0.07552849501371384,
0.09238986670970917,
-0.0940130278468132,
0.05205216258764267,
-0.0659991130232811,
-0.10930933803319931,
-0.011966872029006481,
0.019380604848265648,
0.03771238029003143,
-0.014180578291416168,
0.1241423562169075,
-0.0006314283236861229,
0.04862367734313011,
0.01824730448424816,
0.08200222253799438,
0.05743555724620819,
0.0010962904198095202,
0.1757693588733673,
0.036835119128227234,
0.016251662746071815,
-0.051431506872177124,
0.044476624578237534,
0.0398121252655983,
-0.07467468082904816,
0.10703623294830322,
0.08838222920894623,
0.031648360192775726,
0.045799873769283295,
0.035134900361299515,
-0.03718452528119087,
-0.10949193686246872,
-0.11502283811569214,
-0.028057552874088287,
0.1117338240146637,
0.007602033205330372,
0.1168658658862114,
0.08850247412919998,
-0.020326003432273865,
0.02568340301513672,
0.04996650293469429,
-0.06505059450864792,
-0.14317646622657776,
-0.14431841671466827,
-0.06292151659727097,
-0.12833543121814728,
0.025872033089399338,
-0.045745350420475006,
-0.04087125509977341,
0.04500914737582207,
0.027816735208034515,
-0.06639687716960907,
0.13044732809066772,
0.009682418778538704,
-0.1219620481133461,
0.02704976126551628,
0.048582352697849274,
-0.0051014963537454605,
0.013646692037582397,
-0.04890976846218109,
-0.042150817811489105,
0.05955841392278671,
0.04106643795967102,
-0.018070898950099945,
-0.02095775119960308,
0.10158484429121017,
-0.08050675690174103,
-0.09154172986745834,
-0.04500780627131462,
0.04762328043580055,
0.020092446357011795,
0.16280943155288696,
-0.032306376844644547,
0.030499540269374847,
-0.043119292706251144,
0.15001508593559265,
-0.06136726588010788,
-0.07594867050647736,
-0.16234956681728363,
0.3192359209060669,
-0.0622054822742939,
-0.05035363882780075,
0.06578896939754486,
-0.008061273954808712,
-0.10947442799806595,
0.38262471556663513,
0.2732886075973511,
0.0035098802763968706,
0.011785544455051422,
0.053880900144577026,
-0.0032774300780147314,
-0.019520418718457222,
0.13782081007957458,
0.13863138854503632,
0.1848919540643692,
-0.09072138369083405,
-0.06170383468270302,
-0.0682949349284172,
0.002853615442290902,
-0.11989426612854004,
0.010397658683359623,
0.02860061638057232,
-0.07358848303556442,
-0.007239056751132011,
0.07387576252222061,
-0.12635469436645508,
-0.022458022460341454,
-0.0531759150326252,
-0.1029239222407341,
-0.10188073664903641,
-0.022441543638706207,
0.04224837198853493,
0.011806807480752468,
0.09490207582712173,
-0.04967266321182251,
-0.019382869824767113,
0.12133435159921646,
0.009113959968090057,
-0.1599615514278412,
-0.0391787514090538,
0.1114245355129242,
0.04509381577372551,
0.15609437227249146,
-0.003597731003537774,
0.10027623921632767,
0.08035732805728912,
0.03969135135412216,
-0.08475770056247711,
0.01136697642505169,
0.014704874716699123,
-0.12668758630752563,
0.016801850870251656,
0.0855712890625,
-0.02270049788057804,
-0.07821229845285416,
-0.008843996562063694,
-0.14860501885414124,
-0.029396753758192062,
-0.12408768385648727,
-0.00780191645026207,
-0.04063650593161583,
0.05125540867447853,
-0.09878332167863846,
0.07706847041845322,
0.1789754182100296,
-0.00504289660602808,
-0.0460415855050087,
-0.1222657784819603,
0.015164786949753761,
0.09823798388242722,
-0.02741989679634571,
-0.031231936067342758,
-0.15291853249073029,
-0.05452369898557663,
-0.0650763288140297,
-0.03193523734807968,
-0.15440189838409424,
-0.00789854396134615,
-0.040728554129600525,
-0.03827577084302902,
-0.1350342184305191,
0.038973741233348846,
0.005948104429990053,
0.012428983114659786,
0.011767998337745667,
0.0967925414443016,
-0.033254168927669525,
0.04076530411839485,
-0.1896411031484604,
-0.06265117228031158
] |
null | null |
transformers
|
#Harry Potter DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
dats/DialoGPT-small-harrypotter
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Harry Potter DialoGPT Model
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null |
transformers
|
# Tony Stark DialoGPT model
Invite me to your discord server : https://discord.com/api/oauth2/authorize?client_id=885065886787063848&permissions=137439365184&scope=bot
|
{"tags": ["conversational"]}
|
text-generation
|
dattam/DialoGPT-medium-TonyStarkBot
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Tony Stark DialoGPT model
Invite me to your discord server : URL
|
[
"# Tony Stark DialoGPT model\n\nInvite me to your discord server : URL"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Tony Stark DialoGPT model\n\nInvite me to your discord server : URL"
] |
[
51,
18
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Tony Stark DialoGPT model\n\nInvite me to your discord server : URL"
] |
[
-0.04913276433944702,
0.10103454440832138,
-0.0034518828615546227,
0.07695557922124863,
0.07991280406713486,
0.001586314756423235,
0.1957370489835739,
0.1159655824303627,
0.12587615847587585,
-0.08542253822088242,
0.15123997628688812,
0.16527163982391357,
-0.03026377037167549,
0.07023753970861435,
-0.021663153544068336,
-0.2660570740699768,
0.012563617900013924,
0.058180078864097595,
-0.002127561019733548,
0.09680887311697006,
0.08462042361497879,
-0.06794270128011703,
0.10147599130868912,
-0.008150296285748482,
-0.12174602597951889,
0.041629333049058914,
0.04875412955880165,
-0.058640964329242706,
0.14447663724422455,
0.07664518058300018,
0.003913188818842173,
0.07709679007530212,
-0.037876907736063004,
-0.12298284471035004,
0.06565248221158981,
-0.0015128487721085548,
-0.019759953022003174,
0.07404828816652298,
0.026429546996951103,
-0.03592298924922943,
0.12592267990112305,
0.12921451032161713,
-0.05155117064714432,
0.09055649489164352,
-0.17119887471199036,
0.08716239780187607,
-0.03577917441725731,
0.13621927797794342,
0.04816877841949463,
0.13525351881980896,
-0.01935773529112339,
0.18370147049427032,
-0.043821781873703,
0.1024017184972763,
0.050824932754039764,
-0.3311372399330139,
-0.04546680301427841,
0.06874173134565353,
0.050864074379205704,
0.047420382499694824,
-0.010470811277627945,
0.08165755122900009,
0.028346290811896324,
-0.005843936000019312,
-0.02979034185409546,
-0.07078247517347336,
-0.16068978607654572,
0.022466519847512245,
-0.05522281304001808,
0.004544821567833424,
0.22814777493476868,
0.06601327657699585,
0.05346232280135155,
-0.01748119480907917,
-0.10096783936023712,
-0.03518268093466759,
0.01993955299258232,
-0.0693301260471344,
-0.07929957658052444,
0.09233042597770691,
-0.06907166540622711,
-0.17507801949977875,
-0.13568808138370514,
-0.06029995158314705,
-0.18516911566257477,
0.12688393890857697,
0.015614275820553303,
0.05665186047554016,
-0.1917927861213684,
0.09918348491191864,
0.013848569244146347,
-0.10582093149423599,
0.01773993857204914,
-0.10836223512887955,
0.015289191156625748,
-0.0019578859210014343,
-0.010954597033560276,
-0.03564024344086647,
0.088170126080513,
0.16917283833026886,
0.017351094633340836,
-0.01396514754742384,
-0.07115478068590164,
0.05725454166531563,
0.02082025445997715,
0.028933772817254066,
-0.07144428789615631,
-0.026324722915887833,
0.06935520470142365,
-0.07047083973884583,
0.04983246326446533,
-0.034216802567243576,
-0.1953631043434143,
-0.023687653243541718,
-0.030467398464679718,
0.03500062972307205,
0.11333801597356796,
0.12142512202262878,
-0.03795672580599785,
-0.05662330240011215,
0.19771388173103333,
0.011363874189555645,
-0.014975426718592644,
0.016862882301211357,
-0.05438860133290291,
0.05863272026181221,
0.013560158200562,
0.08489186316728592,
-0.10396450757980347,
-0.04506229981780052,
-0.06493380665779114,
-0.032778896391391754,
-0.029387135058641434,
-0.005265084095299244,
0.04458068311214447,
0.0463031530380249,
-0.01480488944798708,
-0.13120944797992706,
-0.14589272439479828,
0.012228225357830524,
-0.02182854898273945,
-0.017210444435477257,
-0.12429826706647873,
-0.07527327537536621,
0.02127516083419323,
0.0006400791462510824,
-0.0584806427359581,
-0.03489622473716736,
-0.04944680631160736,
0.038221728056669235,
-0.010394636541604996,
0.09887802600860596,
-0.1459273248910904,
0.03435346856713295,
-0.09162057936191559,
-0.05835661292076111,
-0.08861783891916275,
0.08334146440029144,
-0.014067187905311584,
0.07404490560293198,
-0.021585777401924133,
-0.003363128285855055,
-0.10966597497463226,
0.045390062034130096,
-0.05966135486960411,
0.2781132459640503,
-0.08290033042430878,
-0.057304080575704575,
0.2638724744319916,
-0.060928259044885635,
-0.1821022480726242,
0.16662298142910004,
-0.008946032263338566,
-0.005954340565949678,
0.14981356263160706,
0.14346501231193542,
-0.04023527726531029,
-0.023484209552407265,
0.04877162352204323,
0.08557021617889404,
-0.1579575538635254,
-0.030614934861660004,
0.03929059952497482,
-0.005173931363970041,
0.004317561164498329,
-0.01499435305595398,
0.1270931214094162,
0.08814084529876709,
-0.03571055829524994,
-0.02453755959868431,
-0.013124560937285423,
-0.048528384417295456,
0.05278847739100456,
0.0008406239212490618,
0.0929894670844078,
-0.03809645399451256,
-0.0715087428689003,
-0.10751519352197647,
0.04492228105664253,
0.006777444388717413,
0.04542054235935211,
-0.09737721085548401,
-0.018511567264795303,
0.0495808869600296,
0.026284847408533096,
-0.12502357363700867,
-0.05484996363520622,
-0.0713200643658638,
0.2684020400047302,
0.12736864387989044,
0.20710356533527374,
0.05915243178606033,
-0.09009262919425964,
-0.06113234534859657,
0.008845776319503784,
0.14400777220726013,
-0.010292747057974339,
-0.03912319988012314,
-0.11930812150239944,
0.05187176913022995,
-0.046842288225889206,
0.07327449321746826,
-0.058993659913539886,
0.021823279559612274,
0.023674096912145615,
0.12715588510036469,
-0.010422535240650177,
0.01907137967646122,
0.058512113988399506,
-0.02205069735646248,
-0.04249472916126251,
-0.03742144629359245,
0.08099362254142761,
-0.04163198173046112,
-0.12935762107372284,
0.1434331238269806,
-0.04922012239694595,
0.11412830650806427,
0.19548824429512024,
-0.22574472427368164,
0.014990895986557007,
-0.03922951966524124,
-0.033795833587646484,
-0.0014067946467548609,
0.06082368269562721,
-0.02204897254705429,
0.1716044843196869,
0.021844305098056793,
0.11729089170694351,
-0.001726910239085555,
-0.010230908170342445,
-0.08177794516086578,
-0.0471770353615284,
0.02652778849005699,
0.07139106839895248,
0.09761107712984085,
-0.22716030478477478,
0.12031558901071548,
0.05453943461179733,
0.06403737515211105,
0.12817047536373138,
0.05391087010502815,
0.03464166447520256,
0.05387984216213226,
-0.05874378979206085,
-0.03753972053527832,
-0.05153808370232582,
-0.21052581071853638,
0.002584606409072876,
0.04934725537896156,
-0.00033662395435385406,
0.07387462258338928,
-0.11224797368049622,
-0.0751492902636528,
-0.0063636647537350655,
-0.03373555839061737,
-0.01363337691873312,
0.09389980137348175,
-0.01222799438983202,
0.10605878382921219,
0.0014111868804320693,
-0.04464396834373474,
0.0660063698887825,
-0.011429071426391602,
-0.08537252992391586,
0.1286781281232834,
-0.1172538548707962,
-0.22397908568382263,
-0.06229785457253456,
-0.11421699821949005,
-0.06647010147571564,
0.06824793666601181,
0.08840318024158478,
-0.14961916208267212,
0.019785847514867783,
-0.003034045221284032,
0.05372696742415428,
-0.08054634183645248,
-0.019449753686785698,
0.0350365974009037,
-0.002639994490891695,
-0.10592810809612274,
-0.09900151193141937,
-0.056751180440187454,
-0.044288139790296555,
-0.07771645486354828,
0.12084978073835373,
-0.14283069968223572,
0.03760913386940956,
0.17729566991329193,
0.07530874758958817,
0.04516172781586647,
-0.049833014607429504,
0.20240408182144165,
-0.09384363144636154,
0.07000727206468582,
0.2345801293849945,
-0.010248800739645958,
0.06687179952859879,
0.111665740609169,
0.03393840044736862,
-0.0523768812417984,
0.05329778790473938,
-0.022247837856411934,
-0.025916555896401405,
-0.22171756625175476,
-0.11096640676259995,
-0.07224725931882858,
0.09399231523275375,
0.03350551053881645,
0.04721982404589653,
0.15638533234596252,
0.10326822847127914,
-0.06073898822069168,
-0.07240316271781921,
0.04719820246100426,
0.07593342661857605,
0.2492549568414688,
-0.0679607093334198,
0.10678140819072723,
-0.04052402079105377,
-0.11044079065322876,
0.09888716787099838,
0.05900479108095169,
-0.0589987076818943,
0.10587594658136368,
0.06635145843029022,
0.009211200289428234,
0.03249173238873482,
0.07491392642259598,
0.026858558878302574,
0.055578701198101044,
-0.058528777211904526,
-0.02535959519445896,
-0.02328065037727356,
-0.06286045908927917,
0.025889163836836815,
0.06519021838903427,
-0.1101287305355072,
0.020040133967995644,
0.03306316211819649,
0.0634840577840805,
0.07947691529989243,
0.08421620726585388,
-0.1697426587343216,
-0.06918442249298096,
0.05470831319689751,
-0.05055370554327965,
-0.06071828678250313,
0.04242571443319321,
0.005963440518826246,
-0.10634467005729675,
0.05918028578162193,
0.0008659144514240324,
0.13367968797683716,
-0.07398778945207596,
0.09341342002153397,
-0.11291851103305817,
-0.06211704760789871,
0.007181418128311634,
0.09183549880981445,
-0.2457418590784073,
0.2040177434682846,
-0.0029445805121213198,
-0.03220691904425621,
-0.1145714670419693,
-0.04418490082025528,
0.0027442758437246084,
0.16848468780517578,
0.11060875654220581,
-0.022867780178785324,
0.10267283022403717,
-0.005044218618422747,
-0.09139399975538254,
0.04586329683661461,
0.030532389879226685,
-0.0688011422753334,
-0.033932268619537354,
-0.005875489674508572,
-0.007586810737848282,
-0.003681998234242201,
0.032789602875709534,
-0.08351823687553406,
-0.14351029694080353,
0.04070905223488808,
0.13304676115512848,
0.14812971651554108,
0.02776067890226841,
-0.023786084726452827,
-0.0654664933681488,
0.2674393057823181,
0.00845301989465952,
-0.07445914298295975,
-0.07021625339984894,
0.03536356985569,
0.014671845361590385,
-0.0713471919298172,
-0.03705105185508728,
-0.03576311841607094,
0.021689990535378456,
-0.10280688107013702,
-0.14491432905197144,
0.12975706160068512,
-0.08160701394081116,
-0.047105565667152405,
-0.04368089884519577,
0.19221442937850952,
0.025409264490008354,
0.037432365119457245,
0.04438107833266258,
-0.02585754543542862,
-0.12831871211528778,
-0.10921284556388855,
0.006845587864518166,
-0.05986380949616432,
0.016613507643342018,
-0.0001735863770591095,
-0.00631907070055604,
0.003351544728502631,
-0.07818938791751862,
-0.023919906467199326,
0.2936921715736389,
0.13218310475349426,
-0.04698365181684494,
0.0955413207411766,
0.0709419846534729,
-0.006181638687849045,
-0.21282704174518585,
-0.11094538867473602,
-0.11364971101284027,
-0.08803628385066986,
-0.03235675394535065,
-0.16569656133651733,
0.08365648239850998,
-0.03124341554939747,
-0.025343218818306923,
0.04897942766547203,
-0.1759384423494339,
-0.10595384985208511,
0.12774664163589478,
-0.048452746123075485,
0.37320995330810547,
-0.08759602159261703,
-0.058890119194984436,
-0.052356887608766556,
-0.2106584757566452,
0.14972414076328278,
-0.03786823898553848,
0.08095194399356842,
-0.00792703777551651,
0.14108529686927795,
0.019305553287267685,
-0.008351313881576061,
0.05939493328332901,
0.03659718111157417,
-0.044435691088438034,
-0.07640649378299713,
-0.09126053750514984,
0.009081925265491009,
0.018904702737927437,
0.014534195885062218,
-0.02599552646279335,
-0.00038076916825957596,
-0.1707528978586197,
-0.04311259463429451,
-0.10553877800703049,
0.04688164219260216,
0.03964347019791603,
-0.05850493907928467,
0.010119176469743252,
-0.025861086323857307,
-0.039849478751420975,
0.015032577328383923,
0.16547006368637085,
-0.13543960452079773,
0.16789421439170837,
0.12367893755435944,
0.19723790884017944,
-0.17916002869606018,
0.012500514276325703,
-0.015787016600370407,
-0.07933204621076584,
0.04670977219939232,
-0.09279969334602356,
0.011235086247324944,
0.07821851223707199,
-0.03619533032178879,
0.028456175699830055,
0.08415334671735764,
-0.01058133039623499,
0.04960360750555992,
0.10890974849462509,
-0.23826134204864502,
-0.11931167542934418,
-0.04390743747353554,
-0.006223420146852732,
0.05156569927930832,
0.10045663267374039,
0.19017314910888672,
-0.0016159386141225696,
-0.057254642248153687,
0.04597685486078262,
0.001379661145620048,
-0.05520787462592125,
0.008515817113220692,
0.05615720525383949,
-0.0034955316223204136,
-0.12206467986106873,
0.1060485690832138,
-0.00553317554295063,
-0.1519179344177246,
-0.021584251895546913,
0.1752655804157257,
-0.11751887202262878,
-0.14945657551288605,
-0.11122976243495941,
0.007181407883763313,
-0.1467965543270111,
-0.007541518658399582,
-0.02556113339960575,
-0.08098896592855453,
0.047239143401384354,
0.03830200061202049,
0.031078200787305832,
0.05081445723772049,
-0.06709616631269455,
-0.009026014246046543,
0.018756356090307236,
-0.022191045805811882,
0.02605695091187954,
-0.023875020444393158,
-0.06445637345314026,
0.07829716056585312,
-0.04480908066034317,
0.14580999314785004,
-0.07229242473840714,
-0.0525130070745945,
-0.13343089818954468,
0.027072621509432793,
-0.07289883494377136,
-0.13072149455547333,
-0.13731491565704346,
-0.04124274477362633,
-0.028039462864398956,
-0.07809392362833023,
-0.025918634608387947,
-0.02618008852005005,
-0.08203708380460739,
0.014551232568919659,
-0.007818926125764847,
0.0005044479621574283,
-0.13964393734931946,
0.04176631197333336,
0.06665758043527603,
0.014478787779808044,
0.171739861369133,
0.12282276153564453,
-0.12004092335700989,
0.02226387709379196,
-0.15898486971855164,
-0.06871820241212845,
0.05891735851764679,
0.027368688955903053,
0.042154841125011444,
0.12492060661315918,
-0.017921946942806244,
0.03940749168395996,
0.08239352703094482,
0.04491380974650383,
0.061374835669994354,
-0.04858120158314705,
0.04212681204080582,
0.05710386857390404,
-0.06421846151351929,
-0.047834329307079315,
-0.03316950425505638,
0.11205755174160004,
-0.005837763659656048,
0.06665726751089096,
-0.04725039750337601,
0.07704182714223862,
-0.14824090898036957,
0.0707743912935257,
0.03342553973197937,
-0.12036976963281631,
-0.04608243703842163,
-0.09426543861627579,
0.06069089472293854,
-0.017586925998330116,
0.13915611803531647,
-0.04983428493142128,
0.023603711277246475,
0.06716915220022202,
0.06002137437462807,
0.00798580702394247,
-0.030277395620942116,
0.17839771509170532,
0.06154261529445648,
-0.05679165944457054,
-0.055208995938301086,
0.04676146060228348,
-0.006191328167915344,
0.041893862187862396,
0.16929243505001068,
-0.010810337029397488,
0.013502624817192554,
0.05050421506166458,
0.019582705572247505,
0.08113688230514526,
-0.11439234763383865,
-0.2538667917251587,
-0.040993981063365936,
0.0081348717212677,
-0.06566158682107925,
0.04172976315021515,
0.10746479034423828,
0.008536898531019688,
-0.025602389127016068,
0.016347257420420647,
-0.014645264483988285,
-0.16945771872997284,
-0.20291396975517273,
-0.06497173756361008,
-0.1567414104938507,
0.03113565780222416,
-0.11967025697231293,
0.057108715176582336,
-0.03879450261592865,
0.08461342006921768,
-0.07759225368499756,
0.09613309800624847,
0.04715879634022713,
-0.07910283654928207,
0.040570855140686035,
-0.016940202564001083,
0.055097442120313644,
-0.005708822049200535,
0.04172366112470627,
-0.039192069321870804,
0.026196792721748352,
0.006248108576983213,
0.05161571130156517,
-0.049300700426101685,
0.02637932077050209,
-0.1297864466905594,
-0.09096317738294601,
-0.06622226536273956,
0.08828769624233246,
0.012720560654997826,
0.1939985454082489,
-0.00033568008802831173,
0.014312117360532284,
0.04129902273416519,
0.258083701133728,
-0.10358802229166031,
-0.08888968080282211,
-0.07257850468158722,
0.27834224700927734,
-0.02641378343105316,
0.05733523890376091,
-0.06770775467157364,
-0.012814399786293507,
-0.07266691327095032,
0.3412794768810272,
0.33238276839256287,
-0.15226049721240997,
0.02982320822775364,
-0.0273723267018795,
0.04979298263788223,
0.05670030042529106,
0.038789719343185425,
0.05772608146071434,
0.13569901883602142,
-0.08881046622991562,
0.015839776024222374,
0.014341788366436958,
-0.009600888937711716,
-0.0690828189253807,
-0.028300132602453232,
0.036617666482925415,
-0.046318329870700836,
-0.005801520310342312,
0.12276491522789001,
-0.22633184492588043,
0.05265573412179947,
-0.15451468527317047,
-0.14644861221313477,
-0.015542524866759777,
0.012081081047654152,
0.08438190817832947,
0.04303101450204849,
0.10617990046739578,
0.025264719501137733,
-0.02518988773226738,
0.09714563935995102,
0.01755278743803501,
-0.21161498129367828,
0.022421367466449738,
0.11463943868875504,
-0.07921139150857925,
-0.04541471228003502,
-0.026904450729489326,
0.09271667897701263,
0.08462966978549957,
0.03620127588510513,
-0.08245555311441422,
0.040143635123968124,
-0.00436210073530674,
-0.07702565938234329,
-0.03954019770026207,
-0.028686147183179855,
0.03695978596806526,
-0.0690162181854248,
0.0626099556684494,
-0.1306414157152176,
0.05318818241357803,
0.05848170071840286,
0.01093846932053566,
-0.049211304634809494,
0.08836528658866882,
-0.06857098639011383,
0.1118321493268013,
0.06510411947965622,
-0.03954044729471207,
-0.040829889476299286,
0.010664035566151142,
-0.05234770476818085,
0.006099441088736057,
-0.017677338793873787,
-0.13290134072303772,
-0.13083159923553467,
-0.07238975912332535,
0.043817032128572464,
0.033727142959833145,
-0.16381485760211945,
0.009928726591169834,
-0.16593697667121887,
0.0097507881000638,
-0.047109466046094894,
0.07061037421226501,
0.1418938934803009,
0.017126360908150673,
0.009580796584486961,
-0.05264180153608322,
0.047690942883491516,
0.07571637630462646,
-0.1734759658575058,
-0.06241032853722572
] |
null | null |
transformers
|
BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus along with selected pubtator annotations from LitCOVID dataset
This was fine-tuned in order to use it in a datummd/bionlp system which is available at: https://github.com/datummd/bionlp
|
{"language": ["en"], "license": "apache-2.0", "tags": ["BioBERT", "Diseases", "NER"], "datasets": ["ncbi_disease", "BC5CDR-diseases", "LitCOVID-pubtator"]}
|
token-classification
|
datummd/NCBI_BC5CDR_disease
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"BioBERT",
"Diseases",
"NER",
"en",
"dataset:ncbi_disease",
"dataset:BC5CDR-diseases",
"dataset:LitCOVID-pubtator",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #bert #token-classification #BioBERT #Diseases #NER #en #dataset-ncbi_disease #dataset-BC5CDR-diseases #dataset-LitCOVID-pubtator #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus along with selected pubtator annotations from LitCOVID dataset
This was fine-tuned in order to use it in a datummd/bionlp system which is available at: URL
|
[] |
[
"TAGS\n#transformers #pytorch #bert #token-classification #BioBERT #Diseases #NER #en #dataset-ncbi_disease #dataset-BC5CDR-diseases #dataset-LitCOVID-pubtator #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
93
] |
[
"passage: TAGS\n#transformers #pytorch #bert #token-classification #BioBERT #Diseases #NER #en #dataset-ncbi_disease #dataset-BC5CDR-diseases #dataset-LitCOVID-pubtator #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.06481660902500153,
0.22593502700328827,
-0.00697000976651907,
0.03854062035679817,
0.047554221004247665,
0.027450697496533394,
0.06969958543777466,
0.11724153161048889,
0.011449051089584827,
0.03196459636092186,
0.1833786517381668,
0.14121347665786743,
-0.010730457492172718,
0.12650014460086823,
-0.062322478741407394,
-0.11717434227466583,
0.08063479512929916,
0.07848140597343445,
-0.030620919540524483,
0.08871813118457794,
0.0676104873418808,
-0.04639432951807976,
0.05874566361308098,
0.012004975229501724,
-0.06662805378437042,
0.013482661917805672,
0.052052587270736694,
-0.04035603255033493,
0.10846849530935287,
-0.01600230298936367,
0.10329698771238327,
0.03185246139764786,
0.032525788992643356,
-0.1475883424282074,
0.024846946820616722,
0.02725968137383461,
-0.04942495748400688,
0.11627580970525742,
0.012097381986677647,
-0.034088391810655594,
0.020533068105578423,
-0.04348805546760559,
0.023462070152163506,
0.029946789145469666,
-0.06355514377355576,
-0.20724701881408691,
-0.05940425023436546,
0.14363925158977509,
-0.005783408414572477,
0.028302237391471863,
0.03583166375756264,
0.1973419189453125,
-0.08403164893388748,
0.06098627671599388,
0.15938131511211395,
-0.2582249343395233,
0.008822806179523468,
0.07344484329223633,
0.0422646664083004,
-0.004112840164452791,
-0.056796181946992874,
0.02646947093307972,
0.04958225414156914,
-0.009677762165665627,
0.03166957572102547,
-0.037365008145570755,
-0.06161363422870636,
0.03939307853579521,
-0.09723585844039917,
-0.006415930110961199,
0.18421147763729095,
-0.0031177133787423372,
0.06686175614595413,
0.048472095280885696,
-0.05852794274687767,
-0.028003139421343803,
0.01751401461660862,
-0.010824554599821568,
-0.010697868652641773,
0.0027881492860615253,
0.03534146025776863,
0.042626675218343735,
-0.0608169287443161,
-0.03827326372265816,
-0.15637965500354767,
0.05496443435549736,
0.0006254983018152416,
0.06512071937322617,
-0.10482107847929001,
0.022111423313617706,
0.0511276051402092,
-0.07125881314277649,
-0.0030743193347007036,
-0.05141270533204079,
-0.042232103645801544,
-0.00961518008261919,
-0.010906992480158806,
0.17386822402477264,
0.15722578763961792,
0.2586427330970764,
0.056271880865097046,
-0.035402245819568634,
-0.04919182509183884,
0.06267542392015457,
0.0125082703307271,
-0.07765593379735947,
-0.09898219257593155,
-0.05423508957028389,
0.11721478402614594,
-0.017195846885442734,
0.052717890590429306,
0.0007543053943663836,
-0.08927441388368607,
-0.03968740627169609,
0.0682661235332489,
0.08011094480752945,
0.027257703244686127,
0.004595928359776735,
-0.07609426975250244,
-0.011708688922226429,
0.18555080890655518,
-0.012674388475716114,
0.0021400651894509792,
0.07194899767637253,
0.018368201330304146,
0.0666709914803505,
0.04937794432044029,
-0.0009455844992771745,
0.014534620568156242,
0.10030822455883026,
-0.12226440757513046,
-0.09227515012025833,
0.010409302078187466,
-0.05302255600690842,
0.1099400743842125,
-0.09015016257762909,
0.03560139611363411,
-0.10456731170415878,
-0.15261231362819672,
0.06318598985671997,
0.018079476431012154,
-0.011707285419106483,
-0.10635796934366226,
0.012037938460707664,
-0.017133448272943497,
0.030070018023252487,
-0.0681963711977005,
0.0030939197167754173,
-0.06870654225349426,
0.030502166599035263,
-0.09666455537080765,
0.07482640445232391,
-0.18099907040596008,
0.007988686673343182,
-0.10109289735555649,
0.0254572294652462,
-0.003874225076287985,
-0.07910209894180298,
-0.1421077400445938,
0.04117080941796303,
-0.09736624360084534,
-0.008270853199064732,
0.02212923765182495,
-0.05880896747112274,
0.03847934678196907,
0.11988036334514618,
-0.12044307589530945,
-0.08626191318035126,
0.1645316332578659,
-0.05692020058631897,
-0.15211006999015808,
0.08063197135925293,
-0.005260646343231201,
-0.013994033448398113,
0.0533289760351181,
0.1522383689880371,
-0.007713554427027702,
-0.0799984410405159,
-0.043252021074295044,
0.04704827070236206,
-0.08090481162071228,
-0.1589575856924057,
0.05885383114218712,
0.004573647864162922,
-0.08549430966377258,
0.024604326114058495,
0.013815105892717838,
0.10306315869092941,
-0.07055912911891937,
-0.05725608021020889,
-0.03803001716732979,
-0.09019743651151657,
0.07248842716217041,
-0.004993806593120098,
0.024912098422646523,
-0.03732065483927727,
0.027957994490861893,
0.05518919974565506,
0.07677178829908371,
0.013029960915446281,
0.04587073624134064,
-0.07915782183408737,
0.020002344623208046,
-0.04656665027141571,
0.017833581194281578,
-0.11476805806159973,
-0.10463433712720871,
0.023403022438287735,
-0.040916942059993744,
-0.011554649099707603,
-0.0032504755072295666,
0.03621701896190643,
-0.023192550987005234,
-0.03273412212729454,
0.023942571133375168,
0.12427706271409988,
0.06670500338077545,
-0.04351416975259781,
-0.22058121860027313,
0.056485366076231,
-0.0770583376288414,
0.06944442540407181,
-0.09935174882411957,
0.008459541946649551,
-0.0019508620025590062,
0.14397834241390228,
-0.017655255272984505,
0.013089530169963837,
0.022568166255950928,
-0.02367006056010723,
-0.07335805892944336,
0.028798390179872513,
0.0798523873090744,
-0.021094270050525665,
-0.1400001347064972,
0.10843666642904282,
0.023090042173862457,
0.19521977007389069,
0.11686502397060394,
-0.04015224426984787,
0.054087284952402115,
-0.023831335827708244,
-0.025582505390048027,
-0.050221722573041916,
0.04059672728180885,
-0.02061634138226509,
-0.013137632980942726,
0.04539218544960022,
0.09146985411643982,
-0.02638952247798443,
-0.04439792037010193,
0.030335059389472008,
-0.01741096004843712,
-0.0283009335398674,
0.08385463804006577,
0.15811675786972046,
-0.23685024678707123,
0.161501944065094,
0.21254587173461914,
-0.0735163688659668,
0.06363028287887573,
-0.008482709527015686,
-0.02609189599752426,
-0.01592874899506569,
-0.09737088531255722,
0.031056290492415428,
0.113024041056633,
-0.08556975424289703,
0.0659104734659195,
0.08820271492004395,
-0.00871248822659254,
0.007244706153869629,
-0.04312344640493393,
-0.051813382655382156,
-0.04873604699969292,
-0.008753119967877865,
-0.08108388632535934,
0.07410386949777603,
-0.0008797034388408065,
0.1332666426897049,
-0.007489977404475212,
-0.14788290858268738,
0.08630318939685822,
0.039639368653297424,
-0.09986311942338943,
0.15034927427768707,
-0.14288119971752167,
-0.22468671202659607,
-0.06651517748832703,
-0.10903843492269516,
-0.05601462721824646,
-0.010350481607019901,
0.03325008228421211,
-0.06386293470859528,
-0.04678824171423912,
0.003761956002563238,
-0.1110946387052536,
0.008802611380815506,
0.031408317387104034,
0.033912379294633865,
0.029618971049785614,
0.048356227576732635,
-0.08888425678014755,
-0.004018520470708609,
-0.04935269057750702,
0.016880901530385017,
0.0740707516670227,
-0.09326270967721939,
0.09633169323205948,
0.09521620720624924,
0.04862185940146446,
-0.015464799478650093,
-0.03216853365302086,
0.16510161757469177,
0.010727292858064175,
0.024779872968792915,
0.11007796972990036,
-0.09498833119869232,
0.042662523686885834,
0.09224547445774078,
0.051884911954402924,
-0.01599743589758873,
-0.020498942583799362,
-0.005157195031642914,
-0.04950624704360962,
-0.25670984387397766,
-0.11067092418670654,
-0.0823713019490242,
0.05306340381503105,
0.043945714831352234,
0.05186227336525917,
0.08111599832773209,
0.016839997842907906,
0.012452959083020687,
-0.007540995255112648,
-0.03171740472316742,
0.07686049491167068,
0.1318318396806717,
-0.020937150344252586,
0.12049179524183273,
0.0057312301360070705,
-0.02666465751826763,
0.11663834005594254,
0.0952935591340065,
0.13437825441360474,
0.09827426820993423,
0.17283499240875244,
0.0540277436375618,
0.15832236409187317,
0.10879651457071304,
0.11709034442901611,
-0.015194660983979702,
-0.016353335231542587,
-0.014242124743759632,
0.004233300685882568,
-0.023492228239774704,
-0.014979805797338486,
-0.018215805292129517,
-0.03075847215950489,
0.06696106493473053,
-0.09222491830587387,
0.07020537555217743,
0.04196647182106972,
0.07327868789434433,
-0.19846300780773163,
0.027321236208081245,
0.03550058230757713,
0.021542677655816078,
-0.044309549033641815,
0.04575879126787186,
-0.01158113218843937,
-0.04030725732445717,
0.08395286649465561,
-0.030218670144677162,
0.10013780742883682,
-0.015314305201172829,
0.04264446720480919,
-0.11031156778335571,
-0.08039189130067825,
-0.018967555835843086,
0.09557932615280151,
-0.25104063749313354,
0.14858680963516235,
0.012445599772036076,
-0.08477993309497833,
-0.04358808323740959,
-0.07360075414180756,
0.03740522265434265,
0.22026893496513367,
0.10986747592687607,
0.05172094330191612,
0.02106482908129692,
-0.010584247298538685,
-0.16320045292377472,
0.03582504019141197,
-0.020604170858860016,
0.024722689762711525,
-0.03602847456932068,
-0.0015068125212565064,
-0.01593843474984169,
0.020750990137457848,
0.007935967296361923,
-0.10440915822982788,
-0.09561740607023239,
0.07509986311197281,
0.08748859912157059,
-0.00035453433520160615,
-0.0341285765171051,
-0.07097117602825165,
-0.03953072428703308,
0.20458073914051056,
-0.2115442007780075,
-0.025077402591705322,
-0.10355878621339798,
0.028076354414224625,
0.11203724890947342,
-0.07672278583049774,
0.020768944174051285,
-0.0580926239490509,
0.010145004838705063,
-0.044484566897153854,
-0.18660494685173035,
0.1008874773979187,
-0.1374010145664215,
-0.13040122389793396,
-0.11716875433921814,
0.06750496476888657,
0.007487875875085592,
0.07532580196857452,
0.02852092869579792,
0.011291829869151115,
-0.06934088468551636,
-0.044035762548446655,
0.05938098207116127,
0.052267611026763916,
0.046136513352394104,
0.025609400123357773,
-0.1297851949930191,
-0.1337568312883377,
0.018419666215777397,
-0.009614791721105576,
0.1897510439157486,
0.23233641684055328,
-0.065059132874012,
0.1485450714826584,
0.23118221759796143,
-0.06290936470031738,
-0.28795117139816284,
-0.07590857148170471,
-0.03389035910367966,
-0.08202188462018967,
-0.0664534792304039,
-0.15874408185482025,
0.19618889689445496,
0.16502195596694946,
-0.07428470253944397,
0.1064487174153328,
-0.09285593777894974,
-0.08720077574253082,
0.16329121589660645,
-0.03460399806499481,
0.33903664350509644,
-0.08062344044446945,
-0.035564158111810684,
-0.05324558541178703,
-0.08921252936124802,
0.24408403038978577,
-0.06786511838436127,
0.03327042609453201,
-0.05879966914653778,
-0.011265347711741924,
-0.005581101402640343,
-0.061044082045555115,
0.09867093712091446,
0.04552911967039108,
0.0034794353414326906,
-0.0029774196445941925,
-0.09503167867660522,
0.14128360152244568,
-0.020835338160395622,
0.0021912583615630865,
-0.07812102884054184,
0.009332417510449886,
-0.11577451229095459,
0.0062416670843958855,
-0.09355644136667252,
0.09838033467531204,
-0.005666960030794144,
-0.05161968618631363,
-0.05763084813952446,
0.02150850184261799,
0.029361262917518616,
0.011065075173974037,
0.24590687453746796,
0.03786906227469444,
0.005375123582780361,
0.09987898916006088,
0.0671905130147934,
-0.08020661026239395,
0.04115384817123413,
-0.013386539183557034,
-0.10025999695062637,
0.09297303855419159,
-0.08349119126796722,
0.044861700385808945,
0.12393859028816223,
0.007392818573862314,
0.029946552589535713,
0.08025883883237839,
-0.04775279760360718,
-0.057319872081279755,
0.10503354668617249,
-0.18926332890987396,
0.12702731788158417,
0.051972925662994385,
-0.03356998786330223,
-0.03931361436843872,
0.11320499330759048,
0.11356163769960403,
0.006223252043128014,
-0.041971299797296524,
0.03558709844946861,
0.07202474772930145,
-0.07707919925451279,
0.1406003087759018,
0.0803709551692009,
0.018367107957601547,
-0.13206104934215546,
0.03640346601605415,
0.04434667155146599,
-0.028540680184960365,
-0.015491340309381485,
0.03234503045678139,
-0.14122146368026733,
-0.06898219883441925,
-0.005500816740095615,
0.1521550565958023,
-0.1310759335756302,
-0.039468977600336075,
-0.029172204434871674,
-0.0535244382917881,
0.07751235365867615,
0.21953731775283813,
0.06054510176181793,
0.03261116147041321,
-0.03232410177588463,
-0.08172674477100372,
-0.052723512053489685,
0.06875504553318024,
-0.08689373731613159,
0.07863683253526688,
-0.02673407457768917,
-0.058698367327451706,
-0.0339314229786396,
0.058308735489845276,
-0.06350445747375488,
0.03975067660212517,
-0.17884868383407593,
0.008614353835582733,
-0.15982285141944885,
-0.005191779229789972,
-0.0557137131690979,
-0.02484864369034767,
0.0015151066472753882,
-0.05453050881624222,
-0.014707137830555439,
0.005322533659636974,
-0.0710504874587059,
-0.016698963940143585,
0.04676583781838417,
0.07931056618690491,
-0.13304097950458527,
-0.06830690801143646,
0.08542405068874359,
-0.029470914974808693,
0.15374824404716492,
0.07313136011362076,
0.005451063625514507,
0.043170757591724396,
-0.08338894695043564,
-0.09314491599798203,
0.0844598039984703,
0.09540214389562607,
0.05777842178940773,
-0.03431686758995056,
-0.01222451962530613,
0.0797438770532608,
-0.04633757844567299,
0.04681464284658432,
0.07836488634347916,
-0.04345947504043579,
-0.03784642368555069,
-0.024520650506019592,
-0.08868937194347382,
0.011956575326621532,
-0.09660997241735458,
0.10805737972259521,
0.013389822095632553,
0.15996882319450378,
0.031206300482153893,
-0.004655016586184502,
-0.06650720536708832,
0.0026961476542055607,
-0.015447556041181087,
-0.17039398849010468,
-0.10680839419364929,
0.023860499262809753,
0.0034069479443132877,
-0.005993792787194252,
0.24415063858032227,
-0.10631097853183746,
-0.13611498475074768,
0.03906645253300667,
0.07373037189245224,
-0.018498845398426056,
0.010763909667730331,
0.19402487576007843,
0.07785356789827347,
-0.0309269018471241,
-0.052251651883125305,
0.002786459168419242,
0.022584907710552216,
-0.018301410600543022,
0.0907406434416771,
0.05518900975584984,
0.03509090095758438,
-0.01310793124139309,
0.04630287364125252,
-0.09055570513010025,
-0.03392818570137024,
-0.07705342769622803,
-0.04821449890732765,
0.05174507573246956,
0.11857344210147858,
0.1007058322429657,
0.09914632141590118,
-0.045512132346630096,
-0.039423588663339615,
-0.025179322808980942,
-0.044450365006923676,
-0.13363507390022278,
-0.09594564139842987,
-0.07777862250804901,
-0.04672873392701149,
-0.000307083799270913,
-0.10407984256744385,
-0.023575861006975174,
0.0719592496752739,
0.053201597183942795,
-0.017982084304094315,
-0.05678929015994072,
0.032140590250492096,
0.040634915232658386,
-0.00628701550886035,
0.025592993944883347,
-0.0458594411611557,
-0.0243193581700325,
-0.02471461519598961,
-0.03671018406748772,
0.03968889266252518,
-0.007120373193174601,
-0.007969062775373459,
0.024470727890729904,
0.03309716284275055,
-0.05586917698383331,
-0.06336098909378052,
-0.03187955543398857,
-0.0042437780648469925,
-0.061091311275959015,
0.1669093519449234,
0.021811479702591896,
0.06199246272444725,
0.05741093307733536,
0.06138220429420471,
-0.008079852908849716,
-0.03320922702550888,
-0.03996311500668526,
0.16873838007450104,
-0.013763931579887867,
0.06430292874574661,
-0.009374390356242657,
0.04009908437728882,
-0.046054866164922714,
0.237985298037529,
0.21177539229393005,
-0.10747162252664566,
0.004017978440970182,
-0.0050353314727544785,
0.016322791576385498,
0.07382321357727051,
0.07948468625545502,
0.10658545047044754,
0.13906356692314148,
-0.057478033006191254,
-0.05955063924193382,
-0.0569724403321743,
-0.009641792625188828,
-0.13728024065494537,
0.008187050931155682,
0.04550858214497566,
-0.07422127574682236,
-0.08918710798025131,
0.03464231640100479,
-0.13399183750152588,
0.06288719177246094,
-0.026658132672309875,
-0.08630558103322983,
-0.10519314557313919,
-0.05097358673810959,
0.07408349961042404,
-0.058187372982501984,
-0.035107407718896866,
-0.035577721893787384,
-0.010517658665776253,
0.06099081039428711,
-0.04175836965441704,
-0.19230985641479492,
-0.07320605218410492,
0.08247987926006317,
-0.05207968130707741,
0.17032788693904877,
0.014231512323021889,
0.09081190824508667,
0.08441118896007538,
-0.005978381726890802,
-0.1544448584318161,
0.005989044439047575,
0.0011406863341107965,
-0.07896462082862854,
-0.023698460310697556,
-0.030485793948173523,
0.003383590606972575,
0.04102059081196785,
0.05914570018649101,
-0.04578572139143944,
-0.00524163618683815,
0.07072492688894272,
-0.05982811748981476,
-0.02668117918074131,
0.07828742265701294,
-0.033098556101322174,
0.08492239564657211,
0.027863679453730583,
-0.041520703583955765,
-0.024448303505778313,
-0.06740102916955948,
-0.02515348419547081,
0.048622991889715195,
-0.04443923756480217,
-0.058057475835084915,
-0.11456911265850067,
0.021318376064300537,
-0.03158264234662056,
0.027466189116239548,
-0.14090310037136078,
-0.01805325597524643,
-0.1530042290687561,
0.010040655732154846,
-0.10688155144453049,
0.03060445375740528,
0.022544708102941513,
-0.0008324562222696841,
-0.0035549786407500505,
-0.04071991890668869,
0.027734404429793358,
0.007492935750633478,
-0.1109582856297493,
-0.08876928687095642
] |
null | null |
fastai
|
## Model description
This model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'.
This model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers.
This model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was `fiction` or `non-fiction`.
The model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently.
## How to use
To use this within fastai, first [install](https://docs.fast.ai/#Installing) version 2 of the fastai library. You can load directly from the Hugging Face hub using the [`huggingface_hub`](https://github.com/huggingface/huggingface_hub) library.
```python
from fastai import load_learner
from huggingface_hub import hf_hub_download
learn = load_learner(
hf_hub_download('davanstrien/bl-books-genre-fastai', filename="model.pkl")
)
learn.predict("Oliver Twist")
```
## Limitations and bias
The model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise.
The formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning.
## Training data
The training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon.
### Training procedure
Model training was carried out using the fastai library version 2.5.2.
The notebook using for training the model is available at: https://github.com/Living-with-machines/genre-classification
## Eval result
The model was evaluated on a held out test set:
```
precision recall f1-score support
Fiction 0.91 0.88 0.90 296
Non-fiction 0.94 0.95 0.95 554
accuracy 0.93 850
macro avg 0.93 0.92 0.92 850
weighted avg 0.93 0.93 0.93 850
```
|
{"library_name": "fastai", "tags": ["text-classification", "fastai"], "datasets": ["blbooksgenre"], "widget": [{"text": "Poems on various subjects. Whereto is prefixed a short essay on the structure of English verse"}, {"text": "Two Centuries of Soho: its institutions, firms, and amusements. By the Clergy of St. Anne's, Soho, J. H. Cardwell ... H. B. Freeman ... G. C. Wilton ... assisted by other contributors, etc"}, {"text": "The Adventures of Oliver Twist. [With plates.]"}]}
|
text-classification
|
TheBritishLibrary/bl-books-genre-fastai
|
[
"fastai",
"text-classification",
"dataset:blbooksgenre",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#fastai #text-classification #dataset-blbooksgenre #region-us
|
## Model description
This model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'.
This model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers.
This model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was 'fiction' or 'non-fiction'.
The model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently.
## How to use
To use this within fastai, first install version 2 of the fastai library. You can load directly from the Hugging Face hub using the 'huggingface_hub' library.
## Limitations and bias
The model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise.
The formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning.
## Training data
The training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon.
### Training procedure
Model training was carried out using the fastai library version 2.5.2.
The notebook using for training the model is available at: URL
## Eval result
The model was evaluated on a held out test set:
|
[
"## Model description\n\nThis model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'.\n\nThis model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. \n\nThis model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was 'fiction' or 'non-fiction'.\n\nThe model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently.",
"## How to use\n\nTo use this within fastai, first install version 2 of the fastai library. You can load directly from the Hugging Face hub using the 'huggingface_hub' library.",
"## Limitations and bias\n\nThe model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise.\n\nThe formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning.",
"## Training data\n\nThe training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon.",
"### Training procedure\n\nModel training was carried out using the fastai library version 2.5.2. \n\nThe notebook using for training the model is available at: URL",
"## Eval result\n\nThe model was evaluated on a held out test set:"
] |
[
"TAGS\n#fastai #text-classification #dataset-blbooksgenre #region-us \n",
"## Model description\n\nThis model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'.\n\nThis model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. \n\nThis model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was 'fiction' or 'non-fiction'.\n\nThe model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently.",
"## How to use\n\nTo use this within fastai, first install version 2 of the fastai library. You can load directly from the Hugging Face hub using the 'huggingface_hub' library.",
"## Limitations and bias\n\nThe model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise.\n\nThe formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning.",
"## Training data\n\nThe training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon.",
"### Training procedure\n\nModel training was carried out using the fastai library version 2.5.2. \n\nThe notebook using for training the model is available at: URL",
"## Eval result\n\nThe model was evaluated on a held out test set:"
] |
[
22,
286,
44,
142,
48,
31,
16
] |
[
"passage: TAGS\n#fastai #text-classification #dataset-blbooksgenre #region-us \n## Model description\n\nThis model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'.\n\nThis model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. \n\nThis model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was 'fiction' or 'non-fiction'.\n\nThe model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently.## How to use\n\nTo use this within fastai, first install version 2 of the fastai library. You can load directly from the Hugging Face hub using the 'huggingface_hub' library.## Limitations and bias\n\nThe model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise.\n\nThe formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning."
] |
[
-0.05530346557497978,
0.10428860783576965,
-0.0032289973460137844,
0.09276876598596573,
0.008824756368994713,
0.046988192945718765,
0.08959247171878815,
0.047000184655189514,
-0.02927260287106037,
0.034749243408441544,
-0.01759941503405571,
-0.04893551766872406,
0.05343310534954071,
0.05988457426428795,
0.10788382589817047,
-0.2275095283985138,
0.05952881649136543,
-0.1022791936993599,
0.09797976166009903,
0.02788526751101017,
0.08953063935041428,
-0.07642469555139542,
0.0677604079246521,
-0.05563175678253174,
-0.0671239048242569,
-0.01718859188258648,
-0.022871950641274452,
-0.0018845427548512816,
0.10702897608280182,
0.13033345341682434,
0.14737991988658905,
-0.06557042896747589,
0.0830291286110878,
-0.1217636987566948,
0.022411612793803215,
0.08184284716844559,
-0.007557017728686333,
0.019881485030055046,
0.02460445836186409,
0.025006763637065887,
0.15205807983875275,
0.03477269038558006,
0.062196459621191025,
0.0032111029140651226,
-0.10349343717098236,
-0.12098518013954163,
-0.0938703864812851,
0.06694664061069489,
-0.057591017335653305,
0.013919495046138763,
-0.008656218647956848,
0.01694408804178238,
-0.0018828975735232234,
0.024569189175963402,
0.0765935480594635,
-0.23166199028491974,
-0.03703591972589493,
0.12173719704151154,
0.07469335943460464,
0.15850497782230377,
-0.10795320570468903,
-0.0032925978302955627,
-0.005574703216552734,
0.050004612654447556,
0.040823645889759064,
0.008632372133433819,
-0.01668812707066536,
-0.002917397068813443,
-0.10343243181705475,
-0.026457948610186577,
0.0778384655714035,
-0.05857212841510773,
-0.11417578160762787,
-0.14564789831638336,
-0.04838404804468155,
0.07347409427165985,
-0.042801130563020706,
-0.014755971729755402,
0.07253745943307877,
0.03957226499915123,
0.13035354018211365,
-0.07645510882139206,
-0.09211660921573639,
0.0006455756374634802,
-0.12481708079576492,
0.12349632382392883,
0.010323657654225826,
0.055642019957304,
0.003909274935722351,
0.06890599429607391,
-0.06504884362220764,
0.01977662742137909,
-0.05059747397899628,
-0.11066413670778275,
-0.07466139644384384,
-0.012744625099003315,
-0.07402408123016357,
0.024827567860484123,
-0.11612351983785629,
0.02589472196996212,
-0.09232430160045624,
0.030605843290686607,
-0.06886320561170578,
0.04156183451414108,
0.07529440522193909,
0.11208578944206238,
-0.02416505478322506,
-0.08739534020423889,
0.035304151475429535,
0.038063134998083115,
0.09797017276287079,
-0.01595614105463028,
-0.03545941784977913,
-0.04393739998340607,
-0.03862978145480156,
-0.010956035926938057,
-0.06726426631212234,
-0.020801661536097527,
-0.03818580508232117,
-0.007805220782756805,
0.07594586163759232,
-0.08311016857624054,
0.018705623224377632,
-0.03654002398252487,
-0.051044028252363205,
0.012799701653420925,
0.06023228168487549,
-0.0401802659034729,
-0.042310506105422974,
0.0285177044570446,
-0.06809557974338531,
-0.017748916521668434,
-0.05127720162272453,
-0.126642107963562,
0.023747935891151428,
-0.018853789195418358,
-0.058013513684272766,
-0.05944213271141052,
-0.20745554566383362,
-0.03787471726536751,
0.044532593339681625,
-0.039150018244981766,
0.05016561970114708,
0.006563644390553236,
-0.0124358544126153,
-0.017183508723974228,
0.048634182661771774,
0.019051289185881615,
-0.0509633868932724,
0.031054886057972908,
-0.09495468437671661,
0.076865054666996,
-0.06602998077869415,
0.000039805887354305014,
-0.07099442929029465,
-0.015422970056533813,
-0.2708436846733093,
0.12094461172819138,
-0.08569575846195221,
-0.05656450614333153,
0.007527187932282686,
0.007188127376139164,
-0.09133369475603104,
0.09829988330602646,
-0.030793262645602226,
0.08992945402860641,
-0.22898373007774353,
-0.02641098015010357,
0.14924240112304688,
-0.15480472147464752,
0.017481444403529167,
0.10477384924888611,
-0.08015666902065277,
0.14071838557720184,
0.14483511447906494,
0.10042974352836609,
0.05915915593504906,
-0.04721234738826752,
-0.1164025068283081,
0.0472123809158802,
-0.02834438718855381,
0.14790138602256775,
0.005823166109621525,
-0.0248407032340765,
-0.07129208743572235,
0.02029159478843212,
0.021436192095279694,
-0.05991214141249657,
0.02115488424897194,
-0.02588566578924656,
-0.005529697518795729,
0.002424398437142372,
0.042495813220739365,
0.03928588703274727,
-0.02517019584774971,
-0.016153069213032722,
-0.07410518079996109,
0.04871212691068649,
0.08181274682283401,
-0.023253247141838074,
0.05724574252963066,
-0.016837837174534798,
0.040100980550050735,
-0.026047274470329285,
-0.030659347772598267,
-0.18247656524181366,
-0.08049037307500839,
0.08826903998851776,
-0.06887734681367874,
0.10149569064378738,
0.01845274679362774,
0.039141781628131866,
0.10132857412099838,
-0.09608274698257446,
0.047541938722133636,
-0.03150482475757599,
-0.057067643851041794,
-0.12724469602108002,
-0.13797757029533386,
-0.020259208977222443,
-0.038785215467214584,
0.17936605215072632,
-0.1957773119211197,
-0.008785671554505825,
-0.061804547905921936,
0.045121535658836365,
0.04918009787797928,
-0.04458049684762955,
0.0341339185833931,
0.004402610007673502,
-0.012006266973912716,
-0.037780631333589554,
0.013959622010588646,
0.005770317744463682,
-0.07859339565038681,
0.07387974858283997,
-0.14382897317409515,
-0.12484180927276611,
0.11048350483179092,
0.08252918720245361,
-0.057639144361019135,
-0.05785135552287102,
-0.018644852563738823,
0.00019145035184919834,
-0.0911022275686264,
-0.06247967109084129,
0.12791430950164795,
-0.004864038433879614,
0.07486367225646973,
-0.14978449046611786,
-0.051027003675699234,
-0.030987152829766273,
0.025533273816108704,
-0.0032626984175294638,
0.08552500605583191,
-0.0050048911944031715,
-0.12295635044574738,
0.018848253414034843,
0.009594361297786236,
-0.021692898124456406,
0.19066202640533447,
0.03937868773937225,
-0.09318216145038605,
0.0018143042689189315,
-0.0537869855761528,
0.0055675203911960125,
0.12042248994112015,
-0.0031190109439194202,
-0.010987731628119946,
0.02612413465976715,
0.0077360705472528934,
0.02057698741555214,
-0.06845483183860779,
0.0463944710791111,
0.018374433740973473,
-0.042576294392347336,
-0.009763837791979313,
-0.019738761708140373,
-0.01696140319108963,
0.12667487561702728,
0.004291507415473461,
0.06133222207427025,
-0.032902754843235016,
-0.053492333739995956,
-0.05733724310994148,
0.12323968857526779,
-0.1300305873155594,
-0.13019156455993652,
-0.18113240599632263,
-0.012170976959168911,
-0.014570600353181362,
0.04947952926158905,
-0.037592481821775436,
-0.03711698576807976,
-0.06134951114654541,
-0.17360186576843262,
0.05155246704816818,
-0.07921721041202545,
-0.07803768664598465,
-0.15379445254802704,
0.005673745181411505,
-0.051411353051662445,
-0.1426018625497818,
0.027828270569443703,
-0.019754141569137573,
0.018468530848622322,
-0.04048261418938637,
-0.05726020783185959,
0.016904106363654137,
0.050176650285720825,
-0.010931337252259254,
-0.08785535395145416,
-0.0311689805239439,
0.17387332022190094,
-0.06348162889480591,
0.08577733486890793,
0.014466407708823681,
-0.006273814011365175,
0.048827871680259705,
0.08673881739377975,
0.04395546764135361,
-0.07291584461927414,
0.0015884460881352425,
0.03714505210518837,
-0.045453425496816635,
-0.2213798463344574,
-0.04322319105267525,
-0.03172336891293526,
0.009725506417453289,
0.03027682937681675,
0.04599371924996376,
-0.03688105195760727,
-0.018680201843380928,
-0.06691669672727585,
0.12094852328300476,
0.09324207901954651,
0.04752526804804802,
0.052220869809389114,
-0.010274811647832394,
0.06678814440965652,
-0.06172389164566994,
0.07058383524417877,
0.14797426760196686,
-0.013680268079042435,
0.1665530651807785,
-0.08235282450914383,
0.0620541013777256,
0.024537252262234688,
0.016778966411948204,
0.0687805786728859,
0.04403884708881378,
0.010892622172832489,
0.014007188379764557,
-0.07747260481119156,
-0.03938545286655426,
-0.07059608399868011,
0.07636942714452744,
-0.006472459062933922,
0.03559865057468414,
-0.007323101628571749,
-0.03322278708219528,
0.004602552857249975,
0.06991821527481079,
-0.02708938531577587,
-0.09089048951864243,
-0.09780661016702652,
0.08424128592014313,
-0.08068553358316422,
-0.10983602702617645,
0.017222810536623,
0.12117958068847656,
-0.07759340107440948,
0.010726247914135456,
0.03004729002714157,
0.04529794305562973,
-0.06221630051732063,
-0.03202291578054428,
-0.08655329793691635,
0.04991952329874039,
-0.03085670806467533,
0.03545675799250603,
-0.03499308601021767,
0.06468892097473145,
0.03464535251259804,
0.10808298736810684,
-0.026454154402017593,
0.016300026327371597,
0.08226362615823746,
0.06140148639678955,
0.08512826263904572,
0.03113868273794651,
-0.042121440172195435,
0.00680210767313838,
-0.015509500168263912,
0.013004994951188564,
0.06433834135532379,
-0.023261597380042076,
0.08344949036836624,
-0.03254527226090431,
0.010395779274404049,
-0.0467294380068779,
-0.012196970172226429,
-0.032591018825769424,
-0.19275563955307007,
-0.007130600977689028,
-0.0747733786702156,
-0.016308685764670372,
-0.04958673194050789,
-0.027677128091454506,
0.02363026887178421,
0.08447018265724182,
-0.09452807903289795,
-0.07524002343416214,
-0.08765240758657455,
-0.03057711385190487,
0.16132713854312897,
0.0172103438526392,
-0.00045404231059364974,
-0.01901964470744133,
0.15958121418952942,
-0.03756751865148544,
-0.08360057324171066,
-0.02810559794306755,
-0.028731048107147217,
-0.10670138150453568,
-0.08031222224235535,
0.12320222705602646,
0.11129383742809296,
0.1021028682589531,
-0.035306502133607864,
0.04967576637864113,
-0.029746422544121742,
-0.05288036912679672,
0.0030657395254820585,
0.24035072326660156,
0.06379885971546173,
0.09283445030450821,
-0.15395787358283997,
0.04019319266080856,
0.00010464739898452535,
-0.026017948985099792,
0.05187709629535675,
0.10532564669847488,
-0.03425395116209984,
0.16692404448986053,
0.24509531259536743,
-0.14571212232112885,
-0.1957332193851471,
-0.011580738238990307,
0.00827229768037796,
0.056631773710250854,
-0.05276108160614967,
-0.15485084056854248,
0.1378229707479477,
0.12142619490623474,
0.0388023816049099,
-0.010106794536113739,
-0.20589590072631836,
-0.1050795465707779,
-0.013065733015537262,
0.049093615263700485,
0.009637310169637203,
-0.0740303248167038,
-0.013547766022384167,
-0.07963890582323074,
0.01735273189842701,
0.09665925800800323,
-0.17060109972953796,
0.09317342191934586,
-0.009868568740785122,
-0.0041824160143733025,
-0.00040113640716299415,
0.039308082312345505,
0.15262986719608307,
-0.020286839455366135,
0.09235560148954391,
-0.021424507722258568,
0.0242767296731472,
0.12231887876987457,
-0.06415411084890366,
0.10885748267173767,
0.07079378515481949,
0.032675851136446,
-0.14918506145477295,
-0.060609154403209686,
-0.046813979744911194,
-0.006173593457788229,
-0.08915093541145325,
-0.0009172668214887381,
-0.09230796992778778,
0.10598594695329666,
0.03446804732084274,
-0.007488979026675224,
-0.043673086911439896,
-0.09686244279146194,
0.09936089813709259,
-0.02349729835987091,
0.2257995903491974,
-0.0004644870641641319,
-0.004406227730214596,
0.02646843157708645,
-0.031806617975234985,
0.06983648985624313,
-0.12753477692604065,
0.0057317218743264675,
0.09888762980699539,
-0.009909318760037422,
0.09005419909954071,
0.03650399670004845,
-0.10737762600183487,
-0.013522599823772907,
0.034139811992645264,
-0.11698877066373825,
-0.18099717795848846,
0.021318938583135605,
-0.0033498359844088554,
-0.13505330681800842,
-0.1195337101817131,
0.10605073720216751,
-0.035203102976083755,
-0.03249336779117584,
0.021930264309048653,
0.008344555273652077,
0.04521412029862404,
0.09385663270950317,
0.02211177907884121,
-0.02064402401447296,
-0.06907042860984802,
0.18419745564460754,
0.0760117918252945,
-0.03850886970758438,
0.017810989171266556,
0.1482965499162674,
-0.08705978095531464,
-0.038887184113264084,
-0.1044810339808464,
0.1051337718963623,
0.007806620094925165,
-0.0313766673207283,
0.07968728989362717,
-0.0631478801369667,
0.023070823401212692,
0.21989521384239197,
-0.017468227073550224,
0.07587627321481705,
-0.07860525697469711,
0.025477344170212746,
-0.03865928575396538,
0.061766404658555984,
0.01634238474071026,
0.04428563639521599,
-0.012737556360661983,
0.12143206596374512,
-0.0234754029661417,
-0.0792575255036354,
-0.022003334015607834,
-0.018657566979527473,
-0.08165045082569122,
-0.04159170389175415,
-0.16123919188976288,
0.0377642959356308,
0.012036185711622238,
0.0017141589196398854,
-0.023020293563604355,
0.05494251102209091,
0.013365956023335457,
-0.045266129076480865,
-0.010891464538872242,
-0.0013769553042948246,
-0.010848051868379116,
0.06106473505496979,
-0.08428638428449631,
0.02772698551416397,
0.054945528507232666,
-0.048361942172050476,
0.09375212341547012,
0.07456351071596146,
0.002056209137663245,
0.012750771827995777,
-0.023927979171276093,
0.02957269921898842,
-0.05743663012981415,
-0.0018208622932434082,
-0.00954333133995533,
-0.05444623529911041,
-0.02952887862920761,
-0.0503595769405365,
-0.04437965154647827,
0.02663329988718033,
0.059983186423778534,
-0.01990528404712677,
0.07998157292604446,
0.04939243197441101,
0.0031733170617371798,
-0.06502015888690948,
0.06810208410024643,
0.1760430485010147,
0.02415018528699875,
0.062066201120615005,
-0.01162862777709961,
-0.0711710974574089,
-0.1186073049902916,
0.006104462780058384,
-0.01314809825271368,
-0.026338832452893257,
-0.03607366234064102,
-0.09781010448932648,
0.008584356866776943,
-0.0007154486374929547,
0.18644855916500092,
0.008282101713120937,
0.027140434831380844,
0.02119228057563305,
-0.01820627599954605,
-0.07433170080184937,
0.0029041387606412172,
-0.016396082937717438,
0.04300728440284729,
-0.03709050640463829,
0.050445556640625,
-0.01218239963054657,
0.004224984906613827,
0.05086390674114227,
0.10551384091377258,
0.060430243611335754,
0.13316506147384644,
0.07983041554689407,
-0.009853294119238853,
-0.03608204796910286,
-0.03293761610984802,
0.09971031546592712,
0.0042758723720908165,
-0.01596980169415474,
-0.09088469296693802,
0.14556774497032166,
0.06610029190778732,
-0.12971533834934235,
0.1347174048423767,
-0.02680443786084652,
-0.09837813675403595,
-0.0696907490491867,
-0.06777981668710709,
-0.014972585253417492,
0.041689153760671616,
-0.028409186750650406,
-0.14320623874664307,
0.05595463141798973,
0.07283561676740646,
0.02539142221212387,
0.0009687702404335141,
0.021861709654331207,
-0.17844823002815247,
-0.09660660475492477,
0.08615124225616455,
-0.004763152915984392,
0.04174349084496498,
0.042363911867141724,
-0.019048510119318962,
0.018184319138526917,
-0.021686244755983353,
0.008445494808256626,
0.0930672138929367,
0.09104656428098679,
0.011971180327236652,
-0.029731033369898796,
-0.022104527801275253,
0.01728128083050251,
0.001013431465253234,
0.014702043496072292,
0.1576342135667801,
0.0735965147614479,
-0.07579315453767776,
0.006279367953538895,
0.2245892882347107,
-0.02870153822004795,
-0.014420711435377598,
-0.11653947085142136,
0.18398858606815338,
-0.03607434406876564,
-0.0023617257829755545,
-0.025850921869277954,
-0.08589823544025421,
0.04657910391688347,
0.13006320595741272,
0.08675787597894669,
-0.10121748596429825,
-0.0351422019302845,
0.09396711736917496,
-0.01708233170211315,
-0.025293007493019104,
0.09802236407995224,
-0.00284475926309824,
0.2561749815940857,
-0.08787814527750015,
0.09140442311763763,
-0.032973963767290115,
-0.0037087281234562397,
-0.02176426723599434,
0.1962253451347351,
-0.09791009873151779,
-0.030686065554618835,
-0.08715144544839859,
-0.012769672088325024,
-0.0887095108628273,
-0.3276788294315338,
0.006223634816706181,
-0.07675465941429138,
-0.0784621611237526,
-0.014882735908031464,
-0.10908352583646774,
-0.026506835594773293,
0.025516455993056297,
-0.005071963183581829,
-0.005787895992398262,
0.15894357860088348,
-0.032288435846567154,
-0.09000109881162643,
-0.07650589197874069,
0.08252792060375214,
-0.008797397837042809,
0.17982891201972961,
0.01251485850661993,
-0.005239554680883884,
0.04028604179620743,
0.0016881886404007673,
-0.053480952978134155,
-0.003327841404825449,
0.0107148177921772,
-0.021337421610951424,
-0.044847406446933746,
0.1886681765317917,
0.029636049643158913,
0.11064168065786362,
0.10092474520206451,
0.09249217808246613,
0.0795280709862709,
0.04426801949739456,
-0.1120908185839653,
-0.05512726679444313,
0.05523829534649849,
-0.11088503152132034,
0.17215996980667114,
0.17925570905208588,
0.046214621514081955,
-0.00486569432541728,
-0.04499541595578194,
-0.03431187570095062,
0.023474998772144318,
0.08444593846797943,
0.036247413605451584,
-0.07543888688087463,
0.009091844782233238,
-0.004809034522622824,
0.022826265543699265,
-0.22788335382938385,
-0.060425568372011185,
0.07961589843034744,
0.01893724501132965,
0.0178673192858696,
0.08186289668083191,
0.05168218910694122,
0.03362167254090309,
-0.030698979273438454,
0.00704134302213788,
0.016947032883763313,
0.06598338484764099,
-0.0631387010216713,
-0.02775704488158226
] |
null | null |
adapter-transformers
|
# Adapter `davanstrien/book-genre-classification` for bert-base-cased
An [adapter](https://adapterhub.ml) for the `bert-base-cased` model that was trained on the [text-classification](https://adapterhub.ml/explore/text-classification/) dataset and includes a prediction head for classification.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-cased")
adapter_name = model.load_adapter("davanstrien/book-genre-classification", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here -->
|
{"tags": ["bert", "adapterhub:text-classification", "adapter-transformers"]}
| null |
davanstrien/book-genre-classification
|
[
"adapter-transformers",
"bert",
"adapterhub:text-classification",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#adapter-transformers #bert #adapterhub-text-classification #region-us
|
# Adapter 'davanstrien/book-genre-classification' for bert-base-cased
An adapter for the 'bert-base-cased' model that was trained on the text-classification dataset and includes a prediction head for classification.
This adapter was created for usage with the adapter-transformers library.
## Usage
First, install 'adapter-transformers':
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_
Now, the adapter can be loaded and activated like this:
## Architecture & Training
## Evaluation results
|
[
"# Adapter 'davanstrien/book-genre-classification' for bert-base-cased\n\nAn adapter for the 'bert-base-cased' model that was trained on the text-classification dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.",
"## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:",
"## Architecture & Training",
"## Evaluation results"
] |
[
"TAGS\n#adapter-transformers #bert #adapterhub-text-classification #region-us \n",
"# Adapter 'davanstrien/book-genre-classification' for bert-base-cased\n\nAn adapter for the 'bert-base-cased' model that was trained on the text-classification dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.",
"## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:",
"## Architecture & Training",
"## Evaluation results"
] |
[
21,
75,
57,
5,
4
] |
[
"passage: TAGS\n#adapter-transformers #bert #adapterhub-text-classification #region-us \n# Adapter 'davanstrien/book-genre-classification' for bert-base-cased\n\nAn adapter for the 'bert-base-cased' model that was trained on the text-classification dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results"
] |
[
-0.0389140248298645,
-0.15224704146385193,
-0.0038119733799248934,
0.03365617245435715,
0.18100284039974213,
0.07102112472057343,
0.22241167724132538,
-0.014930198900401592,
0.19987982511520386,
-0.06560464948415756,
0.036128848791122437,
0.0925634354352951,
0.01922871172428131,
0.0851491242647171,
-0.019259095191955566,
-0.11711716651916504,
0.05292031913995743,
0.08819692581892014,
-0.1540534496307373,
0.08766935765743256,
0.10035888105630875,
-0.051352281123399734,
0.12647882103919983,
0.01621500588953495,
-0.06712479889392853,
0.08297640830278397,
0.056396421045064926,
-0.11151117086410522,
0.10444523394107819,
0.07161937654018402,
0.235942542552948,
0.06491076201200485,
0.051586613059043884,
-0.1113366112112999,
0.014722264371812344,
0.07581618428230286,
0.014767449349164963,
0.06702643632888794,
-0.07308255881071091,
0.03098588064312935,
-0.028477245941758156,
0.02295285277068615,
0.11159079521894455,
0.0571029931306839,
-0.07441551238298416,
-0.20008131861686707,
0.04686867818236351,
0.07364652305841446,
0.042607374489307404,
0.012799450196325779,
0.0438852421939373,
-0.042035166174173355,
0.05929083004593849,
0.04276449605822563,
0.15392720699310303,
-0.21389438211917877,
-0.01703474298119545,
0.07127342373132706,
0.08078740537166595,
0.11125200986862183,
0.002175005618482828,
0.04117671027779579,
-0.0015613972209393978,
0.02152355946600437,
0.17360182106494904,
-0.05568802356719971,
0.10249116271734238,
0.021383119747042656,
-0.15216341614723206,
-0.011872926726937294,
0.2294987142086029,
-0.08836480230093002,
-0.10237980633974075,
-0.04088892042636871,
-0.04955122619867325,
0.08513208478689194,
-0.002246031304821372,
-0.12756982445716858,
-0.0034531743731349707,
0.08941329270601273,
0.05485738441348076,
-0.1572006791830063,
-0.05241243913769722,
-0.1470433622598648,
-0.13217896223068237,
0.35300350189208984,
-0.046099357306957245,
0.003788186004385352,
-0.03448697552084923,
0.08447671681642532,
0.024739453569054604,
-0.06976219266653061,
-0.012354215607047081,
-0.10037381201982498,
-0.034947771579027176,
-0.03147077187895775,
-0.06816383451223373,
-0.25996795296669006,
0.021484624594449997,
0.108670175075531,
0.17997556924819946,
0.07585486024618149,
-0.1217295378446579,
0.05679395794868469,
-0.010180848650634289,
0.19510449469089508,
-0.038006823509931564,
-0.007798022124916315,
-0.017520751804113388,
0.029085127636790276,
-0.04089007154107094,
-0.11188040673732758,
-0.14561912417411804,
-0.0701247975230217,
0.014423104003071785,
-0.01316930539906025,
-0.0330837182700634,
0.1583622246980667,
-0.032238129526376724,
-0.0771821066737175,
0.05162263289093971,
-0.10540254414081573,
-0.03471393138170242,
-0.009092356078326702,
-0.007895488291978836,
0.05714920908212662,
0.13128629326820374,
-0.07101649791002274,
0.027074506506323814,
0.09416181594133377,
-0.033296991139650345,
-0.09550051391124725,
-0.046172134578228,
-0.1698337197303772,
-0.03797638416290283,
-0.0829906314611435,
-0.005092232953757048,
-0.14576874673366547,
-0.08274149894714355,
0.052322033792734146,
0.10429173707962036,
0.0037131330464035273,
0.10848418623209,
0.01108185201883316,
0.04205753281712532,
0.06899499893188477,
-0.07164621353149414,
-0.1036832258105278,
-0.023589758202433586,
0.05334741249680519,
0.05052409693598747,
0.06611383706331253,
-0.1436629295349121,
0.07125908136367798,
-0.027555575594305992,
0.04679107293486595,
-0.2860814929008484,
0.10710345953702927,
-0.12994949519634247,
-0.005217833444476128,
-0.11014929413795471,
0.023820659145712852,
-0.008561963215470314,
0.1235319972038269,
0.06924421340227127,
0.08644231408834457,
-0.11252475529909134,
-0.07985089719295502,
0.018112871795892715,
-0.18933361768722534,
-0.16817332804203033,
0.019367385655641556,
-0.06203082576394081,
0.14712730050086975,
0.06155415251851082,
0.1077699288725853,
0.16928023099899292,
-0.033005692064762115,
-0.008954724296927452,
0.08350375294685364,
-0.0716024711728096,
-0.03412983939051628,
0.018804453313350677,
0.08147043734788895,
-0.2866104543209076,
0.012861811555922031,
-0.1385836899280548,
0.07343017309904099,
0.025688566267490387,
-0.006118520628660917,
-0.02502512000501156,
-0.03996121510863304,
0.19385318458080292,
-0.030832894146442413,
-0.028052939102053642,
0.03147825598716736,
-0.08616408705711365,
0.2628120183944702,
0.022367071360349655,
-0.08391476422548294,
0.017269695177674294,
-0.14707429707050323,
0.018017783761024475,
-0.08602343499660492,
0.044513918459415436,
-0.18766473233699799,
-0.01114063523709774,
-0.012501566670835018,
0.06048034504055977,
0.09102920442819595,
0.04854356870055199,
0.1014237031340599,
-0.040200915187597275,
-0.02232474461197853,
-0.0036024856381118298,
0.017384784296154976,
0.06233086809515953,
-0.013944903388619423,
-0.10640646517276764,
-0.05173487961292267,
-0.07023556530475616,
-0.08061552047729492,
-0.1323656439781189,
0.08205728232860565,
0.07964830845594406,
0.0043998537585139275,
0.03632481396198273,
0.03491045907139778,
-0.06849449127912521,
0.005670115817338228,
-0.04570809379220009,
-0.013663135468959808,
0.05275030434131622,
-0.042805615812540054,
-0.09948372840881348,
0.0842103585600853,
-0.11660423874855042,
0.09025571495294571,
0.11872606724500656,
-0.0605480931699276,
-0.033476125448942184,
-0.05767571181058884,
0.08766905218362808,
-0.01507636345922947,
0.10383016616106033,
-0.11056288331747055,
0.2695545554161072,
0.0530305951833725,
0.09410294145345688,
-0.014864562079310417,
0.05578712001442909,
0.022484665736556053,
-0.004020192660391331,
-0.0016835908172652125,
-0.0477900430560112,
-0.0018656288739293814,
-0.1298692375421524,
0.0326949842274189,
0.2650938928127289,
-0.04805561527609825,
0.0628087967634201,
-0.0055496105924248695,
-0.02298874408006668,
0.012859636917710304,
-0.10600519180297852,
0.05323589965701103,
0.051519349217414856,
-0.15855656564235687,
-0.0568288154900074,
0.016101043671369553,
-0.008788016624748707,
-0.0004890533164143562,
-0.02428821660578251,
0.07801596820354462,
0.0871405079960823,
-0.027868367731571198,
-0.0029699071310460567,
-0.007030302193015814,
0.004552242811769247,
0.040816083550453186,
0.04891597107052803,
-0.009623870253562927,
0.06988926976919174,
-0.02582213468849659,
-0.045569248497486115,
0.1577719897031784,
-0.08169679343700409,
-0.21146757900714874,
-0.24344007670879364,
-0.2766038775444031,
-0.03328054025769234,
0.10511260479688644,
0.03705103322863579,
-0.08306089043617249,
-0.04689393937587738,
-0.05126255005598068,
0.22192522883415222,
0.005198521539568901,
0.057164039462804794,
0.00927363894879818,
-0.05371864512562752,
0.0906916931271553,
-0.14620229601860046,
0.010416274890303612,
0.04480477795004845,
-0.09958356618881226,
-0.006440721917897463,
-0.04023947939276695,
-0.0018790949834510684,
0.14133939146995544,
-0.03616909682750702,
0.01018107682466507,
-0.025088414549827576,
0.035892508924007416,
-0.03194034472107887,
0.010580218397080898,
0.13676771521568298,
-0.17877745628356934,
0.0027448011096566916,
0.10821371525526047,
0.02373417094349861,
-0.06289580464363098,
0.04895411804318428,
-0.032097797840833664,
-0.11425893008708954,
-0.18823525309562683,
-0.042953986674547195,
0.001910442835651338,
0.05386414751410484,
0.2015143781900406,
0.012912649661302567,
0.0272358488291502,
0.12215401977300644,
0.07961447536945343,
0.05543358996510506,
0.03209662809967995,
0.03589421510696411,
0.29989397525787354,
-0.013338535092771053,
0.12121672183275223,
-0.07330445200204849,
-0.00037495800643227994,
0.07941745221614838,
0.014568986371159554,
0.0884600430727005,
0.03566870838403702,
0.07388050854206085,
0.013737727887928486,
-0.13756145536899567,
0.0565122626721859,
0.22823399305343628,
-0.03757719323039055,
-0.0017599359853193164,
-0.012881210073828697,
-0.005667286459356546,
-0.12124258279800415,
0.01903470978140831,
-0.06250327825546265,
-0.05806916207075119,
-0.04730870574712753,
-0.03643294796347618,
0.014261533506214619,
0.08131956309080124,
-0.03776978701353073,
-0.24466316401958466,
-0.08451911062002182,
0.0016775187104940414,
-0.007633674889802933,
-0.10312999039888382,
0.042230695486068726,
0.08114489167928696,
-0.002971528097987175,
0.0253507848829031,
-0.019426526501774788,
0.08875887095928192,
-0.1379207819700241,
0.01524324994534254,
0.0429818257689476,
0.12072422355413437,
-0.011613649316132069,
0.04233035072684288,
-0.2659952938556671,
0.07200711965560913,
0.018861303105950356,
-0.02238827385008335,
-0.04679226502776146,
0.02880592830479145,
0.07976461201906204,
0.2042456418275833,
-0.005363451316952705,
-0.012240779586136341,
-0.016553090885281563,
-0.19786563515663147,
-0.0657544806599617,
0.029997777193784714,
0.06147979944944382,
-0.13134387135505676,
0.045105572789907455,
-0.0691724494099617,
0.04692487046122551,
0.07694514840841293,
0.033585820347070694,
-0.0477251261472702,
-0.19015656411647797,
-0.00015808244643267244,
0.08583137392997742,
0.1261267215013504,
-0.07211197167634964,
-0.0563492625951767,
0.049606192857027054,
0.12609905004501343,
-0.09036748856306076,
-0.04095858335494995,
-0.12514279782772064,
-0.07482524961233139,
0.05351179838180542,
-0.0377085879445076,
0.0747450515627861,
0.02850177511572838,
0.06189091131091118,
0.0046774097718298435,
-0.19184252619743347,
0.165681391954422,
-0.055984266102313995,
0.04338543489575386,
-0.05809525027871132,
-0.026667620986700058,
0.06721584498882294,
0.01127366442233324,
0.029128827154636383,
-0.044663283973932266,
0.07709125429391861,
-0.04220954701304436,
-0.07092055678367615,
0.004201347474008799,
-0.07226701825857162,
0.04229931905865669,
-0.07243655622005463,
0.024967912584543228,
-0.03342266380786896,
0.09213672578334808,
0.12361061573028564,
-0.010781914927065372,
-0.027372613549232483,
0.0833638459444046,
0.1471031755208969,
-0.08953925222158432,
-0.3186998665332794,
-0.033046480268239975,
0.03285057842731476,
0.004027707502245903,
0.005155529361218214,
-0.314859539270401,
0.19743674993515015,
0.004887252114713192,
-0.00019883351342286915,
0.038543451577425,
0.024774683639407158,
-0.0869988277554512,
0.2967211604118347,
0.07642722129821777,
0.223354771733284,
-0.10849262028932571,
-0.07147204875946045,
-0.07838492840528488,
-0.13386382162570953,
0.1635163277387619,
-0.07230314612388611,
0.057929664850234985,
-0.0027683242224156857,
0.010703676380217075,
0.021923718973994255,
0.026224082335829735,
0.07977000623941422,
-0.03942936658859253,
0.04318862035870552,
-0.11123422533273697,
-0.00481803622096777,
0.09726519882678986,
-0.05593818053603172,
0.03920423984527588,
-0.14193741977214813,
0.02556714415550232,
-0.09012126922607422,
-0.10274317115545273,
0.04472289979457855,
0.056435685604810715,
0.03619081899523735,
-0.09832818806171417,
-0.02712000347673893,
-0.03124249540269375,
-0.06158012896776199,
-0.03369494900107384,
0.10874412208795547,
-0.08595883846282959,
0.052354421466588974,
0.15218588709831238,
0.18573451042175293,
-0.030220650136470795,
-0.012702012434601784,
0.042494554072618484,
-0.03568291291594505,
0.15738235414028168,
-0.1974170207977295,
0.1142488643527031,
0.04013476148247719,
-0.05485949292778969,
0.09963969141244888,
0.09671728312969208,
-0.0019168182043358684,
-0.01817028783261776,
0.09181857109069824,
-0.0552506148815155,
-0.00863120798021555,
0.009094662964344025,
0.10417964309453964,
-0.12936371564865112,
0.08186709135770798,
0.1996499001979828,
-0.017649218440055847,
0.019690843299031258,
0.024917257949709892,
-0.06756836920976639,
-0.08135370165109634,
0.077396921813488,
0.07041104882955551,
0.07118326425552368,
-0.03173672407865524,
0.05771506577730179,
0.020887041464447975,
-0.019697796553373337,
0.0555257685482502,
-0.09126602113246918,
-0.11848048120737076,
-0.03665513917803764,
-0.05719420313835144,
0.1259031444787979,
-0.041418056935071945,
-0.07967559248209,
0.01051134429872036,
-0.1496751457452774,
0.0032572837080806494,
0.2603003680706024,
0.08285147696733475,
0.01835845783352852,
-0.09993520379066467,
0.020783595740795135,
-0.028415026143193245,
0.0026770702097564936,
-0.0890556201338768,
0.10843437165021896,
-0.12219934910535812,
-0.06245652213692665,
-0.017261333763599396,
-0.00779768219217658,
-0.10727106034755707,
-0.04231300577521324,
-0.12960486114025116,
-0.005550122819840908,
-0.27449831366539,
-0.00696451123803854,
0.0024512240197509527,
0.02227039821445942,
0.08462563157081604,
-0.07656905800104141,
-0.029428010806441307,
-0.009515807032585144,
-0.06850589066743851,
0.035040292888879776,
0.05766066163778305,
0.09007418155670166,
-0.09966393560171127,
-0.02925136126577854,
0.0628453716635704,
-0.0796925500035286,
0.06798046827316284,
0.0663420781493187,
-0.07749057561159134,
0.07066111266613007,
-0.10959789901971817,
-0.014121360145509243,
0.007300907280296087,
0.06391496956348419,
-0.009790858253836632,
-0.037395890802145004,
0.03512270748615265,
-0.008149078115820885,
0.017477402463555336,
0.016385238617658615,
0.2634553611278534,
0.0008466386352665722,
0.08585253357887268,
-0.06722693145275116,
0.04364653304219246,
0.005914975889027119,
0.037176743149757385,
0.18831630051136017,
0.1643649935722351,
0.1588563472032547,
-0.07444572448730469,
-0.012009787373244762,
-0.058160450309515,
0.04432499408721924,
0.024169808253645897,
-0.09221033751964569,
0.1731756031513214,
-0.18182773888111115,
-0.03036797232925892,
-0.018765943124890327,
0.2643345594406128,
-0.07297533750534058,
-0.019861893728375435,
0.03560424968600273,
-0.03938160464167595,
0.0015761090908199549,
-0.012170257046818733,
0.30274102091789246,
0.08533896505832672,
0.0028557078912854195,
0.008160516619682312,
0.07572712004184723,
0.06554821133613586,
0.11377646028995514,
0.004241460002958775,
0.08876916021108627,
-0.1829203963279724,
0.06137034669518471,
0.05828026309609413,
0.055409859865903854,
-0.027145592495799065,
-0.042314544320106506,
-0.05415669456124306,
0.041583750396966934,
0.011763341724872589,
0.2622571885585785,
0.03596128523349762,
0.040122512727975845,
0.07946726679801941,
0.024638241156935692,
-0.06000198423862457,
-0.09848728030920029,
-0.047293469309806824,
-0.04291275516152382,
-0.22790861129760742,
-0.05628012493252754,
-0.047016121447086334,
-0.10358642041683197,
0.15995265543460846,
0.01225415337830782,
0.039439357817173004,
0.24124206602573395,
-0.08546819537878036,
-0.0013416139408946037,
0.06498735398054123,
-0.07608246803283691,
-0.09429432451725006,
-0.09748394787311554,
-0.05264408141374588,
-0.0020307162776589394,
0.10964678972959518,
-0.0015724520199000835,
0.04007507860660553,
-0.014777608215808868,
0.04165368527173996,
-0.021101519465446472,
-0.11303311586380005,
-0.05864802375435829,
0.016532789915800095,
-0.11963794380426407,
0.14017437398433685,
-0.038889627903699875,
-0.07595036178827286,
-0.015853988006711006,
0.11231863498687744,
-0.08466152101755142,
-0.09120450913906097,
-0.1122698113322258,
0.11554388701915741,
-0.02128576673567295,
0.07076776027679443,
-0.08749714493751526,
-0.02038043737411499,
-0.08213523775339127,
0.17145997285842896,
0.11614128947257996,
-0.05344625189900398,
0.047292113304138184,
0.019684074446558952,
0.025273215025663376,
0.00943773239850998,
0.1514199674129486,
0.009655026718974113,
-0.05178435891866684,
0.05761687830090523,
-0.09446747601032257,
-0.0069816866889595985,
-0.0010574142215773463,
0.08635853230953217,
0.05602622032165527,
0.009702172130346298,
-0.058239780366420746,
-0.08974357694387436,
0.047156352549791336,
-0.06539832055568695,
-0.19424176216125488,
0.005231045186519623,
0.009274204261600971,
-0.020317526534199715,
-0.11019391566514969,
0.04970148578286171,
-0.06686834990978241,
-0.0022761132568120956,
0.00991625152528286,
-0.01613098382949829,
0.004001661203801632,
0.03188183158636093,
-0.10896215587854385,
0.009548892267048359,
0.06639843434095383,
-0.06091581657528877,
0.18040882050991058,
-0.00861424207687378,
-0.015114393085241318,
0.02056615799665451,
0.06488309800624847,
-0.05642867833375931,
0.005039578303694725,
-0.028056373819708824,
-0.07718659192323685,
-0.03656503185629845,
-0.019955642521381378,
-0.07553914189338684,
0.10194435715675354,
0.015907427296042442,
-0.15068913996219635,
0.014478384517133236,
-0.08473089337348938,
-0.14705999195575714,
-0.030371835455298424,
-0.09776823222637177,
-0.08116515725851059,
0.10243137925863266,
0.08383306115865707,
0.04071775823831558,
-0.06968460977077484,
-0.06645925343036652,
0.022342056035995483,
0.007132029160857201,
0.008601341396570206,
-0.0560678094625473,
-0.07178286463022232,
-0.10096107423305511,
0.030730603262782097,
-0.007742737885564566,
-0.3432721793651581,
-0.014966596849262714,
-0.007612929679453373,
0.03152526915073395,
-0.018886512145400047,
0.06901002675294876,
0.12740232050418854,
0.08269630372524261,
-0.0460098497569561,
-0.06875006854534149,
0.0202131737023592,
0.1539781540632248,
-0.21908167004585266,
-0.07140707224607468
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext_flyswot
This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1441
- F1: 0.9592
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 666
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 52 | 0.6833 | 0.7484 |
| No log | 2.0 | 104 | 0.3666 | 0.8750 |
| No log | 3.0 | 156 | 0.2090 | 0.9321 |
| No log | 4.0 | 208 | 0.1478 | 0.9449 |
| No log | 5.0 | 260 | 0.1002 | 0.9518 |
| No log | 6.0 | 312 | 0.1053 | 0.9506 |
| No log | 7.0 | 364 | 0.1182 | 0.9616 |
| No log | 8.0 | 416 | 0.1102 | 0.9592 |
| No log | 9.0 | 468 | 0.1262 | 0.9616 |
| 0.203 | 10.0 | 520 | 0.1286 | 0.9616 |
| 0.203 | 11.0 | 572 | 0.1355 | 0.9592 |
| 0.203 | 12.0 | 624 | 0.1299 | 0.9592 |
| 0.203 | 13.0 | 676 | 0.1154 | 0.9592 |
| 0.203 | 14.0 | 728 | 0.1385 | 0.9580 |
| 0.203 | 15.0 | 780 | 0.1330 | 0.9592 |
| 0.203 | 16.0 | 832 | 0.1390 | 0.9592 |
| 0.203 | 17.0 | 884 | 0.1386 | 0.9592 |
| 0.203 | 18.0 | 936 | 0.1390 | 0.9592 |
| 0.203 | 19.0 | 988 | 0.1409 | 0.9592 |
| 0.0006 | 20.0 | 1040 | 0.1411 | 0.9592 |
| 0.0006 | 21.0 | 1092 | 0.1413 | 0.9592 |
| 0.0006 | 22.0 | 1144 | 0.1415 | 0.9592 |
| 0.0006 | 23.0 | 1196 | 0.1426 | 0.9592 |
| 0.0006 | 24.0 | 1248 | 0.1435 | 0.9592 |
| 0.0006 | 25.0 | 1300 | 0.1438 | 0.9592 |
| 0.0006 | 26.0 | 1352 | 0.1434 | 0.9592 |
| 0.0006 | 27.0 | 1404 | 0.1437 | 0.9592 |
| 0.0006 | 28.0 | 1456 | 0.1441 | 0.9592 |
| 0.0002 | 29.0 | 1508 | 0.1440 | 0.9592 |
| 0.0002 | 30.0 | 1560 | 0.1441 | 0.9592 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["image_folder"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "convnext_flyswot", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "image_folder", "type": "image_folder", "args": "default"}, "metrics": [{"type": "f1", "value": 0.959245529738118, "name": "F1"}]}]}]}
|
image-classification
|
davanstrien/convnext_flyswot
|
[
"transformers",
"pytorch",
"safetensors",
"convnext",
"image-classification",
"generated_from_trainer",
"dataset:image_folder",
"base_model:facebook/convnext-base-224-22k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
|
convnext\_flyswot
=================
This model is a fine-tuned version of facebook/convnext-base-224-22k on the image\_folder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1441
* F1: 0.9592
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 666
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 30
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.6
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
"TAGS\n#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
86,
114,
4,
38
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
-0.16472987830638885,
0.16442184150218964,
-0.002424968406558037,
0.10736969858407974,
0.14293810725212097,
0.01897015981376171,
0.11054158955812454,
0.11462388932704926,
-0.06584444642066956,
0.07399841398000717,
0.13488799333572388,
0.10002654790878296,
0.057403579354286194,
0.19902506470680237,
-0.05351968854665756,
-0.20502528548240662,
0.035486675798892975,
0.03183940798044205,
-0.057055700570344925,
0.13252484798431396,
0.083376444876194,
-0.12681904435157776,
0.07984551787376404,
0.01007276214659214,
-0.16569779813289642,
-0.020973050966858864,
-0.0005189132643863559,
-0.06663311272859573,
0.11996885389089584,
0.033746249973773956,
0.11835890263319016,
0.03275327757000923,
0.08921506255865097,
-0.13624735176563263,
0.012134288437664509,
0.07543960213661194,
-0.005494536831974983,
0.09247466921806335,
0.0976685956120491,
0.012401780113577843,
0.057409822940826416,
-0.08310917764902115,
0.045334357768297195,
0.007764596492052078,
-0.11283200234174728,
-0.2504095733165741,
-0.09570366889238358,
0.09562647342681885,
0.09035743027925491,
0.09658963233232498,
-0.005666651763021946,
0.11447872966527939,
-0.048780038952827454,
0.0855225920677185,
0.18826445937156677,
-0.24303202331066132,
-0.061764590442180634,
-0.012759566307067871,
-0.005215916316956282,
0.02489437907934189,
-0.08993052691221237,
-0.051900219172239304,
0.03843627870082855,
0.03746981918811798,
0.1349189728498459,
0.005234718322753906,
-0.05812380090355873,
-0.05324268341064453,
-0.13960331678390503,
-0.08692767471075058,
0.14952215552330017,
0.08950375765562057,
-0.04923229292035103,
-0.0492100827395916,
-0.0771530345082283,
-0.14511831104755402,
-0.02566578984260559,
0.01686229184269905,
0.01811402663588524,
-0.03735189884901047,
-0.06739363074302673,
0.005790275987237692,
-0.10013450682163239,
-0.0630568340420723,
-0.01578659936785698,
0.11215149611234665,
0.06464999914169312,
0.029002312570810318,
0.002902041422203183,
0.11441948264837265,
0.034332454204559326,
-0.16045819222927094,
0.014508686028420925,
0.0013331479858607054,
-0.015476253814995289,
-0.0018103769980370998,
-0.021346542984247208,
-0.013900366611778736,
0.011099777184426785,
0.12637215852737427,
-0.08400106430053711,
0.037482693791389465,
0.023855146020650864,
0.04140589013695717,
-0.09418163448572159,
0.14951719343662262,
-0.08775031566619873,
-0.0032258538994938135,
0.042469024658203125,
0.12222707271575928,
0.03844993934035301,
-0.0030512588564306498,
-0.06972185522317886,
-0.014378168620169163,
0.14524182677268982,
0.019767148420214653,
-0.021533388644456863,
0.05273977294564247,
-0.06585424393415451,
-0.032059770077466965,
0.11994737386703491,
-0.09013069421052933,
0.004191119689494371,
0.014715082943439484,
-0.07810342311859131,
-0.028417330235242844,
0.06323088705539703,
-0.010112268850207329,
-0.022589080035686493,
0.0669134333729744,
-0.07979733496904373,
-0.022216621786355972,
-0.07386677712202072,
-0.09764640033245087,
0.01915413700044155,
-0.053582463413476944,
0.005868491251021624,
-0.1252296417951584,
-0.1752261221408844,
-0.03741700202226639,
0.030390530824661255,
-0.0189286507666111,
-0.07409051805734634,
-0.024952681735157967,
-0.0799778550863266,
0.0279980581253767,
-0.02792433835566044,
0.09121809154748917,
-0.060757700353860855,
0.11430400609970093,
0.015049677342176437,
0.053875185549259186,
-0.0183060672134161,
0.052471455186605453,
-0.09727698564529419,
0.052404116839170456,
-0.1516750007867813,
0.04576851800084114,
-0.05620549991726875,
0.046218689531087875,
-0.10427818447351456,
-0.111827552318573,
0.004248036537319422,
-0.031075306236743927,
0.10572794824838638,
0.11693066358566284,
-0.1370702087879181,
-0.049899715930223465,
0.17558756470680237,
-0.10438727587461472,
-0.12837421894073486,
0.11344557255506516,
-0.026234084740281105,
-0.03900866582989693,
0.042182400822639465,
0.1140969917178154,
0.09852392971515656,
-0.06767474114894867,
-0.03415456414222717,
-0.029053114354610443,
0.055284809321165085,
-0.0723448097705841,
0.09685210883617401,
0.010575352236628532,
-0.03452243655920029,
0.016817545518279076,
-0.07944665104150772,
0.08831614255905151,
-0.09799905866384506,
-0.07744872570037842,
-0.05088271200656891,
-0.09742312878370285,
0.0435296893119812,
0.061151113361120224,
0.02558741718530655,
-0.07953175902366638,
-0.1064755767583847,
-0.007765752729028463,
0.1294354647397995,
-0.08774228394031525,
-0.002304281108081341,
-0.05470748990774155,
0.11133728921413422,
-0.07859692722558975,
-0.020911619067192078,
-0.17216140031814575,
-0.08300065994262695,
0.02797364816069603,
-0.032599370926618576,
-0.030096594244241714,
-0.04652542993426323,
0.053059957921504974,
0.08940503001213074,
-0.038121894001960754,
-0.09726777672767639,
-0.0708598718047142,
-0.010939436964690685,
-0.08650673925876617,
-0.1798628717660904,
-0.07032497227191925,
-0.02180493250489235,
0.17700739204883575,
-0.20565596222877502,
0.020353784784674644,
-0.011508842930197716,
0.12356781214475632,
0.01630977913737297,
-0.02515251748263836,
-0.0019864137284457684,
0.04949130117893219,
-0.025472430512309074,
-0.0849175900220871,
0.06123208627104759,
0.030824648216366768,
-0.06708639115095139,
0.0028916927985846996,
-0.09891066700220108,
0.13557249307632446,
0.11682544648647308,
0.00012120665633119643,
-0.0813952162861824,
-0.01915251649916172,
-0.0688730925321579,
-0.04405580461025238,
-0.036154404282569885,
0.003706281306222081,
0.11114419996738434,
0.016205113381147385,
0.14492978155612946,
-0.08844074606895447,
-0.02619902417063713,
0.03599678725004196,
-0.008878055028617382,
-0.008641594089567661,
0.11390354484319687,
0.09121256321668625,
-0.13189266622066498,
0.15075647830963135,
0.14427290856838226,
-0.06836384534835815,
0.10319264978170395,
-0.05359490215778351,
-0.09268423914909363,
-0.015424723736941814,
0.020758505910634995,
0.015126924961805344,
0.12556874752044678,
-0.05726384371519089,
0.018837962299585342,
0.045591700822114944,
-0.003574691480025649,
0.009273630566895008,
-0.2024492621421814,
-0.016558077186346054,
0.02444303035736084,
-0.04490213468670845,
0.00878122728317976,
-0.006265303120017052,
0.021073756739497185,
0.10637680441141129,
-0.00733270775526762,
-0.09177970886230469,
0.03257201239466667,
0.00013912988652009517,
-0.07748889923095703,
0.21808350086212158,
-0.0834025889635086,
-0.20932939648628235,
-0.12100996822118759,
0.01770154759287834,
-0.04890620335936546,
-0.004814550746232271,
0.043409623205661774,
-0.06597801297903061,
-0.05428370460867882,
-0.07425691932439804,
-0.0269095990806818,
0.03205166384577751,
0.021854057908058167,
0.018847284838557243,
-0.010635166428983212,
0.1074179857969284,
-0.09382293373346329,
-0.007494198624044657,
-0.015258176252245903,
-0.04096115753054619,
0.0568951815366745,
0.029097629711031914,
0.09812827408313751,
0.11820507794618607,
-0.017441296949982643,
0.010864902287721634,
-0.012434259988367558,
0.22905223071575165,
-0.05784932151436806,
-0.01852879300713539,
0.16755495965480804,
-0.009471827186644077,
0.07420316338539124,
0.11813437938690186,
0.030242089182138443,
-0.07817021012306213,
0.017215220257639885,
0.012242559343576431,
-0.024799782782793045,
-0.19872033596038818,
-0.05831572413444519,
-0.0374671146273613,
-0.018373874947428703,
0.13895536959171295,
0.030802570283412933,
0.010885185562074184,
0.08779682219028473,
-0.030900055542588234,
0.043456561863422394,
-0.026488756760954857,
0.06903571635484695,
0.07253466546535492,
0.05759993568062782,
0.12052775174379349,
-0.028096046298742294,
-0.0223894901573658,
0.04799404367804527,
-0.010020939633250237,
0.23308250308036804,
-0.05764037370681763,
0.0977121964097023,
0.05034000799059868,
0.22442011535167694,
0.012792722322046757,
0.07808785885572433,
-0.013620971702039242,
0.001608138089068234,
-0.0010542566888034344,
-0.04543381929397583,
-0.06158825382590294,
0.0031038527376949787,
-0.04037575423717499,
0.06569305062294006,
-0.13630573451519012,
0.02077367901802063,
0.019653206691145897,
0.27469444274902344,
0.06790895015001297,
-0.39618685841560364,
-0.09826662391424179,
-0.021170828491449356,
-0.005910640582442284,
-0.06995079666376114,
-0.000912701478227973,
0.11856415867805481,
-0.09752000123262405,
0.045679740607738495,
-0.0796632468700409,
0.08195139467716217,
-0.06674909591674805,
-0.0001891234569484368,
0.0769890621304512,
0.09223292022943497,
0.014659330248832703,
0.06328655034303665,
-0.20015983283519745,
0.26685631275177,
-0.00926243420690298,
0.05094418302178383,
-0.05379955843091011,
0.012194667011499405,
0.045176662504673004,
0.0462501123547554,
0.0830601304769516,
-0.0033717267215251923,
-0.026651374995708466,
-0.20966888964176178,
-0.1409008800983429,
0.021814165636897087,
0.043740514665842056,
-0.03602776676416397,
0.09887000918388367,
-0.021949607878923416,
-0.011377722956240177,
0.03966116905212402,
0.004033822100609541,
-0.10050249099731445,
-0.09045909345149994,
0.001417859923094511,
0.0393216572701931,
0.03584672883152962,
-0.10312827676534653,
-0.11825953423976898,
-0.06299015879631042,
0.13715365529060364,
-0.01729668490588665,
-0.06523384898900986,
-0.12640783190727234,
0.10872841626405716,
0.12272996455430984,
-0.0986969992518425,
0.07710147649049759,
-0.017519989982247353,
0.1206008642911911,
0.028366565704345703,
-0.07602883130311966,
0.07664179056882858,
-0.08657439053058624,
-0.20500192046165466,
-0.04277938976883888,
0.12897400557994843,
0.02760406583547592,
0.03495891019701958,
0.00325908325612545,
0.01954144798219204,
-0.023891685530543327,
-0.07382327318191528,
0.025630993768572807,
0.01044429000467062,
0.10239764302968979,
0.041763581335544586,
-0.020593930035829544,
-0.04132792353630066,
-0.04850384220480919,
-0.025849727913737297,
0.1354648768901825,
0.24265481531620026,
-0.08743678033351898,
-0.017167044803500175,
0.06510462611913681,
-0.031728167086839676,
-0.18040642142295837,
-0.00021744250261690468,
0.11096180230379105,
0.02384580858051777,
0.01244783028960228,
-0.15654437243938446,
0.06930357217788696,
0.12411564588546753,
-0.03356845676898956,
0.07457650452852249,
-0.2900463342666626,
-0.1179569661617279,
0.12705618143081665,
0.15347006916999817,
0.08177076280117035,
-0.14189869165420532,
-0.040534935891628265,
-0.02287435159087181,
-0.126988023519516,
0.1331826001405716,
-0.05598977208137512,
0.09435056895017624,
-0.03579504415392876,
0.02807450108230114,
0.011544222943484783,
-0.06258480250835419,
0.13748697936534882,
-0.01901213638484478,
0.086508609354496,
-0.04835815355181694,
0.030170641839504242,
0.04460900276899338,
-0.07236688584089279,
0.0593605637550354,
-0.05327979847788811,
0.08206676691770554,
-0.09713920950889587,
-0.012750697322189808,
-0.10741414874792099,
0.033888526260852814,
-0.027067627757787704,
-0.02498609386384487,
-0.02225602976977825,
0.04629415646195412,
0.051542092114686966,
-0.008146303705871105,
0.09687913209199905,
0.05209389701485634,
0.11269032955169678,
0.10330606997013092,
0.0439014658331871,
-0.0068694292567670345,
-0.09997323155403137,
-0.045379649847745895,
-0.029422666877508163,
0.0691007450222969,
-0.10166850686073303,
0.031451012939214706,
0.1262713521718979,
0.01744179055094719,
0.123769611120224,
0.04864322021603584,
-0.04811297729611397,
0.006357365753501654,
0.07282557338476181,
-0.15236642956733704,
-0.0821840688586235,
-0.016273118555545807,
0.03508371114730835,
-0.12488944828510284,
0.03264180198311806,
0.10562744736671448,
-0.0789811909198761,
-0.020627018064260483,
-0.013905774801969528,
0.019241105765104294,
-0.005189449060708284,
0.19344040751457214,
0.08521275222301483,
0.05388418212532997,
-0.09848639369010925,
0.09537835419178009,
0.06713523715734482,
-0.09412076324224472,
0.010516317561268806,
0.04550936445593834,
-0.10266847908496857,
-0.03463270142674446,
0.05936919152736664,
0.11036725342273712,
-0.04568076506257057,
-0.07495579868555069,
-0.11034788191318512,
-0.10242430865764618,
0.07390715926885605,
0.10710690170526505,
0.07495424896478653,
0.03159484639763832,
0.004835996311157942,
-0.020574890077114105,
-0.10991529375314713,
0.10859327763319016,
0.08226360380649567,
0.08045268803834915,
-0.16293704509735107,
0.11216248571872711,
0.020425066351890564,
0.04670703783631325,
-0.0095415273681283,
0.029564745724201202,
-0.08613157272338867,
-0.008118954487144947,
-0.11344287544488907,
0.02751750871539116,
-0.040764786303043365,
-0.005713993217796087,
-0.01638077013194561,
-0.05484016612172127,
-0.039392732083797455,
0.041451286524534225,
-0.08711721748113632,
-0.0490993894636631,
0.015084602870047092,
0.042819295078516006,
-0.12525083124637604,
-0.049762062728405,
0.026362095028162003,
-0.0936727449297905,
0.08844078332185745,
0.04182456433773041,
0.03696892037987709,
0.016836438328027725,
-0.08043990284204483,
-0.015669740736484528,
0.06557966023683548,
0.018304096534848213,
0.038331132382154465,
-0.12723791599273682,
0.01874435506761074,
0.00283995782956481,
-0.019826561212539673,
-0.011259915307164192,
0.09221715480089188,
-0.13239692151546478,
-0.025557249784469604,
-0.003603284480050206,
-0.018489351496100426,
-0.06281416118144989,
0.04299042373895645,
0.08056984096765518,
0.03412096947431564,
0.18494199216365814,
-0.0826314315199852,
0.02970191277563572,
-0.2299116849899292,
-0.011413944885134697,
-0.03393489122390747,
-0.10641069710254669,
-0.10173279792070389,
-0.01072241272777319,
0.0817386656999588,
-0.041882019490003586,
0.06447785347700119,
-0.019315533339977264,
0.06390450149774551,
0.009953252971172333,
-0.00826324988156557,
0.021674111485481262,
0.032161153852939606,
0.16595546901226044,
0.01086871325969696,
-0.022991325706243515,
0.06782881915569305,
0.015963729470968246,
0.08828068524599075,
0.07179180532693863,
0.15087421238422394,
0.13981232047080994,
0.03456530719995499,
0.07148131728172302,
0.0576070100069046,
-0.0736343041062355,
-0.14130598306655884,
-0.006433121394366026,
-0.06323788315057755,
0.11391627043485641,
0.0004649201291613281,
0.19611556828022003,
0.07426707446575165,
-0.1595330834388733,
0.03260108456015587,
-0.022426286712288857,
-0.0742962583899498,
-0.06914522498846054,
-0.08915163576602936,
-0.08374153822660446,
-0.12842844426631927,
0.005872334353625774,
-0.11163746565580368,
-0.006607540417462587,
0.11570903658866882,
0.0059967245906591415,
-0.02762654609978199,
0.1483321338891983,
0.07617447525262833,
-0.012250403873622417,
0.06834486126899719,
0.023390688002109528,
-0.02218262106180191,
-0.05217583104968071,
-0.09231732040643692,
0.03485484421253204,
0.01279666367918253,
0.0569758266210556,
-0.04988895729184151,
-0.039799269288778305,
0.06756473332643509,
0.03166820481419563,
-0.10526500642299652,
0.012610473670065403,
-0.004785924684256315,
0.056392207741737366,
0.06692559272050858,
0.017602073028683662,
0.048390112817287445,
-0.015034533105790615,
0.189871683716774,
-0.053047604858875275,
-0.03975960239768028,
-0.11485249549150467,
0.17981669306755066,
0.010157661512494087,
-0.04775509983301163,
0.06321544200181961,
-0.08922495692968369,
0.012258047237992287,
0.1639348864555359,
0.1286328285932541,
-0.061539176851511,
-0.0021814992651343346,
-0.006020417436957359,
-0.020614752545952797,
-0.040696170181035995,
0.12091394513845444,
0.13145478069782257,
0.052639782428741455,
-0.08539003878831863,
-0.026438184082508087,
-0.06379278004169464,
-0.005652487277984619,
-0.028031274676322937,
0.038913361728191376,
-0.00466186786070466,
0.002312206430360675,
-0.055163368582725525,
0.05104885995388031,
-0.0018009550403803587,
-0.09772074222564697,
0.04698066785931587,
-0.17063790559768677,
-0.186897873878479,
-0.0360395684838295,
0.051634397357702255,
0.029096560552716255,
0.043798793107271194,
-0.02857745625078678,
0.023083947598934174,
0.10283826291561127,
-0.025888565927743912,
-0.060450199991464615,
-0.11382368952035904,
0.06537321209907532,
-0.056792255491018295,
0.2435154765844345,
-0.02408749982714653,
0.06093820929527283,
0.10887505114078522,
0.04191483557224274,
-0.1399724930524826,
0.04381675273180008,
0.05117395892739296,
-0.03308836370706558,
0.043426763266325,
0.10484617203474045,
-0.028045373037457466,
0.07336174696683884,
0.027980031445622444,
-0.12309881299734116,
-0.022915847599506378,
-0.03767881542444229,
-0.02160697989165783,
-0.05135665088891983,
-0.010545723140239716,
-0.04586029797792435,
0.1432226002216339,
0.17882989346981049,
-0.05969216302037239,
-0.032441068440675735,
-0.06374738365411758,
0.026507394388318062,
0.06326621025800705,
0.055376045405864716,
-0.0034206905402243137,
-0.2132975310087204,
0.026814065873622894,
0.0004491195431910455,
0.01990838162600994,
-0.21126627922058105,
-0.0853189155459404,
-0.014894298277795315,
-0.08530008792877197,
-0.09813977777957916,
0.09765294939279556,
0.030241956934332848,
0.05058317631483078,
-0.049378808587789536,
0.04028253257274628,
-0.09083337336778641,
0.14251847565174103,
-0.143324077129364,
-0.08641945570707321
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext_manuscript_iiif
This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the davanstrien/iiif_manuscripts_label_ge_50 dataset.
It achieves the following results on the evaluation set:
- Loss: 5.5856
- F1: 0.0037
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 6.5753 | 1.0 | 2038 | 6.4121 | 0.0016 |
| 5.9865 | 2.0 | 4076 | 5.9466 | 0.0021 |
| 5.6521 | 3.0 | 6114 | 5.7645 | 0.0029 |
| 5.3123 | 4.0 | 8152 | 5.6890 | 0.0033 |
| 5.0337 | 5.0 | 10190 | 5.6692 | 0.0034 |
| 4.743 | 6.0 | 12228 | 5.5856 | 0.0037 |
| 4.4387 | 7.0 | 14266 | 5.5969 | 0.0042 |
| 4.1422 | 8.0 | 16304 | 5.6711 | 0.0043 |
| 3.8372 | 9.0 | 18342 | 5.6761 | 0.0044 |
| 3.5244 | 10.0 | 20380 | 5.8469 | 0.0042 |
| 3.2321 | 11.0 | 22418 | 5.8774 | 0.0045 |
| 2.9004 | 12.0 | 24456 | 6.1186 | 0.0047 |
| 2.5937 | 13.0 | 26494 | 6.2398 | 0.0046 |
| 2.2983 | 14.0 | 28532 | 6.3732 | 0.0049 |
| 2.0611 | 15.0 | 30570 | 6.5024 | 0.0045 |
| 1.8153 | 16.0 | 32608 | 6.6585 | 0.0047 |
| 1.6075 | 17.0 | 34646 | 6.8333 | 0.0043 |
| 1.4342 | 18.0 | 36684 | 6.9529 | 0.0044 |
| 1.2614 | 19.0 | 38722 | 7.1129 | 0.0046 |
| 1.1463 | 20.0 | 40760 | 7.1977 | 0.0039 |
| 1.0387 | 21.0 | 42798 | 7.2700 | 0.0044 |
| 0.9635 | 22.0 | 44836 | 7.3375 | 0.0040 |
| 0.8872 | 23.0 | 46874 | 7.4003 | 0.0039 |
| 0.8156 | 24.0 | 48912 | 7.4884 | 0.0039 |
| 0.7544 | 25.0 | 50950 | 7.4764 | 0.0039 |
| 0.6893 | 26.0 | 52988 | 7.5153 | 0.0042 |
| 0.6767 | 27.0 | 55026 | 7.5427 | 0.0043 |
| 0.6098 | 28.0 | 57064 | 7.5547 | 0.0042 |
| 0.5871 | 29.0 | 59102 | 7.5533 | 0.0041 |
| 0.5696 | 30.0 | 61140 | 7.5595 | 0.0041 |
### Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.6
|
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "convnext_manuscript_iiif", "results": []}]}
|
image-classification
|
davanstrien/convnext_manuscript_iiif
|
[
"transformers",
"pytorch",
"safetensors",
"convnext",
"image-classification",
"generated_from_trainer",
"base_model:facebook/convnext-base-224-22k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
convnext\_manuscript\_iiif
==========================
This model is a fine-tuned version of facebook/convnext-base-224-22k on the davanstrien/iiif\_manuscripts\_label\_ge\_50 dataset.
It achieves the following results on the evaluation set:
* Loss: 5.5856
* F1: 0.0037
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 1337
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 30.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.18.0.dev0
* Pytorch 1.10.2+cu102
* Datasets 1.18.3
* Tokenizers 0.11.6
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.18.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
"TAGS\n#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.18.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
74,
114,
4,
40
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.18.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
-0.1387721449136734,
0.15367236733436584,
-0.0022079278714954853,
0.11530741304159164,
0.12921752035617828,
0.01038313563913107,
0.14209647476673126,
0.13589626550674438,
-0.09769273549318314,
0.06723199784755707,
0.13425885140895844,
0.09811341762542725,
0.049238383769989014,
0.2177160233259201,
-0.07131438702344894,
-0.23165376484394073,
0.0504634715616703,
0.020168276503682137,
-0.0042043100111186504,
0.11143944412469864,
0.08705012500286102,
-0.13512872159481049,
0.10334187000989914,
0.002218236681073904,
-0.18564929068088531,
-0.020429160445928574,
0.004895318299531937,
-0.08241886645555496,
0.10866902023553848,
0.01848532259464264,
0.1124175637960434,
0.03996247798204422,
0.1014893427491188,
-0.14190660417079926,
0.005165372509509325,
0.06456325948238373,
-0.015095114707946777,
0.0874069407582283,
0.07929474860429764,
-0.00926227867603302,
0.05553916469216347,
-0.08832521736621857,
0.06916192919015884,
0.008399452082812786,
-0.11928486824035645,
-0.24818989634513855,
-0.10483157634735107,
0.06230492144823074,
0.10800861567258835,
0.07465209066867828,
0.0030763030517846346,
0.14090368151664734,
-0.029276788234710693,
0.1021222174167633,
0.20776641368865967,
-0.2825908958911896,
-0.06559044867753983,
0.021240726113319397,
0.004342953208833933,
0.047344859689474106,
-0.09533178806304932,
-0.023364700376987457,
0.04525965079665184,
0.04678961634635925,
0.14584021270275116,
-0.008352924138307571,
-0.06734944880008698,
-0.04126320406794548,
-0.1309090554714203,
-0.06558749824762344,
0.1568317413330078,
0.06627596169710159,
-0.06024565175175667,
-0.04856790602207184,
-0.0622028112411499,
-0.15322628617286682,
-0.053610894829034805,
0.012115174904465675,
0.040040090680122375,
-0.03836005926132202,
-0.10803018510341644,
0.0017564656445756555,
-0.0882355198264122,
-0.05694287270307541,
-0.04702482745051384,
0.10816377401351929,
0.05164322629570961,
0.04488902911543846,
-0.010939129628241062,
0.08875176310539246,
-0.023931119590997696,
-0.16596189141273499,
-0.012412340380251408,
-0.006897196173667908,
-0.000907464767806232,
-0.03662719577550888,
-0.021470554172992706,
-0.041673704981803894,
0.01616355963051319,
0.1438734084367752,
-0.10876116901636124,
0.05704297870397568,
-0.03895247355103493,
0.031028762459754944,
-0.07927662134170532,
0.14524239301681519,
-0.04945160821080208,
-0.0018110076198354363,
0.04077279195189476,
0.09016525745391846,
0.061205942183732986,
-0.00970389973372221,
-0.09504086524248123,
0.028603442013263702,
0.13703809678554535,
0.02547757513821125,
-0.047007814049720764,
0.0553617961704731,
-0.04625755548477173,
-0.017953090369701385,
0.10727280378341675,
-0.09177297353744507,
0.0324135422706604,
-0.006514831446111202,
-0.07346007972955704,
-0.04987010732293129,
0.044912371784448624,
0.008681527338922024,
-0.006311011500656605,
0.0920504480600357,
-0.07624366879463196,
0.01004171371459961,
-0.07211863994598389,
-0.11356712132692337,
0.03335230052471161,
-0.07918647676706314,
0.002383711514994502,
-0.13296203315258026,
-0.1950114369392395,
-0.008939377032220364,
0.05521024391055107,
-0.044205181300640106,
-0.026103533804416656,
-0.031376536935567856,
-0.0880991667509079,
0.033578407019376755,
-0.026383349671959877,
0.04684054106473923,
-0.08017268031835556,
0.09813471138477325,
0.02518407441675663,
0.07914351671934128,
-0.052056703716516495,
0.04191889613866806,
-0.10472416877746582,
0.039165571331977844,
-0.20359566807746887,
0.04313226044178009,
-0.06689296662807465,
0.0710156187415123,
-0.09424233436584473,
-0.10334757715463638,
0.018303323537111282,
-0.03114168904721737,
0.09245143085718155,
0.10338395833969116,
-0.16238528490066528,
-0.0371377170085907,
0.1756473183631897,
-0.12320062518119812,
-0.15472638607025146,
0.11435962468385696,
-0.04133172705769539,
-0.018504632636904716,
0.05890024080872536,
0.16659963130950928,
0.05962254852056503,
-0.11653048545122147,
-0.04202904552221298,
-0.0536867156624794,
0.048346128314733505,
-0.08097684383392334,
0.07871029525995255,
0.02788914553821087,
0.018309876322746277,
0.018402179703116417,
-0.03313933312892914,
0.0509030856192112,
-0.09574344754219055,
-0.08638621121644974,
-0.04994757100939751,
-0.09120604395866394,
0.02080760896205902,
0.05551699176430702,
0.04468236491084099,
-0.12101170420646667,
-0.0905255377292633,
0.02506299316883087,
0.09131423383951187,
-0.07448459416627884,
0.013572629541158676,
-0.08134972304105759,
0.11171729117631912,
-0.09169892221689224,
-0.024279868230223656,
-0.16466949880123138,
-0.07647334039211273,
0.03464686870574951,
-0.010892597027122974,
-0.02075750008225441,
-0.07411247491836548,
0.06476305425167084,
0.0953173041343689,
-0.05339948087930679,
-0.05874811112880707,
-0.03325489163398743,
0.009764005430042744,
-0.10268477350473404,
-0.18743175268173218,
-0.04291971027851105,
-0.04368329420685768,
0.12268263101577759,
-0.18494746088981628,
0.027748897671699524,
0.029400669038295746,
0.12730960547924042,
0.051025547087192535,
-0.02320200391113758,
-0.007634809240698814,
0.05461243540048599,
-0.03982192650437355,
-0.08659108728170395,
0.0552731454372406,
0.03542786464095116,
-0.04235424846410751,
-0.010698924772441387,
-0.1272379755973816,
0.17247098684310913,
0.13901874423027039,
-0.023293890058994293,
-0.08068637549877167,
-0.012846214696764946,
-0.058732062578201294,
-0.027252452448010445,
-0.0678570419549942,
0.01655462011694908,
0.07626362890005112,
0.005632023327052593,
0.1513020098209381,
-0.0920877754688263,
-0.019371027126908302,
0.05627978965640068,
-0.027252197265625,
-0.021429648622870445,
0.07521793991327286,
0.06670137494802475,
-0.11962780356407166,
0.15104784071445465,
0.15225660800933838,
-0.06496446579694748,
0.10682963579893112,
-0.05150636285543442,
-0.07196355611085892,
-0.02109009586274624,
-0.00024593964917585254,
0.01919388398528099,
0.14604206383228302,
-0.05515056103467941,
-0.004566350020468235,
0.03544091805815697,
0.01987593062222004,
-0.005241636652499437,
-0.1957942098379135,
-0.008311831392347813,
0.015277884900569916,
-0.05961274728178978,
-0.002131191547960043,
-0.020901411771774292,
0.01625581458210945,
0.10791638493537903,
0.0003962949849665165,
-0.1084398478269577,
0.042287684977054596,
0.006404009182006121,
-0.07451333105564117,
0.19015289843082428,
-0.09475357830524445,
-0.19074545800685883,
-0.10730785876512527,
-0.052814338356256485,
-0.07031939923763275,
0.011954405345022678,
0.07281046360731125,
-0.05785427615046501,
-0.0643882155418396,
-0.11215855181217194,
-0.07019011676311493,
0.04070255160331726,
0.03467550501227379,
0.03902602940797806,
-0.002154181245714426,
0.08327959477901459,
-0.0878511443734169,
-0.02600000984966755,
-0.024690428748726845,
-0.030178187415003777,
0.07007840275764465,
0.016786430031061172,
0.11135784536600113,
0.10168614238500595,
-0.04155122488737106,
0.037258345633745193,
-0.03559993952512741,
0.2316797822713852,
-0.055755309760570526,
-0.007750051096081734,
0.1332509070634842,
0.006485156714916229,
0.07203298062086105,
0.14563894271850586,
0.039219800382852554,
-0.10374832898378372,
0.01786772906780243,
0.008490355685353279,
-0.04387212172150612,
-0.18026110529899597,
-0.04951009899377823,
-0.03260304033756256,
0.00799762737005949,
0.12989448010921478,
0.043302878737449646,
0.039694976061582565,
0.08204766362905502,
0.002970475470647216,
0.05443699657917023,
-0.009460936300456524,
0.10566829890012741,
0.08340967446565628,
0.07313121855258942,
0.1408754289150238,
-0.047226980328559875,
-0.024236327037215233,
0.05930163338780403,
-0.009564290754497051,
0.2369934767484665,
-0.016319362446665764,
0.0797608271241188,
0.043266646564006805,
0.19373652338981628,
0.0231384988874197,
0.07443685084581375,
-0.01070879865437746,
-0.009463420137763023,
-0.011788379400968552,
-0.05917121097445488,
-0.030881857499480247,
0.027720140293240547,
-0.07797298580408096,
0.04029864817857742,
-0.12097200751304626,
0.022248797118663788,
0.047908417880535126,
0.2859695851802826,
0.06970540434122086,
-0.4102894067764282,
-0.08224211633205414,
0.005754371173679829,
-0.005435552913695574,
-0.052886608988046646,
0.011058858595788479,
0.10670430958271027,
-0.06832607090473175,
0.09133214503526688,
-0.09119869023561478,
0.0828748270869255,
-0.046003878116607666,
0.010552874766290188,
0.07482132315635681,
0.07126905024051666,
-0.003193608717992902,
0.04146899655461311,
-0.24570812284946442,
0.2758527398109436,
0.01573404110968113,
0.08172077685594559,
-0.057872410863637924,
0.006523746531456709,
0.043879881501197815,
0.08031705021858215,
0.08907555043697357,
-0.017709052190184593,
-0.13008849322795868,
-0.20313498377799988,
-0.11927749216556549,
0.021949997171759605,
0.06261035799980164,
0.009492412209510803,
0.1032349243760109,
-0.00892652478069067,
-0.015954921022057533,
0.0416061207652092,
-0.021459706127643585,
-0.10512280464172363,
-0.08170466870069504,
-0.00016812725516501814,
0.06214030832052231,
0.020140303298830986,
-0.07971566915512085,
-0.11311455070972443,
-0.07384984940290451,
0.14030322432518005,
0.018314303830266,
-0.06400322169065475,
-0.12808379530906677,
0.07479646801948547,
0.08788636326789856,
-0.08197642862796783,
0.06423503160476685,
-0.014668875373899937,
0.12225612252950668,
0.028018543496727943,
-0.08409639447927475,
0.10098353773355484,
-0.08052834123373032,
-0.1915580928325653,
-0.05354732275009155,
0.09701887518167496,
0.009106028825044632,
0.039801545441150665,
0.018287653103470802,
0.04782671481370926,
-0.005832018796354532,
-0.07024657726287842,
0.04386865720152855,
0.00396133866161108,
0.10680045932531357,
0.011409195140004158,
-0.02597907930612564,
-0.04347683861851692,
-0.04242600500583649,
-0.01966642588376999,
0.12837441265583038,
0.26049238443374634,
-0.09589853137731552,
0.015142492018640041,
0.07783445715904236,
-0.03923808038234711,
-0.1855407953262329,
0.02735893614590168,
0.05681629851460457,
-0.0012113852426409721,
0.017416518181562424,
-0.13987883925437927,
0.07135207951068878,
0.1303667277097702,
-0.04460206627845764,
0.08139341324567795,
-0.264053612947464,
-0.12039972096681595,
0.10306785255670547,
0.15700893104076385,
0.09421779215335846,
-0.16828642785549164,
-0.03219949081540108,
-0.03509249538183212,
-0.13050971925258636,
0.13912849128246307,
-0.1007067859172821,
0.09866072237491608,
-0.024044815450906754,
0.043944161385297775,
0.0022095420863479376,
-0.05965298041701317,
0.12695787847042084,
-0.010092640295624733,
0.11285912245512009,
-0.0722939744591713,
0.033532824367284775,
0.07171466946601868,
-0.0904707983136177,
0.07994365692138672,
-0.05370686575770378,
0.05993180349469185,
-0.0790250226855278,
-0.007995223626494408,
-0.06997640430927277,
0.020462071523070335,
-0.01609676517546177,
-0.03877745568752289,
-0.044017545878887177,
0.04033104330301285,
0.05609242618083954,
-0.020258910953998566,
0.16831107437610626,
0.049200333654880524,
0.12650951743125916,
0.1359757035970688,
0.05899842455983162,
-0.08768575638532639,
-0.0346914678812027,
-0.02193325012922287,
-0.05148734524846077,
0.056193482130765915,
-0.14040519297122955,
0.04963162541389465,
0.12629945576190948,
0.0020823830273002386,
0.13253380358219147,
0.0589417926967144,
-0.035215798765420914,
0.028440289199352264,
0.08088899403810501,
-0.16519708931446075,
-0.06346447020769119,
0.01252311747521162,
0.04282938316464424,
-0.10133003443479538,
0.0632118508219719,
0.124659463763237,
-0.08332130312919617,
-0.007136145606637001,
-0.01391570083796978,
0.03480888530611992,
0.0018864574376493692,
0.1869126409292221,
0.06427021324634552,
0.03838271275162697,
-0.10269288718700409,
0.10339333117008209,
0.06456591933965683,
-0.09445358067750931,
0.03209793195128441,
0.06991808861494064,
-0.10721813142299652,
-0.036957357078790665,
0.04736212641000748,
0.16228295862674713,
-0.05886285752058029,
-0.07705837488174438,
-0.13414043188095093,
-0.10622122138738632,
0.06846268475055695,
0.16368918120861053,
0.0767378956079483,
0.012669759802520275,
0.00798884592950344,
-0.008220742456614971,
-0.12297625094652176,
0.11208675801753998,
0.05389939248561859,
0.09652296453714371,
-0.1633146107196808,
0.0995892658829689,
0.00469030998647213,
0.03648030385375023,
-0.02721364237368107,
0.0299494881182909,
-0.10069430619478226,
-0.0002258537133457139,
-0.13819454610347748,
0.036256078630685806,
-0.06933926045894623,
-0.005859993398189545,
-0.011136619374155998,
-0.05648110434412956,
-0.062342919409275055,
0.025622528046369553,
-0.09580180048942566,
-0.0295123104006052,
0.022296935319900513,
0.030977031216025352,
-0.13508915901184082,
-0.05340084433555603,
-0.002478300593793392,
-0.08057353645563126,
0.07784753292798996,
0.03128361701965332,
0.009781189262866974,
0.01158168911933899,
-0.09064999967813492,
-0.012003450654447079,
0.07709144055843353,
-0.006087688263505697,
0.06742043048143387,
-0.1085294634103775,
-0.0034066529478877783,
0.02783856727182865,
0.009428686462342739,
0.022405099123716354,
0.11717433482408524,
-0.1241808831691742,
0.0031160786747932434,
-0.023504380136728287,
-0.045702748000621796,
-0.04942347854375839,
0.054510727524757385,
0.11431184411048889,
0.019511807709932327,
0.19846321642398834,
-0.10307787358760834,
0.009822633117437363,
-0.20666855573654175,
-0.012433069758117199,
-0.01898270472884178,
-0.12406739592552185,
-0.10856971889734268,
-0.014653908088803291,
0.07262085378170013,
-0.0539972223341465,
0.11144039779901505,
0.030705824494361877,
0.05580960214138031,
0.03868643939495087,
-0.032201237976551056,
0.0027235185261815786,
0.024271707981824875,
0.16060815751552582,
0.0203535258769989,
-0.03848055750131607,
0.07666908204555511,
0.026997625827789307,
0.10299726575613022,
0.05950460955500603,
0.16769705712795258,
0.13920573890209198,
0.02922063320875168,
0.09419184178113937,
0.06433692574501038,
-0.05530412122607231,
-0.1440768837928772,
0.0029073276091367006,
-0.04835439473390579,
0.13292263448238373,
-0.005879690404981375,
0.15694108605384827,
0.09600207954645157,
-0.15637335181236267,
0.02234077826142311,
-0.03583693876862526,
-0.0768999308347702,
-0.09141707420349121,
-0.07278615236282349,
-0.10969208925962448,
-0.14631138741970062,
0.0013247046153992414,
-0.11474441736936569,
0.018551267683506012,
0.1176694855093956,
0.010129645466804504,
-0.00772353308275342,
0.12687507271766663,
0.02319120615720749,
0.030842766165733337,
0.06765618175268173,
0.011917171068489552,
-0.02964659593999386,
-0.027129456400871277,
-0.09294518828392029,
0.01392856240272522,
0.010950651951134205,
0.04527604207396507,
-0.02383841760456562,
-0.0095882723107934,
0.05436183139681816,
0.007097611203789711,
-0.1155359297990799,
0.011736624874174595,
0.01877085492014885,
0.052216872572898865,
0.04649461433291435,
0.02744375728070736,
0.027780966833233833,
0.006926452275365591,
0.1907292902469635,
-0.06834859400987625,
-0.04298285394906998,
-0.13121016323566437,
0.18845239281654358,
0.011864435859024525,
-0.02995993196964264,
0.039833202958106995,
-0.09455930441617966,
0.005194381810724735,
0.16304923593997955,
0.15432420372962952,
-0.049290966242551804,
-0.00595991313457489,
-0.03625734895467758,
-0.020076796412467957,
-0.036995068192481995,
0.1124468520283699,
0.11255006492137909,
0.03736346960067749,
-0.07553404569625854,
-0.038362227380275726,
-0.06091081351041794,
-0.007847901433706284,
-0.05979704484343529,
0.02113453485071659,
-0.005719600711017847,
0.008805104531347752,
-0.05837024003267288,
0.06225590780377388,
-0.004149627406150103,
-0.06660290062427521,
0.06094364449381828,
-0.18216249346733093,
-0.1711307317018509,
0.006022729445248842,
0.06284996122121811,
0.017528431490063667,
0.03192145749926567,
-0.02814686857163906,
0.015233688987791538,
0.08464355766773224,
-0.03379210829734802,
-0.06366854906082153,
-0.10967084765434265,
0.07268806546926498,
-0.09694577753543854,
0.2585825026035309,
-0.023478040471673012,
0.052058618515729904,
0.11813867092132568,
0.033815111964941025,
-0.1299436241388321,
0.05926826223731041,
0.04453502967953682,
-0.0407232828438282,
0.03203534334897995,
0.11282510310411453,
-0.04381243884563446,
0.0927264466881752,
0.04878914728760719,
-0.11679692566394806,
-0.02867439016699791,
-0.049869682639837265,
-0.03866856172680855,
-0.04743188992142677,
-0.027874071151018143,
-0.0398249477148056,
0.13141170144081116,
0.16090452671051025,
-0.047355033457279205,
-0.005920625291764736,
-0.05582083761692047,
0.03613289073109627,
0.06122034788131714,
-0.0004482849908526987,
-0.025678616017103195,
-0.24004293978214264,
0.025473110377788544,
0.0706208273768425,
0.009444157592952251,
-0.2320079356431961,
-0.08830077201128006,
-0.008485476486384869,
-0.05945335328578949,
-0.10198653489351273,
0.09979701787233353,
0.07187510281801224,
0.04467172548174858,
-0.06614070385694504,
-0.0015594259602949023,
-0.071863554418087,
0.15015101432800293,
-0.13686153292655945,
-0.08900303393602371
] |
null | null |
transformers
|
# detr_beyond_words (WIP)
[facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) fine tuned on [Beyond Words](https://github.com/LibraryOfCongress/newspaper-navigator/tree/master/beyond_words_data).
|
{"license": "mit", "tags": ["object-detection"], "widget": [{"src": "https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/19.jpg", "example_title": "page"}, {"src": "https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/65.jpg", "example_title": "page2"}]}
|
object-detection
|
davanstrien/detr_beyond_words
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"detr",
"object-detection",
"license:mit",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #safetensors #detr #object-detection #license-mit #endpoints_compatible #region-us
|
# detr_beyond_words (WIP)
facebook/detr-resnet-50 fine tuned on Beyond Words.
|
[
"# detr_beyond_words (WIP) \n\nfacebook/detr-resnet-50 fine tuned on Beyond Words."
] |
[
"TAGS\n#transformers #pytorch #tensorboard #safetensors #detr #object-detection #license-mit #endpoints_compatible #region-us \n",
"# detr_beyond_words (WIP) \n\nfacebook/detr-resnet-50 fine tuned on Beyond Words."
] |
[
43,
30
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #detr #object-detection #license-mit #endpoints_compatible #region-us \n# detr_beyond_words (WIP) \n\nfacebook/detr-resnet-50 fine tuned on Beyond Words."
] |
[
-0.06770168989896774,
0.09592385590076447,
-0.006893973797559738,
0.049094051122665405,
0.07376394420862198,
-0.07788718491792679,
0.0959085002541542,
0.07786114513874054,
0.09224028140306473,
0.021394608542323112,
0.08846970647573471,
0.1400718092918396,
-0.014290574006736279,
0.05178318917751312,
-0.05457688495516777,
-0.12202369421720505,
0.083591029047966,
-0.019358709454536438,
0.011168540455400944,
0.11621885001659393,
0.04104756936430931,
-0.08734358102083206,
0.05115716531872749,
-0.01063060574233532,
-0.1335822492837906,
0.05487032234668732,
0.02405274100601673,
-0.09513212740421295,
0.11527951061725616,
0.0029169227927923203,
0.11501768231391907,
0.08933721482753754,
-0.02888316847383976,
-0.11867184191942215,
0.05684139207005501,
0.06502839177846909,
-0.12263958156108856,
0.025689570233225822,
0.02949470281600952,
-0.13684654235839844,
0.034229837357997894,
-0.014519228599965572,
-0.00505230575799942,
0.0507727675139904,
-0.06635095179080963,
-0.1474509984254837,
-0.024492669850587845,
0.17100068926811218,
0.017537957057356834,
0.11971043050289154,
-0.02655562199652195,
0.20573443174362183,
-0.023439614102244377,
0.1068752333521843,
0.17008930444717407,
-0.3507031202316284,
0.0032844706438481808,
0.11228819191455841,
0.046032339334487915,
0.043141718953847885,
-0.08070997893810272,
0.02687133103609085,
0.003126984927803278,
0.036838825792074203,
0.005979589652270079,
-0.01372298039495945,
0.08008041977882385,
-0.005993208382278681,
-0.1427326500415802,
0.04207311198115349,
0.07035373896360397,
-0.00581607548519969,
0.03491523116827011,
-0.06861155480146408,
-0.14917810261249542,
-0.0005999753484502435,
0.013668789528310299,
-0.05504914000630379,
-0.03848109021782875,
0.0520934984087944,
-0.08218293637037277,
-0.04375838115811348,
-0.105338454246521,
-0.0004644463479053229,
-0.20686687529087067,
0.11352144181728363,
0.04503312334418297,
0.02351244166493416,
-0.14902056753635406,
0.06563033163547516,
0.10871604830026627,
-0.1149769052863121,
0.004786500241607428,
-0.11032175272703171,
0.0632251650094986,
-0.0015017100377008319,
-0.08846056461334229,
-0.10445410013198853,
0.12891508638858795,
0.08199156075716019,
0.021069567650556564,
0.03336438164114952,
-0.10441069304943085,
0.09978222101926804,
0.03429124504327774,
-0.05665574222803116,
-0.053914956748485565,
0.04508677497506142,
0.04790754243731499,
-0.007205743342638016,
0.026434767991304398,
-0.053064849227666855,
-0.0662633404135704,
0.038349803537130356,
0.0489053912460804,
0.04469478875398636,
0.04866030439734459,
0.04996027424931526,
-0.009134176187217236,
-0.01115504838526249,
0.11460724472999573,
-0.10610659420490265,
-0.04225696623325348,
0.034497711807489395,
0.01537057664245367,
0.08504612743854523,
0.01274083461612463,
-0.0030751382000744343,
-0.01426797267049551,
0.022689606994390488,
-0.07327982783317566,
-0.021588413044810295,
-0.0025058926548808813,
-0.07838188856840134,
0.09716564416885376,
0.027432776987552643,
-0.010709821246564388,
-0.22321727871894836,
-0.03832578659057617,
-0.012596693821251392,
0.008106504566967487,
0.03723621368408203,
0.05994409695267677,
-0.011346425861120224,
-0.06153419241309166,
0.003223450155928731,
-0.034947626292705536,
-0.17769047617912292,
-0.03399503603577614,
0.09613876789808273,
-0.03973807394504547,
0.13159939646720886,
-0.1394844353199005,
0.011545908637344837,
-0.11535369604825974,
-0.01501581072807312,
-0.07395108044147491,
0.009159591048955917,
-0.13782206177711487,
0.10281676054000854,
-0.04555768147110939,
0.010508464649319649,
-0.1189003512263298,
0.02145376056432724,
-0.03088483214378357,
0.14792658388614655,
-0.25412461161613464,
-0.07196138799190521,
0.27428939938545227,
-0.149575337767601,
-0.09897013008594513,
0.0803728848695755,
-0.0171035286039114,
-0.04113442450761795,
0.11673478037118912,
0.31112077832221985,
0.03507877141237259,
-0.12007021903991699,
-0.1009463369846344,
0.08139684796333313,
-0.1595657765865326,
-0.09201912581920624,
-0.0384678989648819,
0.013011893257498741,
0.059736672788858414,
0.012812233529984951,
0.018624091520905495,
0.10051937401294708,
-0.02313060685992241,
-0.07718842476606369,
-0.05289953947067261,
-0.011580955237150192,
0.09037808328866959,
-0.02121851034462452,
0.015310324728488922,
-0.05746324360370636,
-0.021339230239391327,
0.10679460316896439,
-0.006481541786342859,
0.021057354286313057,
0.0376700758934021,
-0.14775650203227997,
0.0792836844921112,
0.05901027098298073,
0.033785030245780945,
-0.1824479103088379,
-0.12061543017625809,
-0.0827297493815422,
-0.06756420433521271,
0.06812023371458054,
0.1454448401927948,
0.09045922756195068,
-0.038087017834186554,
0.020675672218203545,
-0.0003301525430288166,
0.0479879230260849,
0.036662403494119644,
-0.013740841299295425,
-0.12423195689916611,
0.06816986948251724,
-0.06070082634687424,
-0.03627100959420204,
-0.08098089694976807,
0.07777474075555801,
0.24484241008758545,
0.13470442593097687,
-0.018413538113236427,
-0.0009564323700033128,
-0.019089601933956146,
0.01810019090771675,
-0.020899398252367973,
-0.026260675862431526,
0.05408257246017456,
0.013598215766251087,
-0.09773503243923187,
0.10863763839006424,
-0.10843686759471893,
0.24284380674362183,
0.22201067209243774,
-0.14512555301189423,
0.031914450228214264,
0.045869406312704086,
-0.024784378707408905,
0.005632814951241016,
0.03457207232713699,
-0.015887614339590073,
0.11470559239387512,
0.047527868300676346,
0.07991276681423187,
-0.012773831374943256,
0.003565073013305664,
0.03427216783165932,
-0.040060363709926605,
-0.06779298931360245,
0.025256147608160973,
0.04605845734477043,
-0.22030285000801086,
0.12910839915275574,
0.2319347858428955,
0.03497820347547531,
0.13508079946041107,
-0.03367966040968895,
0.014735252596437931,
0.04903542622923851,
0.07413458824157715,
-0.05896085128188133,
0.04705501347780228,
-0.09407472610473633,
-0.047615956515073776,
0.0021455143578350544,
-0.009756152518093586,
0.07319429516792297,
-0.08076120167970657,
-0.04867391288280487,
-0.014444032683968544,
0.0035674923565238714,
-0.10387223213911057,
0.09060186892747879,
0.008311823010444641,
0.06929702311754227,
-0.041980642825365067,
-0.14622266590595245,
0.04333287104964256,
-0.03935360908508301,
-0.036984268575906754,
0.14318867027759552,
-0.08063071966171265,
-0.3803805112838745,
-0.03548675402998924,
-0.08081299811601639,
-0.06999238580465317,
-0.02223273739218712,
0.08677946031093597,
-0.16738514602184296,
0.017941826954483986,
-0.029986020177602768,
0.026390530169010162,
0.030010154470801353,
0.033929064869880676,
-0.00034682394471019506,
0.03088708035647869,
0.02113243006169796,
-0.12920022010803223,
-0.008371083065867424,
-0.08649256825447083,
-0.08782894164323807,
0.06331467628479004,
0.028441552072763443,
0.07267901301383972,
0.13928747177124023,
0.023667359724640846,
0.026519905775785446,
-0.024556953459978104,
0.1942664235830307,
-0.06392016261816025,
-0.025665441527962685,
0.12402720004320145,
-0.02875511907041073,
0.08284827321767807,
0.11319958418607712,
0.028185628354549408,
-0.09759131073951721,
0.031306192278862,
0.08094064891338348,
-0.07410457730293274,
-0.14341960847377777,
-0.08622543513774872,
-0.02946365997195244,
0.043129630386829376,
0.02414799854159355,
0.08405453711748123,
0.06457002460956573,
0.041086532175540924,
0.023017382249236107,
-0.1374914050102234,
-0.0023987977765500546,
0.06348677724599838,
0.18924866616725922,
-0.04642920196056366,
0.13591144979000092,
-0.05624229088425636,
-0.0869339257478714,
0.07268797606229782,
0.0649419054389,
0.1276143491268158,
0.04724569618701935,
-0.04857531934976578,
0.11644290387630463,
0.19245971739292145,
0.11643039435148239,
0.03272378072142601,
-0.0036961156874895096,
-0.059390291571617126,
0.02608306333422661,
-0.03616389259696007,
0.004429126624017954,
-0.018018122762441635,
-0.027071645483374596,
-0.11151581257581711,
0.013348789885640144,
-0.01908578723669052,
0.09579550474882126,
0.06235193461179733,
-0.026866650208830833,
-0.15163873136043549,
0.030460994690656662,
0.01481869351118803,
-0.03798788785934448,
0.006697094067931175,
0.11410393565893173,
0.10571859776973724,
-0.006869060453027487,
0.04530850425362587,
-0.07148002088069916,
0.040069617331027985,
-0.034951724112033844,
0.06900259852409363,
-0.07025466114282608,
-0.0981208011507988,
0.031039658933877945,
0.009491415694355965,
-0.18077412247657776,
0.1299082338809967,
0.0011763458605855703,
0.00117409264203161,
-0.027008093893527985,
-0.052943624556064606,
0.018526384606957436,
0.0743725448846817,
0.116755910217762,
0.008527074940502644,
-0.004733119625598192,
-0.007217247970402241,
-0.08888524025678635,
0.04494781047105789,
0.10829924046993256,
0.02058594860136509,
-0.00812361016869545,
0.03843587264418602,
-0.018478678539395332,
0.016606517136096954,
0.09265182912349701,
-0.09662218391895294,
-0.11071120947599411,
0.01792137324810028,
0.09375862777233124,
-0.046440817415714264,
-0.03858574852347374,
-0.07827167958021164,
-0.15557585656642914,
0.16131913661956787,
-0.17270027101039886,
-0.02238248847424984,
-0.0637848973274231,
-0.05211123451590538,
0.004264465533196926,
-0.06654703617095947,
0.05418860539793968,
-0.019443141296505928,
0.006963419262319803,
-0.13294973969459534,
-0.22702789306640625,
0.158879816532135,
-0.07032810896635056,
-0.02126723900437355,
-0.014451850205659866,
0.15902863442897797,
0.0585615299642086,
-0.013334441930055618,
0.04106428101658821,
-0.02057597227394581,
-0.04733804613351822,
-0.10227179527282715,
0.03088126890361309,
-0.02974880486726761,
-0.07970916479825974,
-0.09661296755075455,
-0.017402632161974907,
-0.12446936964988708,
-0.02879384532570839,
0.05399152263998985,
0.20153546333312988,
0.15899913012981415,
-0.05101393535733223,
0.1337178647518158,
0.15532827377319336,
0.015722958371043205,
-0.2948785126209259,
-0.010370499454438686,
-0.11784650385379791,
-0.04818626493215561,
0.041963182389736176,
-0.12970709800720215,
0.09640184044837952,
0.08239615708589554,
-0.031033484265208244,
0.1851855218410492,
-0.24239607155323029,
-0.09054704755544662,
0.18492844700813293,
-0.0012088031508028507,
0.36032819747924805,
-0.10421136021614075,
-0.06961527466773987,
-0.027816327288746834,
-0.11558013409376144,
0.1071121022105217,
-0.3014387786388397,
0.05727890506386757,
0.07059744000434875,
0.0850222110748291,
0.007021129131317139,
-0.06614510715007782,
0.0371074415743351,
0.0962255522608757,
0.08109927177429199,
-0.08417148888111115,
-0.046094466000795364,
0.049172256141901016,
0.022271646186709404,
-0.004958365578204393,
-0.08939184993505478,
0.016820697113871574,
0.08905414491891861,
-0.057301390916109085,
-0.11946949362754822,
0.10783544927835464,
0.02734353579580784,
-0.06237693876028061,
-0.006719772703945637,
0.0320722758769989,
0.007932746782898903,
0.0089346282184124,
0.19824784994125366,
-0.0971471518278122,
0.11522835493087769,
0.16363199055194855,
0.02524675615131855,
-0.09309471398591995,
-0.0346137210726738,
-0.021604817360639572,
-0.09623755514621735,
0.10540563613176346,
-0.13886886835098267,
0.028255747631192207,
0.08606834709644318,
0.005383130628615618,
-0.003732946002855897,
0.07764113694429398,
-0.044857777655124664,
-0.008416148833930492,
0.1262202113866806,
-0.168940007686615,
-0.19380557537078857,
0.0013024663785472512,
0.03390231356024742,
0.09129470586776733,
0.22818508744239807,
0.17523087561130524,
-0.03424958512187004,
-0.0013618995435535908,
0.014236459508538246,
-0.004157374147325754,
-0.0396345853805542,
0.020056765526533127,
0.07746266573667526,
0.026594053953886032,
-0.14181622862815857,
0.08317526429891586,
-0.01275497768074274,
-0.15412171185016632,
0.041315995156764984,
0.042691972106695175,
-0.13713018596172333,
-0.13333845138549805,
-0.14410844445228577,
0.042806971818208694,
-0.07508527487516403,
-0.03463083878159523,
-0.037959951907396317,
-0.08900002390146255,
-0.009954147972166538,
0.3136039972305298,
0.10385096073150635,
0.10520770400762558,
-0.000960878562182188,
-0.038843557238578796,
-0.006787450984120369,
0.0011388094862923026,
-0.06585399061441422,
0.02091185934841633,
-0.14274725317955017,
0.05418117344379425,
0.015157456509768963,
0.032984741032123566,
-0.08505702018737793,
-0.02054905891418457,
-0.08245275914669037,
0.00700415950268507,
-0.1257362961769104,
-0.07553993910551071,
-0.0979355052113533,
-0.027484431862831116,
0.020758438855409622,
-0.017619961872696877,
-0.017697742208838463,
0.01833842694759369,
-0.07459992170333862,
-0.01703607849776745,
0.04479539021849632,
-0.039848264306783676,
-0.18784260749816895,
0.013762430287897587,
0.015026434324681759,
0.009890494868159294,
0.0800192728638649,
0.09123092144727707,
-0.10872459411621094,
0.13510628044605255,
-0.1703546792268753,
-0.06554336100816727,
0.1300538331270218,
0.014798982068896294,
0.04332466796040535,
0.17991439998149872,
0.016934586688876152,
0.021911252290010452,
0.03278810903429985,
0.05131129175424576,
0.06888576596975327,
-0.10829846560955048,
0.024542074650526047,
-0.0162070132791996,
-0.04563530907034874,
-0.030297012999653816,
-0.07407167553901672,
0.12935824692249298,
0.07497204095125198,
0.15475359559059143,
-0.06735015660524368,
0.0013108227867633104,
-0.05518505722284317,
-0.000758036389015615,
0.031032970175147057,
-0.09404921531677246,
0.079806387424469,
-0.022838685661554337,
0.015301001258194447,
-0.07895864546298981,
0.23776552081108093,
-0.06678168475627899,
-0.2093467265367508,
0.06884720176458359,
-0.029885530471801758,
-0.06789128482341766,
-0.003602756420150399,
0.2067943960428238,
0.0948697105050087,
-0.053241290152072906,
-0.03631437569856644,
-0.020804964005947113,
0.01765390671789646,
-0.050158705562353134,
0.12545008957386017,
0.2280917912721634,
-0.024099964648485184,
0.05181067809462547,
0.15891431272029877,
0.028660699725151062,
-0.021611806005239487,
-0.0814330205321312,
-0.09286485612392426,
0.05640151724219322,
-0.06085774302482605,
-0.05567184090614319,
0.17293615639209747,
0.07640756666660309,
0.0008734259754419327,
-0.024065664038062096,
-0.020491674542427063,
-0.11294058710336685,
-0.11924184113740921,
-0.07138577103614807,
-0.05958936735987663,
0.056938160210847855,
-0.014441071078181267,
-0.05011181905865669,
0.03967749699950218,
0.06893423944711685,
-0.04719846695661545,
0.18829266726970673,
0.048487599939107895,
-0.09182257205247879,
0.0652269721031189,
-0.002224951284006238,
-0.07814958691596985,
0.03183002769947052,
-0.018165746703743935,
-0.02510770782828331,
0.027101442217826843,
-0.04201853647828102,
0.0010903889779001474,
-0.016058241948485374,
0.05161456763744354,
-0.15440215170383453,
-0.09397853165864944,
-0.06594546884298325,
0.07319355010986328,
-0.06379520148038864,
0.09357722103595734,
0.07658538967370987,
-0.03419861942529678,
-0.008923505432903767,
0.1757669299840927,
-0.038166776299476624,
-0.10536792129278183,
-0.01940401829779148,
0.07576605677604675,
0.0895417258143425,
0.12264726310968399,
-0.09365402162075043,
-0.0684976577758789,
-0.043264877051115036,
0.12087339907884598,
0.2963302731513977,
-0.10513041913509369,
0.0700622946023941,
0.013728506863117218,
0.055717431008815765,
0.010535906068980694,
0.08264917135238647,
0.15866003930568695,
0.28440147638320923,
-0.057448554784059525,
-0.10630583763122559,
-0.03548238053917885,
-0.0070442440919578075,
-0.12023460119962692,
0.033717118203639984,
0.03936450555920601,
0.0048105763271451,
-0.09967397898435593,
0.07864489406347275,
-0.16707205772399902,
0.05094832181930542,
-0.03621530160307884,
-0.11496715992689133,
-0.08970627933740616,
-0.04471404105424881,
0.10047268867492676,
0.03540206700563431,
0.0908450186252594,
0.0025658514350652695,
-0.03664369136095047,
0.04779600724577904,
0.01717391051352024,
-0.1781226098537445,
0.0062316241674125195,
0.04250079765915871,
0.047420017421245575,
0.027313200756907463,
-0.03667595610022545,
0.012945067137479782,
0.06873723119497299,
0.06582450866699219,
-0.005231049377471209,
0.12253858894109726,
0.0012871258659288287,
-0.10049942135810852,
-0.10231690853834152,
-0.027853120118379593,
0.03196491673588753,
0.04747874289751053,
0.07063943892717361,
-0.05937293916940689,
0.01692606322467327,
0.0016746707260608673,
-0.015068558976054192,
-0.09251381456851959,
0.07422490417957306,
-0.04868663102388382,
0.03701236471533775,
0.029325708746910095,
-0.029284071177244186,
0.012823699042201042,
-0.03917982801795006,
-0.0445973239839077,
0.032744210213422775,
-0.09497971832752228,
-0.07441305369138718,
-0.11364936828613281,
-0.03072931244969368,
-0.0012827825266867876,
0.0015685558319091797,
-0.1836635321378708,
-0.049703240394592285,
-0.00597127340734005,
0.05143432691693306,
-0.108563631772995,
-0.007833675481379032,
0.046532806009054184,
0.06275424361228943,
-0.0049087367951869965,
0.0370873287320137,
0.05351172387599945,
0.058086030185222626,
-0.10419721901416779,
-0.08634674549102783
] |
null | null | null |
# flyswot
## Model description
In progress model for detecting 'fake' flysheets
## Intended uses & limitations
Not currently intended for public consumption...
#### Limitations and bias
Not currently intended for public consumption...
## Training data
TODO
## Eval results
|
{}
| null |
davanstrien/flyswot-test
|
[
"onnx",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#onnx #region-us
|
# flyswot
## Model description
In progress model for detecting 'fake' flysheets
## Intended uses & limitations
Not currently intended for public consumption...
#### Limitations and bias
Not currently intended for public consumption...
## Training data
TODO
## Eval results
|
[
"# flyswot",
"## Model description\n\nIn progress model for detecting 'fake' flysheets",
"## Intended uses & limitations\n\nNot currently intended for public consumption...",
"#### Limitations and bias\n\nNot currently intended for public consumption...",
"## Training data\n\nTODO",
"## Eval results"
] |
[
"TAGS\n#onnx #region-us \n",
"# flyswot",
"## Model description\n\nIn progress model for detecting 'fake' flysheets",
"## Intended uses & limitations\n\nNot currently intended for public consumption...",
"#### Limitations and bias\n\nNot currently intended for public consumption...",
"## Training data\n\nTODO",
"## Eval results"
] |
[
10,
5,
16,
18,
16,
5,
4
] |
[
"passage: TAGS\n#onnx #region-us \n# flyswot## Model description\n\nIn progress model for detecting 'fake' flysheets## Intended uses & limitations\n\nNot currently intended for public consumption...#### Limitations and bias\n\nNot currently intended for public consumption...## Training data\n\nTODO## Eval results"
] |
[
-0.036790866404771805,
0.04550186172127724,
-0.0015678845811635256,
0.12077319622039795,
-0.0067501249723136425,
-0.032519061118364334,
0.19994017481803894,
0.06438527256250381,
0.02924547903239727,
0.00474882684648037,
0.23932385444641113,
-0.02560751885175705,
0.06986729055643082,
0.17840948700904846,
-0.09550980478525162,
-0.06065836921334267,
0.03398697078227997,
-0.055012259632349014,
0.10297278314828873,
0.11694537103176117,
0.07741096615791321,
-0.008361552841961384,
0.07438149303197861,
0.06977903842926025,
-0.027197442948818207,
-0.06808899343013763,
0.05206514522433281,
-0.14521890878677368,
0.0804961621761322,
0.09497877210378647,
0.15553148090839386,
-0.01645616441965103,
0.05727997049689293,
-0.19057099521160126,
0.04412619769573212,
0.012070763856172562,
-0.052827171981334686,
0.04115813598036766,
0.003702053101733327,
0.002115203533321619,
0.2171376794576645,
0.07888305187225342,
-0.0143059641122818,
0.04848259687423706,
-0.13676337897777557,
0.06657997518777847,
-0.08830533921718597,
-0.11738060414791107,
-0.04925142228603363,
0.10032694786787033,
-0.02037876285612583,
0.279211163520813,
-0.019124755635857582,
0.07308308780193329,
0.12555363774299622,
-0.10474053025245667,
0.012960325926542282,
0.08564160019159317,
-0.050877895206213,
-0.074111707508564,
-0.06218871846795082,
0.05316779762506485,
0.04511408880352974,
0.043025799095630646,
-0.005621979013085365,
-0.026953816413879395,
-0.04692690074443817,
-0.008468112908303738,
-0.05675743147730827,
-0.10767456144094467,
0.1496196985244751,
0.12339711934328079,
-0.010015959851443768,
-0.20399270951747894,
-0.053765587508678436,
0.06090119853615761,
0.07299147546291351,
0.007690079975873232,
-0.06304574757814407,
0.029643407091498375,
0.006676702760159969,
-0.09970341622829437,
-0.08094409853219986,
-0.0004226069722790271,
0.009931894950568676,
0.005651038605719805,
-0.03994879871606827,
0.09236299991607666,
-0.16246549785137177,
0.018573028966784477,
0.06476345658302307,
-0.12087815999984741,
0.008116069249808788,
-0.16200126707553864,
0.10863014310598373,
0.024085603654384613,
0.04022969678044319,
0.03629259765148163,
0.13287372887134552,
0.06810401380062103,
0.06615301221609116,
-0.013473196886479855,
-0.05843067169189453,
0.06324168294668198,
0.09462344646453857,
0.009392122738063335,
-0.039981354027986526,
0.03819262608885765,
0.0592506006360054,
0.04316972941160202,
0.02604242041707039,
-0.056640107184648514,
-0.05591852590441704,
0.05663939192891121,
-0.033718645572662354,
0.06000600755214691,
-0.04189232364296913,
-0.06457461416721344,
-0.11270052939653397,
0.019459698349237442,
0.12495896965265274,
-0.02416248619556427,
-0.09176327288150787,
-0.02240527607500553,
-0.0457654744386673,
-0.046414077281951904,
0.12704665958881378,
0.04040247201919556,
0.0565732903778553,
0.013968323357403278,
-0.070097416639328,
0.021899839863181114,
-0.013309738598763943,
-0.04109528660774231,
-0.025809474289417267,
-0.03489375114440918,
0.1028747707605362,
-0.11700756102800369,
-0.20457690954208374,
-0.07484518736600876,
-0.04369775950908661,
-0.05447987839579582,
0.0021360807586461306,
-0.0336930975317955,
-0.09429676085710526,
-0.06985410302877426,
-0.010860821232199669,
-0.015380172990262508,
-0.13626371324062347,
0.06675907224416733,
-0.108784981071949,
0.016178905963897705,
0.013840262778103352,
-0.009831254370510578,
-0.18370552361011505,
-0.014837547205388546,
-0.012213506735861301,
0.05684192106127739,
-0.12650153040885925,
0.11127639561891556,
-0.07184289395809174,
-0.135915145277977,
-0.0393381267786026,
-0.008355094119906425,
0.05031152442097664,
0.26721155643463135,
-0.2083950787782669,
0.03583693876862526,
0.044584304094314575,
-0.10221151262521744,
-0.13515529036521912,
0.03817664086818695,
-0.10046873986721039,
0.25119829177856445,
-0.003980047535151243,
0.20323529839515686,
-0.06882178783416748,
-0.12894980609416962,
0.07535494118928909,
0.07675806432962418,
-0.13911697268486023,
0.09854649007320404,
0.05302399396896362,
-0.0950702652335167,
-0.13800081610679626,
-0.0648682713508606,
0.06821347773075104,
0.050303082913160324,
-0.05285901576280594,
-0.12355918437242508,
-0.03882061317563057,
-0.0930432453751564,
0.036538541316986084,
-0.017665257677435875,
0.04449697211384773,
-0.027376683428883553,
-0.018668649718165398,
-0.1691509336233139,
-0.013686327263712883,
0.07980073243379593,
-0.012539210729300976,
-0.12605994939804077,
0.008425315842032433,
0.03686445951461792,
-0.05328063294291496,
-0.07449408620595932,
-0.09901651740074158,
-0.05610622465610504,
-0.1314547061920166,
0.07539064437150955,
0.07246319949626923,
0.027166331186890602,
0.019111238420009613,
-0.011951016262173653,
0.035540271550416946,
-0.11382991820573807,
0.040660228580236435,
-0.01515207625925541,
-0.09899213910102844,
0.05483472719788551,
-0.04656785726547241,
-0.07757189869880676,
-0.27737799286842346,
0.0035623060539364815,
0.02786819450557232,
0.01003662683069706,
0.04727024957537651,
0.005242365878075361,
0.14726528525352478,
-0.025955593213438988,
0.014118839055299759,
-0.1228484958410263,
0.030256498605012894,
0.009492780081927776,
-0.20594201982021332,
-0.06670861691236496,
-0.023877836763858795,
0.23824812471866608,
0.11305353045463562,
-0.12901313602924347,
-0.08220034092664719,
0.08857495337724686,
-0.02592618204653263,
0.02394077181816101,
-0.161110982298851,
0.14380377531051636,
0.06892059743404388,
-0.010706654749810696,
0.05953097343444824,
-0.1199973002076149,
-0.004253558814525604,
0.08118835091590881,
-0.046310435980558395,
-0.09565195441246033,
0.023275261744856834,
0.06963659077882767,
-0.14215917885303497,
0.03648809343576431,
0.14475420117378235,
0.10609564930200577,
0.07765543460845947,
0.02512497641146183,
-0.047552574425935745,
-0.02679528295993805,
-0.03291311860084534,
-0.03433186188340187,
0.13843733072280884,
-0.05052270367741585,
0.10799811780452728,
0.08265197277069092,
0.04170798137784004,
0.05069032683968544,
-0.15736350417137146,
-0.14654462039470673,
-0.014371303841471672,
-0.06662052869796753,
-0.16053621470928192,
0.10488858819007874,
-0.027995364740490913,
0.06316082179546356,
-0.0667777955532074,
-0.0626281201839447,
0.09682245552539825,
-0.00861996877938509,
-0.10637874156236649,
0.11138385534286499,
-0.007167996373027563,
-0.16607342660427094,
-0.17327195405960083,
0.012069270014762878,
-0.12304996699094772,
0.05789291486144066,
0.08701622486114502,
-0.050754621624946594,
-0.05225280299782753,
-0.08785746246576309,
-0.022698603570461273,
0.006098359823226929,
0.03281354531645775,
0.013815205544233322,
0.05287875607609749,
0.04707995802164078,
-0.1163129210472107,
-0.008366312831640244,
0.012564895674586296,
0.03474720939993858,
0.05817246437072754,
0.004458610434085131,
0.08674532175064087,
0.024441491812467575,
0.045097317546606064,
-0.02070220559835434,
-0.08937034010887146,
0.3404330015182495,
-0.07182269543409348,
-0.08057574927806854,
0.13894210755825043,
-0.09605957567691803,
0.023451410233974457,
0.04278652369976044,
0.07530007511377335,
-0.18865804374217987,
0.033397238701581955,
-0.004076696000993252,
-0.1254463493824005,
-0.22881504893302917,
-0.06833785772323608,
0.05157417804002762,
-0.013982897624373436,
0.057026367634534836,
0.0780530571937561,
0.15798422694206238,
0.13098937273025513,
0.08218234032392502,
-0.008702460676431656,
0.03295183554291725,
0.0157285388559103,
-0.0018843448488041759,
0.0157324206084013,
0.027349594980478287,
-0.08145439624786377,
0.03784038871526718,
0.10460932552814484,
-0.08091911673545837,
0.21784605085849762,
0.07092894613742828,
-0.09059218317270279,
0.15895512700080872,
0.06811975687742233,
0.08323247730731964,
0.09173350036144257,
0.0966511145234108,
-0.018089743331074715,
-0.03930741921067238,
-0.029723821207880974,
-0.0464261919260025,
0.054516442120075226,
-0.04328952729701996,
-0.029039869084954262,
0.03308170288801193,
-0.036001041531562805,
0.06734263896942139,
-0.05945170298218727,
0.11412034183740616,
-0.1290477067232132,
-0.03987453877925873,
0.013429359532892704,
-0.031719692051410675,
-0.04498462378978729,
0.1468987762928009,
0.054328080266714096,
-0.2090124934911728,
0.08368682116270065,
-0.0412149615585804,
0.10719099640846252,
-0.0575895830988884,
0.0575878843665123,
0.0013707565376535058,
-0.1983633041381836,
-0.07566726207733154,
0.06824340671300888,
-0.23059546947479248,
0.3565737009048462,
0.00308148842304945,
0.07460282742977142,
-0.13616180419921875,
-0.04165087640285492,
0.03943241015076637,
-0.07424416393041611,
0.29789841175079346,
-0.014285631477832794,
-0.02349822409451008,
-0.04350915178656578,
-0.07553539425134659,
0.010078721679747105,
-0.02475547417998314,
0.10055398941040039,
-0.018896933645009995,
0.05651417002081871,
0.07505632191896439,
-0.01191707979887724,
-0.0940895527601242,
-0.24417096376419067,
-0.021808138117194176,
0.018977312371134758,
0.002778735477477312,
-0.0220075324177742,
0.013869404792785645,
-0.03573349118232727,
-0.2204684466123581,
0.011192386038601398,
-0.09776992350816727,
-0.04720306396484375,
-0.056776076555252075,
0.09767302125692368,
0.08614281564950943,
-0.00613384647294879,
0.009358770214021206,
-0.008281267248094082,
-0.07179653644561768,
-0.04008407145738602,
-0.0301374364644289,
0.06569679826498032,
-0.07407277077436447,
-0.19367070496082306,
0.019438501447439194,
0.001007632352411747,
0.10342419147491455,
0.027054542675614357,
-0.0676458552479744,
0.003875326132401824,
-0.07009822875261307,
-0.2166845053434372,
0.10878188163042068,
0.020712176337838173,
-0.0666067898273468,
0.11228743940591812,
0.16871756315231323,
-0.044032637029886246,
-0.08713337779045105,
-0.026764201000332832,
0.017297880724072456,
0.389205664396286,
-0.042983539402484894,
0.11037372797727585,
0.08441469818353653,
-0.06619492918252945,
-0.11948610097169876,
0.007270855829119682,
-0.1470399647951126,
0.017690420150756836,
0.0822860449552536,
-0.0628233328461647,
0.051569484174251556,
0.11814136058092117,
0.004643735941499472,
0.096938855946064,
-0.24613817036151886,
-0.15218737721443176,
0.1465795636177063,
-0.02661418542265892,
0.27968719601631165,
-0.03603406250476837,
-0.04761018976569176,
-0.020039329305291176,
-0.026221510022878647,
0.02543550357222557,
-0.11868816614151001,
0.015801817178726196,
0.06550817936658859,
0.052840448915958405,
-0.009615317918360233,
-0.002003711648285389,
0.25399842858314514,
0.02725788950920105,
0.17347264289855957,
-0.058134112507104874,
-0.13130183517932892,
0.18256068229675293,
0.01276630163192749,
0.02781803160905838,
0.13756044209003448,
0.06953319907188416,
-0.12318366020917892,
-0.019862281158566475,
-0.039492443203926086,
0.1501494199037552,
0.028578706085681915,
-0.04282550513744354,
-0.12570185959339142,
-0.012571154162287712,
0.013752926141023636,
0.03746950998902321,
0.2373650074005127,
-0.08205553889274597,
-0.009244829416275024,
0.0340927354991436,
0.11628054082393646,
0.0337974838912487,
0.08139796555042267,
0.0008434515330009162,
-0.06356193125247955,
0.045259393751621246,
-0.08771177381277084,
-0.059490982443094254,
0.062325600534677505,
0.045082587748765945,
-0.0003131789853796363,
0.06147734075784683,
-0.01307695358991623,
0.16540534794330597,
0.051769472658634186,
-0.09869115054607391,
-0.07033349573612213,
-0.02195422537624836,
-0.01982760988175869,
-0.015822758898139,
-0.028825702145695686,
0.08737753331661224,
-0.015695741400122643,
0.015548177994787693,
-0.06206967309117317,
0.03586366027593613,
-0.07519552111625671,
0.02340005338191986,
0.023369302973151207,
-0.03976701945066452,
-0.12258212268352509,
0.1303892880678177,
0.024445995688438416,
-0.009248695336282253,
-0.005539838690310717,
-0.10050893574953079,
-0.09167131781578064,
-0.04571809247136116,
-0.08519530296325684,
0.15861043334007263,
-0.09527953714132309,
-0.046670570969581604,
-0.04168694093823433,
0.007584405597299337,
-0.04172544553875923,
0.20105093717575073,
0.12870468199253082,
0.02682691626250744,
-0.0604168102145195,
-0.046128448098897934,
-0.023494619876146317,
-0.004305696114897728,
0.07872793078422546,
-0.061827193945646286,
-0.17102360725402832,
-0.06378147751092911,
0.07073090970516205,
0.1068892851471901,
-0.06211681663990021,
0.013178511522710323,
-0.12121909111738205,
0.013572863303124905,
-0.025639841333031654,
0.07899457961320877,
-0.08485749363899231,
0.04632919654250145,
0.012979975901544094,
-0.05617501586675644,
-0.07770228385925293,
0.0006995106814429164,
-0.05151370167732239,
0.04027894511818886,
0.05418000742793083,
0.09497150778770447,
-0.0452866367995739,
-0.006911521311849356,
0.06724195927381516,
-0.03581773117184639,
0.08475048840045929,
0.05219874903559685,
-0.0973944440484047,
-0.01574704423546791,
-0.07070232927799225,
0.016184255480766296,
0.05787913501262665,
-0.02629394270479679,
-0.005694257561117411,
-0.06766817718744278,
-0.023138761520385742,
-0.018631627783179283,
-0.019915930926799774,
0.06474394351243973,
0.05024055764079094,
-0.0770210549235344,
-0.02258734405040741,
0.19629280269145966,
-0.021005064249038696,
0.02027820609509945,
-0.05130958557128906,
0.12929290533065796,
-0.021381286904215813,
0.18692080676555634,
0.027932746335864067,
0.07426335662603378,
-0.034566499292850494,
-0.008424622938036919,
-0.053875166922807693,
-0.04563261941075325,
-0.008680015802383423,
0.006790556479245424,
0.034744665026664734,
-0.03699827939271927,
0.37241965532302856,
0.04571007564663887,
0.06914153695106506,
0.04118124768137932,
0.08942773193120956,
-0.08057402074337006,
-0.012054163962602615,
0.22847524285316467,
0.01692848466336727,
0.012273396365344524,
-0.030244795605540276,
0.002982121892273426,
-0.0063023814000189304,
-0.1445600539445877,
0.21969367563724518,
0.0706275925040245,
-0.03696226701140404,
0.09151903539896011,
-0.09128667414188385,
-0.05841664969921112,
-0.03455342724919319,
0.015898913145065308,
0.10684121400117874,
0.030337976291775703,
-0.0027703994419425726,
-0.1699824184179306,
0.09941233694553375,
-0.05294236168265343,
0.03430577740073204,
0.009266087785363197,
-0.05298615247011185,
-0.14744368195533752,
-0.1049131527543068,
-0.07557635754346848,
-0.05458478257060051,
0.07360947877168655,
-0.010901687666773796,
0.003169543808326125,
0.20210237801074982,
-0.03805889934301376,
-0.06525658071041107,
0.10829460620880127,
-0.18138635158538818,
0.013155711814761162,
0.001934086438268423,
-0.02635207772254944,
-0.022041961550712585,
-0.15945549309253693,
-0.044534776359796524,
-0.04090932384133339,
0.01464739628136158,
-0.024479279294610023,
-0.024297237396240234,
0.010249732062220573,
-0.02853323705494404,
-0.13537968695163727,
-0.03989619016647339,
-0.05741863697767258,
0.05360771343111992,
-0.02869255654513836,
0.12662214040756226,
0.07431473582983017,
0.01113817561417818,
0.031302012503147125,
0.18251903355121613,
-0.041267506778240204,
-0.12528173625469208,
-0.18212328851222992,
0.151865616440773,
-0.03597107157111168,
0.05323730409145355,
-0.06340376287698746,
-0.07210351526737213,
0.07184503972530365,
0.1505989283323288,
0.16805768013000488,
-0.10699498653411865,
0.0017626580083742738,
0.003155138110741973,
0.018760770559310913,
0.023767009377479553,
-0.0031658117659389973,
0.00304530025459826,
0.08326762169599533,
-0.0882238894701004,
-0.11244966089725494,
-0.04929383844137192,
-0.03691467270255089,
-0.03331170976161957,
0.0007944688550196588,
0.05891762301325798,
-0.04512425512075424,
-0.08228740841150284,
0.1780703067779541,
-0.1843111515045166,
0.003168888855725527,
0.059759721159935,
-0.029925942420959473,
-0.06047780439257622,
0.062282994389534,
-0.11778070032596588,
0.042329732328653336,
0.04083089902997017,
-0.05865485593676567,
-0.019350722432136536,
0.003300597658380866,
0.03402601554989815,
-0.09725457429885864,
-0.00024090961960610002,
0.04541608691215515,
-0.02662542462348938,
0.2629522681236267,
0.021275706589221954,
0.13803787529468536,
0.03510177880525589,
0.007924002595245838,
-0.11315985769033432,
0.10802105069160461,
0.06054151430726051,
0.05924929678440094,
-0.05724502354860306,
-0.03799871355295181,
0.01804238185286522,
0.024668605998158455,
0.025034023448824883,
-0.16268372535705566,
0.05142806097865105,
0.10263772308826447,
-0.04000256210565567,
0.007985695265233517,
0.03133750334382057,
-0.09296383708715439,
0.07280305027961731,
-0.0039019861724227667,
-0.0890689417719841,
0.041534990072250366,
0.06481791287660599,
0.13403970003128052,
0.018214067444205284,
0.016179412603378296,
-0.04695526510477066,
-0.06302788108587265,
0.0017569373594596982,
-0.035472020506858826,
0.021126676350831985,
-0.07499781250953674,
-0.012937349267303944,
0.035617098212242126,
0.004496204201132059,
0.0006320034735836089,
0.029497431591153145,
-0.01809796504676342,
-0.05568503215909004,
-0.005163508001714945,
0.009033714421093464,
0.0065461620688438416,
0.058301109820604324,
-0.07916176319122314,
-0.11464788019657135
] |
null | null | null |
TODO
## Model description
In progress model for detecting 'fake' flysheets
## Intended uses & limitations
Not currently intended for public consumption...
## Limitations and bias
Not currently intended for public consumption...
## Training data
## Eval results
|
{}
| null |
davanstrien/flyswot
|
[
"onnx",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#onnx #region-us
|
TODO
## Model description
In progress model for detecting 'fake' flysheets
## Intended uses & limitations
Not currently intended for public consumption...
## Limitations and bias
Not currently intended for public consumption...
## Training data
## Eval results
|
[
"## Model description\n\nIn progress model for detecting 'fake' flysheets",
"## Intended uses & limitations\n\nNot currently intended for public consumption...",
"## Limitations and bias\n\nNot currently intended for public consumption...",
"## Training data",
"## Eval results"
] |
[
"TAGS\n#onnx #region-us \n",
"## Model description\n\nIn progress model for detecting 'fake' flysheets",
"## Intended uses & limitations\n\nNot currently intended for public consumption...",
"## Limitations and bias\n\nNot currently intended for public consumption...",
"## Training data",
"## Eval results"
] |
[
10,
16,
18,
15,
3,
4
] |
[
"passage: TAGS\n#onnx #region-us \n## Model description\n\nIn progress model for detecting 'fake' flysheets## Intended uses & limitations\n\nNot currently intended for public consumption...## Limitations and bias\n\nNot currently intended for public consumption...## Training data## Eval results"
] |
[
-0.014925612136721611,
0.03579648211598396,
-0.0014823222300037742,
0.11047172546386719,
0.020661216229200363,
-0.029126392677426338,
0.21817506849765778,
0.07053367793560028,
0.04330822452902794,
0.01542435772716999,
0.2382180541753769,
-0.025774303823709488,
0.05164234712719917,
0.14012707769870758,
-0.09578687697649002,
-0.0655488446354866,
0.038894157856702805,
-0.04377437382936478,
0.11440983414649963,
0.12076389789581299,
0.08415196090936661,
-0.011148346588015556,
0.07438734173774719,
0.08418302983045578,
-0.044522032141685486,
-0.0666598528623581,
0.05277232453227043,
-0.135671004652977,
0.07994210720062256,
0.08192245662212372,
0.15105144679546356,
-0.01999461092054844,
0.03614569455385208,
-0.21642670035362244,
0.04739236831665039,
0.014794488437473774,
-0.06999366730451584,
0.042706526815891266,
0.005053631495684385,
-0.02331324853003025,
0.21601948142051697,
0.06213655322790146,
-0.005188946612179279,
0.05955791473388672,
-0.15126962959766388,
0.04096851497888565,
-0.06785654276609421,
-0.12696771323680878,
-0.06418454647064209,
0.0999038815498352,
-0.01867644488811493,
0.2736780345439911,
-0.05073404684662819,
0.05333796888589859,
0.09414630383253098,
-0.10852377116680145,
0.030591139569878578,
0.06514213234186172,
-0.049559541046619415,
-0.03613899275660515,
-0.041334010660648346,
0.05469893291592598,
0.03189540654420853,
0.036392319947481155,
0.014231792651116848,
-0.023925138637423515,
-0.05375644937157631,
-0.0030634081922471523,
-0.05924258381128311,
-0.100916787981987,
0.16621187329292297,
0.14042247831821442,
0.008022706024348736,
-0.21063141524791718,
-0.04635709524154663,
0.06739556789398193,
0.07911482453346252,
0.016250507906079292,
-0.07489311695098877,
0.02292613498866558,
-0.0032210401259362698,
-0.11176637560129166,
-0.0791330635547638,
-0.006755730602890253,
0.030365820974111557,
0.01049746572971344,
-0.03288058564066887,
0.09293510764837265,
-0.16628852486610413,
0.005757222883403301,
0.011450272984802723,
-0.11034628003835678,
0.011842695064842701,
-0.16314797103405,
0.09772360324859619,
0.014004098251461983,
0.021162113174796104,
0.022242389619350433,
0.13395211100578308,
0.079398013651371,
0.0502055399119854,
-0.006223698612302542,
-0.05101493373513222,
0.07107914239168167,
0.1115572527050972,
0.012683555483818054,
-0.057609833776950836,
0.09323500841856003,
0.04156563803553581,
0.059831537306308746,
0.008117270655930042,
-0.04818490147590637,
-0.07366478443145752,
0.05554599314928055,
-0.04427146911621094,
0.07561256736516953,
-0.06540539860725403,
-0.04796399548649788,
-0.11135164648294449,
0.012980654835700989,
0.1129676103591919,
-0.01682155206799507,
-0.08531098067760468,
-0.0084952088072896,
-0.049493372440338135,
-0.038137491792440414,
0.10918401926755905,
0.045207470655441284,
0.056603290140628815,
0.009665058925747871,
-0.07384717464447021,
0.02452525869011879,
-0.039681848138570786,
-0.03723275288939476,
-0.0032756850123405457,
-0.06517230719327927,
0.11470206826925278,
-0.11908956617116928,
-0.2071080058813095,
-0.0628340020775795,
-0.03572461009025574,
-0.05510089918971062,
0.03537074849009514,
-0.032311733812093735,
-0.07874356955289841,
-0.08427316695451736,
-0.0020150900818407536,
-0.021944792941212654,
-0.13861246407032013,
0.060915470123291016,
-0.10017867386341095,
0.01602448709309101,
0.01812431588768959,
0.004170121159404516,
-0.16360792517662048,
-0.01650894805788994,
-0.0015120760072022676,
0.061293479055166245,
-0.11740852147340775,
0.11944090574979782,
-0.07514891028404236,
-0.12406331300735474,
-0.0547674298286438,
-0.013066479004919529,
0.03260643035173416,
0.26042020320892334,
-0.18307967483997345,
0.02397647686302662,
0.061435043811798096,
-0.08735378086566925,
-0.1456345021724701,
0.04317984730005264,
-0.1107167974114418,
0.2496298998594284,
0.01367973629385233,
0.19266493618488312,
-0.06425483524799347,
-0.1476694941520691,
0.0639982596039772,
0.07259298115968704,
-0.1546386182308197,
0.0845886766910553,
0.06254761666059494,
-0.10961707681417465,
-0.12009231746196747,
-0.06156099960207939,
0.07235231250524521,
0.0401102676987648,
-0.06393758952617645,
-0.11849046498537064,
-0.0447600856423378,
-0.09841223061084747,
0.04548086225986481,
-0.019902128726243973,
0.047452524304389954,
-0.007073822896927595,
-0.0444595105946064,
-0.15602250397205353,
-0.025755643844604492,
0.0711972713470459,
-0.0060722134076058865,
-0.14893873035907745,
0.0254148431122303,
0.039340246468782425,
-0.0366673618555069,
-0.08775493502616882,
-0.10249464213848114,
-0.045581407845020294,
-0.16431760787963867,
0.07367342710494995,
0.03322512283921242,
0.03193368390202522,
0.016275864094495773,
-0.025651777163147926,
0.0374608114361763,
-0.1468343287706375,
0.04345496743917465,
-0.004778142087161541,
-0.09911684691905975,
0.05838364362716675,
-0.05083919316530228,
-0.08537666499614716,
-0.2403045892715454,
0.004499976523220539,
0.05845179408788681,
0.004516037181019783,
0.05386502668261528,
0.015640515834093094,
0.13126492500305176,
-0.024849783629179,
0.023362699896097183,
-0.10841011255979538,
0.046886980533599854,
-0.0014148845802992582,
-0.19672349095344543,
-0.07032544910907745,
-0.03768205642700195,
0.21093006432056427,
0.10712238401174545,
-0.15609344840049744,
-0.07088366150856018,
0.07177643477916718,
-0.02998216822743416,
0.042651914060115814,
-0.1595957726240158,
0.12794294953346252,
0.08704914152622223,
-0.028746917843818665,
0.06704281270503998,
-0.13263612985610962,
-0.002238941378891468,
0.09398148208856583,
-0.03801136091351509,
-0.09539874643087387,
0.02385588549077511,
0.10981561243534088,
-0.12302251905202866,
0.026082035154104233,
0.12991872429847717,
0.08538864552974701,
0.07158567756414413,
0.02451537922024727,
-0.06828014552593231,
-0.0363592728972435,
-0.02863178960978985,
-0.01574854366481304,
0.1251489222049713,
-0.07764063030481339,
0.10959561914205551,
0.08189455419778824,
0.047950223088264465,
0.0644630417227745,
-0.15350574254989624,
-0.14061351120471954,
-0.024590156972408295,
-0.06701669096946716,
-0.1657395213842392,
0.10347039997577667,
-0.01690596528351307,
0.060077279806137085,
-0.047764845192432404,
-0.030862051993608475,
0.11897003650665283,
-0.01119662169367075,
-0.11868149787187576,
0.11259287595748901,
-0.02997651696205139,
-0.17980313301086426,
-0.17894068360328674,
0.0007542000967077911,
-0.09061472117900848,
0.06605791300535202,
0.08028912544250488,
-0.0812387689948082,
-0.05046277493238449,
-0.08645026385784149,
-0.021412834525108337,
-0.007589655928313732,
0.028186339884996414,
0.012466785497963428,
0.08584361523389816,
0.05137176066637039,
-0.09455247968435287,
-0.005853817332535982,
0.010166957974433899,
0.026517892256379128,
0.03588560223579407,
-0.006862738635390997,
0.0839097797870636,
0.0417606346309185,
0.05572174862027168,
-0.009595009498298168,
-0.07783132046461105,
0.3203533887863159,
-0.0720653086900711,
-0.09722106903791428,
0.1254367232322693,
-0.10780017077922821,
0.02222580276429653,
0.04357123002409935,
0.08259336650371552,
-0.1757744550704956,
0.03448663651943207,
0.015957841649651527,
-0.1297469288110733,
-0.2513277530670166,
-0.07568635046482086,
0.04684839025139809,
-0.02927412837743759,
0.056391965597867966,
0.09154027700424194,
0.20325817167758942,
0.12435776740312576,
0.09358002990484238,
-0.037874091416597366,
0.05775386095046997,
0.02146339789032936,
0.013812495395541191,
0.013410990126430988,
0.011196332052350044,
-0.08335492759943008,
0.04507993906736374,
0.09247884154319763,
-0.07253410667181015,
0.25475558638572693,
0.0986010804772377,
-0.042386893182992935,
0.18044708669185638,
0.04615125060081482,
0.10454528033733368,
0.04876726493239403,
0.09855011850595474,
-0.026644883677363396,
-0.024487171322107315,
-0.0370904766023159,
-0.010206639766693115,
0.05799909681081772,
-0.03944990783929825,
-0.04764491319656372,
0.017029505223035812,
-0.057919181883335114,
0.07738731056451797,
-0.047051768749952316,
0.11265861988067627,
-0.1391601413488388,
-0.03228648379445076,
0.005882578436285257,
-0.02747119404375553,
-0.03638877719640732,
0.14744244515895844,
0.028018638491630554,
-0.21833443641662598,
0.07290632277727127,
-0.043980251997709274,
0.1173420175909996,
-0.07188774645328522,
0.050446074455976486,
0.030518576502799988,
-0.20482607185840607,
-0.07695043087005615,
0.061408158391714096,
-0.22024448215961456,
0.37255656719207764,
0.03063533455133438,
0.08728444576263428,
-0.14222745597362518,
-0.04470439627766609,
0.013084801845252514,
-0.06497137993574142,
0.2904675602912903,
-0.020824991166591644,
-0.015226982533931732,
-0.061765156686306,
-0.05628744885325432,
0.0018965787021443248,
0.002093737246468663,
0.10828173160552979,
-0.02532976120710373,
0.053020965307950974,
0.06901346892118454,
-0.008528642356395721,
-0.10215850919485092,
-0.25035756826400757,
-0.051168400794267654,
0.011389682069420815,
0.0439373254776001,
-0.028958100825548172,
0.02341991849243641,
-0.025352591648697853,
-0.22927652299404144,
0.008325613103806973,
-0.0926237404346466,
-0.047956205904483795,
-0.05766786262392998,
0.08209825307130814,
0.08496277034282684,
0.0024697501212358475,
0.012956080958247185,
-0.032802969217300415,
-0.05636095255613327,
-0.03824509680271149,
-0.036210812628269196,
0.0500263012945652,
-0.07365231961011887,
-0.169921875,
0.006330954842269421,
0.02904391847550869,
0.12582449615001678,
0.020492572337388992,
-0.0722000002861023,
0.018701115623116493,
-0.062170613557100296,
-0.20991845428943634,
0.12077762931585312,
0.03285660222172737,
-0.031106524169445038,
0.12760458886623383,
0.11566386371850967,
-0.015400934964418411,
-0.07382369041442871,
-0.023613903671503067,
0.011209778487682343,
0.38699275255203247,
-0.03796284645795822,
0.10803509503602982,
0.1166234239935875,
-0.06472259014844894,
-0.10239957273006439,
0.017802830785512924,
-0.13336774706840515,
0.01270732469856739,
0.10284901410341263,
-0.09208859503269196,
0.01988171599805355,
0.12253694236278534,
0.015325082466006279,
0.09529528766870499,
-0.2618395984172821,
-0.1449950486421585,
0.12229093164205551,
-0.04088456928730011,
0.2654567360877991,
-0.03906645253300667,
-0.05554860830307007,
-0.005882118828594685,
-0.020389754325151443,
0.04582720622420311,
-0.129938542842865,
0.0212809257209301,
0.0693986788392067,
0.040404561907052994,
-0.003372768871486187,
-0.00626307213678956,
0.2666301131248474,
0.036265213042497635,
0.16114108264446259,
-0.05706126615405083,
-0.1525324285030365,
0.19680172204971313,
0.01746710017323494,
0.003638516878709197,
0.1395532190799713,
0.06303229928016663,
-0.12453215569257736,
-0.03890347480773926,
-0.03619357943534851,
0.13733568787574768,
0.034968387335538864,
-0.041291892528533936,
-0.1418980211019516,
0.0008709488902240992,
0.02247772179543972,
0.0519375242292881,
0.24162498116493225,
-0.10056446492671967,
0.02853516675531864,
0.05752528831362724,
0.10452726483345032,
0.036407142877578735,
0.0725458636879921,
0.0010893071303144097,
-0.07390351593494415,
0.05071818083524704,
-0.07395126670598984,
-0.05090897157788277,
0.06704659759998322,
0.03169303759932518,
0.021607831120491028,
0.056819360703229904,
-0.026833007112145424,
0.16541419923305511,
0.05047979578375816,
-0.09347183257341385,
-0.0804210975766182,
-0.027312075719237328,
-0.028704984113574028,
-0.021460114046931267,
-0.036065202206373215,
0.07407712191343307,
0.0026191570796072483,
0.015449084341526031,
-0.0548032745718956,
0.03797728568315506,
-0.07050052285194397,
-0.0028621682431548834,
0.02567465603351593,
-0.04061943292617798,
-0.11809395253658295,
0.13333839178085327,
0.045258376747369766,
-0.02568701095879078,
-0.0029020491056144238,
-0.11289087682962418,
-0.11204603314399719,
-0.03925437852740288,
-0.09624474495649338,
0.13182100653648376,
-0.07899237424135208,
-0.07197098433971405,
-0.051837287843227386,
0.0069849989376962185,
-0.03141862154006958,
0.2076798528432846,
0.12104304134845734,
0.03258534520864487,
-0.04803018271923065,
-0.035683728754520416,
-0.04686592519283295,
0.003861665027216077,
0.034278012812137604,
-0.09276022762060165,
-0.15952168405056,
-0.08929548412561417,
0.08906252682209015,
0.10679209977388382,
-0.06070851534605026,
-0.00008636894199298695,
-0.1228921115398407,
0.013125617988407612,
-0.0625922903418541,
0.06810875982046127,
-0.07465973496437073,
0.03714963048696518,
0.006223653443157673,
-0.04299137368798256,
-0.09304030239582062,
-0.003282067598775029,
-0.04501698538661003,
0.042934153228998184,
0.06567221134901047,
0.08961652964353561,
-0.04336503893136978,
-0.0024807697627693415,
0.073045514523983,
-0.029560862109065056,
0.09884829074144363,
0.060967542231082916,
-0.10036436468362808,
-0.002365677384659648,
-0.08551283925771713,
0.02607773244380951,
0.053475648164749146,
-0.026921674609184265,
-0.014500088058412075,
-0.07701252400875092,
-0.0021158193703740835,
-0.022234538570046425,
-0.01974937878549099,
0.07136166840791702,
0.007303393445909023,
-0.07767947018146515,
0.008657308295369148,
0.19091273844242096,
-0.012773234397172928,
0.0008799927309155464,
-0.044025957584381104,
0.10395926982164383,
-0.021956998854875565,
0.1750534474849701,
0.024670671671628952,
0.07154710590839386,
-0.015631692484021187,
-0.0037505533546209335,
-0.05441335588693619,
-0.018692398443818092,
-0.018960854038596153,
0.014146482571959496,
0.024384459480643272,
-0.03557053953409195,
0.4253113269805908,
0.029940618202090263,
0.07166369259357452,
0.059933848679065704,
0.0812191292643547,
-0.0949840322136879,
-0.016310743987560272,
0.23411764204502106,
0.01965811476111412,
0.010907519608736038,
-0.024675512686371803,
0.0032032006420195103,
-0.025643985718488693,
-0.1837429404258728,
0.2248663306236267,
0.07764339447021484,
-0.04110325500369072,
0.07266415655612946,
-0.0717000663280487,
-0.06211020424962044,
-0.0006753679481334984,
0.050191137939691544,
0.09979851543903351,
0.022504352033138275,
-0.024977389723062515,
-0.1343136429786682,
0.12026774138212204,
-0.03910861164331436,
0.04566740244626999,
0.02036225236952305,
-0.05779491364955902,
-0.15856815874576569,
-0.10320794582366943,
-0.08863220363855362,
-0.06944036483764648,
0.08004048466682434,
-0.011272907257080078,
0.0022441197652369738,
0.1862052083015442,
-0.04459758102893829,
-0.07644950598478317,
0.12252263724803925,
-0.1668989658355713,
0.019927771762013435,
-0.006853262893855572,
-0.02524520270526409,
-0.002320295199751854,
-0.1525488644838333,
-0.05054363235831261,
-0.01508311927318573,
-0.008984864689409733,
-0.03424118831753731,
-0.012502718716859818,
0.009096956811845303,
-0.043583255261182785,
-0.15142588317394257,
-0.03489202633500099,
-0.049618326127529144,
0.06599253416061401,
-0.026784144341945648,
0.11797680705785751,
0.07180170714855194,
-0.016025133430957794,
0.022850489243865013,
0.1949375569820404,
-0.017704851925373077,
-0.07638348639011383,
-0.17881125211715698,
0.12802264094352722,
-0.029868846759200096,
0.05201202258467674,
-0.046935636550188065,
-0.07621701061725616,
0.045856352895498276,
0.14641448855400085,
0.16858436167240143,
-0.09772505611181259,
-0.008008535951375961,
0.00997323077172041,
0.025710538029670715,
0.04694514721632004,
-0.004848547279834747,
-0.019693074747920036,
0.08740599453449249,
-0.08491561561822891,
-0.11498963832855225,
-0.03198903799057007,
-0.007202457636594772,
-0.03756139799952507,
-0.01728155091404915,
0.0632011666893959,
-0.04857300594449043,
-0.08809331804513931,
0.18736544251441956,
-0.194889634847641,
0.022108588367700577,
0.07241018861532211,
-0.035433072596788406,
-0.05620603263378143,
0.050583939999341965,
-0.1299254149198532,
0.02308930829167366,
0.056683383882045746,
-0.06337844580411911,
-0.04677732661366463,
-0.020693937316536903,
0.03765498846769333,
-0.09324443340301514,
-0.028558460995554924,
0.058612409979104996,
0.027271850034594536,
0.25804081559181213,
0.01014278270304203,
0.15400537848472595,
0.050974927842617035,
-0.007540076971054077,
-0.10973408073186874,
0.11067833751440048,
0.059093642979860306,
0.03722352162003517,
-0.06109379976987839,
-0.041011322289705276,
0.014807241968810558,
0.022969374433159828,
0.023955386132001877,
-0.15151822566986084,
0.06140157952904701,
0.0528232604265213,
-0.0548035204410553,
-0.0002611835370771587,
0.02789687179028988,
-0.0934198871254921,
0.06422346830368042,
-0.0023343032225966454,
-0.09246738255023956,
0.029896683990955353,
0.0658247247338295,
0.15356123447418213,
0.041673045605421066,
0.004399215802550316,
-0.04937044903635979,
-0.08837062120437622,
0.018661657348275185,
-0.010458323173224926,
0.016572050750255585,
-0.10645250976085663,
-0.011693552136421204,
0.04913155362010002,
0.009308070875704288,
-0.009711423888802528,
0.026935065165162086,
-0.01505828183144331,
-0.040485214442014694,
-0.013820224441587925,
-0.012067296542227268,
0.0032418991904705763,
0.048545777797698975,
-0.10492805391550064,
-0.10749161243438721
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flyswot_iiif
This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.1280
- F1: 0.0034
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 666
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 8.5184 | 0.26 | 500 | 7.9280 | 0.0005 |
| 7.7409 | 0.52 | 1000 | 7.5824 | 0.0007 |
| 7.4649 | 0.78 | 1500 | 7.3841 | 0.0010 |
| 7.3285 | 1.04 | 2000 | 7.2652 | 0.0012 |
| 7.1404 | 1.3 | 2500 | 7.1559 | 0.0014 |
| 7.0322 | 1.56 | 3000 | 7.0551 | 0.0016 |
| 6.9197 | 1.82 | 3500 | 6.9449 | 0.0019 |
| 6.7822 | 2.09 | 4000 | 6.8773 | 0.0018 |
| 6.6506 | 2.35 | 4500 | 6.7980 | 0.0020 |
| 6.5811 | 2.61 | 5000 | 6.7382 | 0.0022 |
| 6.538 | 2.87 | 5500 | 6.6582 | 0.0022 |
| 6.4136 | 3.13 | 6000 | 6.6013 | 0.0024 |
| 6.3325 | 3.39 | 6500 | 6.5369 | 0.0024 |
| 6.2566 | 3.65 | 7000 | 6.4875 | 0.0025 |
| 6.2285 | 3.91 | 7500 | 6.4342 | 0.0027 |
| 6.1281 | 4.17 | 8000 | 6.4066 | 0.0027 |
| 6.0762 | 4.43 | 8500 | 6.3674 | 0.0027 |
| 6.0309 | 4.69 | 9000 | 6.3336 | 0.0027 |
| 6.0123 | 4.95 | 9500 | 6.2932 | 0.0030 |
| 5.9089 | 5.21 | 10000 | 6.2835 | 0.0029 |
| 5.8901 | 5.47 | 10500 | 6.2481 | 0.0030 |
| 5.86 | 5.74 | 11000 | 6.2295 | 0.0030 |
| 5.8586 | 6.0 | 11500 | 6.2068 | 0.0033 |
| 5.7768 | 6.26 | 12000 | 6.1937 | 0.0031 |
| 5.7591 | 6.52 | 12500 | 6.1916 | 0.0032 |
| 5.7443 | 6.78 | 13000 | 6.1579 | 0.0033 |
| 5.7125 | 7.04 | 13500 | 6.1478 | 0.0033 |
| 5.6751 | 7.3 | 14000 | 6.1379 | 0.0035 |
| 5.6648 | 7.56 | 14500 | 6.1304 | 0.0035 |
| 5.6644 | 7.82 | 15000 | 6.1280 | 0.0034 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "flyswot_iiif", "results": []}]}
|
image-classification
|
davanstrien/flyswot_iiif
|
[
"transformers",
"pytorch",
"convnext",
"image-classification",
"generated_from_trainer",
"base_model:facebook/convnext-base-224-22k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
flyswot\_iiif
=============
This model is a fine-tuned version of facebook/convnext-base-224-22k on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 6.1280
* F1: 0.0034
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 666
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 8
* mixed\_precision\_training: Native AMP
* label\_smoothing\_factor: 0.1
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.6
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
"TAGS\n#transformers #pytorch #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
69,
126,
4,
38
] |
[
"passage: TAGS\n#transformers #pytorch #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
-0.14215026795864105,
0.15182648599147797,
-0.00252900249324739,
0.11424611508846283,
0.14684666693210602,
0.044486191123723984,
0.11303313076496124,
0.14999325573444366,
-0.07840926945209503,
0.06369078159332275,
0.11465484648942947,
0.11465658247470856,
0.05881327763199806,
0.1748097538948059,
-0.047350309789180756,
-0.2579699158668518,
0.017842400819063187,
0.030251942574977875,
-0.04494164511561394,
0.12526275217533112,
0.0818880945444107,
-0.1276693046092987,
0.09044778347015381,
-0.003597128437831998,
-0.20169155299663544,
-0.01824396662414074,
-0.010769891552627087,
-0.04759589955210686,
0.11932782083749771,
0.028684403747320175,
0.10539846867322922,
0.020603686571121216,
0.09634862840175629,
-0.17492030560970306,
0.007589109241962433,
0.05867839977145195,
-0.009820438921451569,
0.0908869281411171,
0.07726627588272095,
-0.0028741646092385054,
0.12726332247257233,
-0.08179814368486404,
0.04333342984318733,
0.01206563413143158,
-0.12439446151256561,
-0.248060941696167,
-0.09589087963104248,
0.09398289024829865,
0.0893847718834877,
0.08454199135303497,
-0.003202937776222825,
0.0771012008190155,
-0.07573984563350677,
0.0887858048081398,
0.2222977578639984,
-0.23966558277606964,
-0.06530138105154037,
0.023782258853316307,
-0.016324082389473915,
0.028633402660489082,
-0.09609886258840561,
-0.03693290054798126,
0.034394387155771255,
0.0472981333732605,
0.10349658131599426,
-0.006042012479156256,
-0.08296532183885574,
-0.022617202252149582,
-0.12919077277183533,
-0.07782445102930069,
0.1457761824131012,
0.07201124727725983,
-0.03259854391217232,
-0.042370498180389404,
-0.05606633052229881,
-0.17597486078739166,
-0.046214181929826736,
0.029849635437130928,
0.03425593301653862,
-0.037292156368494034,
-0.06681796163320541,
0.012830101884901524,
-0.08588332682847977,
-0.060237813740968704,
-0.03462422639131546,
0.09535501897335052,
0.04852926731109619,
0.03744788467884064,
0.000673199538141489,
0.11584782600402832,
-0.0055063823238015175,
-0.15827220678329468,
0.0009550422546453774,
0.009556961245834827,
-0.009761370718479156,
-0.01829930953681469,
-0.03917646035552025,
0.026410944759845734,
0.014359560795128345,
0.13523148000240326,
-0.09596428275108337,
0.052810631692409515,
0.014310115948319435,
0.04530204460024834,
-0.08428987115621567,
0.14366894960403442,
-0.05770202726125717,
-0.008919060230255127,
0.01404448039829731,
0.09740816801786423,
0.020599348470568657,
-0.010647168383002281,
-0.10315906256437302,
-0.0091292979195714,
0.12694446742534637,
0.007379830349236727,
-0.04127781093120575,
0.05013183876872063,
-0.05943389981985092,
-0.04025827348232269,
0.07861604541540146,
-0.09594472497701645,
0.029070934280753136,
0.019216476008296013,
-0.10351664572954178,
-0.027266131713986397,
0.03948201611638069,
-0.007874549366533756,
-0.023066876456141472,
0.08886245638132095,
-0.07508203387260437,
0.019652439281344414,
-0.09026278555393219,
-0.10303253680467606,
0.032229233533144,
-0.08997906744480133,
0.0068311248905956745,
-0.09233506768941879,
-0.18045036494731903,
-0.03510895371437073,
0.05889005959033966,
-0.04411228001117706,
-0.06404145061969757,
-0.04496782645583153,
-0.0873948335647583,
0.028139440342783928,
-0.013228463008999825,
0.10950204730033875,
-0.07097111642360687,
0.10607260465621948,
0.015570834279060364,
0.07232581079006195,
-0.0332501158118248,
0.06243902072310448,
-0.08004949241876602,
0.03643963858485222,
-0.18700803816318512,
0.06792447715997696,
-0.06348786503076553,
0.04874604567885399,
-0.0860842689871788,
-0.12279384583234787,
0.010870790109038353,
-0.024814778938889503,
0.09153476357460022,
0.11317093670368195,
-0.16169747710227966,
-0.07145581394433975,
0.14809276163578033,
-0.1015007421374321,
-0.11852914094924927,
0.1033208891749382,
-0.049933332949876785,
-0.03426061198115349,
0.03607594594359398,
0.1552218645811081,
0.09620431810617447,
-0.07629398256540298,
-0.021281464025378227,
-0.008939369581639767,
0.06715381890535355,
-0.06298009306192398,
0.07992652803659439,
0.0224316343665123,
0.026164138689637184,
0.031180329620838165,
-0.05149879679083824,
0.06289225816726685,
-0.10742904990911484,
-0.09580282866954803,
-0.04323643445968628,
-0.07756028324365616,
0.021241607144474983,
0.08890403807163239,
0.04143587872385979,
-0.08207610249519348,
-0.08764471858739853,
0.030395295470952988,
0.11231599748134613,
-0.07780739665031433,
0.009275185875594616,
-0.048190727829933167,
0.12165549397468567,
-0.04052616283297539,
-0.02316971682012081,
-0.18813908100128174,
-0.0518752783536911,
0.02284788154065609,
-0.023248739540576935,
-0.001596181420609355,
-0.02694402076303959,
0.04888712614774704,
0.08265574276447296,
-0.04729006066918373,
-0.05182323604822159,
-0.07947167754173279,
-0.01164818461984396,
-0.0917469784617424,
-0.20637530088424683,
-0.07999398559331894,
-0.02035248838365078,
0.17168289422988892,
-0.209553524851799,
0.02581988088786602,
0.013391735032200813,
0.10567332804203033,
0.013935336843132973,
-0.026517197489738464,
-0.022590432316064835,
0.07189920544624329,
-0.035902831703424454,
-0.07155769318342209,
0.07896588742733002,
0.01697523705661297,
-0.056042131036520004,
-0.035496070981025696,
-0.0737638920545578,
0.13455690443515778,
0.1303805112838745,
-0.07348610460758209,
-0.09040592610836029,
-0.03639868274331093,
-0.07583398371934891,
-0.03280505910515785,
-0.041951391845941544,
0.032589320093393326,
0.13229814171791077,
0.0016407815273851156,
0.13982446491718292,
-0.08255373686552048,
-0.028285754844546318,
0.04215800017118454,
-0.009092637337744236,
0.003661927068606019,
0.12276842445135117,
0.12456668168306351,
-0.08611279726028442,
0.15586407482624054,
0.11910300701856613,
-0.06044195592403412,
0.11902035772800446,
-0.05631737783551216,
-0.08818862587213516,
-0.024020565673708916,
-0.008786478079855442,
-0.006722341291606426,
0.13830794394016266,
-0.11692584306001663,
-0.010378530248999596,
0.04043472930788994,
0.010974141769111156,
0.021479515358805656,
-0.2205491065979004,
-0.02389325201511383,
0.02018330618739128,
-0.06335142999887466,
-0.0085057457908988,
-0.023130930960178375,
0.029222700744867325,
0.12091155350208282,
0.010538854636251926,
-0.0931352972984314,
0.01912788115441799,
-0.009679715149104595,
-0.0827663317322731,
0.20935030281543732,
-0.08997262269258499,
-0.1880282759666443,
-0.11023421585559845,
-0.021824326366186142,
-0.0647469311952591,
-0.0038333742413669825,
0.04200838506221771,
-0.06800083816051483,
-0.026957044377923012,
-0.07242511957883835,
-0.01729939877986908,
-0.0020683419425040483,
0.021446216851472855,
0.007305443752557039,
0.01344803161919117,
0.06318535655736923,
-0.08625884354114532,
-0.020421763882040977,
-0.04596259817481041,
-0.05200784280896187,
0.060207873582839966,
0.015408161096274853,
0.09777600318193436,
0.1347728967666626,
-0.025811022147536278,
0.03653142228722572,
-0.026319595053792,
0.23249535262584686,
-0.062022268772125244,
-0.009802401065826416,
0.1406490057706833,
0.006105327047407627,
0.07019731402397156,
0.13706840574741364,
0.0561823733150959,
-0.08605767786502838,
-0.00614294083788991,
0.020091552287340164,
-0.03536783158779144,
-0.19185832142829895,
-0.060260094702243805,
-0.057571690529584885,
-0.010295253247022629,
0.13301517069339752,
0.029003366827964783,
0.014379327185451984,
0.07763484865427017,
-0.0018731170566752553,
0.04383720085024834,
-0.02246970124542713,
0.06998081505298615,
0.09929781407117844,
0.054979357868433,
0.12956427037715912,
-0.03676699474453926,
-0.018866147845983505,
0.05769280344247818,
-0.004250928293913603,
0.26608559489250183,
-0.036417197436094284,
0.07494674623012543,
0.06344183534383774,
0.20032671093940735,
0.01169966347515583,
0.059321943670511246,
-0.016226785257458687,
-0.00881640613079071,
-0.01254260167479515,
-0.05139104276895523,
-0.051280103623867035,
0.016473544761538506,
-0.047381218522787094,
0.05183021351695061,
-0.1474037766456604,
-0.009701835922896862,
0.03453985974192619,
0.2788054049015045,
0.07341612875461578,
-0.36430588364601135,
-0.09592821449041367,
-0.014172649011015892,
-0.003193463198840618,
-0.04110832139849663,
0.003546107793226838,
0.09923261404037476,
-0.08973652124404907,
0.06697040796279907,
-0.06648950278759003,
0.09740480035543442,
-0.06460295617580414,
0.010698863305151463,
0.09945151209831238,
0.06671074777841568,
0.021049534901976585,
0.07405712455511093,
-0.24841240048408508,
0.2876911163330078,
0.0026194974780082703,
0.05097147822380066,
-0.0682063102722168,
0.01576332002878189,
0.04842513054609299,
0.06119031459093094,
0.07819196581840515,
-0.0004874634905718267,
-0.07611119002103806,
-0.2113301008939743,
-0.08632434904575348,
0.020033884793519974,
0.07094284892082214,
-0.034529924392700195,
0.09655430167913437,
-0.010036652907729149,
-0.00735965883359313,
0.04028400406241417,
0.006756022572517395,
-0.07960488647222519,
-0.09713783860206604,
0.0030939027201384306,
0.004225949756801128,
-0.016661016270518303,
-0.07183991372585297,
-0.1121865063905716,
-0.06939713656902313,
0.14587217569351196,
-0.01905948482453823,
-0.054633624851703644,
-0.12315337359905243,
0.11681592464447021,
0.10031230747699738,
-0.09371331334114075,
0.05759606882929802,
-0.01088531780987978,
0.09918805956840515,
0.0298176147043705,
-0.0989794135093689,
0.08078403770923615,
-0.07046462595462799,
-0.1930784434080124,
-0.04853217303752899,
0.11608854681253433,
0.036498408764600754,
0.057967547327280045,
-0.003885492915287614,
0.032147910445928574,
-0.03014993481338024,
-0.08841780573129654,
0.03898967429995537,
0.017353178933262825,
0.10352957248687744,
0.05069006606936455,
-0.062323834747076035,
-0.024359527975320816,
-0.04939375817775726,
-0.013072815723717213,
0.1413383185863495,
0.24324578046798706,
-0.10540412366390228,
0.00957806408405304,
0.04191555455327034,
-0.06334669888019562,
-0.19137325882911682,
0.03373784199357033,
0.10134021937847137,
0.011759975925087929,
-0.0027761764358729124,
-0.20227758586406708,
0.0839230865240097,
0.12673833966255188,
-0.02418789453804493,
0.11196443438529968,
-0.3191477358341217,
-0.11281825602054596,
0.09980688244104385,
0.13389894366264343,
0.08773593604564667,
-0.15468041598796844,
-0.02861676923930645,
-0.01101781614124775,
-0.1458008885383606,
0.15777860581874847,
-0.04280171915888786,
0.11219654977321625,
-0.04785947874188423,
0.05815325677394867,
0.011477542109787464,
-0.054209448397159576,
0.1347023844718933,
0.02926281839609146,
0.1042562797665596,
-0.05690625682473183,
-0.01507372222840786,
0.04924895614385605,
-0.0638417899608612,
0.036912839859724045,
-0.04065760225057602,
0.052358996123075485,
-0.1477784365415573,
-0.0014440709492191672,
-0.10058482736349106,
0.03609707951545715,
-0.03481501713395119,
-0.03214459866285324,
-0.05255613848567009,
0.05633383244276047,
0.05385347083210945,
-0.00020770341507159173,
0.12246836721897125,
0.027295667678117752,
0.14861857891082764,
0.11696029454469681,
0.03366883844137192,
-0.05662441626191139,
-0.0685143992304802,
-0.034627676010131836,
-0.01773654669523239,
0.05667679384350777,
-0.13764983415603638,
0.019531145691871643,
0.15735673904418945,
0.03503195941448212,
0.14200900495052338,
0.07205837219953537,
-0.028327424079179764,
0.013113164342939854,
0.07067718356847763,
-0.1492164433002472,
-0.05355873331427574,
-0.012210697866976261,
-0.018265152350068092,
-0.10896871984004974,
0.0236969031393528,
0.0857972651720047,
-0.07407752424478531,
-0.013228965923190117,
-0.011381600052118301,
0.02734002284705639,
-0.0324464812874794,
0.1893637627363205,
0.0774180218577385,
0.05285990238189697,
-0.11051871627569199,
0.09383206069469452,
0.05666066333651543,
-0.09874793887138367,
0.00810756254941225,
0.08176443725824356,
-0.09212509542703629,
-0.04356849566102028,
0.04187930375337601,
0.15240134298801422,
-0.06369251012802124,
-0.062223564833402634,
-0.12084896117448807,
-0.1185159757733345,
0.09686129540205002,
0.1344951093196869,
0.09848643839359283,
0.024028746411204338,
-0.009611355140805244,
-0.005940135568380356,
-0.10924850404262543,
0.09060146659612656,
0.04448578879237175,
0.06766612827777863,
-0.1359877735376358,
0.13162460923194885,
0.02100329101085663,
0.05625370517373085,
-0.020302437245845795,
0.01563745178282261,
-0.10442017763853073,
0.0061852699145674706,
-0.10244284570217133,
0.02268814668059349,
-0.04853355512022972,
0.002862066961824894,
-0.012992773205041885,
-0.05247475206851959,
-0.05573317036032677,
0.021339507773518562,
-0.11027912050485611,
-0.03833621367812157,
0.00563633581623435,
0.04694564267992973,
-0.1237027496099472,
-0.04692833125591278,
0.010076774284243584,
-0.08400086313486099,
0.08495486527681351,
0.05274290591478348,
0.02996634878218174,
0.01782318390905857,
-0.09315543621778488,
-0.017284199595451355,
0.06015565246343613,
0.02076658420264721,
0.052013833075761795,
-0.11579541116952896,
0.023115461692214012,
-0.0032984870485961437,
0.0009292591130360961,
0.012591047212481499,
0.09344575554132462,
-0.13709211349487305,
-0.013804351910948753,
-0.03067396953701973,
-0.05933772772550583,
-0.06293538957834244,
0.06945431232452393,
0.10625335574150085,
0.0350203774869442,
0.16339106857776642,
-0.07640733569860458,
0.04072956368327141,
-0.24606017768383026,
-0.018287107348442078,
-0.015804599970579147,
-0.0983106940984726,
-0.10158811509609222,
-0.04255252331495285,
0.08496294170618057,
-0.05042688176035881,
0.11623173952102661,
0.028979413211345673,
0.04931645467877388,
0.017254620790481567,
-0.015302392654120922,
-0.009531894698739052,
0.028347566723823547,
0.16730380058288574,
0.034385643899440765,
-0.029917342588305473,
0.08637990802526474,
0.03911174461245537,
0.0801941454410553,
0.1016809493303299,
0.19295983016490936,
0.13784153759479523,
0.03503505885601044,
0.07493296265602112,
0.07894233614206314,
-0.0770588219165802,
-0.13395071029663086,
0.05482166260480881,
-0.04219444841146469,
0.12994880974292755,
-0.02049848809838295,
0.19360589981079102,
0.06857459247112274,
-0.19426746666431427,
0.06569648534059525,
-0.0302529726177454,
-0.07788211852312088,
-0.0941540077328682,
-0.07113881409168243,
-0.08973000198602676,
-0.14682693779468536,
0.008183153346180916,
-0.12582845985889435,
0.013712380081415176,
0.13155171275138855,
0.009138454683125019,
-0.012096666730940342,
0.09741164743900299,
0.027417287230491638,
0.014637722633779049,
0.08611667901277542,
0.024200711399316788,
-0.02333674021065235,
-0.08254452794790268,
-0.08045633137226105,
0.03275131806731224,
-0.0052826981991529465,
0.05097164213657379,
-0.047714728862047195,
-0.027459491044282913,
0.04439127817749977,
0.002137374132871628,
-0.10034617781639099,
0.01815188303589821,
-0.008462514728307724,
0.071804478764534,
0.06346561759710312,
0.006970374379307032,
0.035238392651081085,
-0.009554270654916763,
0.19819438457489014,
-0.060512643307447433,
-0.04683813452720642,
-0.11051103472709656,
0.22920900583267212,
0.0159484650939703,
-0.036471929401159286,
0.056189607828855515,
-0.07519493252038956,
-0.011362651363015175,
0.17922358214855194,
0.173201784491539,
-0.07543697208166122,
-0.00839546974748373,
0.019847797229886055,
-0.014840700663626194,
-0.014357568696141243,
0.11842472106218338,
0.12833793461322784,
0.06424983590841293,
-0.08382241427898407,
-0.0488169863820076,
-0.06484317779541016,
-0.011892748065292835,
-0.03504464402794838,
0.04395880922675133,
0.023877276107668877,
0.00044258518028073013,
-0.049388617277145386,
0.056037452071905136,
-0.04348256438970566,
-0.08311427384614944,
0.10232681781053543,
-0.22523774206638336,
-0.19107720255851746,
-0.01872910000383854,
0.05222943797707558,
0.029593052342534065,
0.046321917325258255,
-0.035535987466573715,
0.006286015268415213,
0.09276173263788223,
-0.024837054312229156,
-0.0825740396976471,
-0.12298799306154251,
0.07913752645254135,
-0.08736123144626617,
0.21798935532569885,
-0.03956799954175949,
0.06237979605793953,
0.11677412688732147,
0.054643623530864716,
-0.10470378398895264,
0.033803701400756836,
0.05261554941534996,
-0.04082183912396431,
0.021215688437223434,
0.11549359560012817,
-0.036529187113046646,
0.06318320333957672,
0.05089498683810234,
-0.11792412400245667,
-0.010455886833369732,
-0.05964312329888344,
-0.04472333937883377,
-0.04703311622142792,
-0.018392004072666168,
-0.04823824390769005,
0.13547585904598236,
0.20721642673015594,
-0.037003498524427414,
-0.025644874200224876,
-0.07843616604804993,
0.015194880776107311,
0.05591287091374397,
0.04134714603424072,
-0.04245224967598915,
-0.20532137155532837,
0.02383607067167759,
0.030758177861571312,
0.0028150330763310194,
-0.19705039262771606,
-0.08733277022838593,
0.014810658060014248,
-0.07508184760808945,
-0.09638763219118118,
0.10550633072853088,
0.03766414150595665,
0.05580054223537445,
-0.06195524334907532,
-0.02852451801300049,
-0.06681538373231888,
0.15365922451019287,
-0.14527234435081482,
-0.08380516618490219
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flyswot_test
This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.1518
- eval_f1: 0.9595
- eval_runtime: 5.9337
- eval_samples_per_second: 69.603
- eval_steps_per_second: 2.191
- epoch: 7.0
- step: 364
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 666
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["image_folder"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "flyswot_test", "results": []}]}
|
image-classification
|
davanstrien/flyswot_test
|
[
"transformers",
"pytorch",
"convnext",
"image-classification",
"generated_from_trainer",
"dataset:image_folder",
"base_model:facebook/convnext-base-224-22k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# flyswot_test
This model is a fine-tuned version of facebook/convnext-base-224-22k on the image_folder dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.1518
- eval_f1: 0.9595
- eval_runtime: 5.9337
- eval_samples_per_second: 69.603
- eval_steps_per_second: 2.191
- epoch: 7.0
- step: 364
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 666
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
[
"# flyswot_test\n\nThis model is a fine-tuned version of facebook/convnext-base-224-22k on the image_folder dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.1518\n- eval_f1: 0.9595\n- eval_runtime: 5.9337\n- eval_samples_per_second: 69.603\n- eval_steps_per_second: 2.191\n- epoch: 7.0\n- step: 364",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 666\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.6"
] |
[
"TAGS\n#transformers #pytorch #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# flyswot_test\n\nThis model is a fine-tuned version of facebook/convnext-base-224-22k on the image_folder dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.1518\n- eval_f1: 0.9595\n- eval_runtime: 5.9337\n- eval_samples_per_second: 69.603\n- eval_steps_per_second: 2.191\n- epoch: 7.0\n- step: 364",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 666\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.6"
] |
[
77,
117,
6,
12,
8,
3,
104,
38
] |
[
"passage: TAGS\n#transformers #pytorch #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# flyswot_test\n\nThis model is a fine-tuned version of facebook/convnext-base-224-22k on the image_folder dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.1518\n- eval_f1: 0.9595\n- eval_runtime: 5.9337\n- eval_samples_per_second: 69.603\n- eval_steps_per_second: 2.191\n- epoch: 7.0\n- step: 364## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 666\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.6"
] |
[
-0.11030058562755585,
0.21883295476436615,
-0.0030337569769471884,
0.09383641928434372,
0.1315799504518509,
0.017462076619267464,
0.017929794266819954,
0.16416193544864655,
-0.09050426632165909,
0.08831359446048737,
0.07326329499483109,
0.028235457837581635,
0.08606325834989548,
0.14665000140666962,
-0.016538651660084724,
-0.1448483169078827,
-0.026689020916819572,
-0.020545894280076027,
-0.014541639015078545,
0.10193818807601929,
0.1009909138083458,
-0.08670465648174286,
0.056219425052404404,
-0.007635518442839384,
-0.1215982735157013,
0.03916577622294426,
-0.056371744722127914,
-0.050445593893527985,
0.07412344217300415,
0.02582169882953167,
0.04179580137133598,
0.003247374203056097,
0.09738922119140625,
-0.22929954528808594,
-0.013266564346849918,
0.08715544641017914,
0.026696207001805305,
0.05870076268911362,
0.07725922018289566,
0.019734621047973633,
0.0767979621887207,
-0.17284511029720306,
0.08174262195825577,
0.03972474858164787,
-0.07539886236190796,
-0.2057606428861618,
-0.10169082880020142,
0.12406156212091446,
0.08901125192642212,
0.12046483904123306,
-0.016272103413939476,
0.14687635004520416,
-0.028568822890520096,
0.08177819848060608,
0.1864219754934311,
-0.2177920639514923,
-0.05833513289690018,
0.005835011135786772,
0.05191974714398384,
0.04380074143409729,
-0.07934945821762085,
-0.011395803652703762,
0.055968765169382095,
0.021195322275161743,
0.07546161860227585,
-0.011716213077306747,
-0.11404115706682205,
-0.02931399457156658,
-0.11258633434772491,
-0.08042013645172119,
0.17831388115882874,
0.10669292509555817,
-0.06773024052381516,
-0.11404529213905334,
-0.027354072779417038,
-0.12338332831859589,
-0.009762746281921864,
-0.06147674098610878,
0.03153581544756889,
-0.04286929592490196,
-0.023746931925415993,
-0.06159316003322601,
-0.08218177407979965,
-0.027937179431319237,
0.07174474745988846,
0.06993360817432404,
0.04108205810189247,
0.0016222636913880706,
0.004712089896202087,
0.10493098944425583,
-0.004060553386807442,
-0.14629381895065308,
-0.04973804950714111,
0.004552318714559078,
-0.09267952293157578,
-0.053949449211359024,
-0.017086829990148544,
-0.03841613233089447,
-0.00913830753415823,
0.14920476078987122,
-0.04338444769382477,
0.08027699589729309,
0.0070808338932693005,
-0.004299542400985956,
-0.026900550350546837,
0.1477365344762802,
-0.020299803465604782,
-0.06482461094856262,
-0.018183033913373947,
0.10410447418689728,
-0.027022914960980415,
-0.011623899452388287,
-0.04398909583687782,
-0.022058919072151184,
0.10014960914850235,
0.06261230260133743,
-0.01462416909635067,
0.0019396733259782195,
-0.06922293454408646,
-0.012245144695043564,
0.0408380962908268,
-0.12890414893627167,
0.044902995228767395,
-0.011601378209888935,
-0.09119737148284912,
-0.07779073715209961,
0.07286497205495834,
-0.008711705915629864,
-0.04012460634112358,
0.005778191145509481,
-0.03574550896883011,
-0.020789029076695442,
-0.04615238681435585,
-0.03206872195005417,
0.023697394877672195,
-0.06677064299583435,
0.0149847948923707,
-0.09540178626775742,
-0.18406054377555847,
-0.06672228127717972,
0.0174587182700634,
-0.06743821501731873,
-0.061762671917676926,
-0.008434011600911617,
-0.05385845527052879,
-0.005425598472356796,
-0.020635530352592468,
0.1564282923936844,
-0.04130940139293671,
0.07474047690629959,
0.01469749677926302,
0.01177985966205597,
0.09529724717140198,
0.05054466798901558,
-0.07173975557088852,
0.03915388137102127,
-0.08695531636476517,
0.11901911348104477,
-0.10893073678016663,
0.0020477406214922667,
-0.15324167907238007,
-0.09235893189907074,
0.006268233992159367,
-0.04220292344689369,
0.08340506255626678,
0.12251387536525726,
-0.15732641518115997,
-0.013197479769587517,
0.09738392382860184,
-0.03511641174554825,
-0.09166842699050903,
0.08489386737346649,
-0.0293576680123806,
0.03970784321427345,
0.04646464064717293,
0.1255389153957367,
0.14685726165771484,
-0.14350220561027527,
-0.05156932398676872,
0.03039473108947277,
0.04476052522659302,
0.07021773606538773,
0.06362912058830261,
-0.008768998086452484,
0.03585953265428543,
0.01081616710871458,
-0.09425001591444016,
0.007497346494346857,
-0.07427607476711273,
-0.0833134800195694,
-0.0584467351436615,
-0.093557208776474,
0.028594840317964554,
0.04364378750324249,
-0.0004399986064527184,
-0.08208580315113068,
-0.13630466163158417,
0.03599868714809418,
0.15217338502407074,
-0.03871072828769684,
-0.004102223087102175,
-0.06677770614624023,
0.018048081547021866,
-0.005123695824295282,
-0.02824248932301998,
-0.19068513810634613,
-0.0850977972149849,
0.06209860369563103,
-0.08566129952669144,
-0.004222805146127939,
0.014169926755130291,
0.054534412920475006,
0.054391905665397644,
-0.02301599085330963,
-0.04229402542114258,
-0.1297745555639267,
-0.009587651118636131,
-0.08156625926494598,
-0.13249950110912323,
-0.07755814492702484,
-0.020916778594255447,
0.24861836433410645,
-0.2322973608970642,
0.005913214758038521,
0.015768105164170265,
0.13084538280963898,
-0.010095068253576756,
-0.08047336339950562,
0.007094948086887598,
-0.006627276074141264,
0.014544869773089886,
-0.11531507223844528,
0.019474608823657036,
0.028880463913083076,
-0.05874133110046387,
-0.07198450714349747,
-0.0931675061583519,
0.0012855225941166282,
0.05797446891665459,
0.0988999754190445,
-0.12884511053562164,
0.01468817051500082,
-0.06793741881847382,
-0.055512625724077225,
-0.07581309229135513,
-0.017494788393378258,
0.2479942888021469,
0.030209803953766823,
0.11410689353942871,
-0.056334782391786575,
-0.08755240589380264,
0.016820454970002174,
0.015415482223033905,
-0.01926628313958645,
0.10511907190084457,
0.02759740874171257,
-0.13833102583885193,
0.0781048983335495,
0.07215447723865509,
0.03058963641524315,
0.1045798510313034,
-0.033426761627197266,
-0.10738932341337204,
-0.03374103829264641,
0.049499500542879105,
-0.008759572170674801,
0.10359479486942291,
-0.10443279892206192,
0.017789721488952637,
0.0511779747903347,
-0.03344583511352539,
0.012221695855259895,
-0.13505776226520538,
-0.001683621434494853,
0.07098867744207382,
-0.036216773092746735,
0.06418462842702866,
-0.038928985595703125,
0.025552909821271896,
0.06650428473949432,
0.015296252444386482,
-0.018136372789740562,
0.009191198274493217,
-0.01692887768149376,
-0.08858541399240494,
0.15384668111801147,
-0.08503276109695435,
-0.21979272365570068,
-0.09913386404514313,
0.07369722425937653,
-0.046700701117515564,
-0.03749725967645645,
0.025103537365794182,
-0.09100468456745148,
-0.06151504069566727,
-0.09263226389884949,
-0.04931987076997757,
-0.05724142864346504,
-0.04405098780989647,
0.06564751267433167,
0.02887248806655407,
0.13313914835453033,
-0.12084000557661057,
0.007418925408273935,
0.020571528002619743,
-0.06213720142841339,
-0.013601439073681831,
0.06217414513230324,
0.10270176827907562,
0.0673818290233612,
-0.030035505071282387,
0.023914385586977005,
-0.015087512321770191,
0.2393873929977417,
-0.09602580219507217,
-0.007468026131391525,
0.1504717767238617,
0.010476954281330109,
0.06343799084424973,
0.06933288276195526,
-0.009712744504213333,
-0.09253440797328949,
0.04278530552983284,
0.05654711276292801,
-0.010063915513455868,
-0.23294320702552795,
-0.026515554636716843,
-0.00423970865085721,
-0.07103458791971207,
0.14327268302440643,
0.05379204824566841,
0.02891605533659458,
0.059099357575178146,
-0.02907315455377102,
0.051810212433338165,
-0.030724262818694115,
0.07280025631189346,
0.04936784878373146,
0.027320077642798424,
0.08056953549385071,
-0.021584991365671158,
0.00045670612598769367,
0.06233728304505348,
-0.0030826644506305456,
0.20872865617275238,
-0.03970899060368538,
0.10369061678647995,
0.019435549154877663,
0.192355215549469,
-0.0676344633102417,
-0.0038938706275075674,
0.04723912850022316,
0.009154689498245716,
0.018863974139094353,
-0.06590154021978378,
-0.04937749356031418,
0.039911799132823944,
0.001108427532017231,
0.03560981899499893,
-0.0957067459821701,
0.04491134732961655,
0.0013202602276578546,
0.2742486894130707,
0.05696019530296326,
-0.2987003028392792,
-0.07428260147571564,
-0.006104643922299147,
-0.015147273428738117,
-0.09105682373046875,
-0.0397694855928421,
0.11647127568721771,
-0.1677360236644745,
0.06348735839128494,
-0.025618107989430428,
0.08383204787969589,
-0.0631227195262909,
0.0006281210808083415,
0.046260297298431396,
0.04636522755026817,
0.033538706600666046,
0.10073002427816391,
-0.15624602138996124,
0.1659010946750641,
0.014151200652122498,
0.09440366178750992,
-0.06815836578607559,
0.06877226382493973,
0.004911790136247873,
0.02043703757226467,
0.17326843738555908,
-0.0002788844285532832,
-0.009654133580625057,
-0.21488475799560547,
-0.10517934709787369,
0.011328086256980896,
0.08526023477315903,
-0.10077507048845291,
0.07444419711828232,
-0.024318233132362366,
-0.005774321034550667,
0.018401751294732094,
-0.024418244138360023,
-0.19255629181861877,
-0.12483341991901398,
0.02135496772825718,
-0.01924709789454937,
-0.0038166772574186325,
-0.08431693911552429,
-0.08807770907878876,
-0.08539673686027527,
0.2176615446805954,
0.01866481825709343,
-0.05974911153316498,
-0.14372508227825165,
0.12355882674455643,
0.11832170933485031,
-0.07480480521917343,
0.022737670689821243,
0.026623139157891273,
0.14014549553394318,
0.030744601041078568,
-0.05887873098254204,
0.019409077242016792,
-0.05807635560631752,
-0.15644268691539764,
-0.046445440500974655,
0.1358870565891266,
0.06709018349647522,
0.054698459804058075,
0.024596652016043663,
0.006568521726876497,
0.018062850460410118,
-0.06318708509206772,
0.030032582581043243,
0.02563917636871338,
0.10276621580123901,
0.04295137897133827,
-0.017665578052401543,
0.025693560019135475,
-0.07992186397314072,
-0.01820850558578968,
0.13454999029636383,
0.23178453743457794,
-0.09372151643037796,
0.04049742594361305,
0.027311988174915314,
-0.08674681186676025,
-0.14649222791194916,
0.05494503304362297,
0.14918316900730133,
0.01409085001796484,
0.08781788498163223,
-0.17644599080085754,
0.08478743582963943,
0.1392498016357422,
-0.021577807143330574,
0.032918479293584824,
-0.30574721097946167,
-0.12020865082740784,
0.07254064828157425,
0.09277623146772385,
-0.055535510182380676,
-0.11852423846721649,
-0.05115920305252075,
-0.024064140394330025,
-0.1553645133972168,
0.03248364105820656,
-0.04170844331383705,
0.08316399157047272,
-0.001093197730369866,
0.009431871585547924,
0.05037993565201759,
-0.025949688628315926,
0.15751372277736664,
0.04498481750488281,
0.07151290029287338,
-0.060514453798532486,
0.09153679758310318,
0.09224852919578552,
-0.08113574236631393,
0.11789648979902267,
-0.020763980224728584,
0.07778624445199966,
-0.20457367599010468,
-0.010732400231063366,
-0.06498296558856964,
0.0767321065068245,
-0.058483026921749115,
-0.04182341694831848,
-0.04012659937143326,
0.04755863919854164,
0.06148035451769829,
-0.018458053469657898,
-0.0038282787427306175,
0.032420601695775986,
0.06415741890668869,
0.1521008014678955,
0.03413103520870209,
0.04858463630080223,
-0.19865629076957703,
-0.009824998676776886,
-0.004302165005356073,
0.03882918134331703,
-0.12338973581790924,
0.021613316610455513,
0.11778364330530167,
0.04714610427618027,
0.14087529480457306,
-0.020458942279219627,
-0.08744168281555176,
0.00273120473138988,
0.006232384592294693,
-0.08664294332265854,
-0.1459408849477768,
-0.031408969312906265,
-0.040600042790174484,
-0.12830254435539246,
-0.045884765684604645,
0.10957114398479462,
-0.06812269240617752,
-0.01816541515290737,
-0.048128508031368256,
0.012683125212788582,
-0.010033420287072659,
0.17537041008472443,
0.03687342256307602,
0.08006761968135834,
-0.06786977499723434,
0.12304195016622543,
0.10349036008119583,
-0.0775415226817131,
0.08571989089250565,
0.029998501762747765,
-0.06505421549081802,
-0.03518861159682274,
0.08507762849330902,
0.11009106040000916,
0.034553829580545425,
-0.037169937044382095,
-0.04514075815677643,
-0.05150803551077843,
0.05947303771972656,
0.012514141388237476,
0.03946703299880028,
-0.024997208267450333,
0.010976533405482769,
-0.013340134173631668,
-0.13386373221874237,
0.09660045057535172,
0.06785514205694199,
0.044001054018735886,
-0.13348965346813202,
0.08973432332277298,
0.030374575406312943,
0.061409711837768555,
0.00019604465342126787,
0.003752059070393443,
-0.03823907673358917,
0.0029773178976029158,
-0.11840468645095825,
0.004698915407061577,
0.0050350516103208065,
0.0025018942542374134,
-0.026753047481179237,
-0.02808540314435959,
-0.018255949020385742,
0.07616887986660004,
-0.06441830098628998,
-0.11814084649085999,
0.025892935693264008,
0.09021991491317749,
-0.13474535942077637,
-0.041411999613046646,
0.035043567419052124,
-0.1125064566731453,
0.07005663961172104,
0.046586621552705765,
0.03635713830590248,
-0.017252087593078613,
-0.0005339458002708852,
-0.011268846690654755,
0.04197836294770241,
0.05608285218477249,
0.04695514962077141,
-0.11631536483764648,
0.018665237352252007,
-0.034137263894081116,
-0.0015617616008967161,
0.012590872123837471,
0.05835679545998573,
-0.1250668615102768,
-0.0630156472325325,
-0.052391331642866135,
-0.01977715827524662,
-0.0474955253303051,
0.05918029323220253,
0.09896274656057358,
0.053435228765010834,
0.14063061773777008,
-0.05452054366469383,
0.05175294727087021,
-0.23839406669139862,
-0.055225443094968796,
-0.01779375784099102,
-0.020203612744808197,
-0.021596893668174744,
-0.032877061516046524,
0.09527026116847992,
-0.038039445877075195,
0.06474602222442627,
-0.0005510254995897412,
0.18159542977809906,
0.027530482038855553,
-0.050251953303813934,
-0.0018087857170030475,
0.00219720508903265,
0.11238634586334229,
0.05175132304430008,
-0.0016557768685743213,
0.11902156472206116,
-0.028894418850541115,
0.09554117172956467,
0.014161058701574802,
0.08939620852470398,
0.17493340373039246,
0.0018594234716147184,
0.05011354386806488,
0.051106829196214676,
-0.135865718126297,
-0.15358206629753113,
0.0976945012807846,
-0.058990925550460815,
0.13449859619140625,
-0.05467648804187775,
0.1008044108748436,
0.05457198992371559,
-0.1742257922887802,
0.07228618115186691,
-0.06354168802499771,
-0.09119532257318497,
-0.0613718144595623,
-0.050914280116558075,
-0.08414488285779953,
-0.09343919903039932,
0.04105357080698013,
-0.08602997660636902,
0.01979479193687439,
0.08799643814563751,
-0.009586731903254986,
-0.02213309518992901,
0.1347532421350479,
-0.02663598209619522,
-0.027386007830500603,
0.09542647004127502,
-0.0049818409606814384,
-0.015861596912145615,
-0.0993046686053276,
-0.0201449915766716,
0.09128541499376297,
0.061545856297016144,
0.10566408932209015,
-0.03962274268269539,
0.009790915064513683,
0.030012983828783035,
0.019544536247849464,
-0.09629791229963303,
0.009256811812520027,
0.005749823991209269,
0.021206319332122803,
0.03851502761244774,
0.06336475163698196,
0.05689410865306854,
-0.04979151487350464,
0.22871971130371094,
-0.0405438095331192,
-0.036568332463502884,
-0.12739543616771698,
0.10423265397548676,
0.05331990122795105,
-0.007933349348604679,
0.08036795258522034,
-0.11748598515987396,
0.0036542152520269156,
0.12219487130641937,
0.06413953006267548,
-0.03136220574378967,
-0.006122928578406572,
-0.0054797022603452206,
-0.018613718450069427,
-0.06591220200061798,
0.09462970495223999,
0.11764515191316605,
-0.06369121372699738,
-0.05988290533423424,
0.025917813181877136,
-0.004627527669072151,
-0.06907253712415695,
-0.06428653001785278,
0.07474181056022644,
-0.011259254068136215,
0.046769894659519196,
-0.012021324597299099,
0.07869549095630646,
0.058154575526714325,
-0.23698614537715912,
0.06598281115293503,
-0.15788397192955017,
-0.18947255611419678,
0.001202999148517847,
0.06239406391978264,
-0.002967214211821556,
0.039317209273576736,
0.002904925961047411,
0.00443699536845088,
0.1730458289384842,
-0.023335512727499008,
-0.047860827296972275,
-0.12322960793972015,
0.06120826303958893,
-0.10414329171180725,
0.2747802436351776,
0.0008903896086849272,
0.06591308116912842,
0.08829382061958313,
-0.010323229245841503,
-0.17149853706359863,
0.01893969252705574,
0.0917816162109375,
-0.0013567607384175062,
0.056891486048698425,
0.1743146777153015,
-0.03900189325213432,
0.10066442936658859,
0.06675029546022415,
-0.12345275282859802,
-0.04434134066104889,
-0.04757660999894142,
0.05002289637923241,
-0.09565848857164383,
0.010531768202781677,
-0.055277708917856216,
0.13928808271884918,
0.18631236255168915,
-0.047088947147130966,
-0.014906888827681541,
-0.09682543575763702,
0.011987537145614624,
0.04464010149240494,
0.1439325213432312,
0.0018358263187110424,
-0.15206223726272583,
0.03393321484327316,
-0.025540634989738464,
0.059886444360017776,
-0.2019822746515274,
-0.11016969382762909,
0.0839315876364708,
-0.07762669026851654,
-0.02043789066374302,
0.10799616575241089,
0.030486395582556725,
0.005996804218739271,
-0.03069509007036686,
-0.12183228135108948,
-0.05304274708032608,
0.1350049376487732,
-0.14584535360336304,
-0.02861097827553749
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# iiif_manuscript_vit
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5684
- F1: 0.5996
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.5639 | 1.0 | 2269 | 0.5822 | 0.5516 |
| 0.5834 | 2.0 | 4538 | 0.5825 | 0.5346 |
| 0.5778 | 3.0 | 6807 | 0.5794 | 0.6034 |
| 0.5735 | 4.0 | 9076 | 0.5742 | 0.5713 |
| 0.5731 | 5.0 | 11345 | 0.5745 | 0.6008 |
| 0.5701 | 6.0 | 13614 | 0.5729 | 0.5499 |
| 0.5696 | 7.0 | 15883 | 0.5717 | 0.5952 |
| 0.5683 | 8.0 | 18152 | 0.5680 | 0.6005 |
| 0.5648 | 9.0 | 20421 | 0.5679 | 0.5967 |
| 0.564 | 10.0 | 22690 | 0.5684 | 0.5996 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "iiif_manuscript_vit", "results": []}]}
|
image-classification
|
davanstrien/iiif_manuscript_vit
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
iiif\_manuscript\_vit
=====================
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5684
* F1: 0.5996
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 10
* mixed\_precision\_training: Native AMP
* label\_smoothing\_factor: 0.1
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
70,
125,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.1285712867975235,
0.1267208606004715,
-0.002232384867966175,
0.1141359955072403,
0.14831863343715668,
0.050556305795907974,
0.1434696912765503,
0.1393810659646988,
-0.0718393325805664,
0.07548408955335617,
0.12993597984313965,
0.1071174368262291,
0.05260947346687317,
0.17899203300476074,
-0.04373972862958908,
-0.2588028907775879,
0.03004765883088112,
0.019093988463282585,
-0.03913520649075508,
0.12572112679481506,
0.0854119285941124,
-0.12446123361587524,
0.10533788800239563,
0.0034004857297986746,
-0.2064642608165741,
-0.031021619215607643,
-0.005469752009958029,
-0.04747176170349121,
0.12055066227912903,
0.019661281257867813,
0.12031351774930954,
0.023184344172477722,
0.10472872853279114,
-0.1684582382440567,
0.006298852618783712,
0.05651532858610153,
-0.005084729753434658,
0.09363728016614914,
0.059053871780633926,
0.004046277143061161,
0.07979703694581985,
-0.0870194137096405,
0.05416218936443329,
0.018257154151797295,
-0.11935195326805115,
-0.19545356929302216,
-0.10871829092502594,
0.06971675902605057,
0.08464352041482925,
0.07697100192308426,
0.0022393891122192144,
0.09331963956356049,
-0.06282515823841095,
0.08442986011505127,
0.23113083839416504,
-0.24940498173236847,
-0.07427940517663956,
0.03298037871718407,
-0.00032525218557566404,
0.048330459743738174,
-0.08474363386631012,
-0.01936979591846466,
0.036982204765081406,
0.042527396231889725,
0.09750091284513474,
0.00782809965312481,
-0.08020146936178207,
-0.015123896300792694,
-0.13215534389019012,
-0.07142000645399094,
0.15592652559280396,
0.06636423617601395,
-0.0463278666138649,
-0.03312530741095543,
-0.0655267983675003,
-0.19007648527622223,
-0.05418246611952782,
0.03225434198975563,
0.041892100125551224,
-0.038456231355667114,
-0.07445581257343292,
-0.006263327319175005,
-0.07939216494560242,
-0.07812552899122238,
-0.036172471940517426,
0.09899915754795074,
0.04749934375286102,
0.031391389667987823,
-0.011512549594044685,
0.10953781753778458,
-0.01824803464114666,
-0.150218665599823,
-0.013544599525630474,
0.007401942741125822,
-0.006695886142551899,
-0.031107185408473015,
-0.031895264983177185,
-0.004264780320227146,
0.020259197801351547,
0.13579826056957245,
-0.05898575484752655,
0.05332260578870773,
-0.0035321610048413277,
0.04189509153366089,
-0.09024287760257721,
0.1742226481437683,
-0.055675458163022995,
-0.004234644118696451,
0.026015065610408783,
0.08898786455392838,
0.036955829709768295,
-0.012118727900087833,
-0.11201242357492447,
-0.005060027819126844,
0.10589208453893661,
0.020738346502184868,
-0.030648548156023026,
0.05769118294119835,
-0.059668537229299545,
-0.03158974274992943,
0.07433582097291946,
-0.09481684863567352,
0.03605104982852936,
0.009666886180639267,
-0.08114736527204514,
-0.010281728580594063,
0.04067984223365784,
-0.002763967728242278,
-0.015066659078001976,
0.08603689074516296,
-0.08823997527360916,
0.029050320386886597,
-0.08903268724679947,
-0.11426631361246109,
0.03949318826198578,
-0.12304899096488953,
-0.000685408478602767,
-0.10329483449459076,
-0.1840570569038391,
-0.02077486924827099,
0.05694064497947693,
-0.051402345299720764,
-0.05671319738030434,
-0.05893455445766449,
-0.09187892079353333,
0.03743366152048111,
-0.004988980479538441,
0.08848539739847183,
-0.07153283804655075,
0.09301912784576416,
0.015457241795957088,
0.08093709498643875,
-0.045833785086870193,
0.054481860250234604,
-0.06705418229103088,
0.05084824189543724,
-0.18678002059459686,
0.07401266694068909,
-0.07073592394590378,
0.06723951548337936,
-0.09972595423460007,
-0.11069590598344803,
0.019516393542289734,
-0.034252770245075226,
0.0965849980711937,
0.122459776699543,
-0.17910365760326385,
-0.0563790462911129,
0.14364449679851532,
-0.09708286821842194,
-0.13124576210975647,
0.11389154195785522,
-0.04367827624082565,
-0.01740805245935917,
0.04005309194326401,
0.1544826179742813,
0.07510754466056824,
-0.11817676573991776,
-0.025343427434563637,
-0.022369641810655594,
0.061942581087350845,
-0.059816401451826096,
0.08186883479356766,
0.02315254509449005,
0.010347433388233185,
0.024053389206528664,
-0.07002012431621552,
0.06910388171672821,
-0.11071857810020447,
-0.09923660010099411,
-0.05615973100066185,
-0.07850862294435501,
0.027143139392137527,
0.0571025013923645,
0.046078529208898544,
-0.08661221712827682,
-0.09105602651834488,
0.03506165370345116,
0.1013086587190628,
-0.07827146351337433,
0.018984027206897736,
-0.06383278965950012,
0.12373721599578857,
-0.06479834020137787,
-0.014961066655814648,
-0.16688212752342224,
-0.08198550343513489,
0.033196043223142624,
-0.019657613709568977,
0.008939185179769993,
-0.061972394585609436,
0.05006776750087738,
0.07876338809728622,
-0.0414823554456234,
-0.04400632902979851,
-0.07654669880867004,
-0.006738812196999788,
-0.0965333804488182,
-0.20624606311321259,
-0.0801401436328888,
-0.021517446264624596,
0.1503734588623047,
-0.1924159675836563,
0.025189775973558426,
0.019011832773685455,
0.10460614413022995,
0.021837538108229637,
-0.02925979718565941,
-0.019943179562687874,
0.06270034611225128,
-0.04965837299823761,
-0.08601976931095123,
0.06150375306606293,
0.013067944906651974,
-0.0572202205657959,
-0.02668890729546547,
-0.060702916234731674,
0.11585173010826111,
0.1348162144422531,
-0.05865493044257164,
-0.08296331018209457,
-0.011896143667399883,
-0.06817470490932465,
-0.032301515340805054,
-0.05551200360059738,
0.02635202556848526,
0.10540688037872314,
0.007266049738973379,
0.13365232944488525,
-0.08110068738460541,
-0.017711255699396133,
0.04771294817328453,
-0.01215684786438942,
-0.01348341815173626,
0.0983377993106842,
0.1291741132736206,
-0.088580422103405,
0.14447231590747833,
0.12489629536867142,
-0.07497947663068771,
0.10711116343736649,
-0.04721556603908539,
-0.0849088579416275,
-0.02598525956273079,
-0.010061240755021572,
0.010763979516923428,
0.14001761376857758,
-0.13398058712482452,
-0.017905186861753464,
0.03569607064127922,
0.016760556027293205,
0.0094253309071064,
-0.21143876016139984,
-0.019344251602888107,
0.019310487434267998,
-0.0703258141875267,
-0.03781196475028992,
-0.0251217819750309,
0.015168456360697746,
0.10819635540246964,
0.02289138175547123,
-0.07275086641311646,
0.026546640321612358,
0.001690314500592649,
-0.08092129975557327,
0.19494862854480743,
-0.0963595062494278,
-0.1638828068971634,
-0.12463630735874176,
-0.05102838948369026,
-0.06305330246686935,
0.0016735137905925512,
0.04320058226585388,
-0.07909290492534637,
-0.048367198556661606,
-0.07984611392021179,
0.0008307034731842577,
0.011550989001989365,
0.03390033543109894,
0.024848461151123047,
0.008335854858160019,
0.06883296370506287,
-0.08524131029844284,
-0.014289554208517075,
-0.029812894761562347,
-0.03904750570654869,
0.054728344082832336,
0.01243857853114605,
0.113303542137146,
0.12211865931749344,
-0.029489804059267044,
0.03887099772691727,
-0.022140268236398697,
0.2522920072078705,
-0.06094017252326012,
-0.0075966790318489075,
0.12610891461372375,
0.008818800561130047,
0.06839490681886673,
0.14360390603542328,
0.05459640920162201,
-0.09697599709033966,
-0.0013472756836563349,
0.01271092053502798,
-0.04188639298081398,
-0.21141566336154938,
-0.052366845309734344,
-0.05527552217245102,
-0.008518998511135578,
0.13570554554462433,
0.03535979241132736,
0.009476399049162865,
0.08396308869123459,
0.00004916808757116087,
0.08221712708473206,
-0.030859284102916718,
0.08457781374454498,
0.11402677744626999,
0.06072823703289032,
0.11691094189882278,
-0.038861051201820374,
-0.014688396826386452,
0.04935864359140396,
0.006148010026663542,
0.2648696303367615,
-0.018347233533859253,
0.13148289918899536,
0.05133495107293129,
0.1991395652294159,
0.025688007473945618,
0.07513948529958725,
-0.005132160149514675,
-0.005896282382309437,
-0.006137931253761053,
-0.05556098744273186,
-0.04160226881504059,
0.02562929131090641,
-0.040691737085580826,
0.0407387837767601,
-0.1157185435295105,
0.027706891298294067,
0.03869183734059334,
0.28368082642555237,
0.07216502726078033,
-0.3881022036075592,
-0.09588335454463959,
-0.006569971796125174,
-0.005532161332666874,
-0.05196306109428406,
0.0023400336503982544,
0.09877782315015793,
-0.07908441871404648,
0.06511808186769485,
-0.07531706988811493,
0.0996876135468483,
-0.058654967695474625,
0.005610064137727022,
0.10543688386678696,
0.07987524569034576,
0.016171669587492943,
0.0561307929456234,
-0.23156584799289703,
0.2814977467060089,
0.0055067939683794975,
0.05990275740623474,
-0.0579523891210556,
0.013411511667072773,
0.043214309960603714,
0.06589217483997345,
0.08234316110610962,
0.00012791839253623039,
-0.054131750017404556,
-0.19717468321323395,
-0.11350157856941223,
0.020404798910021782,
0.08230362087488174,
-0.027611302211880684,
0.11018684506416321,
-0.01691744290292263,
-0.021412057802081108,
0.04383773356676102,
-0.006964575964957476,
-0.100117988884449,
-0.09821666032075882,
0.004580826032906771,
0.017814436927437782,
0.012195567600429058,
-0.07111828774213791,
-0.11451595276594162,
-0.0713881105184555,
0.1414015144109726,
-0.015449975617229939,
-0.05111567676067352,
-0.12973028421401978,
0.10942947864532471,
0.1133512407541275,
-0.08656862378120422,
0.07048432528972626,
-0.016683228313922882,
0.11543884873390198,
0.030840860679745674,
-0.09050480276346207,
0.08608346432447433,
-0.07087258994579315,
-0.18751810491085052,
-0.05359077826142311,
0.10173428803682327,
0.019071832299232483,
0.055413227528333664,
-0.00392267806455493,
0.03546447679400444,
-0.02176874317228794,
-0.08362352102994919,
0.03364125266671181,
0.031273528933525085,
0.07349807024002075,
0.03898799791932106,
-0.047494228929281235,
0.0035995810758322477,
-0.05045333132147789,
-0.021027591079473495,
0.1476464718580246,
0.23048929870128632,
-0.10445166379213333,
0.019018027931451797,
0.021718047559261322,
-0.05969557166099548,
-0.19768087565898895,
0.03522440791130066,
0.09734087437391281,
0.015516858547925949,
-0.020629800856113434,
-0.19617359340190887,
0.07903191447257996,
0.10970999300479889,
-0.02455916255712509,
0.11733158677816391,
-0.29955947399139404,
-0.12037336081266403,
0.07985846698284149,
0.1389923095703125,
0.07500370591878891,
-0.1424701064825058,
-0.0430520735681057,
-0.0164884515106678,
-0.15591977536678314,
0.14329543709754944,
-0.03097544237971306,
0.11822526901960373,
-0.03918522596359253,
0.07422329485416412,
0.005944450385868549,
-0.05818928778171539,
0.14435522258281708,
0.026185782626271248,
0.08947260677814484,
-0.052094489336013794,
-0.030500313267111778,
0.060724783688783646,
-0.07587699592113495,
0.05387250334024429,
-0.02713608369231224,
0.054935988038778305,
-0.09417597949504852,
-0.009541458450257778,
-0.07979917526245117,
0.02536541037261486,
-0.02731018140912056,
-0.025679104030132294,
-0.04879707098007202,
0.032778266817331314,
0.04960603266954422,
-0.007410319056361914,
0.15840213000774384,
0.045535311102867126,
0.10419189929962158,
0.08608517050743103,
0.04514332860708237,
-0.07431577146053314,
-0.058353327214717865,
-0.019534673541784286,
-0.029913607984781265,
0.06276249140501022,
-0.15982456505298615,
0.022628232836723328,
0.14279049634933472,
0.03669875115156174,
0.13443909585475922,
0.07512690871953964,
-0.024837465956807137,
0.0275349710136652,
0.06857309490442276,
-0.14531439542770386,
-0.08631838113069534,
-0.008886653929948807,
-0.021090470254421234,
-0.1185932457447052,
0.03374870494008064,
0.10801444947719574,
-0.08510152995586395,
-0.01054977998137474,
-0.012223407626152039,
0.025246592238545418,
-0.030330035835504532,
0.17908847332000732,
0.07240300625562668,
0.04954276978969574,
-0.11762113869190216,
0.09009236842393875,
0.05904790014028549,
-0.10213812440633774,
0.016167115420103073,
0.07433139532804489,
-0.10479085892438889,
-0.033750951290130615,
0.04110592231154442,
0.14951092004776,
-0.0713469609618187,
-0.04806651547551155,
-0.12174100428819656,
-0.11926890909671783,
0.09370206296443939,
0.14650586247444153,
0.08842650800943375,
0.040880654007196426,
-0.01853962056338787,
0.004330990370362997,
-0.10983622819185257,
0.09064887464046478,
0.042759887874126434,
0.09008811414241791,
-0.16576063632965088,
0.09908231347799301,
0.008815431967377663,
0.061965592205524445,
-0.02144591696560383,
0.022905420511960983,
-0.10299611836671829,
0.000538461550604552,
-0.11586666107177734,
0.03695749118924141,
-0.052720893174409866,
0.004563113674521446,
-0.0015359699027612805,
-0.06190190836787224,
-0.06475596874952316,
0.025154853239655495,
-0.10565242916345596,
-0.054188866168260574,
0.002404597355052829,
0.04922518506646156,
-0.11752240359783173,
-0.0313817597925663,
0.01910063810646534,
-0.09805987775325775,
0.09171374887228012,
0.06330163776874542,
0.022186022251844406,
0.021207867190241814,
-0.09811769425868988,
-0.01900884136557579,
0.06306903809309006,
0.017354590818285942,
0.06806425005197525,
-0.11260952055454254,
0.01262104231864214,
-0.010050911456346512,
0.011162854731082916,
0.010909969918429852,
0.09988214075565338,
-0.13181789219379425,
-0.01149294339120388,
-0.03110763058066368,
-0.05099419131875038,
-0.058141544461250305,
0.06742977350950241,
0.11322636157274246,
0.026096787303686142,
0.16144326329231262,
-0.07538096606731415,
0.034164413809776306,
-0.2274799346923828,
-0.01050026249140501,
-0.020677832886576653,
-0.09951120615005493,
-0.11953236907720566,
-0.047039031982421875,
0.07863105088472366,
-0.05652299150824547,
0.11070138216018677,
0.019184404984116554,
0.03969142213463783,
0.02323489636182785,
0.012527582235634327,
-0.02158755250275135,
0.035688795149326324,
0.17164954543113708,
0.035512011498212814,
-0.027571842074394226,
0.0771220251917839,
0.024889223277568817,
0.09479685872793198,
0.08906397223472595,
0.17422683537006378,
0.11992213875055313,
0.030140863731503487,
0.10171917080879211,
0.07927589118480682,
-0.06655453890562057,
-0.15108095109462738,
0.06991414725780487,
-0.05819888040423393,
0.13140766322612762,
-0.016475684940814972,
0.1775558441877365,
0.06877341866493225,
-0.1812785416841507,
0.03693416342139244,
-0.03510279953479767,
-0.08628229051828384,
-0.09405937045812607,
-0.07595069706439972,
-0.1022372767329216,
-0.16363535821437836,
0.014889628626406193,
-0.12106350064277649,
0.01848512515425682,
0.11940819025039673,
0.011983816511929035,
0.0026003015227615833,
0.1259527951478958,
0.04241831973195076,
0.019282476976513863,
0.0814024806022644,
0.020539330318570137,
-0.034621771425008774,
-0.06875111907720566,
-0.08701819181442261,
0.028323475271463394,
-0.010453056544065475,
0.04820231720805168,
-0.030792230740189552,
-0.018423937261104584,
0.05407918244600296,
0.005674630403518677,
-0.11021683365106583,
0.018411090597510338,
-0.0006241542287170887,
0.046901993453502655,
0.04291146248579025,
0.006367947440594435,
0.02922380156815052,
-0.00438362592831254,
0.18573154509067535,
-0.05951108783483505,
-0.05126819387078285,
-0.12832064926624298,
0.18223518133163452,
0.0027685482054948807,
-0.033610887825489044,
0.04742763936519623,
-0.06908152252435684,
-0.014324568212032318,
0.18676145374774933,
0.17398695647716522,
-0.06208096817135811,
-0.020960696041584015,
0.019185664132237434,
-0.018428759649395943,
-0.02859768643975258,
0.11157647520303726,
0.11493688076734543,
0.03758436068892479,
-0.0857231467962265,
-0.05708084627985954,
-0.06500155478715897,
-0.015820840373635292,
-0.032493237406015396,
0.026796668767929077,
0.011887271888554096,
0.00172501674387604,
-0.05896497517824173,
0.06132422015070915,
-0.05170916020870209,
-0.06650077551603317,
0.10821827501058578,
-0.2138483226299286,
-0.18190836906433105,
-0.018413886427879333,
0.07405500113964081,
0.016959354281425476,
0.04396725445985794,
-0.03606891632080078,
-0.005673255771398544,
0.11453629285097122,
-0.03173451870679855,
-0.09161746501922607,
-0.10136546939611435,
0.0785282775759697,
-0.08358690142631531,
0.22978575527668,
-0.03625661879777908,
0.04935280978679657,
0.1172630712389946,
0.0578795000910759,
-0.12350312620401382,
0.028240785002708435,
0.05333767831325531,
-0.046372879296541214,
0.021186919882893562,
0.11544565111398697,
-0.0445515476167202,
0.07422557473182678,
0.040012095123529434,
-0.10622995346784592,
-0.01254824735224247,
-0.025014562532305717,
-0.03676861524581909,
-0.05034741014242172,
-0.0328345000743866,
-0.0543312132358551,
0.13680098950862885,
0.19346383213996887,
-0.04500598832964897,
-0.02342086471617222,
-0.06526514142751694,
0.022788075730204582,
0.06314779818058014,
0.0398479625582695,
-0.03887413442134857,
-0.22436605393886566,
0.011160135269165039,
0.03223646804690361,
0.0015474450774490833,
-0.19503778219223022,
-0.09381628036499023,
0.011434948071837425,
-0.05477936565876007,
-0.09719938039779663,
0.11102218925952911,
0.07554546743631363,
0.050589609891176224,
-0.057344913482666016,
-0.0353735089302063,
-0.06136489287018776,
0.1614164412021637,
-0.14398051798343658,
-0.09233783930540085
] |
null | null |
generic
|
# TODO
-
-
-
-
|
{"library_name": "generic", "tags": ["chemistry"]}
| null |
davanstrien/test
|
[
"generic",
"chemistry",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#generic #chemistry #region-us
|
# TODO
-
-
-
-
|
[
"# TODO\n-\n-\n-\n-"
] |
[
"TAGS\n#generic #chemistry #region-us \n",
"# TODO\n-\n-\n-\n-"
] |
[
13,
7
] |
[
"passage: TAGS\n#generic #chemistry #region-us \n# TODO\n-\n-\n-\n-"
] |
[
0.07863036543130875,
-0.03624163568019867,
-0.0094517907127738,
-0.0996529832482338,
0.046814192086458206,
0.04770484194159508,
-0.0031610268633812666,
0.09824767708778381,
0.30291804671287537,
0.0014053179183974862,
0.07430136948823929,
-0.027348846197128296,
-0.11584118753671646,
0.029731737449765205,
0.036490339785814285,
-0.2755817472934723,
0.03636447712779045,
-0.02046116814017296,
-0.10192558914422989,
0.0548379123210907,
-0.009093244560062885,
-0.11029266566038132,
0.04275313392281532,
-0.1308634877204895,
0.03397827222943306,
0.0737660750746727,
0.039848875254392624,
-0.10198575258255005,
0.1645284742116928,
0.003111454425379634,
0.15340466797351837,
0.09348296374082565,
-0.13192598521709442,
-0.29963645339012146,
0.050712067633867264,
-0.08016207069158554,
-0.07357378304004669,
0.10136497765779495,
0.08255759626626968,
-0.14388065040111542,
0.13126160204410553,
0.044551607221364975,
-0.02957962267100811,
0.0841360092163086,
-0.2145329713821411,
-0.057586316019296646,
0.06308098882436752,
-0.10040390491485596,
-0.14585117995738983,
-0.06656847149133682,
0.000949653796851635,
0.10374986380338669,
-0.20169390738010406,
-0.013508784584701061,
0.31516745686531067,
-0.22505998611450195,
0.043873339891433716,
0.180752232670784,
0.1475846916437149,
0.09838292747735977,
-0.04789206385612488,
0.07961118966341019,
-0.05575774237513542,
-0.02090507559478283,
-0.10738522559404373,
-0.10215717554092407,
-0.14120864868164062,
0.09814564138650894,
-0.02746920846402645,
0.03270864859223366,
0.2619537115097046,
-0.05424143001437187,
0.011531342752277851,
0.1874237060546875,
-0.13220162689685822,
-0.059876929968595505,
-0.0006561623886227608,
-0.07906892895698547,
0.014929351396858692,
0.060880210250616074,
0.1595073938369751,
0.06094213202595711,
-0.11001980304718018,
0.06207820400595665,
-0.10603516548871994,
0.30887648463249207,
-0.054771024733781815,
0.08795931190252304,
-0.020814063027501106,
0.012287507764995098,
-0.18941330909729004,
0.01825498789548874,
0.07315963506698608,
-0.11255142837762833,
0.07172919064760208,
-0.043434128165245056,
0.02915530651807785,
0.03341838717460632,
0.1658467799425125,
0.0857883095741272,
-0.010370192117989063,
0.10983848571777344,
0.026236021891236305,
0.11544346809387207,
0.10272586345672607,
-0.06391876190900803,
0.14294351637363434,
-0.008992958813905716,
0.030682533979415894,
-0.09609822183847427,
-0.08283821493387222,
-0.02660803496837616,
-0.08458930253982544,
0.011135880835354328,
0.07648300379514694,
0.018589965999126434,
0.03484978899359703,
-0.14532847702503204,
-0.1101675033569336,
0.026141293346881866,
0.10151144862174988,
-0.00003793959695030935,
-0.004786325618624687,
0.00969961378723383,
0.03922966867685318,
0.12103084474802017,
-0.12480080127716064,
0.009438412263989449,
0.09221833199262619,
0.08214050531387329,
-0.1280425488948822,
-0.010815143585205078,
-0.12939243018627167,
0.0665641576051712,
0.009253946132957935,
0.10342631489038467,
0.06611031293869019,
-0.11453297734260559,
0.08717707544565201,
0.08040456473827362,
0.1329491287469864,
-0.08262693136930466,
0.04692845419049263,
0.1544114649295807,
0.07690059393644333,
0.009063889272511005,
-0.028701873496174812,
-0.07755899429321289,
-0.1300075501203537,
0.0838572308421135,
0.016872432082891464,
0.021245082840323448,
-0.04491716995835304,
-0.02911367267370224,
-0.10784921795129776,
0.14020182192325592,
-0.1272321492433548,
-0.12037757784128189,
-0.08216051012277603,
0.09215458482503891,
-0.016103288158774376,
-0.044939201325178146,
-0.09007041901350021,
-0.034639567136764526,
-0.03039124608039856,
0.15639550983905792,
-0.05955129861831665,
-0.11855041980743408,
0.08759316802024841,
-0.05036761239171028,
-0.04776770994067192,
-0.006036342587321997,
0.044216740876436234,
0.0033468082547187805,
0.04595406726002693,
0.2218988537788391,
-0.038531865924596786,
-0.07136525958776474,
0.038174208253622055,
0.10619563609361649,
0.0979321226477623,
-0.01435097400099039,
0.11187771707773209,
0.054169606417417526,
-0.17724530398845673,
0.040636006742715836,
0.18158018589019775,
0.04013008251786232,
-0.10650530457496643,
-0.038378845900297165,
0.011470570228993893,
0.13110552728176117,
0.14825241267681122,
0.0060796793550252914,
0.12573689222335815,
-0.15541718900203705,
-0.03627423942089081,
0.039841052144765854,
-0.012502871453762054,
0.13018232583999634,
-0.019392110407352448,
-0.02246128022670746,
0.21202261745929718,
0.09309159964323044,
-0.007749455515295267,
-0.15759707987308502,
-0.12310409545898438,
0.08402236551046371,
-0.026387711986899376,
0.051451776176691055,
0.027083948254585266,
0.03558184951543808,
0.0235598087310791,
-0.008890461176633835,
0.026616578921675682,
-0.062048301100730896,
0.030487829819321632,
0.034189820289611816,
-0.11378126591444016,
0.04130445793271065,
-0.024234861135482788,
-0.15837544202804565,
-0.043350208550691605,
-0.032468680292367935,
0.11546134948730469,
0.030397778376936913,
0.06611201912164688,
0.00877507496625185,
-0.0678977370262146,
0.06250330805778503,
0.05322689190506935,
0.08292368799448013,
0.03172973915934563,
-0.1218014732003212,
-0.11347606033086777,
-0.1025841236114502,
0.04874921217560768,
0.304409921169281,
0.13148067891597748,
-0.2032427042722702,
0.0820336863398552,
-0.25185495615005493,
-0.06362292170524597,
0.057131458073854446,
0.1565525233745575,
0.016772832721471786,
-0.04978841915726662,
0.006415346637368202,
-0.054668623954057693,
-0.005644679069519043,
0.08977463096380234,
-0.011958342045545578,
-0.08773235231637955,
-0.047162532806396484,
0.025843815878033638,
0.12319167703390121,
-0.07734634727239609,
0.09755322337150574,
0.2561311721801758,
0.13180230557918549,
0.13255029916763306,
0.03080771304666996,
-0.03699883446097374,
-0.014538553543388844,
-0.14120130240917206,
-0.061957959085702896,
0.1797265261411667,
-0.14027979969978333,
0.05259362980723381,
0.028838494792580605,
-0.03134334459900856,
0.0910210832953453,
-0.1114065870642662,
-0.040123891085386276,
-0.07053060084581375,
0.06895556300878525,
0.014844834804534912,
-0.025146493688225746,
-0.06298457831144333,
0.10436981916427612,
0.0744345635175705,
-0.041324470192193985,
-0.01647111587226391,
0.07609671354293823,
-0.02433440089225769,
0.17055284976959229,
-0.1109670102596283,
-0.10552889108657837,
-0.03273312374949455,
-0.02538515068590641,
0.03297664225101471,
0.0478515587747097,
-0.0012831048807129264,
-0.06462305039167404,
-0.09416577219963074,
0.08492490649223328,
0.10281000286340714,
-0.07154295593500137,
0.028251295909285545,
-0.14578060805797577,
0.12729525566101074,
-0.12440351396799088,
0.02514309622347355,
-0.063876673579216,
-0.03669394180178642,
0.05867127701640129,
0.22793717682361603,
-0.11519881337881088,
0.05063679814338684,
0.16381055116653442,
0.04191643372178078,
0.0011026569409295917,
-0.010405301116406918,
0.12624315917491913,
-0.0884355828166008,
-0.07653623819351196,
0.09031176567077637,
-0.0209305789321661,
0.05762661620974541,
0.08209580183029175,
0.1242472231388092,
-0.07287513464689255,
0.019709475338459015,
-0.021417587995529175,
-0.10198703408241272,
-0.19894234836101532,
-0.1107921227812767,
-0.06281685084104538,
0.12194544076919556,
-0.12898527085781097,
0.07970156520605087,
0.15913386642932892,
0.0016348790377378464,
0.033654842525720596,
-0.2393295019865036,
-0.050163593143224716,
-0.017841024324297905,
0.10060068219900131,
-0.08597263693809509,
-0.014065059833228588,
-0.0036749113351106644,
-0.059379786252975464,
0.10601536184549332,
0.157805934548378,
0.12905949354171753,
0.32912471890449524,
0.13820885121822357,
-0.02008967287838459,
0.023894401267170906,
0.15979839861392975,
0.02996375598013401,
0.06887819617986679,
-0.0133596770465374,
-0.050017159432172775,
-0.033430065959692,
0.04242436960339546,
0.1157313883304596,
-0.04046199098229408,
-0.1743367463350296,
0.08638828992843628,
-0.11540178209543228,
0.1720525026321411,
0.033291470259428024,
-0.08622556924819946,
-0.007867489941418171,
-0.012495632283389568,
0.15277427434921265,
0.05768806114792824,
-0.03661893680691719,
0.061548057943582535,
-0.0815073624253273,
-0.050408925861120224,
-0.0435815155506134,
-0.027590973302721977,
0.014652186073362827,
0.13031785190105438,
0.09590029716491699,
0.036370303481817245,
-0.14576385915279388,
-0.004695602227002382,
0.10273110866546631,
-0.17436492443084717,
0.24037514626979828,
0.025409698486328125,
-0.18146173655986786,
-0.01853155344724655,
-0.05653705820441246,
-0.08985399454832077,
0.1515590399503708,
0.05573160573840141,
0.060168687254190445,
-0.12663085758686066,
-0.10463570803403854,
-0.10126161575317383,
0.040068019181489944,
0.1321064978837967,
-0.020343124866485596,
-0.026999086141586304,
-0.03250361979007721,
0.011668303050100803,
-0.03334721922874451,
0.04609129950404167,
-0.028003200888633728,
0.03861124813556671,
0.10454076528549194,
-0.21080172061920166,
0.07087933272123337,
-0.05166331306099892,
-0.020999783650040627,
0.11787397414445877,
0.16037777066230774,
-0.12544317543506622,
-0.011961950920522213,
-0.059567227959632874,
-0.10334881395101547,
0.16870540380477905,
-0.036860812455415726,
-0.01548577006906271,
-0.0213796216994524,
-0.09909942001104355,
-0.08677783608436584,
-0.215326189994812,
0.2559182345867157,
-0.02957165241241455,
-0.02694711647927761,
-0.06839119642972946,
0.17677627503871918,
-0.03464168310165405,
0.10561803728342056,
-0.09726566076278687,
0.06977609544992447,
-0.14224202930927277,
-0.04686140641570091,
0.11002210527658463,
-0.1534537523984909,
0.029305433854460716,
0.003509805304929614,
-0.14716902375221252,
0.03720485046505928,
0.035996779799461365,
-0.0875127837061882,
0.13127779960632324,
0.3021056354045868,
0.006451393011957407,
0.10834773629903793,
0.15209592878818512,
-0.028722308576107025,
-0.15519000589847565,
0.0009002487058751285,
-0.14467652142047882,
-0.010058456100523472,
0.018148770555853844,
-0.305246502161026,
0.1270415484905243,
0.09915054589509964,
-0.033409181982278824,
0.28476712107658386,
-0.23404256999492645,
-0.09413003921508789,
0.08889713883399963,
-0.06567874550819397,
0.4441095292568207,
-0.15286403894424438,
-0.02458484284579754,
-0.08785887807607651,
-0.0043374644592404366,
0.18388736248016357,
-0.009238573722541332,
0.02290634624660015,
-0.06128901243209839,
-0.011642313562333584,
0.04603542014956474,
-0.08216550201177597,
0.19373612105846405,
-0.08938602358102798,
0.040457576513290405,
-0.002905037021264434,
-0.27610763907432556,
0.04502885416150093,
0.1026373878121376,
-0.1729324460029602,
0.13711370527744293,
-0.09147226810455322,
-0.014228182844817638,
-0.010500377975404263,
-0.09045287221670151,
0.18210560083389282,
0.01343428436666727,
-0.1396447718143463,
-0.04652880132198334,
0.06698035448789597,
-0.1880561113357544,
-0.025435522198677063,
0.3115558326244354,
-0.08896832913160324,
0.18983960151672363,
0.14181768894195557,
0.047905921936035156,
-0.24998979270458221,
-0.0009949380764737725,
0.15022456645965576,
0.012735828757286072,
0.06596554815769196,
-0.0911460742354393,
-0.035016972571611404,
0.19799081981182098,
-0.04225011542439461,
0.08198940753936768,
0.06596089154481888,
-0.00041173523641191423,
0.005655409302562475,
0.1744430512189865,
-0.2710057199001312,
-0.08982915431261063,
-0.09886324405670166,
0.04880043491721153,
0.0515577606856823,
-0.06775268167257309,
0.021829575300216675,
0.028991952538490295,
-0.08052963018417358,
0.010592062026262283,
-0.004600915592163801,
-0.15511135756969452,
-0.013359316624701023,
0.024514086544513702,
0.005606260150671005,
0.001033009379170835,
-0.0224597305059433,
0.15524281561374664,
-0.10016391426324844,
-0.19612149894237518,
0.15586704015731812,
-0.009965711273252964,
-0.05366538092494011,
-0.08078966289758682,
0.0463639535009861,
-0.1210763230919838,
0.05329480767250061,
-0.06082303449511528,
-0.11006645113229752,
-0.018117042258381844,
0.11815985292196274,
0.0545463003218174,
0.02847905457019806,
-0.014510699547827244,
0.06480738520622253,
0.21863937377929688,
-0.03495657071471214,
-0.15498574078083038,
0.004609344061464071,
0.00896403193473816,
-0.058233100920915604,
-0.02797362394630909,
0.09262851625680923,
-0.10890119522809982,
-0.10526067763566971,
-0.1909462958574295,
0.028909094631671906,
-0.07605963200330734,
-0.11143656820058823,
-0.1379736214876175,
-0.10957614332437515,
-0.034986987709999084,
-0.038443151861429214,
-0.015044468455016613,
-0.10147327929735184,
-0.06789617985486984,
0.04740354046225548,
-0.02290026843547821,
0.10881469398736954,
0.012633302249014378,
-0.053196340799331665,
0.2111007571220398,
-0.030939387157559395,
0.07369446009397507,
0.16386324167251587,
0.07817376405000687,
0.09395543485879898,
-0.051843512803316116,
0.07849221676588058,
0.14718803763389587,
0.10036372393369675,
-0.008598807267844677,
0.010353848338127136,
-0.041398338973522186,
-0.041736286133527756,
-0.02565647102892399,
0.0030415430665016174,
-0.07793822884559631,
-0.10528120398521423,
-0.10122960805892944,
-0.05185320973396301,
-0.2988645136356354,
0.05447825416922569,
-0.1542757898569107,
0.1290760040283203,
-0.02513149380683899,
-0.08959847688674927,
0.034177523106336594,
0.010458583943545818,
-0.0952690914273262,
0.055701445788145065,
-0.02354205958545208,
-0.09356772899627686,
-0.1589350700378418,
-0.07549870014190674,
-0.006162560079246759,
-0.01285293698310852,
0.3174888789653778,
0.05200772359967232,
0.06331739574670792,
0.052807748317718506,
0.031071670353412628,
0.10385457426309586,
0.11019816249608994,
0.06748849898576736,
0.14316238462924957,
-0.0029791498091071844,
-0.019295843318104744,
0.03683928772807121,
-0.054789941757917404,
-0.048367395997047424,
0.16855989396572113,
0.1395357996225357,
0.02526024915277958,
-0.06723035126924515,
0.011015278287231922,
-0.05405597761273384,
0.07037752121686935,
-0.0006711483001708984,
0.04341992363333702,
-0.01408138033002615,
-0.0382254533469677,
0.12009787559509277,
0.12633292376995087,
-0.12299823760986328,
0.09455946087837219,
-0.09496146440505981,
-0.012916755862534046,
-0.06215180456638336,
0.05694175139069557,
-0.04223572090268135,
-0.16894374787807465,
0.0043757339008152485,
-0.0930069088935852,
-0.09189323335886002,
0.05245941877365112,
-0.05816537141799927,
-0.03194500878453255,
0.1584644764661789,
0.0801921859383583,
-0.07257900387048721,
-0.011222307570278645,
0.012288399040699005,
-0.028924914076924324,
-0.14154362678527832,
-0.11247392743825912,
-0.17026464641094208,
-0.06970825791358948,
-0.11752564460039139,
0.0447922982275486,
-0.09771252423524857,
-0.0532074011862278,
-0.14634345471858978,
-0.04565044865012169,
-0.056908536702394485,
-0.006380386650562286,
-0.09957519918680191,
-0.0016945675015449524,
-0.06530752032995224,
-0.02484217844903469,
0.03435462713241577,
0.24492700397968292,
0.017850639298558235,
0.07744207978248596,
0.08270380645990372,
0.16405203938484192,
0.017442213371396065,
0.14910541474819183,
0.015467513352632523,
-0.012213191948831081,
-0.04774036630988121,
-0.0022224083077162504,
0.2488497495651245,
-0.06064501777291298,
-0.009610027074813843,
-0.016499726101756096,
0.06766016036272049,
0.12589482963085175,
0.05031687021255493,
0.0731407031416893,
0.21911732852458954,
-0.17025963962078094,
-0.004043647553771734,
-0.06985356658697128,
0.05881685018539429,
-0.10741347819566727,
0.06416185200214386,
0.20844383537769318,
-0.01125671248883009,
-0.11356216669082642,
0.07321659475564957,
-0.15025168657302856,
0.21040207147598267,
0.08556673675775528,
-0.3291020095348358,
-0.051589835435152054,
-0.051503986120224,
0.015077187679708004,
-0.09425219148397446,
0.0820755735039711,
-0.12905912101268768,
-0.16389773786067963,
-0.17395614087581635,
0.11280105262994766,
-0.2842351496219635,
-0.10055994987487793,
0.21136677265167236,
0.044153567403554916,
0.010613180696964264,
-0.012217982672154903,
0.13877923786640167,
-0.021886540576815605,
0.04460294917225838,
0.038988590240478516,
-0.041982829570770264,
0.08597727864980698,
-0.12770190834999084,
-0.1845032423734665,
-0.0922575369477272,
0.06843595951795578,
-0.054539281874895096,
0.08200270682573318,
-0.0038670841604471207,
-0.040275249630212784,
0.10840790718793869,
-0.08307618647813797,
0.056609924882650375,
0.02133486419916153,
-0.17983245849609375,
0.019015798345208168,
0.04907761886715889,
-0.04159228131175041,
-0.007612865883857012,
-0.11559095233678818,
0.03426053747534752,
0.011336158961057663,
-0.07209784537553787,
-0.15442301332950592,
-0.05687735602259636,
-0.0677267536520958,
0.12277168035507202,
-0.005670197773724794,
-0.039509858936071396,
-0.05242554843425751,
0.04605904221534729,
0.23270563781261444,
-0.12891823053359985,
0.028287628665566444,
0.01194281131029129,
-0.04645552113652229,
-0.034503836184740067,
-0.236583411693573,
0.07493454962968826,
0.04594925418496132,
-0.08225462585687637,
-0.04712865874171257
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-manuscripts
This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the davanstrien/manuscript_iiif_test dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5177
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5303 | 1.0 | 34 | 0.5134 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["masked-auto-encoding", "generated_from_trainer"], "base_model": "facebook/vit-mae-base", "model-index": [{"name": "vit-manuscripts", "results": []}]}
| null |
davanstrien/vit-manuscripts
|
[
"transformers",
"pytorch",
"tensorboard",
"vit_mae",
"pretraining",
"masked-auto-encoding",
"generated_from_trainer",
"base_model:facebook/vit-mae-base",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #vit_mae #pretraining #masked-auto-encoding #generated_from_trainer #base_model-facebook/vit-mae-base #license-apache-2.0 #endpoints_compatible #region-us
|
vit-manuscripts
===============
This model is a fine-tuned version of facebook/vit-mae-base on the davanstrien/manuscript\_iiif\_test dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5177
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 7.5e-05
* train\_batch\_size: 128
* eval\_batch\_size: 128
* seed: 1337
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.05
* num\_epochs: 1.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.0+cu111
* Datasets 1.18.2
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #vit_mae #pretraining #masked-auto-encoding #generated_from_trainer #base_model-facebook/vit-mae-base #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] |
[
69,
134,
4,
36
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #vit_mae #pretraining #masked-auto-encoding #generated_from_trainer #base_model-facebook/vit-mae-base #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] |
[
-0.1375609189271927,
0.0659545361995697,
-0.004060021601617336,
0.09045957028865814,
0.12710288166999817,
0.0409250445663929,
0.10177206248044968,
0.13236601650714874,
-0.08671674132347107,
0.08089610189199448,
0.11251464486122131,
0.0776534304022789,
0.06712643802165985,
0.1455521434545517,
-0.02526017837226391,
-0.23977214097976685,
0.023498697206377983,
0.019904686138033867,
-0.08265233039855957,
0.11945659667253494,
0.08857069164514542,
-0.12001966685056686,
0.08088703453540802,
0.01749427057802677,
-0.1392497718334198,
-0.021116727963089943,
-0.016404183581471443,
-0.06354573369026184,
0.11317406594753265,
0.0047115725465118885,
0.13166247308254242,
0.016629839316010475,
0.10138272494077682,
-0.1795981377363205,
0.008601057343184948,
0.09808273613452911,
0.006756959017366171,
0.08586055040359497,
0.08117910474538803,
0.03382942080497742,
0.1158367395401001,
-0.0855964943766594,
0.07099980115890503,
0.025205273181200027,
-0.13219007849693298,
-0.24774229526519775,
-0.10021524876356125,
0.051071833819150925,
0.08131241053342819,
0.10671219229698181,
-0.003318735398352146,
0.10368027538061142,
-0.05740233510732651,
0.07174809277057648,
0.22044312953948975,
-0.2514708936214447,
-0.08155030012130737,
-0.012677407823503017,
0.04402083903551102,
0.03799290210008621,
-0.08458622545003891,
-0.03454853221774101,
0.02942068688571453,
0.05397954210639,
0.10401720553636551,
0.005141495261341333,
-0.05404539406299591,
-0.03269714489579201,
-0.14416450262069702,
-0.07428385317325592,
0.12256070226430893,
0.043182600289583206,
-0.03778694197535515,
-0.016906149685382843,
-0.06398217380046844,
-0.18799825012683868,
-0.04374430701136589,
0.005531156901270151,
0.023996733129024506,
-0.03758291155099869,
-0.04641566425561905,
0.003323540324345231,
-0.08988941460847855,
-0.08368583768606186,
-0.004931427072733641,
0.13548681139945984,
0.06376799941062927,
0.007695946842432022,
-0.0446586012840271,
0.11491910368204117,
0.0026856756303459406,
-0.1750725358724594,
-0.01027411688119173,
0.01442501600831747,
-0.019012296572327614,
-0.02602476067841053,
-0.03706004470586777,
-0.04342716932296753,
0.021610429510474205,
0.13703030347824097,
-0.10914810746908188,
0.07065030187368393,
-0.00324806896969676,
0.036780305206775665,
-0.10802742093801498,
0.15957118570804596,
-0.05318140611052513,
0.01365629117935896,
0.01295215543359518,
0.0973246842622757,
0.018363533541560173,
-0.014443762600421906,
-0.07538206875324249,
-0.009066678583621979,
0.09001678973436356,
0.031825628131628036,
-0.024092989042401314,
0.036801084876060486,
-0.05565506964921951,
-0.02322707138955593,
0.07458899170160294,
-0.09056570380926132,
0.02669128216803074,
0.02310864068567753,
-0.073537677526474,
-0.04243874549865723,
0.036140576004981995,
-0.006585087161511183,
-0.04018845409154892,
0.11101791262626648,
-0.08034708350896835,
-0.00035590073093771935,
-0.09639119356870651,
-0.11011971533298492,
0.03621704876422882,
-0.10495348274707794,
0.0016859321622177958,
-0.09796490520238876,
-0.13092546164989471,
-0.03635571151971817,
0.04145872965455055,
-0.035796232521533966,
-0.04322749376296997,
-0.033895526081323624,
-0.10525369644165039,
0.04527580365538597,
-0.008735200390219688,
0.14922547340393066,
-0.06431879103183746,
0.09798450767993927,
0.02137044630944729,
0.0492837093770504,
0.0025078754406422377,
0.05392850190401077,
-0.0712352991104126,
0.04476672038435936,
-0.16259154677391052,
0.033008988946676254,
-0.06556220352649689,
0.03492758795619011,
-0.09847341477870941,
-0.1156516820192337,
-0.013937918469309807,
-0.028243741020560265,
0.1290133148431778,
0.10753946006298065,
-0.15219339728355408,
-0.058884818106889725,
0.15945544838905334,
-0.0990496501326561,
-0.10798878222703934,
0.10823775827884674,
-0.021740177646279335,
-0.04793180525302887,
0.012774061411619186,
0.12114240974187851,
0.1023973673582077,
-0.13289353251457214,
0.0074658384546637535,
-0.008893570862710476,
0.0663490816950798,
-0.012624219059944153,
0.0772261768579483,
0.0005763963563367724,
0.0022089979611337185,
0.007814093492925167,
-0.046896349638700485,
0.051438458263874054,
-0.098617322742939,
-0.08801063895225525,
-0.0582709014415741,
-0.07283325493335724,
0.018707692623138428,
0.0698406770825386,
0.025903498753905296,
-0.09228421002626419,
-0.11361915618181229,
-0.02435605227947235,
0.11760101467370987,
-0.06494777649641037,
0.034528471529483795,
-0.0764140859246254,
0.08101724833250046,
-0.03156070411205292,
-0.014902092516422272,
-0.18379901349544525,
-0.050615161657333374,
0.03245982155203819,
-0.04695736616849899,
-0.0053353747352957726,
-0.03892169147729874,
0.06941507756710052,
0.08461256325244904,
-0.035635657608509064,
-0.057391539216041565,
-0.11605877429246902,
-0.013613461516797543,
-0.10121164470911026,
-0.23464903235435486,
-0.08248443156480789,
-0.02890756167471409,
0.11915460973978043,
-0.16418665647506714,
0.0226842500269413,
0.006167659070342779,
0.12210793793201447,
0.015727024525403976,
-0.0272369384765625,
-0.024519482627511024,
0.08743337541818619,
-0.020608851686120033,
-0.07368176430463791,
0.048063818365335464,
0.016124727204442024,
-0.06289801746606827,
-0.0192172322422266,
-0.10589397698640823,
0.0787341296672821,
0.12294770777225494,
-0.046327143907547,
-0.0796494334936142,
0.030424198135733604,
-0.07088456302881241,
-0.040967267006635666,
-0.01837938092648983,
0.03727005422115326,
0.1712224781513214,
0.017800793051719666,
0.12560944259166718,
-0.08689184486865997,
-0.034609779715538025,
0.05260476469993591,
0.002127888845279813,
-0.002360098995268345,
0.11126753687858582,
0.12366602569818497,
-0.06606020778417587,
0.11667570471763611,
0.1381002813577652,
-0.06597168743610382,
0.11036795377731323,
-0.05373955890536308,
-0.08943738788366318,
-0.009414528496563435,
0.0014815261820331216,
0.020531900227069855,
0.1297421157360077,
-0.150773823261261,
0.012608328834176064,
0.024793583899736404,
0.01927831396460533,
0.017836853861808777,
-0.21069997549057007,
-0.01265687495470047,
0.02494054101407528,
-0.05615564435720444,
-0.044990528374910355,
-0.005707964766770601,
0.029014764353632927,
0.09980066120624542,
0.023827191442251205,
-0.06197049096226692,
0.004623828921467066,
-0.01041013840585947,
-0.07050354778766632,
0.20516972243785858,
-0.11214148998260498,
-0.16564756631851196,
-0.11181475222110748,
0.0034703228157013655,
-0.029016226530075073,
-0.00038234973908402026,
0.050877947360277176,
-0.0965915396809578,
-0.04057401791214943,
-0.060662925243377686,
0.020717857405543327,
-0.027814993634819984,
0.03641755133867264,
0.015159429982304573,
0.004564483184367418,
0.09292621165513992,
-0.10360366851091385,
0.004225184675306082,
-0.026783814653754234,
-0.055952731519937515,
0.0260578915476799,
0.054335687309503555,
0.0953986644744873,
0.13281844556331635,
-0.0059209405444562435,
0.011509919539093971,
-0.017261730507016182,
0.21171928942203522,
-0.08415061980485916,
-0.024566929787397385,
0.1569502353668213,
-0.010547691024839878,
0.06384820491075516,
0.10701459646224976,
0.04821956902742386,
-0.08055702596902847,
-0.001991608180105686,
0.01844542846083641,
-0.034922756254673004,
-0.22550280392169952,
-0.0493968240916729,
-0.05878452584147453,
-0.014410872012376785,
0.12910053133964539,
0.029483085498213768,
0.0078066447749733925,
0.062192246317863464,
-0.028461487963795662,
0.030339285731315613,
-0.030732527375221252,
0.07396354526281357,
0.06978106498718262,
0.054320670664310455,
0.10060626268386841,
-0.02370777167379856,
-0.012751461006700993,
0.039449047297239304,
-0.01396759320050478,
0.20746827125549316,
-0.035446349531412125,
0.11406637728214264,
0.059467144310474396,
0.2046469897031784,
-0.0005876926588825881,
0.06968453526496887,
-0.015627674758434296,
-0.015325921587646008,
0.006783131510019302,
-0.0481150820851326,
-0.04149431362748146,
0.009174511767923832,
-0.04166204109787941,
0.04203961417078972,
-0.15041862428188324,
0.02137773670256138,
0.01363080833107233,
0.29068419337272644,
0.0634775161743164,
-0.3315764367580414,
-0.10290413349866867,
-0.01892152428627014,
-0.018793189898133278,
-0.07536585628986359,
0.013997308909893036,
0.11057081073522568,
-0.07433129101991653,
0.06280651688575745,
-0.06263168156147003,
0.09957746416330338,
-0.028696799650788307,
0.016963303089141846,
0.10333269834518433,
0.12952765822410583,
0.018718019127845764,
0.06310892850160599,
-0.2531639039516449,
0.2698824107646942,
-0.0033066810574382544,
0.09052781760692596,
-0.060084789991378784,
0.02640078030526638,
0.018921319395303726,
0.05319670960307121,
0.0673869326710701,
-0.007764363661408424,
-0.04507284611463547,
-0.16329415142536163,
-0.09567909687757492,
0.02210095152258873,
0.10194238275289536,
-0.021781791001558304,
0.10212645679712296,
-0.015697063878178596,
-0.008031081408262253,
0.049951937049627304,
-0.05346013233065605,
-0.10986244678497314,
-0.07255517691373825,
0.03002936951816082,
0.02223321795463562,
0.007504239212721586,
-0.08976089954376221,
-0.09574336558580399,
-0.06883816421031952,
0.12521038949489594,
-0.07217864692211151,
-0.03400908783078194,
-0.1276841014623642,
0.09128274768590927,
0.1372900754213333,
-0.07862149178981781,
0.055942606180906296,
-0.0077073886059224606,
0.11391061544418335,
0.01726393587887287,
-0.05876513570547104,
0.08611244708299637,
-0.08439630270004272,
-0.21467769145965576,
-0.05533776432275772,
0.13345225155353546,
0.047842130064964294,
0.0524478554725647,
-0.015538753010332584,
0.029092993587255478,
-0.026672042906284332,
-0.08351292461156845,
0.036817315965890884,
0.0034996734466403723,
0.07516547292470932,
0.011320048943161964,
-0.03000609762966633,
0.03261936455965042,
-0.04614626616239548,
-0.011204756796360016,
0.10651522129774094,
0.24233222007751465,
-0.0915265828371048,
0.031025920063257217,
0.049175262451171875,
-0.0670381709933281,
-0.1893288642168045,
0.01832827925682068,
0.10937150567770004,
0.01833283342421055,
-0.04174448922276497,
-0.2105673849582672,
0.06857180595397949,
0.08287706971168518,
-0.017003193497657776,
0.11041271686553955,
-0.30926066637039185,
-0.13056610524654388,
0.09669758379459381,
0.11472893506288528,
0.04640325531363487,
-0.12794949114322662,
-0.03150662034749985,
0.0025507521349936724,
-0.13224168121814728,
0.0927613228559494,
-0.08637028187513351,
0.11439310014247894,
-0.03688567131757736,
0.03603573888540268,
0.01403676439076662,
-0.06215636432170868,
0.14391231536865234,
-0.005020178854465485,
0.0797181949019432,
-0.04438219591975212,
0.03098936937749386,
0.05495326593518257,
-0.05852958559989929,
0.018619557842612267,
-0.03590049594640732,
0.048733483999967575,
-0.1038004606962204,
0.00008521742711309344,
-0.10583894699811935,
0.04643751680850983,
-0.047062236815690994,
-0.019032906740903854,
-0.020751014351844788,
0.034395743161439896,
0.04515529051423073,
-0.013171003200113773,
0.15916766226291656,
0.020662013441324234,
0.145955890417099,
0.10391964018344879,
0.08922133594751358,
-0.04278026521205902,
-0.049986958503723145,
0.007710530422627926,
-0.017734503373503685,
0.0839766263961792,
-0.11383713781833649,
0.017900913953781128,
0.13472065329551697,
0.029379434883594513,
0.09454662352800369,
0.07003505527973175,
-0.0616115927696228,
0.004745781887322664,
0.07326611131429672,
-0.1438705027103424,
-0.06360037624835968,
-0.0027938121929764748,
0.01124274916946888,
-0.1218763142824173,
0.025499887764453888,
0.12427427619695663,
-0.07188480347394943,
-0.011024967767298222,
-0.004836793523281813,
0.02430824562907219,
-0.05286956578493118,
0.20150436460971832,
0.05448301509022713,
0.06068512052297592,
-0.10976476967334747,
0.09610337764024734,
0.05021709203720093,
-0.12939628958702087,
0.03310719132423401,
0.10981861501932144,
-0.0930911973118782,
-0.03669501096010208,
0.058766987174749374,
0.1329563707113266,
-0.029244892299175262,
-0.06923309713602066,
-0.12020265311002731,
-0.13295365869998932,
0.10312061011791229,
0.16762036085128784,
0.053289562463760376,
0.02693166397511959,
-0.019686385989189148,
0.027959365397691727,
-0.12702728807926178,
0.08138830959796906,
0.05185404792428017,
0.07911999523639679,
-0.13819244503974915,
0.16494610905647278,
0.013996390625834465,
0.051557522267103195,
-0.009344336576759815,
0.0329042449593544,
-0.09024397283792496,
0.008351263590157032,
-0.1382748931646347,
0.003113123821094632,
-0.017209548503160477,
-0.005144583526998758,
-0.008138441480696201,
-0.05858124420046806,
-0.05216407775878906,
0.039661820977926254,
-0.10207490622997284,
-0.049446385353803635,
-0.015522646717727184,
0.027512909844517708,
-0.11428961902856827,
-0.021487819030880928,
0.025996355339884758,
-0.0997103899717331,
0.08083079755306244,
0.06117716431617737,
0.029159564524888992,
0.03371795266866684,
-0.09812967479228973,
-0.0019396636635065079,
0.036583464592695236,
0.019689366221427917,
0.04965948313474655,
-0.1141168475151062,
0.01123383454978466,
-0.03475022315979004,
-0.011644099839031696,
-0.008766990154981613,
0.10063000023365021,
-0.13302215933799744,
0.0031649761367589235,
0.01897917501628399,
-0.050715260207653046,
-0.05374236777424812,
0.044466760009527206,
0.0902823880314827,
0.025626417249441147,
0.14724873006343842,
-0.07352194935083389,
0.05286021903157234,
-0.21975918114185333,
-0.004356881603598595,
-0.013631627894937992,
-0.07754717767238617,
-0.0674985721707344,
-0.03109782189130783,
0.10681325942277908,
-0.061285458505153656,
0.061681684106588364,
-0.0013315199175849557,
0.07523012161254883,
0.030424345284700394,
-0.05031735822558403,
-0.021428801119327545,
0.047305744141340256,
0.1547006070613861,
0.027801062911748886,
-0.03486077859997749,
0.06393774598836899,
0.00530635192990303,
0.08104890584945679,
0.10067106038331985,
0.20470744371414185,
0.13443081080913544,
0.08796047419309616,
0.09330236911773682,
0.06812740117311478,
-0.09830348938703537,
-0.148294135928154,
0.04980822280049324,
-0.047507453709840775,
0.12787683308124542,
-0.011325768195092678,
0.1589067429304123,
0.07137399911880493,
-0.16828109323978424,
0.04175031930208206,
-0.04417271167039871,
-0.07715578377246857,
-0.10306917876005173,
-0.03509391099214554,
-0.07400032877922058,
-0.13921910524368286,
0.016688147559762,
-0.1184254065155983,
0.03908152133226395,
0.06929785013198853,
0.016551459208130836,
0.006573440507054329,
0.15871545672416687,
0.07898042351007462,
0.012162113562226295,
0.08122117817401886,
0.036651886999607086,
0.003532121190801263,
-0.040639955550432205,
-0.10145947337150574,
0.027273019775748253,
-0.020738473162055016,
0.043755341321229935,
-0.04965146258473396,
-0.05387251079082489,
0.06471194326877594,
0.03159540146589279,
-0.10033208131790161,
0.03485880792140961,
-0.006526262499392033,
0.06546543538570404,
0.08211866766214371,
0.006340827792882919,
0.03588809818029404,
-0.019131159409880638,
0.19907905161380768,
-0.07031350582838058,
-0.06608881801366806,
-0.1200631856918335,
0.2309156060218811,
0.0227053202688694,
-0.03832009434700012,
0.05015835538506508,
-0.06431226432323456,
-0.024993905797600746,
0.18287166953086853,
0.1484747678041458,
-0.05025751143693924,
-0.011276386678218842,
0.021228939294815063,
-0.01354624517261982,
-0.04529275745153427,
0.11577942967414856,
0.1372273862361908,
0.05086013674736023,
-0.09407217800617218,
-0.0386616475880146,
-0.05520285293459892,
0.001567243249155581,
-0.04057517275214195,
0.04092245548963547,
0.007859388366341591,
-0.012823233380913734,
-0.040417615324258804,
0.047813814133405685,
-0.03974904865026474,
-0.11994528770446777,
0.09137032181024551,
-0.1883084625005722,
-0.17347721755504608,
-0.025253459811210632,
0.07896377891302109,
0.014012360945343971,
0.06028108298778534,
-0.009173770435154438,
-0.012740008533000946,
0.11439312994480133,
-0.018058285117149353,
-0.02705911174416542,
-0.1332181990146637,
0.08175648748874664,
-0.10503654927015305,
0.22528885304927826,
-0.03970959782600403,
0.039507728070020676,
0.10942089557647705,
0.05853614956140518,
-0.11334504187107086,
0.013421590439975262,
0.06834191828966141,
-0.07061927765607834,
0.01493824552744627,
0.14277826249599457,
-0.0433669351041317,
0.07572784274816513,
0.034019023180007935,
-0.12642723321914673,
-0.011883827857673168,
-0.053773827850818634,
-0.0368879996240139,
-0.02969922125339508,
-0.013840888626873493,
-0.05257011204957962,
0.13798266649246216,
0.2186674177646637,
-0.04090306535363197,
-0.024441014975309372,
-0.06799837201833725,
0.020220575854182243,
0.04476533830165863,
0.08244094252586365,
-0.030441444367170334,
-0.2282966673374176,
0.022935623303055763,
0.049509577453136444,
0.010105282068252563,
-0.19732122123241425,
-0.08372242748737335,
0.027333440259099007,
-0.07030895352363586,
-0.0919124186038971,
0.08154384791851044,
0.024953071027994156,
0.0477738194167614,
-0.05514014512300491,
-0.017774216830730438,
-0.0538029707968235,
0.16670814156532288,
-0.1608251929283142,
-0.08177827298641205
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit_flyswot_test
This model is a fine-tuned version of [](https://huggingface.co/) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4777
- F1: 0.8492
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 666
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 52 | 1.2007 | 0.3533 |
| No log | 2.0 | 104 | 1.0037 | 0.5525 |
| No log | 3.0 | 156 | 0.8301 | 0.6318 |
| No log | 4.0 | 208 | 0.7224 | 0.6946 |
| No log | 5.0 | 260 | 0.7298 | 0.7145 |
| No log | 6.0 | 312 | 0.6328 | 0.7729 |
| No log | 7.0 | 364 | 0.6010 | 0.7992 |
| No log | 8.0 | 416 | 0.5174 | 0.8364 |
| No log | 9.0 | 468 | 0.5084 | 0.8479 |
| 0.6372 | 10.0 | 520 | 0.4777 | 0.8492 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
{"tags": ["generated_from_trainer"], "datasets": ["image_folder"], "metrics": ["f1"], "model-index": [{"name": "vit_flyswot_test", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "image_folder", "type": "image_folder", "args": "default"}, "metrics": [{"type": "f1", "value": 0.849172221610369, "name": "F1"}]}]}]}
|
image-classification
|
davanstrien/vit_flyswot_test
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:image_folder",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-image_folder #model-index #autotrain_compatible #endpoints_compatible #region-us
|
vit\_flyswot\_test
==================
This model is a fine-tuned version of [](URL on the image\_folder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4777
* F1: 0.8492
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 666
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 10
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.6
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
"TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-image_folder #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
55,
114,
4,
38
] |
[
"passage: TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-image_folder #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6"
] |
[
-0.11344770342111588,
0.04751553386449814,
-0.0016289878403767943,
0.1202230378985405,
0.20783312618732452,
0.03378768265247345,
0.10124708712100983,
0.11660601943731308,
-0.10320287942886353,
0.015595704317092896,
0.11221840232610703,
0.1582256555557251,
0.0275175329297781,
0.149806946516037,
-0.04613129049539566,
-0.3084040880203247,
0.005048770923167467,
0.04304640367627144,
-0.04119814559817314,
0.1322978138923645,
0.08176173269748688,
-0.16212259232997894,
0.08856574445962906,
0.011050663888454437,
-0.23247002065181732,
0.002558751031756401,
0.023697445169091225,
-0.04966849461197853,
0.14602801203727722,
0.029811419546604156,
0.13757583498954773,
0.013933468610048294,
0.1183057427406311,
-0.15905986726284027,
0.016115812584757805,
0.070827916264534,
0.013987476006150246,
0.08184057474136353,
0.09064866602420807,
0.008402759209275246,
0.09978646039962769,
-0.07696887850761414,
0.06107538938522339,
0.007037632167339325,
-0.12261466681957245,
-0.23659934103488922,
-0.0648551881313324,
0.011852837167680264,
0.086690254509449,
0.09854001551866531,
-0.007895048707723618,
0.12832914292812347,
-0.10785046219825745,
0.10749280452728271,
0.18491460382938385,
-0.22379589080810547,
-0.07391917705535889,
0.009536707773804665,
-0.0051923030987381935,
0.07175891101360321,
-0.11338016390800476,
-0.023390673100948334,
0.037630628794431686,
0.048905789852142334,
0.13223595917224884,
-0.01403722818940878,
-0.11952308565378189,
-0.00046452460810542107,
-0.14040163159370422,
-0.03023812547326088,
0.09467700123786926,
0.05300701782107353,
-0.0315958671271801,
-0.028556399047374725,
-0.061021141707897186,
-0.14935855567455292,
-0.05433908477425575,
0.0016993569443002343,
0.04059745371341705,
-0.05109487846493721,
-0.10959309339523315,
0.006779427174478769,
-0.1004081517457962,
-0.06702207773923874,
-0.06327055394649506,
0.1244029849767685,
0.045559994876384735,
0.02180197462439537,
-0.033760663121938705,
0.10862058401107788,
-0.013050168752670288,
-0.1285036951303482,
0.01963077485561371,
0.006874289363622665,
-0.04344704747200012,
-0.05546574667096138,
-0.05557814612984657,
-0.0864214077591896,
-0.03130807727575302,
0.08390738070011139,
-0.04671460762619972,
0.06004145368933678,
0.004701881669461727,
0.039232078939676285,
-0.08541442453861237,
0.21399766206741333,
-0.06640319526195526,
0.012321019545197487,
-0.009002316743135452,
0.05939647927880287,
-0.01726446859538555,
-0.013991749845445156,
-0.1073899045586586,
-0.004515608306974173,
0.11220679432153702,
-0.016345102339982986,
-0.0758146345615387,
0.079976886510849,
-0.043605901300907135,
-0.041956283152103424,
0.030933693051338196,
-0.07168176770210266,
0.04792694002389908,
-0.007199903950095177,
-0.09106507152318954,
0.011355068534612656,
0.03663582354784012,
0.01753610000014305,
-0.01736418344080448,
0.14574380218982697,
-0.0941355973482132,
0.05640622228384018,
-0.10838842391967773,
-0.14068551361560822,
0.003749577095732093,
-0.07573368400335312,
0.01786305382847786,
-0.10712254792451859,
-0.146867573261261,
-0.01904747448861599,
0.056579120457172394,
-0.03341837227344513,
-0.026485389098525047,
-0.03949861228466034,
-0.05303630977869034,
0.022727886214852333,
-0.008116275072097778,
0.14186181128025055,
-0.058916881680488586,
0.11371970921754837,
0.026196369901299477,
0.0774153396487236,
-0.02868349477648735,
0.0642368495464325,
-0.09530521184206009,
0.007679175119847059,
-0.21039961278438568,
0.054490696638822556,
-0.042902007699012756,
0.0686340183019638,
-0.08996232599020004,
-0.12851428985595703,
0.016260627657175064,
-0.012776456773281097,
0.08592531085014343,
0.09828644245862961,
-0.15956300497055054,
-0.06907892227172852,
0.15069663524627686,
-0.06854590028524399,
-0.0805841013789177,
0.12046049535274506,
-0.07039246708154678,
0.008945186622440815,
0.06430242955684662,
0.1511065661907196,
0.06315632164478302,
-0.08813352137804031,
0.02975093387067318,
-0.02838938497006893,
0.0359504297375679,
-0.050446800887584686,
0.06022709235548973,
0.038389939814805984,
-0.013131777755916119,
0.01967572048306465,
-0.028228076174855232,
0.09839832782745361,
-0.11783214658498764,
-0.08085596561431885,
-0.031996823847293854,
-0.0875549167394638,
0.06230000779032707,
0.08606220036745071,
0.07132283598184586,
-0.09017394483089447,
-0.0848441869020462,
0.07430572807788849,
0.08061067014932632,
-0.06571094691753387,
0.01770842634141445,
-0.06314791738986969,
0.05529792234301567,
-0.08138429373502731,
-0.031204422935843468,
-0.1804618537425995,
-0.042373254895210266,
0.007843452505767345,
0.03241043537855148,
0.01133763324469328,
-0.008105645887553692,
0.07783077657222748,
0.08288000524044037,
-0.060093775391578674,
-0.04471568763256073,
-0.03411247953772545,
0.0012725223787128925,
-0.12661196291446686,
-0.18862509727478027,
-0.048763807862997055,
-0.019149605184793472,
0.13460585474967957,
-0.21880945563316345,
0.0034884295891970396,
-0.023358112201094627,
0.0872359573841095,
0.03139663487672806,
-0.013611063361167908,
-0.04179896041750908,
0.08139491826295853,
-0.029868265613913536,
-0.060542911291122437,
0.07778028398752213,
0.0004666740132961422,
-0.0514327809214592,
-0.025003507733345032,
-0.10169350355863571,
0.1534658819437027,
0.12962490320205688,
-0.15137842297554016,
-0.09731832146644592,
-0.024791333824396133,
-0.05289574712514877,
-0.038556985557079315,
-0.06636027246713638,
0.03487180545926094,
0.15704940259456635,
0.0021518513094633818,
0.1565672755241394,
-0.057288385927677155,
-0.01984107866883278,
0.03969693183898926,
-0.015035287477076054,
0.013587940484285355,
0.1029910296201706,
0.1488601118326187,
-0.11198282241821289,
0.1202968880534172,
0.13245819509029388,
-0.09250163286924362,
0.1377091407775879,
-0.016127754002809525,
-0.09555698186159134,
-0.0013726750621572137,
-0.03866075724363327,
-0.005453326739370823,
0.11024159938097,
-0.11629793792963028,
-0.014467520639300346,
0.025866085663437843,
0.020679090172052383,
0.008209140971302986,
-0.22681811451911926,
-0.034160006791353226,
0.047308892011642456,
-0.019338112324476242,
-0.034096989780664444,
-0.02362733520567417,
0.024851132184267044,
0.11875765770673752,
0.005387396551668644,
-0.08513867855072021,
0.023677386343479156,
0.01021319068968296,
-0.06818243116140366,
0.2067205160856247,
-0.07984191179275513,
-0.17276915907859802,
-0.10114390403032303,
-0.09503902494907379,
-0.03622834011912346,
0.0090341130271554,
0.044152189046144485,
-0.12020103633403778,
-0.044245023280382156,
-0.048319414258003235,
0.024969281628727913,
-0.006186063401401043,
0.024981297552585602,
-0.02156819775700569,
-0.011025707237422466,
0.07327289879322052,
-0.08347567915916443,
-0.01317588146775961,
-0.04567353054881096,
-0.053064655512571335,
0.0874120220541954,
0.03333647921681404,
0.1276673823595047,
0.14661374688148499,
-0.04571878910064697,
0.026340141892433167,
-0.029747119173407555,
0.2523871660232544,
-0.08084049820899963,
-0.009236549958586693,
0.135786235332489,
-0.009838168509304523,
0.059044186025857925,
0.12619078159332275,
0.059681620448827744,
-0.084182970225811,
0.0190160870552063,
0.041717737913131714,
-0.041054029017686844,
-0.1712547391653061,
-0.040487196296453476,
-0.054244399070739746,
-0.04016857594251633,
0.12116876989603043,
0.009934276342391968,
0.026873426511883736,
0.08600495755672455,
0.03365716710686684,
0.07226017862558365,
-0.041848208755254745,
0.06451258808374405,
0.10078883171081543,
0.049796342849731445,
0.1429380178451538,
-0.030985483899712563,
-0.07889655977487564,
0.03838964179158211,
-0.014406935311853886,
0.2509295344352722,
-0.016547787934541702,
0.0705028548836708,
0.03543715178966522,
0.17222711443901062,
0.02060307189822197,
0.08409959822893143,
-0.0007855382282286882,
-0.0517834797501564,
-0.016849476844072342,
-0.02768981270492077,
-0.03613969311118126,
0.016225511208176613,
-0.01690870337188244,
0.030033811926841736,
-0.1397833526134491,
0.0034756427630782127,
0.037347566336393356,
0.24192409217357635,
0.05317365750670433,
-0.3754342794418335,
-0.08304892480373383,
-0.013337500393390656,
-0.02316783182322979,
-0.0475408211350441,
-0.0011337706819176674,
0.10409273952245712,
-0.11089541763067245,
0.03225382789969444,
-0.09302528947591782,
0.10324802994728088,
-0.06409449130296707,
0.035378728061914444,
0.08520540595054626,
0.09529230743646622,
-0.002021203748881817,
0.07184474915266037,
-0.2734552025794983,
0.28085222840309143,
-0.001346356701105833,
0.055100083351135254,
-0.07645043730735779,
-0.01326349750161171,
0.054490115493535995,
0.08751863986253738,
0.05669350549578667,
-0.009576313197612762,
-0.040606606751680374,
-0.2620588541030884,
-0.04691612720489502,
0.025969138368964195,
0.09582436084747314,
0.004666681867092848,
0.1065630093216896,
-0.034493155777454376,
-0.002366222906857729,
0.0684494823217392,
-0.0036082733422517776,
-0.07881373912096024,
-0.08844352513551712,
-0.018692610785365105,
0.00436075683683157,
-0.01077625434845686,
-0.054872408509254456,
-0.12479627877473831,
-0.10423801839351654,
0.12968003749847412,
0.057345982640981674,
-0.027549399062991142,
-0.14332357048988342,
0.1197892501950264,
0.07361261546611786,
-0.08870693296194077,
0.04611014947295189,
0.004792770836502314,
0.09670519083738327,
0.03775878995656967,
-0.08436036109924316,
0.11971624940633774,
-0.06581926345825195,
-0.14557866752147675,
-0.06662290543317795,
0.05851612985134125,
0.036565184593200684,
0.06066449359059334,
-0.010385248810052872,
0.025989076122641563,
-0.023022843524813652,
-0.07242095470428467,
0.04149473085999489,
-0.023628707975149155,
0.06337691098451614,
0.04185657948255539,
-0.0400993637740612,
0.027878284454345703,
-0.062193986028432846,
-0.012117461301386356,
0.17681948840618134,
0.20288392901420593,
-0.09854120016098022,
-0.007197709754109383,
0.017513277009129524,
-0.05429449304938316,
-0.20135074853897095,
0.08128783851861954,
0.08804497867822647,
0.015340912155807018,
0.041530635207891464,
-0.18644379079341888,
0.11859878897666931,
0.09895984828472137,
-0.004812735132873058,
0.09323929250240326,
-0.2934466302394867,
-0.11773500591516495,
0.11578044295310974,
0.17578072845935822,
0.10184136033058167,
-0.1228751689195633,
0.00637246947735548,
-0.02391728013753891,
-0.1257476508617401,
0.10507898777723312,
-0.04896187037229538,
0.12256752699613571,
-0.02533697709441185,
0.092974953353405,
0.01992265321314335,
-0.05625513568520546,
0.10437095910310745,
-0.00579669326543808,
0.11365416646003723,
-0.0733536034822464,
-0.02071775123476982,
0.021709544584155083,
-0.04737399145960808,
0.015867697075009346,
-0.024118926376104355,
0.03422417491674423,
-0.09460094571113586,
-0.021391183137893677,
-0.104073666036129,
0.012383882887661457,
-0.01340892631560564,
-0.062224823981523514,
-0.029956022277474403,
0.049026548862457275,
0.05190984159708023,
-0.013217947445809841,
0.12211485207080841,
0.0058858199045062065,
0.11988314986228943,
0.075086809694767,
0.06505077332258224,
-0.06011068820953369,
-0.07102730125188828,
-0.03601803630590439,
-0.012202728539705276,
0.06692270934581757,
-0.12369334697723389,
0.036183785647153854,
0.15151505172252655,
0.013955306261777878,
0.1496351659297943,
0.08407843858003616,
-0.007472810801118612,
0.026000162586569786,
0.07046324759721756,
-0.13405951857566833,
-0.09393279254436493,
-0.012078597210347652,
-0.04734508693218231,
-0.08727948367595673,
0.02148471772670746,
0.09297949075698853,
-0.07873984426259995,
-0.004629036411643028,
-0.016870396211743355,
0.0049346331506967545,
-0.04173988476395607,
0.2070849984884262,
0.07194776833057404,
0.03678397461771965,
-0.10836689174175262,
0.0634852945804596,
0.06660117208957672,
-0.10370023548603058,
-0.0020626885816454887,
0.07552763819694519,
-0.0817859023809433,
-0.035705216228961945,
0.09001678228378296,
0.1735069751739502,
-0.0804443508386612,
-0.03280892223119736,
-0.12763051688671112,
-0.11981216073036194,
0.08212112635374069,
0.13208448886871338,
0.09628020226955414,
-0.00876174308359623,
-0.05642227455973625,
0.013701037503778934,
-0.14308905601501465,
0.08419033139944077,
0.054388780146837234,
0.08882055431604385,
-0.16272282600402832,
0.17270438373088837,
0.004685278981924057,
0.06842628121376038,
-0.030353812500834465,
0.007233804557472467,
-0.09888125956058502,
0.023212524130940437,
-0.14273406565189362,
-0.01779916137456894,
-0.02019071951508522,
0.008360869251191616,
-0.007440677843987942,
-0.059785082936286926,
-0.05278729647397995,
0.01188310980796814,
-0.1265515387058258,
-0.030330289155244827,
0.037533894181251526,
0.03938530012965202,
-0.09899906069040298,
-0.05136304348707199,
0.022001024335622787,
-0.05863253399729729,
0.06413832306861877,
0.03946015611290932,
0.00854690745472908,
0.04406704753637314,
-0.12628638744354248,
-0.029169710353016853,
0.0742664709687233,
0.002393111353740096,
0.07559482753276825,
-0.06651795655488968,
0.014365268871188164,
-0.01148963626474142,
0.055119939148426056,
0.004793516360223293,
0.08848821371793747,
-0.12912608683109283,
-0.01009361632168293,
-0.03570519760251045,
-0.08456363528966904,
-0.06836532056331635,
0.06202670559287071,
0.0533113107085228,
0.02505442500114441,
0.18368400633335114,
-0.08725930750370026,
0.046579428017139435,
-0.22798676788806915,
-0.012269127182662487,
-0.01886717416346073,
-0.11863598227500916,
-0.09072726964950562,
-0.06847085058689117,
0.08154958486557007,
-0.06109324470162392,
0.09939580410718918,
0.057985492050647736,
0.08742950856685638,
0.023089895024895668,
-0.008204714395105839,
-0.0022342337761074305,
0.024710923433303833,
0.18318523466587067,
0.027129536494612694,
-0.04479558765888214,
0.07935933023691177,
0.06786737591028214,
0.11519663780927658,
0.16747289896011353,
0.18817327916622162,
0.1475892961025238,
-0.005639021284878254,
0.07938128709793091,
0.039266590029001236,
-0.05778359994292259,
-0.16510307788848877,
0.01381028350442648,
-0.06637449562549591,
0.1171530932188034,
-0.03431385010480881,
0.1876310408115387,
0.06793197989463806,
-0.16188350319862366,
0.05367070436477661,
-0.05460662022233009,
-0.09679723531007767,
-0.08887768536806107,
-0.062329668551683426,
-0.0968482494354248,
-0.16156239807605743,
0.016753509640693665,
-0.10972262173891068,
0.02824247255921364,
0.11997155100107193,
0.017572659999132156,
-0.026115240529179573,
0.17227107286453247,
0.03775053098797798,
0.011780958622694016,
0.07787396758794785,
0.0019875478465110064,
-0.015444058924913406,
-0.07128068804740906,
-0.06846510618925095,
0.015177467837929726,
-0.010977072641253471,
0.04365575313568115,
-0.0657721608877182,
-0.0742611438035965,
0.045046016573905945,
-0.0019169410225003958,
-0.11183575540781021,
0.018630342558026314,
0.013597634620964527,
0.05289541929960251,
0.04691597819328308,
0.0020666271448135376,
0.03806567192077637,
-0.0311986543238163,
0.2155417799949646,
-0.07855939865112305,
-0.05376629903912544,
-0.11343477666378021,
0.26824697852134705,
0.036537207663059235,
-0.005771701689809561,
0.03484616428613663,
-0.07366572320461273,
-0.0007387272198684514,
0.23501788079738617,
0.17018768191337585,
-0.11182209849357605,
-0.01387819740921259,
0.002050670562312007,
-0.015616443008184433,
-0.022837741300463676,
0.14751771092414856,
0.11224798113107681,
0.02382148802280426,
-0.10335725545883179,
-0.03436151146888733,
-0.0624723806977272,
-0.025769053027033806,
-0.014525855891406536,
0.04491165652871132,
0.058190278708934784,
0.01764390617609024,
-0.06978333741426468,
0.06311606615781784,
-0.03907274827361107,
-0.05635925009846687,
0.06366049498319626,
-0.18602697551250458,
-0.16982172429561615,
-0.018077917397022247,
0.07698428630828857,
0.019403409212827682,
0.05903960019350052,
-0.04641786590218544,
0.005493395030498505,
0.07572194933891296,
-0.014885351993143559,
-0.0728282704949379,
-0.10168186575174332,
0.08821719139814377,
-0.10744790732860565,
0.2035849243402481,
-0.03678295016288757,
0.03668226674199104,
0.11204327642917633,
0.06649859249591827,
-0.07691898941993713,
0.06311369687318802,
0.027667643502354622,
-0.07484594732522964,
0.03329206258058548,
0.14834077656269073,
-0.04295859485864639,
0.05681794881820679,
0.02981334738433361,
-0.16480346024036407,
0.032864950597286224,
-0.10561619699001312,
-0.04817989096045494,
-0.0280211940407753,
-0.03683443367481232,
-0.04870804771780968,
0.13191336393356323,
0.24154089391231537,
-0.009887555614113808,
-0.001070326310582459,
-0.0925009697675705,
0.001409785239957273,
0.060859475284814835,
0.043179068714380264,
-0.07929105311632156,
-0.21116428077220917,
0.0006416668184101582,
0.03196467086672783,
-0.015484257601201534,
-0.215906023979187,
-0.09162161499261856,
-0.0069598848931491375,
-0.07975675910711288,
-0.0824926421046257,
0.11251769214868546,
0.07045629620552063,
0.05412702634930611,
-0.05752187967300415,
-0.06440252810716629,
-0.06391879171133041,
0.1623554676771164,
-0.14113685488700867,
-0.07763399928808212
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9199
- Mae: 0.4756
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1705 | 1.0 | 235 | 0.9985 | 0.5854 |
| 0.9721 | 2.0 | 470 | 0.9199 | 0.4756 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
|
text-classification
|
daveccampbell/xlm-roberta-base-finetuned-marc-en
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
xlm-roberta-base-finetuned-marc-en
==================================
This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9199
* Mae: 0.4756
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.14.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
67,
98,
4,
34
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
-0.09092789888381958,
0.08008227497339249,
-0.0020140453707426786,
0.11630697548389435,
0.18312716484069824,
0.042973749339580536,
0.15040470659732819,
0.11954569816589355,
-0.09022784978151321,
-0.0003494977136142552,
0.11352355778217316,
0.17042438685894012,
0.007949714548885822,
0.1317906379699707,
-0.06562875211238861,
-0.25790008902549744,
-0.012251557782292366,
0.05035068839788437,
-0.04488401114940643,
0.1443592607975006,
0.10154645889997482,
-0.1380293369293213,
0.09442190825939178,
-0.0014341471251100302,
-0.19770415127277374,
-0.006765956524759531,
0.029228247702121735,
-0.06890206784009933,
0.13384534418582916,
0.03764583170413971,
0.13645893335342407,
0.008102459833025932,
0.07276447862386703,
-0.19063866138458252,
0.020796533674001694,
0.040146905928850174,
0.00358709879219532,
0.0915832370519638,
0.030548246577382088,
-0.01468250248581171,
0.1342829167842865,
-0.060973599553108215,
0.07154899835586548,
0.018368558958172798,
-0.11795462667942047,
-0.2320529818534851,
-0.08308214694261551,
0.035912688821554184,
0.056772612035274506,
0.09991798549890518,
-0.010324102826416492,
0.15634198486804962,
-0.07674280554056168,
0.10339420288801193,
0.23605166375637054,
-0.2893300950527191,
-0.07612571865320206,
0.032290682196617126,
0.043305903673172,
0.08403892815113068,
-0.10349797457456589,
-0.023395158350467682,
0.05919168144464493,
0.05649252235889435,
0.12055753171443939,
-0.0452197901904583,
-0.0962030366063118,
0.01583736389875412,
-0.1441667675971985,
-0.02332693338394165,
0.2023565173149109,
0.03447432816028595,
-0.0476268008351326,
-0.051082272082567215,
-0.032434288412332535,
-0.15748977661132812,
-0.03979404643177986,
-0.0009673985186964273,
0.050246383994817734,
-0.06319781392812729,
-0.08705104142427444,
-0.013781961984932423,
-0.11613631248474121,
-0.05173107236623764,
-0.06630995124578476,
0.1457367241382599,
0.04109196364879608,
0.01682303659617901,
-0.03500403091311455,
0.10437536239624023,
0.021311579272150993,
-0.10318823158740997,
0.012504742480814457,
0.007507571950554848,
-0.010289235971868038,
-0.047606464475393295,
-0.05751515179872513,
-0.07956288009881973,
0.002544892020523548,
0.11920338124036789,
-0.04774501919746399,
0.03242870792746544,
0.03772571310400963,
0.057246528565883636,
-0.07498431205749512,
0.19655898213386536,
-0.028955459594726562,
-0.005452427081763744,
-0.004732458386570215,
0.04949004575610161,
0.015602247789502144,
-0.010551849380135536,
-0.12953022122383118,
0.007022026460617781,
0.08074092119932175,
0.013663754798471928,
-0.07587581127882004,
0.06431995332241058,
-0.06985332071781158,
-0.04672382026910782,
-0.007498918566852808,
-0.07484535127878189,
0.031198130920529366,
-0.008710284717381,
-0.06582239270210266,
-0.02350885048508644,
0.023388126865029335,
0.017721518874168396,
-0.011746599338948727,
0.13322429358959198,
-0.08970562368631363,
0.0364038459956646,
-0.09379757940769196,
-0.10690733790397644,
0.021213319152593613,
-0.07686057686805725,
0.0376054085791111,
-0.10856878012418747,
-0.16822496056556702,
-0.03304174169898033,
0.0522976890206337,
-0.018100610002875328,
-0.060430899262428284,
-0.03577180206775665,
-0.06308238208293915,
0.01012183167040348,
-0.014289181679487228,
0.1470746546983719,
-0.07050348073244095,
0.11098764836788177,
0.03432513028383255,
0.05846457928419113,
-0.04605408012866974,
0.04961748793721199,
-0.09303298592567444,
-0.008509560488164425,
-0.15352317690849304,
0.03393903747200966,
-0.04447499290108681,
0.058807726949453354,
-0.07169647514820099,
-0.11825202405452728,
0.013603618368506432,
0.019700555130839348,
0.04256633669137955,
0.07442475855350494,
-0.1713005006313324,
-0.07580258697271347,
0.14970633387565613,
-0.06509901583194733,
-0.12265316396951675,
0.11653491109609604,
-0.08050192892551422,
0.06815876066684723,
0.07918455451726913,
0.16007547080516815,
0.07368943095207214,
-0.07665113359689713,
0.02364281751215458,
-0.009748673066496849,
0.030511032789945602,
-0.06656751781702042,
0.07645123451948166,
0.023808009922504425,
-0.011088239029049873,
0.031931594014167786,
-0.03572938218712807,
0.036782167851924896,
-0.09431610256433487,
-0.08854455500841141,
-0.03681464493274689,
-0.09542662650346756,
0.05960068479180336,
0.07206001877784729,
0.07265763729810715,
-0.11765731126070023,
-0.07257198542356491,
0.07150136679410934,
0.0861012265086174,
-0.055003076791763306,
0.018849531188607216,
-0.05219917744398117,
0.06374433636665344,
-0.034731317311525345,
-0.022515803575515747,
-0.17951369285583496,
-0.029770378023386,
0.014603286981582642,
0.005661679431796074,
0.032073505222797394,
0.040834296494722366,
0.05372710898518562,
0.04150041192770004,
-0.07131427526473999,
-0.011015200987458229,
-0.050375696271657944,
-0.00942130945622921,
-0.1230582743883133,
-0.19584792852401733,
-0.018969720229506493,
-0.023339437320828438,
0.11454646289348602,
-0.224257692694664,
0.03413281589746475,
-0.04092243313789368,
0.05761338770389557,
0.041867028921842575,
-0.010956901125609875,
-0.02053735964000225,
0.0860079899430275,
-0.03713130205869675,
-0.0327489897608757,
0.07592474669218063,
0.012195399962365627,
-0.10368473827838898,
-0.007822113111615181,
-0.09257585555315018,
0.19031088054180145,
0.1289455145597458,
-0.09699749946594238,
-0.0888260006904602,
0.010719056241214275,
-0.054551877081394196,
-0.03350850194692612,
-0.08110085129737854,
0.03831710293889046,
0.1832561194896698,
-0.00408615218475461,
0.1422782838344574,
-0.08589011430740356,
-0.04746617004275322,
0.027460463345050812,
-0.04416185989975929,
0.026127975434064865,
0.14056192338466644,
0.12522448599338531,
-0.0920635238289833,
0.1394202560186386,
0.14817063510417938,
-0.07915978133678436,
0.1658279448747635,
-0.03801234811544418,
-0.059139613062143326,
-0.024806562811136246,
-0.03590410575270653,
-0.011826027184724808,
0.1085469201207161,
-0.12760300934314728,
0.00472189811989665,
0.03235438093543053,
0.009446932934224606,
0.01708807982504368,
-0.23087909817695618,
-0.04802200570702553,
0.035222526639699936,
-0.040130965411663055,
-0.011457022279500961,
0.006225543096661568,
0.01636500284075737,
0.11100597679615021,
-0.00038215177482925355,
-0.061102356761693954,
0.04150799661874771,
0.007206903304904699,
-0.09109006822109222,
0.21807080507278442,
-0.0752849280834198,
-0.18252205848693848,
-0.13199250400066376,
-0.0493457093834877,
-0.04442271217703819,
-0.00279906764626503,
0.06433742493391037,
-0.07138606905937195,
-0.02895044907927513,
-0.06548784673213959,
0.00514746131375432,
-0.006640486419200897,
0.016602864488959312,
-0.018567554652690887,
0.023830769583582878,
0.03936237096786499,
-0.10331819206476212,
-0.012889090925455093,
-0.061911795288324356,
-0.040967509150505066,
0.053883109241724014,
0.04405555874109268,
0.10898144543170929,
0.14961715042591095,
-0.025291262194514275,
-0.003893762594088912,
-0.03315175324678421,
0.21485087275505066,
-0.08689753711223602,
-0.04712153226137161,
0.13125620782375336,
-0.009326517581939697,
0.03263324499130249,
0.1212800070643425,
0.0720895454287529,
-0.09237991273403168,
0.017520809546113014,
0.02917098067700863,
-0.03997639939188957,
-0.27003076672554016,
-0.03821174427866936,
-0.053288307040929794,
0.0005041555850766599,
0.07316083461046219,
0.026278546079993248,
0.005705300718545914,
0.06592023372650146,
0.04250522330403328,
0.0648341029882431,
-0.02982121892273426,
0.06391338258981705,
0.1108853667974472,
0.03844940662384033,
0.13148561120033264,
-0.05558411031961441,
-0.06147214397788048,
0.05758168175816536,
-0.00863972119987011,
0.24782785773277283,
0.011279144324362278,
0.1309511810541153,
0.07623305916786194,
0.12350870668888092,
0.017918558791279793,
0.05768585205078125,
0.018591217696666718,
-0.03858204931020737,
-0.019616344943642616,
-0.025811797007918358,
-0.029816756024956703,
0.0286216102540493,
-0.04727308079600334,
0.048704832792282104,
-0.13749583065509796,
-0.01498402375727892,
0.06358642131090164,
0.23906491696834564,
0.016769928857684135,
-0.30908310413360596,
-0.10424860566854477,
0.010606772266328335,
-0.05240930989384651,
-0.009383879601955414,
0.026137301698327065,
0.10281414538621902,
-0.12598705291748047,
0.03643062710762024,
-0.08053163439035416,
0.09221653640270233,
-0.0863085463643074,
0.04050378501415253,
0.0738224908709526,
0.0681130588054657,
-0.003933573141694069,
0.07893651723861694,
-0.307219922542572,
0.2819614112377167,
-0.005618869327008724,
0.060745105147361755,
-0.06372545659542084,
-0.025851668789982796,
0.023402828723192215,
0.05463678762316704,
0.06036457046866417,
-0.005185297690331936,
-0.05821243301033974,
-0.17296744883060455,
-0.029245417565107346,
0.025523608550429344,
0.07566779851913452,
-0.01468990370631218,
0.08854345232248306,
-0.0285579115152359,
0.004089497961103916,
0.05787508934736252,
-0.027434229850769043,
-0.05153360217809677,
-0.09460210800170898,
-0.004334294702857733,
0.020693570375442505,
-0.05909181386232376,
-0.06367843598127365,
-0.13336031138896942,
-0.08024092018604279,
0.13815522193908691,
-0.014427115209400654,
-0.04591428115963936,
-0.09696020931005478,
0.07496039569377899,
0.06935662031173706,
-0.0799306333065033,
0.03762155771255493,
0.014699560590088367,
0.0846717432141304,
0.024481261149048805,
-0.047440964728593826,
0.09554848819971085,
-0.05173030123114586,
-0.1872195154428482,
-0.0632166862487793,
0.11352117359638214,
0.028094131499528885,
0.06719598174095154,
-0.023858340457081795,
0.0004107730055693537,
-0.04823746904730797,
-0.08825484663248062,
0.02258949913084507,
0.007237046025693417,
0.08538832515478134,
0.04420587047934532,
-0.06016400828957558,
0.003088439116254449,
-0.0743371769785881,
-0.05789945647120476,
0.20305874943733215,
0.20633313059806824,
-0.09303376823663712,
0.032080233097076416,
0.01414012722671032,
-0.08177021145820618,
-0.17220793664455414,
0.03629900887608528,
0.07108122855424881,
0.012489903718233109,
0.05826587229967117,
-0.15110467374324799,
0.11386826634407043,
0.09753286093473434,
-0.008590045385062695,
0.13361698389053345,
-0.323248952627182,
-0.13557180762290955,
0.09210297465324402,
0.15564033389091492,
0.12722596526145935,
-0.13530485332012177,
-0.012024758383631706,
-0.029694128781557083,
-0.12655147910118103,
0.13825254142284393,
-0.08200353384017944,
0.14067378640174866,
-0.03298668563365936,
0.10618506371974945,
0.0052995807491242886,
-0.05460384488105774,
0.11506109684705734,
0.01607188954949379,
0.10979824513196945,
-0.05073171481490135,
-0.046968698501586914,
0.018168210983276367,
-0.03173650801181793,
0.017488637939095497,
-0.07388205081224442,
0.019537346437573433,
-0.09553373605012894,
-0.037904515862464905,
-0.07616972178220749,
0.03510139882564545,
-0.04053482040762901,
-0.05432239547371864,
-0.04073890298604965,
0.035612355917692184,
0.02205091342329979,
-0.017490994185209274,
0.14471615850925446,
0.005916844122111797,
0.14710642397403717,
0.06948163360357285,
0.09639938920736313,
-0.05343913659453392,
-0.09279846400022507,
-0.03582580387592316,
-0.021688245236873627,
0.049793485552072525,
-0.15473158657550812,
0.02326696179807186,
0.14285890758037567,
0.012413830496370792,
0.15901656448841095,
0.07501823455095291,
-0.028941627591848373,
0.015591477043926716,
0.06824849545955658,
-0.15109407901763916,
-0.0993746891617775,
-0.015658222138881683,
-0.09098188579082489,
-0.11272766441106796,
0.04547811672091484,
0.11424396187067032,
-0.06779132783412933,
-0.027168378233909607,
-0.013252581469714642,
0.009434499777853489,
-0.04961276799440384,
0.19228704273700714,
0.0712907612323761,
0.049355633556842804,
-0.10086462646722794,
0.08726470172405243,
0.05299781262874603,
-0.07277260720729828,
0.009131514467298985,
0.07398980855941772,
-0.0851946696639061,
-0.06054844334721565,
0.06302937865257263,
0.1840636432170868,
-0.06436847895383835,
-0.05052271485328674,
-0.14428043365478516,
-0.12239868193864822,
0.08020304143428802,
0.15456198155879974,
0.1154261901974678,
0.01174027007073164,
-0.04472504183650017,
-0.009678967297077179,
-0.10332822054624557,
0.10373563319444656,
0.06035935878753662,
0.06799294799566269,
-0.15564770996570587,
0.11893093585968018,
0.0298626646399498,
0.0544048435986042,
-0.021874960511922836,
0.03503105044364929,
-0.11320466548204422,
0.016281502321362495,
-0.11635188013315201,
-0.004599275998771191,
-0.01955498568713665,
0.0156586654484272,
0.00008569054625695571,
-0.056630246341228485,
-0.06948243826627731,
0.011811119504272938,
-0.12271115183830261,
-0.015396937727928162,
0.041357602924108505,
0.07619098573923111,
-0.08720040321350098,
-0.03770965710282326,
0.024497678503394127,
-0.04467649757862091,
0.07077261805534363,
0.04765259474515915,
0.00999519880861044,
0.0638277679681778,
-0.1326751559972763,
0.03493008390069008,
0.05847730115056038,
0.016229216009378433,
0.048695411533117294,
-0.1218823567032814,
0.00844301376491785,
0.004147431813180447,
0.07234194129705429,
0.02527628093957901,
0.06878162175416946,
-0.1595860719680786,
-0.003925286699086428,
-0.011753080412745476,
-0.08088759332895279,
-0.0604778528213501,
0.02060185931622982,
0.06034849211573601,
0.033461686223745346,
0.21250495314598083,
-0.08307280391454697,
0.04318675398826599,
-0.19975832104682922,
0.00521842809394002,
-0.01949070766568184,
-0.1242818534374237,
-0.12428144365549088,
-0.0736192986369133,
0.05655497685074806,
-0.0671464130282402,
0.1680191457271576,
0.04778936877846718,
0.05581874027848244,
0.02484714426100254,
-0.020287757739424706,
-0.0074821035377681255,
0.016732243821024895,
0.17049984633922577,
0.007073113229125738,
-0.04048845171928406,
0.0606084018945694,
0.047959793359041214,
0.1063975840806961,
0.10674457252025604,
0.20010076463222504,
0.1684790700674057,
0.009575174190104008,
0.08692093193531036,
0.03743763640522957,
-0.03279959410429001,
-0.13300663232803345,
0.03713468834757805,
-0.025708554312586784,
0.11290872097015381,
-0.026694100350141525,
0.20042958855628967,
0.07072245329618454,
-0.16473351418972015,
0.04714856669306755,
-0.05892984941601753,
-0.08779802173376083,
-0.11389470845460892,
-0.055804088711738586,
-0.09887007623910904,
-0.1443217545747757,
0.005623009521514177,
-0.130331888794899,
-0.001939242472872138,
0.09170602262020111,
0.007379705086350441,
-0.04041507467627525,
0.11972035467624664,
0.02042819932103157,
0.011828257702291012,
0.08732693642377853,
0.013573730364441872,
-0.03270769864320755,
-0.10997237265110016,
-0.04921284690499306,
-0.03101533092558384,
-0.025611599907279015,
0.023357538506388664,
-0.05341451242566109,
-0.06802772730588913,
0.024218278005719185,
-0.026913153007626534,
-0.10152031481266022,
0.014489524997770786,
0.02225584164261818,
0.07951844483613968,
0.03816826641559601,
0.015252734534442425,
0.008539740927517414,
-0.0018916655099019408,
0.2537987232208252,
-0.06090321019291878,
-0.059095606207847595,
-0.12073633074760437,
0.23759934306144714,
0.04082411155104637,
-0.027152735739946365,
0.0369359627366066,
-0.0620994009077549,
0.004789397120475769,
0.250545471906662,
0.23370525240898132,
-0.07233811914920807,
-0.008881565183401108,
0.016480514779686928,
-0.005681920796632767,
-0.014903892762959003,
0.12409383058547974,
0.11327847838401794,
0.043661732226610184,
-0.07554518431425095,
-0.03618474677205086,
-0.053929403424263,
0.002410672837868333,
-0.017594728618860245,
0.06780397146940231,
0.05220600590109825,
0.005234327167272568,
-0.041317231953144073,
0.0750744640827179,
-0.08238773792982101,
-0.11706630140542984,
0.04748406261205673,
-0.2140689343214035,
-0.17265373468399048,
-0.01564285345375538,
0.09141164273023605,
-0.0005080309347249568,
0.06623675674200058,
-0.025556398555636406,
-0.014778113923966885,
0.07295584678649902,
-0.016154099255800247,
-0.1069135069847107,
-0.08071832358837128,
0.09760671108961105,
-0.1033845841884613,
0.18947070837020874,
-0.05197722837328911,
0.05551624298095703,
0.12156101316213608,
0.06087696552276611,
-0.06552910804748535,
0.07936710119247437,
0.036825064569711685,
-0.040335942059755325,
0.04746859520673752,
0.10013407468795776,
-0.03197331726551056,
0.07261445373296738,
0.05393337458372116,
-0.12573927640914917,
0.016867447644472122,
-0.0939512848854065,
-0.04653635248541832,
-0.056750234216451645,
-0.011542480438947678,
-0.07443743944168091,
0.12872548401355743,
0.23667973279953003,
-0.03721931204199791,
-0.007397593930363655,
-0.05932502821087837,
0.02578439563512802,
0.06336025893688202,
0.041056301444768906,
-0.047882936894893646,
-0.22828209400177002,
0.009885349310934544,
0.07289337366819382,
-0.015281859785318375,
-0.26788604259490967,
-0.070579893887043,
0.0017346341628581285,
-0.07060904800891876,
-0.07644132524728775,
0.08083239942789078,
0.07705751806497574,
0.044927142560482025,
-0.06221795082092285,
-0.06259375810623169,
-0.06772700697183609,
0.1547669768333435,
-0.15244202315807343,
-0.0954475924372673
] |
null | null |
transformers
|
**Note**: This model & model card are based on the [finetuned XLM-T for Sentiment Analysis](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment)
# twitter-XLM-roBERTa-base for Emotion Analysis
This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of [IberLEF 2021 Conference](https://sites.google.com/view/iberlef2021/), where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%.
- [Our code for EmoEvalEs submission](https://github.com/gsi-upm/emoevales-iberlef2021).
- [EmoEvalEs Dataset](https://github.com/pendrag/EmoEvalEs)
## Example Pipeline with a [Tweet from @JaSantaolalla](https://twitter.com/JaSantaolalla/status/1398383243645177860)
```python
from transformers import pipeline
model_path = "daveni/twitter-xlm-roberta-emotion-es"
emotion_analysis = pipeline("text-classification", framework="pt", model=model_path, tokenizer=model_path)
emotion_analysis("Einstein dijo: Solo hay dos cosas infinitas, el universo y los pinches anuncios de bitcoin en Twitter. Paren ya carajo aaaaaaghhgggghhh me quiero murir")
```
```
[{'label': 'anger', 'score': 0.48307016491889954}]
```
## Full classification example
```python
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
model_path = "daveni/twitter-xlm-roberta-emotion-es"
tokenizer = AutoTokenizer.from_pretrained(model_path )
config = AutoConfig.from_pretrained(model_path )
# PT
model = AutoModelForSequenceClassification.from_pretrained(model_path )
text = "Se ha quedao bonito dΓa para publicar vΓdeo, ΒΏno? Hoy del tema mΓ‘s diferente que hemos tocado en el canal."
text = preprocess(text)
print(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l} {np.round(float(s), 4)}")
```
Output:
```
Se ha quedao bonito dΓa para publicar vΓdeo, ΒΏno? Hoy del tema mΓ‘s diferente que hemos tocado en el canal.
1) joy 0.7887
2) others 0.1679
3) surprise 0.0152
4) sadness 0.0145
5) anger 0.0077
6) disgust 0.0033
7) fear 0.0027
```
#### Limitations and bias
- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class.
## Training data
Pretrained weights were left identical to the original model released by [cardiffnlp](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base). We used the [EmoEvalEs Dataset](https://github.com/pendrag/EmoEvalEs) for finetuning.
### BibTeX entry and citation info
```bibtex
@inproceedings{vera2021gsi,
title={GSI-UPM at IberLEF2021: Emotion Analysis of Spanish Tweets by Fine-tuning the XLM-RoBERTa Language Model},
author={Vera, D and Araque, O and Iglesias, CA},
booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021). CEUR Workshop Proceedings, CEUR-WS, M{\'a}laga, Spain},
year={2021}
}
```
|
{"language": ["es"], "tags": ["Emotion Analysis"]}
|
text-classification
|
daveni/twitter-xlm-roberta-emotion-es
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"Emotion Analysis",
"es",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"es"
] |
TAGS
#transformers #pytorch #xlm-roberta #text-classification #Emotion Analysis #es #autotrain_compatible #endpoints_compatible #has_space #region-us
|
Note: This model & model card are based on the finetuned XLM-T for Sentiment Analysis
# twitter-XLM-roBERTa-base for Emotion Analysis
This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of IberLEF 2021 Conference, where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%.
- Our code for EmoEvalEs submission.
- EmoEvalEs Dataset
## Example Pipeline with a Tweet from @JaSantaolalla
## Full classification example
Output:
#### Limitations and bias
- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class.
## Training data
Pretrained weights were left identical to the original model released by cardiffnlp. We used the EmoEvalEs Dataset for finetuning.
### BibTeX entry and citation info
|
[
"# twitter-XLM-roBERTa-base for Emotion Analysis\nThis is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of IberLEF 2021 Conference, where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. \n- Our code for EmoEvalEs submission.\n- EmoEvalEs Dataset",
"## Example Pipeline with a Tweet from @JaSantaolalla",
"## Full classification example\n\nOutput:",
"#### Limitations and bias\n\n- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class.",
"## Training data\n\nPretrained weights were left identical to the original model released by cardiffnlp. We used the EmoEvalEs Dataset for finetuning.",
"### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Emotion Analysis #es #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# twitter-XLM-roBERTa-base for Emotion Analysis\nThis is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of IberLEF 2021 Conference, where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. \n- Our code for EmoEvalEs submission.\n- EmoEvalEs Dataset",
"## Example Pipeline with a Tweet from @JaSantaolalla",
"## Full classification example\n\nOutput:",
"#### Limitations and bias\n\n- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class.",
"## Training data\n\nPretrained weights were left identical to the original model released by cardiffnlp. We used the EmoEvalEs Dataset for finetuning.",
"### BibTeX entry and citation info"
] |
[
51,
161,
15,
8,
47,
37,
11
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Emotion Analysis #es #autotrain_compatible #endpoints_compatible #has_space #region-us \n# twitter-XLM-roBERTa-base for Emotion Analysis\nThis is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of IberLEF 2021 Conference, where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. \n- Our code for EmoEvalEs submission.\n- EmoEvalEs Dataset## Example Pipeline with a Tweet from @JaSantaolalla## Full classification example\n\nOutput:#### Limitations and bias\n\n- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class.## Training data\n\nPretrained weights were left identical to the original model released by cardiffnlp. We used the EmoEvalEs Dataset for finetuning.### BibTeX entry and citation info"
] |
[
-0.004261387977749109,
0.11781100183725357,
-0.005278118420392275,
0.09115087240934372,
0.09336929768323898,
0.018169376999139786,
0.057135242968797684,
0.10067008435726166,
0.011131835170090199,
0.09316369891166687,
0.06883177906274796,
0.10797561705112457,
0.005237207282334566,
0.09743326902389526,
-0.006773211527615786,
-0.23051057755947113,
-0.029343144968152046,
-0.053326789289712906,
0.04975718632340431,
0.12156127393245697,
0.12466078996658325,
-0.06096043065190315,
0.11199377477169037,
0.012675469741225243,
0.008976174518465996,
0.03306655213236809,
-0.03928229212760925,
-0.026439424604177475,
0.06580603867769241,
0.0654420405626297,
0.1042388528585434,
0.008581101894378662,
0.007268438581377268,
-0.22275686264038086,
0.024475708603858948,
0.06996621191501617,
-0.0012806521262973547,
0.05371521785855293,
0.06656098365783691,
-0.180814728140831,
0.10451197624206543,
-0.11999524384737015,
0.11491382867097855,
0.09926410764455795,
-0.16169200837612152,
-0.13428544998168945,
-0.09245454519987106,
0.006357558537274599,
0.11473151296377182,
0.053934335708618164,
-0.06299303472042084,
0.17800594866275787,
-0.09334646165370941,
0.06469028443098068,
0.18277232348918915,
-0.18553540110588074,
-0.043094903230667114,
-0.04426372051239014,
0.03878045082092285,
0.03640478849411011,
-0.05463188514113426,
0.006001397967338562,
0.0857597067952156,
0.048095397651195526,
-0.003876585280522704,
-0.029916996136307716,
0.006976203061640263,
0.016973862424492836,
-0.13665242493152618,
-0.04324549064040184,
0.08739914000034332,
0.06735164672136307,
-0.07097448408603668,
-0.2088427096605301,
-0.017226848751306534,
-0.09811355918645859,
0.019000669941306114,
-0.06386333703994751,
0.013604925014078617,
0.007653042674064636,
0.08874331414699554,
0.08023922145366669,
-0.13611476123332977,
0.05315232276916504,
-0.043147146701812744,
0.10586760193109512,
-0.0073037901893258095,
0.010017802938818932,
-0.022762233391404152,
0.08949965238571167,
0.014190302230417728,
-0.10063165426254272,
-0.00475882925093174,
-0.09999500215053558,
-0.11067749559879303,
-0.027647381648421288,
-0.04404151812195778,
-0.061979129910469055,
0.01536707766354084,
0.13683950901031494,
0.00786303635686636,
0.02550612762570381,
0.027939530089497566,
0.005448782816529274,
0.19117505848407745,
0.09288932383060455,
-0.09190863370895386,
-0.0644482895731926,
-0.04506008327007294,
0.0018371340120211244,
-0.02755925804376602,
-0.0128422100096941,
-0.029122330248355865,
0.018599743023514748,
0.017259547486901283,
0.07635024935007095,
0.0068587446585297585,
0.06719594448804855,
-0.17911846935749054,
-0.06964371353387833,
0.13168665766716003,
-0.08917325735092163,
0.008682223968207836,
0.016107698902487755,
-0.05241771414875984,
0.07085098326206207,
0.05335263907909393,
0.03774062171578407,
-0.0010979344369843602,
0.03702431172132492,
-0.08709497004747391,
-0.030436353757977486,
-0.0805666595697403,
-0.11755938827991486,
0.03574053570628166,
0.0024196086451411247,
-0.013706855475902557,
-0.117259681224823,
-0.09670441597700119,
-0.06694641709327698,
0.039275333285331726,
-0.06048668548464775,
0.0023220896255224943,
-0.06644076108932495,
0.0044488138519227505,
0.050089962780475616,
0.030616261065006256,
0.008135484531521797,
-0.04161420837044716,
0.04825371876358986,
-0.05663283169269562,
0.060598134994506836,
0.03430432826280594,
0.0012248625280335546,
-0.1389472484588623,
0.011510326527059078,
-0.2055726796388626,
0.1540985256433487,
-0.08196178823709488,
0.03706814721226692,
-0.11289148032665253,
-0.06417205184698105,
0.03196258097887039,
0.06424859911203384,
-0.03397572413086891,
0.14944133162498474,
-0.2702758312225342,
-0.0549653135240078,
0.09231637418270111,
-0.0709286779165268,
-0.044054657220840454,
0.16433675587177277,
-0.10050530731678009,
0.06869106739759445,
0.10176751762628555,
0.1436532437801361,
0.003856848692521453,
-0.13052281737327576,
-0.05378260090947151,
-0.049428801983594894,
-0.08762854337692261,
0.24772974848747253,
0.07378531992435455,
-0.0009365783189423382,
0.04185963049530983,
0.021954210475087166,
0.04672756791114807,
0.017715642228722572,
-0.06247275322675705,
-0.044790320098400116,
0.04809671267867088,
-0.028342587873339653,
0.01618029549717903,
0.0034754041116684675,
-0.06474397331476212,
-0.07419771701097488,
-0.14841458201408386,
-0.03283878043293953,
0.10339599847793579,
-0.023025648668408394,
-0.030870238319039345,
-0.09297677129507065,
-0.033808741718530655,
0.0307808555662632,
-0.05004877224564552,
-0.15233471989631653,
-0.034098103642463684,
0.021650215610861778,
-0.05097346752882004,
0.09929205477237701,
0.1295485943555832,
0.039843566715717316,
0.008056741207838058,
0.003195721423253417,
0.003731072647497058,
0.0018555233255028725,
0.000674342445563525,
-0.09987430274486542,
-0.2350321263074875,
0.005679116118699312,
-0.09055613726377487,
0.13732799887657166,
-0.14556558430194855,
0.02062114328145981,
0.061847761273384094,
0.09638532996177673,
0.07355237752199173,
-0.0401156060397625,
0.025771375745534897,
0.01958533748984337,
-0.04721255227923393,
-0.036316923797130585,
0.005278648808598518,
-0.023181362077593803,
-0.06620540469884872,
0.10522805899381638,
-0.19482576847076416,
-0.08011382073163986,
0.099845752120018,
0.008610357530415058,
-0.15211352705955505,
-0.019229287281632423,
-0.0918811708688736,
0.01274719275534153,
-0.0010651824995875359,
0.014613069593906403,
0.1965872049331665,
0.012198025360703468,
0.09643901139497757,
-0.09562652558088303,
-0.0739310011267662,
0.005669016391038895,
-0.05591345578432083,
-0.05863097682595253,
0.16662319004535675,
-0.06083157658576965,
-0.26523423194885254,
0.09595926851034164,
0.0184010062366724,
0.07410340011119843,
0.1714518666267395,
0.05726415663957596,
-0.07605979591608047,
-0.08551725000143051,
-0.032000355422496796,
0.01393089722841978,
0.028093809261918068,
-0.03628000617027283,
0.021970590576529503,
0.04590139910578728,
-0.019973929971456528,
0.03576376289129257,
-0.033588748425245285,
-0.0245797298848629,
0.06830514967441559,
0.00016576924826949835,
0.014496947638690472,
0.04534534737467766,
0.05269063636660576,
0.12039446830749512,
-0.03541843220591545,
0.03821409121155739,
-0.05548732727766037,
-0.03200482949614525,
-0.14461128413677216,
0.17382146418094635,
-0.13821597397327423,
-0.3189008831977844,
-0.08418998122215271,
0.03448338434100151,
0.01512621995061636,
0.02609093487262726,
0.08125666528940201,
-0.1364298164844513,
-0.07614125311374664,
-0.05924467369914055,
0.035563770681619644,
0.002567264251410961,
0.029354408383369446,
-0.021601339802145958,
0.026081005111336708,
0.013724178075790405,
-0.142201766371727,
0.0004813912673853338,
-0.01879740320146084,
-0.04879097640514374,
0.024776870384812355,
-0.013195588253438473,
0.0867958813905716,
0.11370522528886795,
0.030871732160449028,
0.004327767062932253,
-0.05022541806101799,
0.28510743379592896,
-0.09313472360372543,
0.013504651375114918,
0.07453180849552155,
-0.0882764458656311,
0.05657890811562538,
0.07784305512905121,
0.012740661390125751,
-0.10160073637962341,
0.0690494179725647,
0.10685525834560394,
-0.025255169719457626,
-0.23032191395759583,
-0.10613834112882614,
0.01692192256450653,
0.014762255363166332,
0.05473562702536583,
0.034763436764478683,
0.053585272282361984,
0.006925696972757578,
-0.07675556093454361,
-0.04494268819689751,
0.00786871463060379,
0.07092918455600739,
-0.058462757617235184,
-0.009875711053609848,
0.06497751921415329,
-0.0293706227093935,
-0.06821078062057495,
0.14546841382980347,
-0.06048331409692764,
0.09279815107584,
-0.0384150967001915,
0.08974378556013107,
0.12640410661697388,
0.02586846612393856,
0.018802788108587265,
-0.010490749962627888,
-0.03977784514427185,
-0.004611240234225988,
-0.10240858048200607,
-0.06292318552732468,
-0.033751413226127625,
0.08754391223192215,
0.06952477991580963,
0.03256160393357277,
-0.07489444315433502,
-0.01630398817360401,
0.11775066703557968,
0.22950367629528046,
0.01530572958290577,
-0.22000235319137573,
-0.03892973065376282,
0.03743169829249382,
-0.06716121733188629,
-0.031070837751030922,
-0.025026164948940277,
0.04392828419804573,
-0.10236430168151855,
0.12064922600984573,
-0.0020127897150814533,
0.0650971382856369,
-0.06318709999322891,
0.046786390244960785,
0.006669923663139343,
-0.027023645117878914,
-0.014761664904654026,
0.11616644263267517,
-0.252189964056015,
0.14868637919425964,
0.03616531565785408,
0.03441447764635086,
-0.07776755094528198,
-0.010006953962147236,
-0.0060297721065580845,
-0.06875757873058319,
0.15932707488536835,
-0.0036384707782417536,
0.09166735410690308,
-0.14212007820606232,
-0.06766091287136078,
-0.006345672067254782,
0.06581493467092514,
-0.12079624831676483,
0.13164708018302917,
0.010862288065254688,
0.0037151838187128305,
0.031891077756881714,
0.00244717113673687,
-0.1386987864971161,
-0.19219668209552765,
0.027900829911231995,
-0.07323950529098511,
-0.09286545217037201,
-0.027366455644369125,
-0.051452234387397766,
-0.03407369181513786,
0.1872912347316742,
-0.10913608223199844,
-0.058717500418424606,
-0.1227600947022438,
0.05870475247502327,
0.1250828504562378,
-0.07245522737503052,
-0.014116647653281689,
0.03881310671567917,
0.08314806967973709,
-0.02576807327568531,
-0.08697253465652466,
0.08689018338918686,
-0.07169879972934723,
-0.20003291964530945,
-0.08644428849220276,
0.06221162527799606,
0.16237647831439972,
0.05985921993851662,
0.016935771331191063,
0.0012460002908483148,
-0.013208318501710892,
-0.10816662758588791,
0.020801153033971786,
0.11333029717206955,
0.08088947087526321,
0.07878288626670837,
0.02512250281870365,
-0.12617747485637665,
-0.12748074531555176,
-0.02744142711162567,
0.010456317104399204,
0.3412753939628601,
-0.08161339163780212,
0.14258483052253723,
0.11673189699649811,
-0.12982262670993805,
-0.10702072083950043,
-0.07100800424814224,
0.10965891182422638,
0.017096471041440964,
0.1474464386701584,
-0.10928847640752792,
0.03972536697983742,
0.09739323705434799,
0.02499985322356224,
-0.01620759628713131,
-0.2233586311340332,
-0.11316317319869995,
0.07378194481134415,
-0.027797216549515724,
0.10477787256240845,
-0.11331480741500854,
-0.03159244358539581,
-0.03192639350891113,
-0.024426689371466637,
0.2121157944202423,
-0.02480645477771759,
0.04937572777271271,
0.021357839927077293,
0.05150206759572029,
0.056995563209056854,
-0.02028447948396206,
0.17273357510566711,
0.021073201671242714,
0.11321811378002167,
-0.08458815515041351,
-0.09837155044078827,
0.010403904132544994,
-0.0357370600104332,
0.08109603822231293,
0.0029856665059924126,
0.01696036197245121,
-0.2177828848361969,
-0.05467088893055916,
-0.10251598060131073,
0.06354636698961258,
-0.05392509326338768,
-0.04798494651913643,
-0.11997739225625992,
0.04376307129859924,
0.07981639355421066,
-0.03488730266690254,
-0.06261835992336273,
-0.039034564048051834,
0.03871072083711624,
0.07121159136295319,
0.15440870821475983,
0.0678105279803276,
-0.060901790857315063,
-0.025452103465795517,
-0.012144563719630241,
0.014432687312364578,
-0.0740174651145935,
0.03177882358431816,
0.10611137002706528,
-0.029162628576159477,
0.15415456891059875,
0.015468912199139595,
-0.14944352209568024,
0.042807720601558685,
0.08574973046779633,
-0.16756880283355713,
-0.04146338626742363,
-0.05495787784457207,
-0.037399113178253174,
-0.07641617208719254,
-0.12065894156694412,
0.1405283659696579,
0.022687789052724838,
-0.05906066298484802,
0.001952536404132843,
0.07338645309209824,
-0.0026893732137978077,
0.06445909291505814,
0.031928081065416336,
0.015424782410264015,
-0.07646962255239487,
0.014487890526652336,
0.08013412356376648,
-0.16232424974441528,
0.09104279428720474,
0.06984034925699234,
-0.06498408317565918,
-0.0352223739027977,
0.03396664187312126,
0.21025826036930084,
-0.0725841075181961,
0.018703076988458633,
-0.06029953435063362,
-0.02294103242456913,
0.051126327365636826,
0.1771218180656433,
0.06289007514715195,
0.09646289795637131,
0.0032057904172688723,
0.023843059316277504,
-0.009102802723646164,
0.0953807607293129,
0.11536530405282974,
-0.013187689706683159,
-0.11771510541439056,
0.1214507669210434,
-0.01012090127915144,
-0.01993011310696602,
-0.027814915403723717,
-0.012298645451664925,
-0.11401209235191345,
-0.027823200449347496,
-0.04182489216327667,
0.07058499753475189,
-0.04334944114089012,
0.019184371456503868,
0.03473775088787079,
-0.04344803839921951,
-0.003630343358963728,
-0.04488230496644974,
-0.06670330464839935,
0.018240375444293022,
0.027618814259767532,
0.12091725319623947,
-0.15028512477874756,
-0.08820405602455139,
0.06130440533161163,
-0.059736382216215134,
0.07768021523952484,
0.004174150992184877,
-0.03479308634996414,
-0.004833329003304243,
-0.2059515118598938,
0.014523639343678951,
0.07264989614486694,
0.0034643199760466814,
0.017384929582476616,
-0.09262529015541077,
0.015402000397443771,
-0.025598417967557907,
0.017009442672133446,
0.018619833514094353,
0.0645439550280571,
-0.1285628080368042,
-0.017252368852496147,
0.15132862329483032,
-0.08631404489278793,
-0.10187774896621704,
0.00597167294472456,
0.09712864458560944,
0.05060439929366112,
0.1616050899028778,
-0.05558557063341141,
0.03854092210531235,
-0.23244363069534302,
-0.01742267981171608,
0.0036585256457328796,
0.05940035358071327,
-0.025950470939278603,
0.008833087980747223,
0.034422215074300766,
-0.03792053088545799,
0.14823098480701447,
0.06346818059682846,
0.039268214255571365,
0.0181588027626276,
-0.006415616255253553,
-0.018147356808185577,
0.04220040142536163,
0.021831955760717392,
-0.035583872348070145,
-0.0002767187834251672,
-0.05618971213698387,
0.006187861785292625,
0.011871983297169209,
-0.06038859486579895,
0.048580653965473175,
0.10853316634893417,
0.14437635242938995,
0.02454223483800888,
-0.006306154187768698,
-0.03301233798265457,
-0.038096316158771515,
-0.01792086660861969,
-0.05326230823993683,
0.022951265797019005,
0.01404534187167883,
0.0758189782500267,
0.13308869302272797,
-0.09087574481964111,
0.1069159060716629,
-0.027509817853569984,
-0.050133101642131805,
-0.08518236875534058,
-0.22025921940803528,
-0.0513591468334198,
0.023354537785053253,
-0.021886786445975304,
-0.13558897376060486,
0.11041099578142166,
0.020719138905405998,
0.046566225588321686,
-0.0054391673766076565,
-0.037545572966337204,
-0.05846851319074631,
-0.08407214283943176,
0.06155120208859444,
0.016565490514039993,
0.014376203529536724,
0.0027166346553713083,
0.06304730474948883,
0.03421202301979065,
0.10615847259759903,
0.026670251041650772,
0.039863016456365585,
0.0018320516683161259,
-0.0072712949477136135,
-0.09887094795703888,
-0.12951168417930603,
0.015418889001011848,
-0.025393817573785782,
0.010319089516997337,
0.12346356362104416,
0.028863850980997086,
-0.007240434642881155,
0.00844980962574482,
0.20325492322444916,
-0.018701953813433647,
-0.02282514050602913,
-0.1831771582365036,
0.1562470644712448,
0.0028562957886606455,
0.07277196645736694,
-0.015473191626369953,
-0.09105566889047623,
0.012007493525743484,
0.13067981600761414,
0.17449882626533508,
-0.012712212279438972,
0.005402698181569576,
-0.051808565855026245,
0.01995837688446045,
0.033590201288461685,
0.0233918447047472,
0.02888401597738266,
0.2346711903810501,
-0.09482152760028839,
0.11074616760015488,
-0.03440235182642937,
0.04099429026246071,
-0.02219424396753311,
0.09626983106136322,
0.003458659164607525,
0.02285495214164257,
-0.051108259707689285,
0.11793370544910431,
-0.040976278483867645,
-0.16243058443069458,
-0.012391798198223114,
-0.10407032072544098,
-0.13009874522686005,
-0.00969156064093113,
0.03582734242081642,
0.06690822541713715,
0.10918435454368591,
0.033918291330337524,
-0.06478526443243027,
0.18296566605567932,
0.012270488776266575,
-0.13917405903339386,
-0.052737731486558914,
0.08525709807872772,
-0.045304808765649796,
0.1395159810781479,
-0.0014273790875449777,
0.11463814973831177,
0.11808733642101288,
-0.04341109097003937,
-0.0803290382027626,
-0.03929954767227173,
0.003925780300050974,
0.07070370763540268,
0.0651344507932663,
0.14291518926620483,
0.0168572086840868,
0.04254835471510887,
0.050563327968120575,
-0.1639321744441986,
0.0549735389649868,
-0.04439014941453934,
-0.07425388693809509,
-0.07890104502439499,
0.12344201654195786,
-0.05495760589838028,
0.08153460919857025,
0.11351072043180466,
-0.019961731508374214,
0.04985795542597771,
-0.049867238849401474,
-0.002793438732624054,
-0.0006325312424451113,
0.05612467601895332,
-0.013078797608613968,
-0.14097587764263153,
-0.00468969251960516,
0.054238609969615936,
0.06035827845335007,
-0.19149957597255707,
-0.023599188774824142,
0.001561343320645392,
-0.05755457282066345,
-0.010436473414301872,
0.09155242890119553,
0.007399634458124638,
0.0699038878083229,
-0.03422331437468529,
-0.04643051326274872,
0.04542892426252365,
0.12264122068881989,
-0.07452476769685745,
-0.04515748471021652
] |
null | null | null |
Relevance prediction model
|
{}
| null |
davinan/relevance_prediction
|
[
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#region-us
|
Relevance prediction model
|
[] |
[
"TAGS\n#region-us \n"
] |
[
6
] |
[
"passage: TAGS\n#region-us \n"
] |
[
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null |
transformers
|
A small french language model for french text generation (and possibly more NLP tasks...)
**Introduction**
This french gpt2 model is based on openai GPT-2 small model.
It was trained on a <b>very small (190Mb) dataset </b> from french wikipedia using Transfer Learning and Fine-tuning techniques in just over a day, on one Colab pro with 1GPU 16GB.
It was created applying the recept of <b>Pierre Guillou</b>
See https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787
It is a proof-of-concept that makes possible to get a language model in any language with low ressources.
It was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.
It is now available on Hugging Face. For further information or requests, please go to "Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)".
Model migth be improved by using larger dataset under larger powerful training infrastructure. At least this one can be used for small finetuning experimentation (i.e with aitextgen).
PS : I've lost the metrics but it speaks french with some minor grammar issues, coherence of text is somehow limited.
|
{"language": "fr", "tags": ["french", "gpt2", "model"]}
|
text-generation
|
dbddv01/gpt2-french-small
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"gpt2",
"text-generation",
"french",
"model",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"fr"
] |
TAGS
#transformers #pytorch #jax #safetensors #gpt2 #text-generation #french #model #fr #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
A small french language model for french text generation (and possibly more NLP tasks...)
Introduction
This french gpt2 model is based on openai GPT-2 small model.
It was trained on a <b>very small (190Mb) dataset </b> from french wikipedia using Transfer Learning and Fine-tuning techniques in just over a day, on one Colab pro with 1GPU 16GB.
It was created applying the recept of <b>Pierre Guillou</b>
See URL
It is a proof-of-concept that makes possible to get a language model in any language with low ressources.
It was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.
It is now available on Hugging Face. For further information or requests, please go to "Faster than training from scratch β Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)".
Model migth be improved by using larger dataset under larger powerful training infrastructure. At least this one can be used for small finetuning experimentation (i.e with aitextgen).
PS : I've lost the metrics but it speaks french with some minor grammar issues, coherence of text is somehow limited.
|
[] |
[
"TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #french #model #fr #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] |
[
67
] |
[
"passage: TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #french #model #fr #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] |
[
-0.03262065723538399,
0.03357735276222229,
-0.005208836868405342,
0.037844348698854446,
0.09421469271183014,
-0.0353335440158844,
0.1142244040966034,
0.096319280564785,
-0.013506703078746796,
0.024128254503011703,
0.1847451776266098,
0.12529988586902618,
-0.03712964057922363,
0.12829351425170898,
-0.04907211288809776,
-0.23697082698345184,
0.09995053708553314,
0.010050216689705849,
-0.0437389612197876,
0.1028883159160614,
0.1182505264878273,
-0.06326410919427872,
0.10170305520296097,
-0.00809451099485159,
-0.11675496399402618,
0.040662623941898346,
0.024234868586063385,
-0.11352579295635223,
0.12431620061397552,
0.05174672231078148,
0.09811675548553467,
0.0598897859454155,
-0.0356922373175621,
-0.12747785449028015,
0.030884817242622375,
0.030074160546064377,
-0.07900655269622803,
0.05898721516132355,
0.09176712483167648,
-0.09289830923080444,
0.0980149507522583,
0.013883494772017002,
-0.01856960915029049,
0.01894562505185604,
-0.13950753211975098,
-0.10366766154766083,
-0.019266948103904724,
0.03177838772535324,
0.0008254852727986872,
0.10756678879261017,
-0.019170289859175682,
0.1203387901186943,
-0.12104875594377518,
0.09778903424739838,
0.17042849957942963,
-0.319559782743454,
-0.0209988784044981,
0.10052157193422318,
0.11847571283578873,
0.058008864521980286,
-0.051330387592315674,
0.06740334630012512,
0.043922942131757736,
0.0005239378660917282,
0.07679477334022522,
-0.06406328827142715,
-0.11191713064908981,
0.025952523574233055,
-0.10888904333114624,
-0.05217598006129265,
0.231258824467659,
-0.048859380185604095,
0.04581138864159584,
-0.08398475497961044,
-0.10418650507926941,
-0.030466200783848763,
-0.03995851054787636,
-0.023977817967534065,
-0.019729645922780037,
0.05347723886370659,
0.05858888849616051,
-0.03960279002785683,
-0.11810222268104553,
-0.01911434717476368,
-0.1467788964509964,
0.1513667106628418,
0.007321601267904043,
0.034213513135910034,
-0.14530983567237854,
0.08952271193265915,
-0.079000324010849,
-0.10901478677988052,
0.04224778711795807,
-0.10088497400283813,
0.0720105990767479,
0.008009018376469612,
-0.04194769263267517,
-0.03482050821185112,
0.12018810957670212,
0.13163569569587708,
-0.10772480815649033,
0.0022834690753370523,
-0.00359097751788795,
0.08147845417261124,
0.025977877900004387,
0.07958798855543137,
-0.042677655816078186,
-0.042133331298828125,
0.03487377241253853,
-0.036444276571273804,
-0.011131617240607738,
-0.04383128881454468,
-0.13552793860435486,
-0.035327620804309845,
0.09826721996068954,
0.06388156861066818,
0.027310417965054512,
0.08508604764938354,
-0.01873750425875187,
0.0320219025015831,
0.11045124381780624,
-0.0729181095957756,
0.029085038229823112,
0.0069383978843688965,
0.03118308074772358,
0.04715459793806076,
-0.007700765505433083,
0.02136109583079815,
-0.08620654791593552,
0.020314984023571014,
-0.07735495269298553,
-0.02752530202269554,
-0.04387417435646057,
-0.11821656674146652,
0.019688347354531288,
-0.03397270664572716,
0.01390679832547903,
-0.16137465834617615,
-0.12142890691757202,
-0.006340052001178265,
0.03866669163107872,
-0.03589039295911789,
-0.04752437025308609,
-0.03789457306265831,
-0.08717190474271774,
0.08240927010774612,
-0.0386584997177124,
-0.010215423069894314,
-0.07488598674535751,
0.06319619715213776,
-0.06387584656476974,
0.08039750158786774,
-0.12243598699569702,
0.05598326027393341,
-0.09460202604532242,
0.0017401549266651273,
-0.12167970836162567,
0.04273594543337822,
-0.03804154694080353,
0.07011637836694717,
-0.01691761612892151,
-0.05514398217201233,
-0.08938078582286835,
0.08334425836801529,
-0.0017377998447045684,
0.20506419241428375,
-0.1034465953707695,
-0.09176717698574066,
0.27774712443351746,
-0.11478959023952484,
-0.13859212398529053,
0.15481850504875183,
0.006436131428927183,
0.010473047383129597,
0.04730341583490372,
0.20023219287395477,
0.04498108848929405,
-0.05217474699020386,
0.04618026688694954,
0.13254135847091675,
-0.051127683371305466,
-0.041078176349401474,
0.042129091918468475,
-0.009961353614926338,
-0.13098588585853577,
0.037401020526885986,
0.023718807846307755,
0.04995020478963852,
-0.06073601916432381,
-0.037205152213573456,
-0.04765980690717697,
-0.003710085293278098,
0.10217609256505966,
0.020761456340551376,
0.10674881935119629,
-0.0841112732887268,
-0.07378847151994705,
-0.037346694618463516,
0.012451373971998692,
-0.028718939051032066,
-0.0009410364436917007,
-0.014816951006650925,
0.17237098515033722,
-0.020299728959798813,
0.028649605810642242,
-0.15364408493041992,
-0.10479859262704849,
-0.013535152189433575,
0.0770980566740036,
-0.04616214334964752,
0.13812986016273499,
0.09060215204954147,
0.023326030001044273,
-0.010878141038119793,
-0.020330045372247696,
0.125962033867836,
0.01029802393168211,
-0.05595528334379196,
-0.1182066947221756,
0.0828305333852768,
-0.09174985438585281,
0.05933712050318718,
-0.13152794539928436,
0.02949732169508934,
0.05178592726588249,
0.10936212539672852,
-0.00256769685074687,
0.056777290999889374,
-0.05351667106151581,
0.01434296928346157,
-0.0941711813211441,
0.010254165157675743,
0.07331973314285278,
-0.014516638591885567,
0.008578951470553875,
0.2097882330417633,
-0.17840436100959778,
0.32764875888824463,
0.21892020106315613,
-0.20219923555850983,
-0.02506863884627819,
-0.022929202765226364,
-0.028857039287686348,
0.05537888780236244,
0.02382815256714821,
-0.035547591745853424,
0.02573833242058754,
-0.034738410264253616,
0.18121078610420227,
-0.08856895565986633,
-0.05275856703519821,
0.0354866199195385,
-0.05840744078159332,
-0.04744650796055794,
0.10330163687467575,
0.04782422259449959,
-0.09391357004642487,
0.20177260041236877,
0.2538488209247589,
0.006077266298234463,
0.1727847307920456,
-0.005862882360816002,
0.009527030400931835,
0.056978266686201096,
0.027488693594932556,
-0.039724886417388916,
0.00427097687497735,
-0.16117139160633087,
-0.052188027650117874,
0.06461972743272781,
0.03377337008714676,
0.06565608084201813,
-0.12613137066364288,
-0.031977370381355286,
-0.006926770322024822,
-0.014730064198374748,
0.028626825660467148,
0.11318245530128479,
0.02787148393690586,
0.141890287399292,
-0.016547538340091705,
-0.122762531042099,
0.0648578628897667,
0.009890089742839336,
-0.0807100385427475,
0.2127823680639267,
-0.1281578242778778,
-0.32051151990890503,
-0.07836369425058365,
-0.06492556631565094,
-0.06824322789907455,
0.046930260956287384,
0.10024838894605637,
-0.10363958775997162,
-0.03402010351419449,
-0.07914982736110687,
0.018199212849140167,
-0.06335505843162537,
0.041770949959754944,
-0.10288432985544205,
0.02472633309662342,
-0.05833154171705246,
-0.10134770721197128,
-0.07361394166946411,
-0.018754223361611366,
-0.07067723572254181,
0.1122465580701828,
-0.06522024422883987,
0.06956498324871063,
0.15437598526477814,
-0.021416939795017242,
0.03455939143896103,
-0.018819572404026985,
0.23676735162734985,
-0.0708872377872467,
0.021392039954662323,
0.18302880227565765,
0.04006463289260864,
0.08518582582473755,
0.15735432505607605,
0.00351694761775434,
-0.04866492748260498,
0.02500450797379017,
-0.023529719561338425,
-0.08164389431476593,
-0.14697764813899994,
-0.15137892961502075,
-0.10481046140193939,
0.05317535623908043,
0.05836598202586174,
0.07371360808610916,
0.13845880329608917,
0.07934733480215073,
-0.007333897985517979,
-0.014686860144138336,
0.04300273582339287,
0.0702996701002121,
0.16642577946186066,
-0.026377325877547264,
0.1559055745601654,
-0.05520451068878174,
-0.16077914834022522,
0.10066906362771988,
0.013166436925530434,
0.04881780967116356,
0.017556576058268547,
-0.03381168097257614,
0.03836318850517273,
0.1247648149728775,
0.11711311340332031,
0.12244050204753876,
0.0019531825091689825,
-0.047120191156864166,
-0.039483267813920975,
-0.054190199822187424,
-0.010814528912305832,
0.03926084190607071,
-0.010834976099431515,
-0.1242813691496849,
-0.10502446442842484,
-0.10459058731794357,
0.10767345875501633,
0.03486872464418411,
0.0998140424489975,
-0.25045397877693176,
0.008403198793530464,
0.08259374648332596,
-0.014852100983262062,
-0.11780787259340286,
0.08881169557571411,
0.08252187818288803,
-0.12699052691459656,
0.02184203267097473,
-0.022524215281009674,
0.09569432586431503,
0.017537467181682587,
0.0932680144906044,
-0.061132315546274185,
-0.054208241403102875,
0.002820981200784445,
0.08477427810430527,
-0.2524632215499878,
0.23360101878643036,
-0.011788644827902317,
-0.06380826979875565,
-0.07689166069030762,
0.019301066175103188,
0.03494381159543991,
0.18833789229393005,
0.15569041669368744,
0.01870148256421089,
-0.10778389871120453,
-0.048479098826646805,
-0.000863764900714159,
0.02350272610783577,
0.08753233402967453,
-0.03986592963337898,
-0.0003477452555671334,
-0.05497727170586586,
-0.02219202183187008,
-0.005618592724204063,
0.024472199380397797,
-0.05252160504460335,
-0.17890720069408417,
0.062421973794698715,
0.04127051308751106,
0.06369835138320923,
-0.030577072873711586,
-0.04543488472700119,
-0.1844431608915329,
0.2086886614561081,
-0.0033132946118712425,
-0.05668113753199577,
-0.11006174981594086,
-0.09321437031030655,
0.06479581445455551,
-0.06252921372652054,
0.07607050240039825,
-0.08199025690555573,
0.059217143803834915,
-0.07966344803571701,
-0.1534389853477478,
0.13406281173229218,
-0.14476966857910156,
-0.03912952542304993,
-0.04106997698545456,
0.1416560560464859,
-0.0765368714928627,
-0.008742326870560646,
0.04729754477739334,
0.0532493032515049,
-0.13756832480430603,
-0.1292998343706131,
-0.024839967489242554,
-0.05947932228446007,
0.04366634786128998,
0.013909160159528255,
-0.07336463034152985,
-0.1071564331650734,
0.04422978684306145,
0.02694554254412651,
0.2507328391075134,
0.2073981910943985,
-0.08849659562110901,
0.1324155479669571,
0.1387486755847931,
-0.03562377765774727,
-0.3683844804763794,
-0.09201329946517944,
-0.10854101181030273,
-0.03573422506451607,
-0.024670137092471123,
-0.09459970891475677,
0.06347229331731796,
-0.012695535086095333,
-0.049927305430173874,
0.06493952870368958,
-0.2361183911561966,
-0.09138226509094238,
0.1546030193567276,
0.003856528317555785,
0.3776718080043793,
-0.13785873353481293,
-0.0524665005505085,
-0.04426494613289833,
-0.11232829093933105,
0.1502980887889862,
-0.13330446183681488,
0.05289967358112335,
-0.00213400786742568,
0.011720138601958752,
0.04418771341443062,
-0.06256697326898575,
0.11994630843400955,
-0.019237836822867393,
0.03213517367839813,
-0.10109632462263107,
-0.020350415259599686,
0.08790209889411926,
-0.019512126222252846,
0.053045231848955154,
-0.10629110038280487,
0.0434812530875206,
-0.1246616318821907,
-0.02341516874730587,
-0.07892654091119766,
0.09060006588697433,
-0.010132892057299614,
-0.053936488926410675,
-0.014067049138247967,
-0.02019376866519451,
0.02575753442943096,
0.013196919113397598,
0.14769652485847473,
-0.030918899923563004,
0.19537782669067383,
0.16870689392089844,
0.07131405174732208,
-0.11044804751873016,
0.036313243210315704,
0.032503996044397354,
-0.05121966823935509,
0.07848247140645981,
-0.1250230371952057,
0.06342943012714386,
0.08545577526092529,
-0.05889895185828209,
0.0666964054107666,
0.10329597443342209,
0.013117553666234016,
-0.04349678009748459,
0.14557906985282898,
-0.26732370257377625,
-0.0582088828086853,
-0.06371502578258514,
-0.011278624646365643,
0.06856429576873779,
0.0584113709628582,
0.14612531661987305,
-0.014708136208355427,
-0.027990104630589485,
-0.03342663496732712,
0.010915709659457207,
-0.05185971409082413,
0.04089167341589928,
0.03169344738125801,
0.04334937408566475,
-0.11729484796524048,
-0.004902303218841553,
0.008219881914556026,
-0.1556093394756317,
0.008016797713935375,
0.14392082393169403,
-0.12235014140605927,
-0.15363946557044983,
0.026507562026381493,
0.10526449233293533,
-0.11078670620918274,
-0.04849790409207344,
-0.05758456140756607,
-0.151015967130661,
0.06220068037509918,
0.13674333691596985,
0.08854209631681442,
0.06209472194314003,
0.03432668000459671,
-0.05611607804894447,
-0.034878574311733246,
0.04990869015455246,
0.022993195801973343,
0.015535452403128147,
-0.07935541123151779,
0.010386277921497822,
-0.03310449421405792,
0.11425305902957916,
-0.09551879018545151,
-0.016236981377005577,
-0.1778254508972168,
-0.024575624614953995,
-0.09558835625648499,
-0.06237206608057022,
-0.0719602033495903,
-0.03776306286454201,
-0.01971011608839035,
-0.055273812264204025,
-0.027653560042381287,
-0.04442926123738289,
-0.11278559267520905,
0.026342453435063362,
-0.023153500631451607,
0.05517876148223877,
-0.1010264977812767,
-0.002159206895157695,
0.07664158940315247,
-0.04860944300889969,
0.12537965178489685,
0.07698317617177963,
-0.06408059597015381,
0.09208136051893234,
-0.17368347942829132,
-0.08182279765605927,
0.0575554259121418,
0.016788166016340256,
0.0390792042016983,
0.04233928024768829,
0.037027761340141296,
0.07100477069616318,
0.04123551398515701,
0.0521182045340538,
-0.010720865800976753,
-0.08457857370376587,
0.06880422681570053,
-0.026219841092824936,
-0.14321266114711761,
-0.026288272812962532,
0.004887051414698362,
0.04386153444647789,
-0.012688789516687393,
0.10943180322647095,
-0.07203824818134308,
0.049603171646595,
-0.07524800300598145,
0.022986171767115593,
-0.011938797309994698,
-0.19105026125907898,
-0.07888758927583694,
-0.06052843853831291,
0.03104800544679165,
0.01650756411254406,
0.2670891582965851,
0.12709690630435944,
-0.002261374844238162,
0.036103226244449615,
0.019037630409002304,
0.06437579542398453,
0.046203725039958954,
0.170637309551239,
0.06791998445987701,
-0.037575408816337585,
-0.13352511823177338,
0.056924302130937576,
0.05185308679938316,
0.01122067216783762,
0.10195311903953552,
0.08511324971914291,
-0.012159548699855804,
0.09264218062162399,
-0.01873731054365635,
-0.007173899095505476,
-0.0702114850282669,
-0.10580789297819138,
-0.028773805126547813,
0.06146521121263504,
-0.0721796378493309,
0.04670228436589241,
0.18277056515216827,
-0.033024635165929794,
0.044437434524297714,
-0.028394071385264397,
-0.038193486630916595,
-0.19110630452632904,
-0.11291321367025375,
-0.09091325849294662,
-0.1383805274963379,
-0.02311996929347515,
-0.10676704347133636,
0.050723981112241745,
0.045557573437690735,
0.08089109510183334,
-0.023620324209332466,
0.10365884751081467,
0.026540035381913185,
-0.055860452353954315,
0.06707678735256195,
-0.02541254460811615,
0.07409334927797318,
-0.025200551375746727,
-0.007048444822430611,
-0.10812033712863922,
-0.0038561783730983734,
-0.030391518026590347,
0.05578610673546791,
-0.0495486743748188,
0.029418623074889183,
-0.11587520688772202,
-0.07998815923929214,
-0.04791094362735748,
0.05592993646860123,
-0.026273025199770927,
0.1298869550228119,
0.006204407196491957,
-0.061594560742378235,
0.04266658052802086,
0.25006529688835144,
-0.0696607381105423,
-0.10598839074373245,
-0.05390012264251709,
0.21062283217906952,
0.03677168861031532,
0.13723713159561157,
-0.03885198384523392,
0.005241779610514641,
-0.07166053354740143,
0.2909958064556122,
0.36435461044311523,
-0.06977807730436325,
0.058910150080919266,
0.016522696241736412,
0.021617760881781578,
0.10179037600755692,
0.06274235993623734,
0.09941162914037704,
0.29977524280548096,
-0.09704481810331345,
0.008495905436575413,
-0.03367570787668228,
0.005669076927006245,
-0.10661749541759491,
0.08548189699649811,
0.03924768418073654,
-0.06399394571781158,
-0.034038837999105453,
0.07024801522493362,
-0.15387441217899323,
0.08941639959812164,
-0.056105270981788635,
-0.17230744659900665,
-0.05823030695319176,
0.012740368954837322,
0.10607808083295822,
0.01743539795279503,
0.08361490815877914,
-0.027651114389300346,
-0.08621970564126968,
0.018779480829834938,
-0.0033369031734764576,
-0.1352846473455429,
-0.019147096201777458,
0.04531341791152954,
-0.022413406521081924,
0.10437516868114471,
-0.010961229912936687,
0.0344272144138813,
0.1084696501493454,
-0.017750894650816917,
-0.055913373827934265,
0.0356617271900177,
0.02353912591934204,
-0.02867143601179123,
0.0031946906819939613,
-0.00839659571647644,
0.009001574479043484,
-0.09085175395011902,
0.04314778000116348,
-0.14477130770683289,
0.06336373090744019,
-0.07330925762653351,
-0.07610223442316055,
-0.019730422645807266,
0.04098979011178017,
-0.04993104189634323,
0.07486418634653091,
0.08228754252195358,
-0.0005875746137462556,
0.00520051084458828,
-0.05818420648574829,
0.011634638532996178,
-0.025045722723007202,
-0.06056588143110275,
-0.05849552899599075,
-0.131936714053154,
-0.0387018546462059,
0.10455957800149918,
-0.0025105669628828764,
-0.23204658925533295,
-0.0029722771141678095,
-0.09066365659236908,
0.08978140354156494,
-0.14750167727470398,
0.07102079689502716,
0.13627715408802032,
-0.0028298567049205303,
-0.015516005456447601,
-0.02296057529747486,
0.009683186188340187,
0.09076620638370514,
-0.0369759276509285,
-0.07416266202926636
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-1b-italian-robust
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the Common Voice 7 & Libri Speech datasets.
It achieves the following results on the evaluation set:
- Loss: 0.2428
- Wer: 0.2960
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log | 0.07 | 400 | 1.0053 | 0.8058 |
| 1.5087 | 0.13 | 800 | 0.9127 | 0.8104 |
| 0.9552 | 0.2 | 1200 | 1.0360 | 0.8836 |
| 0.9555 | 0.27 | 1600 | 0.9980 | 0.8577 |
| 1.0259 | 0.34 | 2000 | 1.0103 | 0.8842 |
| 1.0259 | 0.4 | 2400 | 0.9119 | 0.8466 |
| 1.0365 | 0.47 | 2800 | 0.9000 | 0.8281 |
| 1.0069 | 0.54 | 3200 | 0.7976 | 0.7875 |
| 0.9688 | 0.61 | 3600 | 0.8126 | 0.8051 |
| 0.9638 | 0.67 | 4000 | 0.7921 | 0.7903 |
| 0.9638 | 0.74 | 4400 | 0.7703 | 0.7783 |
| 0.9327 | 0.81 | 4800 | 0.7253 | 0.7463 |
| 0.8992 | 0.88 | 5200 | 0.6841 | 0.7171 |
| 0.8693 | 0.94 | 5600 | 0.6867 | 0.7250 |
| 0.8433 | 1.01 | 6000 | 0.7077 | 0.7302 |
| 0.8433 | 1.08 | 6400 | 0.6685 | 0.7091 |
| 0.8499 | 1.14 | 6800 | 0.6355 | 0.6825 |
| 0.8159 | 1.21 | 7200 | 0.6283 | 0.6800 |
| 0.8001 | 1.28 | 7600 | 0.6288 | 0.6743 |
| 0.7883 | 1.35 | 8000 | 0.5995 | 0.6633 |
| 0.7883 | 1.41 | 8400 | 0.6195 | 0.6726 |
| 0.7863 | 1.48 | 8800 | 0.6039 | 0.6588 |
| 0.7713 | 1.55 | 9200 | 0.5842 | 0.6490 |
| 0.7572 | 1.62 | 9600 | 0.5975 | 0.6533 |
| 0.7442 | 1.68 | 10000 | 0.5508 | 0.6233 |
| 0.7442 | 1.75 | 10400 | 0.5521 | 0.6209 |
| 0.7296 | 1.82 | 10800 | 0.5760 | 0.6245 |
| 0.7205 | 1.89 | 11200 | 0.5593 | 0.6144 |
| 0.7106 | 1.95 | 11600 | 0.5672 | 0.6220 |
| 0.7146 | 2.02 | 12000 | 0.5134 | 0.5911 |
| 0.7146 | 2.09 | 12400 | 0.5069 | 0.5811 |
| 0.6944 | 2.15 | 12800 | 0.5022 | 0.5962 |
| 0.6817 | 2.22 | 13200 | 0.4989 | 0.5813 |
| 0.6721 | 2.29 | 13600 | 0.4941 | 0.5742 |
| 0.6774 | 2.36 | 14000 | 0.4775 | 0.5676 |
| 0.6774 | 2.42 | 14400 | 0.4694 | 0.5525 |
| 0.6621 | 2.49 | 14800 | 0.4720 | 0.5514 |
| 0.6599 | 2.56 | 15200 | 0.4714 | 0.5553 |
| 0.6591 | 2.63 | 15600 | 0.4578 | 0.5397 |
| 0.645 | 2.69 | 16000 | 0.4619 | 0.5452 |
| 0.645 | 2.76 | 16400 | 0.4578 | 0.5343 |
| 0.6431 | 2.83 | 16800 | 0.4514 | 0.5328 |
| 0.636 | 2.9 | 17200 | 0.4526 | 0.5325 |
| 0.6433 | 2.96 | 17600 | 0.4561 | 0.5325 |
| 0.6356 | 3.03 | 18000 | 0.4386 | 0.5191 |
| 0.6356 | 3.1 | 18400 | 0.4291 | 0.5065 |
| 0.6175 | 3.16 | 18800 | 0.4306 | 0.5170 |
| 0.6187 | 3.23 | 19200 | 0.4256 | 0.5036 |
| 0.607 | 3.3 | 19600 | 0.4198 | 0.5027 |
| 0.6004 | 3.37 | 20000 | 0.4149 | 0.4906 |
| 0.6004 | 3.43 | 20400 | 0.4114 | 0.4902 |
| 0.6002 | 3.5 | 20800 | 0.4116 | 0.4967 |
| 0.5926 | 3.57 | 21200 | 0.4066 | 0.4843 |
| 0.5836 | 3.64 | 21600 | 0.3956 | 0.4791 |
| 0.588 | 3.7 | 22000 | 0.3941 | 0.4729 |
| 0.588 | 3.77 | 22400 | 0.3972 | 0.4799 |
| 0.5739 | 3.84 | 22800 | 0.4018 | 0.4790 |
| 0.5778 | 3.91 | 23200 | 0.3936 | 0.4750 |
| 0.5768 | 3.97 | 23600 | 0.3936 | 0.4751 |
| 0.5651 | 4.04 | 24000 | 0.3953 | 0.4706 |
| 0.5651 | 4.11 | 24400 | 0.3906 | 0.4659 |
| 0.5704 | 4.17 | 24800 | 0.3807 | 0.4557 |
| 0.5594 | 4.24 | 25200 | 0.3817 | 0.4610 |
| 0.5509 | 4.31 | 25600 | 0.3755 | 0.4553 |
| 0.5439 | 4.38 | 26000 | 0.3705 | 0.4471 |
| 0.5439 | 4.44 | 26400 | 0.3744 | 0.4487 |
| 0.5426 | 4.51 | 26800 | 0.3716 | 0.4483 |
| 0.5393 | 4.58 | 27200 | 0.3600 | 0.4356 |
| 0.5408 | 4.65 | 27600 | 0.3573 | 0.4307 |
| 0.5327 | 4.71 | 28000 | 0.3638 | 0.4382 |
| 0.5327 | 4.78 | 28400 | 0.3587 | 0.4316 |
| 0.5324 | 4.85 | 28800 | 0.3598 | 0.4290 |
| 0.5378 | 4.91 | 29200 | 0.3508 | 0.4243 |
| 0.5246 | 4.98 | 29600 | 0.3522 | 0.4260 |
| 0.5284 | 5.05 | 30000 | 0.3520 | 0.4268 |
| 0.5284 | 5.12 | 30400 | 0.3506 | 0.4224 |
| 0.5154 | 5.18 | 30800 | 0.3556 | 0.4223 |
| 0.5138 | 5.25 | 31200 | 0.3526 | 0.4276 |
| 0.51 | 5.32 | 31600 | 0.3440 | 0.4220 |
| 0.5065 | 5.39 | 32000 | 0.3367 | 0.4120 |
| 0.5065 | 5.45 | 32400 | 0.3406 | 0.4136 |
| 0.5087 | 5.52 | 32800 | 0.3370 | 0.4125 |
| 0.503 | 5.59 | 33200 | 0.3387 | 0.4134 |
| 0.5085 | 5.66 | 33600 | 0.3346 | 0.4068 |
| 0.5044 | 5.72 | 34000 | 0.3325 | 0.4057 |
| 0.5044 | 5.79 | 34400 | 0.3304 | 0.4026 |
| 0.4879 | 5.86 | 34800 | 0.3274 | 0.4002 |
| 0.4924 | 5.92 | 35200 | 0.3286 | 0.3980 |
| 0.4991 | 5.99 | 35600 | 0.3231 | 0.3952 |
| 0.487 | 6.06 | 36000 | 0.3324 | 0.4005 |
| 0.487 | 6.13 | 36400 | 0.3264 | 0.3952 |
| 0.4754 | 6.19 | 36800 | 0.3234 | 0.3905 |
| 0.4683 | 6.26 | 37200 | 0.3149 | 0.3840 |
| 0.4653 | 6.33 | 37600 | 0.3122 | 0.3824 |
| 0.4667 | 6.4 | 38000 | 0.3151 | 0.3855 |
| 0.4667 | 6.46 | 38400 | 0.3217 | 0.3859 |
| 0.4628 | 6.53 | 38800 | 0.3085 | 0.3831 |
| 0.4644 | 6.6 | 39200 | 0.3121 | 0.3791 |
| 0.4612 | 6.67 | 39600 | 0.3093 | 0.3790 |
| 0.4552 | 6.73 | 40000 | 0.3087 | 0.3749 |
| 0.4552 | 6.8 | 40400 | 0.3027 | 0.3679 |
| 0.4544 | 6.87 | 40800 | 0.3048 | 0.3672 |
| 0.4507 | 6.93 | 41200 | 0.2963 | 0.3614 |
| 0.4489 | 7.0 | 41600 | 0.3086 | 0.3718 |
| 0.4367 | 7.07 | 42000 | 0.3100 | 0.3754 |
| 0.4367 | 7.14 | 42400 | 0.3057 | 0.3701 |
| 0.4376 | 7.2 | 42800 | 0.2930 | 0.3614 |
| 0.428 | 7.27 | 43200 | 0.2907 | 0.3516 |
| 0.4241 | 7.34 | 43600 | 0.2916 | 0.3590 |
| 0.4312 | 7.41 | 44000 | 0.2904 | 0.3523 |
| 0.4312 | 7.47 | 44400 | 0.2908 | 0.3476 |
| 0.4292 | 7.54 | 44800 | 0.2858 | 0.3467 |
| 0.426 | 7.61 | 45200 | 0.2864 | 0.3484 |
| 0.4225 | 7.68 | 45600 | 0.2820 | 0.3441 |
| 0.422 | 7.74 | 46000 | 0.2834 | 0.3441 |
| 0.422 | 7.81 | 46400 | 0.2784 | 0.3420 |
| 0.4158 | 7.88 | 46800 | 0.2814 | 0.3390 |
| 0.4139 | 7.94 | 47200 | 0.2777 | 0.3384 |
| 0.4076 | 8.01 | 47600 | 0.2741 | 0.3381 |
| 0.3997 | 8.08 | 48000 | 0.2738 | 0.3320 |
| 0.3997 | 8.15 | 48400 | 0.2720 | 0.3303 |
| 0.4009 | 8.21 | 48800 | 0.2705 | 0.3357 |
| 0.3928 | 8.28 | 49200 | 0.2708 | 0.3265 |
| 0.3923 | 8.35 | 49600 | 0.2678 | 0.3283 |
| 0.3897 | 8.42 | 50000 | 0.2649 | 0.3241 |
| 0.3897 | 8.48 | 50400 | 0.2640 | 0.3218 |
| 0.3879 | 8.55 | 50800 | 0.2616 | 0.3197 |
| 0.3805 | 8.62 | 51200 | 0.2599 | 0.3170 |
| 0.3874 | 8.69 | 51600 | 0.2592 | 0.3168 |
| 0.3799 | 8.75 | 52000 | 0.2589 | 0.3157 |
| 0.3799 | 8.82 | 52400 | 0.2566 | 0.3137 |
| 0.3834 | 8.89 | 52800 | 0.2552 | 0.3141 |
| 0.3811 | 8.95 | 53200 | 0.2523 | 0.3108 |
| 0.3821 | 9.02 | 53600 | 0.2539 | 0.3112 |
| 0.3636 | 9.09 | 54000 | 0.2529 | 0.3070 |
| 0.3636 | 9.16 | 54400 | 0.2500 | 0.3078 |
| 0.3706 | 9.22 | 54800 | 0.2510 | 0.3067 |
| 0.367 | 9.29 | 55200 | 0.2497 | 0.3069 |
| 0.3618 | 9.36 | 55600 | 0.2493 | 0.3043 |
| 0.3624 | 9.43 | 56000 | 0.2491 | 0.3040 |
| 0.3624 | 9.49 | 56400 | 0.2466 | 0.3016 |
| 0.3557 | 9.56 | 56800 | 0.2460 | 0.3014 |
| 0.3536 | 9.63 | 57200 | 0.2470 | 0.2997 |
| 0.3584 | 9.7 | 57600 | 0.2441 | 0.2989 |
| 0.3563 | 9.76 | 58000 | 0.2442 | 0.2970 |
| 0.3563 | 9.83 | 58400 | 0.2436 | 0.2966 |
| 0.3492 | 9.9 | 58800 | 0.2431 | 0.2967 |
| 0.3483 | 9.96 | 59200 | 0.2428 | 0.2960 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"language": ["it"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "XLS-R-1b - Italian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "it"}, "metrics": [{"type": "wer", "value": 32.74, "name": "Test WER"}, {"type": "cer", "value": 7.83, "name": "Test CER"}, {"type": "wer", "value": 19.55, "name": "Test WER (+LM)"}, {"type": "cer", "value": 5.59, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "it"}, "metrics": [{"type": "wer", "value": 43.23, "name": "Test WER"}, {"type": "cer", "value": 13.37, "name": "Test CER"}, {"type": "wer", "value": 27.51, "name": "Test WER (+LM)"}, {"type": "cer", "value": 10.69, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "it"}, "metrics": [{"type": "wer", "value": 51.12, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
dbdmg/wav2vec2-xls-r-1b-italian-robust
|
[
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"hf-asr-leaderboard",
"robust-speech-event",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"it"
] |
TAGS
#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
|
wav2vec2-xls-r-1b-italian-robust
================================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the Common Voice 7 & Libri Speech datasets.
It achieves the following results on the evaluation set:
* Loss: 0.2428
* Wer: 0.2960
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 32
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 10.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.2+cu102
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
104,
132,
4,
38
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.12272118031978607,
0.11886751651763916,
-0.004848872311413288,
0.040806639939546585,
0.08245497941970825,
0.006370495073497295,
0.10950670391321182,
0.14687193930149078,
-0.06350554525852203,
0.11850614845752716,
0.09447558969259262,
0.08001764118671417,
0.07902785390615463,
0.15786701440811157,
-0.03732038661837578,
-0.24722595512866974,
0.047483354806900024,
-0.017674831673502922,
-0.04984758421778679,
0.09686366468667984,
0.08507569879293442,
-0.11102721840143204,
0.0315840058028698,
0.01508054044097662,
-0.08276671916246414,
0.0022178138606250286,
-0.03932376578450203,
-0.07154390960931778,
0.09196516126394272,
0.02916870452463627,
0.05387752503156662,
0.03547753393650055,
0.06759130954742432,
-0.2585528790950775,
0.01175007689744234,
0.054156385362148285,
0.023270420730113983,
0.05746648833155632,
0.10492195188999176,
-0.010320527479052544,
0.08386533707380295,
-0.08649271726608276,
0.05169077217578888,
0.05278401076793671,
-0.0876258835196495,
-0.2882218658924103,
-0.08796002715826035,
0.061704982072114944,
0.11027781665325165,
0.07766805589199066,
-0.03819233924150467,
0.0906376764178276,
-0.06696850061416626,
0.09090523421764374,
0.22376401722431183,
-0.23924146592617035,
-0.053113363683223724,
-0.04999549686908722,
0.03878064826130867,
0.039597611874341965,
-0.10161391645669937,
-0.020169522613286972,
0.020830975845456123,
0.032284557819366455,
0.09799030423164368,
0.0014736407902091742,
-0.009956743568181992,
-0.020708637312054634,
-0.14962296187877655,
-0.05181415379047394,
0.13969296216964722,
0.0743120014667511,
-0.027717435732483864,
-0.118028424680233,
-0.04732133448123932,
-0.14496929943561554,
-0.05202160403132439,
-0.004016652703285217,
0.03200806304812431,
-0.03503800183534622,
-0.04508179426193237,
0.022514870390295982,
-0.06445497274398804,
-0.06427039206027985,
0.022735632956027985,
0.17866189777851105,
0.060441188514232635,
-0.029791420325636864,
-0.003974883817136288,
0.07771206647157669,
0.04284123331308365,
-0.153995543718338,
-0.028628986328840256,
0.035300418734550476,
-0.06827651709318161,
-0.007099662907421589,
-0.011905478313565254,
-0.011377609334886074,
0.06865600496530533,
0.1448933631181717,
-0.05536724254488945,
0.09935438632965088,
0.011089080944657326,
0.011847699992358685,
-0.07484368234872818,
0.15195289254188538,
-0.05079915001988411,
-0.042157478630542755,
-0.014905080199241638,
0.12208642810583115,
0.03289622813463211,
-0.006793788634240627,
-0.06605805456638336,
0.025306880474090576,
0.11387994140386581,
0.05808825418353081,
-0.012293422594666481,
0.026058819144964218,
-0.06340435892343521,
-0.012084584683179855,
0.00946485623717308,
-0.12754276394844055,
0.041631124913692474,
0.06172557547688484,
-0.04865098372101784,
0.0019795014522969723,
0.0051211887039244175,
0.01222413219511509,
-0.03801954910159111,
0.08685431629419327,
-0.04173940047621727,
0.0008908792515285313,
-0.05149863660335541,
-0.09684230387210846,
0.03848285600543022,
-0.04515329748392105,
-0.014372510835528374,
-0.09801717847585678,
-0.08983036875724792,
-0.05031922087073326,
0.021307576447725296,
-0.03740816190838814,
-0.04820952191948891,
-0.08083892613649368,
-0.08044014871120453,
0.05517946928739548,
-0.026438245549798012,
0.11078981310129166,
-0.06678687036037445,
0.08047264069318771,
0.029246721416711807,
0.05649750679731369,
0.050608254969120026,
0.05466948449611664,
-0.0338197723031044,
0.050278130918741226,
-0.12342792004346848,
0.09728383272886276,
-0.10740813612937927,
0.03178545460104942,
-0.12669138610363007,
-0.08676949143409729,
-0.017902841791510582,
0.002101259771734476,
0.10263321548700333,
0.13989725708961487,
-0.16472609341144562,
-0.0923142209649086,
0.18704845011234283,
-0.06982267647981644,
-0.0902407094836235,
0.14510990679264069,
-0.010152251459658146,
-0.051142480224370956,
0.045124080032110214,
0.19944992661476135,
0.08613649755716324,
-0.10884058475494385,
-0.0318896509706974,
-0.05067695677280426,
0.09542436897754669,
0.04469286650419235,
0.08137375861406326,
-0.060999516397714615,
0.034550007432699203,
0.00121123599819839,
-0.01363768894225359,
0.055356115102767944,
-0.07431304454803467,
-0.07348239421844482,
-0.03565051034092903,
-0.07185520231723785,
0.01452868152409792,
0.028345828875899315,
0.018262336030602455,
-0.09905926883220673,
-0.12761716544628143,
-0.003122462658211589,
0.11230411380529404,
-0.09386716037988663,
0.03270667791366577,
-0.08752714097499847,
0.08164617419242859,
-0.013527056202292442,
0.003165776375681162,
-0.14877453446388245,
-0.004320559091866016,
0.046288568526506424,
-0.0723777711391449,
0.015295468270778656,
-0.05373607203364372,
0.07434741407632828,
0.055118996649980545,
-0.025515535846352577,
-0.08099948614835739,
-0.03411361202597618,
0.008303061127662659,
-0.06652792543172836,
-0.21485410630702972,
-0.05532236024737358,
-0.030364690348505974,
0.16749607026576996,
-0.18129593133926392,
0.010974856093525887,
0.05232691019773483,
0.14741425216197968,
0.02276470512151718,
-0.040066469460725784,
0.0260405745357275,
0.05972715839743614,
-0.016339488327503204,
-0.06878280639648438,
0.02053167298436165,
-0.0027907767798751593,
-0.11651349812746048,
0.027976686134934425,
-0.16568538546562195,
0.08300571143627167,
0.11046209931373596,
0.024166442453861237,
-0.06048569828271866,
-0.020630238577723503,
-0.05158796161413193,
-0.0465785413980484,
-0.02670389972627163,
-0.019015364348888397,
0.16591045260429382,
0.012010560370981693,
0.1134849563241005,
-0.07534171640872955,
-0.043745554983615875,
0.027318991720676422,
0.008950726129114628,
-0.025056084617972374,
0.14045514166355133,
0.03381362557411194,
-0.05275096371769905,
0.09899865835905075,
0.07684607058763504,
-0.05410314351320267,
0.14355632662773132,
-0.0703916847705841,
-0.07836705446243286,
-0.028042014688253403,
0.036908358335494995,
0.019422052428126335,
0.09071245044469833,
-0.14477451145648956,
-0.01836966536939144,
0.02729754149913788,
0.021799717098474503,
0.019384993240237236,
-0.18542662262916565,
0.02025511860847473,
0.03518592193722725,
-0.09103810787200928,
0.003960253670811653,
0.01273096539080143,
0.008581663481891155,
0.08468896895647049,
-0.00039216066943481565,
-0.07448367029428482,
-0.014735614880919456,
-0.02596798725426197,
-0.09111126512289047,
0.16396482288837433,
-0.11273332685232162,
-0.1513805389404297,
-0.1041969433426857,
-0.014866280369460583,
-0.02524488978087902,
-0.014097105711698532,
0.06904231011867523,
-0.09949187934398651,
-0.0513886995613575,
-0.0799136757850647,
0.017960678786039352,
-0.027653411030769348,
0.027008522301912308,
0.033376775681972504,
-0.027133209630846977,
0.07597294449806213,
-0.11364729702472687,
-0.003946202341467142,
-0.013250714167952538,
-0.007714877836406231,
0.010656081140041351,
0.034308116883039474,
0.08394154161214828,
0.13569369912147522,
0.045730967074632645,
0.034761808812618256,
-0.03868846222758293,
0.19386599957942963,
-0.0991584062576294,
-0.013361932709813118,
0.10581234842538834,
-0.005502498708665371,
0.05480989068746567,
0.13855032622814178,
0.03780090808868408,
-0.07639563083648682,
0.00042226037476211786,
0.022459419444203377,
-0.0054617407731711864,
-0.22817771136760712,
-0.03981667757034302,
-0.06299933791160583,
-0.02329850010573864,
0.08467304706573486,
0.048376940190792084,
-0.008175239898264408,
0.0203067846596241,
-0.04123981297016144,
-0.015472604893147945,
0.025277769193053246,
0.06304659694433212,
0.09752298891544342,
0.04445905610918999,
0.10489039123058319,
-0.02251512184739113,
-0.04113395884633064,
0.03923583775758743,
-0.02454465441405773,
0.2084898203611374,
0.016352223232388496,
0.16936607658863068,
0.05035574361681938,
0.16085045039653778,
0.005336947739124298,
0.030955396592617035,
0.0207632128149271,
0.009885956533253193,
0.027654502540826797,
-0.06890245527029037,
-0.0219664815813303,
0.038782503455877304,
0.10332357883453369,
0.03527786210179329,
-0.099259153008461,
0.0022068102844059467,
0.04013381898403168,
0.3413439393043518,
0.0653509572148323,
-0.2889881730079651,
-0.06384208053350449,
0.020940901711583138,
-0.07375987619161606,
-0.03480517491698265,
0.026688065379858017,
0.11576639115810394,
-0.08259285986423492,
0.09427939355373383,
-0.04120337963104248,
0.0797714963555336,
-0.055708032101392746,
0.004834793042391539,
0.028973422944545746,
0.1131715476512909,
0.003439068328589201,
0.04013650864362717,
-0.2514226734638214,
0.25870659947395325,
0.0049138362519443035,
0.08847307413816452,
-0.04210767522454262,
0.03973541781306267,
0.05321507528424263,
-0.01993284747004509,
0.07135652750730515,
-0.013074141927063465,
-0.11695297807455063,
-0.16684921085834503,
-0.11314205080270767,
0.016628345474600792,
0.11877036839723587,
-0.03237249329686165,
0.11378365755081177,
-0.01790141500532627,
-0.039272163063287735,
0.037469346076250076,
-0.03385896608233452,
-0.14440999925136566,
-0.0875728502869606,
0.028439804911613464,
0.09787580370903015,
0.06563684344291687,
-0.09031260758638382,
-0.10245635360479355,
-0.09485647827386856,
0.11727717518806458,
-0.11549150198698044,
-0.03235025703907013,
-0.11814278364181519,
0.020261654630303383,
0.13926035165786743,
-0.07490406185388565,
0.04555631801486015,
0.011552024632692337,
0.12376286834478378,
0.010573177598416805,
-0.03499314561486244,
0.10835663229227066,
-0.08521474152803421,
-0.2018132209777832,
-0.04056749865412712,
0.18300269544124603,
0.03339304402470589,
0.05893029645085335,
-0.012346532195806503,
0.03663771227002144,
-0.014995193108916283,
-0.06408966332674026,
0.079005666077137,
0.07365769147872925,
0.013006002642214298,
0.07308303564786911,
-0.021564653143286705,
-0.06950106471776962,
-0.07861144095659256,
-0.04647677391767502,
0.13398098945617676,
0.28357747197151184,
-0.0785508081316948,
0.054172638803720474,
0.050508204847574234,
-0.05631742998957634,
-0.14583218097686768,
-0.029207199811935425,
0.1111212819814682,
0.034105971455574036,
-0.014527499675750732,
-0.17907315492630005,
0.015781957656145096,
0.07037904113531113,
-0.024826934561133385,
0.08932168036699295,
-0.30478954315185547,
-0.1458926647901535,
0.12656907737255096,
0.0668826475739479,
0.0009529426461085677,
-0.16111986339092255,
-0.06728086620569229,
-0.020732788369059563,
-0.08236654102802277,
0.046135302633047104,
-0.06238485127687454,
0.12669461965560913,
-0.004320202395319939,
0.04274632781744003,
0.01503764744848013,
-0.04287968948483467,
0.14959628880023956,
0.0044036745093762875,
0.04180610552430153,
-0.022257862612605095,
0.03183796629309654,
-0.02051517553627491,
-0.07159316539764404,
0.04369168356060982,
-0.10127157717943192,
0.022015802562236786,
-0.12258875370025635,
-0.02115636132657528,
-0.07659860700368881,
0.03236200287938118,
-0.028562096878886223,
-0.005648866295814514,
-0.024100862443447113,
0.01655730977654457,
0.07628017663955688,
0.01112405490130186,
0.11620739847421646,
-0.04580384120345116,
0.13758079707622528,
0.13108637928962708,
0.10993678122758865,
-0.0114795733243227,
-0.09591962397098541,
-0.013521315529942513,
-0.02473043091595173,
0.04641326144337654,
-0.08033738285303116,
0.03785346448421478,
0.12419697642326355,
0.031509868800640106,
0.14755749702453613,
0.04370402172207832,
-0.10422614961862564,
0.017427071928977966,
0.05115019902586937,
-0.10297617316246033,
-0.1600712090730667,
-0.011870253831148148,
0.03257039189338684,
-0.11850950866937637,
0.011790908873081207,
0.12112899869680405,
-0.04662535339593887,
-0.011756961233913898,
0.001391936675645411,
0.042908962815999985,
-0.030049538239836693,
0.21560637652873993,
0.033970534801483154,
0.07556622475385666,
-0.10118447989225388,
0.0846409723162651,
0.0450734905898571,
-0.09857618808746338,
0.06466906517744064,
0.10183361172676086,
-0.051014918833971024,
-0.021416524425148964,
0.03166479989886284,
0.11505547910928726,
0.057335712015628815,
-0.07640806585550308,
-0.11434180289506912,
-0.1571289747953415,
0.0894237756729126,
0.11718493700027466,
0.02799992822110653,
0.02328694798052311,
-0.014347796328365803,
0.032163143157958984,
-0.07711255550384521,
0.10566481947898865,
0.09283474832773209,
0.06486198306083679,
-0.12952351570129395,
0.12482289224863052,
0.013667719438672066,
-0.002003063214942813,
-0.0014046563301235437,
-0.010395842604339123,
-0.10619813948869705,
0.016114046797156334,
-0.13953331112861633,
0.018805067986249924,
-0.05818861722946167,
-0.0016715280944481492,
0.01141473650932312,
-0.05854557454586029,
-0.05527777597308159,
0.037226539105176926,
-0.1012391448020935,
-0.048575226217508316,
-0.02086043544113636,
0.06774934381246567,
-0.11523465067148209,
-0.028820347040891647,
0.01427959930151701,
-0.12343885004520416,
0.09277845919132233,
0.07335682213306427,
-0.007934138178825378,
0.018471602350473404,
-0.11181174218654633,
-0.025540791451931,
0.04920105263590813,
0.0043017626740038395,
0.024391626939177513,
-0.17458659410476685,
-0.017363883554935455,
-0.011029025539755821,
0.012574967928230762,
-0.008953499607741833,
0.05384017527103424,
-0.10405560582876205,
-0.02017083950340748,
-0.038269832730293274,
-0.04070734232664108,
-0.04684637486934662,
0.046503011137247086,
0.08268260955810547,
0.010223928838968277,
0.16541622579097748,
-0.10033018887042999,
0.05181768536567688,
-0.21112817525863647,
0.006140079349279404,
-0.026477430015802383,
-0.08549066632986069,
-0.08051598072052002,
-0.013792484998703003,
0.09976689517498016,
-0.05636224523186684,
0.08990288525819778,
-0.05392764136195183,
0.02637748420238495,
0.031006861478090286,
-0.08631505817174911,
0.002712524961680174,
0.04169420525431633,
0.1582356095314026,
0.03697824478149414,
-0.03123345412313938,
0.0587507039308548,
-0.030225001275539398,
0.07958611845970154,
0.08555429428815842,
0.14292681217193604,
0.16065613925457,
0.05784764140844345,
0.10316845029592514,
0.08617101609706879,
-0.10975954681634903,
-0.11940041929483414,
0.08838707953691483,
-0.06558443605899811,
0.13585205376148224,
-0.023954860866069794,
0.20095480978488922,
0.09548147767782211,
-0.173706516623497,
0.05540658161044121,
-0.03838684782385826,
-0.07407884299755096,
-0.11488120257854462,
-0.06388707458972931,
-0.08824603259563446,
-0.16290166974067688,
0.008900458924472332,
-0.09545828402042389,
0.05824972689151764,
0.04198585823178291,
0.0417761355638504,
0.026360180228948593,
0.12545505166053772,
0.047092895954847336,
-0.006161279510706663,
0.11194994300603867,
-0.003154696663841605,
-0.023773064836859703,
-0.05012154579162598,
-0.11564448475837708,
0.062299005687236786,
-0.02111257053911686,
0.06370647251605988,
-0.02333793044090271,
-0.08799032121896744,
0.06318389624357224,
-0.011780554428696632,
-0.10373857617378235,
0.03600534051656723,
-0.010817951522767544,
0.062470048666000366,
0.08299148082733154,
0.04922188073396683,
-0.023371564224362373,
-0.004106602631509304,
0.17558205127716064,
-0.08256322145462036,
-0.0639844536781311,
-0.10981899499893188,
0.17937453091144562,
0.0037107833195477724,
-0.005516619421541691,
0.0307480301707983,
-0.08056287467479706,
-0.01743323914706707,
0.14943528175354004,
0.13216634094715118,
-0.010147178545594215,
0.0016567223938181996,
-0.009281868115067482,
-0.012804429978132248,
-0.027333253994584084,
0.06702413409948349,
0.12701503932476044,
0.0503387488424778,
-0.033168572932481766,
-0.00475101824849844,
-0.03176985681056976,
-0.05045439675450325,
-0.05615795776247978,
0.06838271021842957,
-0.005149839911609888,
-0.02133185975253582,
-0.02017919160425663,
0.08896055817604065,
-0.050160884857177734,
-0.13200132548809052,
0.004021646920591593,
-0.17262013256549835,
-0.16796496510505676,
-0.027061475440859795,
0.07660949230194092,
0.05956028401851654,
0.036735549569129944,
-0.002772877924144268,
-0.02866949327290058,
0.11529909074306488,
-0.004183503333479166,
-0.04763033613562584,
-0.09885866194963455,
0.06562379747629166,
-0.14099200069904327,
0.18103237450122833,
-0.027325613424181938,
0.05673862621188164,
0.11408841609954834,
0.061203207820653915,
-0.0881246030330658,
0.05856388807296753,
0.07083644717931747,
-0.12081767618656158,
0.04682279750704765,
0.17250466346740723,
-0.04280488193035126,
0.12857051193714142,
0.04368741065263748,
-0.0926937535405159,
0.010451259091496468,
-0.04277796670794487,
-0.05703968182206154,
-0.05895159766077995,
0.0015770839527249336,
-0.049696654081344604,
0.13122358918190002,
0.1718735545873642,
-0.06993237137794495,
-0.017303016036748886,
-0.03835141286253929,
0.014409778639674187,
0.0318729467689991,
0.08611524105072021,
-0.036504682153463364,
-0.2688251733779907,
0.02925429679453373,
-0.002236556261777878,
0.03423256054520607,
-0.22574616968631744,
-0.09607309103012085,
-0.003321840660646558,
-0.04391491040587425,
-0.07316876947879791,
0.10378778725862503,
0.06971482187509537,
0.04366421326994896,
-0.056728024035692215,
-0.0958230048418045,
-0.02311529777944088,
0.1824297308921814,
-0.1625215709209442,
-0.053030434995889664
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-italian-robust
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the Italian splits of the following datasets:
- Mozilla Foundation Common Voice V7 dataset
- [LibriSpeech multilingual](http://www.openslr.org/94)
- [TED multilingual](https://www.openslr.org/100/)
- [Voxforge](http://www.voxforge.org/it/Downloads)
- [M-AILABS Speech Dataset](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/)
- [EuroParl-ST](https://www.mllp.upv.es/europarl-st/)
- [EMOVO](http://voice.fub.it/activities/corpora/emovo/index.html)
- [MSPKA](http://www.mspkacorpus.it/)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log | 0.06 | 400 | 0.7508 | 0.7354 |
| 2.3127 | 0.11 | 800 | 0.5888 | 0.5882 |
| 0.7256 | 0.17 | 1200 | 0.5121 | 0.5247 |
| 0.6692 | 0.22 | 1600 | 0.4774 | 0.5028 |
| 0.6384 | 0.28 | 2000 | 0.4832 | 0.4885 |
| 0.6384 | 0.33 | 2400 | 0.4410 | 0.4581 |
| 0.6199 | 0.39 | 2800 | 0.4160 | 0.4331 |
| 0.5972 | 0.44 | 3200 | 0.4136 | 0.4275 |
| 0.6048 | 0.5 | 3600 | 0.4362 | 0.4538 |
| 0.5627 | 0.55 | 4000 | 0.4313 | 0.4469 |
| 0.5627 | 0.61 | 4400 | 0.4425 | 0.4579 |
| 0.5855 | 0.66 | 4800 | 0.3859 | 0.4133 |
| 0.5702 | 0.72 | 5200 | 0.3974 | 0.4097 |
| 0.55 | 0.77 | 5600 | 0.3931 | 0.4134 |
| 0.5624 | 0.83 | 6000 | 0.3900 | 0.4126 |
| 0.5624 | 0.88 | 6400 | 0.3622 | 0.3899 |
| 0.5615 | 0.94 | 6800 | 0.3755 | 0.4067 |
| 0.5472 | 0.99 | 7200 | 0.3980 | 0.4284 |
| 0.5663 | 1.05 | 7600 | 0.3553 | 0.3782 |
| 0.5189 | 1.1 | 8000 | 0.3538 | 0.3726 |
| 0.5189 | 1.16 | 8400 | 0.3425 | 0.3624 |
| 0.518 | 1.21 | 8800 | 0.3431 | 0.3651 |
| 0.5399 | 1.27 | 9200 | 0.3442 | 0.3573 |
| 0.5303 | 1.32 | 9600 | 0.3241 | 0.3404 |
| 0.5043 | 1.38 | 10000 | 0.3175 | 0.3378 |
| 0.5043 | 1.43 | 10400 | 0.3265 | 0.3501 |
| 0.4968 | 1.49 | 10800 | 0.3539 | 0.3703 |
| 0.5102 | 1.54 | 11200 | 0.3323 | 0.3506 |
| 0.5008 | 1.6 | 11600 | 0.3188 | 0.3433 |
| 0.4996 | 1.65 | 12000 | 0.3162 | 0.3388 |
| 0.4996 | 1.71 | 12400 | 0.3353 | 0.3552 |
| 0.5007 | 1.76 | 12800 | 0.3152 | 0.3317 |
| 0.4956 | 1.82 | 13200 | 0.3207 | 0.3430 |
| 0.5205 | 1.87 | 13600 | 0.3239 | 0.3430 |
| 0.4829 | 1.93 | 14000 | 0.3134 | 0.3266 |
| 0.4829 | 1.98 | 14400 | 0.3039 | 0.3291 |
| 0.5251 | 2.04 | 14800 | 0.2944 | 0.3169 |
| 0.4872 | 2.09 | 15200 | 0.3061 | 0.3228 |
| 0.4805 | 2.15 | 15600 | 0.3034 | 0.3152 |
| 0.4949 | 2.2 | 16000 | 0.2896 | 0.3066 |
| 0.4949 | 2.26 | 16400 | 0.3059 | 0.3344 |
| 0.468 | 2.31 | 16800 | 0.2932 | 0.3111 |
| 0.4637 | 2.37 | 17200 | 0.2890 | 0.3074 |
| 0.4638 | 2.42 | 17600 | 0.2893 | 0.3112 |
| 0.4728 | 2.48 | 18000 | 0.2832 | 0.3013 |
| 0.4728 | 2.54 | 18400 | 0.2921 | 0.3065 |
| 0.456 | 2.59 | 18800 | 0.2961 | 0.3104 |
| 0.4628 | 2.65 | 19200 | 0.2886 | 0.3109 |
| 0.4534 | 2.7 | 19600 | 0.2828 | 0.3020 |
| 0.4578 | 2.76 | 20000 | 0.2805 | 0.3026 |
| 0.4578 | 2.81 | 20400 | 0.2796 | 0.2987 |
| 0.4702 | 2.87 | 20800 | 0.2748 | 0.2906 |
| 0.4487 | 2.92 | 21200 | 0.2819 | 0.3008 |
| 0.4411 | 2.98 | 21600 | 0.2722 | 0.2868 |
| 0.4631 | 3.03 | 22000 | 0.2814 | 0.2974 |
| 0.4631 | 3.09 | 22400 | 0.2762 | 0.2894 |
| 0.4591 | 3.14 | 22800 | 0.2802 | 0.2980 |
| 0.4349 | 3.2 | 23200 | 0.2748 | 0.2951 |
| 0.4339 | 3.25 | 23600 | 0.2792 | 0.2927 |
| 0.4254 | 3.31 | 24000 | 0.2712 | 0.2911 |
| 0.4254 | 3.36 | 24400 | 0.2719 | 0.2892 |
| 0.4317 | 3.42 | 24800 | 0.2686 | 0.2861 |
| 0.4282 | 3.47 | 25200 | 0.2632 | 0.2861 |
| 0.4262 | 3.53 | 25600 | 0.2633 | 0.2817 |
| 0.4162 | 3.58 | 26000 | 0.2561 | 0.2765 |
| 0.4162 | 3.64 | 26400 | 0.2613 | 0.2847 |
| 0.414 | 3.69 | 26800 | 0.2679 | 0.2824 |
| 0.4132 | 3.75 | 27200 | 0.2569 | 0.2813 |
| 0.405 | 3.8 | 27600 | 0.2589 | 0.2785 |
| 0.4128 | 3.86 | 28000 | 0.2611 | 0.2714 |
| 0.4128 | 3.91 | 28400 | 0.2548 | 0.2731 |
| 0.4174 | 3.97 | 28800 | 0.2574 | 0.2716 |
| 0.421 | 4.02 | 29200 | 0.2529 | 0.2700 |
| 0.4109 | 4.08 | 29600 | 0.2547 | 0.2682 |
| 0.4027 | 4.13 | 30000 | 0.2578 | 0.2758 |
| 0.4027 | 4.19 | 30400 | 0.2511 | 0.2715 |
| 0.4075 | 4.24 | 30800 | 0.2507 | 0.2601 |
| 0.3947 | 4.3 | 31200 | 0.2552 | 0.2711 |
| 0.4042 | 4.35 | 31600 | 0.2530 | 0.2695 |
| 0.3907 | 4.41 | 32000 | 0.2543 | 0.2738 |
| 0.3907 | 4.46 | 32400 | 0.2491 | 0.2629 |
| 0.3895 | 4.52 | 32800 | 0.2471 | 0.2611 |
| 0.3901 | 4.57 | 33200 | 0.2404 | 0.2559 |
| 0.3818 | 4.63 | 33600 | 0.2378 | 0.2583 |
| 0.3831 | 4.68 | 34000 | 0.2341 | 0.2499 |
| 0.3831 | 4.74 | 34400 | 0.2379 | 0.2560 |
| 0.3808 | 4.79 | 34800 | 0.2418 | 0.2553 |
| 0.4015 | 4.85 | 35200 | 0.2378 | 0.2565 |
| 0.407 | 4.9 | 35600 | 0.2375 | 0.2535 |
| 0.38 | 4.96 | 36000 | 0.2329 | 0.2451 |
| 0.38 | 5.02 | 36400 | 0.2541 | 0.2737 |
| 0.3753 | 5.07 | 36800 | 0.2475 | 0.2580 |
| 0.3701 | 5.13 | 37200 | 0.2356 | 0.2484 |
| 0.3627 | 5.18 | 37600 | 0.2422 | 0.2552 |
| 0.3652 | 5.24 | 38000 | 0.2353 | 0.2518 |
| 0.3652 | 5.29 | 38400 | 0.2328 | 0.2452 |
| 0.3667 | 5.35 | 38800 | 0.2358 | 0.2478 |
| 0.3711 | 5.4 | 39200 | 0.2340 | 0.2463 |
| 0.361 | 5.46 | 39600 | 0.2375 | 0.2452 |
| 0.3655 | 5.51 | 40000 | 0.2292 | 0.2387 |
| 0.3655 | 5.57 | 40400 | 0.2330 | 0.2432 |
| 0.3637 | 5.62 | 40800 | 0.2242 | 0.2396 |
| 0.3516 | 5.68 | 41200 | 0.2284 | 0.2394 |
| 0.3498 | 5.73 | 41600 | 0.2254 | 0.2343 |
| 0.3626 | 5.79 | 42000 | 0.2191 | 0.2318 |
| 0.3626 | 5.84 | 42400 | 0.2261 | 0.2399 |
| 0.3719 | 5.9 | 42800 | 0.2261 | 0.2411 |
| 0.3563 | 5.95 | 43200 | 0.2259 | 0.2416 |
| 0.3574 | 6.01 | 43600 | 0.2148 | 0.2249 |
| 0.3339 | 6.06 | 44000 | 0.2173 | 0.2237 |
| 0.3339 | 6.12 | 44400 | 0.2133 | 0.2238 |
| 0.3303 | 6.17 | 44800 | 0.2193 | 0.2297 |
| 0.331 | 6.23 | 45200 | 0.2122 | 0.2205 |
| 0.3372 | 6.28 | 45600 | 0.2083 | 0.2215 |
| 0.3427 | 6.34 | 46000 | 0.2079 | 0.2163 |
| 0.3427 | 6.39 | 46400 | 0.2072 | 0.2154 |
| 0.3215 | 6.45 | 46800 | 0.2067 | 0.2170 |
| 0.3246 | 6.5 | 47200 | 0.2089 | 0.2183 |
| 0.3217 | 6.56 | 47600 | 0.2030 | 0.2130 |
| 0.3309 | 6.61 | 48000 | 0.2020 | 0.2123 |
| 0.3309 | 6.67 | 48400 | 0.2054 | 0.2133 |
| 0.3343 | 6.72 | 48800 | 0.2013 | 0.2128 |
| 0.3213 | 6.78 | 49200 | 0.1971 | 0.2064 |
| 0.3145 | 6.83 | 49600 | 0.2029 | 0.2107 |
| 0.3274 | 6.89 | 50000 | 0.2038 | 0.2136 |
| 0.3274 | 6.94 | 50400 | 0.1991 | 0.2064 |
| 0.3202 | 7.0 | 50800 | 0.1970 | 0.2083 |
| 0.314 | 7.05 | 51200 | 0.1970 | 0.2035 |
| 0.3031 | 7.11 | 51600 | 0.1943 | 0.2053 |
| 0.3004 | 7.16 | 52000 | 0.1942 | 0.1985 |
| 0.3004 | 7.22 | 52400 | 0.1941 | 0.2003 |
| 0.3029 | 7.27 | 52800 | 0.1936 | 0.2008 |
| 0.2915 | 7.33 | 53200 | 0.1935 | 0.1995 |
| 0.3005 | 7.38 | 53600 | 0.1943 | 0.2032 |
| 0.2984 | 7.44 | 54000 | 0.1913 | 0.1978 |
| 0.2984 | 7.5 | 54400 | 0.1907 | 0.1965 |
| 0.2978 | 7.55 | 54800 | 0.1881 | 0.1958 |
| 0.2944 | 7.61 | 55200 | 0.1887 | 0.1966 |
| 0.3004 | 7.66 | 55600 | 0.1870 | 0.1930 |
| 0.3099 | 7.72 | 56000 | 0.1906 | 0.1976 |
| 0.3099 | 7.77 | 56400 | 0.1856 | 0.1939 |
| 0.2917 | 7.83 | 56800 | 0.1883 | 0.1961 |
| 0.2924 | 7.88 | 57200 | 0.1864 | 0.1930 |
| 0.3061 | 7.94 | 57600 | 0.1831 | 0.1872 |
| 0.2834 | 7.99 | 58000 | 0.1835 | 0.1896 |
| 0.2834 | 8.05 | 58400 | 0.1828 | 0.1875 |
| 0.2807 | 8.1 | 58800 | 0.1820 | 0.1874 |
| 0.2765 | 8.16 | 59200 | 0.1807 | 0.1869 |
| 0.2737 | 8.21 | 59600 | 0.1810 | 0.1848 |
| 0.2722 | 8.27 | 60000 | 0.1795 | 0.1829 |
| 0.2722 | 8.32 | 60400 | 0.1785 | 0.1826 |
| 0.272 | 8.38 | 60800 | 0.1802 | 0.1836 |
| 0.268 | 8.43 | 61200 | 0.1771 | 0.1813 |
| 0.2695 | 8.49 | 61600 | 0.1773 | 0.1821 |
| 0.2686 | 8.54 | 62000 | 0.1756 | 0.1814 |
| 0.2686 | 8.6 | 62400 | 0.1740 | 0.1770 |
| 0.2687 | 8.65 | 62800 | 0.1748 | 0.1769 |
| 0.2686 | 8.71 | 63200 | 0.1734 | 0.1766 |
| 0.2683 | 8.76 | 63600 | 0.1722 | 0.1759 |
| 0.2686 | 8.82 | 64000 | 0.1719 | 0.1760 |
| 0.2686 | 8.87 | 64400 | 0.1720 | 0.1743 |
| 0.2626 | 8.93 | 64800 | 0.1696 | 0.1742 |
| 0.2587 | 8.98 | 65200 | 0.1690 | 0.1718 |
| 0.2554 | 9.04 | 65600 | 0.1704 | 0.1722 |
| 0.2537 | 9.09 | 66000 | 0.1702 | 0.1721 |
| 0.2537 | 9.15 | 66400 | 0.1696 | 0.1717 |
| 0.2511 | 9.2 | 66800 | 0.1685 | 0.1701 |
| 0.2473 | 9.26 | 67200 | 0.1696 | 0.1704 |
| 0.2458 | 9.31 | 67600 | 0.1686 | 0.1698 |
| 0.2476 | 9.37 | 68000 | 0.1675 | 0.1687 |
| 0.2476 | 9.42 | 68400 | 0.1659 | 0.1673 |
| 0.2463 | 9.48 | 68800 | 0.1664 | 0.1674 |
| 0.2481 | 9.53 | 69200 | 0.1661 | 0.1670 |
| 0.2411 | 9.59 | 69600 | 0.1658 | 0.1663 |
| 0.2445 | 9.64 | 70000 | 0.1652 | 0.1660 |
| 0.2445 | 9.7 | 70400 | 0.1646 | 0.1654 |
| 0.2407 | 9.75 | 70800 | 0.1646 | 0.1641 |
| 0.2483 | 9.81 | 71200 | 0.1641 | 0.1641 |
| 0.245 | 9.86 | 71600 | 0.1635 | 0.1643 |
| 0.2402 | 9.92 | 72000 | 0.1638 | 0.1634 |
| 0.2402 | 9.98 | 72400 | 0.1633 | 0.1636 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"language": "it", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "base_model": "facebook/wav2vec2-xls-r-300m", "model-index": [{"name": "XLS-R-300m - Italian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "it"}, "metrics": [{"type": "wer", "value": 17.17, "name": "Test WER"}, {"type": "cer", "value": 4.27, "name": "Test CER"}, {"type": "wer", "value": 12.07, "name": "Test WER (+LM)"}, {"type": "cer", "value": 3.52, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "it"}, "metrics": [{"type": "wer", "value": 24.29, "name": "Test WER"}, {"type": "cer", "value": 8.1, "name": "Test CER"}, {"type": "wer", "value": 17.36, "name": "Test WER (+LM)"}, {"type": "cer", "value": 7.94, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "it"}, "metrics": [{"type": "wer", "value": 33.66, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
dbdmg/wav2vec2-xls-r-300m-italian-robust
|
[
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"hf-asr-leaderboard",
"robust-speech-event",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"base_model:facebook/wav2vec2-xls-r-300m",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"it"
] |
TAGS
#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
|
wav2vec2-xls-r-300m-italian-robust
==================================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Italian splits of the following datasets:
* Mozilla Foundation Common Voice V7 dataset
* LibriSpeech multilingual
* TED multilingual
* Voxforge
* M-AILABS Speech Dataset
* EuroParl-ST
* EMOVO
* MSPKA
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 32
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 10.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.2+cu102
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
122,
131,
4,
38
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.14543800055980682,
0.12242511659860611,
-0.004257624503225088,
0.054878730326890945,
0.08122985810041428,
-0.0029518348164856434,
0.10045348107814789,
0.13618679344654083,
-0.03779617324471474,
0.0934678316116333,
0.10380598902702332,
0.02839316986501217,
0.0755639597773552,
0.1735486537218094,
-0.03539754077792168,
-0.24056562781333923,
0.034001126885414124,
-0.03836577758193016,
-0.08861494809389114,
0.11362164467573166,
0.06870102137327194,
-0.10470785200595856,
0.05035344511270523,
0.020442666485905647,
-0.06831631064414978,
0.0035611374769359827,
-0.02815104089677334,
-0.06730785965919495,
0.107990562915802,
0.012466245330870152,
0.04714209958910942,
0.0501319020986557,
0.09812995791435242,
-0.23931249976158142,
0.01631760410964489,
0.08895304054021835,
0.0020787527319043875,
0.06374980509281158,
0.09043007344007492,
-0.029065633192658424,
0.11958110332489014,
-0.07630573958158493,
0.0650271400809288,
0.05095919966697693,
-0.10661928355693817,
-0.26135489344596863,
-0.0663660541176796,
0.06978990882635117,
0.11049758642911911,
0.0900472104549408,
-0.03594250977039337,
0.0379876010119915,
-0.09615591913461685,
0.08644996583461761,
0.1981867104768753,
-0.21858850121498108,
-0.06226080283522606,
-0.05054742470383644,
0.01834241673350334,
0.03468620404601097,
-0.11242945492267609,
-0.029690826311707497,
0.021034130826592445,
0.026511795818805695,
0.10883200168609619,
0.00027703316300176084,
0.006712943781167269,
-0.020167391747236252,
-0.13839824497699738,
-0.051465000957250595,
0.09371175616979599,
0.07392178475856781,
-0.024986861273646355,
-0.10992351919412613,
-0.06028946489095688,
-0.126192107796669,
-0.04145009070634842,
-0.0018345913849771023,
0.007766803726553917,
-0.029001973569393158,
-0.049682796001434326,
0.030132001265883446,
-0.06202951446175575,
-0.07754180580377579,
0.0623062402009964,
0.1207556426525116,
0.03635459020733833,
-0.005277795717120171,
-0.016325296834111214,
0.10374196618795395,
0.0769658088684082,
-0.16681024432182312,
-0.003896995447576046,
0.0034958934411406517,
-0.08885253220796585,
0.012261263094842434,
-0.0032368688844144344,
0.030953597277402878,
0.05045643076300621,
0.11103343218564987,
-0.062039539217948914,
0.10520174354314804,
0.01677992381155491,
0.0004431474953889847,
-0.0696704238653183,
0.1258256584405899,
-0.0786137729883194,
-0.06374674290418625,
-0.021640224382281303,
0.14685781300067902,
-0.009595955722033978,
-0.013256700709462166,
-0.035058390349149704,
0.030630839988589287,
0.10055644810199738,
0.042976014316082,
-0.023154688999056816,
0.02987491711974144,
-0.05197932943701744,
-0.009515020996332169,
0.017945649102330208,
-0.12747547030448914,
0.027883898466825485,
0.07982180267572403,
-0.06106701120734215,
-0.04090100899338722,
0.009536606259644032,
-0.0005557523109018803,
-0.029844772070646286,
0.09692014008760452,
-0.04403400793671608,
-0.021044136956334114,
-0.058098968118429184,
-0.07947105914354324,
0.021942688152194023,
-0.06578697264194489,
-0.014453579671680927,
-0.07332202047109604,
-0.12080898135900497,
-0.06552397459745407,
0.050364650785923004,
-0.04039905220270157,
-0.03463645279407501,
-0.07188377529382706,
-0.08576171100139618,
0.04959500581026077,
-0.03228795900940895,
0.13415907323360443,
-0.07367277890443802,
0.08142386376857758,
-0.01089103240519762,
0.05881617218255997,
0.0880451500415802,
0.05575750395655632,
-0.0318821519613266,
0.05669533461332321,
-0.11215142905712128,
0.10926668345928192,
-0.11226814240217209,
0.01659727655351162,
-0.10715167969465256,
-0.10186496376991272,
-0.028543898835778236,
0.003702332964166999,
0.10041461884975433,
0.1511058807373047,
-0.2001124620437622,
-0.08980613201856613,
0.18564337491989136,
-0.08512471616268158,
-0.08017204701900482,
0.1302824765443802,
-0.03201447054743767,
-0.024613939225673676,
0.032705746591091156,
0.202122762799263,
0.11955960094928741,
-0.12465169280767441,
-0.008312745951116085,
-0.0370631068944931,
0.06810679286718369,
0.04593402147293091,
0.042778413742780685,
-0.041167911142110825,
0.026435909792780876,
0.004816083237528801,
-0.03297989070415497,
0.04889237880706787,
-0.07152990251779556,
-0.08332529664039612,
-0.02271674945950508,
-0.0803709551692009,
0.022060951218008995,
0.04565791040658951,
-0.006796905770897865,
-0.08086638152599335,
-0.11887118220329285,
-0.02401086315512657,
0.1003950983285904,
-0.10009991377592087,
0.007319159805774689,
-0.07774567604064941,
0.04842445254325867,
0.025408998131752014,
-0.0012469912180677056,
-0.1497841328382492,
-0.010613887570798397,
0.021147791296243668,
-0.06811819970607758,
-0.02273309975862503,
-0.013612077571451664,
0.09076570719480515,
0.04575937241315842,
-0.03122567944228649,
-0.08403193205595016,
-0.055743779987096786,
0.014329468831419945,
-0.044688496738672256,
-0.228587806224823,
-0.0582846961915493,
-0.03937077149748802,
0.17451965808868408,
-0.18107348680496216,
0.012847479432821274,
0.07714976370334625,
0.12702034413814545,
0.029811175540089607,
-0.042917851358652115,
0.018137747421860695,
0.051586031913757324,
0.020382113754749298,
-0.08380115032196045,
0.02597673237323761,
0.015703588724136353,
-0.07945375889539719,
0.026888759806752205,
-0.14864413440227509,
0.11214826256036758,
0.08852046728134155,
0.0700826644897461,
-0.07085627317428589,
-0.006184390280395746,
-0.06952199339866638,
-0.04921085014939308,
-0.025609370321035385,
0.006494430359452963,
0.2019961178302765,
0.035001639276742935,
0.0998031497001648,
-0.08229104429483414,
-0.04734696447849274,
0.0409073606133461,
0.01875491999089718,
0.0036875989753752947,
0.14640530943870544,
0.031927432864904404,
-0.04801923781633377,
0.08816217631101608,
0.05546299368143082,
-0.024897312745451927,
0.17916086316108704,
-0.07032827287912369,
-0.07056410610675812,
-0.02617202326655388,
0.016833771020174026,
-0.007906480692327023,
0.1471407115459442,
-0.140055850148201,
-0.0024529078509658575,
0.0045532044023275375,
0.01968252845108509,
0.022578909993171692,
-0.18427112698554993,
-0.005823651794344187,
0.019839726388454437,
-0.10150960087776184,
-0.0305992029607296,
0.02115975320339203,
0.02047792822122574,
0.08252272754907608,
-0.0138172572478652,
-0.0953022688627243,
-0.019045984372496605,
-0.04349788650870323,
-0.10309157520532608,
0.18063610792160034,
-0.0940464660525322,
-0.18373097479343414,
-0.07299961149692535,
0.02630038373172283,
-0.0150359021499753,
-0.02496672049164772,
0.045137032866477966,
-0.11417926102876663,
-0.043163422495126724,
-0.08280831575393677,
-0.0037569734267890453,
0.02175627276301384,
0.008366633206605911,
0.03352830559015274,
-0.009367191232740879,
0.09137998521327972,
-0.10306192189455032,
-0.004269560799002647,
-0.040498655289411545,
-0.013538021594285965,
0.015006744302809238,
0.05623076856136322,
0.062096573412418365,
0.12395397573709488,
0.0428401418030262,
0.05189528316259384,
-0.016020754352211952,
0.2010967880487442,
-0.10685610771179199,
0.015278562903404236,
0.10870366543531418,
-0.020376240834593773,
0.05186442658305168,
0.14917472004890442,
0.030675750225782394,
-0.08253799378871918,
0.006567369680851698,
0.038530733436346054,
-0.019518794491887093,
-0.20880556106567383,
-0.04829467833042145,
-0.05102089047431946,
-0.011662451550364494,
0.10689587146043777,
0.035878751426935196,
-0.0364631712436676,
0.009725104086101055,
-0.010526169091463089,
-0.06876179575920105,
0.04294769465923309,
0.02241697907447815,
0.05015421658754349,
0.02940252423286438,
0.10064200311899185,
-0.00812970008701086,
-0.02686457894742489,
0.03848344832658768,
-0.04061264917254448,
0.20616014301776886,
-0.029972342774271965,
0.06920996308326721,
0.059580303728580475,
0.1809556633234024,
0.0006851766374893486,
0.05965394526720047,
0.0025589538272470236,
-0.003600300755351782,
0.025576617568731308,
-0.05223385617136955,
-0.040434736758470535,
0.03376585990190506,
0.05673309043049812,
0.008231212384998798,
-0.10597575455904007,
0.05470182001590729,
0.03552122786641121,
0.3662903606891632,
0.07101766765117645,
-0.26948872208595276,
-0.07084272056818008,
-0.013976396061480045,
-0.06013328954577446,
-0.05191408470273018,
0.043589066714048386,
0.16096599400043488,
-0.09696769714355469,
0.07703467458486557,
-0.0650065466761589,
0.0668117105960846,
-0.052763331681489944,
0.023458611220121384,
0.06548089534044266,
0.09511229395866394,
-0.0023729242384433746,
0.02935655601322651,
-0.2412198781967163,
0.27608147263526917,
-0.006277832668274641,
0.09020738303661346,
-0.046128008514642715,
0.02412276715040207,
0.05059818550944328,
-0.03414669260382652,
0.09710211306810379,
0.00131294596940279,
-0.11550985276699066,
-0.13858678936958313,
-0.11584243923425674,
0.03858742490410805,
0.10430386662483215,
-0.02557879313826561,
0.09111448377370834,
-0.014162429608404636,
-0.034373871982097626,
0.04275188967585564,
-0.05569203197956085,
-0.14040111005306244,
-0.09034345299005508,
0.013557587750256062,
0.022786252200603485,
0.07006151229143143,
-0.10220812261104584,
-0.09518521279096603,
-0.05377110093832016,
0.09875380992889404,
-0.08418353646993637,
-0.03989852964878082,
-0.1303372085094452,
0.011142181232571602,
0.14428232610225677,
-0.07063820213079453,
0.04718102887272835,
0.03652247041463852,
0.10760369896888733,
0.010313217528164387,
-0.04827627167105675,
0.09860417991876602,
-0.0993206799030304,
-0.21063630282878876,
-0.038788989186286926,
0.17710863053798676,
0.0825425311923027,
0.04334567114710808,
0.002168911276385188,
0.019385460764169693,
-0.014261911623179913,
-0.08503065258264542,
0.08823083341121674,
0.0464949831366539,
-0.0009215708705596626,
0.02812131866812706,
-0.01152675412595272,
-0.030975380912423134,
-0.060068219900131226,
-0.005941121373325586,
0.09976638853549957,
0.2409946620464325,
-0.09003984183073044,
0.08956481516361237,
0.08402104675769806,
-0.044549714773893356,
-0.17025721073150635,
-0.006413091905415058,
0.11637260764837265,
0.03596968203783035,
-0.0191008560359478,
-0.18859156966209412,
0.025889161974191666,
0.06048256531357765,
-0.021241215988993645,
0.06975375860929489,
-0.2843483090400696,
-0.13162028789520264,
0.13686217367649078,
0.05401679873466492,
0.007219924591481686,
-0.10888195037841797,
-0.03241173177957535,
-0.01029149629175663,
-0.0714326724410057,
0.06354570388793945,
-0.0858396589756012,
0.09384657442569733,
-0.009274020791053772,
0.03808685019612312,
0.01389279030263424,
-0.05286090821027756,
0.11448877304792404,
0.014306723140180111,
0.07028532773256302,
-0.012492267414927483,
0.04629777744412422,
-0.015699099749326706,
-0.07413071393966675,
0.03344075381755829,
-0.0894712507724762,
0.04366275295615196,
-0.1046343520283699,
-0.013108660466969013,
-0.11665841192007065,
0.028118133544921875,
-0.04319433867931366,
-0.01762588508427143,
-0.000444766046712175,
0.050029780715703964,
0.09090766310691833,
0.005180310923606157,
0.01648104004561901,
-0.053401749581098557,
0.13607777655124664,
0.15111839771270752,
0.11260739713907242,
-0.033154748380184174,
-0.06980396062135696,
-0.0031125762034207582,
-0.0023111060727387667,
0.05173756554722786,
-0.09297746419906616,
0.05784447118639946,
0.1243121474981308,
0.03547171875834465,
0.15006676316261292,
0.03840494155883789,
-0.09760687500238419,
-0.006932815071195364,
0.05400647968053818,
-0.13765095174312592,
-0.13000744581222534,
-0.01564069278538227,
-0.021331066265702248,
-0.11873981356620789,
-0.007650222163647413,
0.12017456442117691,
-0.04712564870715141,
0.004760317038744688,
-0.009003883227705956,
0.05976804718375206,
-0.02942609041929245,
0.21086083352565765,
0.045132022351026535,
0.08443038910627365,
-0.11013549566268921,
0.08645312488079071,
0.004787597339600325,
-0.1017005667090416,
0.07047992944717407,
0.08305960893630981,
-0.0768432468175888,
-0.022339798510074615,
0.02152828313410282,
0.11938869953155518,
0.08457330614328384,
-0.06850992143154144,
-0.1149509847164154,
-0.16869522631168365,
0.08822472393512726,
0.13937298953533173,
0.01336759328842163,
0.03596363216638565,
-0.02735699526965618,
0.016132494434714317,
-0.07459262758493423,
0.10521389544010162,
0.1106480062007904,
0.029439197853207588,
-0.11396736651659012,
0.10805188864469528,
0.015872441232204437,
0.0013452389976009727,
-0.006679197307676077,
-0.004061881918460131,
-0.11103592067956924,
0.019790910184383392,
-0.15287567675113678,
-0.0023628089111298323,
-0.04381042718887329,
0.009969189763069153,
-0.0007195902871899307,
-0.04309412091970444,
-0.05443757772445679,
0.03579264506697655,
-0.10364586859941483,
-0.028082311153411865,
-0.008388658985495567,
0.042523905634880066,
-0.13370199501514435,
-0.01623743213713169,
0.024833595380187035,
-0.12438622862100601,
0.09839098900556564,
0.07157016545534134,
-0.018443811684846878,
0.024907153099775314,
-0.1041238084435463,
-0.023517755791544914,
0.039813630282878876,
-0.0035576377995312214,
0.0394020602107048,
-0.17369656264781952,
0.0018287295242771506,
-0.01814735122025013,
-0.010768008418381214,
-0.0030291632283478975,
0.05531332269310951,
-0.09695953130722046,
0.0454881377518177,
-0.01140502281486988,
-0.03362656384706497,
-0.05175291374325752,
0.045695967972278595,
0.08474534004926682,
0.0340697318315506,
0.161275252699852,
-0.10201078653335571,
0.06072571128606796,
-0.22627641260623932,
-0.019186772406101227,
0.004352611489593983,
-0.056550733745098114,
-0.03539589047431946,
-0.014144225977361202,
0.11586665362119675,
-0.054849740117788315,
0.09818153828382492,
-0.009461604058742523,
0.017703017219901085,
0.01952349580824375,
-0.13551095128059387,
-0.02309929020702839,
0.04784366488456726,
0.11270242929458618,
0.007872101850807667,
-0.028642795979976654,
0.07725026458501816,
-0.035615865141153336,
0.05395694822072983,
0.0947648286819458,
0.18558050692081451,
0.14725200831890106,
0.07662014663219452,
0.07001064717769623,
0.09380093961954117,
-0.1274178922176361,
-0.0899585634469986,
0.10428975522518158,
-0.09932485222816467,
0.12710440158843994,
-0.034984927624464035,
0.15588660538196564,
0.08149133622646332,
-0.18601930141448975,
0.06978879868984222,
-0.030819077044725418,
-0.08435100317001343,
-0.1199812963604927,
-0.05854548141360283,
-0.06929321587085724,
-0.16637785732746124,
0.029049048200249672,
-0.1049560159444809,
0.04717418551445007,
0.04566997289657593,
0.041132520884275436,
0.027817437425255775,
0.13609762489795685,
0.05948450788855553,
-0.0023561303969472647,
0.12871398031711578,
0.025551721453666687,
-0.027700109407305717,
-0.043743640184402466,
-0.08410996943712234,
0.03831259161233902,
-0.010571698658168316,
0.043978799134492874,
-0.03944465517997742,
-0.09669512510299683,
0.060344915837049484,
0.012820729985833168,
-0.08208165317773819,
0.030200906097888947,
-0.024174099788069725,
0.05809364467859268,
0.09657587856054306,
0.06430736929178238,
-0.0075416662730276585,
-0.008832278661429882,
0.18987464904785156,
-0.08401069045066833,
-0.052097778767347336,
-0.1345226913690567,
0.19294483959674835,
-0.008820321410894394,
-0.0013852169504389167,
0.03222103789448738,
-0.0625171884894371,
-0.007433776278048754,
0.15474361181259155,
0.17097952961921692,
-0.04882579669356346,
0.013167193159461021,
-0.030729707330465317,
-0.010699945501983166,
-0.02014501579105854,
0.09523747116327286,
0.12445467710494995,
0.0684107318520546,
-0.03922659158706665,
-0.003948541358113289,
-0.030023256316781044,
-0.07789892703294754,
-0.020576680079102516,
0.09823881834745407,
0.006370159797370434,
-0.010230091400444508,
-0.0439852774143219,
0.09068533033132553,
-0.06988662481307983,
-0.17257513105869293,
0.003748226212337613,
-0.1753513365983963,
-0.16698354482650757,
-0.026945410296320915,
0.040609199553728104,
0.05399671941995621,
0.0511399507522583,
-0.001125055248849094,
-0.027874300256371498,
0.12813898921012878,
-0.0020942578557878733,
-0.023013854399323463,
-0.11494766920804977,
0.06055007874965668,
-0.14518457651138306,
0.1879531443119049,
-0.028338707983493805,
0.012082116678357124,
0.09642905741930008,
0.0558716244995594,
-0.09198907017707825,
0.03841490298509598,
0.06543999910354614,
-0.12480799108743668,
-0.003758505918085575,
0.16238705813884735,
-0.031359560787677765,
0.11002406477928162,
0.043580468744039536,
-0.09177503734827042,
0.00549772335216403,
-0.07369999587535858,
-0.049603819847106934,
-0.057853274047374725,
0.00686122290790081,
-0.019414233043789864,
0.13736003637313843,
0.19180436432361603,
-0.06363186240196228,
0.01306120865046978,
-0.05626261606812477,
0.020803403109312057,
0.0006790923071093857,
0.07701517641544342,
-0.027857612818479538,
-0.2417479008436203,
0.03653613477945328,
0.020942963659763336,
0.006718212738633156,
-0.19950149953365326,
-0.09274545311927795,
0.02612837590277195,
-0.05888385325670242,
-0.04949027672410011,
0.1118389219045639,
0.025824598968029022,
0.06678427755832672,
-0.03583838790655136,
-0.01387548167258501,
-0.022742221131920815,
0.1810452938079834,
-0.156155064702034,
-0.04753277450799942
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-italian
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - IT dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.1710
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log | 0.04 | 100 | inf | 1.0 |
| No log | 0.09 | 200 | inf | 0.9983 |
| No log | 0.13 | 300 | inf | 0.7672 |
| No log | 0.18 | 400 | inf | 0.6919 |
| 2.9929 | 0.22 | 500 | inf | 0.6266 |
| 2.9929 | 0.26 | 600 | inf | 0.5513 |
| 2.9929 | 0.31 | 700 | inf | 0.5081 |
| 2.9929 | 0.35 | 800 | inf | 0.4945 |
| 2.9929 | 0.39 | 900 | inf | 0.4720 |
| 0.5311 | 0.44 | 1000 | inf | 0.4387 |
| 0.5311 | 0.48 | 1100 | inf | 0.4411 |
| 0.5311 | 0.53 | 1200 | inf | 0.4429 |
| 0.5311 | 0.57 | 1300 | inf | 0.4322 |
| 0.5311 | 0.61 | 1400 | inf | 0.4532 |
| 0.4654 | 0.66 | 1500 | inf | 0.4492 |
| 0.4654 | 0.7 | 1600 | inf | 0.3879 |
| 0.4654 | 0.75 | 1700 | inf | 0.3836 |
| 0.4654 | 0.79 | 1800 | inf | 0.3743 |
| 0.4654 | 0.83 | 1900 | inf | 0.3687 |
| 0.4254 | 0.88 | 2000 | inf | 0.3793 |
| 0.4254 | 0.92 | 2100 | inf | 0.3766 |
| 0.4254 | 0.97 | 2200 | inf | 0.3705 |
| 0.4254 | 1.01 | 2300 | inf | 0.3272 |
| 0.4254 | 1.05 | 2400 | inf | 0.3185 |
| 0.3997 | 1.1 | 2500 | inf | 0.3244 |
| 0.3997 | 1.14 | 2600 | inf | 0.3082 |
| 0.3997 | 1.18 | 2700 | inf | 0.3040 |
| 0.3997 | 1.23 | 2800 | inf | 0.3028 |
| 0.3997 | 1.27 | 2900 | inf | 0.3112 |
| 0.3668 | 1.32 | 3000 | inf | 0.3110 |
| 0.3668 | 1.36 | 3100 | inf | 0.3067 |
| 0.3668 | 1.4 | 3200 | inf | 0.2961 |
| 0.3668 | 1.45 | 3300 | inf | 0.3081 |
| 0.3668 | 1.49 | 3400 | inf | 0.2936 |
| 0.3645 | 1.54 | 3500 | inf | 0.3037 |
| 0.3645 | 1.58 | 3600 | inf | 0.2974 |
| 0.3645 | 1.62 | 3700 | inf | 0.3010 |
| 0.3645 | 1.67 | 3800 | inf | 0.2985 |
| 0.3645 | 1.71 | 3900 | inf | 0.2976 |
| 0.3624 | 1.76 | 4000 | inf | 0.2928 |
| 0.3624 | 1.8 | 4100 | inf | 0.2860 |
| 0.3624 | 1.84 | 4200 | inf | 0.2922 |
| 0.3624 | 1.89 | 4300 | inf | 0.2866 |
| 0.3624 | 1.93 | 4400 | inf | 0.2776 |
| 0.3527 | 1.97 | 4500 | inf | 0.2792 |
| 0.3527 | 2.02 | 4600 | inf | 0.2858 |
| 0.3527 | 2.06 | 4700 | inf | 0.2767 |
| 0.3527 | 2.11 | 4800 | inf | 0.2824 |
| 0.3527 | 2.15 | 4900 | inf | 0.2799 |
| 0.3162 | 2.19 | 5000 | inf | 0.2673 |
| 0.3162 | 2.24 | 5100 | inf | 0.2962 |
| 0.3162 | 2.28 | 5200 | inf | 0.2736 |
| 0.3162 | 2.33 | 5300 | inf | 0.2652 |
| 0.3162 | 2.37 | 5400 | inf | 0.2551 |
| 0.3063 | 2.41 | 5500 | inf | 0.2680 |
| 0.3063 | 2.46 | 5600 | inf | 0.2558 |
| 0.3063 | 2.5 | 5700 | inf | 0.2598 |
| 0.3063 | 2.54 | 5800 | inf | 0.2518 |
| 0.3063 | 2.59 | 5900 | inf | 0.2541 |
| 0.2913 | 2.63 | 6000 | inf | 0.2507 |
| 0.2913 | 2.68 | 6100 | inf | 0.2500 |
| 0.2913 | 2.72 | 6200 | inf | 0.2435 |
| 0.2913 | 2.76 | 6300 | inf | 0.2376 |
| 0.2913 | 2.81 | 6400 | inf | 0.2348 |
| 0.2797 | 2.85 | 6500 | inf | 0.2512 |
| 0.2797 | 2.9 | 6600 | inf | 0.2382 |
| 0.2797 | 2.94 | 6700 | inf | 0.2523 |
| 0.2797 | 2.98 | 6800 | inf | 0.2522 |
| 0.2797 | 3.03 | 6900 | inf | 0.2409 |
| 0.2766 | 3.07 | 7000 | inf | 0.2453 |
| 0.2766 | 3.12 | 7100 | inf | 0.2326 |
| 0.2766 | 3.16 | 7200 | inf | 0.2286 |
| 0.2766 | 3.2 | 7300 | inf | 0.2342 |
| 0.2766 | 3.25 | 7400 | inf | 0.2305 |
| 0.2468 | 3.29 | 7500 | inf | 0.2238 |
| 0.2468 | 3.33 | 7600 | inf | 0.2321 |
| 0.2468 | 3.38 | 7700 | inf | 0.2305 |
| 0.2468 | 3.42 | 7800 | inf | 0.2174 |
| 0.2468 | 3.47 | 7900 | inf | 0.2201 |
| 0.2439 | 3.51 | 8000 | inf | 0.2133 |
| 0.2439 | 3.55 | 8100 | inf | 0.2217 |
| 0.2439 | 3.6 | 8200 | inf | 0.2189 |
| 0.2439 | 3.64 | 8300 | inf | 0.2105 |
| 0.2439 | 3.69 | 8400 | inf | 0.2118 |
| 0.2357 | 3.73 | 8500 | inf | 0.2093 |
| 0.2357 | 3.77 | 8600 | inf | 0.2103 |
| 0.2357 | 3.82 | 8700 | inf | 0.2035 |
| 0.2357 | 3.86 | 8800 | inf | 0.2019 |
| 0.2357 | 3.91 | 8900 | inf | 0.2032 |
| 0.2217 | 3.95 | 9000 | inf | 0.2056 |
| 0.2217 | 3.99 | 9100 | inf | 0.2022 |
| 0.2217 | 4.04 | 9200 | inf | 0.1932 |
| 0.2217 | 4.08 | 9300 | inf | 0.1935 |
| 0.2217 | 4.12 | 9400 | inf | 0.1906 |
| 0.2025 | 4.17 | 9500 | inf | 0.1879 |
| 0.2025 | 4.21 | 9600 | inf | 0.1882 |
| 0.2025 | 4.26 | 9700 | inf | 0.1854 |
| 0.2025 | 4.3 | 9800 | inf | 0.1865 |
| 0.2025 | 4.34 | 9900 | inf | 0.1844 |
| 0.1869 | 4.39 | 10000 | inf | 0.1822 |
| 0.1869 | 4.43 | 10100 | inf | 0.1815 |
| 0.1869 | 4.48 | 10200 | inf | 0.1812 |
| 0.1869 | 4.52 | 10300 | inf | 0.1792 |
| 0.1869 | 4.56 | 10400 | inf | 0.1797 |
| 0.1863 | 4.61 | 10500 | inf | 0.1774 |
| 0.1863 | 4.65 | 10600 | inf | 0.1767 |
| 0.1863 | 4.7 | 10700 | inf | 0.1765 |
| 0.1863 | 4.74 | 10800 | inf | 0.1753 |
| 0.1863 | 4.78 | 10900 | inf | 0.1731 |
| 0.178 | 4.83 | 11000 | inf | 0.1727 |
| 0.178 | 4.87 | 11100 | inf | 0.1724 |
| 0.178 | 4.91 | 11200 | inf | 0.1722 |
| 0.178 | 4.96 | 11300 | inf | 0.1712 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
{"language": ["it"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "XLS-R-300m - Italian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "it"}, "metrics": [{"type": "wer", "value": 19.44, "name": "Test WER"}, {"type": "cer", "value": 4.47, "name": "Test CER"}, {"type": "wer", "value": 14.08, "name": "Test WER (+LM)"}, {"type": "cer", "value": 3.67, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "it"}, "metrics": [{"type": "wer", "value": 31.01, "name": "Test WER"}, {"type": "cer", "value": 9.27, "name": "Test CER"}, {"type": "wer", "value": 22.09, "name": "Test WER (+LM)"}, {"type": "cer", "value": 7.9, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "it"}, "metrics": [{"type": "wer", "value": 38.07, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
dbdmg/wav2vec2-xls-r-300m-italian
|
[
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_7_0",
"robust-speech-event",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"it"
] |
TAGS
#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
|
wav2vec2-xls-r-300m-italian
===========================
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - IT dataset.
It achieves the following results on the evaluation set:
* Loss: inf
* Wer: 0.1710
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 64
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 5.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.16.0.dev0
* Pytorch 1.10.1+cu102
* Datasets 1.17.1.dev0
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] |
[
120,
130,
4,
41
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] |
[
-0.14021752774715424,
0.13685274124145508,
-0.005483981687575579,
0.045658133924007416,
0.10753761231899261,
0.005770248360931873,
0.10430528968572617,
0.14713376760482788,
-0.07041602581739426,
0.10263922065496445,
0.0993555411696434,
0.09589210152626038,
0.08261403441429138,
0.1472117304801941,
-0.02381049282848835,
-0.25884997844696045,
0.03808145970106125,
-0.03305631875991821,
-0.09845375269651413,
0.10702838003635406,
0.08341716974973679,
-0.11244584619998932,
0.04060810059309006,
0.01512449886649847,
-0.07956933230161667,
-0.010566485114395618,
-0.03984108194708824,
-0.06781012564897537,
0.09238333255052567,
0.006157717201858759,
0.03242403268814087,
0.04643344134092331,
0.08502829819917679,
-0.2322636842727661,
0.01340525783598423,
0.08057910948991776,
0.03266974911093712,
0.0625840425491333,
0.09776616096496582,
-0.01339012011885643,
0.08700323104858398,
-0.06778308749198914,
0.04790322855114937,
0.050907429307699203,
-0.08862373977899551,
-0.2593376338481903,
-0.07652700692415237,
0.026619262993335724,
0.0984816625714302,
0.08896994590759277,
-0.022055715322494507,
0.042848553508520126,
-0.0856611430644989,
0.08913931250572205,
0.22971734404563904,
-0.20571653544902802,
-0.06276775151491165,
-0.0533798411488533,
0.027751602232456207,
0.03608759120106697,
-0.11112592369318008,
-0.01407710462808609,
0.009661287069320679,
0.007098190486431122,
0.12170763313770294,
0.005430632270872593,
0.012357079423964024,
-0.017657950520515442,
-0.13338688015937805,
-0.05229083448648453,
0.1177590861916542,
0.05318354070186615,
-0.011428449302911758,
-0.11840549111366272,
-0.05508305877447128,
-0.1409921795129776,
-0.04337050020694733,
0.021023085340857506,
0.02012750133872032,
-0.041462305933237076,
-0.02842092700302601,
0.023277876898646355,
-0.047264594584703445,
-0.06995324790477753,
0.058106355369091034,
0.1732012778520584,
0.04315561056137085,
-0.014363064430654049,
-0.00027600376051850617,
0.09393058717250824,
0.11346082389354706,
-0.17370916903018951,
-0.029763735830783844,
0.02347836084663868,
-0.07599684596061707,
0.02100280672311783,
-0.0022680526599287987,
0.04974794387817383,
0.06810633093118668,
0.1308397501707077,
-0.039225123822689056,
0.08623578399419785,
0.02932518720626831,
0.003087613731622696,
-0.07181570678949356,
0.13938529789447784,
-0.06491587311029434,
-0.05756891146302223,
-0.017366735264658928,
0.14145609736442566,
0.014382529072463512,
-0.024456867948174477,
-0.04582392796874046,
0.04024912416934967,
0.10272406786680222,
0.0592351071536541,
0.0030236300081014633,
0.027180232107639313,
-0.05351494252681732,
-0.019214440137147903,
-0.0016852878034114838,
-0.14334000647068024,
0.03742561489343643,
0.07616186141967773,
-0.06932608783245087,
-0.006610075477510691,
-0.030562499538064003,
-0.002329137409105897,
-0.05236183851957321,
0.09658436477184296,
-0.05164579674601555,
-0.012221559882164001,
-0.07769026607275009,
-0.08689193427562714,
0.034021880477666855,
-0.09857407957315445,
-0.0034086464438587427,
-0.06965203583240509,
-0.09438545256853104,
-0.0627221167087555,
0.049344662576913834,
-0.05225924775004387,
-0.04673447459936142,
-0.07896411418914795,
-0.10283584147691727,
0.05648893490433693,
-0.03055679053068161,
0.1535511612892151,
-0.06814420223236084,
0.08852797746658325,
0.010963082313537598,
0.05432341620326042,
0.09155219048261642,
0.0620342418551445,
-0.027737736701965332,
0.046743243932724,
-0.08033167570829391,
0.09873132407665253,
-0.1189732700586319,
0.024350397288799286,
-0.1069282814860344,
-0.09462940692901611,
-0.021323030814528465,
0.0018191476119682193,
0.10393275320529938,
0.1613033413887024,
-0.1464652568101883,
-0.08642227947711945,
0.1633751392364502,
-0.06432393938302994,
-0.07282214611768723,
0.11257238686084747,
-0.00683222571387887,
-0.04841972514986992,
0.019448934122920036,
0.19803930819034576,
0.11461923271417618,
-0.0982445776462555,
-0.014329977333545685,
-0.038112301379442215,
0.09268749505281448,
0.02819877490401268,
0.07835624366998672,
-0.03640928119421005,
0.04723096266388893,
0.014015186578035355,
-0.039596058428287506,
0.040343303233385086,
-0.07633151113986969,
-0.07766461372375488,
-0.02138669416308403,
-0.06880755722522736,
0.0018835336668416858,
0.04925745725631714,
0.0022416363935917616,
-0.0726027637720108,
-0.11956340074539185,
-0.02641329914331436,
0.10484491288661957,
-0.11194362491369247,
0.012591967359185219,
-0.08717182278633118,
0.0704440027475357,
0.006417946424335241,
0.009079555049538612,
-0.15714670717716217,
-0.011437036097049713,
0.03978607803583145,
-0.05952906236052513,
-0.030126282945275307,
-0.05564698576927185,
0.0738590657711029,
0.043122708797454834,
-0.01671694964170456,
-0.07615521550178528,
-0.05230420082807541,
0.00019207278091926128,
-0.04136814549565315,
-0.23052510619163513,
-0.06483888626098633,
-0.0288498867303133,
0.16726122796535492,
-0.15188612043857574,
0.011380634270608425,
0.0648074522614479,
0.1303737908601761,
0.024708421900868416,
-0.054538507014513016,
0.02225545421242714,
0.05527586117386818,
-0.007250778377056122,
-0.08703388273715973,
0.026455245912075043,
0.012707697227597237,
-0.06803128868341446,
0.03904908895492554,
-0.14471836388111115,
0.105227030813694,
0.09684207290410995,
0.04976102337241173,
-0.03006303869187832,
-0.017803972586989403,
-0.06320013105869293,
-0.043032363057136536,
-0.028111977502703667,
0.0033954635728150606,
0.13688308000564575,
0.011438035406172276,
0.10068848729133606,
-0.08569107949733734,
-0.04331411421298981,
0.0449131615459919,
0.0329112783074379,
-0.002233761828392744,
0.1502438634634018,
0.06816224008798599,
-0.012838847003877163,
0.09929636120796204,
0.031918056309223175,
-0.038719940930604935,
0.16080917418003082,
-0.07432786375284195,
-0.07588401436805725,
-0.020052678883075714,
0.010642297565937042,
0.004913012031465769,
0.1349780112504959,
-0.17016904056072235,
-0.015282777138054371,
0.029933573678135872,
0.02034872956573963,
0.018620362505316734,
-0.18516124784946442,
0.005445333197712898,
0.017925862222909927,
-0.09586023539304733,
-0.019877368584275246,
0.02566402032971382,
-0.002500573405995965,
0.08527985960245132,
-0.012422825209796429,
-0.08964784443378448,
-0.02783329039812088,
-0.03368458151817322,
-0.08892861753702164,
0.16400085389614105,
-0.0997258871793747,
-0.16741982102394104,
-0.07830051332712173,
0.0055965459905564785,
-0.020901674404740334,
-0.018704436719417572,
0.04849512130022049,
-0.0853496789932251,
-0.040058910846710205,
-0.08145380020141602,
-0.029174191877245903,
-0.012471778318285942,
0.01941814087331295,
0.05062813684344292,
-0.010278193280100822,
0.04752577096223831,
-0.1065240129828453,
-0.0014972771750763059,
-0.028731008991599083,
-0.009557615965604782,
0.01370035856962204,
0.046281781047582626,
0.082892507314682,
0.13478361070156097,
0.052459318190813065,
0.05451412871479988,
-0.02296305261552334,
0.1798008680343628,
-0.11954657733440399,
0.007437639404088259,
0.12172108143568039,
0.013461104594171047,
0.047971460968256,
0.14375866949558258,
0.0387558750808239,
-0.06956865638494492,
-0.004821523558348417,
0.025054190307855606,
-0.022191431373357773,
-0.22404809296131134,
-0.027983935549855232,
-0.07365244626998901,
-0.028555333614349365,
0.09633558243513107,
0.04227007180452347,
-0.033103279769420624,
0.018578000366687775,
-0.030278410762548447,
-0.057669661939144135,
0.052425604313611984,
0.033362701535224915,
0.05892601236701012,
0.0370241142809391,
0.11025692522525787,
-0.002176422392949462,
-0.022465622052550316,
0.025810636579990387,
-0.024301894009113312,
0.2316564917564392,
-0.022732367739081383,
0.13770467042922974,
0.0398407056927681,
0.1707731932401657,
-0.012378755956888199,
0.06142091751098633,
0.01914123445749283,
0.0155210942029953,
0.02435370162129402,
-0.059430401772260666,
-0.046306319534778595,
0.019404441118240356,
0.08559037744998932,
0.016680041328072548,
-0.09771686047315598,
0.04949430376291275,
0.031775299459695816,
0.37544775009155273,
0.05382537469267845,
-0.28133442997932434,
-0.060789261013269424,
-0.007815180346369743,
-0.04722149297595024,
-0.04528987780213356,
0.034942883998155594,
0.13784250617027283,
-0.07560007274150848,
0.06626971811056137,
-0.059377271682024,
0.07712087035179138,
-0.06618412584066391,
0.004333800170570612,
0.06615625321865082,
0.11652356386184692,
0.008438113145530224,
0.04019717872142792,
-0.2715754508972168,
0.251198410987854,
-0.00706047797575593,
0.10591188073158264,
-0.06151648983359337,
0.03919592499732971,
0.04590986296534538,
-0.022636298090219498,
0.08147480338811874,
0.004328985698521137,
-0.11358191817998886,
-0.13328278064727783,
-0.12968792021274567,
0.023518823087215424,
0.12744803726673126,
-0.04557906091213226,
0.09664949774742126,
-0.038273781538009644,
-0.04485978186130524,
0.026945535093545914,
-0.07864660024642944,
-0.12569023668766022,
-0.09738846123218536,
0.05242277681827545,
0.04866320267319679,
0.06861060857772827,
-0.08765629678964615,
-0.10432827472686768,
-0.03891335427761078,
0.10888395458459854,
-0.12622325122356415,
-0.043557293713092804,
-0.14066317677497864,
0.02002652920782566,
0.14213517308235168,
-0.061493877321481705,
0.04085797816514969,
0.01623891107738018,
0.12565045058727264,
0.027844900265336037,
-0.033193446695804596,
0.09302634745836258,
-0.10074456036090851,
-0.20421019196510315,
-0.042697709053754807,
0.16986887156963348,
0.032100386917591095,
0.04812384769320488,
-0.008920678868889809,
0.026567773893475533,
-0.021843863651156425,
-0.07929481565952301,
0.088921457529068,
0.08763915300369263,
0.0000972086563706398,
0.04463231936097145,
-0.03899873048067093,
-0.016179492697119713,
-0.07053252309560776,
-0.036375097930431366,
0.09356456995010376,
0.2262226939201355,
-0.07910752296447754,
0.06938941031694412,
0.056290701031684875,
-0.05849862098693848,
-0.1785096824169159,
-0.022178979590535164,
0.12187256664037704,
0.037472985684871674,
-0.03626653179526329,
-0.19956143200397491,
0.001604108139872551,
0.05920059606432915,
-0.028796909376978874,
0.10389474034309387,
-0.32521361112594604,
-0.12348128855228424,
0.0843159481883049,
0.06297212094068527,
0.03161182627081871,
-0.1477523148059845,
-0.04857024922966957,
-0.009204408153891563,
-0.07269814610481262,
0.060916006565093994,
-0.03296136111021042,
0.12035369873046875,
-0.006543872877955437,
0.004517432302236557,
0.011174334213137627,
-0.05990718677639961,
0.12342408299446106,
0.005086508579552174,
0.03892190009355545,
-0.012079921551048756,
0.0258028507232666,
0.000651312991976738,
-0.0734754353761673,
0.021983349695801735,
-0.08047232031822205,
0.04320751130580902,
-0.12076226621866226,
-0.020311575382947922,
-0.0961286723613739,
0.030724799260497093,
-0.03587544709444046,
-0.01108208391815424,
-0.002589273964986205,
0.03644334897398949,
0.09954383224248886,
0.02206525020301342,
0.08619014918804169,
-0.04767835512757301,
0.1054503545165062,
0.14044189453125,
0.1040802076458931,
-0.05039975047111511,
-0.08781851828098297,
-0.01839275285601616,
0.003617146983742714,
0.04955877363681793,
-0.08481278270483017,
0.04685064032673836,
0.12923559546470642,
0.04856930300593376,
0.12383199483156204,
0.0547712966799736,
-0.08450912684202194,
-0.0034145209938287735,
0.05152737721800804,
-0.10920635610818863,
-0.1424376368522644,
-0.015990925952792168,
0.007368566934019327,
-0.10943182557821274,
0.01374076958745718,
0.11735396087169647,
-0.03986772894859314,
0.002726799575611949,
-0.0004530652950052172,
0.05811984837055206,
-0.0021158172748982906,
0.21928614377975464,
0.03230256587266922,
0.08749281615018845,
-0.1102832555770874,
0.0881224125623703,
0.020015055313706398,
-0.08480370044708252,
0.05002230405807495,
0.08992475271224976,
-0.07041193544864655,
-0.023413440212607384,
0.014824669808149338,
0.05431152135133743,
0.08093786239624023,
-0.06579991430044174,
-0.12298355251550674,
-0.15191741287708282,
0.09126705676317215,
0.07576534897089005,
0.013758557848632336,
0.034783657640218735,
-0.019391091540455818,
0.02696162275969982,
-0.08620033413171768,
0.09894436597824097,
0.0838908776640892,
0.045253317803144455,
-0.1126270592212677,
0.08139736950397491,
0.021119842305779457,
0.0047887288965284824,
-0.005473645403981209,
-0.016145875677466393,
-0.09524998813867569,
0.02089480124413967,
-0.08082149922847748,
0.003553430549800396,
-0.05590974539518356,
-0.00561842555180192,
0.00560205290094018,
-0.06187254190444946,
-0.06374705582857132,
0.042993124574422836,
-0.10173655301332474,
-0.038064803928136826,
-0.03299388661980629,
0.047626856714487076,
-0.1169513612985611,
-0.015773046761751175,
0.01699645072221756,
-0.13938480615615845,
0.09721055626869202,
0.07367314398288727,
-0.019539490342140198,
0.007025856990367174,
-0.09189050644636154,
-0.03475714102387428,
0.030530286952853203,
0.009241881780326366,
0.03295563906431198,
-0.1805257499217987,
-0.000519883877132088,
-0.003077518893405795,
-0.003776743309572339,
-0.01973528042435646,
0.038216788321733475,
-0.10998108983039856,
0.021264908835291862,
-0.025308474898338318,
-0.03920210897922516,
-0.042727936059236526,
0.06125112995505333,
0.08704102784395218,
0.002917179139330983,
0.164274200797081,
-0.06965024024248123,
0.052646953612565994,
-0.20998415350914001,
0.003672373713925481,
-0.0034554474987089634,
-0.08636613190174103,
-0.06422736495733261,
-0.005445122718811035,
0.11839642375707626,
-0.055806126445531845,
0.08816643059253693,
-0.004056998994201422,
0.024746336042881012,
0.018107054755091667,
-0.11377004534006119,
-0.0018558521987870336,
0.05133587867021561,
0.14297622442245483,
0.0446239672601223,
-0.02097243256866932,
0.09421859681606293,
-0.033502575010061264,
0.0590246357023716,
0.1059165671467781,
0.1617106944322586,
0.14560596644878387,
0.10604225844144821,
0.09472251683473587,
0.08870423585176468,
-0.12820711731910706,
-0.12957516312599182,
0.1227300763130188,
-0.07912782579660416,
0.1467018872499466,
-0.028486398980021477,
0.1825461983680725,
0.10879530757665634,
-0.17292854189872742,
0.06054865941405296,
-0.028081180527806282,
-0.07675410062074661,
-0.11885076016187668,
-0.07648299634456635,
-0.0745251476764679,
-0.16228677332401276,
0.023975646123290062,
-0.10453226417303085,
0.06684812903404236,
0.05418357625603676,
0.04636494442820549,
0.03686179220676422,
0.09836892038583755,
0.09073585271835327,
-0.003410947509109974,
0.12298356741666794,
0.010394169017672539,
-0.024481743574142456,
-0.051148004829883575,
-0.12085626274347305,
0.037136565893888474,
-0.018316298723220825,
0.07205743342638016,
-0.02954328991472721,
-0.09898676723241806,
0.06390249729156494,
0.006511947140097618,
-0.08677491545677185,
0.03307069092988968,
-0.025207052007317543,
0.05379593372344971,
0.08962342143058777,
0.04703052341938019,
-0.013200989924371243,
0.0008419037912972271,
0.20622538030147552,
-0.07452641427516937,
-0.04776548221707344,
-0.11564011871814728,
0.17013601958751678,
0.01605769246816635,
0.001250750501640141,
0.03942809998989105,
-0.06105872616171837,
-0.029966630041599274,
0.17069442570209503,
0.15229208767414093,
-0.030661357566714287,
-0.01429577823728323,
-0.003613400040194392,
-0.009030124172568321,
-0.026296216994524002,
0.09275075793266296,
0.12493833899497986,
0.05995815247297287,
-0.029070179909467697,
-0.007020404562354088,
-0.028010768815875053,
-0.06742622703313828,
-0.0519108809530735,
0.07203040271997452,
0.001462537795305252,
-0.023957258090376854,
-0.030518628656864166,
0.08190952986478806,
-0.061528753489255905,
-0.15177267789840698,
0.022306136786937714,
-0.1649036407470703,
-0.17720864713191986,
-0.032166797667741776,
0.056101325899362564,
0.04700696840882301,
0.052857279777526855,
0.0047210888005793095,
-0.0306589026004076,
0.11488582193851471,
0.006805898156017065,
-0.023028962314128876,
-0.0972219705581665,
0.061564307659864426,
-0.15013745427131653,
0.18579109013080597,
-0.0411360003054142,
0.026446474716067314,
0.1056307777762413,
0.061817143112421036,
-0.10360424965620041,
0.027729330584406853,
0.0760028213262558,
-0.14471378922462463,
0.030413175001740456,
0.16741003096103668,
-0.038598399609327316,
0.1007462814450264,
0.031143605709075928,
-0.058084454387426376,
0.007967030629515648,
-0.0539320632815361,
-0.03806176781654358,
-0.050249356776475906,
-0.0027267085388302803,
-0.02700333669781685,
0.1282929629087448,
0.17829737067222595,
-0.06323065608739853,
-0.008673193864524364,
-0.04744143784046173,
0.0187542624771595,
-0.0016880609327927232,
0.08368036150932312,
-0.03612586483359337,
-0.2705576419830322,
0.023140475153923035,
0.007216587662696838,
0.01973508670926094,
-0.16052833199501038,
-0.07319529354572296,
0.013106259517371655,
-0.0645221620798111,
-0.06547026336193085,
0.09341015666723251,
0.03588720038533211,
0.04742637649178505,
-0.051732491701841354,
-0.08709506690502167,
-0.019924068823456764,
0.1833999902009964,
-0.17433461546897888,
-0.04895709455013275
] |
null | null |
transformers
|
# algebra_linear_1d
---
language: en
datasets:
- algebra_linear_1d
---
This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/algebra_linear_1d](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetalgebra_linear_1d_default_config) for solving **algebra 1d equations** mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/algebra_linear_1d")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/algebra_linear_1d")
```
You can then use this model to solve algebra 1d equations into numbers.
```python
query = "Solve 0 = 1026*x - 2474 + 46592 for x"
input_text = f"{query} </s>"
features = tokenizer([input_text], return_tensors='pt')
model.to('cuda')
output = model.generate(input_ids=features['input_ids'].cuda(),
attention_mask=features['attention_mask'].cuda())
tokenizer.decode(output[0])
# <pad> -41</s>
```
Another examples:
+ Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r.
+ Answer: -12 Pred: -12
----
+ Solve -119*k + 6*k - 117 - 352 = 322 for k.
+ Answer: -7 Pred: -7
----
+ Solve -547 = -62*t + 437 - 798 for t.
+ Answer: 3 Pred: 3
----
+ Solve 3*j - 3*j + 0*j - 4802 = 98*j for j.
+ Answer: -49 Pred: -49
----
+ Solve 3047*n - 6130*n - 1700 = -3049*n for n.
+ Answer: -50 Pred: -50
----
+ Solve 121*i + 1690 = 76*i - 128*i + 133 for i.
+ Answer: -9 Pred: -9
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
text2text-generation
|
dbernsohn/algebra_linear_1d
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# algebra_linear_1d
---
language: en
datasets:
- algebra_linear_1d
---
This is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to solve algebra 1d equations into numbers.
Another examples:
+ Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r.
+ Answer: -12 Pred: -12
----
+ Solve -119*k + 6*k - 117 - 352 = 322 for k.
+ Answer: -7 Pred: -7
----
+ Solve -547 = -62*t + 437 - 798 for t.
+ Answer: 3 Pred: 3
----
+ Solve 3*j - 3*j + 0*j - 4802 = 98*j for j.
+ Answer: -49 Pred: -49
----
+ Solve 3047*n - 6130*n - 1700 = -3049*n for n.
+ Answer: -50 Pred: -50
----
+ Solve 121*i + 1690 = 76*i - 128*i + 133 for i.
+ Answer: -9 Pred: -9
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# algebra_linear_1d\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. \n+ Answer: -12 Pred: -12\n----\n+ Solve -119*k + 6*k - 117 - 352 = 322 for k. \n+ Answer: -7 Pred: -7\n----\n+ Solve -547 = -62*t + 437 - 798 for t. \n+ Answer: 3 Pred: 3\n----\n+ Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. \n+ Answer: -49 Pred: -49\n----\n+ Solve 3047*n - 6130*n - 1700 = -3049*n for n. \n+ Answer: -50 Pred: -50\n----\n+ Solve 121*i + 1690 = 76*i - 128*i + 133 for i. \n+ Answer: -9 Pred: -9\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# algebra_linear_1d\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. \n+ Answer: -12 Pred: -12\n----\n+ Solve -119*k + 6*k - 117 - 352 = 322 for k. \n+ Answer: -7 Pred: -7\n----\n+ Solve -547 = -62*t + 437 - 798 for t. \n+ Answer: 3 Pred: 3\n----\n+ Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. \n+ Answer: -49 Pred: -49\n----\n+ Solve 3047*n - 6130*n - 1700 = -3049*n for n. \n+ Answer: -50 Pred: -50\n----\n+ Solve 121*i + 1690 = 76*i - 128*i + 133 for i. \n+ Answer: -9 Pred: -9\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
48,
329
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# algebra_linear_1d\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. \n+ Answer: -12 Pred: -12\n----\n+ Solve -119*k + 6*k - 117 - 352 = 322 for k. \n+ Answer: -7 Pred: -7\n----\n+ Solve -547 = -62*t + 437 - 798 for t. \n+ Answer: 3 Pred: 3\n----\n+ Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. \n+ Answer: -49 Pred: -49\n----\n+ Solve 3047*n - 6130*n - 1700 = -3049*n for n. \n+ Answer: -50 Pred: -50\n----\n+ Solve 121*i + 1690 = 76*i - 128*i + 133 for i. \n+ Answer: -9 Pred: -9\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
-0.08773811906576157,
0.07932937890291214,
-0.0036582706961780787,
0.05702889338135719,
0.09569164365530014,
0.0641089603304863,
0.05636328458786011,
0.1588859111070633,
-0.005988399963825941,
0.15000666677951813,
0.11003997176885605,
0.17310921847820282,
0.04763687402009964,
0.11226430535316467,
-0.024641932919621468,
-0.24727925658226013,
-0.05161777138710022,
-0.004475448280572891,
0.055649034678936005,
0.12357878684997559,
0.07352770864963531,
-0.06291817128658295,
0.0017659872537478805,
-0.03057609312236309,
-0.04001455381512642,
-0.0022407008800655603,
-0.02569112554192543,
-0.06375379115343094,
0.08795884996652603,
0.058302320539951324,
0.049888186156749725,
0.02524661086499691,
0.07173023372888565,
-0.220366433262825,
-0.015773307532072067,
0.05560623109340668,
0.019817575812339783,
0.06812600791454315,
0.09826939553022385,
-0.04018281400203705,
0.023009061813354492,
-0.12636925280094147,
-0.01629762537777424,
0.0485580675303936,
-0.14814910292625427,
-0.18240205943584442,
-0.1127173975110054,
0.11213396489620209,
0.25971341133117676,
0.09015197306871414,
-0.06988866627216339,
0.1093917191028595,
-0.014025936834514141,
0.08887239545583725,
0.217474564909935,
-0.3344385027885437,
-0.07768651843070984,
0.04107781499624252,
-0.000490266946144402,
-0.025648942217230797,
0.0006064450135454535,
-0.008613758720457554,
0.019794877618551254,
-0.019235307350754738,
-0.026468155905604362,
-0.08634636551141739,
0.026400869712233543,
-0.012281842529773712,
-0.16226226091384888,
-0.07908660173416138,
0.003126086201518774,
0.04752751812338829,
-0.05117132514715195,
-0.04081113636493683,
-0.09309665858745575,
-0.02040696144104004,
-0.026905644685029984,
-0.03422093018889427,
-0.013792757876217365,
-0.0791589617729187,
0.05651275813579559,
-0.03336969390511513,
-0.06199939176440239,
-0.08661521226167679,
-0.0207491647452116,
0.1420571357011795,
0.0536067858338356,
-0.014234263449907303,
0.03534139692783356,
0.07948122918605804,
-0.1884009689092636,
-0.1534324437379837,
0.04019014909863472,
0.04807950183749199,
-0.18346178531646729,
-0.04999062791466713,
-0.040235597640275955,
-0.12109262496232986,
-0.03902272507548332,
0.17716920375823975,
-0.0035134945064783096,
0.08378861099481583,
0.08025918155908585,
-0.009827826172113419,
0.020709337666630745,
0.1287233680486679,
-0.1600857824087143,
-0.07312534749507904,
-0.040107615292072296,
0.03361627832055092,
0.0173476655036211,
-0.022198213264346123,
-0.021410200744867325,
-0.06500639766454697,
0.05947243794798851,
0.08026091754436493,
0.07326202839612961,
0.0024624678771942854,
-0.059635281562805176,
-0.06463239341974258,
-0.026940127834677696,
-0.11437033116817474,
0.03148283064365387,
0.007626842241734266,
-0.06380794197320938,
-0.02583618089556694,
0.02401181496679783,
-0.0010858228197321296,
-0.15641999244689941,
0.09478463232517242,
-0.03866450861096382,
-0.008218643255531788,
-0.08760283142328262,
-0.15039537847042084,
0.02123423106968403,
-0.05474911630153656,
-0.03495047986507416,
-0.025563832372426987,
-0.06271295249462128,
-0.09084552526473999,
0.059954144060611725,
-0.11182449758052826,
-0.059318944811820984,
-0.05338657647371292,
-0.018923673778772354,
0.0020889390725642443,
-0.04226405546069145,
0.09587347507476807,
0.02505730465054512,
0.07252787798643112,
0.09938410669565201,
0.0721803531050682,
0.07746491581201553,
0.043916814029216766,
-0.01518892589956522,
0.11256350576877594,
-0.13149909675121307,
0.07424525916576385,
-0.06581860780715942,
-0.04078080505132675,
-0.24758344888687134,
-0.07245612889528275,
0.13414567708969116,
0.012349016033113003,
0.16769972443580627,
0.07099417597055435,
-0.032273855060338974,
0.018872462213039398,
0.11169715225696564,
-0.014793895184993744,
-0.17816370725631714,
0.09736555069684982,
0.007002388592809439,
0.06102890893816948,
-0.010948468931019306,
0.1080804243683815,
0.12697617709636688,
-0.015093684196472168,
-0.02149106375873089,
-0.011434202082455158,
0.05642232671380043,
-0.000673765258397907,
0.03888334706425667,
-0.03359859809279442,
-0.07243430614471436,
-0.056609511375427246,
-0.15142089128494263,
-0.014077594503760338,
-0.06195136532187462,
-0.061016298830509186,
0.028683610260486603,
-0.025877444073557854,
-0.0005899850511923432,
0.05682678520679474,
0.05460917204618454,
-0.020136499777436256,
-0.13271711766719818,
0.07706446200609207,
0.04968423768877983,
-0.07486463338136673,
0.0003223009407520294,
-0.08183499425649643,
0.035006552934646606,
-0.12748731672763824,
0.02953016757965088,
-0.19457991421222687,
-0.035215362906455994,
0.014844308607280254,
-0.03715460002422333,
0.01943887583911419,
-0.010262101888656616,
0.05849229544401169,
0.036223284900188446,
-0.022290362045168877,
-0.05712394043803215,
0.01568952575325966,
0.013927647843956947,
-0.10281170159578323,
-0.06644754111766815,
-0.12827394902706146,
0.010416596196591854,
0.10239209979772568,
-0.044861845672130585,
0.006258375011384487,
-0.07778768241405487,
0.055061545222997665,
-0.09331169724464417,
0.012090703472495079,
0.00673898309469223,
0.06039637327194214,
0.025602320209145546,
-0.005850650370121002,
0.07307378202676773,
-0.05607737973332405,
-0.12568382918834686,
-0.042538121342659,
-0.17098572850227356,
-0.12924619019031525,
0.043899960815906525,
-0.08614785224199295,
-0.11407112330198288,
0.012723452411592007,
-0.01050531305372715,
-0.03244433179497719,
-0.004182211123406887,
-0.040218938142061234,
0.15328575670719147,
0.09207305312156677,
0.05311555787920952,
-0.04346780851483345,
-0.04134806990623474,
0.023620232939720154,
-0.05038375034928322,
0.012078845873475075,
0.2027319222688675,
0.09628523886203766,
-0.11113596707582474,
0.034035563468933105,
0.09194330871105194,
-0.10103575885295868,
-0.008151322603225708,
-0.04479562118649483,
-0.11550037562847137,
-0.09380991011857986,
0.10440889745950699,
0.08186732232570648,
0.006653480231761932,
-0.08557344973087311,
0.00941670872271061,
0.030483581125736237,
-0.02938242442905903,
-0.0013194528874009848,
-0.14894096553325653,
0.020109809935092926,
0.04001452401280403,
-0.031358860433101654,
0.007558905053883791,
0.017000891268253326,
-0.030475078150629997,
0.03862057253718376,
0.03824128210544586,
0.019065039232373238,
-0.0016131356824189425,
-0.043846581131219864,
-0.12863166630268097,
0.22911079227924347,
-0.054068487137556076,
-0.11914391070604324,
-0.09648897498846054,
0.021044699475169182,
-0.03759995847940445,
-0.04270029440522194,
0.025952652096748352,
-0.044701289385557175,
-0.05438564345240593,
-0.06341788172721863,
0.12416943907737732,
-0.058863550424575806,
-0.021193597465753555,
-0.03233348950743675,
-0.07180795818567276,
0.01604706235229969,
-0.09390134364366531,
0.008870644494891167,
0.006729536689817905,
-0.08026866614818573,
0.07424432039260864,
-0.017500514164566994,
0.10286477208137512,
0.1450473815202713,
-0.04541533440351486,
0.04899807274341583,
-0.014419104903936386,
0.1948722004890442,
-0.04996413737535477,
0.08271509408950806,
0.15429630875587463,
-0.022993046790361404,
0.07464270293712616,
0.11994581669569016,
0.03557923063635826,
-0.050936780869960785,
0.045089662075042725,
0.10606690496206284,
0.003530611749738455,
-0.22694846987724304,
-0.02135750651359558,
-0.04672493413090706,
0.0741477906703949,
0.11607521772384644,
-0.030514739453792572,
-0.08060657232999802,
0.09383299201726913,
0.005799511447548866,
-0.009247793816030025,
-0.011550822295248508,
0.09374651312828064,
0.17199906706809998,
0.0345049723982811,
0.0979878306388855,
-0.005545285530388355,
-0.03277994692325592,
-0.002197310095652938,
0.02295357920229435,
0.07508856058120728,
-0.02668524719774723,
0.22864946722984314,
0.0638049840927124,
0.07720022648572922,
-0.05115605145692825,
0.10734479874372482,
-0.08935962617397308,
0.02611682005226612,
0.0027459098491817713,
-0.05926341935992241,
-0.0664312094449997,
0.03770868107676506,
0.06855691969394684,
0.01682036556303501,
-0.08182884752750397,
0.022559747099876404,
-0.0007861059275455773,
0.16877757012844086,
0.12123067677021027,
-0.2064848244190216,
0.0018653897568583488,
0.03805386647582054,
-0.03551406040787697,
-0.0400584451854229,
-0.004391710739582777,
-0.03405798226594925,
-0.0741681158542633,
0.07549414783716202,
-0.08833778649568558,
0.09513209015130997,
-0.04556171968579292,
0.009549729526042938,
0.037298623472452164,
0.05297074466943741,
0.029926855117082596,
0.12924566864967346,
-0.19822455942630768,
0.15295414626598358,
0.05575043708086014,
0.014508138410747051,
-0.02607983537018299,
0.07156479358673096,
-0.07220618426799774,
-0.08296826481819153,
0.15736040472984314,
-0.01457573939114809,
0.1265479475259781,
-0.13125871121883392,
-0.008626691065728664,
0.012404168024659157,
0.07748813927173615,
-0.10422025620937347,
0.1322246938943863,
0.00919364858418703,
-0.03616028279066086,
-0.017942404374480247,
0.10535619407892227,
-0.0665402039885521,
-0.09354907274246216,
0.08775056898593903,
-0.10790053755044937,
-0.013765599578619003,
-0.025774206966161728,
-0.058142125606536865,
-0.02997366338968277,
0.18339338898658752,
0.005260416306555271,
-0.059387288987636566,
-0.0888582393527031,
0.09869769215583801,
0.17938551306724548,
-0.12317759543657303,
0.00877510104328394,
-0.008255714550614357,
-0.052139587700366974,
-0.056808602064847946,
0.007197624072432518,
0.16114339232444763,
-0.021423334255814552,
-0.13056392967700958,
-0.0382511205971241,
0.14003349840641022,
-0.011267056688666344,
0.04775385186076164,
-0.012242325581610203,
0.06485527753829956,
-0.01699572429060936,
-0.1191944107413292,
0.02114422619342804,
-0.03855904936790466,
0.013898886740207672,
-0.03274662792682648,
-0.02082018554210663,
0.0990486666560173,
-0.060176748782396317,
0.019901515915989876,
0.15231619775295258,
0.3778603971004486,
-0.0837152823805809,
-0.06005425006151199,
0.10481350123882294,
-0.016713155433535576,
-0.20334811508655548,
-0.06411296874284744,
0.1028658077120781,
0.04700465872883797,
0.0044461386278271675,
-0.11723613739013672,
0.05424291267991066,
0.05488703399896622,
-0.008950167335569859,
-0.10306400805711746,
-0.35179591178894043,
-0.10485237091779709,
0.13593164086341858,
0.1736847460269928,
-0.03858179226517677,
-0.19659559428691864,
-0.04719626531004906,
-0.004890136420726776,
-0.12236600369215012,
0.1559154987335205,
-0.037788428366184235,
0.08087914437055588,
-0.005053276661783457,
0.002467106329277158,
0.05591851472854614,
-0.0658838227391243,
0.12618891894817352,
0.038312967866659164,
-0.015895739197731018,
-0.023569777607917786,
-0.007930971682071686,
0.06626972556114197,
-0.06517995148897171,
0.11604025959968567,
-0.021467478945851326,
0.0685923844575882,
-0.19684845209121704,
-0.06444887071847916,
-0.06471876055002213,
0.0035099247470498085,
-0.11432050168514252,
-0.08665820956230164,
0.005604390986263752,
0.004858082160353661,
0.06589210033416748,
-0.012419435195624828,
0.0667463093996048,
-0.008798136375844479,
0.03998439013957977,
0.22925403714179993,
0.12488636374473572,
0.08112768083810806,
-0.1311366707086563,
0.08000728487968445,
0.02298399619758129,
0.055934466421604156,
-0.16892462968826294,
0.04374147206544876,
0.16625694930553436,
0.07104253023862839,
0.11272334307432175,
0.02156253159046173,
-0.14513233304023743,
-0.04315430298447609,
-0.011390930972993374,
-0.10050107538700104,
-0.22473594546318054,
0.0004996610223315656,
-0.020030906423926353,
-0.11172078549861908,
-0.02396448887884617,
0.10295291244983673,
-0.0005718435277231038,
-0.06138266995549202,
0.07486072927713394,
0.049828946590423584,
-0.013958840630948544,
0.22462348639965057,
0.044335391372442245,
0.10108193010091782,
-0.03237510100007057,
0.016831133514642715,
0.10347340255975723,
-0.12883131206035614,
0.005574277602136135,
0.2240164577960968,
-0.02557068131864071,
-0.0943719670176506,
-0.0011566273169592023,
0.006280485540628433,
-0.0689220279455185,
0.03604311868548393,
-0.032288700342178345,
-0.0917072668671608,
0.018176542595028877,
0.013763758353888988,
0.016703465953469276,
-0.02823215164244175,
0.016646545380353928,
-0.02200712449848652,
-0.11138604581356049,
0.13146832585334778,
0.09852680563926697,
0.06287238001823425,
0.01921752281486988,
0.03335019573569298,
-0.017557034268975258,
0.06527706980705261,
0.015088648535311222,
0.0009101852774620056,
-0.15191377699375153,
0.039203427731990814,
-0.07455050200223923,
-0.020553909242153168,
-0.11178052425384521,
-0.011713885702192783,
-0.012631821446120739,
0.023897835984826088,
0.037778180092573166,
-0.0031152733135968447,
-0.0754772424697876,
-0.09624713659286499,
-0.048406340181827545,
0.03383031114935875,
-0.10722281038761139,
-0.04052922502160072,
0.028094815090298653,
-0.06615396589040756,
0.10189571976661682,
-0.07733273506164551,
0.04160922393202782,
-0.002015991136431694,
-0.020653557032346725,
-0.013064528815448284,
-0.016451625153422356,
0.02337687462568283,
0.04714883863925934,
-0.1758197396993637,
0.01726273074746132,
-0.06881057471036911,
0.010334830731153488,
-0.025821560993790627,
0.03001348488032818,
-0.14270827174186707,
0.03282304108142853,
-0.028716305270791054,
-0.09959741681814194,
-0.08967412263154984,
0.06808524578809738,
0.0064227222464978695,
0.006624164059758186,
0.08228511363267899,
-0.05201219394803047,
0.13108699023723602,
-0.15243251621723175,
-0.02804851345717907,
0.010794784873723984,
0.049090396612882614,
-0.01813914254307747,
-0.10677780210971832,
0.07621922343969345,
-0.10266613960266113,
-0.08657429367303848,
-0.00868245679885149,
0.130538210272789,
0.011903049424290657,
-0.10507901012897491,
0.1159127727150917,
0.0337170735001564,
0.20045027136802673,
-0.02398701198399067,
-0.011353466659784317,
-0.04933600127696991,
0.05979671701788902,
-0.05586618557572365,
0.11889228969812393,
0.0642322227358818,
0.06565869599580765,
0.054378263652324677,
0.046938128769397736,
0.06530502438545227,
-0.11293981224298477,
-0.05403447523713112,
0.10307085514068604,
0.020921772345900536,
0.07647138088941574,
-0.030916957184672356,
0.059776294976472855,
0.07309123873710632,
-0.1187446340918541,
0.04985254630446434,
-0.046068161725997925,
-0.13145750761032104,
-0.09201236814260483,
-0.10363205522298813,
-0.07254663854837418,
-0.056194957345724106,
0.02985440194606781,
-0.109589584171772,
0.001089713885448873,
0.02707524411380291,
0.05481632798910141,
-0.022853976115584373,
0.15691618621349335,
0.08982935547828674,
-0.06396155804395676,
0.0062194084748625755,
0.053706973791122437,
0.09173175692558289,
0.03293580934405327,
0.055746328085660934,
0.011402931064367294,
-0.017494505271315575,
0.0447208508849144,
0.03989921882748604,
-0.03155332803726196,
0.052902236580848694,
-0.00421203812584281,
-0.09482672810554504,
-0.029692284762859344,
0.022024694830179214,
0.10148512572050095,
0.16784615814685822,
0.027077019214630127,
-0.028882527723908424,
-0.05369960889220238,
0.1139165535569191,
-0.07770613580942154,
-0.07656560838222504,
-0.07129938155412674,
0.3135010004043579,
0.05071765184402466,
0.05614762380719185,
0.014419235289096832,
-0.12970146536827087,
-0.02809049002826214,
0.10627588629722595,
0.09760240465402603,
0.000266995164565742,
-0.02434476651251316,
0.0864647924900055,
0.007338726427406073,
0.016162080690264702,
0.062306080013513565,
0.037674907594919205,
0.17336075007915497,
-0.08088739961385727,
0.07147374749183655,
-0.02083270251750946,
-0.1019294485449791,
-0.0009715347550809383,
0.16676224768161774,
0.07440850138664246,
0.020908281207084656,
0.001505135907791555,
0.1343478113412857,
-0.03960787504911423,
-0.10188395529985428,
0.09475955367088318,
-0.14802801609039307,
-0.1804935336112976,
-0.021287012845277786,
0.07859641313552856,
0.019324999302625656,
0.1349562555551529,
-0.030655458569526672,
-0.014569112099707127,
0.1547412872314453,
0.0450146347284317,
-0.08684050291776657,
-0.062375206500291824,
0.038007549941539764,
-0.09243012219667435,
0.15434598922729492,
0.008572053164243698,
0.07402745634317398,
0.156559556722641,
-0.04032917320728302,
-0.1077084094285965,
0.08643841743469238,
0.11313466727733612,
-0.0727117732167244,
0.1227089986205101,
0.09448815137147903,
0.007121977396309376,
0.0975368395447731,
0.03899608924984932,
-0.22835330665111542,
-0.01658119447529316,
0.029233021661639214,
0.018337158486247063,
-0.17281901836395264,
-0.024124834686517715,
-0.08419738709926605,
0.13893473148345947,
0.1900421679019928,
-0.05832385644316673,
0.014919553883373737,
-0.07878194004297256,
-0.009475256316363811,
-0.0315069817006588,
0.2018774300813675,
-0.04739530012011528,
-0.0881907269358635,
0.057495858520269394,
-0.06062798574566841,
0.0683274120092392,
-0.1637382209300995,
-0.017129207029938698,
0.03947009518742561,
-0.04707742854952812,
-0.05674554407596588,
0.0907927006483078,
0.053124405443668365,
0.031975157558918,
-0.04617901146411896,
-0.2568216323852539,
-0.04692026600241661,
0.12887056171894073,
-0.12549808621406555,
-0.09771600365638733
] |
null | null |
transformers
|
# algebra_linear_1d_composed
---
language: en
datasets:
- algebra_linear_1d_composed
---
This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/algebra_linear_1d_composed](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetalgebra_linear_1d_composed) for solving **algebra linear 1d composed equations** mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/algebra_linear_1d_composed")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/algebra_linear_1d_composed")
```
You can then use this model to solve algebra 1d equations into numbers.
```python
query = "Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c."
input_text = f"{query} </s>"
features = tokenizer([input_text], return_tensors='pt')
model.to('cuda')
output = model.generate(input_ids=features['input_ids'].cuda(),
attention_mask=features['attention_mask'].cuda())
tokenizer.decode(output[0])
# <pad> 5</s>
```
Another examples:
+ Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c.
+ Answer: 5 Pred: 5
----
+ Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s**2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i.
+ Answer: 5 Pred: 5
----
+ Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v.
+ Answer: 0 Pred: 0
----
+ Let a(h) = -34*h**3 - 15 + 3*h + 36*h**3 + 8*h**2 + 5*h**2. Let r be a(-6). Solve 2*z = r*z for z.
+ Answer: 0 Pred: 0
----
+ Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y.
+ Answer: 5 Pred: 5
----
+ Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j.
+ Answer: -2 Pred: -2
----
+ Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p.
+ Answer: 0 Pred: 0
----
+ Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k.
+ Answer: -3 Pred: -3
----
+ Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p.
+ Answer: -2 Pred: -2
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
text2text-generation
|
dbernsohn/algebra_linear_1d_composed
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# algebra_linear_1d_composed
---
language: en
datasets:
- algebra_linear_1d_composed
---
This is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d_composed for solving algebra linear 1d composed equations mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to solve algebra 1d equations into numbers.
Another examples:
+ Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c.
+ Answer: 5 Pred: 5
----
+ Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i.
+ Answer: 5 Pred: 5
----
+ Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v.
+ Answer: 0 Pred: 0
----
+ Let a(h) = -34*h3 - 15 + 3*h + 36*h3 + 8*h2 + 5*h2. Let r be a(-6). Solve 2*z = r*z for z.
+ Answer: 0 Pred: 0
----
+ Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y.
+ Answer: 5 Pred: 5
----
+ Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j.
+ Answer: -2 Pred: -2
----
+ Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p.
+ Answer: 0 Pred: 0
----
+ Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k.
+ Answer: -3 Pred: -3
----
+ Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p.
+ Answer: -2 Pred: -2
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# algebra_linear_1d_composed\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d_composed\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d_composed for solving algebra linear 1d composed equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c.\n+ Answer: 5 Pred: 5\n----\n+ Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i.\n+ Answer: 5 Pred: 5\n----\n+ Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v.\n+ Answer: 0 Pred: 0\n----\n+ Let a(h) = -34*h3 - 15 + 3*h + 36*h3 + 8*h2 + 5*h2. Let r be a(-6). Solve 2*z = r*z for z.\n+ Answer: 0 Pred: 0\n----\n+ Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y.\n+ Answer: 5 Pred: 5\n----\n+ Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j.\n+ Answer: -2 Pred: -2\n----\n+ Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p.\n+ Answer: 0 Pred: 0\n----\n+ Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k.\n+ Answer: -3 Pred: -3\n----\n+ Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p.\n+ Answer: -2 Pred: -2\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# algebra_linear_1d_composed\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d_composed\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d_composed for solving algebra linear 1d composed equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c.\n+ Answer: 5 Pred: 5\n----\n+ Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i.\n+ Answer: 5 Pred: 5\n----\n+ Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v.\n+ Answer: 0 Pred: 0\n----\n+ Let a(h) = -34*h3 - 15 + 3*h + 36*h3 + 8*h2 + 5*h2. Let r be a(-6). Solve 2*z = r*z for z.\n+ Answer: 0 Pred: 0\n----\n+ Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y.\n+ Answer: 5 Pred: 5\n----\n+ Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j.\n+ Answer: -2 Pred: -2\n----\n+ Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p.\n+ Answer: 0 Pred: 0\n----\n+ Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k.\n+ Answer: -3 Pred: -3\n----\n+ Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p.\n+ Answer: -2 Pred: -2\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
48,
623
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.01584368571639061,
0.001455417019315064,
-0.00658801756799221,
0.0177968367934227,
0.18000324070453644,
0.01899094320833683,
0.1102970764040947,
0.13923293352127075,
-0.029492201283574104,
-0.031411342322826385,
0.1258108913898468,
0.215000182390213,
-0.002026807749643922,
0.09281328320503235,
-0.09747900068759918,
-0.26333776116371155,
0.035797640681266785,
0.06643600016832352,
0.01654808409512043,
0.13231700658798218,
0.07867445051670074,
-0.06135464087128639,
0.09729219973087311,
-0.03548338636755943,
-0.1792060285806656,
0.056830670684576035,
0.06633275002241135,
-0.14007478952407837,
0.12120860069990158,
0.05082603916525841,
0.11879663914442062,
0.03541290760040283,
-0.049473561346530914,
-0.12151949107646942,
0.027005361393094063,
0.036254558712244034,
-0.0702618658542633,
0.05806567892432213,
0.12953147292137146,
-0.09849721938371658,
0.101417675614357,
0.05899258330464363,
-0.011092896573245525,
0.06627913564443588,
-0.1479889154434204,
0.00348502560518682,
-0.010794720612466335,
0.021929796785116196,
0.07188789546489716,
0.09843083471059799,
-0.011102980934083462,
0.12869638204574585,
-0.09904436022043228,
0.14108110964298248,
0.1505395472049713,
-0.3118693232536316,
0.005070185288786888,
0.04695354029536247,
0.043711405247449875,
0.07051856815814972,
-0.00885665975511074,
0.03730452060699463,
0.03216231241822243,
0.03300926089286804,
0.03037545457482338,
-0.07585509866476059,
-0.1657770276069641,
0.04152299836277962,
-0.08708652853965759,
-0.0615064837038517,
0.23453429341316223,
-0.06484062969684601,
0.066205233335495,
-0.0072464910335838795,
-0.13153931498527527,
-0.06954485923051834,
0.0006044790497981012,
-0.0053634620271623135,
-0.055698949843645096,
0.06370817124843597,
0.016068486496806145,
-0.056699495762586594,
-0.1428028792142868,
-0.010085990652441978,
-0.20030196011066437,
0.12700670957565308,
0.0098763108253479,
0.055072084069252014,
-0.23676714301109314,
0.09703067690134048,
0.05306711047887802,
-0.09924419224262238,
0.062389008700847626,
-0.08943060785531998,
0.014000056311488152,
-0.02474105730652809,
-0.06801413744688034,
-0.1568288505077362,
0.06617090106010437,
0.08920741081237793,
0.003721588756889105,
0.020913373678922653,
-0.08072061836719513,
0.07540135085582733,
0.015950961038470268,
0.08084282279014587,
-0.009468162432312965,
-0.02545289881527424,
0.050731536000967026,
-0.13451236486434937,
-0.00853751040995121,
-0.06626977026462555,
-0.15002763271331787,
-0.07248537242412567,
0.08783774077892303,
0.09340707957744598,
0.024510055780410767,
0.09635060280561447,
-0.0332786962389946,
-0.04203520715236664,
0.009204940870404243,
-0.09221477061510086,
-0.024659397080540657,
0.0008180328877642751,
0.006082381121814251,
0.14675909280776978,
0.02296186424791813,
0.007892758585512638,
-0.17018215358257294,
0.06483504176139832,
-0.0723656713962555,
-0.007938898168504238,
-0.029325438663363457,
-0.07534618675708771,
0.023915085941553116,
-0.10881388932466507,
0.008133405819535255,
-0.17433200776576996,
-0.16765841841697693,
0.01697476953268051,
0.007396905682981014,
-0.018866462633013725,
-0.043013010174036026,
-0.045346371829509735,
-0.03770101070404053,
0.04327743873000145,
-0.07020818442106247,
0.010033725760877132,
-0.04259585589170456,
0.10675564408302307,
-0.0398472361266613,
0.06604313105344772,
-0.1241411417722702,
0.08126731216907501,
-0.12840037047863007,
-0.026247713714838028,
-0.06916461884975433,
0.0695473924279213,
0.03665204346179962,
0.12047890573740005,
-0.03775748983025551,
-0.03622163087129593,
-0.07566536217927933,
0.04284011945128441,
-0.01894138753414154,
0.1950719952583313,
-0.0944138839840889,
-0.10338135808706284,
0.24115116894245148,
-0.07720785588026047,
-0.16225671768188477,
0.08871348202228546,
0.01112399436533451,
0.0527188703417778,
0.09158273041248322,
0.17049458622932434,
0.044303521513938904,
-0.007278476841747761,
0.0970718041062355,
0.1028069406747818,
-0.11937293410301208,
-0.10302774608135223,
0.002267509698867798,
-0.020705346018075943,
-0.11959504336118698,
0.04289879649877548,
0.09645403176546097,
0.07236005365848541,
-0.05477796122431755,
-0.03351253643631935,
-0.04923287779092789,
-0.007655630353838205,
0.1011999323964119,
0.004759210627526045,
0.13131408393383026,
-0.06056664139032364,
-0.016454286873340607,
0.00607975572347641,
-0.029107315465807915,
-0.03001979924738407,
0.04808073490858078,
-0.027159245684742928,
0.11719837784767151,
-0.03463059291243553,
0.043614711612463,
-0.20667698979377747,
-0.08273608982563019,
-0.011199901811778545,
0.16215083003044128,
-0.00014803845260757953,
0.09622485190629959,
0.05017630010843277,
-0.026423487812280655,
-0.013082671910524368,
-0.020495356991887093,
0.14194169640541077,
-0.008744661696255207,
-0.07192710041999817,
-0.055666014552116394,
0.05686090514063835,
-0.056457314640283585,
-0.029490424320101738,
-0.06336628645658493,
0.016674358397722244,
0.022723432630300522,
0.12466312199831009,
0.024511994794011116,
0.060258712619543076,
-0.019767967984080315,
0.026875387877225876,
-0.09027257561683655,
0.012787343002855778,
0.10328754037618637,
-0.005430325400084257,
-0.06139841303229332,
0.2012202888727188,
-0.18243330717086792,
0.21768754720687866,
0.1899390071630478,
-0.2988763451576233,
0.0007227785536088049,
-0.05822010710835457,
-0.0336349755525589,
0.0059656258672475815,
0.05502323433756828,
-0.03447169065475464,
0.08369144052267075,
0.0008040695101954043,
0.20492856204509735,
-0.06399808824062347,
-0.05498965084552765,
0.0025857435539364815,
-0.05458337441086769,
-0.006101091392338276,
0.058100759983062744,
0.0824960395693779,
-0.17706909775733948,
0.1713913381099701,
0.20838424563407898,
0.023575296625494957,
0.17638693749904633,
-0.007809492759406567,
-0.04934080317616463,
0.08402703702449799,
0.006972316186875105,
-0.032568447291851044,
-0.10796601325273514,
-0.1734510064125061,
-0.016349755227565765,
0.0808510109782219,
0.0383298397064209,
0.09945333003997803,
-0.11086979508399963,
-0.022686339914798737,
-0.005985935218632221,
-0.0060494341887533665,
-0.008344912901520729,
0.09246525168418884,
0.08367523550987244,
0.14147034287452698,
-0.015902556478977203,
-0.008576065301895142,
0.11812435835599899,
0.015694094821810722,
-0.12598107755184174,
0.19254222512245178,
-0.1325615793466568,
-0.3495909571647644,
-0.1631333827972412,
-0.16477428376674652,
-0.043477918952703476,
0.048511527478694916,
0.11342941224575043,
-0.10511619597673416,
-0.02352173998951912,
-0.0007881404599174857,
0.08415862917900085,
-0.07211752235889435,
0.03677205741405487,
-0.08311079442501068,
0.06613492220640182,
-0.06391098350286484,
-0.08130958676338196,
-0.04755308851599693,
-0.013113722205162048,
-0.0506163015961647,
0.15241199731826782,
-0.13060742616653442,
0.05517926067113876,
0.20086060464382172,
-0.008659793995320797,
0.05646828934550285,
-0.0447811521589756,
0.1698468029499054,
-0.06439661234617233,
0.014364821836352348,
0.22857394814491272,
-0.06645470857620239,
0.07465333491563797,
0.13026019930839539,
-0.017004651948809624,
-0.06887000799179077,
0.04647034779191017,
-0.03181997686624527,
-0.08305076509714127,
-0.27305132150650024,
-0.11097732186317444,
-0.12417944520711899,
0.08551718294620514,
0.060253627598285675,
0.050218936055898666,
0.1729225218296051,
0.07009439915418625,
-0.011698170565068722,
0.04006649926304817,
0.008571630343794823,
0.0824633464217186,
0.19053572416305542,
-0.008197087794542313,
0.13242574036121368,
-0.06245150417089462,
-0.11769289523363113,
0.08968717604875565,
0.05989821255207062,
0.12555105984210968,
0.04239042103290558,
0.046467121690511703,
0.009043761529028416,
0.07225343585014343,
0.13442648947238922,
0.1651877760887146,
0.034123022109270096,
-0.0027062329463660717,
-0.01349344477057457,
-0.028245382010936737,
-0.040193621069192886,
0.037729669362306595,
0.013470759615302086,
-0.12968936562538147,
-0.09492611140012741,
-0.07551674544811249,
0.07577058672904968,
0.12997229397296906,
0.0744793638586998,
-0.240804523229599,
0.012753864750266075,
0.06319929659366608,
-0.046554870903491974,
-0.11563625931739807,
0.08299679309129715,
-0.003961589653044939,
-0.13062408566474915,
0.06372487545013428,
-0.05805215612053871,
0.12147562950849533,
-0.028284739702939987,
0.09374229609966278,
-0.03364879637956619,
-0.07243189960718155,
0.018441040068864822,
0.1096850335597992,
-0.33529332280158997,
0.20487374067306519,
0.0006690678419545293,
-0.06490825116634369,
-0.11783778667449951,
-0.0044849165715277195,
-0.0012578379828482866,
0.11027327179908752,
0.09952930361032486,
-0.003345120931044221,
-0.03474462404847145,
-0.09134820103645325,
-0.0031049586832523346,
0.016545293852686882,
0.14250630140304565,
-0.025273242965340614,
0.0148016894236207,
-0.059562280774116516,
-0.021893899887800217,
-0.013236827217042446,
-0.013637681491672993,
-0.002603176049888134,
-0.1513184756040573,
0.0671682059764862,
0.020377542823553085,
0.06982939690351486,
0.01960124634206295,
-0.02438407950103283,
-0.06273293495178223,
0.21248282492160797,
-0.06458115577697754,
-0.10695376992225647,
-0.12842507660388947,
-0.04645165428519249,
0.05069807916879654,
-0.0799480676651001,
0.05590132996439934,
-0.07412241399288177,
0.026752561330795288,
-0.0460817776620388,
-0.2500396966934204,
0.12516821920871735,
-0.08440219610929489,
-0.04263054579496384,
-0.039096806198358536,
0.18710920214653015,
-0.09238360822200775,
0.0015196007443591952,
0.024500641971826553,
-0.00008093049837043509,
-0.08618257939815521,
-0.05626978352665901,
-0.008611418306827545,
-0.01370612159371376,
0.0605587363243103,
0.04142594337463379,
-0.09551963210105896,
-0.06058591976761818,
-0.04161534458398819,
-0.0018586971564218402,
0.33403095602989197,
0.09810057282447815,
-0.046292744576931,
0.17393392324447632,
0.10699018090963364,
-0.08708086609840393,
-0.30292707681655884,
-0.07725819945335388,
-0.0799851045012474,
-0.026687202975153923,
-0.028951935470104218,
-0.16540394723415375,
0.0818692147731781,
-0.0030985758639872074,
0.010349465534090996,
0.10349910706281662,
-0.24794204533100128,
-0.09147637337446213,
0.1472831815481186,
0.023999102413654327,
0.3351094424724579,
-0.11293166130781174,
-0.09755206853151321,
-0.04931047186255455,
-0.14179958403110504,
0.17238929867744446,
-0.054965659976005554,
0.08938152343034744,
-0.03220284730195999,
0.1103312224149704,
0.057209331542253494,
-0.038672249764204025,
0.03753164783120155,
0.01280028186738491,
0.004070690833032131,
-0.11656955629587173,
-0.03721853345632553,
0.05927279219031334,
-0.01239687204360962,
0.0431542843580246,
-0.030626775696873665,
0.05042644962668419,
-0.11610346287488937,
-0.03559141978621483,
-0.09718530625104904,
0.05527614802122116,
0.033209703862667084,
-0.07230573892593384,
0.02535100467503071,
-0.07929795235395432,
0.026679834350943565,
-0.011463316157460213,
0.19073231518268585,
-0.04869036376476288,
0.16655586659908295,
0.15388649702072144,
0.13591068983078003,
-0.10760082304477692,
0.03837193548679352,
-0.07492130249738693,
-0.06832669675350189,
0.06800366938114166,
-0.10502270609140396,
0.06655241549015045,
0.12330719083547592,
-0.0411357618868351,
0.06374823302030563,
0.11320103704929352,
0.02062961272895336,
-0.01765989325940609,
0.1385980248451233,
-0.25890034437179565,
0.023826781660318375,
-0.09969114512205124,
-0.053946852684020996,
0.045324306935071945,
0.06959566473960876,
0.1803196519613266,
0.01996755413711071,
-0.03243176266551018,
-0.010976474732160568,
0.0005780249484814703,
-0.04870473966002464,
0.07170422375202179,
0.021222015842795372,
0.024676067754626274,
-0.1308782398700714,
0.09323612600564957,
0.032887544482946396,
-0.14486797153949738,
0.019849436357617378,
0.19134655594825745,
-0.1371304839849472,
-0.11486499011516571,
0.01224886067211628,
0.11295973509550095,
-0.15867024660110474,
-0.024805627763271332,
-0.06911034882068634,
-0.1232672780752182,
0.09491096436977386,
0.21401236951351166,
0.05331400781869888,
0.1008497029542923,
-0.046942487359046936,
-0.0496317520737648,
-0.04561499506235123,
0.009240290150046349,
0.012895791791379452,
0.030672000721096992,
-0.097745880484581,
0.10578422248363495,
-0.040116216987371445,
0.16213259100914001,
-0.0917268618941307,
-0.06222947686910629,
-0.14983442425727844,
0.03229285031557083,
-0.15211552381515503,
-0.05419791117310524,
-0.06350395083427429,
-0.05325648933649063,
-0.01421641930937767,
-0.009074408560991287,
-0.04453456401824951,
-0.039223432540893555,
-0.1178443431854248,
0.023740172386169434,
-0.04184343293309212,
0.03357211872935295,
-0.07360640168190002,
-0.00745047302916646,
0.0597982257604599,
-0.04032554477453232,
0.12730717658996582,
0.12071295082569122,
-0.11999447643756866,
0.13207589089870453,
-0.13698095083236694,
-0.10772223025560379,
0.10667144507169724,
0.019947899505496025,
0.057580724358558655,
0.08691609650850296,
0.024122396484017372,
0.07328153401613235,
0.017016666010022163,
0.03875018656253815,
0.022994665428996086,
-0.11720026284456253,
0.02915577031672001,
-0.0438992902636528,
-0.14189468324184418,
-0.07547144591808319,
-0.034607090055942535,
0.03158587962388992,
0.008018662221729755,
0.11852530390024185,
-0.053823456168174744,
0.12022940069437027,
-0.07060523331165314,
0.010234953835606575,
0.010690975934267044,
-0.16182446479797363,
-0.06637652963399887,
-0.08411522209644318,
0.032836735248565674,
-0.008235974237322807,
0.18409450352191925,
0.03454678878188133,
0.05747787654399872,
0.02793210744857788,
0.07954391092061996,
0.005215851124376059,
0.020794428884983063,
0.22607649862766266,
0.07304691523313522,
-0.06886540353298187,
-0.1103024035692215,
0.06498146802186966,
0.008004664443433285,
0.04483301192522049,
0.1749526411294937,
0.03727349266409874,
-0.03907724469900131,
0.10007185488939285,
-0.019638560712337494,
0.028130175545811653,
-0.11450393497943878,
-0.17080892622470856,
-0.00801891554147005,
0.07657715678215027,
-0.011517325416207314,
0.0829968973994255,
0.16146962344646454,
-0.019973335787653923,
0.030916273593902588,
-0.009044856764376163,
-0.056131210178136826,
-0.17957162857055664,
-0.1594834178686142,
-0.08296467363834381,
-0.10509900003671646,
-0.0014652428217232227,
-0.10988666117191315,
0.05996263399720192,
0.05867818742990494,
0.06662456691265106,
-0.06648626923561096,
0.10458429902791977,
0.06543407589197159,
-0.11919818818569183,
0.07942314445972443,
-0.028797946870326996,
0.08120650798082352,
0.000997701776213944,
-0.009244642220437527,
-0.08453210443258286,
0.008097044192254543,
-0.03108268976211548,
0.04917836934328079,
-0.047017112374305725,
0.02154003456234932,
-0.15374121069908142,
-0.1096470057964325,
-0.02257644757628441,
0.05983618274331093,
-0.0428229495882988,
0.12894387543201447,
0.017068613320589066,
-0.030336754396557808,
0.02801426127552986,
0.22194334864616394,
-0.08584439754486084,
-0.08055929839611053,
-0.050540681928396225,
0.2432609349489212,
0.06307961791753769,
0.08444320410490036,
0.0028589183930307627,
-0.012717257253825665,
-0.09089452773332596,
0.3591165244579315,
0.2667014002799988,
-0.055692918598651886,
0.02277890220284462,
0.015944819897413254,
0.0347137413918972,
0.11798495799303055,
0.16456447541713715,
0.08827649056911469,
0.25443965196609497,
-0.06533562391996384,
-0.018368344753980637,
-0.014501972123980522,
0.000018250484572490677,
-0.0930345430970192,
0.13507813215255737,
0.04284169152379036,
-0.08161267638206482,
-0.024515492841601372,
0.10017646849155426,
-0.24063174426555634,
0.14782121777534485,
-0.09359890967607498,
-0.16162940859794617,
-0.060918986797332764,
-0.0147289102897048,
0.11586485803127289,
-0.0017279664753004909,
0.08164822310209274,
-0.01215168833732605,
-0.08752647042274475,
0.05363667756319046,
0.029349831864237785,
-0.222853422164917,
0.01617160066962242,
0.05048945173621178,
-0.11925873160362244,
-0.024077240377664566,
-0.011171307414770126,
0.04385644197463989,
0.06714760512113571,
0.07385427504777908,
-0.04466511681675911,
0.046728942543268204,
-0.004126311279833317,
-0.011370057240128517,
0.04598446562886238,
0.06270765513181686,
0.01540715154260397,
-0.09723247587680817,
0.05001823231577873,
-0.1556699126958847,
0.03317674249410629,
-0.01597830280661583,
-0.023336609825491905,
-0.002392916241660714,
-0.005987333599478006,
-0.04110949859023094,
0.057095758616924286,
0.1028817892074585,
-0.008210273459553719,
0.012179257348179817,
-0.09038258343935013,
-0.0342213474214077,
-0.0023632640950381756,
-0.11412134766578674,
-0.09127872437238693,
-0.11541768163442612,
-0.10260939598083496,
0.11215279996395111,
-0.009719906374812126,
-0.2153121829032898,
0.021527882665395737,
-0.1023377850651741,
0.04012138023972511,
-0.21606485545635223,
0.10211227834224701,
0.09086371958255768,
0.011539488099515438,
0.008776325732469559,
-0.008126933127641678,
0.0464082807302475,
0.10446552187204361,
-0.12512299418449402,
-0.09291534125804901
] |
null | null |
transformers
|
# roberta-go
---
language: Go
datasets:
- code_search_net
---
This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **Golang** Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-go")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-go")
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer
)
```
You can then use this model to fill masked words in a Java code.
```python
code = """
package main
import (
"fmt"
"runtime"
)
func main() {
fmt.Print("Go runs on ")
switch os := runtime.<mask>; os {
case "darwin":
fmt.Println("OS X.")
case "linux":
fmt.Println("Linux.")
default:
// freebsd, openbsd,
// plan9, windows...
fmt.Printf("%s.\n", os)
}
}
""".lstrip()
pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)}
sorted(pred.items(), key=lambda kv: kv[1], reverse=True)
[('GOOS', 0.11810332536697388),
('FileInfo', 0.04276798665523529),
('Stdout', 0.03572738170623779),
('Getenv', 0.025064032524824142),
('FileMode', 0.01462600938975811)]
```
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
fill-mask
|
dbernsohn/roberta-go
|
[
"transformers",
"pytorch",
"jax",
"roberta",
"fill-mask",
"arxiv:1907.11692",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1907.11692"
] |
[] |
TAGS
#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-go
---
language: Go
datasets:
- code_search_net
---
This is a roberta pre-trained version on the CodeSearchNet dataset for Golang Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to fill masked words in a Java code.
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# roberta-go\n---\nlanguage: Go\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Golang Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-go\n---\nlanguage: Go\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Golang Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
48,
107
] |
[
"passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-go\n---\nlanguage: Go\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Golang Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
-0.05167168006300926,
0.10989104211330414,
-0.003160676918923855,
0.06567347049713135,
0.19655147194862366,
-0.002706542843952775,
0.054559823125600815,
0.04638488218188286,
-0.04841665178537369,
-0.019733883440494537,
0.1137414500117302,
0.13692040741443634,
-0.002609977964311838,
0.18734575808048248,
-0.0010273170191794634,
-0.2598420977592468,
0.03992965817451477,
0.004834888037294149,
-0.02988274022936821,
0.11405854672193527,
0.10898894816637039,
-0.026304347440600395,
0.08366844803094864,
-0.008976598270237446,
-0.1824789047241211,
-0.010171046480536461,
-0.007938551716506481,
-0.1088055819272995,
0.09725004434585571,
0.00006641593063250184,
0.1301174908876419,
-0.02753361500799656,
0.00044422404607757926,
-0.009406362660229206,
0.048054490238428116,
0.06961207091808319,
-0.00014189579815138131,
0.06296341121196747,
-0.06142725422978401,
-0.04027742147445679,
0.06267250329256058,
-0.030591638758778572,
-0.0028229879681020975,
0.03508245572447777,
-0.14049294590950012,
-0.07551359385251999,
0.010389651171863079,
-0.07966858148574829,
0.050899770110845566,
0.1374286264181137,
-0.00011269345122855157,
0.1820012629032135,
-0.06676004081964493,
0.13154223561286926,
0.17828311026096344,
-0.21506617963314056,
-0.08816343545913696,
0.12471725791692734,
0.07718712091445923,
0.04731899872422218,
-0.011326061561703682,
0.0030625788494944572,
0.030540592968463898,
0.03668498247861862,
0.04722273722290993,
-0.11321425437927246,
-0.2404419332742691,
-0.073268361389637,
-0.1177777498960495,
0.013753298670053482,
0.12787334620952606,
-0.07349500060081482,
-0.04541254788637161,
0.037449244409799576,
-0.13634611666202545,
0.08804478496313095,
-0.00033075103419832885,
0.04980484023690224,
-0.0038996702060103416,
0.0357939749956131,
-0.08166279643774033,
-0.129904642701149,
-0.06727656722068787,
-0.06036277487874031,
-0.13559618592262268,
0.2446339726448059,
0.00007348198414547369,
0.05319209024310112,
-0.15329940617084503,
0.006686478387564421,
-0.08454237878322601,
-0.15241985023021698,
-0.01337416097521782,
-0.05870113894343376,
-0.004436163697391748,
0.02253703400492668,
-0.06457355618476868,
-0.12788617610931396,
0.14096595346927643,
0.12737548351287842,
-0.043981730937957764,
0.033367011696100235,
-0.0691770389676094,
0.03762213513255119,
0.036783378571271896,
0.11824271082878113,
-0.06704418361186981,
-0.09116734564304352,
0.12098762392997742,
-0.12506169080734253,
0.0632399395108223,
-0.06271259486675262,
-0.08793648332357407,
-0.020361555740237236,
-0.0014798978809267282,
0.03534683212637901,
0.056363753974437714,
0.10257343202829361,
-0.003633313113823533,
-0.04416007921099663,
0.02784646488726139,
-0.1071578785777092,
-0.0350135937333107,
-0.0138785969465971,
0.002698963973671198,
-0.07947465777397156,
0.05882105603814125,
0.006209159269928932,
-0.10825417190790176,
-0.00009024949395097792,
-0.06289692968130112,
0.014688295312225819,
-0.08086109906435013,
-0.13680262863636017,
-0.00626835273578763,
-0.16031001508235931,
0.02704278565943241,
-0.16907899081707,
-0.15479348599910736,
-0.015414594672620296,
0.07762779295444489,
-0.019107522442936897,
-0.011703507974743843,
-0.014089692384004593,
-0.05335093289613724,
-0.03852514177560806,
-0.026114897802472115,
0.03050248697400093,
-0.03205764293670654,
0.06920486688613892,
0.03928900137543678,
0.10379805415868759,
-0.14593607187271118,
0.02295178733766079,
-0.17191606760025024,
-0.04095020517706871,
-0.23828251659870148,
0.043221570551395416,
-0.03591960668563843,
0.13274434208869934,
-0.11496205627918243,
-0.04493100568652153,
0.017711881548166275,
0.04125981777906418,
0.08132103085517883,
0.10126391053199768,
-0.10074324905872345,
-0.037140749394893646,
0.18337981402873993,
-0.117278091609478,
-0.0404665507376194,
0.09990932792425156,
-0.0482264943420887,
0.13563482463359833,
0.08568546921014786,
0.17393268644809723,
0.11334820091724396,
-0.04289980232715607,
0.10806574672460556,
0.011123559437692165,
-0.08118005841970444,
-0.13278476893901825,
0.015747543424367905,
0.02970661036670208,
-0.06193597614765167,
0.056054167449474335,
-0.0641137883067131,
0.08562485873699188,
-0.01743568480014801,
-0.03521156683564186,
0.0049927677027881145,
-0.05965902656316757,
-0.02292402647435665,
0.02692393772304058,
0.08828835189342499,
-0.048183027654886246,
-0.020263636484742165,
-0.10066140443086624,
0.059968575835227966,
-0.032987143844366074,
0.03195374086499214,
-0.07225418835878372,
0.02063789963722229,
-0.02924218960106373,
0.045255787670612335,
-0.17885632812976837,
0.02290540374815464,
-0.004283500369638205,
0.10625392943620682,
0.07184294611215591,
-0.08524813503026962,
0.04512149840593338,
-0.004406596999615431,
0.005724359303712845,
0.03288652002811432,
0.054911743849515915,
-0.008017082698643208,
-0.00047129805898293853,
-0.11884462833404541,
0.016673767939209938,
-0.06524302065372467,
0.0636742040514946,
-0.042394738644361496,
0.02468874864280224,
-0.08981460332870483,
0.09696640074253082,
-0.008931959047913551,
-0.02154809795320034,
0.027693159878253937,
0.037757597863674164,
-0.038333699107170105,
-0.04578009247779846,
0.040661320090293884,
0.0662793293595314,
-0.06958439946174622,
0.07690244913101196,
0.006894455756992102,
-0.017649034038186073,
0.14081518352031708,
-0.20719031989574432,
-0.04064096137881279,
0.12452742457389832,
-0.004044384695589542,
0.029392773285508156,
-0.004685009364038706,
0.03848664090037346,
0.1441296488046646,
0.0045527801848948,
0.11136683821678162,
-0.04692436009645462,
0.06346525996923447,
0.03727041557431221,
-0.1254665106534958,
0.038132164627313614,
0.06481187790632248,
0.060263752937316895,
-0.18349681794643402,
0.0713278204202652,
0.03091738373041153,
-0.1466393768787384,
0.200403094291687,
0.030482925474643707,
0.024150913581252098,
-0.03756103292107582,
0.003983357455581427,
0.006265454925596714,
-0.006815541535615921,
-0.19766277074813843,
-0.05161598324775696,
0.032789308577775955,
-0.024928968399763107,
0.051781073212623596,
-0.08618634939193726,
-0.017535090446472168,
-0.057051245123147964,
0.027743550017476082,
-0.0024449045304208994,
0.032628342509269714,
-0.027478232979774475,
0.03704440966248512,
0.015420999377965927,
-0.08084570616483688,
0.07341626286506653,
-0.002116825897246599,
-0.033283334225416183,
0.22668389976024628,
-0.09536144137382507,
-0.26624661684036255,
-0.11254629492759705,
-0.09721379727125168,
-0.06429482251405716,
0.04062004014849663,
0.0660834014415741,
-0.15069609880447388,
-0.028332719579339027,
0.0040160007774829865,
0.018939755856990814,
-0.006798465270549059,
0.023646600544452667,
0.024991938844323158,
0.02862088568508625,
-0.025226881727576256,
-0.10711347311735153,
-0.018731174990534782,
-0.08353761583566666,
-0.09819374978542328,
0.15520291030406952,
-0.09655590355396271,
0.08790463954210281,
0.08950383216142654,
0.01045374758541584,
0.028785111382603645,
0.003324292367324233,
0.20543591678142548,
-0.06587356328964233,
0.015247050672769547,
0.22208617627620697,
-0.009002722799777985,
0.03145518898963928,
0.13059388101100922,
-0.008874365128576756,
-0.10345014184713364,
0.06597515195608139,
-0.025822540745139122,
-0.12042074650526047,
-0.19786235690116882,
-0.08391620218753815,
-0.11685147136449814,
0.007784007582813501,
0.016226613894104958,
0.029935723170638084,
0.005315599963068962,
0.0803176686167717,
0.01700430177152157,
0.03673823922872543,
-0.006104708649218082,
0.08978821337223053,
0.02742060087621212,
-0.019464051350951195,
0.10994036495685577,
-0.0021853684447705746,
-0.08239232003688812,
0.02999664470553398,
0.016045311465859413,
0.17796939611434937,
-0.01888185180723667,
0.11777106672525406,
0.03694549575448036,
0.07238534092903137,
0.052033405750989914,
0.0914592295885086,
-0.03390872851014137,
0.01619107462465763,
-0.03858305886387825,
-0.05591120198369026,
-0.08283095806837082,
-0.005057154223322868,
-0.06007036194205284,
-0.043708886951208115,
0.031494494527578354,
0.060106176882982254,
0.03980393707752228,
0.17720235884189606,
0.016589714214205742,
-0.2535760700702667,
-0.06969529390335083,
0.02243378385901451,
0.032830655574798584,
-0.06828442215919495,
0.04539857432246208,
0.02763073705136776,
-0.07008828967809677,
0.03831423074007034,
-0.00009078611765289679,
0.10102299600839615,
-0.010693504475057125,
0.05650036782026291,
-0.09401898086071014,
0.10229773074388504,
0.009153502993285656,
0.0734022930264473,
-0.2756008803844452,
0.1991053968667984,
-0.010907813906669617,
0.08470038324594498,
-0.08132754266262054,
-0.0008255130960606039,
-0.0017190437065437436,
-0.001261774799786508,
0.11258070170879364,
0.03378978744149208,
0.031687334179878235,
-0.04640786349773407,
-0.0388590469956398,
0.05276941508054733,
0.06545637547969818,
0.006513732951134443,
0.02978350967168808,
0.026292819529771805,
-0.014842569828033447,
-0.021152017638087273,
-0.012207257561385632,
-0.06988295167684555,
-0.03420758619904518,
0.03642633929848671,
0.1259899139404297,
-0.037930235266685486,
-0.012909721583127975,
-0.024659723043441772,
0.08496362715959549,
0.23372787237167358,
0.004847271833568811,
-0.056242551654577255,
-0.10326263308525085,
0.07380557805299759,
0.08018471300601959,
-0.11498133093118668,
0.05141998454928398,
-0.07671297341585159,
-0.008654442615807056,
-0.04808871075510979,
-0.08838338404893875,
0.12887655198574066,
-0.09183716773986816,
-0.039366401731967926,
-0.03716282173991203,
0.06913676112890244,
0.050340622663497925,
0.00025344587629660964,
0.016648301854729652,
0.04739873483777046,
-0.06669171899557114,
-0.09195514023303986,
-0.04539911821484566,
-0.0033456285018473864,
0.005116402171552181,
0.10917376726865768,
-0.045616015791893005,
-0.14405639469623566,
-0.0162284504622221,
-0.013237422332167625,
0.20962759852409363,
0.07442161440849304,
-0.030131051316857338,
0.04725209251046181,
0.23463031649589539,
-0.04503447934985161,
-0.3080732822418213,
-0.00447559729218483,
0.017227260395884514,
0.03171803802251816,
-0.09317658096551895,
-0.2078457772731781,
0.1702500581741333,
-0.01327210571616888,
-0.028728485107421875,
-0.018445871770381927,
-0.12905272841453552,
-0.09306170046329498,
0.15748979151248932,
0.0656757801771164,
0.3723733425140381,
-0.11136823892593384,
-0.03092055395245552,
-0.09863820672035217,
-0.13003116846084595,
0.14543722569942474,
-0.2743598520755768,
0.11882752180099487,
0.032103344798088074,
0.04822731763124466,
0.01308763399720192,
-0.09079214930534363,
0.0532541386783123,
-0.0053816502913832664,
-0.010676898062229156,
-0.06508782505989075,
-0.08393344283103943,
0.12042269855737686,
0.030992237851023674,
0.035058874636888504,
0.057896703481674194,
0.0369236022233963,
0.0022601124364882708,
-0.01435539685189724,
-0.1150142252445221,
0.08200226724147797,
0.01943981647491455,
-0.09533757716417313,
0.016054149717092514,
0.08227355033159256,
0.004944498650729656,
0.038792870938777924,
0.19465404748916626,
-0.04779049754142761,
0.05968228355050087,
0.14635016024112701,
0.010850629769265652,
-0.07490702718496323,
0.12813478708267212,
0.05108446627855301,
-0.03996695578098297,
0.1359240859746933,
-0.1305474042892456,
0.028669381514191628,
0.03305889666080475,
0.050448719412088394,
0.04803384095430374,
0.06127237528562546,
-0.06562378257513046,
0.024425119161605835,
0.06308510899543762,
-0.14203287661075592,
0.0156854297965765,
0.015434066765010357,
-0.09797599166631699,
-0.0063901012763381,
0.1128944531083107,
0.23162740468978882,
-0.03187255561351776,
-0.05675823241472244,
-0.018585383892059326,
0.034603338688611984,
-0.09726939350366592,
0.11941137164831161,
0.06605443358421326,
0.008807897567749023,
-0.14404143393039703,
0.050297196954488754,
0.10957302898168564,
0.07215975970029831,
0.04308972880244255,
0.13680559396743774,
-0.11733308434486389,
-0.09832827001810074,
-0.012469358742237091,
0.11894625425338745,
-0.05249862000346184,
-0.038280148059129715,
-0.11001291871070862,
-0.04253705218434334,
-0.010408277623355389,
0.12760865688323975,
0.09193126112222672,
-0.025410963222384453,
-0.03734534978866577,
0.015123730525374413,
-0.0678967759013176,
-0.015491170808672905,
0.05480950325727463,
0.02487104944884777,
-0.042850516736507416,
0.08504100143909454,
0.00835441891103983,
0.09812120348215103,
-0.07853559404611588,
-0.0480891615152359,
-0.19698552787303925,
0.0663200244307518,
-0.014471285045146942,
0.03328844532370567,
-0.07993610948324203,
-0.021843750029802322,
-0.032390352338552475,
-0.05591193959116936,
-0.05100620165467262,
0.051808759570121765,
-0.040483538061380386,
-0.011532261967658997,
-0.04536617919802666,
-0.0005192433600313962,
-0.07836522161960602,
-0.027906831353902817,
0.06122971326112747,
-0.028740499168634415,
0.09822628647089005,
0.07097199559211731,
-0.08550012111663818,
0.04914635792374611,
-0.22182559967041016,
-0.0719791054725647,
0.06674405187368393,
-0.007929833605885506,
0.0664537325501442,
0.0249665305018425,
0.004357044585049152,
0.03642904385924339,
0.10276531428098679,
-0.015989914536476135,
0.17671257257461548,
-0.10848735272884369,
0.009318430908024311,
0.006071806885302067,
-0.10237929970026016,
-0.03296198695898056,
0.004044732078909874,
0.07553303241729736,
0.07738430052995682,
0.11237679421901703,
-0.04808312654495239,
0.06434771418571472,
-0.0681118369102478,
-0.005679798778146505,
-0.01961158588528633,
-0.12778793275356293,
-0.0690927654504776,
-0.04058517888188362,
0.05419696867465973,
-0.04906512051820755,
0.07830135524272919,
0.06385897845029831,
0.05321618914604187,
-0.0031791727524250746,
0.05524299293756485,
-0.003736252197995782,
0.015254084020853043,
0.09405779838562012,
0.05262351036071777,
-0.012956670485436916,
0.014231978915631771,
0.058930329978466034,
0.0736243724822998,
0.11337979882955551,
0.040471192449331284,
0.09638448059558868,
0.2286148965358734,
0.07928357273340225,
0.0013473420403897762,
0.06838376820087433,
-0.04931037873029709,
-0.04521139711141586,
0.00571606308221817,
0.05989089235663414,
-0.025438548997044563,
-0.036231543868780136,
0.15164083242416382,
-0.03389411419630051,
0.021749677136540413,
0.015100683085620403,
-0.08194755017757416,
-0.1041351929306984,
-0.15356411039829254,
-0.11102709919214249,
-0.0536036342382431,
0.02321496792137623,
-0.10479786992073059,
-0.0370306558907032,
0.04400380700826645,
0.0004920141072943807,
-0.028379829600453377,
0.14193013310432434,
0.1267145723104477,
-0.09384218603372574,
0.05023593828082085,
-0.03632097691297531,
0.05547691509127617,
0.09827710688114166,
-0.025155289098620415,
-0.03208867087960243,
0.12087149173021317,
0.06081075593829155,
0.027598779648542404,
0.02655872330069542,
0.08367426693439484,
-0.12132886052131653,
-0.11220807582139969,
-0.03921688720583916,
0.06118950620293617,
-0.0065200855024158955,
0.1147015169262886,
0.047378018498420715,
-0.050629980862140656,
0.05033552274107933,
0.19394522905349731,
-0.036110810935497284,
-0.1602233648300171,
-0.12445229291915894,
0.22606584429740906,
0.052914097905159,
0.0007334229885600507,
-0.05389689654111862,
-0.061774201691150665,
-0.09680327773094177,
0.2586829364299774,
0.29132625460624695,
-0.07640009373426437,
0.013883765786886215,
0.040759310126304626,
0.00048512290231883526,
0.011717154644429684,
0.14948002994060516,
0.11678183823823929,
0.2341846078634262,
-0.04089457541704178,
-0.014430965296924114,
-0.031784940510988235,
-0.07539714127779007,
-0.17022199928760529,
-0.09540675580501556,
0.03361542150378227,
-0.03058445453643799,
-0.03179294243454933,
0.08472952991724014,
-0.18857114017009735,
-0.1378234475851059,
-0.005716613959521055,
-0.1620357483625412,
-0.1287311613559723,
-0.04171708971261978,
0.03928108513355255,
0.06911730021238327,
0.10431604087352753,
-0.014940251596271992,
0.014241781085729599,
0.006671221926808357,
-0.01616583950817585,
-0.02786601521074772,
-0.07495684921741486,
0.08870834112167358,
-0.15314467251300812,
0.11311071366071701,
-0.055225055664777756,
0.0693378672003746,
0.10323096066713333,
0.0406561940908432,
-0.040010832250118256,
0.08654081076383591,
-0.024979466572403908,
-0.030454887077212334,
0.042634595185518265,
0.04618244245648384,
-0.08965012431144714,
-0.009004006162285805,
0.047826942056417465,
-0.10230740904808044,
0.0017117332899942994,
0.016520051285624504,
0.027640273794531822,
-0.1181953102350235,
0.04393766075372696,
-0.15799790620803833,
0.07309336960315704,
0.13649038970470428,
-0.047471918165683746,
-0.007509458810091019,
-0.09981460869312286,
0.0058977860026061535,
0.006094199139624834,
-0.04310280829668045,
-0.1511797457933426,
-0.18583694100379944,
-0.06363444775342941,
0.11023680865764618,
0.06009997799992561,
-0.1712983399629593,
0.059128537774086,
-0.08598071336746216,
-0.00017699992167763412,
-0.07379470765590668,
0.034713998436927795,
0.068902887403965,
0.011080591939389706,
-0.0031082967761904,
-0.05681728199124336,
-0.0016493431758135557,
0.06169051676988602,
-0.1721586138010025,
-0.1743878424167633
] |
null | null |
transformers
|
# roberta-java
---
language: Java
datasets:
- code_search_net
---
This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **Java** Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-java")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-java")
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer
)
```
You can then use this model to fill masked words in a Java code.
```python
code = """
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
for (String i : cars) {
System.out.<mask>(i);
}
""".lstrip()
pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)}
sorted(pred.items(), key=lambda kv: kv[1], reverse=True)
# [('println', 0.32571351528167725),
# ('get', 0.2897663116455078),
# ('remove', 0.0637081190943718),
# ('exit', 0.058875661343336105),
# ('print', 0.034190207719802856)]
```
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
fill-mask
|
dbernsohn/roberta-java
|
[
"transformers",
"pytorch",
"jax",
"roberta",
"fill-mask",
"arxiv:1907.11692",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1907.11692"
] |
[] |
TAGS
#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-java
---
language: Java
datasets:
- code_search_net
---
This is a roberta pre-trained version on the CodeSearchNet dataset for Java Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to fill masked words in a Java code.
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# roberta-java\n---\nlanguage: Java\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Java Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-java\n---\nlanguage: Java\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Java Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
48,
106
] |
[
"passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-java\n---\nlanguage: Java\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Java Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
-0.00548878638073802,
0.09720060974359512,
-0.002583605470135808,
0.06937680393457413,
0.17268435657024384,
-0.019927291199564934,
0.041995320469141006,
0.07150626927614212,
-0.042098790407180786,
-0.024158425629138947,
0.11690295487642288,
0.1412631720304489,
0.002023884793743491,
0.20121075212955475,
-0.021005386486649513,
-0.2603624761104584,
0.055842991918325424,
-0.005314294248819351,
-0.012234890833497047,
0.11550600081682205,
0.12566880881786346,
-0.027197340503335,
0.09849824756383896,
-0.021409371867775917,
-0.2014150619506836,
0.02852557972073555,
-0.017787443473935127,
-0.12459712475538254,
0.08591076731681824,
0.0034906589426100254,
0.13333241641521454,
-0.0076462700963020325,
0.007541199214756489,
-0.047574955970048904,
0.043936219066381454,
0.05933993309736252,
0.016844090074300766,
0.06561049818992615,
-0.06382422149181366,
-0.013982617296278477,
0.05352695658802986,
-0.03179378807544708,
0.009683062322437763,
0.025643635541200638,
-0.14184202253818512,
-0.0721149891614914,
0.018368711695075035,
-0.09006226807832718,
0.07879845798015594,
0.1224043071269989,
0.0014242895413190126,
0.20575301349163055,
-0.05215555429458618,
0.12970174849033356,
0.17809191346168518,
-0.18827609717845917,
-0.08357427269220352,
0.12896095216274261,
0.06523597985506058,
0.03318415582180023,
-0.015527482144534588,
-0.006976574193686247,
0.023600582033395767,
0.04592139646410942,
0.07190661877393723,
-0.14002247154712677,
-0.2894994616508484,
-0.06573496758937836,
-0.0889635905623436,
0.022040463984012604,
0.150546595454216,
-0.06621111929416656,
-0.031120559200644493,
0.053127583116292953,
-0.1254357397556305,
0.10594599694013596,
-0.006394250318408012,
0.020921988412737846,
0.0035776710137724876,
0.04104850813746452,
-0.06330976635217667,
-0.07627984881401062,
-0.05132877826690674,
-0.06038893759250641,
-0.10702158510684967,
0.20934654772281647,
0.00391441211104393,
0.04740751534700394,
-0.1586492359638214,
-0.004705983679741621,
-0.08578146249055862,
-0.16526497900485992,
-0.0023496660869568586,
-0.06440718472003937,
0.02156730182468891,
0.018939075991511345,
-0.04236992448568344,
-0.17808789014816284,
0.13023151457309723,
0.08534350991249084,
-0.059222493320703506,
0.036341190338134766,
-0.06963081657886505,
0.03565284237265587,
0.0470430925488472,
0.09780286997556686,
-0.05589691177010536,
-0.0811120793223381,
0.11139421910047531,
-0.09917591512203217,
0.04502999037504196,
-0.04253831505775452,
-0.09080324321985245,
-0.0182928629219532,
-0.006306605879217386,
0.027756337076425552,
0.0198381245136261,
0.11078042536973953,
-0.005373500753194094,
-0.02925948239862919,
0.03465474024415016,
-0.12215573340654373,
-0.03464875370264053,
-0.04066436365246773,
-0.004281231667846441,
-0.07786393910646439,
0.0671394094824791,
0.021904610097408295,
-0.0846942886710167,
-0.0258456040173769,
-0.06880774348974228,
-0.0015529039083048701,
-0.09046874195337296,
-0.13532306253910065,
-0.011293405666947365,
-0.14692068099975586,
0.029215160757303238,
-0.16830268502235413,
-0.15740543603897095,
-0.03314414992928505,
0.07510874420404434,
-0.03795332834124565,
-0.004188326187431812,
-0.027143411338329315,
-0.06649854779243469,
-0.03244664892554283,
-0.01842786930501461,
0.06740546226501465,
-0.019975975155830383,
0.05938921123743057,
0.051174506545066833,
0.12105001509189606,
-0.15764033794403076,
0.03464045748114586,
-0.18973226845264435,
-0.025321686640381813,
-0.25260424613952637,
0.049828220158815384,
-0.028495190665125847,
0.12948235869407654,
-0.12620340287685394,
-0.03670254349708557,
0.0004199419927317649,
0.04588554427027702,
0.0725037083029747,
0.08451292663812637,
-0.15704025328159332,
-0.0013463369105011225,
0.18007491528987885,
-0.12550020217895508,
-0.051096361130476,
0.07435121387243271,
-0.05636713281273842,
0.18652606010437012,
0.07196197658777237,
0.1925070732831955,
0.06408011168241501,
0.02169126272201538,
0.11158256232738495,
0.02646162547171116,
-0.05994965881109238,
-0.08945725858211517,
0.020550856366753578,
0.04370997101068497,
-0.05247702822089195,
0.05387053266167641,
-0.05883537232875824,
0.06060230731964111,
-0.009129339829087257,
-0.0371093824505806,
0.00026005262043327093,
-0.0554770827293396,
-0.04420264810323715,
0.03184733912348747,
0.08920294046401978,
-0.03467470034956932,
-0.0027747645508497953,
-0.05405585467815399,
0.062262438237667084,
-0.05885636806488037,
0.024280615150928497,
-0.06448414921760559,
-0.024038834497332573,
-0.01110983919352293,
0.04349518567323685,
-0.17450110614299774,
0.052241187542676926,
0.016349876299500465,
0.05992753058671951,
0.024709800258278847,
-0.052627068012952805,
0.02843089960515499,
-0.005082817282527685,
0.024013448506593704,
0.029679706320166588,
0.05547355115413666,
0.009630515240132809,
-0.00968807190656662,
-0.13237084448337555,
0.00010493737499928102,
-0.0566062331199646,
0.028188826516270638,
-0.05465696379542351,
0.01287372037768364,
-0.10550389438867569,
0.09523088485002518,
0.013971250504255295,
0.002752356231212616,
0.04451422020792961,
0.04433254152536392,
-0.03972415253520012,
-0.04799804836511612,
0.030347054824233055,
0.05086203292012215,
-0.03785604238510132,
0.09528053551912308,
-0.011094298213720322,
-0.03443605825304985,
0.10381782054901123,
-0.2117665857076645,
-0.03499952703714371,
0.14104464650154114,
-0.007040855474770069,
0.006080171093344688,
-0.02317759022116661,
0.03708900138735771,
0.12714970111846924,
-0.016167350113391876,
0.11599168926477432,
-0.06573866307735443,
0.05401628836989403,
0.035657551139593124,
-0.12699946761131287,
0.040416739881038666,
0.05799164995551109,
0.04132700711488724,
-0.21024006605148315,
0.08073150366544724,
0.03272372856736183,
-0.13718748092651367,
0.18463844060897827,
0.023396534845232964,
0.02290751226246357,
-0.02596026472747326,
-0.008005846291780472,
-0.010459700599312782,
-0.031460054218769073,
-0.1917281150817871,
-0.063832588493824,
0.04080256447196007,
-0.028256023302674294,
0.03587159141898155,
-0.054113514721393585,
-0.014818066731095314,
-0.04711297154426575,
0.030427295714616776,
0.011740592308342457,
0.03643086552619934,
-0.021826330572366714,
0.030610084533691406,
0.03736450895667076,
-0.08833510428667068,
0.061166346073150635,
-0.005392991006374359,
-0.03553909435868263,
0.21940216422080994,
-0.09602754563093185,
-0.29806259274482727,
-0.11833421140909195,
-0.05782259628176689,
-0.019968559965491295,
0.03395706042647362,
0.06056518852710724,
-0.12575921416282654,
-0.056202132254838943,
-0.0206149872392416,
0.007916155271232128,
0.021142687648534775,
0.0069182077422738075,
0.020889874547719955,
0.049870219081640244,
-0.02196487970650196,
-0.11092982441186905,
-0.0251929871737957,
-0.05000298097729683,
-0.08516517281532288,
0.13324454426765442,
-0.09198679774999619,
0.09490594267845154,
0.06339673697948456,
-0.022741660475730896,
0.03474770113825798,
0.012745585292577744,
0.189814031124115,
-0.05101536586880684,
0.043892789632081985,
0.1964045912027359,
-0.03987392783164978,
0.0063867042772471905,
0.1518256962299347,
-0.014621068723499775,
-0.09812572598457336,
0.08253122121095657,
-0.026869459077715874,
-0.10850108414888382,
-0.18737542629241943,
-0.059068143367767334,
-0.09841431677341461,
0.010434119030833244,
0.012052399106323719,
0.02475658431649208,
-0.000489116064272821,
0.06910209357738495,
0.03549081087112427,
0.07561682164669037,
-0.009622780606150627,
0.09214755147695541,
0.006947955582290888,
0.002866943133994937,
0.10742154717445374,
-0.009728040546178818,
-0.07575612515211105,
0.010319128632545471,
0.005288423504680395,
0.15923869609832764,
-0.020295655354857445,
0.12473242729902267,
0.06630655378103256,
0.07848992943763733,
0.06361879408359528,
0.078689806163311,
-0.07173876464366913,
0.010053394362330437,
-0.04567105695605278,
-0.07050671428442001,
-0.09481538087129593,
0.00019817677093669772,
-0.12807048857212067,
0.0071054548025131226,
0.03685808181762695,
0.08055224269628525,
0.03164350986480713,
0.1919744461774826,
0.02571340836584568,
-0.2588423192501068,
-0.06843872368335724,
0.02449631132185459,
0.006265918258577585,
-0.06523994356393814,
0.042267683893442154,
0.06636397540569305,
-0.08228782564401627,
0.012831391766667366,
0.002261112676933408,
0.09470954537391663,
-0.02001044899225235,
0.06464332342147827,
-0.05067438259720802,
0.09446684271097183,
0.026656530797481537,
0.07483651489019394,
-0.2799762189388275,
0.20611608028411865,
-0.008002054877579212,
0.08247388899326324,
-0.06343811005353928,
0.009462563320994377,
-0.0287382360547781,
0.016363264992833138,
0.10640041530132294,
0.02897685021162033,
0.04843901842832565,
-0.04223836213350296,
-0.017799438908696175,
0.07401879876852036,
0.044044241309165955,
-0.001165485824458301,
0.025749942287802696,
0.009974825195968151,
-0.024591078981757164,
-0.01961824670433998,
0.041330140084028244,
-0.09103111922740936,
-0.04543062672019005,
0.032140057533979416,
0.10210657864809036,
-0.017389273270964622,
-0.008658659644424915,
-0.008203678764402866,
0.10298965871334076,
0.21616137027740479,
0.03994576260447502,
-0.054470960050821304,
-0.08499068021774292,
0.0913616344332695,
0.08506312966346741,
-0.10042417794466019,
0.02490173652768135,
-0.07537262886762619,
0.0021152514964342117,
-0.02643641270697117,
-0.09620465338230133,
0.12087579071521759,
-0.08887985348701477,
-0.017707359045743942,
-0.031239140778779984,
0.03664955869317055,
0.049094971269369125,
-0.010974528267979622,
0.03943789005279541,
0.05160381644964218,
-0.05038868263363838,
-0.0705999955534935,
-0.061669833958148956,
0.007104175165295601,
0.025962479412555695,
0.06572678685188293,
-0.06510182470083237,
-0.11179383099079132,
-0.018486900255084038,
-0.00727501418441534,
0.19197943806648254,
0.04558764025568962,
-0.030051931738853455,
0.04531784728169441,
0.2489137053489685,
-0.054947998374700546,
-0.29156622290611267,
0.009547683410346508,
0.009446229785680771,
0.023460503667593002,
-0.0766717717051506,
-0.19566842913627625,
0.17052364349365234,
-0.007525958586484194,
-0.016489723697304726,
-0.07750694453716278,
-0.17193113267421722,
-0.07709954679012299,
0.1426052749156952,
0.07172548025846481,
0.33706238865852356,
-0.12969212234020233,
-0.03188150003552437,
-0.10167581588029861,
-0.1873307228088379,
0.15106184780597687,
-0.274742066860199,
0.09635471552610397,
0.011266041547060013,
0.04751981794834137,
0.00822808500379324,
-0.07192611694335938,
0.024416696280241013,
0.006122959777712822,
0.00723280617967248,
-0.06507054716348648,
-0.09239859879016876,
0.0681752935051918,
0.024944644421339035,
0.06298680603504181,
0.059926267713308334,
0.0472266748547554,
-0.005283766891807318,
-0.005570084322243929,
-0.11169492453336716,
0.07607576251029968,
0.015678664669394493,
-0.11391231417655945,
0.026529164984822273,
0.080848328769207,
0.01594620756804943,
0.04535247012972832,
0.2131674587726593,
-0.043003425002098083,
0.08070575445890427,
0.17054927349090576,
0.008666139096021652,
-0.08045496791601181,
0.1539069265127182,
0.07018351554870605,
-0.025360964238643646,
0.12505851686000824,
-0.14340855181217194,
0.03696443885564804,
0.008868700824677944,
0.03521302342414856,
0.07270246744155884,
0.05171230807900429,
-0.054671041667461395,
0.0026191812939941883,
0.04694049432873726,
-0.14801476895809174,
0.028237244114279747,
0.01889910362660885,
-0.03852554038167,
-0.004990478977560997,
0.07017682492733002,
0.20051336288452148,
-0.07391969114542007,
-0.06396558880805969,
-0.01148091722279787,
0.03718283027410507,
-0.09711634367704391,
0.10698482394218445,
0.06547877937555313,
0.013329563662409782,
-0.14470116794109344,
0.05545609071850777,
0.10725128650665283,
0.05386386439204216,
0.0478677861392498,
0.17425385117530823,
-0.12928298115730286,
-0.09958059340715408,
0.012656639330089092,
0.1680082231760025,
-0.025739898905158043,
-0.039597976952791214,
-0.10515981912612915,
-0.0403626374900341,
-0.016374146565794945,
0.12764005362987518,
0.0908525288105011,
-0.005231718998402357,
-0.02035779319703579,
-0.004078959114849567,
-0.07959030568599701,
-0.0023702499456703663,
0.025971781462430954,
0.045091304928064346,
-0.027008699253201485,
0.06810984015464783,
0.001133400946855545,
0.08408277481794357,
-0.07113633304834366,
-0.0382210873067379,
-0.18431870639324188,
0.03958549723029137,
-0.013665393926203251,
0.04542574658989906,
-0.07809238880872726,
-0.03465088829398155,
-0.022047679871320724,
-0.04485218971967697,
-0.04434987157583237,
0.05254068225622177,
-0.03484005853533745,
-0.011074097827076912,
-0.04573288932442665,
0.007397230714559555,
-0.0670311227440834,
-0.02390221506357193,
0.049135152250528336,
-0.01890493556857109,
0.07749170064926147,
0.043158650398254395,
-0.08587582409381866,
0.041032806038856506,
-0.2320246398448944,
-0.06454666703939438,
0.06919350475072861,
-0.023079561069607735,
0.08660407364368439,
0.007099951151758432,
-0.011666371487081051,
0.03679302707314491,
0.11002195626497269,
-0.02706320397555828,
0.18132764101028442,
-0.10965736955404282,
0.03037579543888569,
-0.007343287579715252,
-0.08458832651376724,
-0.031059937551617622,
0.019614987075328827,
0.09981340914964676,
0.06532828509807587,
0.1298442780971527,
-0.06885266304016113,
0.05966969206929207,
-0.0584455244243145,
-0.010792308486998081,
-0.01403727289289236,
-0.11970803886651993,
-0.09876357764005661,
-0.03754844889044762,
0.03003385104238987,
-0.07182512432336807,
0.04546498507261276,
0.0956072136759758,
0.050043750554323196,
0.004597799386829138,
-0.007720163557678461,
-0.029609009623527527,
0.0286336038261652,
0.07691338658332825,
0.06058516725897789,
-0.024376319721341133,
0.009598989970982075,
0.06083275377750397,
0.06365051865577698,
0.12271935492753983,
0.0346653014421463,
0.14670585095882416,
0.21403633058071136,
0.08826258033514023,
0.02585739456117153,
0.0790427029132843,
-0.022380752488970757,
0.008576499298214912,
-0.004913334734737873,
0.0725727379322052,
-0.022990889847278595,
-0.024565543979406357,
0.15318965911865234,
-0.046764079481363297,
0.020208386704325676,
-0.0006368669564835727,
-0.09023477137088776,
-0.11318652331829071,
-0.14760816097259521,
-0.1222798079252243,
-0.041450146585702896,
0.0015375176444649696,
-0.11217409372329712,
-0.0031554829329252243,
0.04340003430843353,
-0.006695893593132496,
-0.02944074012339115,
0.13135291635990143,
0.12984593212604523,
-0.0846194326877594,
0.04762949422001839,
-0.0264186579734087,
0.040326543152332306,
0.06737161427736282,
-0.004050151444971561,
-0.020949460566043854,
0.11928268522024155,
0.039915263652801514,
0.03345056250691414,
0.040281571447849274,
0.038255877792835236,
-0.13516831398010254,
-0.12284395843744278,
-0.0320681557059288,
0.05260107293725014,
-0.024974152445793152,
0.07648417353630066,
0.06631960719823837,
-0.06071529537439346,
0.053402017802000046,
0.22535336017608643,
-0.024452388286590576,
-0.14226751029491425,
-0.13340388238430023,
0.18774500489234924,
0.06462978571653366,
0.019488343968987465,
-0.04252646118402481,
-0.05175762623548508,
-0.0936642661690712,
0.2350962609052658,
0.27723637223243713,
-0.03431309014558792,
0.010821903124451637,
0.03750356659293175,
0.0006005713948979974,
-0.01589112915098667,
0.15416480600833893,
0.11267710477113724,
0.17187999188899994,
-0.03931771591305733,
0.004658845253288746,
-0.036629971116781235,
-0.08445826917886734,
-0.1570972055196762,
-0.093813955783844,
0.045355234295129776,
-0.03738138824701309,
-0.008306573145091534,
0.0704268142580986,
-0.18217621743679047,
-0.1427130550146103,
-0.022491125389933586,
-0.18326209485530853,
-0.12299001961946487,
-0.05391280725598335,
0.034621722996234894,
0.05581985414028168,
0.10129375755786896,
-0.015962326899170876,
0.03188302367925644,
0.013467862270772457,
0.005040144082158804,
-0.015841353684663773,
-0.09052032977342606,
0.08957117050886154,
-0.1651410013437271,
0.08089219033718109,
-0.05076277256011963,
0.049907486885786057,
0.08829474449157715,
0.03570778667926788,
-0.04835730418562889,
0.0824204534292221,
-0.02096063829958439,
0.021446412429213524,
0.03812836855649948,
0.0767984390258789,
-0.0701313316822052,
0.026864485815167427,
0.03806615248322487,
-0.13549205660820007,
-0.008126622065901756,
-0.025476772338151932,
0.021115822717547417,
-0.11442550271749496,
0.021757639944553375,
-0.13132835924625397,
0.08020532876253128,
0.1585553139448166,
-0.04154859483242035,
0.002716782269999385,
-0.09410855919122696,
0.027472293004393578,
0.002579732332378626,
-0.05225277692079544,
-0.15222148597240448,
-0.17444010078907013,
-0.056699808686971664,
0.07835253328084946,
0.06140270084142685,
-0.18799200654029846,
0.07242404669523239,
-0.10619702935218811,
-0.010244730859994888,
-0.08109861612319946,
0.03794485703110695,
0.07628941535949707,
0.03843041509389877,
-0.005376175977289677,
-0.10577783733606339,
0.021051742136478424,
0.07418961077928543,
-0.1472705602645874,
-0.16977961361408234
] |
null | null |
transformers
|
# roberta-javascript
---
language: javascript
datasets:
- code_search_net
---
This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **javascript** Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-javascript")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-javascript")
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer
)
```
You can then use this model to fill masked words in a Java code.
```python
code = """
var i;
for (i = 0; i < cars.<mask>; i++) {
text += cars[i] + "<br>";
}
""".lstrip()
pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)}
sorted(pred.items(), key=lambda kv: kv[1], reverse=True)
# [('length', 0.9959614872932434),
# ('i', 0.00027875584783032537),
# ('len', 0.0002283261710545048),
# ('nodeType', 0.00013731322542298585),
# ('index', 7.5289819505997e-05)]
```
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
fill-mask
|
dbernsohn/roberta-javascript
|
[
"transformers",
"pytorch",
"jax",
"roberta",
"fill-mask",
"arxiv:1907.11692",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1907.11692"
] |
[] |
TAGS
#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-javascript
---
language: javascript
datasets:
- code_search_net
---
This is a roberta pre-trained version on the CodeSearchNet dataset for javascript Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to fill masked words in a Java code.
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# roberta-javascript\n---\nlanguage: javascript\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for javascript Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-javascript\n---\nlanguage: javascript\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for javascript Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
48,
107
] |
[
"passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-javascript\n---\nlanguage: javascript\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for javascript Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
-0.021204113960266113,
0.09275151044130325,
-0.003217794233933091,
0.07150735706090927,
0.19947318732738495,
-0.01714131608605385,
0.04341953620314598,
0.05671638622879982,
-0.038225844502449036,
-0.022153392434120178,
0.11223259568214417,
0.1233050525188446,
-0.008622469380497932,
0.19419200718402863,
-0.013605130836367607,
-0.22109457850456238,
0.025134721770882607,
-0.007340539246797562,
0.00017104283324442804,
0.11782152950763702,
0.09934902936220169,
-0.028725983574986458,
0.09740156680345535,
0.007619889453053474,
-0.20330554246902466,
0.036639779806137085,
0.005104790907353163,
-0.10760470479726791,
0.07964726537466049,
-0.00497259758412838,
0.1354207545518875,
-0.01377154141664505,
0.010861766524612904,
-0.050212230533361435,
0.051059603691101074,
0.07838905602693558,
0.00827439408749342,
0.058906592428684235,
-0.0558909997344017,
-0.06991036981344223,
0.045577242970466614,
-0.038634028285741806,
0.004293729085475206,
0.05044334754347801,
-0.14280347526073456,
-0.06018794700503349,
0.017537279054522514,
-0.10335877537727356,
0.07574436813592911,
0.1286327987909317,
0.00012343381240498275,
0.19418449699878693,
-0.06509587913751602,
0.13709260523319244,
0.19752514362335205,
-0.20236387848854065,
-0.08052246272563934,
0.07493414729833603,
0.046008747071027756,
0.004919164814054966,
-0.013610296882689,
-0.0005507679306901991,
0.01611112244427204,
0.033557645976543427,
0.07618962973356247,
-0.13926349580287933,
-0.2705914378166199,
-0.07136022299528122,
-0.0914490669965744,
0.012407100759446621,
0.13219691812992096,
-0.04523159936070442,
-0.03161178529262543,
0.05665110424160957,
-0.143421471118927,
0.1258833110332489,
-0.033437520265579224,
0.05565483868122101,
0.0018286026315763593,
0.039283860474824905,
-0.11002805829048157,
-0.0827011838555336,
-0.04868664965033531,
-0.053331658244132996,
-0.10936904698610306,
0.2182426005601883,
-0.006932555697858334,
0.048998672515153885,
-0.1740865856409073,
0.009287724271416664,
-0.04980534687638283,
-0.1739543229341507,
-0.002250302815809846,
-0.06789384037256241,
0.010692361742258072,
0.00660880608484149,
-0.04332109913229942,
-0.14531201124191284,
0.14629597961902618,
0.13817854225635529,
-0.025517955422401428,
0.053197428584098816,
-0.0807897225022316,
0.02588776871562004,
0.02400178462266922,
0.12466422468423843,
-0.0194866843521595,
-0.10483618080615997,
0.1183137595653534,
-0.07805845141410828,
0.052314601838588715,
-0.03800192102789879,
-0.10561610758304596,
-0.016749417409300804,
-0.008301785215735435,
0.03592343255877495,
0.04087081179022789,
0.11611650884151459,
-0.017187532037496567,
-0.012878479436039925,
0.05246901884675026,
-0.12316028773784637,
-0.02746076136827469,
-0.005748795345425606,
-0.00774998776614666,
-0.05194136127829552,
0.07416980713605881,
0.01028477493673563,
-0.08261080086231232,
-0.04827503114938736,
-0.07354534417390823,
0.02855089120566845,
-0.08304359763860703,
-0.12488327920436859,
-0.005670332349836826,
-0.145757794380188,
0.03210729360580444,
-0.1786918342113495,
-0.1365191787481308,
-0.03177957236766815,
0.06934749335050583,
-0.007295283023267984,
0.02244621329009533,
-0.047360870987176895,
-0.07398667186498642,
-0.023983482271432877,
-0.017467183992266655,
0.04294157400727272,
-0.026221610605716705,
0.058927033096551895,
0.06514152884483337,
0.1049690991640091,
-0.13056187331676483,
0.027655551210045815,
-0.19907993078231812,
-0.02533433400094509,
-0.23952165246009827,
0.06432638317346573,
-0.006329279858618975,
0.13077063858509064,
-0.12559300661087036,
-0.03262998163700104,
-0.016419874504208565,
0.03512318804860115,
0.07714885473251343,
0.12072330713272095,
-0.11705320328474045,
-0.03842804208397865,
0.19995838403701782,
-0.09006199985742569,
-0.07132481783628464,
0.08033827692270279,
-0.06621845066547394,
0.13212309777736664,
0.09714500606060028,
0.18080399930477142,
0.08288439363241196,
-0.024088604375720024,
0.08844123035669327,
0.049287933856248856,
-0.06354618817567825,
-0.08185181766748428,
0.019487431272864342,
0.015533899888396263,
-0.03938313201069832,
0.04594320058822632,
-0.05787775665521622,
0.09767274558544159,
-0.016719313338398933,
-0.03085918538272381,
0.00334906205534935,
-0.05299799516797066,
-0.0035587670281529427,
0.04701457917690277,
0.061854664236307144,
-0.03278981149196625,
-0.037394993007183075,
-0.061063531786203384,
0.048198893666267395,
-0.06275150179862976,
0.03240220248699188,
-0.07060640305280685,
-0.008171516470611095,
-0.022972526028752327,
0.03527834266424179,
-0.18952134251594543,
-0.008256887085735798,
-0.006783723831176758,
0.07472645491361618,
0.047215595841407776,
-0.09137068688869476,
0.042908553034067154,
-0.007607957813888788,
0.033804163336753845,
0.006180343683809042,
0.04332481697201729,
-0.004276995547115803,
-0.003513934789225459,
-0.12388626486063004,
-0.015248347073793411,
-0.06436105817556381,
0.06797955185174942,
-0.03622659295797348,
0.016754338517785072,
-0.10487096756696701,
0.08430633693933487,
0.016126956790685654,
-0.0005245383945293725,
0.02963748387992382,
0.03159438073635101,
-0.04491664096713066,
-0.05239730328321457,
0.031896691769361496,
0.041472289711236954,
-0.04776660352945328,
0.051460739225149155,
-0.027119062840938568,
-0.030174221843481064,
0.11755544692277908,
-0.2391868680715561,
-0.03207109868526459,
0.12679637968540192,
-0.012525641359388828,
0.030690159648656845,
-0.016290241852402687,
0.018641306087374687,
0.15359503030776978,
-0.0015255061443895102,
0.1290622502565384,
-0.06110066547989845,
0.05938377603888512,
0.03196157142519951,
-0.13174571096897125,
0.04661938175559044,
0.038924578577280045,
0.05106241628527641,
-0.18768393993377686,
0.06797533482313156,
0.06777869164943695,
-0.11539211124181747,
0.18878521025180817,
0.014820758253335953,
0.02911461889743805,
-0.008761021308600903,
-0.010519368574023247,
-0.01806720159947872,
-0.04798977077007294,
-0.20559024810791016,
-0.08757119625806808,
0.024597324430942535,
-0.038698405027389526,
0.036481451243162155,
-0.05464724078774452,
-0.00013802561443299055,
-0.044387929141521454,
0.024925244972109795,
-0.014558163471519947,
0.029299616813659668,
-0.012005715630948544,
0.03244074806571007,
0.04296735301613808,
-0.10061946511268616,
0.05845591798424721,
-0.010912096127867699,
-0.048239219933748245,
0.21884222328662872,
-0.08560318499803543,
-0.2421436905860901,
-0.09754911065101624,
-0.07312509417533875,
-0.03445909544825554,
0.039187461137771606,
0.05388738587498665,
-0.13146594166755676,
-0.03483348339796066,
-0.016020609065890312,
0.02008901722729206,
0.020921451970934868,
0.012393982149660587,
0.03258652985095978,
0.037098079919815063,
-0.02033492922782898,
-0.11406195908784866,
-0.037026166915893555,
-0.061282217502593994,
-0.10579999536275864,
0.09564303606748581,
-0.10055752098560333,
0.11747989803552628,
0.09605347365140915,
-0.0037480592727661133,
0.041523344814777374,
0.0040657962672412395,
0.19391483068466187,
-0.060844648629426956,
0.04374097287654877,
0.21680337190628052,
-0.030327364802360535,
0.023351142182946205,
0.12583598494529724,
-0.00942332111299038,
-0.08260183781385422,
0.07780248671770096,
-0.024577578529715538,
-0.11336829513311386,
-0.1718243807554245,
-0.07607043534517288,
-0.10598038882017136,
-0.008780181407928467,
0.015348512679338455,
0.007869306951761246,
-0.02541091851890087,
0.06496916711330414,
0.011466652154922485,
0.051985472440719604,
0.004022992681711912,
0.10221781581640244,
0.015573732554912567,
0.02347167767584324,
0.11052890121936798,
-0.01635231077671051,
-0.08972062170505524,
-0.004714696668088436,
-0.004838168155401945,
0.15882046520709991,
-0.014993442222476006,
0.14047780632972717,
0.06408865004777908,
0.052764616906642914,
0.03757148236036301,
0.06800884008407593,
-0.038447462022304535,
0.012032303027808666,
-0.03612072020769119,
-0.06874270737171173,
-0.09023916721343994,
-0.010406029410660267,
-0.10480460524559021,
-0.0025311203207820654,
0.0051318565383553505,
0.09549732506275177,
0.0647600069642067,
0.15886546671390533,
0.0469106025993824,
-0.2871047556400299,
-0.05830980837345123,
0.020750733092427254,
0.008203131146728992,
-0.05317419394850731,
0.045992057770490646,
0.012728742323815823,
-0.08781597763299942,
0.0420803539454937,
0.0001458355109207332,
0.10258356481790543,
0.0011721575865522027,
0.06921663880348206,
-0.03618384152650833,
0.09572562575340271,
0.024960698559880257,
0.06466150283813477,
-0.2682470679283142,
0.1885657161474228,
0.009954127483069897,
0.09686587005853653,
-0.06749856472015381,
0.01345327403396368,
-0.0015444912714883685,
0.017039673402905464,
0.10582583397626877,
0.013487191870808601,
0.08465948700904846,
-0.05654172971844673,
0.0028930632397532463,
0.07940490543842316,
0.07657415419816971,
-0.004207741003483534,
0.04865892231464386,
0.009339623153209686,
-0.04389889910817146,
-0.018725251778960228,
0.022482069209218025,
-0.11395952105522156,
-0.05246458202600479,
-0.004649988375604153,
0.08642589300870895,
-0.048717860132455826,
0.009497620165348053,
0.009150553494691849,
0.06742605566978455,
0.1909005045890808,
0.028695017099380493,
-0.06333526223897934,
-0.07960432022809982,
0.09172170609235764,
0.059868015348911285,
-0.12125563621520996,
0.03951837867498398,
-0.08628232777118683,
-0.002633184427395463,
-0.030269211158156395,
-0.1327364444732666,
0.11843960732221603,
-0.09695665538311005,
-0.011846892535686493,
-0.03228496015071869,
0.07357723265886307,
0.05152128264307976,
-0.015734076499938965,
0.0452314130961895,
0.0449431836605072,
-0.06122204661369324,
-0.07635106146335602,
-0.043723251670598984,
-0.016340628266334534,
0.032976482063531876,
0.08844155818223953,
-0.03517191484570503,
-0.13208627700805664,
-0.02722523920238018,
0.05876893922686577,
0.1764526069164276,
0.04987156018614769,
-0.034636180847883224,
0.014529653824865818,
0.22864462435245514,
-0.04831680655479431,
-0.28481170535087585,
0.030064936727285385,
0.01320323720574379,
0.009546476416289806,
-0.06334712356328964,
-0.21208296716213226,
0.1764102429151535,
-0.04666755348443985,
-0.017620645463466644,
-0.050815630704164505,
-0.19284094870090485,
-0.06215030327439308,
0.14361602067947388,
0.04542303457856178,
0.31348922848701477,
-0.1181497871875763,
-0.020620448514819145,
-0.09993322938680649,
-0.17873020470142365,
0.14579367637634277,
-0.33276331424713135,
0.08359302580356598,
0.027429724112153053,
0.04683869332075119,
0.009792101569473743,
-0.07718327641487122,
0.0016684927977621555,
0.04166301339864731,
0.01966441050171852,
-0.04999193921685219,
-0.10446008294820786,
0.1161704733967781,
0.01444893330335617,
0.05702284350991249,
0.05271977558732033,
0.05394955351948738,
0.014127775095403194,
-0.003554259892553091,
-0.12169439345598221,
0.09680042415857315,
0.02086910419166088,
-0.09180501103401184,
0.012503152713179588,
0.05282094329595566,
0.008572511374950409,
0.063197061419487,
0.22336681187152863,
-0.04189787432551384,
0.06879507750272751,
0.1691136211156845,
0.03694073110818863,
-0.08584754168987274,
0.13481169939041138,
0.06491003930568695,
-0.03281090036034584,
0.1170818880200386,
-0.14852015674114227,
0.0488593727350235,
0.006580896209925413,
0.04528193175792694,
0.05599267780780792,
0.06533006578683853,
-0.055068742483854294,
0.029726672917604446,
0.040814176201820374,
-0.1353229135274887,
0.023140937089920044,
-0.0015097883297130466,
-0.09769278019666672,
-0.04065448418259621,
0.09351667016744614,
0.20379014313220978,
-0.03403616324067116,
-0.059210531413555145,
-0.01707163266837597,
0.016814738512039185,
-0.09339236468076706,
0.08740483969449997,
0.07617942988872528,
0.004781664349138737,
-0.14204281568527222,
0.04102620109915733,
0.08141780644655228,
0.06465817987918854,
0.036276690661907196,
0.15244324505329132,
-0.13381406664848328,
-0.10153518617153168,
-0.00046760181430727243,
0.20101763308048248,
-0.03357592597603798,
-0.02616676315665245,
-0.11668851971626282,
-0.025150014087557793,
-0.019506214186549187,
0.12978024780750275,
0.09119050949811935,
-0.007136228494346142,
-0.022972362115979195,
0.013971616514027119,
-0.07425416260957718,
0.005516969133168459,
0.03373649716377258,
0.029352305456995964,
-0.028095362707972527,
0.09556128829717636,
0.0017415614565834403,
0.1052565798163414,
-0.07085657119750977,
-0.0406273752450943,
-0.16995035111904144,
0.05742058530449867,
-0.028801204636693,
0.033891819417476654,
-0.08848901093006134,
-0.024357693269848824,
-0.03910774737596512,
-0.028965400531888008,
-0.05853721871972084,
0.0533248670399189,
-0.036069247871637344,
-0.016973840072751045,
-0.01919933594763279,
0.00932482909411192,
-0.09554804116487503,
-0.0057646664790809155,
0.0409381203353405,
-0.02605486288666725,
0.07872539013624191,
0.0505492240190506,
-0.07938215136528015,
0.06003597378730774,
-0.24867483973503113,
-0.09395622462034225,
0.06767157465219498,
-0.017587803304195404,
0.07217341661453247,
0.06028337776660919,
0.008092077448964119,
0.03231120854616165,
0.12107335776090622,
-0.036454249173402786,
0.163503497838974,
-0.09684429317712784,
0.046134404838085175,
0.0006165452068671584,
-0.08043555915355682,
-0.040373437106609344,
0.0310443714261055,
0.07955193519592285,
0.0660085529088974,
0.14687460660934448,
-0.06876502186059952,
0.06920511275529861,
-0.0940646231174469,
-0.016455143690109253,
-0.010005971416831017,
-0.10959987342357635,
-0.10489119589328766,
-0.05551256611943245,
0.048658013343811035,
-0.07544134557247162,
0.04342108219861984,
0.10099751502275467,
0.09531426429748535,
-0.00022222523693926632,
0.03659839183092117,
0.0011629529763013124,
0.02110939845442772,
0.04394475743174553,
0.060798488557338715,
-0.036850783973932266,
0.015623797662556171,
0.05602026358246803,
0.09257952868938446,
0.12201030552387238,
0.07774795591831207,
0.12181364744901657,
0.19626201689243317,
0.09917393326759338,
0.009884720668196678,
0.07182270288467407,
-0.051951922476291656,
-0.031122609972953796,
0.00006267034768825397,
0.06526265293359756,
-0.029557621106505394,
-0.05353869870305061,
0.1660580188035965,
-0.025177475064992905,
0.0039512082003057,
0.020404959097504616,
-0.07577452063560486,
-0.1292225569486618,
-0.13672073185443878,
-0.12000803649425507,
-0.045319072902202606,
0.0157104954123497,
-0.09540989249944687,
-0.017998013645410538,
0.042128339409828186,
-0.02794826216995716,
-0.025670768693089485,
0.16160842776298523,
0.14182806015014648,
-0.09898063540458679,
0.05640547350049019,
-0.0424685999751091,
0.04166153073310852,
0.1128740981221199,
-0.012982972897589207,
-0.014067232608795166,
0.07941567152738571,
0.053962089121341705,
0.033367786556482315,
0.018048767000436783,
0.05835440009832382,
-0.15466304123401642,
-0.13441963493824005,
-0.037624478340148926,
0.07679291814565659,
-0.02329566702246666,
0.07868514209985733,
0.06278754025697708,
-0.049618370831012726,
0.041310250759124756,
0.19671131670475006,
-0.024311194196343422,
-0.12121475487947464,
-0.13433308899402618,
0.18692557513713837,
0.0650521069765091,
0.017909623682498932,
-0.05751452594995499,
-0.06220732256770134,
-0.07698522508144379,
0.2267276644706726,
0.2777416706085205,
-0.054657984524965286,
0.02256268449127674,
0.018899044021964073,
0.0015133563429117203,
0.0035572394262999296,
0.17410781979560852,
0.09212514013051987,
0.18311595916748047,
-0.03768368437886238,
-0.02599242329597473,
-0.024430032819509506,
-0.08532461524009705,
-0.14785604178905487,
-0.0755646824836731,
0.03418855369091034,
-0.031367506831884384,
-0.005353630054742098,
0.08131729811429977,
-0.18912382423877716,
-0.10551362484693527,
-0.02072007954120636,
-0.16919472813606262,
-0.10481860488653183,
-0.040501706302165985,
0.024934014305472374,
0.08389490097761154,
0.1246800422668457,
-0.023280519992113113,
0.007117203902453184,
0.016807664185762405,
-0.009433310478925705,
-0.03501086309552193,
-0.0766579881310463,
0.07902263104915619,
-0.19514869153499603,
0.0914987325668335,
-0.04985297843813896,
0.056982364505529404,
0.09947824478149414,
0.04677114635705948,
-0.03827415034174919,
0.0683555081486702,
-0.014787619933485985,
0.03777628764510155,
0.05699539929628372,
0.04410286247730255,
-0.06486959010362625,
0.008212548680603504,
0.0415465421974659,
-0.11752883344888687,
0.011839807033538818,
-0.03166310861706734,
0.011115042492747307,
-0.13926509022712708,
0.012350392527878284,
-0.1301461011171341,
0.0726601704955101,
0.1308286190032959,
-0.042479462921619415,
0.00852468516677618,
-0.07092080265283585,
0.011681800708174706,
0.026390984654426575,
-0.033499326556921005,
-0.17480070888996124,
-0.16109201312065125,
-0.05457485094666481,
0.08743608742952347,
0.046017181128263474,
-0.16280320286750793,
0.08077558130025864,
-0.10603435337543488,
0.0004730651853606105,
-0.08723561465740204,
0.039054594933986664,
0.0648135095834732,
0.021216129884123802,
-0.0007743007154203951,
-0.09094733744859695,
0.03132041171193123,
0.09273544698953629,
-0.17130595445632935,
-0.16950629651546478
] |
null | null |
transformers
|
# roberta-php
---
language: php
datasets:
- code_search_net
---
This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **php** Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-php")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-php")
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer
)
```
You can then use this model to fill masked words in a Java code.
```python
code = """
$people = array(
array('name' => 'Kalle', 'salt' => 856412),
array('name' => 'Pierre', 'salt' => 215863)
);
for($i = 0; $i < count($<mask>); ++$i) {
$people[$i]['salt'] = mt_rand(000000, 999999);
}
""".lstrip()
pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)}
sorted(pred.items(), key=lambda kv: kv[1], reverse=True)
# [('people', 0.785636842250824),
# ('parts', 0.006270722020417452),
# ('id', 0.0035842324141412973),
# ('data', 0.0025512021966278553),
# ('config', 0.002258970635011792)]
```
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
fill-mask
|
dbernsohn/roberta-php
|
[
"transformers",
"pytorch",
"jax",
"roberta",
"fill-mask",
"arxiv:1907.11692",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1907.11692"
] |
[] |
TAGS
#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# roberta-php
---
language: php
datasets:
- code_search_net
---
This is a roberta pre-trained version on the CodeSearchNet dataset for php Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to fill masked words in a Java code.
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# roberta-php\n---\nlanguage: php\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for php Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# roberta-php\n---\nlanguage: php\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for php Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
52,
108
] |
[
"passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# roberta-php\n---\nlanguage: php\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for php Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
-0.03928283229470253,
0.14113371074199677,
-0.002213847590610385,
0.07805224508047104,
0.16425585746765137,
-0.0026973411440849304,
0.05445015802979469,
0.04641445726156235,
-0.09132691472768784,
-0.005534591618925333,
0.13790641725063324,
0.08034881949424744,
-0.02450426109135151,
0.19007337093353271,
0.000443186960183084,
-0.22025105357170105,
0.058912452310323715,
0.018909258767962456,
-0.09848690032958984,
0.11876195669174194,
0.09590515494346619,
-0.0583823136985302,
0.07812856137752533,
0.0050843749195337296,
-0.1596856266260147,
0.03723280504345894,
-0.03329837694764137,
-0.08635197579860687,
0.07771628350019455,
-0.021686403080821037,
0.1539030373096466,
-0.01982598938047886,
0.021163465455174446,
-0.05689455196261406,
0.04411349073052406,
0.0681769922375679,
-0.006182536017149687,
0.06214933842420578,
-0.04961707070469856,
-0.019337069243192673,
-0.036941833794116974,
-0.056566283106803894,
0.028779761865735054,
0.02306564524769783,
-0.11513462662696838,
-0.12208306044340134,
0.016024893149733543,
-0.05579453706741333,
0.05494501069188118,
0.1284460574388504,
0.0073269749991595745,
0.16490334272384644,
-0.07430443167686462,
0.10120058059692383,
0.19127178192138672,
-0.21189792454242706,
-0.07467024028301239,
0.12165237218141556,
0.03901807218790054,
0.010394766926765442,
-0.010455993935465813,
-0.0036910707131028175,
0.0032535416539758444,
0.026409009471535683,
0.07965131849050522,
-0.12149014323949814,
-0.18541954457759857,
-0.04253759607672691,
-0.11053184419870377,
-0.009541799314320087,
0.16221261024475098,
-0.0417182631790638,
0.0028490510303527117,
0.04108403995633125,
-0.14250655472278595,
0.08897470682859421,
-0.04953543841838837,
0.023708896711468697,
0.03965011611580849,
0.042515553534030914,
-0.09146887809038162,
-0.09254712611436844,
-0.06852426379919052,
-0.07029148936271667,
-0.0960288941860199,
0.19050924479961395,
0.0228263009339571,
0.03831253945827484,
-0.1534719318151474,
0.021908817812800407,
-0.038575079292058945,
-0.13315479457378387,
0.008571619167923927,
-0.04206358268857002,
0.021576454862952232,
0.05093975365161896,
-0.08032863587141037,
-0.1636742651462555,
0.1538771390914917,
0.14797990024089813,
-0.05269563943147659,
0.05638481304049492,
-0.011582874692976475,
0.02468547597527504,
-0.0066101811826229095,
0.11945807188749313,
-0.04499526694417,
-0.09541302174329758,
0.09201814234256744,
-0.0930914357304573,
0.021017346531152725,
-0.022914765402674675,
-0.09870348870754242,
-0.020720673725008965,
0.017488699406385422,
0.007119186222553253,
0.04185684397816658,
0.13180777430534363,
-0.00004152153996983543,
-0.012135407887399197,
0.013637023977935314,
-0.12544400990009308,
-0.012601220048964024,
-0.005049482453614473,
0.02442818135023117,
-0.0639301985502243,
0.08533792942762375,
-0.006862570531666279,
-0.10808724910020828,
-0.00624192925170064,
-0.06725304573774338,
-0.005905755329877138,
-0.0807199478149414,
-0.12736135721206665,
0.004832238424569368,
-0.12329620122909546,
0.01059645600616932,
-0.17080654203891754,
-0.11049784719944,
-0.037733547389507294,
0.09764799475669861,
-0.0029763865750283003,
0.01148728746920824,
-0.035501882433891296,
-0.05348876491189003,
-0.00878838635981083,
-0.025597918778657913,
0.0726846382021904,
-0.036842118948698044,
0.03566398471593857,
0.03147319331765175,
0.1071942001581192,
-0.16198468208312988,
0.0368797592818737,
-0.1503305435180664,
-0.02367011457681656,
-0.19592373073101044,
0.03702077269554138,
-0.026856454089283943,
0.0942002609372139,
-0.13647596538066864,
-0.05847339332103729,
-0.03349023312330246,
0.04690100997686386,
0.08448634296655655,
0.12253211438655853,
-0.09623879194259644,
-0.015313737094402313,
0.2270055115222931,
-0.08402963727712631,
-0.06469547748565674,
0.05177357792854309,
-0.06249188259243965,
0.15161752700805664,
0.06698071956634521,
0.20419059693813324,
0.04932457581162453,
-0.033182915300130844,
0.1246441900730133,
0.03998083993792534,
-0.022798821330070496,
-0.11891860514879227,
0.03719012066721916,
-0.00767596485093236,
-0.04284970834851265,
0.05733412131667137,
-0.08440523594617844,
0.039584431797266006,
-0.008608309552073479,
-0.04907990247011185,
0.0013968099374324083,
-0.060689542442560196,
0.007820169441401958,
0.03182082623243332,
0.0981193408370018,
-0.02211393602192402,
-0.032322145998477936,
0.013483807444572449,
0.05322510376572609,
-0.07785689830780029,
0.055000461637973785,
-0.05392483249306679,
0.0020255025010555983,
-0.03333470970392227,
0.0433925986289978,
-0.19612926244735718,
-0.005536639131605625,
-0.03391074016690254,
0.05906587094068527,
0.05919073894619942,
-0.03558045253157616,
0.060669057071208954,
-0.04558948799967766,
0.019956380128860474,
0.02305028587579727,
0.03809376433491707,
0.02629699558019638,
-0.04288339987397194,
-0.10621638596057892,
0.0005177779821678996,
-0.051617447286844254,
0.10034053772687912,
-0.05343690142035484,
0.01866951584815979,
-0.07047201693058014,
0.06392670422792435,
-0.018406294286251068,
-0.0019128144485875964,
0.01034619566053152,
0.02923811972141266,
-0.02164727821946144,
-0.030192671343684196,
0.04554089158773422,
0.049734268337488174,
-0.04137975722551346,
0.042043253779411316,
-0.012650822289288044,
0.01952221617102623,
0.14213807880878448,
-0.23458139598369598,
-0.033585794270038605,
0.07575133442878723,
-0.013190318830311298,
0.0232109222561121,
0.02311442233622074,
0.01765209622681141,
0.11671188473701477,
-0.0018906749319285154,
0.14200769364833832,
-0.07540415227413177,
0.0425536185503006,
0.033075474202632904,
-0.11686798185110092,
0.053945716470479965,
0.059192948043346405,
0.026202794164419174,
-0.11973395198583603,
0.09089061617851257,
0.11114435642957687,
-0.13166633248329163,
0.11584220081567764,
-0.003010221989825368,
0.012401388958096504,
-0.008419502526521683,
-0.012481075711548328,
-0.012973640114068985,
-0.012724444270133972,
-0.22395578026771545,
-0.0737028494477272,
0.04515441134572029,
-0.018131278455257416,
0.04116232320666313,
-0.08652809262275696,
0.009219360537827015,
-0.02564510703086853,
0.013106592930853367,
-0.0003579720505513251,
0.022410014644265175,
-0.023990340530872345,
0.036545947194099426,
0.062310270965099335,
-0.08780982345342636,
0.060796916484832764,
-0.004624043125659227,
-0.04466864466667175,
0.22918692231178284,
-0.09875631332397461,
-0.267947256565094,
-0.08667301386594772,
-0.08946815878152847,
-0.038342781364917755,
0.022212067618966103,
0.06914380937814713,
-0.1598937064409256,
-0.04005388915538788,
-0.029109245166182518,
-0.04650367796421051,
-0.01125265471637249,
0.02984459511935711,
0.016090255230665207,
0.02797059342265129,
0.02038624696433544,
-0.12279859185218811,
-0.030239135026931763,
-0.06656821817159653,
-0.08965133130550385,
0.09097743034362793,
-0.08011577278375626,
0.1108839213848114,
0.11792702972888947,
-0.011248615570366383,
0.05721350014209747,
0.011158754117786884,
0.19390176236629486,
-0.043370772153139114,
0.007581941783428192,
0.1844150424003601,
-0.03067832998931408,
0.028853774070739746,
0.10662224143743515,
0.006778421811759472,
-0.07822690159082413,
0.05900828540325165,
-0.0035122977569699287,
-0.10976708680391312,
-0.18985432386398315,
-0.11515086144208908,
-0.09975021332502365,
-0.06494908779859543,
0.05006379634141922,
0.050334908068180084,
-0.014304772950708866,
0.07585828751325607,
0.03447873517870903,
0.025496698915958405,
-0.009524154476821423,
0.09707584232091904,
0.09272446483373642,
-0.008094246499240398,
0.10471790283918381,
-0.02638821490108967,
-0.09522313624620438,
0.020549362525343895,
0.02195640653371811,
0.15285414457321167,
-0.00410805968567729,
0.09533269703388214,
0.08460766822099686,
0.08508322387933731,
0.016987010836601257,
0.08341404050588608,
-0.027044769376516342,
0.03051292523741722,
-0.04869522526860237,
-0.06934719532728195,
-0.061049215495586395,
0.01734122261404991,
-0.10641063004732132,
-0.04260427877306938,
-0.012888804078102112,
-0.00637726578861475,
0.044399965554475784,
0.19272054731845856,
0.03927955403923988,
-0.2787804901599884,
-0.04309357702732086,
-0.008522296324372292,
0.00013973581371828914,
-0.04860547557473183,
0.04874198138713837,
-0.008900185115635395,
-0.06862635165452957,
0.025882471352815628,
-0.0034262435510754585,
0.11020804941654205,
0.011738747358322144,
0.06398414075374603,
-0.03113255277276039,
0.04461382329463959,
0.03448087349534035,
0.06864248216152191,
-0.23531174659729004,
0.23177599906921387,
0.005007673054933548,
0.060429200530052185,
-0.07331662625074387,
-0.013498781248927116,
-0.022878799587488174,
0.011501546017825603,
0.09874609857797623,
0.024276655167341232,
0.11413377523422241,
-0.04544507712125778,
-0.010423892177641392,
0.08413830399513245,
0.07088761776685715,
0.017915815114974976,
0.03730002045631409,
-0.00033258122857660055,
-0.02471248432993889,
0.010671117343008518,
0.069725900888443,
-0.06744705885648727,
-0.08138343691825867,
0.004360686521977186,
0.11527267098426819,
-0.054162099957466125,
0.0005208398215472698,
-0.011498510837554932,
0.0007295480463653803,
0.21030575037002563,
0.04353437200188637,
-0.05724388733506203,
-0.09512661397457123,
0.06509128212928772,
0.07852690666913986,
-0.11139146238565445,
0.08090484887361526,
-0.0911155715584755,
-0.03039228543639183,
-0.014501407742500305,
-0.1206771656870842,
0.11840707808732986,
-0.0795668512582779,
-0.01432092022150755,
-0.027263609692454338,
0.038893286138772964,
0.03685572370886803,
-0.005140053573995829,
0.04258235916495323,
0.04799419641494751,
-0.09274100512266159,
-0.07463178783655167,
-0.0707879364490509,
-0.01978158950805664,
0.08917679637670517,
0.04071628302335739,
-0.05124018341302872,
-0.03980078920722008,
0.0162552110850811,
0.03928987309336662,
0.21458013355731964,
0.07263033092021942,
-0.060154322534799576,
0.027793128043413162,
0.22982776165008545,
-0.05226412042975426,
-0.34422746300697327,
0.004343191161751747,
-0.009357853792607784,
-0.01683589071035385,
-0.07194814085960388,
-0.18675631284713745,
0.18893277645111084,
-0.02572043612599373,
-0.04554136469960213,
-0.09253523498773575,
-0.17034056782722473,
-0.08780597895383835,
0.16659574210643768,
0.06013452261686325,
0.3234447240829468,
-0.150315523147583,
-0.006634114775806665,
-0.10031073540449142,
-0.17578093707561493,
0.12451283633708954,
-0.30832943320274353,
0.09822675585746765,
0.023894978687167168,
0.04749636352062225,
-0.00507800467312336,
-0.08583835512399673,
0.03538640961050987,
0.02137233503162861,
0.01853327453136444,
-0.06482359021902084,
-0.06041364371776581,
0.11170664429664612,
-0.004984661936759949,
0.05986924469470978,
0.05850541219115257,
0.05657639726996422,
-0.018649719655513763,
-0.01514799240976572,
-0.09983305633068085,
0.05763363093137741,
0.021676938980817795,
-0.08837921172380447,
-0.013991910964250565,
0.04602804780006409,
0.04690655320882797,
0.0479566790163517,
0.18661415576934814,
-0.033481523394584656,
0.0404554046690464,
0.1712764948606491,
0.0006904329638928175,
-0.11280064284801483,
0.030805198475718498,
0.07124854624271393,
-0.041163478046655655,
0.12070837616920471,
-0.17532382905483246,
0.053591758012771606,
0.013446572236716747,
0.03898647427558899,
0.03836307302117348,
0.073502317070961,
-0.03526030108332634,
-0.014530283398926258,
0.04851720109581947,
-0.14224743843078613,
-0.03456806018948555,
0.03010638989508152,
-0.122399240732193,
-0.052904535084962845,
0.11102870851755142,
0.18479974567890167,
-0.046183302998542786,
-0.042074352502822876,
-0.008475534617900848,
0.01329741720110178,
-0.1097315102815628,
0.140743225812912,
0.09794509410858154,
0.002372296527028084,
-0.14067330956459045,
0.037832796573638916,
0.08825542032718658,
0.03800355643033981,
0.06365036964416504,
0.11948656290769577,
-0.11825859546661377,
-0.0991770550608635,
0.056892797350883484,
0.12999165058135986,
-0.018685881048440933,
-0.05517886206507683,
-0.10669568926095963,
-0.026933513581752777,
0.010406436398625374,
0.0885666161775589,
0.11152758449316025,
-0.022368958219885826,
-0.00579952634871006,
0.009171477518975735,
-0.04685356095433235,
0.00016592233441770077,
0.043636951595544815,
0.030061425641179085,
-0.034664545208215714,
0.08120253682136536,
-0.0036761669907718897,
0.08887351304292679,
-0.07809716463088989,
-0.04023326188325882,
-0.19110330939292908,
0.06299915164709091,
-0.049705494195222855,
0.02870820462703705,
-0.05832177400588989,
-0.03177235648036003,
-0.024224434047937393,
-0.0280165933072567,
-0.045706454664468765,
0.06213676184415817,
-0.04427915811538696,
-0.016532741487026215,
-0.02537274919450283,
0.014020432718098164,
-0.10030847787857056,
-0.0030654333531856537,
0.02815871685743332,
0.0014096898958086967,
0.06592165678739548,
0.034823477268218994,
-0.10394556820392609,
0.04475087672472,
-0.2640422582626343,
-0.08411647379398346,
0.07230831682682037,
0.006088006775826216,
0.07559377700090408,
0.06281231343746185,
0.0007836465956643224,
0.051291923969984055,
0.12080532312393188,
-0.014444908127188683,
0.1914365440607071,
-0.08843286335468292,
0.020199911668896675,
-0.08045436441898346,
-0.07675722986459732,
-0.01626519300043583,
0.004599074367433786,
0.09585703909397125,
0.0909019485116005,
0.13446594774723053,
-0.064371757209301,
0.04039078950881958,
-0.0848463699221611,
-0.016913942992687225,
-0.008980344980955124,
-0.10092741996049881,
-0.09159106761217117,
-0.07609442621469498,
0.03546488657593727,
-0.05723389610648155,
0.12439636141061783,
0.09463166445493698,
0.022206919267773628,
0.011318466626107693,
0.044364672154188156,
0.01116030290722847,
0.0013955715112388134,
0.09386757761240005,
0.06296827644109726,
-0.031654126942157745,
0.020591864362359047,
0.07934094965457916,
0.08619677275419235,
0.17131993174552917,
0.03657446801662445,
0.1734319031238556,
0.18219918012619019,
0.10815058648586273,
-0.011123966425657272,
0.08946344256401062,
-0.03763245791196823,
0.0028742069844156504,
-0.007175708655267954,
0.0956774353981018,
-0.07271688431501389,
0.014854250475764275,
0.12756584584712982,
-0.037772126495838165,
0.0294656902551651,
-0.0037232921458780766,
-0.0799616202712059,
-0.12642362713813782,
-0.1417839676141739,
-0.13723747432231903,
-0.06943739950656891,
-0.008614558726549149,
-0.08068397641181946,
-0.03678456321358681,
0.10259280353784561,
-0.0006581341149285436,
-0.001680040848441422,
0.1610686331987381,
0.11793045699596405,
-0.06437311321496964,
0.034879159182310104,
-0.035997889935970306,
0.036113280802965164,
0.09008681029081345,
-0.030831627547740936,
-0.009272676892578602,
0.09695365279912949,
0.05823471397161484,
0.04116562753915787,
0.006661626044660807,
0.05125531181693077,
-0.11807175725698471,
-0.0961642861366272,
-0.05535943806171417,
0.08832161873579025,
0.012829373590648174,
0.14169928431510925,
0.044654786586761475,
-0.07520937919616699,
0.0350647047162056,
0.15473592281341553,
-0.03218071162700653,
-0.1492614895105362,
-0.11685952544212341,
0.16948729753494263,
0.07014714926481247,
0.020496495068073273,
-0.05076909810304642,
-0.05941010266542435,
-0.08172722905874252,
0.27666375041007996,
0.33178970217704773,
-0.06072615459561348,
0.026761211454868317,
0.06450756639242172,
0.0041554211638867855,
0.009479213505983353,
0.18731002509593964,
0.10123876482248306,
0.20159262418746948,
-0.034889739006757736,
-0.027085836976766586,
-0.02812468446791172,
-0.07884806394577026,
-0.1818748414516449,
-0.06402008980512619,
0.04585861414670944,
-0.04969879612326622,
-0.00455534178763628,
0.07325275242328644,
-0.14974702894687653,
-0.12355197221040726,
0.013395342975854874,
-0.1593894213438034,
-0.1189979836344719,
-0.021577773615717888,
0.011174713261425495,
0.04909627139568329,
0.08261387050151825,
-0.02785748615860939,
0.03489144891500473,
-0.0017681859899312258,
-0.019758468493819237,
-0.019249314442276955,
-0.08294054865837097,
0.11826585978269577,
-0.1413823962211609,
0.1415839046239853,
-0.02954709157347679,
0.07073908299207687,
0.09301450103521347,
0.045262888073921204,
-0.0303200576454401,
0.05637260153889656,
-0.005572606343775988,
-0.02193477377295494,
0.04079615697264671,
-0.031036237254738808,
-0.08252806216478348,
-0.05328734219074249,
0.03518444672226906,
-0.08189712464809418,
0.0190861988812685,
-0.013295605778694153,
0.003279004944488406,
-0.1457909494638443,
-0.008449328131973743,
-0.1489025205373764,
0.07377193868160248,
0.12435948848724365,
-0.04177882522344589,
0.005893504247069359,
-0.08541321009397507,
0.0062215495854616165,
-0.009378994815051556,
-0.07397215813398361,
-0.15240274369716644,
-0.16312119364738464,
-0.03876347839832306,
0.04191265627741814,
0.036846086382865906,
-0.18056070804595947,
0.0593688078224659,
-0.08606371283531189,
0.011184707283973694,
-0.05069572106003761,
0.0590684749186039,
0.06918700039386749,
0.008530465885996819,
-0.011613956652581692,
-0.09451977908611298,
0.0049767885357141495,
0.08980491757392883,
-0.16845250129699707,
-0.1476271152496338
] |
null | null |
transformers
|
# roberta-python
---
language: python
datasets:
- code_search_net
---
This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **Python** Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-python")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-python")
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer
)
```
You can then use this model to fill masked words in a Python code.
```python
code = """
new_dict = {}
for k, v in my_dict.<mask>():
new_dict[k] = v**2
""".lstrip()
pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)}
sorted(pred.items(), key=lambda kv: kv[1], reverse=True)
# [('items', 0.7376779913902283),
# ('keys', 0.16238391399383545),
# ('values', 0.03965481370687485),
# ('iteritems', 0.03346433863043785),
# ('splitlines', 0.0032723243348300457)]
```
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
fill-mask
|
dbernsohn/roberta-python
|
[
"transformers",
"pytorch",
"jax",
"roberta",
"fill-mask",
"arxiv:1907.11692",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1907.11692"
] |
[] |
TAGS
#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
|
# roberta-python
---
language: python
datasets:
- code_search_net
---
This is a roberta pre-trained version on the CodeSearchNet dataset for Python Mask Language Model mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to fill masked words in a Python code.
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# roberta-python\n---\nlanguage: python\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Python Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Python code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n",
"# roberta-python\n---\nlanguage: python\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Python Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Python code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
48,
108
] |
[
"passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-python\n---\nlanguage: python\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Python Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Python code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
-0.02446572855114937,
0.09461064636707306,
-0.002980609657242894,
0.07004109770059586,
0.22145716845989227,
0.015588700771331787,
0.04652438312768936,
0.06150041148066521,
-0.0700429305434227,
-0.016678858548402786,
0.11863777786493301,
0.15960320830345154,
-0.002420762088149786,
0.19738617539405823,
-0.00028767267940565944,
-0.2674153447151184,
0.04801052808761597,
-0.012247264385223389,
-0.036388617008924484,
0.13093023002147675,
0.08829443901777267,
-0.005491544492542744,
0.08541902154684067,
-0.00040125660598278046,
-0.18638451397418976,
0.020555885508656502,
0.01745167188346386,
-0.09091667830944061,
0.0902145653963089,
-0.0282323956489563,
0.17523635923862457,
-0.06505301594734192,
0.03923720866441727,
-0.04336994141340256,
0.034432850778102875,
0.08442036062479019,
-0.011315318755805492,
0.04617709666490555,
-0.058939117938280106,
-0.07658936828374863,
0.1000700443983078,
-0.049624279141426086,
0.07748331874608994,
0.026818368583917618,
-0.13870663940906525,
-0.12914526462554932,
-0.0026347017847001553,
-0.06380239874124527,
0.06647622585296631,
0.15710879862308502,
-0.0011582544539123774,
0.22260098159313202,
-0.035312019288539886,
0.13707055151462555,
0.14938880503177643,
-0.2224433422088623,
-0.06881754100322723,
0.08760745823383331,
0.02381725236773491,
0.015239173546433449,
0.02625168487429619,
-0.008433671668171883,
-0.008802471682429314,
0.04744332283735275,
0.05139899253845215,
-0.10723825544118881,
-0.19140173494815826,
-0.11458203941583633,
-0.14044830203056335,
-0.007738469634205103,
0.07320990413427353,
-0.09001324325799942,
-0.04482381418347359,
0.05292782932519913,
-0.15189795196056366,
0.07073648273944855,
-0.0406268946826458,
0.08991891890764236,
-0.010162562131881714,
0.02816004678606987,
-0.0904596820473671,
-0.060970790684223175,
-0.02879355475306511,
-0.033028386533260345,
-0.11324308067560196,
0.27744072675704956,
0.030625274404883385,
0.05484171584248543,
-0.14332309365272522,
0.010724562220275402,
-0.06872400641441345,
-0.11172948777675629,
0.008607565425336361,
-0.04628324508666992,
-0.015111023560166359,
0.020988378673791885,
-0.04294254630804062,
-0.10575848817825317,
0.10199494659900665,
0.20203328132629395,
-0.02283964678645134,
0.04838715121150017,
-0.04326678067445755,
0.012768642976880074,
0.0165899358689785,
0.10336662828922272,
-0.058912135660648346,
-0.04425365477800369,
0.10555577278137207,
-0.11544588953256607,
0.06462891399860382,
-0.051067739725112915,
-0.09504316747188568,
-0.0030697924084961414,
-0.0025363564491271973,
0.03189704567193985,
0.06882892549037933,
0.13379204273223877,
-0.008106709457933903,
-0.03462682291865349,
-0.038688600063323975,
-0.10591919720172882,
-0.021603181958198547,
-0.014703460037708282,
-0.001740422798320651,
0.010637718252837658,
0.09239335358142853,
-0.010768316686153412,
-0.08430220186710358,
0.06794829666614532,
-0.07201103121042252,
0.029620155692100525,
-0.06798484921455383,
-0.1833508461713791,
-0.021608363837003708,
-0.1344844102859497,
0.028000395745038986,
-0.181311696767807,
-0.1293715536594391,
-0.014825299382209778,
0.09223867207765579,
0.0010963184759020805,
-0.0004390774411149323,
-0.004877686034888029,
-0.05283593013882637,
-0.012698146514594555,
-0.006113319657742977,
0.0004364391788840294,
-0.0411444716155529,
0.07647983729839325,
0.050677817314863205,
0.09172915667295456,
-0.18575552105903625,
0.026727313175797462,
-0.14727571606636047,
-0.044554393738508224,
-0.20260688662528992,
0.020199179649353027,
-0.04381871223449707,
0.15880438685417175,
-0.11441288143396378,
-0.07016918063163757,
0.03382861241698265,
0.03251318261027336,
0.08116023987531662,
0.10896538197994232,
-0.08485625684261322,
-0.033703844994306564,
0.21353712677955627,
-0.10523466765880585,
-0.05016815662384033,
0.0978490486741066,
-0.0570862777531147,
0.1304813027381897,
0.09822232276201248,
0.14342769980430603,
0.10194218158721924,
-0.10522599518299103,
0.08799459040164948,
0.025492018088698387,
-0.046725448220968246,
-0.07500524073839188,
0.03814563900232315,
0.002721383236348629,
-0.06467866152524948,
0.03202296048402786,
-0.05313730984926224,
0.0905834436416626,
-0.015652688220143318,
-0.031689126044511795,
-0.0003608120314311236,
-0.042661380022764206,
0.02115660347044468,
0.03635649010539055,
0.06764690577983856,
-0.02899177372455597,
-0.08550383150577545,
-0.024598561227321625,
0.10135623067617416,
-0.060550667345523834,
0.03604579344391823,
-0.07482551038265228,
0.06335657835006714,
0.01267116330564022,
0.01918621174991131,
-0.1786556839942932,
-0.025767099112272263,
-0.03419191762804985,
0.11897251754999161,
0.08029185980558395,
-0.11824914067983627,
0.03933809697628021,
-0.015849681571125984,
0.0441354401409626,
0.03535936400294304,
0.04147256165742874,
-0.0026261056773364544,
-0.030541066080331802,
-0.08345380425453186,
-0.00264917709864676,
-0.0416962094604969,
0.15070761740207672,
-0.0622638463973999,
0.026556674391031265,
-0.10405762493610382,
0.06656534969806671,
-0.016848955303430557,
-0.01833500526845455,
-0.0003606364189181477,
0.050242215394973755,
-0.0442330501973629,
-0.050539202988147736,
0.03661317378282547,
0.031589120626449585,
-0.025784706696867943,
-0.0122295580804348,
-0.07661780714988708,
-0.03216744214296341,
0.1468304693698883,
-0.20230631530284882,
-0.0710214227437973,
0.16313129663467407,
0.015616560354828835,
0.046518437564373016,
-0.014906713739037514,
0.021940186619758606,
0.13985827565193176,
0.0033606563229113817,
0.1347639262676239,
-0.026652494445443153,
0.08611302077770233,
0.0261775441467762,
-0.1229240745306015,
0.07001221179962158,
0.045892395079135895,
0.04419346898794174,
-0.1321924328804016,
0.08831476420164108,
0.0036463432479649782,
-0.14212162792682648,
0.08917511999607086,
0.027218718081712723,
0.003967450466006994,
0.011241903528571129,
-0.0021257507614791393,
0.0307182464748621,
-0.0190323106944561,
-0.13076838850975037,
-0.05205871909856796,
0.03453787788748741,
-0.03834570199251175,
0.033573564141988754,
-0.06697766482830048,
-0.0056453594006598,
-0.02257395163178444,
0.03463093191385269,
-0.08274433016777039,
0.010105608031153679,
-0.004607854876667261,
0.038681648671627045,
0.04216336831450462,
-0.09549494832754135,
0.03340531513094902,
0.00980496034026146,
-0.04934404790401459,
0.24411234259605408,
-0.09603060036897659,
-0.2946567237377167,
-0.10060443729162216,
-0.1902848780155182,
-0.0032584168948233128,
0.008161396719515324,
0.04962902516126633,
-0.13975130021572113,
-0.04384902864694595,
0.010658321902155876,
0.052733272314071655,
-0.06642746925354004,
0.020073354244232178,
-0.03252336010336876,
0.01836833357810974,
-0.003351505845785141,
-0.10007026046514511,
-0.01252042967826128,
-0.06728984415531158,
-0.1143365353345871,
0.13749155402183533,
-0.11053098738193512,
0.08124830573797226,
0.11535829305648804,
-0.01966208405792713,
0.021025339141488075,
-0.010356133803725243,
0.2366025745868683,
-0.05532742664217949,
-0.019260946661233902,
0.17619524896144867,
-0.04746220260858536,
0.04256589710712433,
0.12748032808303833,
-0.001740962965413928,
-0.10086379200220108,
0.06998519599437714,
-0.023541655391454697,
-0.11412425339221954,
-0.16296647489070892,
-0.1248299852013588,
-0.09721185266971588,
0.007915804162621498,
0.08351443707942963,
0.024486497044563293,
-0.030973583459854126,
0.07872477918863297,
0.008134715259075165,
0.03868034482002258,
-0.01039029285311699,
0.11539541184902191,
0.04273563250899315,
0.016227027401328087,
0.11818870157003403,
-0.01155256386846304,
-0.076667919754982,
0.01737937703728676,
-0.006895346101373434,
0.17379577457904816,
-0.004228611476719379,
0.09367618709802628,
0.03170260787010193,
0.090238556265831,
0.04629359021782875,
0.09989826381206512,
-0.0392773263156414,
0.02787611447274685,
-0.01695103570818901,
-0.04194319620728493,
-0.08057329803705215,
-0.024435529485344887,
-0.0484829917550087,
-0.04636809229850769,
0.0024730509612709284,
0.0362946093082428,
0.006167499348521233,
0.14445683360099792,
0.08382352441549301,
-0.29994064569473267,
-0.052174944430589676,
-0.008933840319514275,
-0.0020928489975631237,
-0.06777433305978775,
0.022377392277121544,
-0.08342196047306061,
-0.10912110656499863,
0.06994960457086563,
-0.04487263411283493,
0.10863752663135529,
0.0017275850987061858,
0.03203344717621803,
-0.06538321077823639,
0.06163971498608589,
0.009653097949922085,
0.04495105519890785,
-0.25005805492401123,
0.21482086181640625,
-0.008689194917678833,
0.0783359706401825,
-0.054335493594408035,
0.007933862507343292,
-0.009540180675685406,
0.03943308815360069,
0.08888714015483856,
0.0202485378831625,
0.10640688240528107,
-0.07989025861024857,
-0.05507110804319382,
0.06186097115278244,
0.07250253856182098,
0.01627478189766407,
0.07498517632484436,
-0.015069214627146721,
-0.008954022079706192,
-0.009179675951600075,
-0.004573422484099865,
-0.04146328195929527,
-0.08726157248020172,
0.011619491502642632,
0.027932826429605484,
-0.05952997878193855,
0.02293378673493862,
-0.01972760446369648,
0.04363137483596802,
0.2052578181028366,
0.026599759235978127,
-0.08545652031898499,
-0.1076674684882164,
0.08883141726255417,
0.061360280960798264,
-0.12081493437290192,
0.09913045167922974,
-0.09145611524581909,
-0.04546404629945755,
-0.02720622345805168,
-0.1474488079547882,
0.13011237978935242,
-0.08960440009832382,
0.02163139544427395,
-0.016964886337518692,
0.04356180876493454,
0.04374341666698456,
0.019846301525831223,
0.01680769771337509,
0.07887929677963257,
-0.08504971116781235,
-0.05402171611785889,
-0.09692978858947754,
-0.009678903967142105,
0.020627114921808243,
0.1424712985754013,
-0.05870991200208664,
-0.10022260993719101,
-0.06501791626214981,
0.05783897638320923,
0.2299748957157135,
0.09373420476913452,
-0.05317557975649834,
0.023364003747701645,
0.1304500848054886,
-0.033965252339839935,
-0.3086136281490326,
0.0029701211024075747,
0.026465430855751038,
-0.0006263218820095062,
-0.05176480859518051,
-0.23855583369731903,
0.15006688237190247,
0.009759682230651379,
-0.01610996015369892,
-0.010499726980924606,
-0.19123531877994537,
-0.07661622017621994,
0.18159139156341553,
0.06112714856863022,
0.30326876044273376,
-0.1471378207206726,
0.017509689554572105,
-0.09759244322776794,
-0.120124951004982,
0.17640261352062225,
-0.2675763666629791,
0.1021658405661583,
0.03219471499323845,
0.12050855159759521,
0.010016883723437786,
-0.05791929364204407,
0.030640020966529846,
-0.02048119530081749,
-0.018204396590590477,
-0.05867815017700195,
-0.05510515719652176,
0.05176348239183426,
0.014333288185298443,
0.04767333343625069,
0.05181175470352173,
0.04578179866075516,
-0.08948556333780289,
-0.004336356185376644,
-0.08558778464794159,
0.08263266086578369,
0.024379944428801537,
-0.09079694002866745,
-0.021483164280653,
0.03492499887943268,
0.03123079612851143,
0.040754154324531555,
0.18933923542499542,
-0.02260492369532585,
0.0984416976571083,
0.06615612655878067,
-0.004266757518053055,
-0.018460150808095932,
0.02002449706196785,
0.06574945896863937,
-0.03771942853927612,
0.10182845592498779,
-0.14740628004074097,
0.011418333277106285,
0.03045027330517769,
0.06961610168218613,
0.03237226977944374,
0.06529829651117325,
-0.05449259281158447,
0.02007364109158516,
0.04984916001558304,
-0.1204945296049118,
-0.01939770020544529,
0.05967295169830322,
-0.09058185666799545,
-0.04720614105463028,
0.06469278037548065,
0.19735637307167053,
-0.04713946580886841,
-0.06826864928007126,
-0.0038125745486468077,
0.014117631129920483,
-0.10010824352502823,
0.1334407776594162,
0.07892455160617828,
0.0015829566400498152,
-0.15400917828083038,
0.019795242697000504,
0.08516596257686615,
0.07755828648805618,
0.0355469211935997,
0.15265196561813354,
-0.11760349571704865,
-0.091389961540699,
0.0282264556735754,
0.07926667481660843,
-0.08377785980701447,
-0.010905561968684196,
-0.06389032304286957,
-0.011805273592472076,
-0.020977597683668137,
0.1309567391872406,
0.11005791276693344,
-0.04198765754699707,
-0.02676485851407051,
0.011293275281786919,
-0.09781894832849503,
-0.029636969789862633,
0.04824079945683479,
0.04789520800113678,
-0.06081707030534744,
0.1316368728876114,
0.018685009330511093,
0.07649341225624084,
-0.07455267012119293,
-0.03646601736545563,
-0.19439640641212463,
0.07036972790956497,
-0.009955247864127159,
0.03818788006901741,
-0.06033627316355705,
-0.019924527034163475,
-0.01171787828207016,
-0.022912543267011642,
-0.04163696989417076,
0.02613142505288124,
-0.05516017600893974,
-0.015401514247059822,
-0.021402308717370033,
-0.06100720912218094,
-0.06438354402780533,
0.005532317329198122,
0.04679734259843826,
-0.03113836608827114,
0.0738178938627243,
0.09365604817867279,
-0.06827282905578613,
0.07699090987443924,
-0.2328736037015915,
-0.10495494306087494,
0.07281146943569183,
-0.0011418869253247976,
0.07431778311729431,
0.030730217695236206,
0.010789823718369007,
0.008187729865312576,
0.14093151688575745,
0.008725911378860474,
0.19696441292762756,
-0.09256274998188019,
0.0229622982442379,
-0.031239667907357216,
-0.07926104217767715,
-0.010868779383599758,
0.0009368555620312691,
0.03461534529924393,
0.08889218419790268,
0.1893155574798584,
-0.07378432154655457,
0.08623969554901123,
-0.044739436358213425,
-0.028406435623764992,
-0.042474038898944855,
-0.09640199691057205,
-0.04283342510461807,
-0.03830140829086304,
0.04588504508137703,
-0.03593919053673744,
0.056261222809553146,
0.07461642473936081,
0.05821693688631058,
0.008076978847384453,
0.060908686369657516,
0.028853993862867355,
-0.0043100835755467415,
0.11531887948513031,
0.09792777895927429,
-0.017505649477243423,
0.012834811583161354,
0.05063377693295479,
0.0864422395825386,
0.15181832015514374,
0.07596500217914581,
0.12575826048851013,
0.141273632645607,
0.05777158588171005,
-0.0037108093965798616,
0.06301209330558777,
-0.06456051766872406,
-0.12568578124046326,
-0.021819641813635826,
0.06382153928279877,
-0.020532099530100822,
0.03706298768520355,
0.13474245369434357,
-0.0011858772486448288,
0.01389961875975132,
0.019568126648664474,
-0.09596016258001328,
-0.14792479574680328,
-0.0768299251794815,
-0.10269768536090851,
-0.060164809226989746,
0.01278643123805523,
-0.07436908036470413,
-0.03309594839811325,
0.14026841521263123,
0.0025806035846471786,
-0.0019012127304449677,
0.13567009568214417,
0.08105556666851044,
-0.10120274871587753,
0.0066121360287070274,
-0.02987772785127163,
0.027446199208498,
0.10198448598384857,
-0.030092384666204453,
-0.05350761488080025,
0.0803924947977066,
0.09087232500314713,
0.02581501007080078,
-0.015944305807352066,
0.10743404924869537,
-0.14846619963645935,
-0.1092352643609047,
-0.03385082632303238,
0.08924730122089386,
-0.016805654391646385,
0.16953085362911224,
0.05605021119117737,
-0.0507509708404541,
0.009382283315062523,
0.18175284564495087,
-0.03536951169371605,
-0.158859521150589,
-0.14785096049308777,
0.3073025345802307,
0.009204776957631111,
0.013198761269450188,
-0.06987981498241425,
-0.05971074849367142,
-0.09707416594028473,
0.26443248987197876,
0.29346221685409546,
-0.041581250727176666,
0.01985100843012333,
0.02788846753537655,
0.0039970604702830315,
0.0025628565344959497,
0.19161176681518555,
0.109876349568367,
0.2309708595275879,
-0.04501950368285179,
-0.04575597122311592,
-0.0367378331720829,
-0.0669323056936264,
-0.22580918669700623,
-0.12575940787792206,
0.036014653742313385,
-0.050359755754470825,
-0.015437637455761433,
0.12264668941497803,
-0.18556584417819977,
-0.08748272806406021,
-0.02694937027990818,
-0.14865052700042725,
-0.131364643573761,
-0.04856010526418686,
-0.015341895632445812,
0.0716719925403595,
0.12298735231161118,
-0.03649594634771347,
0.002218755194917321,
-0.029462018981575966,
-0.006415450479835272,
-0.056919146329164505,
-0.11091965436935425,
0.12369699776172638,
-0.12609660625457764,
0.114385224878788,
-0.040371350944042206,
0.0610111728310585,
0.10160690546035767,
0.04319099336862564,
-0.014316829852759838,
0.04208558052778244,
-0.010958544909954071,
-0.011864683590829372,
0.05714055150747299,
0.04700085520744324,
-0.09556858986616135,
-0.04197661206126213,
0.031227191910147667,
-0.09347527474164963,
0.010221101343631744,
-0.01651672273874283,
0.05358821898698807,
-0.10214171558618546,
-0.010340936481952667,
-0.15223994851112366,
0.06701935827732086,
0.167770117521286,
-0.04511674866080284,
0.025919239968061447,
-0.09717430919408798,
-0.03240462392568588,
0.04004442319273949,
-0.06483948975801468,
-0.16361644864082336,
-0.2162415236234665,
-0.08829083293676376,
0.026779990643262863,
0.017704961821436882,
-0.20496518909931183,
0.0918697863817215,
-0.11389396339654922,
0.007425377611070871,
-0.09872500598430634,
0.07365822792053223,
0.04034283012151718,
-0.008683837950229645,
-0.006838375236839056,
-0.05077836662530899,
-0.0021545833442360163,
0.09889915585517883,
-0.16397392749786377,
-0.15085576474666595
] |
null | null |
transformers
|
# measurement_time
---
language: en
datasets:
- measurement_time
---
This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/measurement_time](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetmeasurement_time) for solving **measurement time equations** mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_measurement_time")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_measurement_time")
```
You can then use this model to solve algebra 1d equations into numbers.
```python
query = "How many minutes are there between 2:09 PM and 2:27 PM?"
input_text = f"{query} </s>"
features = tokenizer([input_text], return_tensors='pt')
model.to('cuda')
output = model.generate(input_ids=features['input_ids'].cuda(),
attention_mask=features['attention_mask'].cuda())
tokenizer.decode(output[0])
# <pad> 18</s>
```
Another examples:
+ How many minutes are there between 2:09 PM and 2:27 PM?
+ Answer: 18 Pred: 18
----
+ What is 116 minutes after 10:06 AM?
+ Answer: 12:02 PM Pred: 12:02 PM
----
+ What is 608 minutes after 3:14 PM?
+ Answer: 1:22 AM Pred: 1:22 AM
----
+ What is 64 minutes before 9:16 AM?
+ Answer: 8:12 AM Pred: 8:12 AM
----
+ What is 427 minutes before 4:27 AM?
+ Answer: 9:20 PM Pred: 9:20 PM
----
+ How many minutes are there between 6:36 PM and 12:15 AM?
+ Answer: 339 Pred: 339
----
+ What is 554 minutes before 5:24 PM?
+ Answer: 8:10 AM Pred: 8:10 AM
----
+ What is 307 minutes after 5:15 AM?
+ Answer: 10:22 AM Pred: 10:22 AM
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
text2text-generation
|
dbernsohn/t5_measurement_time
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# measurement_time
---
language: en
datasets:
- measurement_time
---
This is a t5-small fine-tuned version on the math_dataset/measurement_time for solving measurement time equations mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to solve algebra 1d equations into numbers.
Another examples:
+ How many minutes are there between 2:09 PM and 2:27 PM?
+ Answer: 18 Pred: 18
----
+ What is 116 minutes after 10:06 AM?
+ Answer: 12:02 PM Pred: 12:02 PM
----
+ What is 608 minutes after 3:14 PM?
+ Answer: 1:22 AM Pred: 1:22 AM
----
+ What is 64 minutes before 9:16 AM?
+ Answer: 8:12 AM Pred: 8:12 AM
----
+ What is 427 minutes before 4:27 AM?
+ Answer: 9:20 PM Pred: 9:20 PM
----
+ How many minutes are there between 6:36 PM and 12:15 AM?
+ Answer: 339 Pred: 339
----
+ What is 554 minutes before 5:24 PM?
+ Answer: 8:10 AM Pred: 8:10 AM
----
+ What is 307 minutes after 5:15 AM?
+ Answer: 10:22 AM Pred: 10:22 AM
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# measurement_time\n---\nlanguage: en\ndatasets:\n- measurement_time\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/measurement_time for solving measurement time equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ How many minutes are there between 2:09 PM and 2:27 PM?\n+ Answer: 18 Pred: 18\n----\n+ What is 116 minutes after 10:06 AM?\n+ Answer: 12:02 PM Pred: 12:02 PM\n----\n+ What is 608 minutes after 3:14 PM?\n+ Answer: 1:22 AM Pred: 1:22 AM\n----\n+ What is 64 minutes before 9:16 AM?\n+ Answer: 8:12 AM Pred: 8:12 AM\n----\n+ What is 427 minutes before 4:27 AM?\n+ Answer: 9:20 PM Pred: 9:20 PM\n----\n+ How many minutes are there between 6:36 PM and 12:15 AM?\n+ Answer: 339 Pred: 339\n----\n+ What is 554 minutes before 5:24 PM?\n+ Answer: 8:10 AM Pred: 8:10 AM\n----\n+ What is 307 minutes after 5:15 AM?\n+ Answer: 10:22 AM Pred: 10:22 AM\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# measurement_time\n---\nlanguage: en\ndatasets:\n- measurement_time\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/measurement_time for solving measurement time equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ How many minutes are there between 2:09 PM and 2:27 PM?\n+ Answer: 18 Pred: 18\n----\n+ What is 116 minutes after 10:06 AM?\n+ Answer: 12:02 PM Pred: 12:02 PM\n----\n+ What is 608 minutes after 3:14 PM?\n+ Answer: 1:22 AM Pred: 1:22 AM\n----\n+ What is 64 minutes before 9:16 AM?\n+ Answer: 8:12 AM Pred: 8:12 AM\n----\n+ What is 427 minutes before 4:27 AM?\n+ Answer: 9:20 PM Pred: 9:20 PM\n----\n+ How many minutes are there between 6:36 PM and 12:15 AM?\n+ Answer: 339 Pred: 339\n----\n+ What is 554 minutes before 5:24 PM?\n+ Answer: 8:10 AM Pred: 8:10 AM\n----\n+ What is 307 minutes after 5:15 AM?\n+ Answer: 10:22 AM Pred: 10:22 AM\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
48,
306
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# measurement_time\n---\nlanguage: en\ndatasets:\n- measurement_time\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/measurement_time for solving measurement time equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ How many minutes are there between 2:09 PM and 2:27 PM?\n+ Answer: 18 Pred: 18\n----\n+ What is 116 minutes after 10:06 AM?\n+ Answer: 12:02 PM Pred: 12:02 PM\n----\n+ What is 608 minutes after 3:14 PM?\n+ Answer: 1:22 AM Pred: 1:22 AM\n----\n+ What is 64 minutes before 9:16 AM?\n+ Answer: 8:12 AM Pred: 8:12 AM\n----\n+ What is 427 minutes before 4:27 AM?\n+ Answer: 9:20 PM Pred: 9:20 PM\n----\n+ How many minutes are there between 6:36 PM and 12:15 AM?\n+ Answer: 339 Pred: 339\n----\n+ What is 554 minutes before 5:24 PM?\n+ Answer: 8:10 AM Pred: 8:10 AM\n----\n+ What is 307 minutes after 5:15 AM?\n+ Answer: 10:22 AM Pred: 10:22 AM\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
-0.07610338926315308,
0.07977675646543503,
-0.0034631516318768263,
0.004631798714399338,
0.07642073929309845,
0.046385228633880615,
-0.018459610641002655,
0.13493773341178894,
-0.06014591455459595,
0.2160584181547165,
0.0725131630897522,
0.027665002271533012,
0.060757312923669815,
0.035807907581329346,
0.02936980128288269,
-0.18946421146392822,
-0.03723033145070076,
-0.04534284025430679,
-0.0007994442130438983,
0.1093396246433258,
0.04012713581323624,
-0.1137099489569664,
0.027928005903959274,
-0.08963723480701447,
0.008905026130378246,
0.0016615270869806409,
-0.09212419390678406,
-0.09432787448167801,
0.03034576028585434,
0.04443296417593956,
-0.05399514362215996,
-0.018525347113609314,
0.06707872450351715,
-0.1781838983297348,
-0.011492855846881866,
0.04616951942443848,
-0.001751546747982502,
0.06520240753889084,
0.06424395740032196,
0.008884130045771599,
0.07119804620742798,
-0.04914817586541176,
0.07430537790060043,
0.0426771342754364,
-0.16832701861858368,
-0.2382746934890747,
-0.11757417768239975,
0.06360673904418945,
0.2275150716304779,
0.1758701503276825,
-0.07706265896558762,
0.08866439759731293,
-0.09756676107645035,
0.05978076159954071,
0.2662968635559082,
-0.1914559006690979,
-0.05773477628827095,
0.013643760234117508,
0.09739118069410324,
0.09682702273130417,
-0.05538974702358246,
-0.020987212657928467,
0.06483419984579086,
0.04887579753994942,
-0.0016583632677793503,
-0.04457201436161995,
0.12333907186985016,
0.004600959829986095,
-0.21772876381874084,
-0.10790074616670609,
0.0021037915721535683,
0.015228990465402603,
-0.04890623688697815,
-0.09055961668491364,
-0.026068538427352905,
-0.15232597291469574,
-0.07007055729627609,
-0.019037295132875443,
0.03364785015583038,
-0.04184597730636597,
-0.005277513992041349,
0.04716440662741661,
0.008350812830030918,
-0.08667532354593277,
0.023967908695340157,
0.11492342501878738,
0.07318376004695892,
-0.03392050787806511,
0.02198060229420662,
0.05832704156637192,
-0.114851213991642,
-0.14489345252513885,
-0.07589340955018997,
0.07834898680448532,
-0.12159612029790878,
-0.025232240557670593,
0.008279049769043922,
-0.04608882963657379,
-0.010636716149747372,
0.3247371315956116,
-0.12632186710834503,
0.09142373502254486,
0.027401261031627655,
-0.04908115416765213,
0.010263470932841301,
0.16905440390110016,
-0.08862698078155518,
-0.15144957602024078,
-0.10941465198993683,
-0.00683231046423316,
0.0040505556389689445,
-0.02746160328388214,
0.030886249616742134,
0.03239850699901581,
0.06766775250434875,
0.10624939203262329,
0.12856777012348175,
-0.0191954355686903,
0.018337849527597427,
-0.019255084916949272,
0.08149171620607376,
-0.09748515486717224,
0.05569874495267868,
0.022517481818795204,
-0.06344449520111084,
-0.14587633311748505,
0.000528563978150487,
-0.0012668544659391046,
-0.1358727216720581,
0.09412353485822678,
-0.023569775745272636,
-0.09075818210840225,
-0.08508330583572388,
-0.08684884756803513,
0.07535255700349808,
-0.011101718991994858,
-0.09270506352186203,
-0.012565204873681068,
0.0046678888611495495,
-0.11681269109249115,
-0.0030311935115605593,
-0.0975426733493805,
-0.015930630266666412,
0.023455910384655,
-0.02618156187236309,
0.018349772319197655,
-0.04863544926047325,
0.16365933418273926,
-0.006767871789634228,
0.051763866096735,
0.10581177473068237,
0.05621758848428726,
0.16806846857070923,
0.1147993952035904,
-0.06894252449274063,
0.0874534398317337,
-0.14838187396526337,
0.010668916627764702,
-0.06345648318529129,
0.03770468756556511,
-0.1734396070241928,
-0.11039835214614868,
0.015495802275836468,
0.0003927538054995239,
0.09621704369783401,
0.11643072217702866,
-0.016066880896687508,
-0.012632976286113262,
0.0851592943072319,
-0.049128495156764984,
-0.1382591873407364,
0.07924507558345795,
0.03850400820374489,
-0.022045059129595757,
0.0019088147673755884,
0.07058120518922806,
-0.036013953387737274,
-0.05713954195380211,
-0.04578632861375809,
-0.11424647271633148,
0.028790468350052834,
0.06712524592876434,
0.06319846212863922,
-0.08038029074668884,
0.01292735617607832,
-0.044820401817560196,
-0.08202896267175674,
-0.038956888020038605,
-0.05708517134189606,
-0.06357897818088531,
0.03469756990671158,
-0.012584886513650417,
-0.04837971180677414,
0.1065812036395073,
-0.053963176906108856,
-0.07528992742300034,
-0.10570519417524338,
0.002670362824574113,
-0.0010794062400236726,
-0.033836059272289276,
0.04750504344701767,
-0.06088728830218315,
0.0026642968878149986,
-0.06296859681606293,
0.04288247972726822,
-0.17947877943515778,
-0.012642265297472477,
0.02620905078947544,
0.0371670238673687,
0.06392019242048264,
-0.10301102697849274,
0.05210472270846367,
0.03492269665002823,
-0.03399354964494705,
-0.07072821259498596,
-0.02402891404926777,
0.006031990051269531,
-0.10839895159006119,
-0.10271646827459335,
-0.05059770867228508,
-0.011358082294464111,
0.07118073105812073,
-0.07699942588806152,
0.006263456307351589,
0.024685388430953026,
0.050668198615312576,
-0.020981790497899055,
-0.048075221478939056,
0.0034831524826586246,
0.040256477892398834,
0.015942834317684174,
-0.04143723472952843,
0.02770075388252735,
-0.06902726739645004,
-0.007881172932684422,
0.010791147127747536,
-0.19780142605304718,
-0.11542323231697083,
0.08348029851913452,
0.0029071508906781673,
-0.12891785800457,
0.0260042455047369,
-0.025169100612401962,
-0.05882657319307327,
-0.043241746723651886,
-0.05815262347459793,
0.1721353828907013,
0.06929510086774826,
0.041281163692474365,
-0.04896003007888794,
-0.056084562093019485,
0.01795261725783348,
-0.027254736050963402,
-0.05995197221636772,
0.2098619043827057,
0.0839667096734047,
-0.023317357525229454,
0.1002710685133934,
0.15828721225261688,
0.05521636828780174,
-0.014033323153853416,
-0.0717671811580658,
-0.1525724232196808,
-0.05069350078701973,
0.05323114991188049,
0.08321873098611832,
-0.005166166462004185,
-0.1165226548910141,
-0.006049780175089836,
0.0355273075401783,
0.026754235848784447,
-0.0004744343168567866,
-0.1170332059264183,
0.026864521205425262,
0.04551182687282562,
-0.025250807404518127,
0.03478507325053215,
-0.04726932942867279,
-0.04098840057849884,
0.051047373563051224,
0.11462867259979248,
0.03622256591916084,
-0.029606690630316734,
-0.04448540508747101,
-0.13062751293182373,
0.17313994467258453,
-0.03422278165817261,
-0.1554374098777771,
-0.03313383832573891,
-0.09985215961933136,
0.06969118118286133,
-0.03151173144578934,
0.0788314938545227,
-0.13077744841575623,
-0.06240914389491081,
-0.04829425737261772,
0.14318838715553284,
-0.025809571146965027,
-0.01310477964580059,
-0.01641112007200718,
-0.02570767141878605,
-0.0019998312927782536,
-0.09674707055091858,
0.030990654602646828,
0.00014500186080113053,
-0.06649485975503922,
0.07361864298582077,
-0.0244569294154644,
0.15952801704406738,
0.1611025631427765,
0.03558633476495743,
0.004024550784379244,
-0.012634677812457085,
0.29851579666137695,
-0.12805818021297455,
-0.013698866590857506,
0.13584746420383453,
0.048147086054086685,
0.07806532084941864,
0.12449724972248077,
-0.01422370970249176,
-0.08598977327346802,
0.0651593804359436,
0.10764326900243759,
-0.06089755892753601,
-0.2528652846813202,
-0.018575165420770645,
-0.035094182938337326,
0.0675366222858429,
0.10721969604492188,
0.024729928001761436,
0.023883812129497528,
-0.035294100642204285,
-0.07513702660799026,
-0.028735840693116188,
0.009106134995818138,
0.11425518244504929,
0.05968959257006645,
0.033370956778526306,
0.064486563205719,
-0.03277607634663582,
0.002716402756050229,
0.054231978952884674,
-0.03787658363580704,
0.11124157905578613,
0.05704759433865547,
0.21077540516853333,
0.04184969142079353,
0.05571011081337929,
-0.06425284594297409,
-0.02923942543566227,
-0.09381530433893204,
0.002689648885279894,
-0.01162913627922535,
-0.04964246600866318,
0.025830617174506187,
0.07029501348733902,
0.059234119951725006,
-0.035066936165094376,
-0.049757570028305054,
-0.0332784429192543,
-0.0009647424449212849,
0.27129265666007996,
0.07213346660137177,
-0.16742552816867828,
-0.02904895506799221,
0.04767466336488724,
-0.062389954924583435,
-0.053817104548215866,
0.034963324666023254,
-0.0554022453725338,
-0.09410638362169266,
0.08694244176149368,
-0.04766695946455002,
0.13013656437397003,
-0.02046867646276951,
0.0018717817729339004,
0.09581905603408813,
-0.020758913829922676,
0.02606169693171978,
0.07207270711660385,
-0.214583620429039,
0.11524085700511932,
0.020713169127702713,
-0.017092721536755562,
-0.03838840499520302,
0.03431304544210434,
-0.06417344510555267,
-0.03676040843129158,
0.14186260104179382,
0.0033794695045799017,
-0.006021494511514902,
-0.07344896346330643,
-0.07990693300962448,
-0.051874566823244095,
0.12512673437595367,
-0.10091127455234528,
0.11976364254951477,
0.002661575563251972,
-0.030714046210050583,
-0.015618318691849709,
0.005144684109836817,
-0.031968146562576294,
-0.035234756767749786,
0.10289734601974487,
-0.12494706362485886,
0.06782544404268265,
-0.05494992434978485,
-0.05093870311975479,
-0.07255427539348602,
0.09959149360656738,
-0.04581171274185181,
-0.04174366965889931,
-0.11832648515701294,
0.043503645807504654,
0.15701645612716675,
-0.08462968468666077,
0.05311661586165428,
0.04074115678668022,
0.05628911778330803,
0.012705938890576363,
0.018960649147629738,
0.17638936638832092,
-0.04719250276684761,
-0.2581445574760437,
-0.03168072924017906,
0.16703276336193085,
0.03379801660776138,
0.09797044098377228,
-0.07301732897758484,
0.12678872048854828,
-0.0060407016426324844,
-0.07916068285703659,
0.08015614748001099,
-0.0758332759141922,
0.05799347907304764,
-0.06144144758582115,
0.05671343579888344,
0.028753099963068962,
-0.07958973944187164,
-0.05312512069940567,
0.04253477603197098,
0.20657968521118164,
-0.04427029564976692,
0.04999949783086777,
0.1521182358264923,
0.014826071448624134,
-0.24645531177520752,
-0.0092618428170681,
0.09334684908390045,
-0.015331469476222992,
0.011700323782861233,
-0.11971680074930191,
0.025853751227259636,
0.06718099862337112,
-0.024758759886026382,
-0.01757970079779625,
-0.41492363810539246,
-0.09340889006853104,
0.027080275118350983,
0.0958605706691742,
-0.2630421221256256,
-0.23902173340320587,
-0.08276936411857605,
0.06186673790216446,
-0.13384225964546204,
0.0387880876660347,
-0.05973866954445839,
0.06100368872284889,
-0.009175385348498821,
-0.02892128936946392,
0.032776061445474625,
-0.0781540498137474,
0.07974372804164886,
-0.0226405318826437,
-0.01869257353246212,
-0.0843144878745079,
-0.05522254854440689,
0.022374041378498077,
-0.06371268630027771,
0.11882630735635757,
0.023781387135386467,
0.01125076599419117,
-0.08854307234287262,
-0.02587829902768135,
-0.07903899997472763,
-0.03994997218251228,
-0.13141630589962006,
-0.04305633530020714,
-0.026606738567352295,
0.06492763012647629,
0.07644455879926682,
-0.01591580919921398,
0.16132086515426636,
-0.042971421033144,
0.05313938856124878,
0.2470117211341858,
0.040986567735672,
0.03018178418278694,
-0.17650218307971954,
0.01496711652725935,
0.047114718705415726,
0.040340155363082886,
-0.1698182225227356,
0.045888110995292664,
0.10897167772054672,
0.09080237150192261,
0.12863712012767792,
-0.01567213423550129,
-0.13666000962257385,
-0.05491532012820244,
0.006448595318943262,
-0.04356484115123749,
-0.2494163066148758,
0.02526206336915493,
0.004134471993893385,
-0.1456354260444641,
-0.03204105794429779,
0.054348260164260864,
-0.0077332425862550735,
-0.02599097602069378,
0.035328615456819534,
0.08949968218803406,
0.017683925107121468,
0.20412534475326538,
0.043680064380168915,
0.06067559868097305,
-0.08129077404737473,
0.05846855044364929,
0.13066019117832184,
-0.1350330412387848,
0.013953512534499168,
0.31634795665740967,
-0.02923317812383175,
-0.06754706054925919,
0.03228813037276268,
-0.020003214478492737,
-0.04349218308925629,
0.017589431256055832,
-0.01107966061681509,
-0.06972866505384445,
0.1355023980140686,
0.021298395469784737,
-0.006667440291494131,
-0.07707243412733078,
0.062016911804676056,
0.08434481173753738,
-0.04418772831559181,
0.10451401770114899,
0.03252682834863663,
0.08666417002677917,
0.03180689737200737,
0.031657442450523376,
0.045975830405950546,
0.05573105812072754,
-0.0075072855688631535,
-0.02684348076581955,
-0.13875263929367065,
0.0806630551815033,
-0.08371800929307938,
-0.055740974843502045,
-0.05513107031583786,
-0.009939809329807758,
-0.06519055366516113,
-0.04388732090592384,
0.003518486162647605,
0.03135361149907112,
-0.06760738044977188,
-0.13924144208431244,
-0.06617456674575806,
0.02209390513598919,
-0.15920816361904144,
-0.05392035096883774,
0.0877680778503418,
-0.03041592426598072,
0.06058143451809883,
-0.07003018260002136,
0.008749349042773247,
-0.07308005541563034,
0.1384410709142685,
-0.017691899091005325,
-0.0009517797734588385,
0.009147974662482738,
0.03921440616250038,
-0.1293329894542694,
-0.0399298369884491,
-0.1028749868273735,
-0.030656399205327034,
0.04650217667222023,
-0.01919117197394371,
-0.15238136053085327,
0.05921291187405586,
-0.10219305753707886,
-0.1448320895433426,
-0.03889722004532814,
0.05810360237956047,
-0.009479423984885216,
-0.008967838250100613,
0.057534512132406235,
-0.024804655462503433,
0.12738512456417084,
-0.16799214482307434,
-0.03500379994511604,
0.0009207510738633573,
0.029269415885210037,
-0.04947424679994583,
0.019423380494117737,
0.06429311633110046,
-0.07243790477514267,
-0.046909768134355545,
0.013149437494575977,
0.13535286486148834,
0.07688583433628082,
-0.015544707886874676,
0.05581546947360039,
0.0018874662928283215,
0.09929771721363068,
-0.008443795144557953,
-0.01737561821937561,
0.02775155007839203,
0.08278071135282516,
-0.030925968661904335,
0.037908054888248444,
0.06312036514282227,
0.17178691923618317,
0.22590582072734833,
0.04271470382809639,
0.014495090581476688,
-0.18601453304290771,
-0.14282463490962982,
0.1406743824481964,
-0.005647381767630577,
0.08464832603931427,
-0.013913875445723534,
0.11384473741054535,
0.10859808325767517,
-0.14612379670143127,
0.05364000424742699,
-0.07501709461212158,
-0.05965380370616913,
-0.03326919674873352,
-0.035277023911476135,
-0.06267311424016953,
-0.08625295013189316,
0.033601149916648865,
-0.07173073291778564,
0.08346644788980484,
0.0423627607524395,
0.04123397544026375,
0.016420656815171242,
0.17202416062355042,
0.031259652227163315,
-0.08221916854381561,
-0.01856767013669014,
0.052538830786943436,
0.08306407183408737,
0.03355338051915169,
0.07080714404582977,
0.024777449667453766,
-0.05808734521269798,
0.08556994795799255,
0.06961791962385178,
-0.10898590087890625,
0.07103969901800156,
0.03853863477706909,
-0.10039720684289932,
-0.008625872433185577,
0.012822160497307777,
0.07479625940322876,
0.1773570030927658,
0.022899460047483444,
0.040521103888750076,
-0.017631761729717255,
0.1801305115222931,
-0.1622786670923233,
-0.04259280860424042,
-0.063867948949337,
0.23008161783218384,
0.06041267514228821,
0.05327592417597771,
-0.042047351598739624,
-0.13405002653598785,
-0.04788573086261749,
0.16295766830444336,
0.05140884220600128,
0.005037768743932247,
-0.03436291217803955,
0.08280699700117111,
0.007590732537209988,
0.026902491226792336,
0.025263091549277306,
0.09357023239135742,
0.18222638964653015,
-0.060222938656806946,
-0.0033440289553254843,
-0.07013877481222153,
-0.08616059273481369,
-0.04313386231660843,
0.16322709619998932,
0.032388363033533096,
-0.005847219843417406,
-0.025632375851273537,
0.1143571212887764,
0.05547444522380829,
-0.22689072787761688,
0.06587527692317963,
-0.13952860236167908,
-0.15428613126277924,
0.018307797610759735,
0.05038054659962654,
0.033009134232997894,
0.06297644227743149,
0.07781082391738892,
0.015986181795597076,
0.0998382493853569,
0.06530866026878357,
-0.04536696895956993,
-0.11741873621940613,
0.0896177887916565,
-0.04982219636440277,
0.24783983826637268,
-0.003999431151896715,
0.012586521916091442,
0.1112804114818573,
-0.022197477519512177,
-0.10604427009820938,
0.07458796352148056,
0.15505197644233704,
-0.09747898578643799,
0.04180554300546646,
0.12283491343259811,
-0.014239460229873657,
0.1294763684272766,
0.09761476516723633,
-0.17321965098381042,
-0.015579577535390854,
-0.013014011085033417,
0.008294237777590752,
-0.160644993185997,
0.013124319724738598,
-0.05105910450220108,
0.15349653363227844,
0.1762447953224182,
-0.04758773744106293,
-0.04618051275610924,
-0.04130418226122856,
0.0013346775667741895,
-0.04347487539052963,
0.1947164535522461,
-0.004247185308486223,
-0.16081251204013824,
0.06174110993742943,
-0.055912937968969345,
0.078456811606884,
-0.12988901138305664,
-0.07576803117990494,
0.09255845099687576,
-0.03792530298233032,
-0.02188456431031227,
0.09665127098560333,
0.10290908813476562,
-0.03542228415608406,
-0.07451754808425903,
-0.12270037829875946,
-0.020808909088373184,
0.15387926995754242,
-0.14564946293830872,
-0.02044397033751011
] |
null | null |
transformers
|
# numbers_gcd
---
language: en
datasets:
- numbers_gcd
---
This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/numbers_gcd](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetnumbers_gcd) for solving **greatest common divisor** mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_numbers_gcd")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_numbers_gcd")
```
You can then use this model to solve algebra 1d equations into numbers.
```python
query = "What is the highest common factor of 4210884 and 72?"
input_text = f"{query} </s>"
features = tokenizer([input_text], return_tensors='pt')
model.to('cuda')
output = model.generate(input_ids=features['input_ids'].cuda(),
attention_mask=features['attention_mask'].cuda())
tokenizer.decode(output[0])
# <pad> 36</s>
```
Another examples:
+ Calculate the greatest common factor of 3470 and 97090.
+ Answer: 10 Pred: 10
----
+ Calculate the highest common factor of 3480 and 775431.
+ Answer: 87 Pred: 87
----
+ What is the highest common divisor of 26 and 88049?
+ Answer: 13 Pred: 13
----
+ Calculate the highest common factor of 1416 and 24203688.
+ Answer: 1416 Pred: 1416
----
+ Calculate the highest common divisor of 124 and 69445828.
+ Answer: 124 Pred: 124
----
+ What is the greatest common factor of 657906 and 470?
+ Answer: 94 Pred: 94
----
+ What is the highest common factor of 4210884 and 72?
+ Answer: 36 Pred: 36
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
text2text-generation
|
dbernsohn/t5_numbers_gcd
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# numbers_gcd
---
language: en
datasets:
- numbers_gcd
---
This is a t5-small fine-tuned version on the math_dataset/numbers_gcd for solving greatest common divisor mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to solve algebra 1d equations into numbers.
Another examples:
+ Calculate the greatest common factor of 3470 and 97090.
+ Answer: 10 Pred: 10
----
+ Calculate the highest common factor of 3480 and 775431.
+ Answer: 87 Pred: 87
----
+ What is the highest common divisor of 26 and 88049?
+ Answer: 13 Pred: 13
----
+ Calculate the highest common factor of 1416 and 24203688.
+ Answer: 1416 Pred: 1416
----
+ Calculate the highest common divisor of 124 and 69445828.
+ Answer: 124 Pred: 124
----
+ What is the greatest common factor of 657906 and 470?
+ Answer: 94 Pred: 94
----
+ What is the highest common factor of 4210884 and 72?
+ Answer: 36 Pred: 36
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# numbers_gcd\n---\nlanguage: en\ndatasets:\n- numbers_gcd\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/numbers_gcd for solving greatest common divisor mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Calculate the greatest common factor of 3470 and 97090. \n+ Answer: 10 Pred: 10\n----\n+ Calculate the highest common factor of 3480 and 775431.\n+ Answer: 87 Pred: 87\n----\n+ What is the highest common divisor of 26 and 88049? \n+ Answer: 13 Pred: 13\n----\n+ Calculate the highest common factor of 1416 and 24203688.\n+ Answer: 1416 Pred: 1416\n----\n+ Calculate the highest common divisor of 124 and 69445828. \n+ Answer: 124 Pred: 124\n----\n+ What is the greatest common factor of 657906 and 470?\n+ Answer: 94 Pred: 94\n----\n+ What is the highest common factor of 4210884 and 72?\n+ Answer: 36 Pred: 36\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# numbers_gcd\n---\nlanguage: en\ndatasets:\n- numbers_gcd\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/numbers_gcd for solving greatest common divisor mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Calculate the greatest common factor of 3470 and 97090. \n+ Answer: 10 Pred: 10\n----\n+ Calculate the highest common factor of 3480 and 775431.\n+ Answer: 87 Pred: 87\n----\n+ What is the highest common divisor of 26 and 88049? \n+ Answer: 13 Pred: 13\n----\n+ Calculate the highest common factor of 1416 and 24203688.\n+ Answer: 1416 Pred: 1416\n----\n+ Calculate the highest common divisor of 124 and 69445828. \n+ Answer: 124 Pred: 124\n----\n+ What is the greatest common factor of 657906 and 470?\n+ Answer: 94 Pred: 94\n----\n+ What is the highest common factor of 4210884 and 72?\n+ Answer: 36 Pred: 36\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
48,
282
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# numbers_gcd\n---\nlanguage: en\ndatasets:\n- numbers_gcd\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/numbers_gcd for solving greatest common divisor mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Calculate the greatest common factor of 3470 and 97090. \n+ Answer: 10 Pred: 10\n----\n+ Calculate the highest common factor of 3480 and 775431.\n+ Answer: 87 Pred: 87\n----\n+ What is the highest common divisor of 26 and 88049? \n+ Answer: 13 Pred: 13\n----\n+ Calculate the highest common factor of 1416 and 24203688.\n+ Answer: 1416 Pred: 1416\n----\n+ Calculate the highest common divisor of 124 and 69445828. \n+ Answer: 124 Pred: 124\n----\n+ What is the greatest common factor of 657906 and 470?\n+ Answer: 94 Pred: 94\n----\n+ What is the highest common factor of 4210884 and 72?\n+ Answer: 36 Pred: 36\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn"
] |
[
-0.08822343498468399,
-0.01780482567846775,
-0.004712902009487152,
0.07876647263765335,
0.07544147968292236,
0.11405769735574722,
-0.06712932139635086,
0.16277119517326355,
0.05644994601607323,
0.1774366796016693,
0.0417068786919117,
0.061340365558862686,
0.07066194713115692,
0.07571474462747574,
-0.014124884270131588,
-0.13408340513706207,
-0.08280059695243835,
0.009103158488869667,
0.03613295406103134,
0.08290319889783859,
0.05940938740968704,
-0.08083101361989975,
-0.021838946267962456,
-0.04302221164107323,
-0.08944248408079147,
0.03304799646139145,
0.02104058675467968,
-0.038195837289094925,
0.13110986351966858,
0.054010190069675446,
0.022378848865628242,
-0.014618399553000927,
0.07417036592960358,
-0.14808344841003418,
-0.018531199544668198,
0.06124090030789375,
0.012334587052464485,
0.06517311930656433,
0.14572322368621826,
-0.03679695725440979,
0.035582076758146286,
-0.029996678233146667,
-0.010544597171247005,
0.08533136546611786,
-0.14287610352039337,
-0.2664570212364197,
-0.15829609334468842,
0.0707983449101448,
0.163062185049057,
0.03261817246675491,
-0.04050320014357567,
0.04974757134914398,
-0.0429457388818264,
0.07411283254623413,
0.1508922278881073,
-0.3128431737422943,
-0.05747516453266144,
0.06942252814769745,
0.007796584628522396,
0.002393355593085289,
-0.02364209108054638,
-0.041772130876779556,
0.09128234535455704,
0.013231143355369568,
0.016056880354881287,
-0.00920366495847702,
0.0711471438407898,
0.0022603024262934923,
-0.14089271426200867,
-0.07672413438558578,
0.027157500386238098,
0.042459629476070404,
-0.02225560136139393,
-0.040477730333805084,
-0.07756556570529938,
-0.0639946386218071,
0.025759177282452583,
-0.09495974332094193,
0.014630166813731194,
-0.042150333523750305,
0.11411888152360916,
0.017923401668667793,
-0.046716783195734024,
-0.06020171940326691,
-0.0391511470079422,
0.07416187226772308,
0.037672266364097595,
0.023526806384325027,
0.11918730288743973,
0.016291720792651176,
-0.13687163591384888,
-0.10197199881076813,
0.026730643585324287,
0.07663021981716156,
-0.19421908259391785,
-0.05321742966771126,
0.04043686017394066,
-0.030756458640098572,
-0.007324326317757368,
0.12580394744873047,
-0.04413231834769249,
0.07670225203037262,
0.05550040677189827,
-0.028753118589520454,
0.025288864970207214,
0.07989492267370224,
-0.1396823525428772,
-0.013780282810330391,
-0.02420763112604618,
0.02461237460374832,
-0.014186859130859375,
-0.00533301942050457,
0.03163851797580719,
0.013207021169364452,
0.08414963632822037,
0.058711569756269455,
0.05970374122262001,
-0.06441973149776459,
-0.02316323295235634,
-0.01305395644158125,
0.060001857578754425,
-0.13019825518131256,
0.04950818046927452,
0.01022504735738039,
0.0038080113008618355,
0.010913277044892311,
-0.015464975498616695,
-0.035761743783950806,
-0.092552550137043,
0.07405371218919754,
0.005179538857191801,
-0.05453038960695267,
-0.055633895099163055,
-0.07272445410490036,
0.04693382978439331,
-0.05422719940543175,
-0.12050958722829819,
-0.0002110175701091066,
0.01277568843215704,
-0.09997080266475677,
0.03227083012461662,
-0.10577988624572754,
-0.0861164778470993,
0.06187617778778076,
-0.009274274110794067,
-0.005145879928022623,
-0.03580694645643234,
0.07037687301635742,
0.008204582147300243,
0.08129040151834488,
0.1003061980009079,
0.03941943868994713,
0.14966443181037903,
0.011813771910965443,
-0.027222514152526855,
0.11429227888584137,
-0.20724555850028992,
0.05216546729207039,
-0.039340630173683167,
0.024389490485191345,
-0.17086265981197357,
-0.09743337333202362,
0.0994003415107727,
-0.03522033244371414,
0.037504103034734726,
0.05671490728855133,
-0.05481055751442909,
-0.011131159961223602,
0.03243449702858925,
-0.07723966240882874,
-0.1634979248046875,
0.10317043215036392,
0.013983734883368015,
-0.0523451566696167,
0.0633251741528511,
0.09243514388799667,
0.10104398429393768,
-0.01438160240650177,
-0.09405411034822464,
-0.07901742309331894,
0.0037298230454325676,
0.09294518083333969,
0.08538568019866943,
-0.04515207186341286,
-0.04461762309074402,
-0.043039917945861816,
-0.013749588280916214,
0.04152209311723709,
-0.0392923578619957,
-0.06188998371362686,
-0.024793870747089386,
-0.04150500148534775,
-0.033277980983257294,
0.1087067648768425,
-0.020622000098228455,
-0.08515086024999619,
-0.07887476682662964,
0.01875036209821701,
0.015850329771637917,
-0.07634902000427246,
-0.036690108478069305,
-0.0328080877661705,
0.08570554852485657,
-0.19487719237804413,
0.02272901125252247,
-0.16273178160190582,
0.023447124287486076,
0.07236647605895996,
-0.0046007148921489716,
-0.028197528794407845,
0.012725183740258217,
0.05653894320130348,
0.024514390155673027,
-0.08870062232017517,
-0.022769717499613762,
0.06640782952308655,
-0.0061894250102341175,
-0.06661779433488846,
-0.12241943925619125,
-0.10246992111206055,
-0.003691202262416482,
0.05198489502072334,
-0.07145555317401886,
-0.004560146015137434,
0.06072444096207619,
0.12847793102264404,
-0.08585469424724579,
-0.03020431660115719,
0.01175810769200325,
0.044923339039087296,
-0.011376558803021908,
-0.033107493072748184,
0.034383486956357956,
-0.09895531088113785,
-0.0795629620552063,
-0.01936180703341961,
-0.06170148402452469,
-0.006633690092712641,
0.05042537674307823,
-0.06162390857934952,
-0.12233318388462067,
0.06408597528934479,
-0.06371503323316574,
-0.02348368428647518,
-0.018466921523213387,
-0.08195973187685013,
0.17731048166751862,
0.04083563759922981,
0.05228906124830246,
-0.05487934127449989,
-0.11020071059465408,
0.05280883610248566,
0.06393295526504517,
-0.014725256711244583,
0.16725046932697296,
0.0642285943031311,
-0.11911647021770477,
0.06644570082426071,
0.07857754081487656,
0.04142224043607712,
-0.06465678662061691,
-0.07612129300832748,
-0.10144763439893723,
-0.04950914531946182,
0.09516589343547821,
0.07740974426269531,
-0.0011562618892639875,
-0.013886000961065292,
-0.011046091094613075,
0.028387364000082016,
0.009395952336490154,
-0.02221718803048134,
-0.13387705385684967,
0.04568792134523392,
0.028017794713377953,
-0.04853564873337746,
0.0855899378657341,
-0.06278610229492188,
-0.012184499762952328,
0.09889281541109085,
0.043167877942323685,
0.07121831923723221,
-0.012287488207221031,
-0.021352730691432953,
-0.14031842350959778,
0.17862120270729065,
-0.02083096280694008,
-0.06514530628919601,
-0.009804450906813145,
0.011525103822350502,
-0.004958038683980703,
-0.03442445769906044,
0.017901834100484848,
-0.0822005495429039,
-0.025220785290002823,
0.02324601262807846,
0.06450791656970978,
-0.04625052958726883,
0.032891903072595596,
-0.006839798763394356,
-0.056456372141838074,
0.06320194154977798,
-0.11965515464544296,
0.015643753111362457,
0.004075231496244669,
-0.14554643630981445,
0.06472781300544739,
0.018847312778234482,
0.16449418663978577,
0.13088512420654297,
-0.029231876134872437,
-0.001068082288838923,
-0.046492718160152435,
0.1983000487089157,
-0.11811081320047379,
0.049378909170627594,
0.09573045372962952,
0.04794549569487572,
0.04600983485579491,
0.06199682503938675,
0.05955781787633896,
-0.05747680738568306,
0.010107086040079594,
0.08944220095872879,
-0.03597251698374748,
-0.2638564109802246,
-0.03603217005729675,
-0.07469365745782852,
-0.04223519563674927,
0.14191704988479614,
0.06848861277103424,
-0.14077839255332947,
0.02370695024728775,
-0.06108293682336807,
0.03921426087617874,
0.028943393379449844,
0.02040218375623226,
0.10928404331207275,
0.06525877118110657,
0.04911604896187782,
-0.04881534352898598,
-0.07557251304388046,
0.08635241538286209,
0.03552458435297012,
0.13242566585540771,
0.013026678934693336,
0.22090870141983032,
0.022960897535085678,
0.08874223381280899,
-0.07566100358963013,
0.17651796340942383,
-0.09699105471372604,
0.07172906398773193,
0.018115326762199402,
-0.04949943348765373,
0.054449401795864105,
0.025595545768737793,
0.03608248382806778,
0.038280241191387177,
0.015090320259332657,
-0.13245786726474762,
0.1013079434633255,
0.2519521117210388,
0.06562593579292297,
-0.13028113543987274,
0.007597974501550198,
0.04901128634810448,
-0.04800307750701904,
0.004846107680350542,
-0.006215331610292196,
-0.024323703721165657,
-0.04601583257317543,
0.20712365210056305,
-0.026250304654240608,
0.10966245085000992,
-0.06557771563529968,
-0.022347621619701385,
0.04118267819285393,
-0.004808824509382248,
0.06754501909017563,
0.12043200433254242,
-0.21118000149726868,
0.11648328602313995,
0.07365603744983673,
0.04190507531166077,
-0.06849507987499237,
0.08045606315135956,
-0.04849638417363167,
-0.10709989070892334,
0.13570420444011688,
-0.006221418734639883,
0.23613803088665009,
-0.11432454735040665,
-0.018959391862154007,
0.02635999768972397,
0.04980995133519173,
-0.14262421429157257,
0.10100007057189941,
0.048333585262298584,
-0.06291142106056213,
-0.03920207917690277,
-0.01766093820333481,
-0.06583260744810104,
-0.08668918907642365,
0.11537277698516846,
-0.12960031628608704,
-0.09348728507757187,
-0.022565698251128197,
-0.09507980197668076,
-0.1781587153673172,
0.20000973343849182,
-0.10718317329883575,
-0.06500310450792313,
-0.11098399013280869,
0.01717325672507286,
0.21232961118221283,
-0.04256059601902962,
0.03367152437567711,
0.016119390726089478,
0.043116502463817596,
-0.0671657994389534,
-0.036910802125930786,
0.10922423750162125,
0.001427368144504726,
-0.23521548509597778,
-0.0012729865266010165,
0.20217737555503845,
-0.017617953941226006,
0.062476757913827896,
-0.015617436729371548,
0.12149354815483093,
0.01429121382534504,
-0.10900440067052841,
0.11907339841127396,
-0.03368164971470833,
0.027577126398682594,
-0.05289608985185623,
0.02711082436144352,
0.06957107037305832,
-0.0829351618885994,
-0.011751672253012657,
0.07486176490783691,
0.23574963212013245,
-0.10503190010786057,
0.006496321875602007,
0.10956458002328873,
-0.027785198763012886,
-0.12703195214271545,
-0.05436107888817787,
0.05113700032234192,
0.036267224699258804,
-0.03141805902123451,
-0.0950029045343399,
0.1216445192694664,
0.1344171017408371,
-0.03505063056945801,
-0.024055110290646553,
-0.1859627664089203,
-0.11539968848228455,
-0.05694233626127243,
0.08729435503482819,
-0.19428788125514984,
-0.22483916580677032,
-0.05399114638566971,
-0.04425036162137985,
-0.10900726169347763,
0.04583354294300079,
-0.015044033527374268,
0.05150927975773811,
-0.05577683448791504,
-0.09242560714483261,
0.02184075117111206,
-0.06171836331486702,
0.10500789433717728,
0.0038132579065859318,
-0.02854154258966446,
-0.0016894711880013347,
0.06152312457561493,
0.07306718826293945,
0.003831617534160614,
0.10963572561740875,
-0.03933299705386162,
0.013376384042203426,
-0.19284744560718536,
-0.07400039583444595,
-0.040532734245061874,
0.016311366111040115,
-0.05690276622772217,
-0.03725169226527214,
-0.07357639074325562,
-0.03224718198180199,
0.06136872619390488,
-0.03929124027490616,
-0.011821620166301727,
0.032633762806653976,
0.13904014229774475,
0.10995455831289291,
0.17653322219848633,
-0.0777912512421608,
-0.12878814339637756,
0.0578678622841835,
-0.02434925176203251,
-0.004751262720674276,
-0.2031947374343872,
0.057547975331544876,
0.21174262464046478,
0.06856808811426163,
0.10529119521379471,
0.03925517573952675,
-0.1626872718334198,
-0.02051706239581108,
0.043836940079927444,
-0.08421450853347778,
-0.23506298661231995,
0.023300541564822197,
-0.01631609909236431,
-0.11405366659164429,
-0.014628681354224682,
0.0009428416378796101,
-0.03679565712809563,
-0.07742288708686829,
0.021715521812438965,
0.01988860033452511,
-0.008567753247916698,
0.19587451219558716,
0.016481103375554085,
0.1314946711063385,
-0.10054682940244675,
0.06744767725467682,
0.15133550763130188,
-0.19169479608535767,
-0.028826028108596802,
0.25051507353782654,
-0.015361054800450802,
-0.04812151566147804,
0.044262275099754333,
0.11802326142787933,
0.06264551728963852,
0.024272199720144272,
-0.018551889806985855,
-0.15483267605304718,
0.06876657903194427,
0.06696675717830658,
0.037536557763814926,
-0.036252982914447784,
0.07567692548036575,
-0.013281709514558315,
-0.11459329724311829,
0.08100929111242294,
0.05656659975647926,
0.060699932277202606,
-0.028631541877985,
0.007657143287360668,
0.030580760911107063,
0.023553872480988503,
-0.00883795227855444,
0.04047325998544693,
-0.07924216985702515,
0.006222447380423546,
0.08504132181406021,
-0.012495871633291245,
-0.07046226412057877,
0.009116034023463726,
-0.025222091004252434,
-0.040926493704319,
0.013367483392357826,
0.006619822699576616,
-0.07378625124692917,
-0.07844642549753189,
-0.02946792170405388,
0.012940091080963612,
-0.11035647243261337,
-0.05916385352611542,
0.033837370574474335,
-0.07167289406061172,
0.123738594353199,
-0.07456736266613007,
0.02799304574728012,
0.00856494065374136,
-0.05907686799764633,
-0.06325651705265045,
0.04932328313589096,
0.03612048923969269,
0.03122219815850258,
-0.16128607094287872,
0.05816785246133804,
-0.004099802114069462,
-0.01699565351009369,
0.04109198600053787,
-0.03525852784514427,
-0.10888941586017609,
-0.023166563361883163,
-0.08776615560054779,
-0.07598520815372467,
-0.06127084419131279,
0.005760238040238619,
0.15523278713226318,
0.0307358019053936,
0.05728171020746231,
-0.08012780547142029,
0.0941949412226677,
-0.24925293028354645,
-0.04514065384864807,
-0.05694633722305298,
-0.010526175610721111,
-0.09465830028057098,
-0.011751909740269184,
0.06753329932689667,
-0.0367957204580307,
0.06648652255535126,
-0.06827190518379211,
0.12006857991218567,
0.04661794751882553,
-0.09774389863014221,
0.0032930714078247547,
0.03356759250164032,
0.11072351783514023,
0.0170150026679039,
-0.020659778267145157,
-0.032299596816301346,
0.057471659034490585,
-0.08129086345434189,
0.13489985466003418,
-0.06512100249528885,
0.07772774994373322,
0.07148142904043198,
-0.0585951954126358,
0.06952643394470215,
-0.20522892475128174,
0.04280698671936989,
0.09841743111610413,
-0.038724448531866074,
0.07375402748584747,
0.0017369631677865982,
0.08212240040302277,
0.08716939389705658,
-0.09789261221885681,
0.04054784029722214,
-0.0905708447098732,
-0.048291537910699844,
-0.06491734832525253,
0.09370632469654083,
-0.07357088476419449,
-0.04486750066280365,
0.018682781606912613,
-0.0628712922334671,
-0.02955090068280697,
0.058815304189920425,
0.06648464500904083,
-0.004412543494254351,
0.0845620334148407,
0.049735113978385925,
0.026546701788902283,
0.036138031631708145,
0.03619399666786194,
0.05775687098503113,
0.07064238935709,
0.046537429094314575,
0.022357115522027016,
-0.05762060731649399,
0.07145706564188004,
0.04113829508423805,
-0.05306326225399971,
0.07818946242332458,
0.02759406715631485,
-0.10553944855928421,
0.02320699393749237,
-0.001821623183786869,
0.08650600165128708,
0.18231192231178284,
-0.008399860933423042,
-0.010935942642390728,
-0.06669265031814575,
-0.02445717714726925,
-0.04648961126804352,
0.03792620450258255,
-0.04754529893398285,
0.26119065284729004,
0.033743031322956085,
0.013164836913347244,
0.01786193437874317,
-0.10332323610782623,
0.0006414427189156413,
0.12094239890575409,
0.04566885158419609,
0.11944569647312164,
-0.02583109401166439,
0.030410338193178177,
-0.012940457090735435,
0.08694276958703995,
0.015659432858228683,
0.058487098664045334,
0.1304612010717392,
-0.06957516819238663,
0.06921517848968506,
-0.061680201441049576,
-0.02243098057806492,
0.0016560188960283995,
0.12044773250818253,
0.01722273789346218,
0.05377116799354553,
0.00009591136767994612,
0.12164224684238434,
0.1381721943616867,
-0.14460188150405884,
0.16638603806495667,
-0.23034778237342834,
-0.12788395583629608,
-0.01897580549120903,
0.042993586510419846,
-0.053828462958335876,
0.04166566580533981,
0.01105508767068386,
0.023630116134881973,
0.017667319625616074,
0.04460117593407631,
-0.19123145937919617,
-0.06142934411764145,
0.023386238142848015,
-0.001945963827893138,
0.17590343952178955,
0.017908837646245956,
0.11989656090736389,
0.12374578416347504,
-0.06480398774147034,
-0.16200217604637146,
0.05967036262154579,
0.08077554404735565,
-0.129413902759552,
0.0681835263967514,
0.10745836794376373,
0.0007337162387557328,
-0.007438876666128635,
0.04052570089697838,
-0.14354334771633148,
-0.04174893721938133,
-0.02496146596968174,
0.003969050943851471,
-0.16110053658485413,
0.0179268941283226,
-0.057318978011608124,
0.10316433012485504,
0.17179764807224274,
-0.042602356523275375,
0.03413388505578041,
-0.10150060802698135,
0.03499109670519829,
0.0018534150440245867,
0.1511356681585312,
-0.05696127563714981,
-0.22277754545211792,
0.06815525144338608,
-0.05645754188299179,
0.022664103657007217,
-0.03441566228866577,
-0.053184233605861664,
0.028747327625751495,
-0.03735163062810898,
-0.08064021915197372,
0.09499809145927429,
0.013290632516145706,
0.034487560391426086,
-0.029713882133364677,
-0.19918356835842133,
-0.031050268560647964,
0.09425019472837448,
-0.14600560069084167,
-0.00606565410271287
] |
null | null |
transformers
|
# t5_wikisql_SQL2en
---
language: en
datasets:
- wikisql
---
This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [wikisql dataset](https://huggingface.co/datasets/wikisql) for **SQL** to **English** **translation** text2text mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_wikisql_SQL2en")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_wikisql_SQL2en")
```
You can then use this model to translate SQL queries into plain english.
```python
query = "SELECT people FROM peoples where age > 10"
input_text = f"translate SQL to English: {query} </s>"
features = tokenizer([input_text], return_tensors='pt')
output = model.generate(input_ids=features['input_ids'].cuda(),
attention_mask=features['attention_mask'].cuda())
tokenizer.decode(output[0])
# Output: "What people are older than 10?"
```
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/SQLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
text2text-generation
|
dbernsohn/t5_wikisql_SQL2en
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# t5_wikisql_SQL2en
---
language: en
datasets:
- wikisql
---
This is a t5-small fine-tuned version on the wikisql dataset for SQL to English translation text2text mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to translate SQL queries into plain english.
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# t5_wikisql_SQL2en\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for SQL to English translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# t5_wikisql_SQL2en\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for SQL to English translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
48,
115
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5_wikisql_SQL2en\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for SQL to English translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
-0.06531022489070892,
0.08955005556344986,
-0.001636117696762085,
0.08211732655763626,
0.19234615564346313,
0.052610043436288834,
0.0659363716840744,
0.08122096955776215,
-0.057884443551301956,
-0.09492139518260956,
0.08331577479839325,
0.15038825571537018,
0.03557978942990303,
0.11871402710676193,
-0.013324249535799026,
-0.2909190356731415,
0.005854166112840176,
0.0064461189322173595,
-0.031054062768816948,
0.12122940272092819,
0.1018223688006401,
-0.05810033902525902,
0.09632892161607742,
0.0005417440552264452,
-0.164470374584198,
0.023416122421622276,
0.025368737056851387,
-0.09661196172237396,
0.14187045395374298,
0.07491916418075562,
0.12482477724552155,
0.02029070444405079,
0.09050445258617401,
-0.11520286649465561,
0.04032124578952789,
0.06116712838411331,
0.0017383245285600424,
0.0633314922451973,
-0.0014054684434086084,
0.04955355077981949,
0.0667017474770546,
-0.11248895525932312,
0.011564336717128754,
0.038413699716329575,
-0.08625732362270355,
0.013028270564973354,
-0.03153904899954796,
0.034089844673871994,
0.061346571892499924,
0.09646677225828171,
0.020128943026065826,
0.1224794015288353,
-0.08438635617494583,
0.1584874838590622,
0.1503850221633911,
-0.24353061616420746,
-0.0485541969537735,
0.05961495637893677,
-0.0018793958006426692,
0.08104933798313141,
-0.0264638252556324,
0.0003303403500467539,
-0.008490236476063728,
0.06029903516173363,
0.04441895708441734,
-0.1044951006770134,
-0.23948673903942108,
-0.004202702548354864,
-0.1293513923883438,
0.006778193172067404,
0.14857594668865204,
-0.03737039864063263,
-0.044568855315446854,
0.024313578382134438,
-0.10332474112510681,
0.0759747326374054,
-0.018542367964982986,
-0.04158752039074898,
0.008857762441039085,
0.016625113785266876,
-0.04560818523168564,
-0.1964150220155716,
-0.124649278819561,
-0.04220974072813988,
-0.15511193871498108,
0.15331368148326874,
0.03714898228645325,
0.06647546589374542,
-0.11523228138685226,
0.06569409370422363,
-0.03378509730100632,
-0.04464152082800865,
-0.00954960286617279,
-0.08423613011837006,
-0.056848183274269104,
-0.04531657695770264,
-0.07219848781824112,
-0.1165878176689148,
0.0936863049864769,
-0.031767599284648895,
-0.09448039531707764,
0.005081939976662397,
0.02585350163280964,
0.013531291857361794,
0.04271525889635086,
0.13815033435821533,
-0.05943834036588669,
-0.025587158277630806,
0.10636905580759048,
-0.11339949071407318,
-0.06552635878324509,
0.029985008761286736,
-0.10743162781000137,
-0.08320105075836182,
-0.002046349225565791,
0.03355301171541214,
-0.02131500281393528,
0.11658154428005219,
-0.005290140397846699,
-0.05708009749650955,
0.03353629261255264,
-0.10712066292762756,
-0.05464903265237808,
-0.04125212877988815,
-0.03983614966273308,
0.11182540655136108,
0.11281665414571762,
0.01791413500905037,
-0.15984810888767242,
-0.004272107034921646,
-0.039022281765937805,
0.01590249501168728,
-0.03129318356513977,
-0.11579286307096481,
-0.002535248640924692,
-0.10887297987937927,
0.01609918102622032,
-0.13256928324699402,
-0.2375984936952591,
-0.010032040067017078,
0.06443751603364944,
0.05050497129559517,
-0.0553116500377655,
-0.02813936024904251,
0.007499185856431723,
-0.0038445787504315376,
-0.06824655830860138,
0.03043346107006073,
-0.04356619715690613,
0.028961075469851494,
-0.05522364750504494,
0.05225958675146103,
-0.22333437204360962,
0.02631998062133789,
-0.11967427283525467,
-0.08312918990850449,
-0.1512143313884735,
0.11117073148488998,
-0.00654988968744874,
0.051285479217767715,
-0.11791715770959854,
-0.046985022723674774,
0.042020268738269806,
0.059076372534036636,
0.03773336485028267,
0.14996019005775452,
-0.2085576057434082,
-0.00838453508913517,
0.20330636203289032,
-0.09400513768196106,
-0.09532972425222397,
0.11186370998620987,
-0.025071481242775917,
0.19043199717998505,
0.1735239326953888,
0.11626757681369781,
0.08071140944957733,
-0.10645278543233871,
0.10281302034854889,
0.1027885377407074,
-0.05293786898255348,
-0.09630335867404938,
0.012036473490297794,
0.036024417728185654,
-0.01003397535532713,
0.02743465080857277,
-0.04446667432785034,
0.06698831915855408,
-0.054403237998485565,
-0.03463030606508255,
-0.02969987690448761,
-0.08258361369371414,
-0.02645086497068405,
0.006321054883301258,
0.06507304310798645,
0.0016500193160027266,
-0.023555349558591843,
0.1275770366191864,
0.05554785206913948,
-0.04723725467920303,
0.05867277458310127,
-0.05515530705451965,
-0.13471068441867828,
0.05494743585586548,
0.013264439068734646,
-0.14845483005046844,
-0.09542271494865417,
-0.043653178960084915,
0.13624189794063568,
0.1179971843957901,
0.08094913512468338,
0.028369640931487083,
0.00845290906727314,
-0.028381535783410072,
0.022108126431703568,
0.0321362279355526,
0.029266368597745895,
-0.08693662285804749,
-0.10101082175970078,
0.02000279910862446,
-0.023372136056423187,
-0.02072075940668583,
-0.0937570184469223,
0.023825382813811302,
-0.044260162860155106,
0.04835706204175949,
0.012142428196966648,
0.026782210916280746,
0.013598734512925148,
0.043434809893369675,
-0.002270354190841317,
-0.04397013038396835,
0.0761232078075409,
0.03461339324712753,
-0.07699574530124664,
0.08730043470859528,
0.06464045494794846,
0.02183445356786251,
0.12821835279464722,
-0.10466098040342331,
-0.03549211099743843,
-0.06389495730400085,
-0.025840507820248604,
0.012272139079868793,
-0.049197059124708176,
0.028302837163209915,
0.15650422871112823,
0.040567681193351746,
0.10052957385778427,
-0.04769029840826988,
0.030441030859947205,
-0.007860827259719372,
-0.08635379374027252,
0.063852958381176,
0.04293999820947647,
0.022875552996993065,
-0.3272782266139984,
0.050483640283346176,
0.04556751623749733,
-0.06931911408901215,
0.1438591480255127,
-0.0040377904660999775,
-0.024222036823630333,
0.02670816332101822,
-0.03493761271238327,
-0.043209340423345566,
0.012984894216060638,
-0.12781359255313873,
-0.03814315423369408,
0.0412396602332592,
0.03701556473970413,
0.04094268009066582,
-0.1102137342095375,
-0.006861169822514057,
-0.02218523807823658,
-0.041187677532434464,
-0.03977110981941223,
-0.008435485884547234,
0.0036301028449088335,
0.07527736574411392,
-0.000025539518901496194,
0.056518349796533585,
0.03893014416098595,
0.01187425758689642,
-0.09316294640302658,
0.19856196641921997,
-0.10926064848899841,
-0.24593161046504974,
-0.046066537499427795,
-0.12904983758926392,
-0.010014930739998817,
-0.018488464877009392,
0.09787949919700623,
-0.14981873333454132,
-0.034602753818035126,
0.0009940245654433966,
0.09428896009922028,
0.02148374728858471,
0.017822880297899246,
-0.03229375556111336,
0.020389407873153687,
-0.050975605845451355,
-0.1093304231762886,
-0.018175533041357994,
-0.04653646796941757,
-0.1028285101056099,
0.06549762934446335,
-0.1151004508137703,
0.032237596809864044,
0.06538182497024536,
-0.023356521502137184,
0.029953446239233017,
-0.07637512683868408,
0.2616339325904846,
-0.018040122464299202,
0.08747664839029312,
0.22047793865203857,
-0.04443598538637161,
0.02078176476061344,
0.08346561342477798,
0.017946746200323105,
-0.062064118683338165,
0.07971053570508957,
0.00027363208937458694,
-0.06631221622228622,
-0.27524805068969727,
-0.07525888085365295,
-0.0580291673541069,
-0.01710810326039791,
0.03654703125357628,
0.011577501893043518,
-0.10433303564786911,
0.09064684808254242,
0.0002924386353697628,
0.06399713456630707,
-0.0069758957251906395,
0.04639941081404686,
0.09057444334030151,
0.0018903727177530527,
0.08817366510629654,
-0.05167410150170326,
0.007106923032552004,
0.09667804092168808,
0.09804191440343857,
0.09075195342302322,
-0.03650509566068649,
0.11161988973617554,
0.06340045481920242,
0.10142696648836136,
0.03895437344908714,
0.15414930880069733,
-0.0003118827298749238,
0.011419795453548431,
-0.022527385503053665,
-0.01786457560956478,
-0.1040673479437828,
0.010966197587549686,
-0.044980261474847794,
-0.06438158452510834,
-0.053854115307331085,
0.12928800284862518,
0.030488034710288048,
0.2747468650341034,
0.02628353051841259,
-0.2275954782962799,
-0.12684814631938934,
-0.024711957201361656,
-0.06480205059051514,
-0.04753570631146431,
0.047939710319042206,
0.041454244405031204,
-0.12570340931415558,
0.04777989536523819,
0.00970754399895668,
0.12863147258758545,
-0.06788673251867294,
0.048011064529418945,
0.00012343355047050864,
0.07101308554410934,
0.0016556892078369856,
0.06435291469097137,
-0.31422245502471924,
0.17417185008525848,
0.02892351523041725,
0.06795533746480942,
-0.06652023643255234,
-0.018743906170129776,
0.013608744367957115,
0.09924378991127014,
0.09652723371982574,
0.02206621691584587,
0.04501724988222122,
-0.04103422537446022,
-0.024065900593996048,
0.08679947257041931,
0.057184360921382904,
0.05104341730475426,
0.06567499041557312,
-0.012828548438847065,
0.026085950434207916,
0.004961593542248011,
0.08947180956602097,
-0.176736518740654,
-0.10560731589794159,
-0.047744255512952805,
0.05943651124835014,
0.011551355943083763,
0.010819963179528713,
-0.042858656495809555,
-0.028325829654932022,
0.20907528698444366,
0.023888226598501205,
-0.11055605113506317,
-0.14797653257846832,
0.1151227205991745,
0.043062567710876465,
-0.1160244271159172,
0.035296808928251266,
-0.03943462297320366,
-0.012903436087071896,
0.0070607648231089115,
-0.11803166568279266,
0.11412303894758224,
-0.11050399392843246,
-0.026456249877810478,
-0.013843262568116188,
0.03663898631930351,
0.07911469787359238,
0.018162740394473076,
0.055118948221206665,
-0.05691813677549362,
-0.04666728898882866,
-0.07251138240098953,
-0.06065375357866287,
0.01990954391658306,
0.05526012182235718,
0.09872858226299286,
-0.11151577532291412,
-0.10951366275548935,
-0.054480016231536865,
-0.04322507604956627,
0.28793442249298096,
-0.004441279452294111,
-0.02577156573534012,
0.059464409947395325,
0.14748847484588623,
-0.0755154937505722,
-0.27055108547210693,
-0.01611984334886074,
0.07303031533956528,
0.02284206822514534,
-0.0280295442789793,
-0.18892212212085724,
0.19591204822063446,
0.04880494624376297,
0.014715307392179966,
-0.102906733751297,
-0.1375475376844406,
-0.10712284594774246,
0.10289933532476425,
0.1335865706205368,
0.19636711478233337,
-0.09874472767114639,
0.029018893837928772,
-0.06648527830839157,
-0.12486571073532104,
0.2515840232372284,
-0.28105413913726807,
0.08125718683004379,
0.036292534321546555,
0.12624233961105347,
0.0015977226430550218,
-0.02138500101864338,
-0.0030243918299674988,
0.018515119329094887,
-0.03154745325446129,
-0.043704453855752945,
0.019176995381712914,
0.03174655884504318,
-0.007973919622600079,
0.08796749264001846,
0.049296557903289795,
0.07370321452617645,
-0.035784102976322174,
-0.023706888779997826,
-0.10707122087478638,
0.030018296092748642,
-0.002650605980306864,
-0.11825592070817947,
0.03811195120215416,
0.04527438431978226,
0.04318040981888771,
0.014618282206356525,
0.0989546999335289,
-0.05125413089990616,
0.03262535482645035,
0.1765901893377304,
0.11761294305324554,
-0.05087574943900108,
0.038128968328237534,
-0.007876712828874588,
-0.04181035980582237,
0.044468048959970474,
-0.16346685588359833,
0.03470068797469139,
0.055016301572322845,
0.010484352707862854,
0.052606113255023956,
0.030534036457538605,
-0.005730847362428904,
0.0016470233676955104,
0.012314475141465664,
-0.11764787882566452,
-0.05129007622599602,
-0.011997447349131107,
-0.07470405846834183,
-0.03865315765142441,
0.10531753301620483,
0.23381870985031128,
-0.049073945730924606,
-0.04512545466423035,
-0.037188224494457245,
-0.003753214841708541,
-0.10875150561332703,
0.16187244653701782,
0.06549550592899323,
0.014800041913986206,
-0.11720460653305054,
0.07264117151498795,
0.04505542665719986,
-0.03774464875459671,
0.014286445453763008,
0.1735140085220337,
-0.1759333610534668,
-0.10139593482017517,
0.05026671290397644,
0.023149514570832253,
-0.15043485164642334,
-0.06953289359807968,
-0.019212540239095688,
-0.0583648681640625,
0.013398063369095325,
0.13814885914325714,
0.058130018413066864,
-0.004781130701303482,
-0.05953185260295868,
-0.001301740063354373,
-0.021444806829094887,
0.015462256968021393,
0.016564803197979927,
0.02169475518167019,
-0.10734600573778152,
0.12242855131626129,
-0.024996954947710037,
0.15123561024665833,
-0.054991986602544785,
-0.004482603631913662,
-0.14742867648601532,
0.05670129507780075,
-0.16000832617282867,
0.039641689509153366,
-0.08157040923833847,
0.0016473588766530156,
-0.03364432603120804,
-0.08355353772640228,
0.009011284448206425,
0.033209770917892456,
-0.058299753814935684,
0.028429502621293068,
-0.008234367705881596,
0.05192643404006958,
-0.050901904702186584,
0.008454285562038422,
-0.008941447362303734,
0.014427632093429565,
0.12183750420808792,
0.0447554886341095,
-0.1245899349451065,
0.13502496480941772,
-0.14937061071395874,
-0.010783214122056961,
0.05393785610795021,
0.023510120809078217,
0.10174789279699326,
0.07315701991319656,
-0.009111938066780567,
0.051234595477581024,
0.11153990775346756,
0.00399781484156847,
0.1863895058631897,
-0.02762194350361824,
-0.014041553251445293,
0.0017571382923051715,
-0.027243923395872116,
-0.058011963963508606,
-0.0038116970099508762,
0.09892954677343369,
0.04599751532077789,
0.1555534452199936,
-0.06568995863199234,
0.04141991585493088,
-0.12780599296092987,
0.0013512842124328017,
0.013287380337715149,
-0.05132739618420601,
-0.10138554871082306,
-0.11156116425991058,
0.06085120141506195,
-0.025429826229810715,
0.10645366460084915,
0.02233099564909935,
0.11400647461414337,
0.013179581612348557,
-0.035797130316495895,
-0.067097507417202,
-0.0067717838101089,
0.18045756220817566,
0.012483355589210987,
-0.01870381273329258,
-0.012291375547647476,
0.04487553983926773,
-0.004417960532009602,
0.05713138356804848,
0.18086886405944824,
0.08654186129570007,
0.09724023193120956,
0.10023964196443558,
-0.010860243812203407,
0.08527475595474243,
-0.07565674185752869,
-0.12606362998485565,
-0.006341961212456226,
0.021037016063928604,
-0.06168808788061142,
-0.0060999952256679535,
0.11369675397872925,
-0.07421734184026718,
0.03134341165423393,
-0.006868991535156965,
-0.09803729504346848,
-0.15091392397880554,
-0.13392764329910278,
-0.08639805018901825,
-0.06896544992923737,
-0.033271100372076035,
-0.14819642901420593,
0.0017060624668374658,
0.05505749210715294,
0.06772277504205704,
-0.014278468675911427,
0.11368679255247116,
0.11009973287582397,
-0.1447429358959198,
0.05371786281466484,
-0.009546279907226562,
0.04981626942753792,
0.010061772540211678,
-0.01477614976465702,
-0.027103140950202942,
0.08303117007017136,
0.037502992898225784,
0.017955830320715904,
-0.02964806742966175,
0.04653555527329445,
-0.09403964132070541,
-0.0475858598947525,
-0.03515749052166939,
0.08390987664461136,
0.006944742519408464,
0.10489386320114136,
0.0434202142059803,
-0.0650392472743988,
0.03776629641652107,
0.21471476554870605,
-0.058057527989149094,
-0.22041869163513184,
-0.13359282910823822,
0.28208059072494507,
0.041606247425079346,
0.0276022981852293,
0.010415161028504372,
-0.026137297973036766,
-0.04345564916729927,
0.2649741768836975,
0.2321396768093109,
-0.1456717550754547,
-0.01305962074548006,
0.01026537362486124,
0.0023890743032097816,
-0.014437771402299404,
0.21862858533859253,
0.10329634696245193,
0.1501718908548355,
-0.04940493777394295,
0.011604118160903454,
-0.013055008836090565,
-0.05436788871884346,
-0.0951610580086708,
-0.024394871667027473,
0.0326150618493557,
-0.0119040971621871,
-0.01310032606124878,
0.14121875166893005,
-0.19316929578781128,
-0.14669489860534668,
-0.09670276939868927,
-0.06867605447769165,
-0.122702956199646,
-0.05285036936402321,
0.03998597711324692,
0.06918887794017792,
0.0725049376487732,
-0.02975623495876789,
0.038257598876953125,
0.0572972446680069,
-0.009386543184518814,
-0.08269424736499786,
0.012448440305888653,
0.15095926821231842,
-0.11561819911003113,
0.00890184473246336,
-0.021184876561164856,
0.117656409740448,
0.0654938742518425,
0.042248647660017014,
-0.05599834397435188,
0.04359282925724983,
-0.04401971772313118,
-0.008602951653301716,
0.04809045046567917,
-0.009011881425976753,
-0.05726062133908272,
-0.023822525516152382,
0.018098315224051476,
-0.19766287505626678,
0.010066519491374493,
0.14685936272144318,
-0.0025212266482412815,
-0.08076044917106628,
0.03191176801919937,
-0.11390677094459534,
0.1143464669585228,
0.13265445828437805,
-0.018016211688518524,
0.07234904915094376,
-0.12033706158399582,
0.028960082679986954,
0.021349839866161346,
-0.05144403129816055,
-0.10469940304756165,
-0.14143367111682892,
-0.06589309871196747,
0.035144321620464325,
-0.003997016232460737,
-0.10605229437351227,
0.03694340959191322,
-0.07007982581853867,
-0.004783103242516518,
-0.11317244172096252,
0.10553848743438721,
0.09047075361013412,
0.018041759729385376,
0.008741412311792374,
-0.06335988640785217,
-0.0073366002179682255,
0.09765621274709702,
-0.17218098044395447,
-0.14510975778102875
] |
null | null |
transformers
|
# t5_wikisql_en2SQL
---
language: en
datasets:
- wikisql
---
This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [wikisql dataset](https://huggingface.co/datasets/wikisql) for **English** to **SQL** **translation** text2text mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_wikisql_en2SQL")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_wikisql_en2SQL")
```
You can then use this model to translate SQL queries into plain english.
```python
query = "what are the names of all the people in the USA?"
input_text = f"translate English to Sql: {query} </s>"
features = tokenizer([input_text], return_tensors='pt')
output = model.generate(input_ids=features['input_ids'].cuda(),
attention_mask=features['attention_mask'].cuda())
tokenizer.decode(output[0])
# Output: "SELECT Name FROM table WHERE Country = USA"
```
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/SQLM)
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|
{}
|
text2text-generation
|
dbernsohn/t5_wikisql_en2SQL
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
# t5_wikisql_en2SQL
---
language: en
datasets:
- wikisql
---
This is a t5-small fine-tuned version on the wikisql dataset for English to SQL translation text2text mission.
To load the model:
(necessary packages: !pip install transformers sentencepiece)
You can then use this model to translate SQL queries into plain english.
The whole training process and hyperparameters are in my GitHub repo
> Created by Dor Bernsohn
|
[
"# t5_wikisql_en2SQL\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for English to SQL translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"# t5_wikisql_en2SQL\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for English to SQL translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
52,
115
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# t5_wikisql_en2SQL\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for English to SQL translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn"
] |
[
-0.0577201247215271,
0.09152215719223022,
-0.00151244574226439,
0.08533680438995361,
0.1852836012840271,
0.05126091092824936,
0.052237581461668015,
0.09785155951976776,
-0.05365767702460289,
-0.08661464601755142,
0.07841871678829193,
0.1339939683675766,
0.025900380685925484,
0.11493861675262451,
-0.01543881744146347,
-0.27923932671546936,
0.0006531313410960138,
0.01292563695460558,
-0.0414549857378006,
0.12694761157035828,
0.09689044207334518,
-0.05711771920323372,
0.10158448666334152,
0.0024343114346265793,
-0.1621420681476593,
0.03731061890721321,
0.024598179385066032,
-0.104366235435009,
0.14041057229042053,
0.08021581918001175,
0.12175793200731277,
0.02399955503642559,
0.07867370545864105,
-0.10465773940086365,
0.03838261216878891,
0.06680551916360855,
-0.01259622536599636,
0.06536674499511719,
0.0029793051071465015,
0.03960288688540459,
0.0677977129817009,
-0.1204134076833725,
0.011348173953592777,
0.0405508428812027,
-0.0871913731098175,
-0.012157981283962727,
-0.02723051980137825,
0.037802282720804214,
0.05080564320087433,
0.10230080038309097,
0.013967583887279034,
0.1328815519809723,
-0.09680525958538055,
0.15683633089065552,
0.17220617830753326,
-0.2555350363254547,
-0.042186539620161057,
0.05343746021389961,
0.02330600842833519,
0.08558584004640579,
-0.024760441854596138,
-0.0007402020273730159,
-0.001818487886339426,
0.0555223673582077,
0.06191924586892128,
-0.09877144545316696,
-0.23966841399669647,
0.0026090440806001425,
-0.13410735130310059,
-0.0054860650561749935,
0.1540645807981491,
-0.0338740311563015,
-0.03076978400349617,
0.023923998698592186,
-0.11674201488494873,
0.06413253396749496,
0.00004234761945554055,
-0.03856184706091881,
0.001996808685362339,
0.006075762677937746,
-0.053669434040784836,
-0.2004668414592743,
-0.13689185678958893,
-0.038497645407915115,
-0.165390282869339,
0.15290777385234833,
0.04587873816490173,
0.06083904951810837,
-0.11468534916639328,
0.0743543952703476,
-0.028837714344263077,
-0.050669632852077484,
-0.010940357111394405,
-0.08615607768297195,
-0.07286465167999268,
-0.035830918699502945,
-0.07858745753765106,
-0.1235777959227562,
0.07885422557592392,
-0.025410965085029602,
-0.11237602680921555,
-0.0016615642234683037,
0.030300118029117584,
0.020511701703071594,
0.03502991423010826,
0.1484997719526291,
-0.07711978256702423,
-0.02784988284111023,
0.09179610759019852,
-0.11862074583768845,
-0.05805201455950737,
0.02212420478463173,
-0.12081728130578995,
-0.09778309613466263,
-0.0014009871520102024,
0.031480927020311356,
-0.010007968172430992,
0.12077470123767853,
-0.0019440274918451905,
-0.05861567333340645,
0.04629097878932953,
-0.1025533527135849,
-0.03835742920637131,
-0.02957920916378498,
-0.045696161687374115,
0.09022220969200134,
0.12788939476013184,
0.01105235330760479,
-0.16235709190368652,
-0.007109829690307379,
-0.04299328848719597,
0.017304588109254837,
-0.03479251638054848,
-0.13717372715473175,
0.006624654866755009,
-0.09191811084747314,
0.008998093195259571,
-0.14872464537620544,
-0.2044035643339157,
-0.003775646211579442,
0.05054590478539467,
0.0475415401160717,
-0.05584618076682091,
-0.014610793441534042,
0.0033087877091020346,
0.005428639240562916,
-0.07050112634897232,
0.03328346088528633,
-0.04042793810367584,
0.03527913987636566,
-0.058007556945085526,
0.06456203758716583,
-0.20759308338165283,
0.03069908544421196,
-0.1220003291964531,
-0.08585893362760544,
-0.1356935054063797,
0.10222188383340836,
0.0040662335231900215,
0.040846087038517,
-0.12165619432926178,
-0.05949331074953079,
0.04099903628230095,
0.061038944870233536,
0.036202218383550644,
0.1426822692155838,
-0.18700048327445984,
-0.01263086311519146,
0.20778441429138184,
-0.08119401335716248,
-0.09868578612804413,
0.10871180146932602,
-0.01417829655110836,
0.1731923222541809,
0.1555897295475006,
0.11596057564020157,
0.08223376423120499,
-0.11224374920129776,
0.0897008404135704,
0.09814589470624924,
-0.06054460629820824,
-0.10178142040967941,
0.021077604964375496,
0.034005098044872284,
-0.010638565756380558,
0.01802750490605831,
-0.043913476169109344,
0.07592301070690155,
-0.04469793662428856,
-0.032469023019075394,
-0.03242160379886627,
-0.07298406958580017,
0.010370509698987007,
0.008370890282094479,
0.07164496928453445,
-0.0005925680743530393,
-0.05005638673901558,
0.1471102237701416,
0.04826145991683006,
-0.04392898082733154,
0.06662905961275101,
-0.04614781215786934,
-0.1255689412355423,
0.04769260063767433,
0.015509726479649544,
-0.14627176523208618,
-0.10397760570049286,
-0.04887542501091957,
0.12241947650909424,
0.11817387491464615,
0.0923406109213829,
0.03465209901332855,
0.007431452628225088,
-0.03504132106900215,
0.010852063074707985,
0.024917343631386757,
0.0310827549546957,
-0.08448225259780884,
-0.09553325176239014,
0.012455726973712444,
-0.025688743218779564,
-0.021291766315698624,
-0.08055783808231354,
0.03463811054825783,
-0.030987385660409927,
0.053614336997270584,
0.011955883353948593,
0.036268893629312515,
0.017789481207728386,
0.041244324296712875,
-0.014574326574802399,
-0.042670488357543945,
0.06688855588436127,
0.0277814082801342,
-0.08418522775173187,
0.11110106110572815,
0.028969697654247284,
0.02868303842842579,
0.1368926465511322,
-0.09489032626152039,
-0.03912455961108208,
-0.047797225415706635,
-0.03035144880414009,
0.008972987532615662,
-0.0486750565469265,
0.005568011663854122,
0.13312405347824097,
0.037941429764032364,
0.10979349911212921,
-0.05288247391581535,
0.016117587685585022,
-0.013319669291377068,
-0.08389899134635925,
0.05570417642593384,
0.04745985195040703,
0.01920100301504135,
-0.3076791763305664,
0.06427280604839325,
0.0698319673538208,
-0.07483057677745819,
0.1613946259021759,
0.013819705694913864,
-0.030683010816574097,
0.020250149071216583,
-0.028203211724758148,
-0.041467972099781036,
0.005245080683380365,
-0.12082810699939728,
-0.033984843641519547,
0.044039178639650345,
0.036709584295749664,
0.04508015513420105,
-0.10533426702022552,
-0.006987294182181358,
-0.009737102314829826,
-0.03851141780614853,
-0.046002890914678574,
0.007500077597796917,
0.013779249973595142,
0.07843334227800369,
-0.0006826865719631314,
0.06300555914640427,
0.03847721591591835,
0.018129751086235046,
-0.09189591556787491,
0.19339004158973694,
-0.12001512944698334,
-0.26257768273353577,
-0.05480242520570755,
-0.1157861202955246,
-0.011661084368824959,
-0.015462390147149563,
0.11739639192819595,
-0.15246199071407318,
-0.027903903275728226,
-0.011991972103714943,
0.09771571308374405,
0.008396441116929054,
0.017391886562108994,
-0.04928170517086983,
0.01616455800831318,
-0.04294968396425247,
-0.11717961728572845,
-0.012883859686553478,
-0.037398409098386765,
-0.10703998059034348,
0.07979220151901245,
-0.10432787984609604,
0.04458560794591904,
0.08311991393566132,
-0.03018682636320591,
0.02721625380218029,
-0.08098764717578888,
0.24507112801074982,
-0.021769719198346138,
0.09338255971670151,
0.21471180021762848,
-0.030528247356414795,
0.028962085023522377,
0.0962851345539093,
0.0126962186768651,
-0.04084976017475128,
0.08099288493394852,
0.003835093230009079,
-0.0695776715874672,
-0.2839981019496918,
-0.07827432453632355,
-0.06783002614974976,
-0.013262574560940266,
0.042791493237018585,
0.016265438869595528,
-0.07927460968494415,
0.08115506172180176,
-0.009015030227601528,
0.05308204144239426,
-0.003991282545030117,
0.05811968073248863,
0.11442756652832031,
-0.002329757437109947,
0.09427317976951599,
-0.056639719754457474,
0.0051833526231348515,
0.1029905453324318,
0.10176633298397064,
0.09237109124660492,
-0.05117655172944069,
0.1057605966925621,
0.06152189150452614,
0.1047324687242508,
0.041634444147348404,
0.14579890668392181,
-0.0007091209990903735,
0.01843021996319294,
-0.025627069175243378,
-0.023378493264317513,
-0.07536384463310242,
0.02300376445055008,
-0.027255065739154816,
-0.06577452272176743,
-0.06057799980044365,
0.10859299451112747,
0.03296402096748352,
0.2473812848329544,
0.038389455527067184,
-0.2216753214597702,
-0.11857573688030243,
-0.019455155357718468,
-0.057604093104600906,
-0.04729677364230156,
0.03913639858365059,
0.06795697659254074,
-0.11856084316968918,
0.04700135812163353,
0.017809098586440086,
0.12257978320121765,
-0.03399675339460373,
0.042532674968242645,
0.007857529446482658,
0.0627652257680893,
-0.0028162579983472824,
0.06866036355495453,
-0.30594196915626526,
0.1771782487630844,
0.0242140032351017,
0.045399170368909836,
-0.06784069538116455,
-0.02049785666167736,
0.01093625370413065,
0.0944116860628128,
0.09082810580730438,
0.023782724514603615,
0.032723430544137955,
-0.04924345761537552,
-0.01824927143752575,
0.07310674339532852,
0.048479896038770676,
0.05582888796925545,
0.06599859893321991,
-0.01189351361244917,
0.02026699297130108,
0.01405335869640112,
0.1159459799528122,
-0.15548919141292572,
-0.10935484617948532,
-0.0409480482339859,
0.06436209380626678,
-0.003557590302079916,
0.008323859423398972,
-0.050032760947942734,
-0.03382817283272743,
0.20199409127235413,
0.019123801961541176,
-0.11698513478040695,
-0.1459314376115799,
0.0989251509308815,
0.04965195432305336,
-0.12755268812179565,
0.03560610115528107,
-0.03657347708940506,
-0.006981961894780397,
0.0042556170374155045,
-0.12444635480642319,
0.12000215798616409,
-0.10128921270370483,
-0.03029271960258484,
-0.01141192577779293,
0.04615394026041031,
0.06041661277413368,
0.026827218011021614,
0.05027184262871742,
-0.05498816445469856,
-0.059925828129053116,
-0.07373078912496567,
-0.06387320905923843,
0.01715836673974991,
0.05946396291255951,
0.09401822090148926,
-0.11143060028553009,
-0.1164226084947586,
-0.03964769467711449,
-0.03591999411582947,
0.29467159509658813,
-0.00010297756671207026,
-0.048335377126932144,
0.06533768773078918,
0.12938164174556732,
-0.06859023869037628,
-0.2615477442741394,
-0.025764483958482742,
0.07294803112745285,
0.026520375162363052,
-0.0010257787071168423,
-0.16920752823352814,
0.16211438179016113,
0.04150824621319771,
0.01471359096467495,
-0.11563195288181305,
-0.15284352004528046,
-0.11066925525665283,
0.09278957545757294,
0.11894482374191284,
0.1877700239419937,
-0.10680022090673447,
0.03266765922307968,
-0.05653063580393791,
-0.1323472261428833,
0.2464180439710617,
-0.28474801778793335,
0.084283746778965,
0.02828459069132805,
0.13693271577358246,
0.004929020535200834,
-0.02208896540105343,
-0.00026102058473043144,
0.0073974765837192535,
-0.03587231785058975,
-0.05575798079371452,
0.014432410709559917,
0.047396983951330185,
-0.01819385029375553,
0.09564860165119171,
0.027316946536302567,
0.06603847444057465,
-0.0453241765499115,
-0.01768353581428528,
-0.11425946652889252,
0.03991509974002838,
-0.008980067446827888,
-0.11426138132810593,
0.026518547907471657,
0.04151232913136482,
0.05377206578850746,
0.001655676867812872,
0.09525872021913528,
-0.048134319484233856,
0.0486421100795269,
0.19760622084140778,
0.10208210349082947,
-0.04254427179694176,
0.026194076985120773,
0.0017449593869969249,
-0.04365689679980278,
0.051589738577604294,
-0.17450681328773499,
0.03995255380868912,
0.05646539852023125,
0.010462457314133644,
0.05191247910261154,
0.032758504152297974,
-0.013408640399575233,
0.005388475488871336,
0.023376189172267914,
-0.11649679392576218,
-0.06577446311712265,
-0.020419830456376076,
-0.07671887427568436,
-0.040112003684043884,
0.09181395173072815,
0.22698336839675903,
-0.04624495655298233,
-0.04607081040740013,
-0.022421641275286674,
-0.008458292111754417,
-0.09846436232328415,
0.1532287448644638,
0.0728720873594284,
0.014048716053366661,
-0.10745656490325928,
0.06262059509754181,
0.06130113825201988,
-0.04319913312792778,
0.01898813433945179,
0.1721295565366745,
-0.16050653159618378,
-0.10807543992996216,
0.04362447187304497,
-0.002234320854768157,
-0.1510743498802185,
-0.058937933295965195,
-0.017872529104351997,
-0.05301486700773239,
0.018963869661092758,
0.12465474009513855,
0.055296339094638824,
-0.006858061067759991,
-0.05071055516600609,
-0.000845199974719435,
-0.02240934781730175,
0.025129571557044983,
0.024784063920378685,
0.025100843980908394,
-0.10762282460927963,
0.13696084916591644,
-0.023241423070430756,
0.15197265148162842,
-0.053780362010002136,
-0.003151305951178074,
-0.15110664069652557,
0.04600134491920471,
-0.17086146771907806,
0.024279532954096794,
-0.07831075042486191,
-0.0002372793824179098,
-0.03975840285420418,
-0.09015753865242004,
-0.00012060294102411717,
0.03762790933251381,
-0.06124419346451759,
0.02682417258620262,
-0.009330681525170803,
0.060523871332407,
-0.0667034164071083,
-0.0013535519829019904,
-0.00713559752330184,
0.016455134376883507,
0.12015494704246521,
0.04184040054678917,
-0.12268568575382233,
0.1237584799528122,
-0.13250333070755005,
-0.02443731389939785,
0.05045436695218086,
0.022372113540768623,
0.10252954810857773,
0.06959859281778336,
-0.002746274694800377,
0.04306327551603317,
0.10075326263904572,
0.0025436978321522474,
0.16201499104499817,
-0.033019933849573135,
-0.006442970130592585,
-0.0073784152045845985,
-0.02894885092973709,
-0.060777582228183746,
0.006230686325579882,
0.08433230221271515,
0.04774121940135956,
0.15059234201908112,
-0.05938514322042465,
0.047554921358823776,
-0.13287608325481415,
0.001796435914002359,
0.00998371560126543,
-0.047254618257284164,
-0.09421930462121964,
-0.10825031250715256,
0.0561520978808403,
-0.02022456005215645,
0.10090390592813492,
0.031343910843133926,
0.11536842584609985,
0.01595202460885048,
-0.022279882803559303,
-0.0576804094016552,
-0.018005184829235077,
0.17155852913856506,
-0.00695089902728796,
-0.023105887696146965,
-0.008509336039423943,
0.037322428077459335,
0.001436010468751192,
0.05616464838385582,
0.1800123006105423,
0.0881430059671402,
0.09631266444921494,
0.09487578272819519,
-0.01196327805519104,
0.07546176761388779,
-0.09900229424238205,
-0.143671452999115,
-0.0002649184316396713,
0.026856740936636925,
-0.07245965301990509,
-0.007939598523080349,
0.12127019464969635,
-0.08152975142002106,
0.031872984021902084,
-0.006119067315012217,
-0.0894470363855362,
-0.14897520840168,
-0.12750354409217834,
-0.08365689963102341,
-0.08197599649429321,
-0.040120042860507965,
-0.14266707003116608,
0.007365403231233358,
0.028114020824432373,
0.0652880147099495,
-0.008585911244153976,
0.11924698948860168,
0.10902059823274612,
-0.1505763679742813,
0.03756358474493027,
-0.008240627124905586,
0.06252813339233398,
0.018852531909942627,
-0.0017091179033741355,
-0.017741773277521133,
0.08637963980436325,
0.03428595885634422,
0.023681364953517914,
-0.02915966883301735,
0.04476141929626465,
-0.10076682269573212,
-0.045339010655879974,
-0.04648219048976898,
0.09305857867002487,
0.015270468778908253,
0.11655423790216446,
0.043939702212810516,
-0.06898641586303711,
0.029146473854780197,
0.22799381613731384,
-0.06764712184667587,
-0.2155413031578064,
-0.12667138874530792,
0.27297163009643555,
0.05904622748494148,
0.016511861234903336,
0.010970138013362885,
-0.039073552936315536,
-0.05714767426252365,
0.2554115951061249,
0.2361070215702057,
-0.13115982711315155,
-0.002059238264337182,
0.010970775969326496,
0.006766422651708126,
-0.004471482243388891,
0.20419184863567352,
0.10457831621170044,
0.1637933850288391,
-0.04497488588094711,
0.01601160690188408,
-0.007745275739580393,
-0.03997498378157616,
-0.08795228600502014,
-0.0073569160886108875,
0.02404423989355564,
-0.025798650458455086,
-0.007737778127193451,
0.12525857985019684,
-0.17810997366905212,
-0.13855312764644623,
-0.09773723781108856,
-0.0859367847442627,
-0.1179761067032814,
-0.03797769919037819,
0.07148445397615433,
0.06459727883338928,
0.07674483954906464,
-0.024940894916653633,
0.03293655067682266,
0.0696321651339531,
-0.004765384364873171,
-0.09632142633199692,
0.01503079105168581,
0.15006141364574432,
-0.11282195895910263,
0.021711813285946846,
-0.026728220283985138,
0.11458040773868561,
0.07292479276657104,
0.04596328362822533,
-0.0605502612888813,
0.04566903039813042,
-0.03331516683101654,
-0.025646721944212914,
0.04927711561322212,
-0.01386533584445715,
-0.05998622626066208,
-0.03147919848561287,
0.021563977003097534,
-0.20600692927837372,
0.008921835571527481,
0.1301821768283844,
0.011086191982030869,
-0.08814650774002075,
0.029506659135222435,
-0.10119175165891647,
0.11141704767942429,
0.1385354995727539,
-0.02455941215157509,
0.05813448131084442,
-0.11861302703619003,
0.011959039606153965,
0.020342396572232246,
-0.046110618859529495,
-0.09795624017715454,
-0.1280258446931839,
-0.05570027604699135,
0.023337379097938538,
0.012305228039622307,
-0.11056504398584366,
0.026801109313964844,
-0.06577608734369278,
-0.0064669339917600155,
-0.11723599582910538,
0.112636998295784,
0.093027763068676,
0.012726726941764355,
0.008924663066864014,
-0.056433454155921936,
-0.010575459338724613,
0.10311191529035568,
-0.181412473320961,
-0.13543401658535004
] |
null | null |
generic
|
# Feature Extraction repository template
This is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps
1. Specify the requirements by defining a `requirements.txt` file.
2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.
Example repos
* https://huggingface.co/osanseviero/fasttext_english
## How to start
First create a repo in https://hf.co/new.
Then clone this template and push it to your repo.
```
git clone https://huggingface.co/templates/feature-extraction
cd feature-extraction
git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME
git push --force
```
|
{"library_name": "generic", "tags": ["feature-extraction"]}
|
feature-extraction
|
dbguilherme/teste
|
[
"generic",
"feature-extraction",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#generic #feature-extraction #region-us
|
# Feature Extraction repository template
This is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps
1. Specify the requirements by defining a 'URL' file.
2. Implement the 'URL' '__init__' and '__call__' methods. These methods are called by the Inference API. The '__init__' method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The '__call__' method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.
Example repos
* URL
## How to start
First create a repo in URL
Then clone this template and push it to your repo.
|
[
"# Feature Extraction repository template\n\nThis is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps\n\n1. Specify the requirements by defining a 'URL' file.\n2. Implement the 'URL' '__init__' and '__call__' methods. These methods are called by the Inference API. The '__init__' method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The '__call__' method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.\n\nExample repos\n* URL",
"## How to start\nFirst create a repo in URL \nThen clone this template and push it to your repo."
] |
[
"TAGS\n#generic #feature-extraction #region-us \n",
"# Feature Extraction repository template\n\nThis is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps\n\n1. Specify the requirements by defining a 'URL' file.\n2. Implement the 'URL' '__init__' and '__call__' methods. These methods are called by the Inference API. The '__init__' method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The '__call__' method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.\n\nExample repos\n* URL",
"## How to start\nFirst create a repo in URL \nThen clone this template and push it to your repo."
] |
[
15,
170,
22
] |
[
"passage: TAGS\n#generic #feature-extraction #region-us \n# Feature Extraction repository template\n\nThis is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps\n\n1. Specify the requirements by defining a 'URL' file.\n2. Implement the 'URL' '__init__' and '__call__' methods. These methods are called by the Inference API. The '__init__' method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The '__call__' method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.\n\nExample repos\n* URL## How to start\nFirst create a repo in URL \nThen clone this template and push it to your repo."
] |
[
-0.016049562022089958,
0.022173112258315086,
-0.0017738016322255135,
0.03140975907444954,
0.07291190326213837,
-0.02539891190826893,
-0.03927713632583618,
0.0984872430562973,
0.04912445321679115,
0.09341214597225189,
0.08616713434457779,
0.05853782221674919,
0.0794120728969574,
0.05364997312426567,
-0.011377232149243355,
-0.09741571545600891,
0.05103679373860359,
-0.02858353592455387,
0.1589547097682953,
0.030572423711419106,
0.013123717159032822,
-0.007017049472779036,
0.07355202734470367,
-0.034238170832395554,
-0.18415653705596924,
0.03699114918708801,
0.02723553031682968,
0.015301629900932312,
-0.007341852877289057,
0.009215014055371284,
0.021187100559473038,
-0.051299359649419785,
0.02587474323809147,
-0.16993410885334015,
0.02107807621359825,
0.0430823378264904,
0.02609477937221527,
0.030164852738380432,
0.13502641022205353,
-0.02009212225675583,
-0.031756747514009476,
0.13876155018806458,
0.05150935798883438,
0.09977652877569199,
-0.12725095450878143,
-0.12292923778295517,
-0.027067847549915314,
0.10539141297340393,
0.08458725363016129,
0.02323264628648758,
0.008562170900404453,
0.032827142626047134,
-0.044044025242328644,
0.04392169043421745,
0.026109205558896065,
-0.051706958562135696,
-0.019627612084150314,
0.0741339772939682,
0.099795401096344,
0.022930504754185677,
0.06650050729513168,
0.0033672719728201628,
0.03883496671915054,
0.07727405428886414,
-0.010274558328092098,
-0.053207285702228546,
-0.19002392888069153,
-0.0661425068974495,
-0.09992790222167969,
-0.130597323179245,
0.226226806640625,
-0.03918970376253128,
-0.067664735019207,
0.019066115841269493,
-0.07021922618150711,
0.0729404166340828,
-0.011067970655858517,
-0.0447487011551857,
0.010650898329913616,
0.1140112355351448,
0.10360332578420639,
-0.08968178182840347,
-0.03253338113427162,
-0.1320565938949585,
0.0263375137001276,
0.06262926757335663,
0.018339186906814575,
0.11457658559083939,
-0.08154495060443878,
0.1401616483926773,
-0.10861042886972427,
-0.0570140965282917,
-0.059216950088739395,
-0.07055062055587769,
-0.007164669688791037,
-0.03197554498910904,
0.023127596825361252,
-0.0635843575000763,
0.03906030207872391,
0.2291376143693924,
-0.016074426472187042,
0.07237926870584488,
-0.07608174532651901,
0.10809207707643509,
0.08245581388473511,
0.11522849649190903,
0.04537880793213844,
-0.03602505475282669,
0.047774408012628555,
0.01220506802201271,
0.007302689831703901,
-0.043832797557115555,
-0.07253631949424744,
0.005994939710944891,
0.007090488914400339,
0.04830018803477287,
0.10370921343564987,
0.003618338145315647,
-0.01560636330395937,
-0.03758338838815689,
-0.014900054782629013,
-0.13236016035079956,
0.009280003607273102,
-0.0063040899112820625,
-0.07302826642990112,
-0.009378919377923012,
0.08850536495447159,
-0.079232357442379,
-0.14841575920581818,
-0.18655909597873688,
-0.10962281376123428,
0.09496213495731354,
-0.09393759816884995,
-0.03383669629693031,
0.028818458318710327,
-0.10368219763040543,
-0.01983674429357052,
-0.08534102141857147,
-0.21361422538757324,
-0.06901978701353073,
0.17476379871368408,
-0.0914306789636612,
0.034069474786520004,
-0.0668279156088829,
0.02413821406662464,
-0.03818735480308533,
0.0014178457204252481,
-0.16579663753509521,
-0.09609358012676239,
-0.02692958526313305,
0.05575010925531387,
0.053312286734580994,
-0.06404603272676468,
0.07590558379888535,
-0.11670452356338501,
0.15401065349578857,
-0.22629480063915253,
0.13115935027599335,
-0.005650905892252922,
0.10228586196899414,
-0.08059588074684143,
0.04488756135106087,
0.04194725304841995,
0.0595313236117363,
0.06130210682749748,
0.11743070185184479,
-0.06457188725471497,
-0.008472589775919914,
0.22524921596050262,
-0.10427067428827286,
-0.07451723515987396,
0.08433258533477783,
-0.04396593198180199,
0.24243178963661194,
0.04515547305345535,
0.26350080966949463,
0.0937938541173935,
0.011815088801085949,
0.0906030461192131,
0.10085558146238327,
-0.10110273212194443,
-0.08774222433567047,
-0.006139698904007673,
-0.10701523721218109,
-0.1026233360171318,
0.06527351588010788,
-0.005262342281639576,
0.03160833567380905,
0.016658460721373558,
-0.05900553613901138,
-0.013516723178327084,
0.020168635994195938,
-0.16995646059513092,
-0.06527189165353775,
-0.017974412068724632,
0.04566622152924538,
0.007502938155084848,
0.0008271252154372633,
0.012486591935157776,
-0.06719544529914856,
0.003756782738491893,
0.004024120047688484,
0.21135930716991425,
-0.1491282433271408,
0.04020063951611519,
-0.12554267048835754,
0.012149177491664886,
0.03391711786389351,
-0.04344611614942551,
0.084478959441185,
-0.11209414899349213,
-0.02378198131918907,
0.07069098204374313,
0.10658915340900421,
-0.012645967304706573,
0.08143667131662369,
-0.05440203472971916,
-0.006229693070054054,
-0.015336692333221436,
-0.0687507763504982,
-0.07557954639196396,
-0.09033999592065811,
-0.04635520651936531,
0.052860647439956665,
-0.1399957239627838,
-0.022227294743061066,
-0.018221616744995117,
-0.05491028353571892,
0.03621301427483559,
-0.014030994847416878,
-0.026060281321406364,
-0.03691363334655762,
0.043657589703798294,
0.019425753504037857,
0.07986059784889221,
0.0185988899320364,
-0.08083611726760864,
-0.14958103001117706,
0.022196801379323006,
-0.19770875573158264,
-0.06905849277973175,
-0.1131259873509407,
-0.0012139106402173638,
-0.014873476698994637,
0.029250500723719597,
-0.07506370544433594,
0.1985977292060852,
0.005285145714879036,
0.07985270768404007,
-0.09630953520536423,
0.015793602913618088,
0.019561883062124252,
-0.11805589497089386,
-0.0053216684609651566,
-0.016252892091870308,
0.18972130119800568,
-0.043113064020872116,
0.051724743098020554,
-0.02180551551282406,
-0.06557615846395493,
0.08881708234548569,
0.001542609534226358,
-0.07310708612203598,
-0.027212589979171753,
0.16911263763904572,
-0.04950018972158432,
0.09602919220924377,
-0.2057526558637619,
-0.07585496455430984,
0.0028189446311444044,
0.020954182371497154,
0.08962088823318481,
-0.12469836324453354,
0.014026211574673653,
-0.026930417865514755,
-0.01876990683376789,
-0.0635325089097023,
-0.12211757898330688,
-0.024628812447190285,
-0.012938168831169605,
0.07395824044942856,
-0.043490342795848846,
0.07910095900297165,
-0.05251450836658478,
-0.0913010835647583,
0.15383002161979675,
-0.06886447966098785,
-0.1249953880906105,
-0.22048678994178772,
-0.09378346800804138,
-0.08465322107076645,
0.06711612641811371,
0.02741074189543724,
0.006516237277537584,
-0.03601321578025818,
-0.08383236825466156,
0.10457508265972137,
-0.04335771128535271,
-0.10893703997135162,
-0.12921254336833954,
0.003320511197671294,
0.020327402278780937,
-0.13416031002998352,
-0.044304557144641876,
-0.017952127382159233,
-0.03670705854892731,
0.05502399802207947,
-0.07865658402442932,
0.0963791161775589,
0.16764356195926666,
0.017197493463754654,
0.08033248037099838,
0.03784212842583656,
0.09949814528226852,
0.03009696491062641,
-0.017267556861042976,
0.1751147359609604,
-0.039958927780389786,
0.08924511075019836,
0.11881846189498901,
0.01591179519891739,
-0.0978919044137001,
-0.019200142472982407,
-0.07380857318639755,
-0.09098058938980103,
-0.07556755095720291,
-0.052756331861019135,
-0.04621186479926109,
0.0774678885936737,
0.12141217291355133,
0.018603689968585968,
0.0418425053358078,
0.09040030837059021,
0.032125577330589294,
0.03729141876101494,
-0.000038536934880539775,
0.10887128859758377,
-0.010775791481137276,
-0.03532314673066139,
0.03545420616865158,
0.010991865769028664,
-0.003032376989722252,
0.01745465025305748,
0.09935574233531952,
0.15509209036827087,
0.03783082216978073,
-0.012654688209295273,
0.02348370850086212,
0.1162845715880394,
0.02323051169514656,
0.17251746356487274,
0.02308376505970955,
0.043166596442461014,
-0.010237524285912514,
-0.04032473638653755,
-0.10444347560405731,
0.10304282605648041,
-0.04662296921014786,
-0.01645231433212757,
0.011194847524166107,
-0.042049285024404526,
0.03690280765295029,
0.19396211206912994,
0.030559850856661797,
-0.25432342290878296,
-0.011778497137129307,
0.02974684350192547,
-0.0019188200822100043,
-0.1499428153038025,
0.06494792550802231,
0.04136598855257034,
-0.05417671427130699,
-0.10334912687540054,
0.03345418721437454,
0.1286725550889969,
0.015174314379692078,
0.005685634911060333,
-0.04797017201781273,
0.0635053738951683,
0.010421971790492535,
0.03466782346367836,
0.02390107326209545,
-0.005162774585187435,
0.03640253469347954,
0.04033916816115379,
-0.05028004199266434,
0.12683165073394775,
0.04424308240413666,
0.012829597108066082,
0.14594140648841858,
0.0008009556913748384,
-0.17422965168952942,
-0.19964119791984558,
-0.07669766992330551,
0.06169832497835159,
0.022449688985943794,
-0.09569216519594193,
0.06984087824821472,
-0.018223373219370842,
0.06398013234138489,
-0.030972372740507126,
-0.005590395070612431,
0.018313705921173096,
-0.10821737349033356,
-0.07538961619138718,
-0.1676577627658844,
0.08727775514125824,
0.016680849716067314,
0.10557343065738678,
0.15645262598991394,
0.15425750613212585,
-0.1316750943660736,
-0.11171948909759521,
-0.07145365327596664,
-0.057165831327438354,
0.03491289168596268,
-0.018474653363227844,
-0.0003623123047873378,
-0.038534656167030334,
-0.040815554559230804,
-0.018538882955908775,
-0.1756422072649002,
0.10101274400949478,
-0.07525637000799179,
0.07696976512670517,
-0.01316023524850607,
0.06327292323112488,
0.0016081862850114703,
-0.030843157321214676,
0.054614558815956116,
0.04893362149596214,
-0.06755199283361435,
-0.1116417646408081,
0.044856201857328415,
0.13119885325431824,
0.020561566576361656,
0.15493687987327576,
-0.18191812932491302,
-0.1268954873085022,
-0.03317531198263168,
0.11257051676511765,
0.08523000031709671,
0.11511670053005219,
-0.0074604651890695095,
0.013187043368816376,
0.19347156584262848,
-0.08205664902925491,
-0.2553446292877197,
0.05742339789867401,
-0.0334901288151741,
-0.03222903981804848,
-0.046001873910427094,
-0.17500148713588715,
0.22424431145191193,
0.053982239216566086,
0.008749779313802719,
0.24826820194721222,
-0.11703802645206451,
-0.019997162744402885,
0.10894551128149033,
0.013078306801617146,
0.20346452295780182,
-0.06743139773607254,
-0.07800820469856262,
0.02489377185702324,
0.025067975744605064,
0.07203406095504761,
-0.08835035562515259,
0.022975310683250427,
-0.010075266472995281,
-0.017825450748205185,
0.05603523179888725,
-0.03912941366434097,
0.07654266804456711,
-0.016301464289426804,
0.09568334370851517,
-0.05743800476193428,
0.012019401416182518,
0.09501650929450989,
-0.07441074401140213,
0.21305136382579803,
-0.008057799190282822,
-0.008052436634898186,
-0.025782402604818344,
-0.04197893664240837,
-0.03649461269378662,
0.09408021718263626,
0.012487050145864487,
-0.06057117134332657,
-0.007705054711550474,
-0.06257281452417374,
0.06680838763713837,
0.05060625821352005,
0.09749685227870941,
-0.08529254794120789,
0.13135160505771637,
0.3559410870075226,
-0.03453165665268898,
-0.13778001070022583,
-0.07153630256652832,
0.03149861842393875,
-0.05474652349948883,
0.10667283833026886,
-0.08491706848144531,
0.023680424317717552,
0.01747659035027027,
0.01654553785920143,
0.10541551560163498,
0.10151662677526474,
-0.056544579565525055,
0.018050802871584892,
0.0302400141954422,
-0.067837193608284,
-0.04800808057188988,
-0.06041429936885834,
-0.09789436310529709,
-0.07730433344841003,
-0.04741780832409859,
0.08360941708087921,
-0.013307821936905384,
0.01246462482959032,
-0.017611458897590637,
0.07025069743394852,
-0.08948769420385361,
0.04613884165883064,
-0.00046428648056462407,
0.02103973738849163,
-0.06673417240381241,
0.07417000830173492,
0.02882375381886959,
-0.007734469138085842,
0.03717777132987976,
0.12069281190633774,
-0.052508242428302765,
-0.08337108790874481,
-0.09344989061355591,
0.16292494535446167,
-0.07666345685720444,
-0.06138782575726509,
-0.1007104441523552,
-0.0025296364910900593,
-0.001403971342369914,
0.11275327205657959,
0.042355384677648544,
0.03161640092730522,
-0.005424691364169121,
0.055484965443611145,
-0.018619291484355927,
0.041453637182712555,
0.012454508803784847,
0.007435933221131563,
-0.010980048216879368,
0.14152666926383972,
0.04395458102226257,
0.08293203264474869,
-0.06659328937530518,
-0.11372485011816025,
-0.1259547770023346,
0.07100643962621689,
-0.20465457439422607,
0.08695237338542938,
-0.1289002001285553,
-0.003151376498863101,
0.06571822613477707,
0.13676050305366516,
-0.00659717433154583,
0.04180028289556503,
-0.07346338033676147,
-0.023097308352589607,
-0.04440334066748619,
0.07277365773916245,
-0.0543593093752861,
0.02805240824818611,
0.029965577647089958,
-0.06548351794481277,
0.008325748145580292,
0.04623179882764816,
-0.07114264369010925,
0.0251629576086998,
0.04512210190296173,
-0.10417080670595169,
0.033203769475221634,
0.01945466361939907,
-0.026614246889948845,
0.08610554784536362,
-0.012429074384272099,
0.033874526619911194,
-0.06899932026863098,
-0.03411244973540306,
0.05161274969577789,
-0.08723366260528564,
0.051696762442588806,
-0.0049819136038422585,
-0.13558819890022278,
-0.06289732456207275,
0.012091300450265408,
0.04348514974117279,
0.11617381870746613,
0.04166007414460182,
-0.04505150765180588,
0.05895138531923294,
-0.08363691717386246,
-0.013611276634037495,
0.06822673976421356,
0.01581728085875511,
-0.03838284686207771,
-0.09264685213565826,
-0.002424204023554921,
-0.018886424601078033,
0.17957809567451477,
0.09019986540079117,
-0.010734621435403824,
-0.0658707246184349,
0.08604054152965546,
0.12512768805027008,
0.0020024047698825598,
-0.04013223573565483,
0.06929861009120941,
-0.038700420409440994,
-0.04032396897673607,
0.1263817548751831,
0.01727042719721794,
-0.19882678985595703,
-0.006078795529901981,
0.002858387306332588,
0.018749017268419266,
0.10028199106454849,
0.01460893265902996,
-0.06842760741710663,
0.037352126091718674,
-0.04071763902902603,
0.09129323810338974,
0.01977129653096199,
-0.029760511592030525,
0.08140767365694046,
0.1440945267677307,
-0.0197221040725708,
0.09357079118490219,
0.06774783879518509,
-0.034338973462581635,
-0.11010143160820007,
-0.28677117824554443,
-0.002532904502004385,
-0.1493213027715683,
-0.05789314955472946,
-0.03769829869270325,
-0.022682305425405502,
0.12896153330802917,
-0.04838549345731735,
-0.0053302207961678505,
0.06671065837144852,
-0.03598784655332565,
-0.12387153506278992,
-0.006475026719272137,
-0.04179856553673744,
0.047797758132219315,
-0.03333987295627594,
-0.03846677020192146,
0.0902792438864708,
0.0008145294268615544,
0.05202413350343704,
0.07267794758081436,
0.07410375028848648,
0.039227768778800964,
-0.14174993336200714,
-0.06277532130479813,
-0.03831751272082329,
0.023301536217331886,
-0.16449007391929626,
0.057126905769109726,
0.026491161435842514,
-0.08925546705722809,
0.02337740734219551,
0.08368349075317383,
-0.08755869418382645,
0.045987553894519806,
-0.1260734647512436,
0.34547558426856995,
0.0036081576254218817,
0.06484166532754898,
-0.03488972410559654,
-0.10649450868368149,
-0.07273287326097488,
0.11789854615926743,
0.14967191219329834,
-0.017486339434981346,
-0.040930986404418945,
-0.017327159643173218,
-0.003686974523589015,
-0.05013349652290344,
0.05242924764752388,
0.0007838582969270647,
0.25726962089538574,
-0.02228289656341076,
0.05260314419865608,
0.04401090368628502,
-0.06736966222524643,
-0.09357303380966187,
-0.20195482671260834,
0.026514820754528046,
0.023913640528917313,
-0.08190891891717911,
0.09281495213508606,
-0.2635902762413025,
0.10912588238716125,
0.061136264353990555,
0.012243675999343395,
-0.0036467243917286396,
-0.07227040082216263,
-0.1040239930152893,
-0.028387337923049927,
0.08946973085403442,
-0.030947912484407425,
-0.0019943183287978172,
0.05539602041244507,
-0.04695924371480942,
-0.21904848515987396,
-0.1671997606754303,
0.07188838720321655,
-0.059297677129507065,
0.18949294090270996,
0.022549422457814217,
-0.05509744957089424,
0.015969231724739075,
0.024350536987185478,
-0.024852171540260315,
0.047249842435121536,
-0.024682989344000816,
-0.041461363434791565,
-0.051816485822200775,
0.028835847973823547,
-0.03565036877989769,
0.03423486277461052,
-0.009209949523210526,
-0.0774889588356018,
-0.05282306671142578,
-0.06859540194272995,
-0.02389056235551834,
-0.1311134696006775,
-0.12486862391233444,
-0.10815153270959854,
0.11736419051885605,
0.13066405057907104,
0.0068542687222361565,
0.0008213358232751489,
-0.06825712323188782,
0.0944746881723404,
0.026180041953921318,
-0.04440153017640114,
-0.05192072317004204,
-0.10939103364944458,
0.009287799708545208,
-0.0053350417874753475,
-0.036077678203582764,
-0.1390666514635086,
-0.02296488732099533,
0.053559351712465286,
0.03758254647254944,
0.013708256185054779,
0.0557633675634861,
0.1859075129032135,
0.060540106147527695,
-0.059080570936203,
-0.24201081693172455,
0.04452616721391678,
0.07891315966844559,
-0.039756473153829575,
-0.08274972438812256
] |
null | null |
transformers
|
# Historic Language Models (HLMs)
## Languages
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
| Language | Training data | Size
| -------- | ------------- | ----
| German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered)
| French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered)
| English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
## Models
At the moment, the following models are available on the model hub:
| Model identifier | Model Hub link
| --------------------------------------------- | --------------------------------------------------------------------------
| `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
| `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased)
| `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased)
| `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased)
# Corpora Stats
## German Europeana Corpus
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
and use less-noisier data:
| OCR confidence | Size
| -------------- | ----
| **0.60** | 28GB
| 0.65 | 18GB
| 0.70 | 13GB
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:

## French Europeana Corpus
Like German, we use different ocr confidence thresholds:
| OCR confidence | Size
| -------------- | ----
| 0.60 | 31GB
| 0.65 | 27GB
| **0.70** | 27GB
| 0.75 | 23GB
| 0.80 | 11GB
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:

## British Library Corpus
Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:
| Years | Size
| ----------------- | ----
| ALL | 24GB
| >= 1800 && < 1900 | 24GB
We use the year filtered variant. The following plot shows a tokens per year distribution:

## Finnish Europeana Corpus
| OCR confidence | Size
| -------------- | ----
| 0.60 | 1.2GB
The following plot shows a tokens per year distribution:

## Swedish Europeana Corpus
| OCR confidence | Size
| -------------- | ----
| 0.60 | 1.1GB
The following plot shows a tokens per year distribution:

## All Corpora
The following plot shows a tokens per year distribution of the complete training corpus:

# Multilingual Vocab generation
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
| Language | Size
| -------- | ----
| German | 10GB
| French | 10GB
| English | 10GB
| Finnish | 9.5GB
| Swedish | 9.7GB
We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:
| Language | NER corpora
| -------- | ------------------
| German | CLEF-HIPE, NewsEye
| French | CLEF-HIPE, NewsEye
| English | CLEF-HIPE
| Finnish | NewsEye
| Swedish | NewsEye
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
| Language | Subword fertility | Unknown portion
| -------- | ------------------ | ---------------
| German | 1.43 | 0.0004
| French | 1.25 | 0.0001
| English | 1.25 | 0.0
| Finnish | 1.69 | 0.0007
| Swedish | 1.43 | 0.0
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
| Language | Subword fertility | Unknown portion
| -------- | ------------------ | ---------------
| German | 1.31 | 0.0004
| French | 1.16 | 0.0001
| English | 1.17 | 0.0
| Finnish | 1.54 | 0.0007
| Swedish | 1.32 | 0.0
# Final pretraining corpora
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
| Language | Size
| -------- | ----
| German | 28GB
| French | 27GB
| English | 24GB
| Finnish | 27GB
| Swedish | 27GB
Total size is 130GB.
# Pretraining
## Multilingual model
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
on a v3-32 TPU using the following parameters:
```bash
python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \
--output_dir gs://histolectra/bert-base-historic-multilingual-cased \
--bert_config_file ./config.json \
--max_seq_length=512 \
--max_predictions_per_seq=75 \
--do_train=True \
--train_batch_size=128 \
--num_train_steps=3000000 \
--learning_rate=1e-4 \
--save_checkpoints_steps=100000 \
--keep_checkpoint_max=20 \
--use_tpu=True \
--tpu_name=electra-2 \
--num_tpu_cores=32
```
The following plot shows the pretraining loss curve:

## English model
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-historic-english-cased/ \
--tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \
--train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \
--validation_file /mnt/datasets/bl-corpus/english_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 10 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```
The following plot shows the pretraining loss curve:

## Finnish model
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
--tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
--train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \
--validation_file /mnt/datasets/hlms/finnish_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 40 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```
The following plot shows the pretraining loss curve:

## Swedish model
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:
```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
--tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
--train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \
--validation_file /mnt/datasets/hlms/swedish_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 40 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```
The following plot shows the pretraining loss curve:

# Acknowledgments
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "finnish", "license": "mit", "widget": [{"text": "T\u00e4k\u00e4l\u00e4inen sanomalehdist\u00f6 [MASK] erit - t\u00e4in"}]}
|
fill-mask
|
dbmdz/bert-base-finnish-europeana-cased
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"bert",
"fill-mask",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"finnish"
] |
TAGS
#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
Historic Language Models (HLMs)
===============================
Languages
---------
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
Language: German, Training data: Europeana, Size: 13-28GB (filtered)
Language: French, Training data: Europeana, Size: 11-31GB (filtered)
Language: English, Training data: British Library, Size: 24GB (year filtered)
Language: Finnish, Training data: Europeana, Size: 1.2GB
Language: Swedish, Training data: Europeana, Size: 1.1GB
Models
------
At the moment, the following models are available on the model hub:
Corpora Stats
=============
German Europeana Corpus
-----------------------
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
and use less-noisier data:
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:
!German Europeana Corpus Stats
French Europeana Corpus
-----------------------
Like German, we use different ocr confidence thresholds:
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:
!French Europeana Corpus Stats
British Library Corpus
----------------------
Metadata is taken from here. Stats incl. year filtering:
We use the year filtered variant. The following plot shows a tokens per year distribution:
!British Library Corpus Stats
Finnish Europeana Corpus
------------------------
The following plot shows a tokens per year distribution:
!Finnish Europeana Corpus Stats
Swedish Europeana Corpus
------------------------
The following plot shows a tokens per year distribution:
!Swedish Europeana Corpus Stats
All Corpora
-----------
The following plot shows a tokens per year distribution of the complete training corpus:
!All Corpora Stats
Multilingual Vocab generation
=============================
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
We then calculate the subword fertility rate and portion of '[UNK]'s over the following NER corpora:
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
Language: German, Subword fertility: 1.43, Unknown portion: 0.0004
Language: French, Subword fertility: 1.25, Unknown portion: 0.0001
Language: English, Subword fertility: 1.25, Unknown portion: 0.0
Language: Finnish, Subword fertility: 1.69, Unknown portion: 0.0007
Language: Swedish, Subword fertility: 1.43, Unknown portion: 0.0
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
Language: German, Subword fertility: 1.31, Unknown portion: 0.0004
Language: French, Subword fertility: 1.16, Unknown portion: 0.0001
Language: English, Subword fertility: 1.17, Unknown portion: 0.0
Language: Finnish, Subword fertility: 1.54, Unknown portion: 0.0007
Language: Swedish, Subword fertility: 1.32, Unknown portion: 0.0
Final pretraining corpora
=========================
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
Total size is 130GB.
Pretraining
===========
Multilingual model
------------------
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
on a v3-32 TPU using the following parameters:
The following plot shows the pretraining loss curve:
!Training loss curve
English model
-------------
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
The following plot shows the pretraining loss curve:
!Training loss curve
Finnish model
-------------
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
The following plot shows the pretraining loss curve:
!Training loss curve
Swedish model
-------------
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:
The following plot shows the pretraining loss curve:
!Training loss curve
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
48
] |
[
"passage: TAGS\n#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.051839087158441544,
0.05754934996366501,
-0.007044851314276457,
0.041297439485788345,
0.09591711312532425,
0.03318804129958153,
0.16328027844429016,
0.10409025847911835,
0.11346999555826187,
-0.02286713197827339,
0.15823522210121155,
0.23975786566734314,
-0.00003775725053856149,
0.08866453915834427,
-0.04481581225991249,
-0.25359246134757996,
0.03618115931749344,
0.0695963203907013,
-0.05953308194875717,
0.10630111396312714,
0.0596819743514061,
-0.08269041031599045,
0.052472591400146484,
0.01378200389444828,
-0.14518128335475922,
0.02707573026418686,
0.07519200444221497,
-0.10383649915456772,
0.12508544325828552,
0.0433732271194458,
0.17881076037883759,
0.06339889019727707,
-0.017478372901678085,
-0.07896658778190613,
0.04197794571518898,
0.004860857967287302,
-0.09716035425662994,
0.06864118576049805,
0.027406109496951103,
-0.03776439651846886,
-0.003476001787930727,
0.06514570116996765,
0.04294067621231079,
0.04420726001262665,
-0.12576407194137573,
-0.1709623485803604,
-0.0360589362680912,
0.054294403642416,
0.04851033538579941,
0.04180488735437393,
0.03695087879896164,
0.1995430886745453,
-0.09633425623178482,
0.07450947165489197,
0.11653825640678406,
-0.36659589409828186,
-0.008363665081560612,
0.10942085832357407,
0.10457140952348709,
-0.03534732386469841,
-0.06376351416110992,
0.050919707864522934,
0.02920958772301674,
0.014826401136815548,
0.08352810889482498,
-0.07175076752901077,
-0.014460613951086998,
0.02491201087832451,
-0.06551115214824677,
-0.03304477035999298,
0.13222791254520416,
-0.038642678409814835,
0.03505551069974899,
-0.02563815377652645,
-0.08383870124816895,
-0.05164634808897972,
-0.029250452294945717,
-0.021677307784557343,
-0.01075158454477787,
0.06485699862241745,
-0.04472553730010986,
-0.04322175681591034,
-0.1437714695930481,
0.0076313200406730175,
-0.21628887951374054,
0.16907206177711487,
0.02317557856440544,
0.07413893193006516,
-0.1858559548854828,
0.04917579144239426,
-0.007590844761580229,
-0.11577427387237549,
0.045862987637519836,
-0.06356300413608551,
0.03290265426039696,
-0.011133072897791862,
-0.027505923062562943,
-0.0779840424656868,
0.07944668084383011,
0.17087888717651367,
0.06365145742893219,
0.03157023340463638,
0.015674419701099396,
0.1266307681798935,
-0.011389723047614098,
0.08015039563179016,
0.02824932336807251,
0.01610643044114113,
0.05071786418557167,
-0.10003328323364258,
0.04134458303451538,
-0.05608224496245384,
-0.16160239279270172,
-0.015702534466981888,
0.005432740319520235,
0.07704494893550873,
0.02900170162320137,
0.05996039882302284,
-0.07861769944429398,
0.010046935640275478,
0.10924363881349564,
-0.05051092803478241,
0.028501121327280998,
-0.019385457038879395,
0.06689273566007614,
0.05005209147930145,
0.01764431782066822,
-0.017253749072551727,
0.021859822794795036,
0.13077451288700104,
-0.09576339274644852,
-0.02259950153529644,
-0.06218148022890091,
-0.06952331960201263,
0.06361450999975204,
-0.13742409646511078,
0.032379306852817535,
-0.1531393676996231,
-0.12872178852558136,
0.0583975687623024,
0.07879997044801712,
-0.0029057052452117205,
-0.026596834883093834,
0.05234909430146217,
-0.015052029862999916,
0.035987064242362976,
-0.04892256110906601,
-0.03233768045902252,
-0.040373124182224274,
0.09831603616476059,
-0.03175034746527672,
0.08473435044288635,
-0.132827490568161,
0.032071348279714584,
-0.08683327585458755,
0.010430431924760342,
-0.10835381597280502,
-0.07438201457262039,
-0.0563921257853508,
0.14807508885860443,
-0.01091169472783804,
-0.02032788284122944,
-0.09476069360971451,
0.0321950800716877,
-0.013892212882637978,
0.12639537453651428,
-0.12116212397813797,
-0.10733946412801743,
0.20915240049362183,
-0.10810822993516922,
-0.156493678689003,
0.08271043002605438,
-0.004864166956394911,
0.050146594643592834,
0.04925102740526199,
0.12580396234989166,
0.053800199180841446,
-0.18147921562194824,
0.08178479224443436,
0.11974798887968063,
-0.1459348350763321,
-0.18781527876853943,
0.029233399778604507,
-0.022758232429623604,
-0.0795423686504364,
0.04159080237150192,
0.06728886067867279,
0.10079384595155716,
-0.050104327499866486,
-0.06692779064178467,
-0.017265694215893745,
-0.023115774616599083,
0.09473375976085663,
0.0565795935690403,
0.10753615945577621,
-0.07294490188360214,
-0.05410412698984146,
0.023177023977041245,
-0.018046695739030838,
0.052323512732982635,
0.02665993943810463,
-0.10995971411466599,
0.11724098026752472,
-0.05950678139925003,
-0.01724715158343315,
-0.1377701610326767,
-0.1042751744389534,
-0.014335145242512226,
0.01023098174482584,
0.004034374374896288,
0.1414593756198883,
0.11034344136714935,
-0.036746613681316376,
-0.012011022306978703,
-0.0007765699992887676,
0.12691988050937653,
0.04082172363996506,
-0.048998214304447174,
-0.14070849120616913,
0.01667923294007778,
-0.08377831429243088,
-0.03244642913341522,
-0.026370462030172348,
0.016483787447214127,
0.028443288058042526,
0.10919671505689621,
0.002071693539619446,
0.041054923087358475,
-0.0700719952583313,
0.005429381504654884,
-0.0364571288228035,
0.007942723110318184,
0.11245082318782806,
0.03030509501695633,
-0.06307957321405411,
0.1839832216501236,
-0.1323608011007309,
0.32725489139556885,
0.2046183943748474,
-0.19289125502109528,
-0.019637007266283035,
0.0009156471351161599,
-0.024633921682834625,
-0.007956132292747498,
0.0386410616338253,
-0.0053722793236374855,
0.014699874445796013,
-0.004269861616194248,
0.1440020352602005,
-0.024756651371717453,
-0.03608123958110809,
0.03660302236676216,
-0.05308288335800171,
-0.06696303933858871,
0.017729435116052628,
0.17938023805618286,
-0.15947386622428894,
0.186334028840065,
0.2784985601902008,
-0.019922513514757156,
0.17141041159629822,
-0.017979402095079422,
0.009529639966785908,
-0.016522187739610672,
-0.03248045593500137,
-0.0017459237715229392,
0.10581375658512115,
-0.16977661848068237,
-0.02442942187190056,
0.05657196417450905,
-0.04820196330547333,
0.0367211252450943,
-0.1557922065258026,
-0.06153831258416176,
0.0046255639754235744,
0.03477578982710838,
-0.03999156504869461,
0.11825788766145706,
0.005560677964240313,
0.06265360116958618,
-0.029660245403647423,
-0.12107476592063904,
0.1185598075389862,
0.003983780741691589,
-0.04350627213716507,
0.13773678243160248,
-0.11095631122589111,
-0.25883549451828003,
-0.13851222395896912,
-0.14722876250743866,
0.032133907079696655,
0.012513358145952225,
0.0875658169388771,
-0.043020691722631454,
-0.044536370784044266,
0.05340518057346344,
-0.0527057982981205,
-0.033743273466825485,
0.05804596096277237,
-0.09910064190626144,
0.026906810700893402,
-0.039901137351989746,
-0.09379890561103821,
-0.07148706912994385,
-0.034090571105480194,
-0.022384006530046463,
0.11453430354595184,
-0.04843152314424515,
0.06025031954050064,
0.1229909211397171,
0.0012367932358756661,
0.04999570548534393,
-0.03751353546977043,
0.14375580847263336,
-0.058938167989254,
0.011961431242525578,
0.14838910102844238,
-0.02548835799098015,
0.08804616332054138,
0.17703141272068024,
0.0717308446764946,
-0.040495675057172775,
-0.01974266953766346,
-0.04183902218937874,
-0.1138993352651596,
-0.1841747760772705,
-0.06022971495985985,
-0.12477733194828033,
0.011241169646382332,
0.0656278133392334,
0.0810658186674118,
0.15626436471939087,
0.09519478678703308,
0.04322393983602524,
-0.0052810064516961575,
-0.041275665163993835,
0.05319063365459442,
0.17378507554531097,
-0.024185262620449066,
0.13222216069698334,
-0.06188523396849632,
-0.12739427387714386,
0.052776601165533066,
0.05350898951292038,
0.09967032074928284,
0.1358156055212021,
0.07174052298069,
0.07048027962446213,
0.19707077741622925,
0.15132512152194977,
0.11540325731039047,
0.009118536487221718,
-0.07258951663970947,
-0.012697822414338589,
-0.026483604684472084,
0.0018536752322688699,
0.03314098343253136,
0.13619084656238556,
-0.0936734527349472,
-0.003583400510251522,
-0.15562011301517487,
0.021646199747920036,
0.10743267834186554,
0.044912099838256836,
-0.23810602724552155,
0.021326176822185516,
0.058489538729190826,
0.016327740624547005,
-0.0408952459692955,
0.03618145361542702,
-0.018795009702444077,
-0.08605646342039108,
0.052121520042419434,
-0.08796849846839905,
0.07939128577709198,
0.05301116034388542,
0.05718093365430832,
0.01501370407640934,
-0.05106685310602188,
0.029419032856822014,
0.06364542990922928,
-0.26543474197387695,
0.25326597690582275,
0.00487210787832737,
0.0043363976292312145,
-0.07396209985017776,
0.006647484377026558,
0.04047825187444687,
0.11821144074201584,
0.12877273559570312,
0.005635477136820555,
-0.05992585048079491,
-0.08850368857383728,
-0.011659959331154823,
0.022363774478435516,
0.05690794810652733,
-0.02064673788845539,
-0.041216276586055756,
-0.03176962956786156,
-0.03796757757663727,
0.025560200214385986,
0.0741967260837555,
-0.023853270336985588,
-0.14801272749900818,
0.07090052217245102,
0.048615556210279465,
-0.05302291736006737,
-0.014554938301444054,
-0.07732009142637253,
-0.1491258442401886,
0.1990075260400772,
-0.06817089021205902,
-0.038704097270965576,
-0.10542717576026917,
-0.11808627098798752,
0.04854150861501694,
-0.08662097901105881,
0.07648878544569016,
-0.07729719579219818,
0.003190411953255534,
-0.0940379798412323,
-0.18273860216140747,
0.16613228619098663,
-0.11264490336179733,
-0.0028398162685334682,
-0.11429493874311447,
0.1359773725271225,
-0.07341937720775604,
0.04110720381140709,
0.019658420234918594,
0.033366985619068146,
-0.07361281663179398,
-0.05781092122197151,
0.03920722380280495,
-0.06033698841929436,
0.03932926431298256,
-0.0902203693985939,
-0.06301779299974442,
-0.020242007449269295,
0.037884000688791275,
0.010747263208031654,
0.20396296679973602,
0.2425672858953476,
-0.08453952521085739,
0.16882392764091492,
0.17954322695732117,
-0.06344646960496902,
-0.32538944482803345,
-0.10425965487957001,
-0.14501461386680603,
-0.01634250581264496,
0.05451434105634689,
-0.11082664877176285,
0.08978450298309326,
0.008248848840594292,
-0.07513584196567535,
0.14275631308555603,
-0.19474728405475616,
-0.11187044531106949,
0.20845681428909302,
0.05579433590173721,
0.3933327794075012,
-0.13834621012210846,
-0.07903703302145004,
-0.009891088120639324,
-0.14639325439929962,
0.13047440350055695,
-0.00960923358798027,
0.08409277349710464,
-0.016912955790758133,
0.037252143025398254,
0.012626886367797852,
-0.0973510667681694,
0.09767425805330276,
-0.058244552463293076,
0.03351347893476486,
-0.09784480184316635,
-0.08591212332248688,
0.1170773133635521,
-0.001281982404179871,
-0.0034382434096187353,
-0.0754755288362503,
-0.02535209245979786,
-0.021615367382764816,
-0.016926495358347893,
-0.08591051399707794,
0.12156950682401657,
0.007478289306163788,
-0.07721824198961258,
0.011062739416956902,
0.0038660054560750723,
-0.0330260768532753,
-0.03820240870118141,
0.25861606001853943,
0.0170921441167593,
0.18053272366523743,
0.11620441824197769,
0.030003072693943977,
-0.1481519639492035,
-0.104375921189785,
-0.059928957372903824,
-0.09123123437166214,
0.09249807149171829,
-0.0357370525598526,
0.027171293273568153,
0.10260025411844254,
0.0031277118250727654,
0.07188498228788376,
0.10620100051164627,
-0.024698913097381592,
-0.02230875939130783,
0.15182016789913177,
-0.18328966200351715,
-0.033344004303216934,
0.006184643134474754,
0.011690312065184116,
0.061225686222314835,
0.06334849447011948,
0.0791446641087532,
0.007221914362162352,
-0.024311354383826256,
0.022815369069576263,
-0.0005053107161074877,
-0.05260808765888214,
0.03716006129980087,
0.06872495263814926,
0.0327146053314209,
-0.10883650183677673,
0.013456217013299465,
-0.0019058872712776065,
-0.2148330956697464,
-0.022956423461437225,
0.08037687838077545,
-0.09310910105705261,
-0.11530756205320358,
0.017102990299463272,
0.113884337246418,
-0.0841464102268219,
-0.04327096790075302,
-0.07041926681995392,
-0.11280620843172073,
0.0430489256978035,
0.1925356388092041,
0.08974827826023102,
0.07247795909643173,
-0.02806892618536949,
-0.0164092555642128,
-0.017467768862843513,
0.017731059342622757,
-0.050591472536325455,
0.04203501716256142,
-0.10063640773296356,
-0.0031517846509814262,
0.012646375223994255,
0.11142874509096146,
-0.0931754782795906,
-0.024791259318590164,
-0.17504200339317322,
0.021976035088300705,
-0.037535302340984344,
-0.06035265699028969,
-0.11085670441389084,
-0.06535400450229645,
0.027930792421102524,
-0.06336884945631027,
-0.057974524796009064,
-0.028940336778759956,
-0.12112385779619217,
0.016414426267147064,
0.053685106337070465,
0.026378681883215904,
-0.08713769167661667,
-0.035030003637075424,
0.0878349021077156,
-0.021211396902799606,
0.06460617482662201,
0.07175175100564957,
-0.0402694009244442,
0.09869219362735748,
-0.14973975718021393,
-0.07678456604480743,
0.07971728593111038,
0.014169992879033089,
0.07108218967914581,
0.05858078971505165,
0.015226340852677822,
0.06820400059223175,
0.026210330426692963,
0.04431380331516266,
0.01753648743033409,
-0.12533506751060486,
0.041553743183612823,
0.013296058401465416,
-0.16332706809043884,
-0.0298130102455616,
-0.07173781096935272,
0.08729584515094757,
-0.01501238252967596,
0.16193018853664398,
-0.04326019436120987,
0.05969846248626709,
-0.08368222415447235,
0.015430950559675694,
-0.019609758630394936,
-0.13675250113010406,
-0.01440459955483675,
-0.048768334090709686,
-0.01726621389389038,
-0.02894338220357895,
0.21556170284748077,
0.034025728702545166,
-0.07295025140047073,
0.05880950018763542,
0.05583763122558594,
-0.007627020590007305,
-0.004625181667506695,
0.20452307164669037,
0.04921839013695717,
-0.030866626650094986,
-0.08676791191101074,
0.0849846750497818,
0.002669571666046977,
-0.037294305860996246,
0.11639133095741272,
0.07645279914140701,
0.0235174261033535,
0.08199748396873474,
0.07498408854007721,
0.024055490270256996,
-0.10256751626729965,
-0.12409424781799316,
-0.020988034084439278,
0.07267990708351135,
0.015765473246574402,
0.061739638447761536,
0.17407315969467163,
-0.01526327058672905,
0.0382017157971859,
-0.05325338989496231,
-0.026040609925985336,
-0.18832086026668549,
-0.1911710947751999,
-0.07335403561592102,
-0.05790076404809952,
0.03999705612659454,
0.011681041680276394,
-0.0029665471520274878,
0.08131464570760727,
0.04593855142593384,
-0.04019766300916672,
0.06636624783277512,
0.016111889854073524,
-0.0026994480285793543,
-0.0064181974157691,
0.01357024535536766,
-0.012806694954633713,
-0.047783851623535156,
0.0009643658995628357,
-0.1458704173564911,
-0.024162521585822105,
-0.054115138947963715,
-0.006142050959169865,
-0.03249034658074379,
0.02736322395503521,
-0.07529088109731674,
-0.12222789973020554,
-0.04713910073041916,
0.024412820115685463,
-0.00910845398902893,
0.08779486268758774,
0.0005544011946767569,
0.056242428719997406,
0.017034195363521576,
0.11104237288236618,
-0.05557795241475105,
-0.067995086312294,
-0.034098390489816666,
0.17240868508815765,
0.028613146394491196,
0.07676767557859421,
0.006966684479266405,
0.025836698710918427,
-0.04986418038606644,
0.27340570092201233,
0.34872251749038696,
-0.028487324714660645,
0.07248261570930481,
0.04611162096261978,
0.014016358181834221,
0.026035044342279434,
0.12757743895053864,
0.043587591499090195,
0.2774013876914978,
-0.10004895180463791,
-0.027175065129995346,
-0.05126895010471344,
-0.02630932442843914,
-0.10253342241048813,
0.031530920416116714,
0.025629648938775063,
-0.03382710739970207,
-0.03744705766439438,
0.07364004850387573,
-0.13574041426181793,
0.0781281366944313,
0.09348227083683014,
-0.16991128027439117,
-0.054955340921878815,
-0.0016502125654369593,
0.20376285910606384,
-0.002897647675126791,
0.08135446906089783,
-0.04521779716014862,
-0.050024330615997314,
0.02881374955177307,
0.003952203318476677,
-0.22811630368232727,
-0.045949339866638184,
0.09744052588939667,
-0.00003140247645205818,
0.1293671429157257,
-0.03242747485637665,
0.053703803569078445,
0.09328465163707733,
0.07485628873109818,
-0.038082055747509,
0.03144281730055809,
0.029686324298381805,
-0.11715757846832275,
-0.03903829678893089,
-0.04384990781545639,
0.011899519711732864,
-0.08750861138105392,
0.025666406378149986,
-0.09675184637308121,
0.05073103681206703,
-0.15704932808876038,
-0.05274903029203415,
-0.030182145535945892,
0.07677976042032242,
-0.04176807031035423,
0.07733786851167679,
0.034905530512332916,
0.033319562673568726,
-0.057139553129673004,
-0.0438762828707695,
-0.017986563965678215,
0.09237773716449738,
-0.12231916934251785,
-0.14325374364852905,
-0.06759541481733322,
-0.03438451513648033,
0.020126324146986008,
-0.007274150382727385,
-0.17977534234523773,
-0.05907084420323372,
-0.10031711310148239,
-0.006800706963986158,
-0.16756941378116608,
0.013188323006033897,
0.11622919142246246,
0.049342717975378036,
-0.0021123301703482866,
-0.06798454374074936,
0.026009880006313324,
0.014629384502768517,
-0.16717568039894104,
-0.08709432184696198
] |
null | null |
transformers
|
# π€ + π dbmdz BERT model
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources French Europeana BERT models π
# French Europeana BERT
We extracted all French texts using the `language` metadata attribute from the Europeana corpus.
The resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens.
Based on the metadata information, texts from the 18th - 20th century are mainly included in the
training corpus.
Detailed information about the data and pretraining steps can be found in
[this repository](https://github.com/stefan-it/europeana-bert).
## Model weights
BERT model weights for PyTorch and TensorFlow are available.
* French Europeana BERT: `dbmdz/bert-base-french-europeana-cased` - [model hub page](https://huggingface.co/dbmdz/bert-base-french-europeana-cased/tree/main)
## Results
For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert).
## Usage
With Transformers >= 2.3 our French Europeana BERT model can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-french-europeana-cased")
model = AutoModel.from_pretrained("dbmdz/bert-base-french-europeana-cased")
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT model just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download our model from their S3 storage π€
|
{"language": "fr", "license": "mit", "tags": ["historic french"]}
| null |
dbmdz/bert-base-french-europeana-cased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"historic french",
"fr",
"license:mit",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"fr"
] |
TAGS
#transformers #pytorch #tf #jax #bert #historic french #fr #license-mit #endpoints_compatible #region-us
|
# + dbmdz BERT model
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources French Europeana BERT models
# French Europeana BERT
We extracted all French texts using the 'language' metadata attribute from the Europeana corpus.
The resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens.
Based on the metadata information, texts from the 18th - 20th century are mainly included in the
training corpus.
Detailed information about the data and pretraining steps can be found in
this repository.
## Model weights
BERT model weights for PyTorch and TensorFlow are available.
* French Europeana BERT: 'dbmdz/bert-base-french-europeana-cased' - model hub page
## Results
For results on Historic NER, please refer to this repository.
## Usage
With Transformers >= 2.3 our French Europeana BERT model can be loaded like:
# Huggingface model hub
All models are available on the Huggingface model hub.
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT model just open an issue
here
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download our model from their S3 storage
|
[
"# + dbmdz BERT model\n\nIn this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\nLibrary open sources French Europeana BERT models",
"# French Europeana BERT\n\nWe extracted all French texts using the 'language' metadata attribute from the Europeana corpus.\n\nThe resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens.\n\nBased on the metadata information, texts from the 18th - 20th century are mainly included in the\ntraining corpus.\n\nDetailed information about the data and pretraining steps can be found in\nthis repository.",
"## Model weights\n\nBERT model weights for PyTorch and TensorFlow are available.\n\n* French Europeana BERT: 'dbmdz/bert-base-french-europeana-cased' - model hub page",
"## Results\n\nFor results on Historic NER, please refer to this repository.",
"## Usage\n\nWith Transformers >= 2.3 our French Europeana BERT model can be loaded like:",
"# Huggingface model hub\n\nAll models are available on the Huggingface model hub.",
"# Contact (Bugs, Feedback, Contribution and more)\n\nFor questions about our BERT model just open an issue\nhere",
"# Acknowledgments\n\nResearch supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\nThanks for providing access to the TFRC οΈ\n\nThanks to the generous support from the Hugging Face team,\nit is possible to download our model from their S3 storage"
] |
[
"TAGS\n#transformers #pytorch #tf #jax #bert #historic french #fr #license-mit #endpoints_compatible #region-us \n",
"# + dbmdz BERT model\n\nIn this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\nLibrary open sources French Europeana BERT models",
"# French Europeana BERT\n\nWe extracted all French texts using the 'language' metadata attribute from the Europeana corpus.\n\nThe resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens.\n\nBased on the metadata information, texts from the 18th - 20th century are mainly included in the\ntraining corpus.\n\nDetailed information about the data and pretraining steps can be found in\nthis repository.",
"## Model weights\n\nBERT model weights for PyTorch and TensorFlow are available.\n\n* French Europeana BERT: 'dbmdz/bert-base-french-europeana-cased' - model hub page",
"## Results\n\nFor results on Historic NER, please refer to this repository.",
"## Usage\n\nWith Transformers >= 2.3 our French Europeana BERT model can be loaded like:",
"# Huggingface model hub\n\nAll models are available on the Huggingface model hub.",
"# Contact (Bugs, Feedback, Contribution and more)\n\nFor questions about our BERT model just open an issue\nhere",
"# Acknowledgments\n\nResearch supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\nThanks for providing access to the TFRC οΈ\n\nThanks to the generous support from the Hugging Face team,\nit is possible to download our model from their S3 storage"
] |
[
41,
39,
98,
51,
17,
23,
18,
25,
64
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #bert #historic french #fr #license-mit #endpoints_compatible #region-us \n# + dbmdz BERT model\n\nIn this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\nLibrary open sources French Europeana BERT models# French Europeana BERT\n\nWe extracted all French texts using the 'language' metadata attribute from the Europeana corpus.\n\nThe resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens.\n\nBased on the metadata information, texts from the 18th - 20th century are mainly included in the\ntraining corpus.\n\nDetailed information about the data and pretraining steps can be found in\nthis repository.## Model weights\n\nBERT model weights for PyTorch and TensorFlow are available.\n\n* French Europeana BERT: 'dbmdz/bert-base-french-europeana-cased' - model hub page## Results\n\nFor results on Historic NER, please refer to this repository.## Usage\n\nWith Transformers >= 2.3 our French Europeana BERT model can be loaded like:# Huggingface model hub\n\nAll models are available on the Huggingface model hub.# Contact (Bugs, Feedback, Contribution and more)\n\nFor questions about our BERT model just open an issue\nhere# Acknowledgments\n\nResearch supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\nThanks for providing access to the TFRC οΈ\n\nThanks to the generous support from the Hugging Face team,\nit is possible to download our model from their S3 storage"
] |
[
-0.04819624871015549,
0.18047796189785004,
-0.001716742990538478,
0.09293726831674576,
0.054426174610853195,
-0.005959848407655954,
0.14288221299648285,
0.08093053847551346,
0.1741633415222168,
0.029176747426390648,
-0.05124219134449959,
-0.09305058419704437,
0.028860749676823616,
0.08823709189891815,
0.06368685513734818,
-0.1861492395401001,
-0.0022627287544310093,
-0.002677527256309986,
-0.01838137023150921,
0.033793944865465164,
0.08725231885910034,
-0.03548148646950722,
0.09575771540403366,
0.025353262200951576,
-0.10719699412584305,
0.1314871609210968,
-0.0850491002202034,
-0.0326618030667305,
0.13460366427898407,
0.06828508526086807,
0.032367043197155,
-0.044234342873096466,
0.0411025695502758,
-0.10077616572380066,
0.023070957511663437,
0.06215326115489006,
-0.0380740761756897,
0.07687424123287201,
0.1032131165266037,
-0.049670908600091934,
0.16775082051753998,
-0.035294823348522186,
-0.0010508215054869652,
0.055078186094760895,
-0.029861848801374435,
-0.008425532840192318,
-0.1294800192117691,
0.08211767673492432,
-0.036515381187200546,
0.06550091505050659,
0.03124275989830494,
0.13924072682857513,
-0.048477523028850555,
0.004147583618760109,
0.2311229258775711,
-0.14287763833999634,
-0.035336993634700775,
0.019832169637084007,
0.043880097568035126,
0.027628218755126,
-0.1156892329454422,
0.05964672192931175,
0.019921109080314636,
0.0339914932847023,
0.03917054086923599,
-0.0452694296836853,
-0.10768339782953262,
-0.04258237034082413,
-0.06530891358852386,
0.0019407975487411022,
0.11548727750778198,
0.006191854830831289,
-0.09593468904495239,
-0.14201892912387848,
-0.06060211732983589,
0.1776742935180664,
-0.04375443235039711,
0.011539424769580364,
0.062384020537137985,
-0.03116457723081112,
0.07592684030532837,
-0.15678061544895172,
-0.04159313440322876,
-0.05149802565574646,
-0.05903898552060127,
0.15596313774585724,
-0.00246264785528183,
0.03586134687066078,
0.03380867466330528,
0.07277479767799377,
-0.1404876708984375,
-0.03597184643149376,
-0.0029880963265895844,
-0.033666327595710754,
-0.04664897546172142,
-0.031325530260801315,
0.0053621805272996426,
0.006520790513604879,
0.007833943702280521,
0.15121322870254517,
-0.13686786592006683,
-0.048869792371988297,
-0.11162292957305908,
-0.011376560665667057,
0.05455261096358299,
0.0623764768242836,
-0.11830566078424454,
-0.1657780408859253,
0.06964708864688873,
-0.11412205547094345,
0.030514614656567574,
0.03167608380317688,
-0.04457525536417961,
-0.056254226714372635,
-0.03553612157702446,
0.030670423060655594,
0.0062194219790399075,
0.001085250056348741,
0.019779633730649948,
-0.041392214596271515,
0.2772534191608429,
-0.07016699016094208,
0.02901865914463997,
0.032466109842061996,
-0.08361576497554779,
-0.011065657250583172,
0.05647839605808258,
-0.028385739773511887,
-0.0917564108967781,
0.016249408945441246,
-0.12553007900714874,
-0.036180417984724045,
-0.03531889617443085,
-0.1418546736240387,
0.06841113418340683,
-0.13089558482170105,
-0.02726958692073822,
-0.11305207014083862,
-0.12296359241008759,
-0.014938689768314362,
0.019881388172507286,
-0.07405876368284225,
0.032394036650657654,
0.015252831391990185,
-0.000506568409036845,
-0.03355718404054642,
0.0064697833731770515,
0.05321568250656128,
-0.038112569600343704,
-0.036239106208086014,
-0.15813270211219788,
0.03321989253163338,
-0.0698741003870964,
0.018230751156806946,
-0.07381614297628403,
-0.039314065128564835,
-0.24025437235832214,
0.06836485117673874,
-0.11988767981529236,
-0.02680722251534462,
-0.10250555723905563,
0.012456287629902363,
0.05058357119560242,
0.013717571273446083,
0.07392784208059311,
0.16398556530475616,
-0.07546699792146683,
-0.05637838691473007,
0.2162764072418213,
-0.09713029116392136,
-0.0958193764090538,
0.1616085022687912,
-0.01862119883298874,
0.01835181936621666,
0.04417672008275986,
0.178715318441391,
0.05328298360109329,
-0.15578243136405945,
-0.06934992969036102,
0.008452583104372025,
0.057020753622055054,
-0.051495201885700226,
0.03597264364361763,
-0.07396060228347778,
0.017941251397132874,
0.005677815992385149,
-0.0433715358376503,
0.029631324112415314,
-0.020900320261716843,
0.03562559187412262,
-0.004100209567695856,
-0.06745591759681702,
-0.004172652494162321,
0.04525689035654068,
0.03494399040937424,
-0.0295270923525095,
-0.034579962491989136,
0.1730736643075943,
0.07861730456352234,
-0.037365373224020004,
0.04241104796528816,
0.03874271363019943,
0.07594306766986847,
-0.05544334277510643,
-0.016476400196552277,
-0.12816420197486877,
-0.1216941550374031,
0.08471247553825378,
-0.07695237547159195,
0.08188726007938385,
-0.03501448780298233,
0.07514206320047379,
0.11376465857028961,
-0.047480858862400055,
0.029286257922649384,
0.013383714482188225,
-0.006057227961719036,
-0.011620160192251205,
-0.10743894428014755,
-0.0281186755746603,
-0.05304760858416557,
0.12134643644094467,
-0.048298172652721405,
-0.021546579897403717,
0.008770208805799484,
0.20688030123710632,
0.018156686797738075,
-0.060925960540771484,
0.012243198230862617,
0.014341468922793865,
-0.022955527529120445,
-0.021754341199994087,
0.011121217161417007,
-0.020072026178240776,
0.00674827303737402,
0.14545683562755585,
0.007788478396832943,
0.009807171300053596,
0.08538635075092316,
0.1369253247976303,
-0.051887597888708115,
-0.09955106675624847,
-0.06069403514266014,
-0.00006423499871743843,
-0.059600889682769775,
-0.07846254855394363,
0.17559905350208282,
0.06598798930644989,
0.12384390085935593,
-0.09170382469892502,
-0.07350190728902817,
0.025003582239151,
0.04183175787329674,
-0.0783410519361496,
0.1017930880188942,
0.006759414914995432,
-0.034835632890462875,
0.1001097708940506,
-0.018742619082331657,
0.0014445538399741054,
0.2355155646800995,
0.018253350630402565,
-0.09469030797481537,
0.03881775215268135,
-0.06258270144462585,
0.004434110131114721,
0.13822662830352783,
-0.11149360984563828,
-0.017647361382842064,
0.03097771666944027,
-0.01369992084801197,
0.03287101909518242,
-0.019956719130277634,
0.035584595054388046,
-0.05572271719574928,
-0.04782336950302124,
0.0215888861566782,
0.0663674995303154,
-0.0012871881481260061,
0.1198500394821167,
0.0354454331099987,
-0.004014341160655022,
-0.09780776500701904,
-0.041026681661605835,
-0.09586260467767715,
0.13402630388736725,
-0.11794839054346085,
-0.1465264856815338,
-0.12465871125459671,
-0.01029169000685215,
-0.18439507484436035,
0.019837696105241776,
0.0066778697073459625,
0.0014469692250713706,
-0.06582383811473846,
-0.12566985189914703,
0.03320765122771263,
0.09522280842065811,
-0.08369342982769012,
-0.05297931656241417,
-0.0499790795147419,
-0.0029469882138073444,
-0.17596109211444855,
-0.008927520364522934,
-0.037146903574466705,
-0.0800170823931694,
-0.03937447443604469,
-0.024766037240624428,
0.10864374041557312,
-0.01095758005976677,
-0.06491195410490036,
-0.013294145464897156,
-0.03192568197846413,
0.14110790193080902,
-0.057091932743787766,
0.12814223766326904,
0.07212811708450317,
0.05847988650202751,
0.03840450569987297,
0.03026377595961094,
0.04771571606397629,
-0.000929391710087657,
-0.007161024492233992,
0.08881746977567673,
-0.02383563295006752,
-0.1665489375591278,
-0.1803293526172638,
-0.041659653186798096,
0.0023734653368592262,
0.050650704652071,
0.05450178682804108,
-0.01074798684567213,
0.005414164625108242,
-0.07740655541419983,
-0.02578890509903431,
0.02136184647679329,
0.07011605054140091,
0.033597853034734726,
0.011624958366155624,
0.000995059497654438,
-0.0569562204182148,
-0.009730132296681404,
0.17449063062667847,
0.03644387796521187,
0.059447191655635834,
-0.08229656517505646,
0.10827000439167023,
0.0009749695309437811,
0.0014279360184445977,
-0.043275896459817886,
0.16717682778835297,
-0.024243658408522606,
0.010078324005007744,
-0.03882509842514992,
-0.07205714285373688,
0.022332681342959404,
0.02544855698943138,
-0.0024641307536512613,
-0.02726162038743496,
-0.0678938701748848,
-0.19579929113388062,
0.07640133798122406,
0.143241286277771,
0.022563835605978966,
-0.07158971577882767,
-0.07562845200300217,
0.0031414180994033813,
-0.07642421126365662,
-0.10762858390808105,
0.020191319286823273,
0.10245410352945328,
-0.16985806822776794,
0.06902330368757248,
0.01831555739045143,
0.1017053872346878,
-0.019290104508399963,
-0.02723100408911705,
-0.026215368881821632,
0.07911994308233261,
-0.04590264707803726,
0.032064761966466904,
-0.11329876631498337,
0.14506453275680542,
0.01838667504489422,
-0.006259533576667309,
-0.07533461600542068,
-0.005846901331096888,
0.07048013061285019,
-0.0068489317782223225,
0.1868705451488495,
0.0146652702242136,
0.2000814527273178,
0.03756600245833397,
-0.10231664776802063,
0.007477643899619579,
-0.025085030123591423,
-0.11888894438743591,
0.00674982275813818,
0.01342642679810524,
-0.058128077536821365,
-0.0643005445599556,
0.032331518828868866,
-0.10779193043708801,
-0.1408519446849823,
-0.04935908690094948,
-0.06600553542375565,
-0.0553538054227829,
-0.019398709759116173,
-0.06833355873823166,
-0.10508118569850922,
0.1376880407333374,
0.13255231082439423,
-0.03504762053489685,
-0.14578263461589813,
-0.07956631481647491,
0.12182670831680298,
-0.06014321371912956,
0.06368311494588852,
-0.034398674964904785,
0.16557064652442932,
-0.11498583108186722,
-0.0911736786365509,
0.026325955986976624,
-0.14480870962142944,
-0.023131074383854866,
-0.035166919231414795,
0.11503911763429642,
0.10133303701877594,
0.021686913445591927,
0.036367692053318024,
0.00889055896550417,
0.026150984689593315,
-0.09743815660476685,
-0.024074658751487732,
0.058511704206466675,
0.07545586675405502,
0.11958301812410355,
-0.1077812910079956,
-0.11611456423997879,
-0.0006500424933619797,
0.02886330336332321,
0.0762229636311531,
0.15107683837413788,
-0.03216467425227165,
0.1605909913778305,
0.19157110154628754,
-0.06667963415384293,
-0.27719077467918396,
0.04043744504451752,
0.033577412366867065,
-0.03522965684533119,
-0.03302881494164467,
-0.10916003584861755,
0.100369893014431,
0.03612997755408287,
-0.014193927869200706,
0.013867706060409546,
-0.09753196686506271,
-0.08457633852958679,
0.08454293757677078,
0.05944398418068886,
0.04158632084727287,
-0.04059712216258049,
-0.01951322890818119,
-0.03391583636403084,
-0.14600305259227753,
0.15988627076148987,
-0.08691991865634918,
-0.002488530008122325,
-0.03115667961537838,
0.028782740235328674,
0.03695123270153999,
-0.037727225571870804,
0.03079892508685589,
0.04942813143134117,
0.013270766474306583,
-0.01970757730305195,
0.03470606729388237,
0.0701136365532875,
-0.01172118540853262,
0.131822407245636,
0.02495928294956684,
0.014479612000286579,
-0.14094242453575134,
0.006534919608384371,
-0.0923788994550705,
0.17600210011005402,
-0.042841531336307526,
-0.05799064785242081,
-0.022894451394677162,
0.08306892961263657,
0.030030900612473488,
0.002822508802637458,
-0.024114754050970078,
-0.019529560580849648,
0.08532782644033432,
0.19036011397838593,
0.08077075332403183,
-0.030222322791814804,
-0.01927676796913147,
0.07937242090702057,
-0.03891688957810402,
0.01835927553474903,
-0.01918371208012104,
0.05705359950661659,
0.0951782613992691,
0.038367319852113724,
0.05493124574422836,
-0.04132620245218277,
-0.14822939038276672,
-0.05311800539493561,
0.051097262650728226,
-0.17731653153896332,
-0.06782563775777817,
-0.0797002837061882,
-0.12179527431726456,
0.030394840985536575,
0.02446627989411354,
0.15503473579883575,
-0.05511585995554924,
-0.07805764675140381,
0.0023809438571333885,
0.010917847976088524,
0.004154318477958441,
0.03288554772734642,
0.04574049264192581,
-0.01252728421241045,
-0.0759100466966629,
0.15471147000789642,
0.015468014404177666,
-0.11546607315540314,
0.03956124931573868,
0.16125237941741943,
-0.06768076866865158,
-0.04672839492559433,
-0.0035986427683383226,
0.147827610373497,
-0.2003258317708969,
-0.023772556334733963,
-0.029035404324531555,
-0.03574417158961296,
-0.004542835522443056,
0.1683352142572403,
0.03799198567867279,
-0.04689616337418556,
-0.024736102670431137,
-0.006541932467371225,
-0.09772580862045288,
0.08967727422714233,
0.04372577369213104,
0.024927666410803795,
0.04728994145989418,
-0.033872298896312714,
-0.043562598526477814,
0.0040991599671542645,
-0.032993730157613754,
-0.007203368470072746,
-0.09724245220422745,
-0.09176129847764969,
-0.23683197796344757,
-0.03046797402203083,
-0.06200540065765381,
0.0017245450289919972,
-0.060214728116989136,
-0.028900152072310448,
0.019826147705316544,
0.007255992386490107,
-0.024569015949964523,
-0.00296239135786891,
0.0200397577136755,
0.08963461220264435,
-0.16982458531856537,
-0.0018340710084885359,
0.060799144208431244,
-0.05231139063835144,
0.15835486352443695,
0.09078792482614517,
0.012958625331521034,
0.011951901949942112,
-0.06841413676738739,
-0.04578070342540741,
-0.061745159327983856,
0.021396243944764137,
0.10659527033567429,
-0.0794425830245018,
0.02475295029580593,
-0.01016120333224535,
0.024329688400030136,
-0.01059143990278244,
0.05777119845151901,
-0.017607975751161575,
0.035111259669065475,
0.03673669323325157,
-0.056783951818943024,
-0.05274132639169693,
0.10076804459095001,
0.1708495169878006,
0.0471404604613781,
-0.03833410516381264,
-0.0217893049120903,
0.018722714856266975,
-0.08841921389102936,
-0.005366409197449684,
-0.0024371652398258448,
-0.05737677216529846,
-0.04743364080786705,
0.036994751542806625,
0.003023853525519371,
0.010371259413659573,
0.22733575105667114,
0.08062892407178879,
0.10028158128261566,
0.04940226674079895,
-0.008610542863607407,
-0.0693688690662384,
-0.004736438859254122,
0.06237521022558212,
-0.06687852740287781,
0.0259239561855793,
-0.023017611354589462,
0.04783250018954277,
-0.013532733544707298,
0.027416694909334183,
0.0820356011390686,
0.04458141699433327,
-0.0014900413807481527,
0.030258841812610626,
0.05610819160938263,
-0.05907663330435753,
-0.07740294933319092,
-0.11517127603292465,
0.09197821468114853,
0.02863367088139057,
-0.11705782264471054,
0.07934275269508362,
0.057759568095207214,
-0.22206011414527893,
0.10939554870128632,
0.061645399779081345,
-0.030747421085834503,
-0.06129131838679314,
-0.03795553743839264,
0.001821925863623619,
-0.032477885484695435,
0.022651776671409607,
-0.1228564977645874,
0.07193353772163391,
-0.011418693698942661,
0.06082453951239586,
0.015669062733650208,
0.1096806451678276,
-0.16080714762210846,
-0.08413560688495636,
0.08778174966573715,
0.07333198934793472,
0.027264825999736786,
-0.012577656656503677,
0.06223874166607857,
-0.030917225405573845,
0.06651724129915237,
0.017272137105464935,
0.08080661296844482,
0.06435109674930573,
0.017961598932743073,
-0.01868949458003044,
-0.054907914251089096,
-0.030386313796043396,
-0.020854584872722626,
0.007766176946461201,
0.20653468370437622,
0.05068212375044823,
-0.04301341250538826,
-0.02049166150391102,
0.22834163904190063,
-0.07547277957201004,
0.01374098751693964,
-0.09264672547578812,
0.23547349870204926,
-0.02763444371521473,
0.03560245782136917,
0.03474182263016701,
-0.057647574692964554,
-0.047008465975522995,
0.19021539390087128,
0.24661625921726227,
-0.002108905930072069,
0.012480871751904488,
0.03364032134413719,
-0.01545268390327692,
0.05623771250247955,
0.03239632770419121,
0.03453861176967621,
0.27456608414649963,
-0.04872937127947807,
0.10826072841882706,
0.016886865720152855,
0.008583578281104565,
-0.04500029981136322,
0.21888373792171478,
-0.04958033934235573,
-0.06354644894599915,
-0.019985273480415344,
0.028478553518652916,
-0.0696992501616478,
-0.3824906647205353,
-0.03630758821964264,
-0.11570388823747635,
-0.08322133123874664,
-0.04540947824716568,
-0.1445101946592331,
0.06813347339630127,
0.06463779509067535,
0.05328509584069252,
0.023944871500134468,
0.21637269854545593,
0.020552871748805046,
-0.10782995820045471,
-0.10982182621955872,
0.059147171676158905,
-0.12081167101860046,
0.2907661199569702,
-0.005537129007279873,
0.0027519548311829567,
0.0504809208214283,
-0.004841080866754055,
-0.12969160079956055,
-0.08989271521568298,
0.04781971499323845,
-0.12316110730171204,
-0.05361669510602951,
0.12258224189281464,
-0.042769163846969604,
0.00025967968394979835,
-0.016134433448314667,
-0.07606729120016098,
0.04015596583485603,
0.05065951868891716,
-0.02329995110630989,
-0.07345075160264969,
0.11752290278673172,
-0.11792709678411484,
0.152879536151886,
0.11537518352270126,
-0.011164097115397453,
0.01827572099864483,
-0.09813039004802704,
0.009170091710984707,
0.030765723437070847,
0.03163877874612808,
0.029743703082203865,
-0.10033668577671051,
0.03522590920329094,
-0.048037607222795486,
-0.006944622844457626,
-0.28330835700035095,
0.017269859090447426,
-0.04041488841176033,
0.005838087294250727,
-0.027990953996777534,
0.052611060440540314,
0.05825752019882202,
0.0401359386742115,
0.0033166971988976,
-0.009321846067905426,
-0.005396038759499788,
0.05949545279145241,
-0.04606278985738754,
-0.03807883709669113
] |
null | null |
transformers
|
# π€ + π dbmdz German BERT models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources another German BERT models π
# German BERT
## Stats
In addition to the recently released [German BERT](https://deepset.ai/german-bert)
model by [deepset](https://deepset.ai/) we provide another German-language model.
The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus,
Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with
a size of 16GB and 2,350,234,427 tokens.
For sentence splitting, we use [spacy](https://spacy.io/). Our preprocessing steps
(sentence piece model for vocab generation) follow those used for training
[SciBERT](https://github.com/allenai/scibert). The model is trained with an initial
sequence length of 512 subwords and was performed for 1.5M steps.
This release includes both cased and uncased models.
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| -------------------------------- | ---------------------------------------------------------------------------------------------------------------
| `bert-base-german-dbmdz-cased` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.json) β’ [`pytorch_model.bin`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin) β’ [`vocab.txt`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt)
| `bert-base-german-dbmdz-uncased` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.json) β’ [`pytorch_model.bin`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin) β’ [`vocab.txt`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt)
## Usage
With Transformers >= 2.3 our German BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
model = AutoModel.from_pretrained("dbmdz/bert-base-german-cased")
```
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[this repository](https://github.com/stefan-it/fine-tuned-berts-seq).
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "de", "license": "mit"}
|
fill-mask
|
dbmdz/bert-base-german-cased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"de",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"de"
] |
TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
|
+ dbmdz German BERT models
==========================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources another German BERT models
German BERT
===========
Stats
-----
In addition to the recently released German BERT
model by deepset we provide another German-language model.
The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus,
Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with
a size of 16GB and 2,350,234,427 tokens.
For sentence splitting, we use spacy. Our preprocessing steps
(sentence piece model for vocab generation) follow those used for training
SciBERT. The model is trained with an initial
sequence length of 512 subwords and was performed for 1.5M steps.
This release includes both cased and uncased models.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Usage
-----
With Transformers >= 2.3 our German BERT models can be loaded like:
Results
-------
For results on downstream tasks like NER or PoS tagging, please refer to
this repository.
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT models just open an issue
here
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
58
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.017137225717306137,
0.018642790615558624,
-0.005587710067629814,
0.04178430885076523,
0.04811940714716911,
0.015619934536516666,
0.1209658682346344,
0.09032786637544632,
0.0696859359741211,
-0.0023615332320332527,
0.16120074689388275,
0.17829541862010956,
-0.030359813943505287,
0.16188743710517883,
-0.04806555435061455,
-0.21584849059581757,
0.07609734684228897,
0.015166922472417355,
-0.06277866661548615,
0.10082584619522095,
0.09837961941957474,
-0.07797390222549438,
0.06428909301757812,
-0.021028714254498482,
-0.08635657280683517,
0.04223059490323067,
0.07067091763019562,
-0.11879824101924896,
0.15478292107582092,
0.02965475432574749,
0.17046122252941132,
0.0774027481675148,
-0.009782957844436169,
-0.061030950397253036,
0.04313146322965622,
0.027642861008644104,
-0.11443319916725159,
0.03828532621264458,
-0.011662106029689312,
-0.031715698540210724,
0.032543666660785675,
0.010881355963647366,
0.042133938521146774,
0.04064849019050598,
-0.1525777131319046,
-0.2513589560985565,
-0.0427241176366806,
0.06538041681051254,
0.02277320995926857,
0.05172334611415863,
0.018889544531702995,
0.22210904955863953,
-0.1302463412284851,
0.07907319068908691,
0.13852941989898682,
-0.3640775680541992,
-0.008691152557730675,
0.12661723792552948,
0.13046638667583466,
-0.021247245371341705,
-0.06684613972902298,
0.05556907504796982,
0.06252307444810867,
0.017715003341436386,
0.15071862936019897,
-0.05743611231446266,
-0.05238356813788414,
0.03697116672992706,
-0.08933567255735397,
-0.05947251617908478,
0.17374330759048462,
-0.028880076482892036,
0.024109480902552605,
-0.025532666593790054,
-0.09183932840824127,
-0.028859157115221024,
0.007786914240568876,
-0.03338314965367317,
-0.0019704208243638277,
0.04834440350532532,
-0.018949752673506737,
-0.0031265770085155964,
-0.151779443025589,
0.016859684139490128,
-0.21153193712234497,
0.16860942542552948,
-0.0009558854508213699,
0.0627622902393341,
-0.16678792238235474,
0.05911094322800636,
-0.01834719255566597,
-0.12807008624076843,
0.04622916877269745,
-0.07521449029445648,
0.0525733083486557,
-0.009581033140420914,
-0.034145716577768326,
0.01689710095524788,
0.08667726069688797,
0.18978092074394226,
-0.006010343786329031,
-0.009447591379284859,
0.010836687870323658,
0.10137013345956802,
-0.0007334772381000221,
0.052581459283828735,
0.004009725991636515,
-0.011057643219828606,
0.04419080540537834,
-0.06896471232175827,
0.02896578423678875,
-0.04163128510117531,
-0.12353438884019852,
-0.032693710178136826,
0.034194353967905045,
0.0845462903380394,
0.05597534403204918,
0.07142840325832367,
-0.04562010243535042,
0.06461267173290253,
0.12041813135147095,
-0.05473467335104942,
0.01437896117568016,
-0.030633045360445976,
0.09878730773925781,
-0.029620159417390823,
0.017390038818120956,
-0.014811373315751553,
0.048747215420007706,
0.10324887186288834,
-0.10921421647071838,
-0.054703328758478165,
-0.033739183098077774,
-0.10406552255153656,
0.05768219754099846,
-0.0910075381398201,
0.03616128861904144,
-0.2133142054080963,
-0.100994773209095,
0.06129022687673569,
0.05084072798490524,
0.013271271251142025,
-0.04337339848279953,
0.08848324418067932,
-0.05779174715280533,
0.03693029657006264,
-0.05255001410841942,
-0.03284584730863571,
-0.07165202498435974,
0.09799008816480637,
-0.04709148034453392,
0.10583378374576569,
-0.14471489191055298,
0.013150413520634174,
-0.09640303254127502,
0.015687281265854836,
-0.11636573076248169,
-0.09756594896316528,
-0.04974735528230667,
0.15202495455741882,
0.017803266644477844,
-0.04038631543517113,
-0.11223311722278595,
0.058492086827754974,
-0.0333065465092659,
0.13070005178451538,
-0.14404092729091644,
-0.06302572786808014,
0.20865830779075623,
-0.1228911355137825,
-0.17004390060901642,
0.080263152718544,
0.008864529430866241,
0.044767942279577255,
0.01844637654721737,
0.1553700566291809,
0.012624052353203297,
-0.1939108818769455,
0.04135539382696152,
0.13638170063495636,
-0.12809190154075623,
-0.09536533802747726,
0.05211324244737625,
-0.004039671737700701,
-0.10162181407213211,
0.00774499261751771,
0.036776334047317505,
0.09222468733787537,
-0.048860445618629456,
-0.05995464324951172,
-0.04203708842396736,
-0.03235733509063721,
0.10582005232572556,
0.012710998766124249,
0.07317785918712616,
-0.11015468090772629,
-0.06640282273292542,
-0.028611108660697937,
-0.008694280870258808,
0.08596069365739822,
0.011567126028239727,
-0.08607400208711624,
0.12371961027383804,
-0.003425949951633811,
-0.026657896116375923,
-0.09972341358661652,
-0.12681268155574799,
-0.027874596416950226,
0.02834128960967064,
-0.030705902725458145,
0.1906137466430664,
0.09088174253702164,
-0.023125633597373962,
-0.026130221784114838,
-0.028598638251423836,
0.09069497138261795,
0.08396921306848526,
-0.007799462880939245,
-0.1341986060142517,
0.016148913651704788,
-0.08866473287343979,
-0.024659205228090286,
-0.02454848773777485,
0.0218786783516407,
0.05657871440052986,
0.13816119730472565,
-0.01097180973738432,
0.06134112551808357,
-0.06455386430025101,
0.003330675885081291,
-0.03589604049921036,
-0.01553878653794527,
0.06063481420278549,
0.025409340858459473,
-0.03325982764363289,
0.20632058382034302,
-0.15612304210662842,
0.4218877851963043,
0.21555684506893158,
-0.16766145825386047,
-0.06044493243098259,
0.08204126358032227,
-0.038127996027469635,
0.028964323922991753,
0.021187830716371536,
-0.06025686115026474,
-0.08243601024150848,
-0.05935388058423996,
0.12800177931785583,
-0.04922620579600334,
-0.04915161430835724,
0.023244760930538177,
-0.05584092438220978,
-0.08005861937999725,
0.0026434087194502354,
0.06911198049783707,
-0.1766834855079651,
0.21508443355560303,
0.36706051230430603,
0.007629120256751776,
0.1648615002632141,
-0.023440971970558167,
0.019093772396445274,
-0.027396809309720993,
-0.03752696514129639,
-0.03495083004236221,
0.13718923926353455,
-0.1346382051706314,
-0.01815313659608364,
0.060801759362220764,
-0.014460901729762554,
0.019261082634329796,
-0.1294952630996704,
-0.08487240225076675,
0.027141552418470383,
0.04454704746603966,
-0.07413198798894882,
0.14832037687301636,
0.020255379378795624,
0.11077004671096802,
-0.022739294916391373,
-0.1524759978055954,
0.09788016229867935,
0.004258658736944199,
-0.0486895814538002,
0.12632836401462555,
-0.13563743233680725,
-0.275787889957428,
-0.06753726303577423,
-0.07648198306560516,
0.06369426101446152,
0.012828814797103405,
0.10404030978679657,
-0.04159696027636528,
-0.049865540117025375,
-0.003427143907174468,
-0.04396161064505577,
-0.05124201625585556,
0.07602986693382263,
-0.07790542393922806,
0.02178909257054329,
-0.010344740003347397,
-0.10174337774515152,
-0.09070094674825668,
0.004858850501477718,
-0.0512755922973156,
0.12905654311180115,
-0.007466951850801706,
0.06760573387145996,
0.10071900486946106,
-0.035713743418455124,
0.03661315143108368,
-0.057698242366313934,
0.20929239690303802,
-0.06751025468111038,
0.039873041212558746,
0.15579621493816376,
0.0010030096163973212,
0.07267167419195175,
0.21183745563030243,
0.045408401638269424,
-0.03536846116185188,
0.006764200981706381,
-0.0489439032971859,
-0.10735378414392471,
-0.11841269582509995,
-0.08028893172740936,
-0.11760269850492477,
0.012205205857753754,
0.029511457309126854,
0.0813547894358635,
0.15647470951080322,
0.05224006250500679,
0.021094994619488716,
-0.049849733710289,
-0.05147143453359604,
0.05069144815206528,
0.14872369170188904,
-0.0497136227786541,
0.12739166617393494,
-0.05372682958841324,
-0.13847333192825317,
0.06973496079444885,
0.014984078705310822,
0.020671213045716286,
0.10827989131212234,
-0.06361083686351776,
0.08181663602590561,
0.20890304446220398,
0.1159856766462326,
0.12201039493083954,
0.025263912975788116,
-0.0851520448923111,
-0.025251319631934166,
-0.04487527906894684,
0.028841860592365265,
0.04992295056581497,
0.07863623648881912,
-0.08312294632196426,
-0.029104994609951973,
-0.18805328011512756,
0.05413861572742462,
0.07426012307405472,
0.08913203328847885,
-0.2175978422164917,
0.01423136331140995,
0.07365152984857559,
0.012160106562077999,
-0.04178393632173538,
0.05431811884045601,
0.06391479074954987,
-0.07098092883825302,
0.05345521122217178,
-0.00806480273604393,
0.054087646305561066,
0.15043945610523224,
0.09602633863687515,
-0.01804756373167038,
-0.1014476865530014,
-0.002153523964807391,
0.04115651920437813,
-0.27976882457733154,
0.25724226236343384,
-0.007825513370335102,
-0.03802408650517464,
-0.0597030408680439,
-0.007472393102943897,
0.04486618563532829,
0.14925068616867065,
0.14667686820030212,
0.03517230227589607,
-0.0896984189748764,
-0.09388206899166107,
0.03800807148218155,
0.01502627320587635,
0.04715947061777115,
-0.028942450881004333,
-0.007273583672940731,
-0.03968937695026398,
-0.01956995204091072,
0.04595980420708656,
0.1864023506641388,
-0.06381160020828247,
-0.09985620528459549,
0.060793109238147736,
0.06135372072458267,
0.00781229417771101,
-0.06783806532621384,
-0.05510983243584633,
-0.17502638697624207,
0.12662038207054138,
-0.011863350868225098,
-0.011466111987829208,
-0.113596111536026,
-0.13979946076869965,
0.06054900586605072,
-0.05385153368115425,
0.09115628898143768,
-0.05705104023218155,
0.00706656277179718,
-0.10373463481664658,
-0.15056830644607544,
0.1578717827796936,
-0.14602535963058472,
-0.02790192887187004,
-0.10131236165761948,
0.11817390471696854,
-0.10149239003658295,
0.04260139912366867,
0.03297479450702667,
0.04934345930814743,
-0.0858934223651886,
-0.05916965752840042,
0.033262018114328384,
-0.1164495125412941,
0.06283070892095566,
-0.05088960751891136,
-0.058795150369405746,
-0.08019373565912247,
0.07606451213359833,
0.0005846429849043489,
0.17334216833114624,
0.2813331186771393,
-0.10545354336500168,
0.12954622507095337,
0.1256115585565567,
-0.008306817151606083,
-0.33706358075141907,
-0.11623380333185196,
-0.1915326714515686,
-0.009082418866455555,
0.11102477461099625,
-0.014600562863051891,
0.03455384820699692,
-0.011592337861657143,
-0.08535733073949814,
0.11065402626991272,
-0.16161753237247467,
-0.09104886651039124,
0.21698373556137085,
0.0007258115219883621,
0.3789067566394806,
-0.1461767852306366,
-0.023741597309708595,
0.005851271562278271,
-0.1116027981042862,
0.10608451068401337,
-0.08323202282190323,
0.052892621606588364,
-0.006259622983634472,
0.0043943808414042,
0.020693151280283928,
-0.08026941120624542,
0.1211879774928093,
-0.07648644596338272,
0.05645008385181427,
-0.11874580383300781,
-0.09857342392206192,
0.14566883444786072,
-0.016038715839385986,
0.007006793282926083,
-0.09852363914251328,
0.0063243587501347065,
-0.031131388619542122,
0.010976453311741352,
-0.11595971137285233,
0.14027109742164612,
-0.017160985618829727,
-0.10057429224252701,
-0.0073508997447788715,
0.03137525916099548,
-0.00316902669146657,
-0.0597640685737133,
0.19053268432617188,
-0.005719904787838459,
0.24933786690235138,
0.12852874398231506,
0.007381037343293428,
-0.1352853626012802,
-0.05058259889483452,
0.013602357357740402,
-0.09256910532712936,
0.08671117573976517,
-0.05613798648118973,
0.04236466810107231,
0.060008369386196136,
-0.007999531924724579,
0.07107936590909958,
0.10755588114261627,
-0.009712517261505127,
-0.056123729795217514,
0.19022051990032196,
-0.19853846728801727,
-0.04665248095989227,
-0.011316923424601555,
0.02205486409366131,
0.0669155865907669,
0.036116208881139755,
0.08332478255033493,
-0.02101338654756546,
-0.011267663910984993,
-0.006745319813489914,
0.0012515427079051733,
-0.07771067321300507,
0.007256864570081234,
0.08336013555526733,
0.058966632932424545,
-0.07801022380590439,
-0.018213994801044464,
-0.0027399961836636066,
-0.1517694890499115,
-0.013004927895963192,
0.06598123162984848,
-0.08396094292402267,
-0.1401737928390503,
0.0011440688977017999,
0.0429120734333992,
-0.04974338412284851,
-0.030474217608571053,
-0.03645765781402588,
-0.1410156786441803,
0.03315221518278122,
0.23811647295951843,
0.08591785281896591,
0.09593834728002548,
0.035582706332206726,
-0.017753170803189278,
0.020843779668211937,
0.016525166109204292,
-0.05929004028439522,
0.03427182510495186,
-0.12989164888858795,
0.07602028548717499,
-0.011451208963990211,
0.10867827385663986,
-0.10397525131702423,
0.01601910963654518,
-0.18012604117393494,
-0.011755101382732391,
-0.03760330006480217,
-0.08800350874662399,
-0.09478110820055008,
-0.07438304275274277,
0.038438428193330765,
-0.08692128956317902,
-0.048320915549993515,
-0.027591830119490623,
-0.11794716119766235,
0.017554080113768578,
0.0551120899617672,
0.05748673900961876,
-0.08430653065443039,
-0.05040767788887024,
0.0872993990778923,
-0.03212122246623039,
0.08149108290672302,
0.05574057623744011,
-0.04681885614991188,
0.08025475591421127,
-0.12717998027801514,
-0.0907314270734787,
0.0839085727930069,
-0.002028547925874591,
0.06707948446273804,
0.051975227892398834,
-0.003061913885176182,
0.04559512063860893,
0.011655880138278008,
0.05017921328544617,
-0.011367443948984146,
-0.0994940772652626,
0.06145033240318298,
0.04739769175648689,
-0.14562548696994781,
0.009814975783228874,
-0.10596016049385071,
0.11449852585792542,
-0.06513361632823944,
0.12260519713163376,
-0.04182839021086693,
0.027257515117526054,
-0.11029702425003052,
0.013715715147554874,
-0.04663316532969475,
-0.13773059844970703,
-0.05270101875066757,
-0.028435396030545235,
-0.0007890948327258229,
-0.019575947895646095,
0.2218618392944336,
0.06554250419139862,
-0.09452049434185028,
0.07603465765714645,
0.027226729318499565,
0.02951996587216854,
-0.0010573328472673893,
0.19151781499385834,
0.02803177200257778,
-0.055911026895046234,
-0.1220562681555748,
0.034912142902612686,
-0.005289443302899599,
-0.11047621816396713,
0.1032116711139679,
0.11179547011852264,
0.041916877031326294,
0.06400766223669052,
0.06933921575546265,
-0.038876134902238846,
-0.0928206741809845,
-0.19143988192081451,
-0.0014526478480547667,
0.05021810531616211,
-0.034099385142326355,
-0.0184258371591568,
0.2069297581911087,
-0.017920566722750664,
0.03493814915418625,
-0.0674658939242363,
0.025534814223647118,
-0.1793449968099594,
-0.1146116778254509,
-0.06404612958431244,
-0.06119666248559952,
0.009692063555121422,
-0.014788823202252388,
0.01477948110550642,
0.08576584607362747,
0.040861260145902634,
-0.022360866889357567,
0.08813018351793289,
0.006842500995844603,
-0.013940433971583843,
0.0030062776058912277,
0.028127947822213173,
0.025671251118183136,
-0.06279439479112625,
0.001314534805715084,
-0.1315155178308487,
-0.028288112953305244,
-0.07531190663576126,
-0.018770238384604454,
-0.059741124510765076,
0.009073661640286446,
-0.09446791559457779,
-0.09202796965837479,
-0.054300498217344284,
0.01854408159852028,
-0.02801677957177162,
0.10141115635633469,
-0.0004490012943278998,
0.041756898164749146,
0.03070535510778427,
0.15615974366664886,
-0.0727548897266388,
-0.12836888432502747,
-0.029793594032526016,
0.20713548362255096,
0.02285083942115307,
0.09815036505460739,
-0.010639909654855728,
0.023922814056277275,
-0.07546809315681458,
0.20118148624897003,
0.3510076403617859,
-0.03252757713198662,
0.11128802597522736,
0.01981593854725361,
0.009556751698255539,
0.013141355477273464,
0.09069428592920303,
0.08190712332725525,
0.26696574687957764,
-0.09349322319030762,
0.014720321632921696,
-0.05950953811407089,
0.0022461418993771076,
-0.09474994987249374,
0.019437234848737717,
0.02360592409968376,
-0.03510884940624237,
-0.02717982977628708,
0.05055961757898331,
-0.09181366860866547,
0.05897250026464462,
0.08555520325899124,
-0.1887659877538681,
-0.037495341151952744,
0.012072485871613026,
0.16667793691158295,
-0.007933185435831547,
0.08010750263929367,
-0.05081409588456154,
-0.04772591218352318,
0.012502199038863182,
-0.007041802629828453,
-0.15385837852954865,
-0.05415772646665573,
0.11129431426525116,
0.013642984442412853,
0.14942720532417297,
-0.04453172907233238,
0.04583220183849335,
0.10694997012615204,
0.047867607325315475,
-0.05501668527722359,
0.08320358395576477,
0.05338606610894203,
-0.09572167694568634,
-0.07083097845315933,
-0.07902682572603226,
0.010812330059707165,
-0.07089196145534515,
0.0362602174282074,
-0.1584370881319046,
0.0481562539935112,
-0.050271593034267426,
-0.055501386523246765,
-0.025897806510329247,
0.06263621151447296,
-0.025909852236509323,
0.08263272792100906,
0.02955755777657032,
-0.00031544413650408387,
-0.03432318568229675,
-0.03796287253499031,
-0.01808970794081688,
0.09316946566104889,
-0.12712281942367554,
-0.12352349609136581,
-0.03933759778738022,
-0.010840152390301228,
0.017042800784111023,
-0.017964638769626617,
-0.1307237446308136,
-0.07045480608940125,
-0.07632091641426086,
0.017496382817626,
-0.13771583139896393,
0.0237148217856884,
0.10677771270275116,
0.04455683380365372,
0.007194752339273691,
-0.055383019149303436,
0.012751483358442783,
0.047163933515548706,
-0.14062035083770752,
-0.07147111743688583
] |
null | null |
transformers
|
# π€ + π dbmdz BERT models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources German Europeana BERT models π
# German Europeana BERT
We use the open source [Europeana newspapers](http://www.europeana-newspapers.eu/)
that were provided by *The European Library*. The final
training corpus has a size of 51GB and consists of 8,035,986,369 tokens.
Detailed information about the data and pretraining steps can be found in
[this repository](https://github.com/stefan-it/europeana-bert).
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ------------------------------------------ | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-german-europeana-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-cased/vocab.txt)
## Results
For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert).
## Usage
With Transformers >= 2.3 our German Europeana BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-europeana-cased")
model = AutoModel.from_pretrained("dbmdz/bert-base-german-europeana-cased")
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "de", "license": "mit", "tags": ["historic german"]}
| null |
dbmdz/bert-base-german-europeana-cased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"historic german",
"de",
"license:mit",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"de"
] |
TAGS
#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us
|
+ dbmdz BERT models
===================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources German Europeana BERT models
German Europeana BERT
=====================
We use the open source Europeana newspapers
that were provided by *The European Library*. The final
training corpus has a size of 51GB and consists of 8,035,986,369 tokens.
Detailed information about the data and pretraining steps can be found in
this repository.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Results
-------
For results on Historic NER, please refer to this repository.
Usage
-----
With Transformers >= 2.3 our German Europeana BERT models can be loaded like:
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT models just open an issue
here
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us \n"
] |
[
40
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us \n"
] |
[
-0.04819458723068237,
0.029256289824843407,
-0.007894583977758884,
0.04001659154891968,
0.008747518062591553,
0.015001633204519749,
0.08485016226768494,
0.04574563354253769,
0.1659662276506424,
-0.05237589776515961,
0.13211582601070404,
0.15378089249134064,
-0.03779097646474838,
-0.07175435870885849,
-0.04239761829376221,
-0.26304733753204346,
0.031979337334632874,
0.08537804335355759,
-0.013776279054582119,
0.07501823455095291,
0.09720012545585632,
-0.09077167510986328,
0.04443293437361717,
-0.014785745181143284,
-0.1158987507224083,
0.09755878895521164,
0.027123456820845604,
-0.07280537486076355,
0.16208018362522125,
0.022637249901890755,
0.09628493338823318,
0.03739001601934433,
-0.024032140150666237,
-0.08832450211048126,
0.007708695251494646,
-0.06458940356969833,
-0.11844993382692337,
0.009866624139249325,
0.0418347492814064,
-0.09531504660844803,
0.09897173196077347,
0.12349102646112442,
-0.07167749106884003,
0.043928805738687515,
-0.16384926438331604,
-0.21959161758422852,
-0.06649108231067657,
0.16244015097618103,
-0.0076048728078603745,
0.06926342844963074,
0.04783855378627777,
0.1255785971879959,
-0.12525969743728638,
0.046482380479574203,
0.13945551216602325,
-0.3265018165111542,
-0.022728674113750458,
0.07359924167394638,
0.04931367561221123,
0.011844622902572155,
-0.062027059495449066,
0.10130064189434052,
0.042511507868766785,
0.009211861528456211,
0.00012554634304251522,
-0.11305838078260422,
0.05294141545891762,
0.0853172019124031,
-0.0835581123828888,
-0.08445542305707932,
0.20463357865810394,
-0.021252889186143875,
0.013353363610804081,
0.047951605170965195,
-0.034750357270240784,
-0.0006424588500522077,
0.03237712383270264,
-0.06460420787334442,
-0.026669489219784737,
0.07216044515371323,
0.07075034081935883,
-0.027637481689453125,
-0.08652949333190918,
0.07487385720014572,
-0.21045006811618805,
0.25152823328971863,
0.022819751873612404,
0.06708729267120361,
-0.13934798538684845,
0.028290005400776863,
-0.09999167174100876,
-0.08221018314361572,
-0.006211787927895784,
-0.04384300485253334,
0.05325717851519585,
-0.01239869650453329,
-0.025929998606443405,
0.09339892119169235,
0.03175542503595352,
0.1761578917503357,
0.006552821025252342,
-0.03823600336909294,
-0.003922812640666962,
0.15711253881454468,
-0.00007808546797605231,
0.10086555778980255,
0.059042658656835556,
-0.05034085363149643,
0.023469774052500725,
-0.20345579087734222,
-0.021584345027804375,
0.023811422288417816,
-0.16089153289794922,
-0.0787167027592659,
0.0063642398454248905,
0.08151275664567947,
-0.03368285670876503,
0.0004002038622274995,
-0.04185821861028671,
0.04743821546435356,
0.021729854866862297,
-0.014214358292520046,
-0.0002046620356850326,
-0.02002381905913353,
0.018934054300189018,
0.12930186092853546,
-0.0996178388595581,
-0.036791201680898666,
-0.018908511847257614,
0.15214616060256958,
-0.0729704350233078,
0.0073700775392353535,
-0.02674456126987934,
-0.07325752079486847,
0.08543674647808075,
-0.08174806088209152,
0.07662298530340195,
-0.15729974210262299,
-0.1056293323636055,
0.055491313338279724,
0.08105113357305527,
0.017563866451382637,
0.061358142644166946,
0.028408074751496315,
-0.04634283483028412,
0.0008798476774245501,
-0.049833882600069046,
-0.17954310774803162,
-0.07872091978788376,
0.09267155826091766,
-0.12028516083955765,
0.009912221692502499,
-0.16377048194408417,
0.030406350269913673,
-0.12644118070602417,
-0.012423616833984852,
-0.15569062530994415,
-0.08328524231910706,
-0.030470896512269974,
0.11677439510822296,
0.022464273497462273,
-0.035895828157663345,
-0.07183189690113068,
0.042191311717033386,
-0.05243128165602684,
0.1311621516942978,
-0.1265963464975357,
-0.1210494115948677,
0.22755886614322662,
-0.11068537831306458,
-0.15037977695465088,
0.11089566349983215,
0.02386307716369629,
0.000775221036747098,
0.08207948505878448,
0.1769932359457016,
0.04768497869372368,
-0.1852557510137558,
0.007945633493363857,
0.12670129537582397,
-0.09803152829408646,
-0.10733392089605331,
0.045248162001371384,
-0.026531647890806198,
-0.0761830136179924,
0.00827706791460514,
-0.04517795518040657,
0.0896385982632637,
-0.06299292296171188,
0.0006541379261761904,
0.01428995095193386,
0.008323108777403831,
0.11505525559186935,
0.045309923589229584,
0.08423107862472534,
-0.12922583520412445,
-0.04076039418578148,
0.0844157263636589,
-0.022265570238232613,
0.09746935218572617,
0.004888040013611317,
-0.007802818901836872,
0.014779509045183659,
0.03371703624725342,
-0.0012697175843641162,
-0.08313235640525818,
-0.05975349247455597,
0.004577122163027525,
0.010028660297393799,
0.046787939965724945,
0.2735883891582489,
0.08839426189661026,
-0.028953321278095245,
-0.05450637638568878,
-0.018850911408662796,
0.037665314972400665,
0.02147354930639267,
0.02050274796783924,
-0.10348913073539734,
0.049615275114774704,
-0.03134622052311897,
-0.09147641062736511,
0.011698231101036072,
-0.014019602909684181,
0.1589120775461197,
0.13207463920116425,
-0.02465992420911789,
0.06019974872469902,
-0.12811103463172913,
0.044454410672187805,
-0.03260239586234093,
0.030905164778232574,
0.060248300433158875,
0.002295298269018531,
-0.04027608409523964,
0.23463915288448334,
-0.0017429414438083768,
0.3966418206691742,
0.1924346387386322,
-0.2269018292427063,
-0.02039279416203499,
-0.014610528014600277,
-0.06876121461391449,
0.03476545587182045,
0.058041755110025406,
-0.09273266792297363,
0.08466006070375443,
-0.020173443481326103,
0.05592765659093857,
-0.05107796564698219,
-0.1032509133219719,
-0.02431129664182663,
0.002469847211614251,
-0.09233356267213821,
0.085000179708004,
0.0758565217256546,
-0.19997726380825043,
0.19881798326969147,
0.383309930562973,
0.02014933153986931,
0.20729942619800568,
-0.05303436890244484,
0.021785970777273178,
-0.0029715625569224358,
-0.04546194151043892,
-0.04148399084806442,
0.212397962808609,
-0.16589221358299255,
-0.01446866150945425,
0.03306528180837631,
-0.015061530284583569,
0.011949777603149414,
-0.1115594357252121,
-0.06833574175834656,
-0.02365504391491413,
0.009346588514745235,
-0.025291122496128082,
0.07316341251134872,
-0.01734083704650402,
0.12372667342424393,
-0.01932794600725174,
-0.1662437468767166,
0.09952814131975174,
0.02278822846710682,
-0.07063133269548416,
0.1219104453921318,
-0.11395209282636642,
-0.20681911706924438,
-0.05042498931288719,
-0.07920850813388824,
-0.020292412489652634,
-0.00032185696181841195,
0.07464341819286346,
-0.011618580669164658,
-0.028505342081189156,
0.11609669029712677,
0.084494449198246,
-0.12403104454278946,
0.031793829053640366,
-0.09781830757856369,
0.011549330316483974,
-0.10164511948823929,
-0.08964484184980392,
-0.12212052941322327,
-0.06771799921989441,
-0.043015990406274796,
0.06660287082195282,
-0.06557343155145645,
0.060977187007665634,
0.04649446904659271,
-0.035626769065856934,
0.09555792063474655,
-0.06674604117870331,
0.13399313390254974,
-0.07619564235210419,
0.030616987496614456,
0.09449502825737,
-0.024997832253575325,
0.055991481989622116,
0.13064080476760864,
0.09236643463373184,
-0.044486839324235916,
-0.06794089823961258,
-0.027047108858823776,
-0.08435580134391785,
-0.12730443477630615,
-0.09999115020036697,
-0.11960088461637497,
0.09807601571083069,
0.02820216491818428,
0.04703487455844879,
0.14602982997894287,
0.019475825130939484,
-0.013585158623754978,
-0.07934108376502991,
-0.04003092646598816,
0.054763782769441605,
0.21832381188869476,
-0.018758835271000862,
0.03784599527716637,
-0.04948687553405762,
-0.10221514850854874,
0.1253439038991928,
0.01270212884992361,
0.02191418595612049,
0.12464503943920135,
-0.06861627101898193,
0.07045502960681915,
0.14156197011470795,
0.08903422951698303,
0.09743447601795197,
0.009859376586973667,
-0.058936331421136856,
0.00939991045743227,
-0.06083309277892113,
0.05615922436118126,
0.02946140617132187,
0.0517030693590641,
-0.05240527167916298,
-0.019776402041316032,
-0.2948482632637024,
0.0859716385602951,
0.03752438724040985,
0.09111341834068298,
-0.08444652706384659,
-0.030034761875867844,
0.0327802412211895,
-0.03222009539604187,
-0.01600613445043564,
0.08935170620679855,
-0.00397494388744235,
-0.13698288798332214,
0.10069720447063446,
-0.028769509866833687,
0.10303904861211777,
0.060915395617485046,
0.09200730919837952,
-0.014212525449693203,
-0.11536938697099686,
0.02075372450053692,
0.05729818716645241,
-0.34412649273872375,
0.29677554965019226,
0.01454292144626379,
-0.04003338888287544,
-0.08792450278997421,
-0.06147565692663193,
0.026170426979660988,
0.17234951257705688,
0.16620749235153198,
0.05736509710550308,
-0.06529190391302109,
0.016010789200663567,
0.07048194855451584,
0.005037686787545681,
0.08224166929721832,
-0.06301380693912506,
-0.07281797379255295,
-0.0009753629565238953,
-0.007861911319196224,
-0.011513001285493374,
0.09375791996717453,
-0.02976210042834282,
-0.04356585070490837,
0.04559233412146568,
-0.00695600314065814,
0.012269843369722366,
0.0021024064626544714,
-0.033613111823797226,
-0.0993424728512764,
0.1384168118238449,
-0.07476933300495148,
-0.0019629141315817833,
-0.12931177020072937,
-0.15467886626720428,
0.032805487513542175,
-0.07769279181957245,
0.04726800695061684,
-0.02177570015192032,
-0.025934826582670212,
-0.14227615296840668,
-0.16318361461162567,
0.1406400352716446,
-0.1505861133337021,
0.06798854470252991,
-0.05152910575270653,
0.17605282366275787,
-0.0033795873168855906,
0.046686410903930664,
0.022572578862309456,
0.005591805092990398,
-0.02062566950917244,
-0.1250360906124115,
0.09235242009162903,
-0.18626977503299713,
0.0018916536355391145,
-0.05543812736868858,
-0.0984644964337349,
-0.04401756450533867,
0.0595356710255146,
-0.024556247517466545,
0.10253369063138962,
0.2626540958881378,
-0.04342292249202728,
0.15475250780582428,
0.14870981872081757,
-0.027031244710087776,
-0.3524331748485565,
-0.014884588308632374,
-0.18257306516170502,
-0.039842866361141205,
0.009465246461331844,
-0.0810844674706459,
0.1264713853597641,
0.06153421103954315,
-0.059292975813150406,
0.11427053809165955,
-0.25096186995506287,
-0.08192620426416397,
0.17298349738121033,
-0.029825735837221146,
0.4704858064651489,
-0.039316531270742416,
-0.05903736501932144,
0.023054588586091995,
-0.20535002648830414,
0.1158684566617012,
0.025424892082810402,
-0.000521915964782238,
-0.028979474678635597,
0.0012342949630692601,
0.017939848825335503,
-0.04844864830374718,
0.05787196382880211,
0.05857333168387413,
0.04316938295960426,
-0.08646532148122787,
-0.12621809542179108,
0.1648806631565094,
0.030306464061141014,
-0.009557824581861496,
-0.016579851508140564,
-0.009966489858925343,
-0.1208842471241951,
0.017528660595417023,
-0.1364871859550476,
0.1905951350927353,
-0.011928662657737732,
-0.13537395000457764,
-0.037765227258205414,
0.02976745367050171,
-0.07959575206041336,
-0.052539728581905365,
0.19754590094089508,
0.010749349370598793,
0.15268371999263763,
-0.04105769097805023,
0.06228729709982872,
-0.12109522521495819,
-0.03791305050253868,
-0.046334899961948395,
-0.06328468024730682,
0.04989149793982506,
0.0404687374830246,
0.023598898202180862,
0.15048660337924957,
0.007714289706200361,
0.033054500818252563,
0.0651477575302124,
-0.0036108202766627073,
-0.04963812604546547,
0.09995148330926895,
-0.23605607450008392,
-0.08882690221071243,
-0.08521903306245804,
-0.07811299711465836,
0.2283584028482437,
0.10110390931367874,
0.10071951895952225,
-0.007334334775805473,
0.007456775289028883,
0.0005836080526933074,
-0.08998875319957733,
-0.0862978845834732,
-0.04603901877999306,
0.01845170184969902,
0.0035067268181592226,
-0.05742909759283066,
0.055030062794685364,
-0.0638178288936615,
-0.2188406139612198,
-0.027715325355529785,
0.15180334448814392,
-0.09469626098871231,
-0.0822441428899765,
-0.08588110655546188,
0.09656599164009094,
-0.3111693859100342,
-0.002915036864578724,
-0.049341630190610886,
-0.1467059850692749,
0.06575477868318558,
0.2898145914077759,
0.08126331120729446,
0.09240932017564774,
-0.011866607703268528,
-0.003093198174610734,
0.05294685438275337,
0.007718802895396948,
-0.05706045776605606,
0.01116564217954874,
-0.036911383271217346,
0.05715397745370865,
-0.041160617023706436,
0.13368166983127594,
-0.09398490935564041,
-0.011702582240104675,
-0.173807755112648,
0.04814355447888374,
-0.1079769879579544,
-0.1470758318901062,
-0.108147032558918,
-0.07269439101219177,
-0.015463609248399734,
-0.16365943849086761,
-0.035188887268304825,
-0.038414366543293,
-0.14243437349796295,
0.10054623335599899,
0.09262868762016296,
0.06529965996742249,
-0.059143658727407455,
-0.04133544862270355,
0.11234643310308456,
-0.010365935042500496,
0.1344824582338333,
0.16078461706638336,
-0.006753949448466301,
0.15848974883556366,
-0.11501603573560715,
-0.09507827460765839,
0.09599396586418152,
0.012227529659867287,
0.07440104335546494,
0.13435567915439606,
-0.0024500007275491953,
0.10337219387292862,
-0.014429483562707901,
0.09135919064283371,
-0.1580018401145935,
-0.07683845609426498,
0.018698550760746002,
0.08261559158563614,
-0.17174085974693298,
0.009962470270693302,
-0.01847500540316105,
0.18462687730789185,
-0.05127701908349991,
0.07697861641645432,
-0.01460358127951622,
0.04151339828968048,
-0.017785409465432167,
0.0018400729168206453,
0.020427240058779716,
-0.21459250152111053,
-0.0683412030339241,
-0.03847199305891991,
-0.02021733671426773,
0.004829869139939547,
0.2569943368434906,
0.03656001389026642,
-0.08162788301706314,
0.11023087799549103,
0.04834163188934326,
-0.019696371629834175,
0.02023579366505146,
0.223454087972641,
-0.003429143223911524,
-0.030963188037276268,
-0.20480556786060333,
0.06068941578269005,
-0.043492499738931656,
-0.08292364329099655,
0.17414389550685883,
0.13284273445606232,
0.05968116596341133,
0.01986580528318882,
0.0690937265753746,
0.009370139800012112,
-0.09447676688432693,
-0.24165096879005432,
0.09512248635292053,
0.081262968480587,
-0.010290834121406078,
0.1647944301366806,
0.1839398890733719,
-0.06180837005376816,
0.03863924369215965,
0.009665529243648052,
0.04115557298064232,
-0.1327897310256958,
-0.0612201951444149,
0.004771000239998102,
-0.049237385392189026,
0.024689169600605965,
-0.027429478242993355,
0.061514366418123245,
0.0182554442435503,
0.0942927896976471,
-0.06694386154413223,
0.03792937099933624,
-0.018986156210303307,
-0.08868379145860672,
0.0941259115934372,
-0.013507256284356117,
0.043811261653900146,
-0.0896601676940918,
-0.021147985011339188,
-0.18416842818260193,
-0.09752301871776581,
-0.0843830332159996,
-0.0028334097005426884,
-0.057426273822784424,
-0.0916205570101738,
-0.1159573569893837,
-0.051542770117521286,
-0.012715271674096584,
0.03051566518843174,
0.0037149882409721613,
0.05348831042647362,
0.0062863025814294815,
0.027237139642238617,
0.008365151472389698,
0.1292811781167984,
-0.036035895347595215,
-0.0733044445514679,
0.05828749015927315,
0.157373309135437,
0.05531931295990944,
0.1449737697839737,
0.025253744795918465,
0.06188898906111717,
0.03341352567076683,
0.19143852591514587,
0.2855944335460663,
-0.0268822330981493,
0.05771338567137718,
0.02539479173719883,
0.03855352848768234,
0.12143861502408981,
0.06465420126914978,
0.03081965446472168,
0.3626241981983185,
-0.10989682376384735,
0.0015121427131816745,
-0.050639305263757706,
0.023150674998760223,
-0.06995401531457901,
0.14187873899936676,
0.026015352457761765,
-0.11555445939302444,
-0.06665193289518356,
0.1004858911037445,
-0.08991693705320358,
0.061788178980350494,
0.04815433919429779,
-0.1679925173521042,
-0.03398014232516289,
-0.03360316902399063,
0.09986642003059387,
0.05953177437186241,
0.10846469551324844,
-0.06752677261829376,
-0.08944611996412277,
0.03985879570245743,
0.03938005864620209,
-0.2720331847667694,
-0.15815024077892303,
0.08557214587926865,
0.06248321756720543,
0.08697818964719772,
-0.03772910311818123,
0.04164193570613861,
0.10835906863212585,
0.01644917204976082,
-0.0036643357016146183,
-0.027915917336940765,
0.09170176833868027,
-0.11211197823286057,
-0.1417725533246994,
-0.07170789688825607,
0.017374955117702484,
-0.022231895476579666,
0.03160961717367172,
-0.10497622936964035,
0.06208855286240578,
0.0177911426872015,
-0.14289219677448273,
-0.021972013637423515,
0.14223192632198334,
-0.036211833357810974,
0.048538099974393845,
0.04302999749779701,
0.026872707530856133,
-0.040801163762807846,
-0.07570286095142365,
-0.023138366639614105,
0.1319815069437027,
-0.10044091194868088,
-0.06618747115135193,
0.04968677833676338,
-0.0354972705245018,
0.07565672695636749,
-0.07037591189146042,
-0.06344620883464813,
-0.06249347701668739,
-0.05931302160024643,
0.08889594674110413,
-0.17755991220474243,
0.0012144290376454592,
0.03935634717345238,
0.006351267918944359,
0.05754875764250755,
-0.05501805245876312,
0.04594789445400238,
-0.02130294404923916,
-0.0337422750890255,
-0.05700709670782089
] |
null | null |
transformers
|
# π€ + π dbmdz BERT models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources German Europeana BERT models π
# German Europeana BERT
We use the open source [Europeana newspapers](http://www.europeana-newspapers.eu/)
that were provided by *The European Library*. The final
training corpus has a size of 51GB and consists of 8,035,986,369 tokens.
Detailed information about the data and pretraining steps can be found in
[this repository](https://github.com/stefan-it/europeana-bert).
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ------------------------------------------ | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-german-europeana-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/vocab.txt)
## Results
For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert).
## Usage
With Transformers >= 2.3 our German Europeana BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-europeana-uncased")
model = AutoModel.from_pretrained("dbmdz/bert-base-german-europeana-uncased")
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "de", "license": "mit", "tags": ["historic german"]}
| null |
dbmdz/bert-base-german-europeana-uncased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"historic german",
"de",
"license:mit",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"de"
] |
TAGS
#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us
|
+ dbmdz BERT models
===================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources German Europeana BERT models
German Europeana BERT
=====================
We use the open source Europeana newspapers
that were provided by *The European Library*. The final
training corpus has a size of 51GB and consists of 8,035,986,369 tokens.
Detailed information about the data and pretraining steps can be found in
this repository.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Results
-------
For results on Historic NER, please refer to this repository.
Usage
-----
With Transformers >= 2.3 our German Europeana BERT models can be loaded like:
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT models just open an issue
here
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us \n"
] |
[
40
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us \n"
] |
[
-0.04819458723068237,
0.029256289824843407,
-0.007894583977758884,
0.04001659154891968,
0.008747518062591553,
0.015001633204519749,
0.08485016226768494,
0.04574563354253769,
0.1659662276506424,
-0.05237589776515961,
0.13211582601070404,
0.15378089249134064,
-0.03779097646474838,
-0.07175435870885849,
-0.04239761829376221,
-0.26304733753204346,
0.031979337334632874,
0.08537804335355759,
-0.013776279054582119,
0.07501823455095291,
0.09720012545585632,
-0.09077167510986328,
0.04443293437361717,
-0.014785745181143284,
-0.1158987507224083,
0.09755878895521164,
0.027123456820845604,
-0.07280537486076355,
0.16208018362522125,
0.022637249901890755,
0.09628493338823318,
0.03739001601934433,
-0.024032140150666237,
-0.08832450211048126,
0.007708695251494646,
-0.06458940356969833,
-0.11844993382692337,
0.009866624139249325,
0.0418347492814064,
-0.09531504660844803,
0.09897173196077347,
0.12349102646112442,
-0.07167749106884003,
0.043928805738687515,
-0.16384926438331604,
-0.21959161758422852,
-0.06649108231067657,
0.16244015097618103,
-0.0076048728078603745,
0.06926342844963074,
0.04783855378627777,
0.1255785971879959,
-0.12525969743728638,
0.046482380479574203,
0.13945551216602325,
-0.3265018165111542,
-0.022728674113750458,
0.07359924167394638,
0.04931367561221123,
0.011844622902572155,
-0.062027059495449066,
0.10130064189434052,
0.042511507868766785,
0.009211861528456211,
0.00012554634304251522,
-0.11305838078260422,
0.05294141545891762,
0.0853172019124031,
-0.0835581123828888,
-0.08445542305707932,
0.20463357865810394,
-0.021252889186143875,
0.013353363610804081,
0.047951605170965195,
-0.034750357270240784,
-0.0006424588500522077,
0.03237712383270264,
-0.06460420787334442,
-0.026669489219784737,
0.07216044515371323,
0.07075034081935883,
-0.027637481689453125,
-0.08652949333190918,
0.07487385720014572,
-0.21045006811618805,
0.25152823328971863,
0.022819751873612404,
0.06708729267120361,
-0.13934798538684845,
0.028290005400776863,
-0.09999167174100876,
-0.08221018314361572,
-0.006211787927895784,
-0.04384300485253334,
0.05325717851519585,
-0.01239869650453329,
-0.025929998606443405,
0.09339892119169235,
0.03175542503595352,
0.1761578917503357,
0.006552821025252342,
-0.03823600336909294,
-0.003922812640666962,
0.15711253881454468,
-0.00007808546797605231,
0.10086555778980255,
0.059042658656835556,
-0.05034085363149643,
0.023469774052500725,
-0.20345579087734222,
-0.021584345027804375,
0.023811422288417816,
-0.16089153289794922,
-0.0787167027592659,
0.0063642398454248905,
0.08151275664567947,
-0.03368285670876503,
0.0004002038622274995,
-0.04185821861028671,
0.04743821546435356,
0.021729854866862297,
-0.014214358292520046,
-0.0002046620356850326,
-0.02002381905913353,
0.018934054300189018,
0.12930186092853546,
-0.0996178388595581,
-0.036791201680898666,
-0.018908511847257614,
0.15214616060256958,
-0.0729704350233078,
0.0073700775392353535,
-0.02674456126987934,
-0.07325752079486847,
0.08543674647808075,
-0.08174806088209152,
0.07662298530340195,
-0.15729974210262299,
-0.1056293323636055,
0.055491313338279724,
0.08105113357305527,
0.017563866451382637,
0.061358142644166946,
0.028408074751496315,
-0.04634283483028412,
0.0008798476774245501,
-0.049833882600069046,
-0.17954310774803162,
-0.07872091978788376,
0.09267155826091766,
-0.12028516083955765,
0.009912221692502499,
-0.16377048194408417,
0.030406350269913673,
-0.12644118070602417,
-0.012423616833984852,
-0.15569062530994415,
-0.08328524231910706,
-0.030470896512269974,
0.11677439510822296,
0.022464273497462273,
-0.035895828157663345,
-0.07183189690113068,
0.042191311717033386,
-0.05243128165602684,
0.1311621516942978,
-0.1265963464975357,
-0.1210494115948677,
0.22755886614322662,
-0.11068537831306458,
-0.15037977695465088,
0.11089566349983215,
0.02386307716369629,
0.000775221036747098,
0.08207948505878448,
0.1769932359457016,
0.04768497869372368,
-0.1852557510137558,
0.007945633493363857,
0.12670129537582397,
-0.09803152829408646,
-0.10733392089605331,
0.045248162001371384,
-0.026531647890806198,
-0.0761830136179924,
0.00827706791460514,
-0.04517795518040657,
0.0896385982632637,
-0.06299292296171188,
0.0006541379261761904,
0.01428995095193386,
0.008323108777403831,
0.11505525559186935,
0.045309923589229584,
0.08423107862472534,
-0.12922583520412445,
-0.04076039418578148,
0.0844157263636589,
-0.022265570238232613,
0.09746935218572617,
0.004888040013611317,
-0.007802818901836872,
0.014779509045183659,
0.03371703624725342,
-0.0012697175843641162,
-0.08313235640525818,
-0.05975349247455597,
0.004577122163027525,
0.010028660297393799,
0.046787939965724945,
0.2735883891582489,
0.08839426189661026,
-0.028953321278095245,
-0.05450637638568878,
-0.018850911408662796,
0.037665314972400665,
0.02147354930639267,
0.02050274796783924,
-0.10348913073539734,
0.049615275114774704,
-0.03134622052311897,
-0.09147641062736511,
0.011698231101036072,
-0.014019602909684181,
0.1589120775461197,
0.13207463920116425,
-0.02465992420911789,
0.06019974872469902,
-0.12811103463172913,
0.044454410672187805,
-0.03260239586234093,
0.030905164778232574,
0.060248300433158875,
0.002295298269018531,
-0.04027608409523964,
0.23463915288448334,
-0.0017429414438083768,
0.3966418206691742,
0.1924346387386322,
-0.2269018292427063,
-0.02039279416203499,
-0.014610528014600277,
-0.06876121461391449,
0.03476545587182045,
0.058041755110025406,
-0.09273266792297363,
0.08466006070375443,
-0.020173443481326103,
0.05592765659093857,
-0.05107796564698219,
-0.1032509133219719,
-0.02431129664182663,
0.002469847211614251,
-0.09233356267213821,
0.085000179708004,
0.0758565217256546,
-0.19997726380825043,
0.19881798326969147,
0.383309930562973,
0.02014933153986931,
0.20729942619800568,
-0.05303436890244484,
0.021785970777273178,
-0.0029715625569224358,
-0.04546194151043892,
-0.04148399084806442,
0.212397962808609,
-0.16589221358299255,
-0.01446866150945425,
0.03306528180837631,
-0.015061530284583569,
0.011949777603149414,
-0.1115594357252121,
-0.06833574175834656,
-0.02365504391491413,
0.009346588514745235,
-0.025291122496128082,
0.07316341251134872,
-0.01734083704650402,
0.12372667342424393,
-0.01932794600725174,
-0.1662437468767166,
0.09952814131975174,
0.02278822846710682,
-0.07063133269548416,
0.1219104453921318,
-0.11395209282636642,
-0.20681911706924438,
-0.05042498931288719,
-0.07920850813388824,
-0.020292412489652634,
-0.00032185696181841195,
0.07464341819286346,
-0.011618580669164658,
-0.028505342081189156,
0.11609669029712677,
0.084494449198246,
-0.12403104454278946,
0.031793829053640366,
-0.09781830757856369,
0.011549330316483974,
-0.10164511948823929,
-0.08964484184980392,
-0.12212052941322327,
-0.06771799921989441,
-0.043015990406274796,
0.06660287082195282,
-0.06557343155145645,
0.060977187007665634,
0.04649446904659271,
-0.035626769065856934,
0.09555792063474655,
-0.06674604117870331,
0.13399313390254974,
-0.07619564235210419,
0.030616987496614456,
0.09449502825737,
-0.024997832253575325,
0.055991481989622116,
0.13064080476760864,
0.09236643463373184,
-0.044486839324235916,
-0.06794089823961258,
-0.027047108858823776,
-0.08435580134391785,
-0.12730443477630615,
-0.09999115020036697,
-0.11960088461637497,
0.09807601571083069,
0.02820216491818428,
0.04703487455844879,
0.14602982997894287,
0.019475825130939484,
-0.013585158623754978,
-0.07934108376502991,
-0.04003092646598816,
0.054763782769441605,
0.21832381188869476,
-0.018758835271000862,
0.03784599527716637,
-0.04948687553405762,
-0.10221514850854874,
0.1253439038991928,
0.01270212884992361,
0.02191418595612049,
0.12464503943920135,
-0.06861627101898193,
0.07045502960681915,
0.14156197011470795,
0.08903422951698303,
0.09743447601795197,
0.009859376586973667,
-0.058936331421136856,
0.00939991045743227,
-0.06083309277892113,
0.05615922436118126,
0.02946140617132187,
0.0517030693590641,
-0.05240527167916298,
-0.019776402041316032,
-0.2948482632637024,
0.0859716385602951,
0.03752438724040985,
0.09111341834068298,
-0.08444652706384659,
-0.030034761875867844,
0.0327802412211895,
-0.03222009539604187,
-0.01600613445043564,
0.08935170620679855,
-0.00397494388744235,
-0.13698288798332214,
0.10069720447063446,
-0.028769509866833687,
0.10303904861211777,
0.060915395617485046,
0.09200730919837952,
-0.014212525449693203,
-0.11536938697099686,
0.02075372450053692,
0.05729818716645241,
-0.34412649273872375,
0.29677554965019226,
0.01454292144626379,
-0.04003338888287544,
-0.08792450278997421,
-0.06147565692663193,
0.026170426979660988,
0.17234951257705688,
0.16620749235153198,
0.05736509710550308,
-0.06529190391302109,
0.016010789200663567,
0.07048194855451584,
0.005037686787545681,
0.08224166929721832,
-0.06301380693912506,
-0.07281797379255295,
-0.0009753629565238953,
-0.007861911319196224,
-0.011513001285493374,
0.09375791996717453,
-0.02976210042834282,
-0.04356585070490837,
0.04559233412146568,
-0.00695600314065814,
0.012269843369722366,
0.0021024064626544714,
-0.033613111823797226,
-0.0993424728512764,
0.1384168118238449,
-0.07476933300495148,
-0.0019629141315817833,
-0.12931177020072937,
-0.15467886626720428,
0.032805487513542175,
-0.07769279181957245,
0.04726800695061684,
-0.02177570015192032,
-0.025934826582670212,
-0.14227615296840668,
-0.16318361461162567,
0.1406400352716446,
-0.1505861133337021,
0.06798854470252991,
-0.05152910575270653,
0.17605282366275787,
-0.0033795873168855906,
0.046686410903930664,
0.022572578862309456,
0.005591805092990398,
-0.02062566950917244,
-0.1250360906124115,
0.09235242009162903,
-0.18626977503299713,
0.0018916536355391145,
-0.05543812736868858,
-0.0984644964337349,
-0.04401756450533867,
0.0595356710255146,
-0.024556247517466545,
0.10253369063138962,
0.2626540958881378,
-0.04342292249202728,
0.15475250780582428,
0.14870981872081757,
-0.027031244710087776,
-0.3524331748485565,
-0.014884588308632374,
-0.18257306516170502,
-0.039842866361141205,
0.009465246461331844,
-0.0810844674706459,
0.1264713853597641,
0.06153421103954315,
-0.059292975813150406,
0.11427053809165955,
-0.25096186995506287,
-0.08192620426416397,
0.17298349738121033,
-0.029825735837221146,
0.4704858064651489,
-0.039316531270742416,
-0.05903736501932144,
0.023054588586091995,
-0.20535002648830414,
0.1158684566617012,
0.025424892082810402,
-0.000521915964782238,
-0.028979474678635597,
0.0012342949630692601,
0.017939848825335503,
-0.04844864830374718,
0.05787196382880211,
0.05857333168387413,
0.04316938295960426,
-0.08646532148122787,
-0.12621809542179108,
0.1648806631565094,
0.030306464061141014,
-0.009557824581861496,
-0.016579851508140564,
-0.009966489858925343,
-0.1208842471241951,
0.017528660595417023,
-0.1364871859550476,
0.1905951350927353,
-0.011928662657737732,
-0.13537395000457764,
-0.037765227258205414,
0.02976745367050171,
-0.07959575206041336,
-0.052539728581905365,
0.19754590094089508,
0.010749349370598793,
0.15268371999263763,
-0.04105769097805023,
0.06228729709982872,
-0.12109522521495819,
-0.03791305050253868,
-0.046334899961948395,
-0.06328468024730682,
0.04989149793982506,
0.0404687374830246,
0.023598898202180862,
0.15048660337924957,
0.007714289706200361,
0.033054500818252563,
0.0651477575302124,
-0.0036108202766627073,
-0.04963812604546547,
0.09995148330926895,
-0.23605607450008392,
-0.08882690221071243,
-0.08521903306245804,
-0.07811299711465836,
0.2283584028482437,
0.10110390931367874,
0.10071951895952225,
-0.007334334775805473,
0.007456775289028883,
0.0005836080526933074,
-0.08998875319957733,
-0.0862978845834732,
-0.04603901877999306,
0.01845170184969902,
0.0035067268181592226,
-0.05742909759283066,
0.055030062794685364,
-0.0638178288936615,
-0.2188406139612198,
-0.027715325355529785,
0.15180334448814392,
-0.09469626098871231,
-0.0822441428899765,
-0.08588110655546188,
0.09656599164009094,
-0.3111693859100342,
-0.002915036864578724,
-0.049341630190610886,
-0.1467059850692749,
0.06575477868318558,
0.2898145914077759,
0.08126331120729446,
0.09240932017564774,
-0.011866607703268528,
-0.003093198174610734,
0.05294685438275337,
0.007718802895396948,
-0.05706045776605606,
0.01116564217954874,
-0.036911383271217346,
0.05715397745370865,
-0.041160617023706436,
0.13368166983127594,
-0.09398490935564041,
-0.011702582240104675,
-0.173807755112648,
0.04814355447888374,
-0.1079769879579544,
-0.1470758318901062,
-0.108147032558918,
-0.07269439101219177,
-0.015463609248399734,
-0.16365943849086761,
-0.035188887268304825,
-0.038414366543293,
-0.14243437349796295,
0.10054623335599899,
0.09262868762016296,
0.06529965996742249,
-0.059143658727407455,
-0.04133544862270355,
0.11234643310308456,
-0.010365935042500496,
0.1344824582338333,
0.16078461706638336,
-0.006753949448466301,
0.15848974883556366,
-0.11501603573560715,
-0.09507827460765839,
0.09599396586418152,
0.012227529659867287,
0.07440104335546494,
0.13435567915439606,
-0.0024500007275491953,
0.10337219387292862,
-0.014429483562707901,
0.09135919064283371,
-0.1580018401145935,
-0.07683845609426498,
0.018698550760746002,
0.08261559158563614,
-0.17174085974693298,
0.009962470270693302,
-0.01847500540316105,
0.18462687730789185,
-0.05127701908349991,
0.07697861641645432,
-0.01460358127951622,
0.04151339828968048,
-0.017785409465432167,
0.0018400729168206453,
0.020427240058779716,
-0.21459250152111053,
-0.0683412030339241,
-0.03847199305891991,
-0.02021733671426773,
0.004829869139939547,
0.2569943368434906,
0.03656001389026642,
-0.08162788301706314,
0.11023087799549103,
0.04834163188934326,
-0.019696371629834175,
0.02023579366505146,
0.223454087972641,
-0.003429143223911524,
-0.030963188037276268,
-0.20480556786060333,
0.06068941578269005,
-0.043492499738931656,
-0.08292364329099655,
0.17414389550685883,
0.13284273445606232,
0.05968116596341133,
0.01986580528318882,
0.0690937265753746,
0.009370139800012112,
-0.09447676688432693,
-0.24165096879005432,
0.09512248635292053,
0.081262968480587,
-0.010290834121406078,
0.1647944301366806,
0.1839398890733719,
-0.06180837005376816,
0.03863924369215965,
0.009665529243648052,
0.04115557298064232,
-0.1327897310256958,
-0.0612201951444149,
0.004771000239998102,
-0.049237385392189026,
0.024689169600605965,
-0.027429478242993355,
0.061514366418123245,
0.0182554442435503,
0.0942927896976471,
-0.06694386154413223,
0.03792937099933624,
-0.018986156210303307,
-0.08868379145860672,
0.0941259115934372,
-0.013507256284356117,
0.043811261653900146,
-0.0896601676940918,
-0.021147985011339188,
-0.18416842818260193,
-0.09752301871776581,
-0.0843830332159996,
-0.0028334097005426884,
-0.057426273822784424,
-0.0916205570101738,
-0.1159573569893837,
-0.051542770117521286,
-0.012715271674096584,
0.03051566518843174,
0.0037149882409721613,
0.05348831042647362,
0.0062863025814294815,
0.027237139642238617,
0.008365151472389698,
0.1292811781167984,
-0.036035895347595215,
-0.0733044445514679,
0.05828749015927315,
0.157373309135437,
0.05531931295990944,
0.1449737697839737,
0.025253744795918465,
0.06188898906111717,
0.03341352567076683,
0.19143852591514587,
0.2855944335460663,
-0.0268822330981493,
0.05771338567137718,
0.02539479173719883,
0.03855352848768234,
0.12143861502408981,
0.06465420126914978,
0.03081965446472168,
0.3626241981983185,
-0.10989682376384735,
0.0015121427131816745,
-0.050639305263757706,
0.023150674998760223,
-0.06995401531457901,
0.14187873899936676,
0.026015352457761765,
-0.11555445939302444,
-0.06665193289518356,
0.1004858911037445,
-0.08991693705320358,
0.061788178980350494,
0.04815433919429779,
-0.1679925173521042,
-0.03398014232516289,
-0.03360316902399063,
0.09986642003059387,
0.05953177437186241,
0.10846469551324844,
-0.06752677261829376,
-0.08944611996412277,
0.03985879570245743,
0.03938005864620209,
-0.2720331847667694,
-0.15815024077892303,
0.08557214587926865,
0.06248321756720543,
0.08697818964719772,
-0.03772910311818123,
0.04164193570613861,
0.10835906863212585,
0.01644917204976082,
-0.0036643357016146183,
-0.027915917336940765,
0.09170176833868027,
-0.11211197823286057,
-0.1417725533246994,
-0.07170789688825607,
0.017374955117702484,
-0.022231895476579666,
0.03160961717367172,
-0.10497622936964035,
0.06208855286240578,
0.0177911426872015,
-0.14289219677448273,
-0.021972013637423515,
0.14223192632198334,
-0.036211833357810974,
0.048538099974393845,
0.04302999749779701,
0.026872707530856133,
-0.040801163762807846,
-0.07570286095142365,
-0.023138366639614105,
0.1319815069437027,
-0.10044091194868088,
-0.06618747115135193,
0.04968677833676338,
-0.0354972705245018,
0.07565672695636749,
-0.07037591189146042,
-0.06344620883464813,
-0.06249347701668739,
-0.05931302160024643,
0.08889594674110413,
-0.17755991220474243,
0.0012144290376454592,
0.03935634717345238,
0.006351267918944359,
0.05754875764250755,
-0.05501805245876312,
0.04594789445400238,
-0.02130294404923916,
-0.0337422750890255,
-0.05700709670782089
] |
null | null |
transformers
|
# π€ + π dbmdz German BERT models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources another German BERT models π
# German BERT
## Stats
In addition to the recently released [German BERT](https://deepset.ai/german-bert)
model by [deepset](https://deepset.ai/) we provide another German-language model.
The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus,
Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with
a size of 16GB and 2,350,234,427 tokens.
For sentence splitting, we use [spacy](https://spacy.io/). Our preprocessing steps
(sentence piece model for vocab generation) follow those used for training
[SciBERT](https://github.com/allenai/scibert). The model is trained with an initial
sequence length of 512 subwords and was performed for 1.5M steps.
This release includes both cased and uncased models.
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| -------------------------------- | ---------------------------------------------------------------------------------------------------------------
| `bert-base-german-dbmdz-cased` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.json) β’ [`pytorch_model.bin`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin) β’ [`vocab.txt`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt)
| `bert-base-german-dbmdz-uncased` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.json) β’ [`pytorch_model.bin`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin) β’ [`vocab.txt`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt)
## Usage
With Transformers >= 2.3 our German BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
model = AutoModel.from_pretrained("dbmdz/bert-base-german-cased")
```
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[this repository](https://github.com/stefan-it/fine-tuned-berts-seq).
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "de", "license": "mit"}
|
fill-mask
|
dbmdz/bert-base-german-uncased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"de",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"de"
] |
TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
|
+ dbmdz German BERT models
==========================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources another German BERT models
German BERT
===========
Stats
-----
In addition to the recently released German BERT
model by deepset we provide another German-language model.
The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus,
Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with
a size of 16GB and 2,350,234,427 tokens.
For sentence splitting, we use spacy. Our preprocessing steps
(sentence piece model for vocab generation) follow those used for training
SciBERT. The model is trained with an initial
sequence length of 512 subwords and was performed for 1.5M steps.
This release includes both cased and uncased models.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Usage
-----
With Transformers >= 2.3 our German BERT models can be loaded like:
Results
-------
For results on downstream tasks like NER or PoS tagging, please refer to
this repository.
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT models just open an issue
here
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
58
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.017137225717306137,
0.018642790615558624,
-0.005587710067629814,
0.04178430885076523,
0.04811940714716911,
0.015619934536516666,
0.1209658682346344,
0.09032786637544632,
0.0696859359741211,
-0.0023615332320332527,
0.16120074689388275,
0.17829541862010956,
-0.030359813943505287,
0.16188743710517883,
-0.04806555435061455,
-0.21584849059581757,
0.07609734684228897,
0.015166922472417355,
-0.06277866661548615,
0.10082584619522095,
0.09837961941957474,
-0.07797390222549438,
0.06428909301757812,
-0.021028714254498482,
-0.08635657280683517,
0.04223059490323067,
0.07067091763019562,
-0.11879824101924896,
0.15478292107582092,
0.02965475432574749,
0.17046122252941132,
0.0774027481675148,
-0.009782957844436169,
-0.061030950397253036,
0.04313146322965622,
0.027642861008644104,
-0.11443319916725159,
0.03828532621264458,
-0.011662106029689312,
-0.031715698540210724,
0.032543666660785675,
0.010881355963647366,
0.042133938521146774,
0.04064849019050598,
-0.1525777131319046,
-0.2513589560985565,
-0.0427241176366806,
0.06538041681051254,
0.02277320995926857,
0.05172334611415863,
0.018889544531702995,
0.22210904955863953,
-0.1302463412284851,
0.07907319068908691,
0.13852941989898682,
-0.3640775680541992,
-0.008691152557730675,
0.12661723792552948,
0.13046638667583466,
-0.021247245371341705,
-0.06684613972902298,
0.05556907504796982,
0.06252307444810867,
0.017715003341436386,
0.15071862936019897,
-0.05743611231446266,
-0.05238356813788414,
0.03697116672992706,
-0.08933567255735397,
-0.05947251617908478,
0.17374330759048462,
-0.028880076482892036,
0.024109480902552605,
-0.025532666593790054,
-0.09183932840824127,
-0.028859157115221024,
0.007786914240568876,
-0.03338314965367317,
-0.0019704208243638277,
0.04834440350532532,
-0.018949752673506737,
-0.0031265770085155964,
-0.151779443025589,
0.016859684139490128,
-0.21153193712234497,
0.16860942542552948,
-0.0009558854508213699,
0.0627622902393341,
-0.16678792238235474,
0.05911094322800636,
-0.01834719255566597,
-0.12807008624076843,
0.04622916877269745,
-0.07521449029445648,
0.0525733083486557,
-0.009581033140420914,
-0.034145716577768326,
0.01689710095524788,
0.08667726069688797,
0.18978092074394226,
-0.006010343786329031,
-0.009447591379284859,
0.010836687870323658,
0.10137013345956802,
-0.0007334772381000221,
0.052581459283828735,
0.004009725991636515,
-0.011057643219828606,
0.04419080540537834,
-0.06896471232175827,
0.02896578423678875,
-0.04163128510117531,
-0.12353438884019852,
-0.032693710178136826,
0.034194353967905045,
0.0845462903380394,
0.05597534403204918,
0.07142840325832367,
-0.04562010243535042,
0.06461267173290253,
0.12041813135147095,
-0.05473467335104942,
0.01437896117568016,
-0.030633045360445976,
0.09878730773925781,
-0.029620159417390823,
0.017390038818120956,
-0.014811373315751553,
0.048747215420007706,
0.10324887186288834,
-0.10921421647071838,
-0.054703328758478165,
-0.033739183098077774,
-0.10406552255153656,
0.05768219754099846,
-0.0910075381398201,
0.03616128861904144,
-0.2133142054080963,
-0.100994773209095,
0.06129022687673569,
0.05084072798490524,
0.013271271251142025,
-0.04337339848279953,
0.08848324418067932,
-0.05779174715280533,
0.03693029657006264,
-0.05255001410841942,
-0.03284584730863571,
-0.07165202498435974,
0.09799008816480637,
-0.04709148034453392,
0.10583378374576569,
-0.14471489191055298,
0.013150413520634174,
-0.09640303254127502,
0.015687281265854836,
-0.11636573076248169,
-0.09756594896316528,
-0.04974735528230667,
0.15202495455741882,
0.017803266644477844,
-0.04038631543517113,
-0.11223311722278595,
0.058492086827754974,
-0.0333065465092659,
0.13070005178451538,
-0.14404092729091644,
-0.06302572786808014,
0.20865830779075623,
-0.1228911355137825,
-0.17004390060901642,
0.080263152718544,
0.008864529430866241,
0.044767942279577255,
0.01844637654721737,
0.1553700566291809,
0.012624052353203297,
-0.1939108818769455,
0.04135539382696152,
0.13638170063495636,
-0.12809190154075623,
-0.09536533802747726,
0.05211324244737625,
-0.004039671737700701,
-0.10162181407213211,
0.00774499261751771,
0.036776334047317505,
0.09222468733787537,
-0.048860445618629456,
-0.05995464324951172,
-0.04203708842396736,
-0.03235733509063721,
0.10582005232572556,
0.012710998766124249,
0.07317785918712616,
-0.11015468090772629,
-0.06640282273292542,
-0.028611108660697937,
-0.008694280870258808,
0.08596069365739822,
0.011567126028239727,
-0.08607400208711624,
0.12371961027383804,
-0.003425949951633811,
-0.026657896116375923,
-0.09972341358661652,
-0.12681268155574799,
-0.027874596416950226,
0.02834128960967064,
-0.030705902725458145,
0.1906137466430664,
0.09088174253702164,
-0.023125633597373962,
-0.026130221784114838,
-0.028598638251423836,
0.09069497138261795,
0.08396921306848526,
-0.007799462880939245,
-0.1341986060142517,
0.016148913651704788,
-0.08866473287343979,
-0.024659205228090286,
-0.02454848773777485,
0.0218786783516407,
0.05657871440052986,
0.13816119730472565,
-0.01097180973738432,
0.06134112551808357,
-0.06455386430025101,
0.003330675885081291,
-0.03589604049921036,
-0.01553878653794527,
0.06063481420278549,
0.025409340858459473,
-0.03325982764363289,
0.20632058382034302,
-0.15612304210662842,
0.4218877851963043,
0.21555684506893158,
-0.16766145825386047,
-0.06044493243098259,
0.08204126358032227,
-0.038127996027469635,
0.028964323922991753,
0.021187830716371536,
-0.06025686115026474,
-0.08243601024150848,
-0.05935388058423996,
0.12800177931785583,
-0.04922620579600334,
-0.04915161430835724,
0.023244760930538177,
-0.05584092438220978,
-0.08005861937999725,
0.0026434087194502354,
0.06911198049783707,
-0.1766834855079651,
0.21508443355560303,
0.36706051230430603,
0.007629120256751776,
0.1648615002632141,
-0.023440971970558167,
0.019093772396445274,
-0.027396809309720993,
-0.03752696514129639,
-0.03495083004236221,
0.13718923926353455,
-0.1346382051706314,
-0.01815313659608364,
0.060801759362220764,
-0.014460901729762554,
0.019261082634329796,
-0.1294952630996704,
-0.08487240225076675,
0.027141552418470383,
0.04454704746603966,
-0.07413198798894882,
0.14832037687301636,
0.020255379378795624,
0.11077004671096802,
-0.022739294916391373,
-0.1524759978055954,
0.09788016229867935,
0.004258658736944199,
-0.0486895814538002,
0.12632836401462555,
-0.13563743233680725,
-0.275787889957428,
-0.06753726303577423,
-0.07648198306560516,
0.06369426101446152,
0.012828814797103405,
0.10404030978679657,
-0.04159696027636528,
-0.049865540117025375,
-0.003427143907174468,
-0.04396161064505577,
-0.05124201625585556,
0.07602986693382263,
-0.07790542393922806,
0.02178909257054329,
-0.010344740003347397,
-0.10174337774515152,
-0.09070094674825668,
0.004858850501477718,
-0.0512755922973156,
0.12905654311180115,
-0.007466951850801706,
0.06760573387145996,
0.10071900486946106,
-0.035713743418455124,
0.03661315143108368,
-0.057698242366313934,
0.20929239690303802,
-0.06751025468111038,
0.039873041212558746,
0.15579621493816376,
0.0010030096163973212,
0.07267167419195175,
0.21183745563030243,
0.045408401638269424,
-0.03536846116185188,
0.006764200981706381,
-0.0489439032971859,
-0.10735378414392471,
-0.11841269582509995,
-0.08028893172740936,
-0.11760269850492477,
0.012205205857753754,
0.029511457309126854,
0.0813547894358635,
0.15647470951080322,
0.05224006250500679,
0.021094994619488716,
-0.049849733710289,
-0.05147143453359604,
0.05069144815206528,
0.14872369170188904,
-0.0497136227786541,
0.12739166617393494,
-0.05372682958841324,
-0.13847333192825317,
0.06973496079444885,
0.014984078705310822,
0.020671213045716286,
0.10827989131212234,
-0.06361083686351776,
0.08181663602590561,
0.20890304446220398,
0.1159856766462326,
0.12201039493083954,
0.025263912975788116,
-0.0851520448923111,
-0.025251319631934166,
-0.04487527906894684,
0.028841860592365265,
0.04992295056581497,
0.07863623648881912,
-0.08312294632196426,
-0.029104994609951973,
-0.18805328011512756,
0.05413861572742462,
0.07426012307405472,
0.08913203328847885,
-0.2175978422164917,
0.01423136331140995,
0.07365152984857559,
0.012160106562077999,
-0.04178393632173538,
0.05431811884045601,
0.06391479074954987,
-0.07098092883825302,
0.05345521122217178,
-0.00806480273604393,
0.054087646305561066,
0.15043945610523224,
0.09602633863687515,
-0.01804756373167038,
-0.1014476865530014,
-0.002153523964807391,
0.04115651920437813,
-0.27976882457733154,
0.25724226236343384,
-0.007825513370335102,
-0.03802408650517464,
-0.0597030408680439,
-0.007472393102943897,
0.04486618563532829,
0.14925068616867065,
0.14667686820030212,
0.03517230227589607,
-0.0896984189748764,
-0.09388206899166107,
0.03800807148218155,
0.01502627320587635,
0.04715947061777115,
-0.028942450881004333,
-0.007273583672940731,
-0.03968937695026398,
-0.01956995204091072,
0.04595980420708656,
0.1864023506641388,
-0.06381160020828247,
-0.09985620528459549,
0.060793109238147736,
0.06135372072458267,
0.00781229417771101,
-0.06783806532621384,
-0.05510983243584633,
-0.17502638697624207,
0.12662038207054138,
-0.011863350868225098,
-0.011466111987829208,
-0.113596111536026,
-0.13979946076869965,
0.06054900586605072,
-0.05385153368115425,
0.09115628898143768,
-0.05705104023218155,
0.00706656277179718,
-0.10373463481664658,
-0.15056830644607544,
0.1578717827796936,
-0.14602535963058472,
-0.02790192887187004,
-0.10131236165761948,
0.11817390471696854,
-0.10149239003658295,
0.04260139912366867,
0.03297479450702667,
0.04934345930814743,
-0.0858934223651886,
-0.05916965752840042,
0.033262018114328384,
-0.1164495125412941,
0.06283070892095566,
-0.05088960751891136,
-0.058795150369405746,
-0.08019373565912247,
0.07606451213359833,
0.0005846429849043489,
0.17334216833114624,
0.2813331186771393,
-0.10545354336500168,
0.12954622507095337,
0.1256115585565567,
-0.008306817151606083,
-0.33706358075141907,
-0.11623380333185196,
-0.1915326714515686,
-0.009082418866455555,
0.11102477461099625,
-0.014600562863051891,
0.03455384820699692,
-0.011592337861657143,
-0.08535733073949814,
0.11065402626991272,
-0.16161753237247467,
-0.09104886651039124,
0.21698373556137085,
0.0007258115219883621,
0.3789067566394806,
-0.1461767852306366,
-0.023741597309708595,
0.005851271562278271,
-0.1116027981042862,
0.10608451068401337,
-0.08323202282190323,
0.052892621606588364,
-0.006259622983634472,
0.0043943808414042,
0.020693151280283928,
-0.08026941120624542,
0.1211879774928093,
-0.07648644596338272,
0.05645008385181427,
-0.11874580383300781,
-0.09857342392206192,
0.14566883444786072,
-0.016038715839385986,
0.007006793282926083,
-0.09852363914251328,
0.0063243587501347065,
-0.031131388619542122,
0.010976453311741352,
-0.11595971137285233,
0.14027109742164612,
-0.017160985618829727,
-0.10057429224252701,
-0.0073508997447788715,
0.03137525916099548,
-0.00316902669146657,
-0.0597640685737133,
0.19053268432617188,
-0.005719904787838459,
0.24933786690235138,
0.12852874398231506,
0.007381037343293428,
-0.1352853626012802,
-0.05058259889483452,
0.013602357357740402,
-0.09256910532712936,
0.08671117573976517,
-0.05613798648118973,
0.04236466810107231,
0.060008369386196136,
-0.007999531924724579,
0.07107936590909958,
0.10755588114261627,
-0.009712517261505127,
-0.056123729795217514,
0.19022051990032196,
-0.19853846728801727,
-0.04665248095989227,
-0.011316923424601555,
0.02205486409366131,
0.0669155865907669,
0.036116208881139755,
0.08332478255033493,
-0.02101338654756546,
-0.011267663910984993,
-0.006745319813489914,
0.0012515427079051733,
-0.07771067321300507,
0.007256864570081234,
0.08336013555526733,
0.058966632932424545,
-0.07801022380590439,
-0.018213994801044464,
-0.0027399961836636066,
-0.1517694890499115,
-0.013004927895963192,
0.06598123162984848,
-0.08396094292402267,
-0.1401737928390503,
0.0011440688977017999,
0.0429120734333992,
-0.04974338412284851,
-0.030474217608571053,
-0.03645765781402588,
-0.1410156786441803,
0.03315221518278122,
0.23811647295951843,
0.08591785281896591,
0.09593834728002548,
0.035582706332206726,
-0.017753170803189278,
0.020843779668211937,
0.016525166109204292,
-0.05929004028439522,
0.03427182510495186,
-0.12989164888858795,
0.07602028548717499,
-0.011451208963990211,
0.10867827385663986,
-0.10397525131702423,
0.01601910963654518,
-0.18012604117393494,
-0.011755101382732391,
-0.03760330006480217,
-0.08800350874662399,
-0.09478110820055008,
-0.07438304275274277,
0.038438428193330765,
-0.08692128956317902,
-0.048320915549993515,
-0.027591830119490623,
-0.11794716119766235,
0.017554080113768578,
0.0551120899617672,
0.05748673900961876,
-0.08430653065443039,
-0.05040767788887024,
0.0872993990778923,
-0.03212122246623039,
0.08149108290672302,
0.05574057623744011,
-0.04681885614991188,
0.08025475591421127,
-0.12717998027801514,
-0.0907314270734787,
0.0839085727930069,
-0.002028547925874591,
0.06707948446273804,
0.051975227892398834,
-0.003061913885176182,
0.04559512063860893,
0.011655880138278008,
0.05017921328544617,
-0.011367443948984146,
-0.0994940772652626,
0.06145033240318298,
0.04739769175648689,
-0.14562548696994781,
0.009814975783228874,
-0.10596016049385071,
0.11449852585792542,
-0.06513361632823944,
0.12260519713163376,
-0.04182839021086693,
0.027257515117526054,
-0.11029702425003052,
0.013715715147554874,
-0.04663316532969475,
-0.13773059844970703,
-0.05270101875066757,
-0.028435396030545235,
-0.0007890948327258229,
-0.019575947895646095,
0.2218618392944336,
0.06554250419139862,
-0.09452049434185028,
0.07603465765714645,
0.027226729318499565,
0.02951996587216854,
-0.0010573328472673893,
0.19151781499385834,
0.02803177200257778,
-0.055911026895046234,
-0.1220562681555748,
0.034912142902612686,
-0.005289443302899599,
-0.11047621816396713,
0.1032116711139679,
0.11179547011852264,
0.041916877031326294,
0.06400766223669052,
0.06933921575546265,
-0.038876134902238846,
-0.0928206741809845,
-0.19143988192081451,
-0.0014526478480547667,
0.05021810531616211,
-0.034099385142326355,
-0.0184258371591568,
0.2069297581911087,
-0.017920566722750664,
0.03493814915418625,
-0.0674658939242363,
0.025534814223647118,
-0.1793449968099594,
-0.1146116778254509,
-0.06404612958431244,
-0.06119666248559952,
0.009692063555121422,
-0.014788823202252388,
0.01477948110550642,
0.08576584607362747,
0.040861260145902634,
-0.022360866889357567,
0.08813018351793289,
0.006842500995844603,
-0.013940433971583843,
0.0030062776058912277,
0.028127947822213173,
0.025671251118183136,
-0.06279439479112625,
0.001314534805715084,
-0.1315155178308487,
-0.028288112953305244,
-0.07531190663576126,
-0.018770238384604454,
-0.059741124510765076,
0.009073661640286446,
-0.09446791559457779,
-0.09202796965837479,
-0.054300498217344284,
0.01854408159852028,
-0.02801677957177162,
0.10141115635633469,
-0.0004490012943278998,
0.041756898164749146,
0.03070535510778427,
0.15615974366664886,
-0.0727548897266388,
-0.12836888432502747,
-0.029793594032526016,
0.20713548362255096,
0.02285083942115307,
0.09815036505460739,
-0.010639909654855728,
0.023922814056277275,
-0.07546809315681458,
0.20118148624897003,
0.3510076403617859,
-0.03252757713198662,
0.11128802597522736,
0.01981593854725361,
0.009556751698255539,
0.013141355477273464,
0.09069428592920303,
0.08190712332725525,
0.26696574687957764,
-0.09349322319030762,
0.014720321632921696,
-0.05950953811407089,
0.0022461418993771076,
-0.09474994987249374,
0.019437234848737717,
0.02360592409968376,
-0.03510884940624237,
-0.02717982977628708,
0.05055961757898331,
-0.09181366860866547,
0.05897250026464462,
0.08555520325899124,
-0.1887659877538681,
-0.037495341151952744,
0.012072485871613026,
0.16667793691158295,
-0.007933185435831547,
0.08010750263929367,
-0.05081409588456154,
-0.04772591218352318,
0.012502199038863182,
-0.007041802629828453,
-0.15385837852954865,
-0.05415772646665573,
0.11129431426525116,
0.013642984442412853,
0.14942720532417297,
-0.04453172907233238,
0.04583220183849335,
0.10694997012615204,
0.047867607325315475,
-0.05501668527722359,
0.08320358395576477,
0.05338606610894203,
-0.09572167694568634,
-0.07083097845315933,
-0.07902682572603226,
0.010812330059707165,
-0.07089196145534515,
0.0362602174282074,
-0.1584370881319046,
0.0481562539935112,
-0.050271593034267426,
-0.055501386523246765,
-0.025897806510329247,
0.06263621151447296,
-0.025909852236509323,
0.08263272792100906,
0.02955755777657032,
-0.00031544413650408387,
-0.03432318568229675,
-0.03796287253499031,
-0.01808970794081688,
0.09316946566104889,
-0.12712281942367554,
-0.12352349609136581,
-0.03933759778738022,
-0.010840152390301228,
0.017042800784111023,
-0.017964638769626617,
-0.1307237446308136,
-0.07045480608940125,
-0.07632091641426086,
0.017496382817626,
-0.13771583139896393,
0.0237148217856884,
0.10677771270275116,
0.04455683380365372,
0.007194752339273691,
-0.055383019149303436,
0.012751483358442783,
0.047163933515548706,
-0.14062035083770752,
-0.07147111743688583
] |
null | null |
transformers
|
# Language Model for Historic Dutch
In this repository we open source a language model for Historic Dutch, trained on the
[Delpher Corpus](https://www.delpher.nl/over-delpher/delpher-open-krantenarchief/download-teksten-kranten-1618-1879\),
that include digitized texts from Dutch newspapers, ranging from 1618 to 1879.
# Changelog
* 13.12.2021: Initial version of this repository.
# Model Zoo
The following models for Historic Dutch are available on the Hugging Face Model Hub:
| Model identifier | Model Hub link
| -------------------------------------- | -------------------------------------------------------------------
| `dbmdz/bert-base-historic-dutch-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-dutch-cased)
# Stats
The download urls for all archives can be found [here](delpher-corpus.urls).
We then used the awesome `alto-tools` from [this](https://github.com/cneud/alto-tools)
repository to extract plain text. The following table shows the size overview per year range:
| Period | Extracted plain text size
| --------- | -------------------------:
| 1618-1699 | 170MB
| 1700-1709 | 103MB
| 1710-1719 | 65MB
| 1720-1729 | 137MB
| 1730-1739 | 144MB
| 1740-1749 | 188MB
| 1750-1759 | 171MB
| 1760-1769 | 235MB
| 1770-1779 | 271MB
| 1780-1789 | 414MB
| 1790-1799 | 614MB
| 1800-1809 | 734MB
| 1810-1819 | 807MB
| 1820-1829 | 987MB
| 1830-1839 | 1.7GB
| 1840-1849 | 2.2GB
| 1850-1854 | 1.3GB
| 1855-1859 | 1.7GB
| 1860-1864 | 2.0GB
| 1865-1869 | 2.3GB
| 1870-1874 | 1.9GB
| 1875-1876 | 867MB
| 1877-1879 | 1.9GB
The total training corpus consists of 427,181,269 sentences and 3,509,581,683 tokens (counted via `wc`),
resulting in a total corpus size of 21GB.
The following figure shows an overview of the number of chars per year distribution:

# Language Model Pretraining
We use the official [BERT](https://github.com/google-research/bert) implementation using the following command
to train the model:
```bash
python3 run_pretraining.py --input_file gs://delpher-bert/tfrecords/*.tfrecord \
--output_dir gs://delpher-bert/bert-base-historic-dutch-cased \
--bert_config_file ./config.json \
--max_seq_length=512 \
--max_predictions_per_seq=75 \
--do_train=True \
--train_batch_size=128 \
--num_train_steps=3000000 \
--learning_rate=1e-4 \
--save_checkpoints_steps=100000 \
--keep_checkpoint_max=20 \
--use_tpu=True \
--tpu_name=electra-2 \
--num_tpu_cores=32
```
We train the model for 3M steps using a total batch size of 128 on a v3-32 TPU. The pretraining loss curve can be seen
in the next figure:

# Evaluation
We evaluate our model on the preprocessed Europeana NER dataset for Dutch, that was presented in the
["Data Centric Domain Adaptation for Historical Text with OCR Errors"](https://github.com/stefan-it/historic-domain-adaptation-icdar) paper.
The data is available in their repository. We perform a hyper-parameter search for:
* Batch sizes: `[4, 8]`
* Learning rates: `[3e-5, 5e-5]`
* Number of epochs: `[5, 10]`
and report averaged F1-Score over 5 runs with different seeds. We also include [hmBERT](https://github.com/stefan-it/clef-hipe/blob/main/hlms.md) as baseline model.
Results:
| Model | F1-Score (Dev / Test)
| ------------------- | ---------------------
| hmBERT | (82.73) / 81.34
| Maerz et al. (2021) | - / 84.2
| Ours | (89.73) / 87.45
# License
All models are licensed under [MIT](LICENSE).
# Acknowledgments
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC β€οΈ
We thank [Clemens Neudecker](https://github.com/cneud) for maintaining the amazing
[ALTO tools](https://github.com/cneud/alto-tools) that were used for parsing the Delpher Corpus XML files.
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "dutch", "license": "mit", "widget": [{"text": "de [MASK] vau Financien, in hec vorige jaar, da inkomswi"}]}
|
fill-mask
|
dbmdz/bert-base-historic-dutch-cased
|
[
"transformers",
"pytorch",
"tf",
"tensorboard",
"bert",
"fill-mask",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"dutch"
] |
TAGS
#transformers #pytorch #tf #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
Language Model for Historic Dutch
=================================
In this repository we open source a language model for Historic Dutch, trained on the
Delpher Corpus,
that include digitized texts from Dutch newspapers, ranging from 1618 to 1879.
Changelog
=========
* 13.12.2021: Initial version of this repository.
Model Zoo
=========
The following models for Historic Dutch are available on the Hugging Face Model Hub:
Stats
=====
The download urls for all archives can be found here.
We then used the awesome 'alto-tools' from this
repository to extract plain text. The following table shows the size overview per year range:
The total training corpus consists of 427,181,269 sentences and 3,509,581,683 tokens (counted via 'wc'),
resulting in a total corpus size of 21GB.
The following figure shows an overview of the number of chars per year distribution:
!Delpher Corpus Stats
Language Model Pretraining
==========================
We use the official BERT implementation using the following command
to train the model:
We train the model for 3M steps using a total batch size of 128 on a v3-32 TPU. The pretraining loss curve can be seen
in the next figure:
!Delpher Pretraining Loss Curve
Evaluation
==========
We evaluate our model on the preprocessed Europeana NER dataset for Dutch, that was presented in the
"Data Centric Domain Adaptation for Historical Text with OCR Errors" paper.
The data is available in their repository. We perform a hyper-parameter search for:
* Batch sizes: '[4, 8]'
* Learning rates: '[3e-5, 5e-5]'
* Number of epochs: '[5, 10]'
and report averaged F1-Score over 5 runs with different seeds. We also include hmBERT as baseline model.
Results:
License
=======
All models are licensed under MIT.
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC οΈ
We thank Clemens Neudecker for maintaining the amazing
ALTO tools that were used for parsing the Delpher Corpus XML files.
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
48
] |
[
"passage: TAGS\n#transformers #pytorch #tf #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.06136072427034378,
0.029431084170937538,
-0.006590177305042744,
0.05745568126440048,
0.09853187203407288,
0.03618107736110687,
0.15030387043952942,
0.10798430442810059,
0.10550741106271744,
-0.023315567523241043,
0.1406051218509674,
0.23285365104675293,
0.00012523737677838653,
0.10556961596012115,
-0.060407184064388275,
-0.25973793864250183,
0.02649657055735588,
0.08078159391880035,
-0.08380843698978424,
0.09985719621181488,
0.062174614518880844,
-0.07017336785793304,
0.05792618542909622,
0.0015635103918612003,
-0.1487693339586258,
0.037149131298065186,
0.08086956292390823,
-0.11460737138986588,
0.1387087106704712,
0.07382955402135849,
0.16469897329807281,
0.07263772934675217,
-0.033371008932590485,
-0.05358152091503143,
0.045628584921360016,
0.017558228224515915,
-0.11618547141551971,
0.06792572885751724,
0.03722640126943588,
-0.025706501677632332,
0.021936874836683273,
0.06284521520137787,
0.03298014774918556,
0.056402403861284256,
-0.12493564188480377,
-0.1521296203136444,
-0.037564076483249664,
0.07915321737527847,
0.02213301509618759,
0.03686701878905296,
0.0391765758395195,
0.21856549382209778,
-0.08001260459423065,
0.09965649992227554,
0.11107611656188965,
-0.3887903392314911,
-0.010272772051393986,
0.1138203963637352,
0.06352399289608002,
-0.04072894901037216,
-0.04903549700975418,
0.059645876288414,
0.03845403343439102,
0.020975181832909584,
0.08299243450164795,
-0.07035432755947113,
-0.034959208220243454,
0.024963049218058586,
-0.08232000470161438,
-0.023120740428566933,
0.12487919628620148,
-0.030104944482445717,
0.029286013916134834,
-0.010018757544457912,
-0.10804758965969086,
-0.03559118136763573,
-0.01705062761902809,
-0.025473207235336304,
-0.019252968952059746,
0.06085401028394699,
-0.04158883914351463,
-0.06013623997569084,
-0.14702774584293365,
0.018572965636849403,
-0.25452834367752075,
0.18035633862018585,
0.026675038039684296,
0.06968598067760468,
-0.17918244004249573,
0.05764893814921379,
-0.01834254339337349,
-0.11852319538593292,
0.04540044441819191,
-0.061726946383714676,
0.011934984475374222,
-0.02145286090672016,
-0.02592514269053936,
-0.10358287394046783,
0.07872048020362854,
0.1734086126089096,
0.04659527167677879,
0.025443745777010918,
-0.022727621719241142,
0.11813878268003464,
-0.022562703117728233,
0.07819438725709915,
-0.011271380819380283,
0.01917318068444729,
0.059225257486104965,
-0.13104474544525146,
0.028482843190431595,
-0.056036725640296936,
-0.16350245475769043,
-0.03295890986919403,
0.0073739876970648766,
0.07069846987724304,
0.023105083033442497,
0.08654128760099411,
-0.05848073586821556,
0.001011901767924428,
0.11021304130554199,
-0.06045674532651901,
0.01123451255261898,
-0.018045540899038315,
0.05660100653767586,
0.061978816986083984,
0.047856468707323074,
-0.03647119551897049,
0.0014152922667562962,
0.11666492372751236,
-0.08780714869499207,
-0.04120921343564987,
-0.04222312942147255,
-0.084551140666008,
0.07124411314725876,
-0.15122441947460175,
0.0306266937404871,
-0.1791110336780548,
-0.11385847628116608,
0.07150642573833466,
0.06597136706113815,
-0.013239653781056404,
-0.010607986710965633,
0.07701169699430466,
-0.030491851270198822,
0.022526420652866364,
-0.03814656287431717,
-0.015013502910733223,
-0.03863045945763588,
0.10474849492311478,
-0.042361751198768616,
0.08386106789112091,
-0.1600445806980133,
0.03413786366581917,
-0.06954813748598099,
0.0048988438211381435,
-0.12153447419404984,
-0.06117561087012291,
-0.05751784145832062,
0.12708772718906403,
-0.0197165347635746,
-0.04102082550525665,
-0.11263097822666168,
0.027755646035075188,
-0.00785752758383751,
0.11736433953046799,
-0.13130666315555573,
-0.09952887892723083,
0.21888266503810883,
-0.12201076000928879,
-0.17368939518928528,
0.09503988176584244,
0.0019373848335817456,
0.04401107132434845,
0.03923843428492546,
0.1368730217218399,
0.08556384593248367,
-0.18074458837509155,
0.08736339211463928,
0.13607503473758698,
-0.1572076380252838,
-0.16948676109313965,
0.011661537922918797,
-0.012445583008229733,
-0.07559870928525925,
0.030126580968499184,
0.06930185854434967,
0.11539339274168015,
-0.05329100787639618,
-0.055447693914175034,
-0.030164506286382675,
-0.031673964112997055,
0.10693696141242981,
0.05019306391477585,
0.10300461947917938,
-0.07353222370147705,
-0.04408455267548561,
0.030468206852674484,
-0.025307150557637215,
0.04135562479496002,
0.03406011685729027,
-0.11695291101932526,
0.12848162651062012,
-0.030492665246129036,
-0.012052234262228012,
-0.14254528284072876,
-0.12515057623386383,
-0.018108831718564034,
0.03416108340024948,
0.020358731970191002,
0.17044059932231903,
0.11016543209552765,
-0.025359073653817177,
-0.027028948068618774,
0.0015698487404733896,
0.13186797499656677,
0.04841615632176399,
-0.0409613773226738,
-0.1360509991645813,
0.02613481879234314,
-0.07507748901844025,
-0.035651300102472305,
-0.021234659478068352,
0.017713550478219986,
0.07695634663105011,
0.11780425161123276,
0.010260159149765968,
0.05774259567260742,
-0.057257797569036484,
0.005187030415982008,
-0.038273610174655914,
-0.01194645557552576,
0.09665597230195999,
0.03429843485355377,
-0.08604176342487335,
0.18525180220603943,
-0.13918013870716095,
0.34452709555625916,
0.2098204791545868,
-0.19089505076408386,
-0.045413337647914886,
0.0011474192142486572,
-0.036151476204395294,
-0.00593261094763875,
0.05515163764357567,
-0.019150076434016228,
0.014288932085037231,
-0.011682136915624142,
0.14390340447425842,
-0.030010122805833817,
-0.04474550113081932,
0.04417276754975319,
-0.03980197757482529,
-0.06321607530117035,
0.018584929406642914,
0.16786405444145203,
-0.18660369515419006,
0.18085040152072906,
0.25216764211654663,
0.009017372503876686,
0.18962737917900085,
-0.03702755272388458,
-0.002437022514641285,
0.00022871277178637683,
-0.00961364060640335,
0.009611009620130062,
0.09666737914085388,
-0.17618560791015625,
-0.004971847403794527,
0.06722564250230789,
-0.05396313965320587,
0.04287019744515419,
-0.15875233709812164,
-0.05197257176041603,
0.009127810597419739,
0.013652428984642029,
-0.03037896938621998,
0.13807618618011475,
0.009053357876837254,
0.08642491698265076,
-0.030525198206305504,
-0.12375310063362122,
0.12260939180850983,
0.015741417184472084,
-0.06469717621803284,
0.1456008106470108,
-0.11624830216169357,
-0.262081503868103,
-0.13189205527305603,
-0.12599387764930725,
0.021451642736792564,
0.012926679104566574,
0.08811338245868683,
-0.027820365503430367,
-0.04852104187011719,
0.04043404757976532,
-0.049057263880968094,
-0.016929350793361664,
0.07192032784223557,
-0.0933573767542839,
0.01777094602584839,
-0.029673773795366287,
-0.10587689280509949,
-0.0680636614561081,
-0.02384517900645733,
-0.03166082873940468,
0.13468390703201294,
-0.06939356029033661,
0.07466338574886322,
0.1476592868566513,
-0.014553005807101727,
0.0588085800409317,
-0.059883952140808105,
0.1510312259197235,
-0.06878766417503357,
0.05774302780628204,
0.15962356328964233,
-0.030364274978637695,
0.08530629426240921,
0.1572035700082779,
0.06263149529695511,
-0.04066050052642822,
-0.0023868808057159185,
-0.03362858295440674,
-0.12474752962589264,
-0.19660784304141998,
-0.0697396844625473,
-0.12685009837150574,
0.02302149124443531,
0.04287123680114746,
0.08966881781816483,
0.16526280343532562,
0.09407474100589752,
0.04287980496883392,
-0.01087277103215456,
-0.03577753156423569,
0.03946389630436897,
0.18722166121006012,
-0.018601473420858383,
0.12337721139192581,
-0.07838964462280273,
-0.11484363675117493,
0.08451300114393234,
0.045632489025592804,
0.1101735383272171,
0.10090001672506332,
0.05238986015319824,
0.0773264616727829,
0.17376409471035004,
0.1270107477903366,
0.13949361443519592,
0.007663336116820574,
-0.0660000666975975,
-0.015183841809630394,
-0.03695305436849594,
0.03243646025657654,
0.024520205333828926,
0.10772578418254852,
-0.11926686018705368,
-0.005075410008430481,
-0.13429562747478485,
0.038372404873371124,
0.11534973978996277,
0.04720686003565788,
-0.22364333271980286,
0.010439694859087467,
0.03031943365931511,
0.0174347385764122,
-0.03622252121567726,
0.03760194778442383,
0.016584085300564766,
-0.07807716727256775,
0.08062586188316345,
-0.07995389401912689,
0.06557261198759079,
0.08364320546388626,
0.0523969903588295,
0.04024733975529671,
-0.05927639827132225,
0.018534529954195023,
0.05859406292438507,
-0.2843514084815979,
0.26943978667259216,
0.005734692327678204,
-0.009749889373779297,
-0.08442938327789307,
-0.0007600070675835013,
0.04705345258116722,
0.13548432290554047,
0.12592759728431702,
0.00609889579936862,
-0.007765062619000673,
-0.09729768335819244,
0.0016292663058266044,
0.017102504149079323,
0.07383349537849426,
-0.0014241188764572144,
-0.044510938227176666,
-0.024098671972751617,
-0.039664626121520996,
0.04348611459136009,
0.09811120480298996,
-0.020762789994478226,
-0.13261735439300537,
0.07837296277284622,
0.037222038954496384,
-0.08101076632738113,
-0.016996342688798904,
-0.08355680853128433,
-0.1735176295042038,
0.18523073196411133,
-0.07291502505540848,
-0.054997675120830536,
-0.12542086839675903,
-0.0970713347196579,
0.04815865308046341,
-0.09687313437461853,
0.09246285259723663,
-0.07136581838130951,
-0.0062788850627839565,
-0.08961890637874603,
-0.2143491953611374,
0.16983802616596222,
-0.1090315580368042,
-0.014722436666488647,
-0.08368920534849167,
0.1415511965751648,
-0.08103509247303009,
0.040369126945734024,
0.021764209493994713,
0.005428778938949108,
-0.03533907234668732,
-0.06627489626407623,
0.031437959522008896,
-0.0951862707734108,
0.037923865020275116,
-0.0819331556558609,
-0.07632962614297867,
-0.02296336367726326,
0.04047537222504616,
0.013698230497539043,
0.20216776430606842,
0.21432144939899445,
-0.08890010416507721,
0.15484727919101715,
0.14135883748531342,
-0.045608438551425934,
-0.33112218976020813,
-0.07230377197265625,
-0.1439296156167984,
-0.03094819001853466,
0.053996291011571884,
-0.10437527298927307,
0.08633778989315033,
0.002731358865275979,
-0.05488645285367966,
0.16016747057437897,
-0.18874981999397278,
-0.11955872178077698,
0.21473811566829681,
0.06382240355014801,
0.34893858432769775,
-0.13963256776332855,
-0.06978922337293625,
0.015263380482792854,
-0.1406836360692978,
0.1360769271850586,
-0.05649590492248535,
0.08400820940732956,
-0.0059631457552313805,
0.038971349596977234,
0.016605369746685028,
-0.09076766669750214,
0.07275117188692093,
-0.045200832188129425,
0.03749632090330124,
-0.1076761782169342,
-0.07335803657770157,
0.11701300740242004,
0.007011628709733486,
0.015072375535964966,
-0.03919587656855583,
-0.006066734436899424,
-0.0007538761128671467,
-0.01935345120728016,
-0.09320537000894547,
0.1258956491947174,
0.010318802669644356,
-0.09629780799150467,
-0.007004220969974995,
0.013460511341691017,
-0.023216115310788155,
-0.0512828566133976,
0.19998949766159058,
0.006644388660788536,
0.16862227022647858,
0.1428353488445282,
0.050480328500270844,
-0.16368533670902252,
-0.08190765976905823,
-0.06565111130475998,
-0.0948239266872406,
0.07847484946250916,
-0.03209199383854866,
0.03358845412731171,
0.1082337275147438,
0.0012170717818662524,
0.06926900893449783,
0.11079078167676926,
-0.028668977320194244,
-0.034785978496074677,
0.15452741086483002,
-0.19276063144207,
-0.053767893463373184,
-0.01706700399518013,
-0.04804166406393051,
0.07529013603925705,
0.0717235878109932,
0.0987415462732315,
0.005219887476414442,
-0.002074840012937784,
0.03010326623916626,
-0.019503887742757797,
-0.0521213598549366,
0.056337885558605194,
0.08736760169267654,
0.025175537914037704,
-0.1060529574751854,
0.01183305773884058,
-0.013180495239794254,
-0.19503723084926605,
-0.014461289159953594,
0.07706989347934723,
-0.105084128677845,
-0.12143726646900177,
0.015695657581090927,
0.09053383767604828,
-0.12038692831993103,
-0.04449419677257538,
-0.062353551387786865,
-0.11710313707590103,
0.05190902575850487,
0.2596489191055298,
0.08148364722728729,
0.08370932936668396,
-0.03134326636791229,
-0.014060735702514648,
-0.0031581767834722996,
0.0183771513402462,
-0.04318659007549286,
0.045212361961603165,
-0.10821980983018875,
0.07052752375602722,
-0.0037078680470585823,
0.130361407995224,
-0.10256794840097427,
-0.013035998679697514,
-0.1715957373380661,
0.01377752237021923,
-0.06476103514432907,
-0.054078858345746994,
-0.08585169911384583,
-0.05953547731041908,
0.025501050055027008,
-0.07187066972255707,
-0.05228153616189957,
-0.018764330074191093,
-0.11914519965648651,
0.023949971422553062,
0.06115100160241127,
0.018747739493846893,
-0.09335387498140335,
-0.04560798779129982,
0.07507569342851639,
-0.0197403933852911,
0.08306875824928284,
0.06277607381343842,
-0.0696975588798523,
0.09636179357767105,
-0.16377489268779755,
-0.0813072919845581,
0.09141694754362106,
0.022571520879864693,
0.0798228532075882,
0.07392983883619308,
0.026212872937321663,
0.05637917295098305,
0.012932902202010155,
0.048200447112321854,
0.0348760262131691,
-0.11393570154905319,
0.046720027923583984,
-0.016766080632805824,
-0.14786210656166077,
-0.037125520408153534,
-0.059805795550346375,
0.08107645809650421,
-0.008532273583114147,
0.12820002436637878,
-0.057157065719366074,
0.04982364550232887,
-0.09179696440696716,
0.004127511754631996,
-0.009260923601686954,
-0.13062259554862976,
0.007278878707438707,
-0.03508729115128517,
-0.008578311651945114,
-0.032793011516332626,
0.20007170736789703,
0.027627794072031975,
-0.07231328636407852,
0.06010417640209198,
0.04067311808466911,
0.004969275556504726,
-0.01734492927789688,
0.21428298950195312,
0.02565912716090679,
-0.023688971996307373,
-0.11031421273946762,
0.07772670686244965,
-0.005505889654159546,
-0.05294041335582733,
0.1572788506746292,
0.056081317365169525,
-0.04395667463541031,
0.06907039880752563,
0.07798046618700027,
0.014063484035432339,
-0.10298991203308105,
-0.14871904253959656,
-0.031038297340273857,
0.08557137101888657,
0.005987907759845257,
0.04195145145058632,
0.16897132992744446,
-0.034230172634124756,
0.04501798376441002,
-0.03117891401052475,
-0.0279061459004879,
-0.18071246147155762,
-0.20469951629638672,
-0.06882156431674957,
-0.05369691178202629,
0.04088897258043289,
-0.0009472668170928955,
-0.011157567612826824,
0.05774720013141632,
0.07020467519760132,
-0.045165855437517166,
0.11143607646226883,
-0.023971306160092354,
-0.004648779518902302,
0.011422261595726013,
0.024000011384487152,
-0.008724117651581764,
-0.04644419252872467,
-0.015553520061075687,
-0.13942161202430725,
-0.002426019636914134,
-0.06905658543109894,
-0.008928347378969193,
-0.0165521539747715,
0.02528039738535881,
-0.08092370629310608,
-0.1005856916308403,
-0.049335677176713943,
0.024236205965280533,
-0.0064923414029181,
0.09237773716449738,
0.002849558601155877,
0.05111490190029144,
0.01679811254143715,
0.09358586370944977,
-0.057772718369960785,
-0.09981760382652283,
-0.049005694687366486,
0.17324557900428772,
0.023949474096298218,
0.07182306796312332,
0.014945466071367264,
0.006195918191224337,
-0.06098180636763573,
0.30249059200286865,
0.3469044864177704,
-0.03808266296982765,
0.08033395558595657,
0.051928773522377014,
0.02099095657467842,
0.04556674510240555,
0.1599552035331726,
0.05090419203042984,
0.27988365292549133,
-0.08272851258516312,
-0.059645574539899826,
-0.05298241600394249,
-0.01057723630219698,
-0.10239100456237793,
0.06692642718553543,
0.04122814163565636,
-0.04126827418804169,
-0.02968800812959671,
0.08277939260005951,
-0.13316616415977478,
0.04857565835118294,
0.07880084216594696,
-0.16538313031196594,
-0.05034057796001434,
-0.011462868191301823,
0.14783471822738647,
-0.0059387218207120895,
0.08025451004505157,
-0.05175161361694336,
-0.04062572866678238,
0.01809123158454895,
0.02325623109936714,
-0.23547117412090302,
-0.008478145115077496,
0.08727499842643738,
-0.026234259828925133,
0.12238636612892151,
-0.03137990087270737,
0.05012649670243263,
0.09484101831912994,
0.08206134289503098,
-0.02588672749698162,
0.05558106675744057,
0.03379372879862785,
-0.11367221921682358,
-0.03877917677164078,
-0.050056714564561844,
0.008489195257425308,
-0.11530286818742752,
0.02208052948117256,
-0.1133914366364479,
0.04636648669838905,
-0.09999290108680725,
-0.049208883196115494,
-0.03962942212820053,
0.07376360148191452,
-0.06088261306285858,
0.07609622925519943,
0.05156353488564491,
0.028813716024160385,
-0.03823691979050636,
-0.06715565174818039,
-0.02254488319158554,
0.09210313856601715,
-0.1454339325428009,
-0.1251361221075058,
-0.052547965198755264,
-0.03161723166704178,
-0.023903479799628258,
-0.011689016595482826,
-0.1718713343143463,
-0.055431485176086426,
-0.10699035227298737,
0.005760776810348034,
-0.179567351937294,
0.031031617894768715,
0.11115120351314545,
0.047211237251758575,
0.007794851437211037,
-0.032577596604824066,
0.01433696411550045,
0.014782284386456013,
-0.17444387078285217,
-0.06873899698257446
] |
null | null |
transformers
|
π¨ Notice: After re-checking this model again, it seems that the model is not working very well. E.g. MLM predictions are very likely to predict `[UNK]` token, which is
actually not good.
We will update this model soon. For now, please use the [`bigscience-historical-texts/bert-base-blbooks-cased`](https://huggingface.co/bigscience-historical-texts/bert-base-blbooks-cased) instead, as it was pretrained on the same corpus.
|
{"language": "en", "license": "mit", "widget": [{"text": "and I cannot conceive the reafon why [MASK] hath"}]}
|
fill-mask
|
dbmdz/bert-base-historic-english-cased
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"safetensors",
"bert",
"fill-mask",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #en #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
Notice: After re-checking this model again, it seems that the model is not working very well. E.g. MLM predictions are very likely to predict '[UNK]' token, which is
actually not good.
We will update this model soon. For now, please use the 'bigscience-historical-texts/bert-base-blbooks-cased' instead, as it was pretrained on the same corpus.
|
[] |
[
"TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
55
] |
[
"passage: TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.06357963383197784,
0.04416026175022125,
-0.007273771800100803,
0.0362987257540226,
0.08500707149505615,
0.01269509643316269,
0.16366735100746155,
0.08714278787374496,
0.10854307562112808,
-0.004111272748559713,
0.15794263780117035,
0.2332368940114975,
-0.009876171126961708,
0.10344479233026505,
-0.05941719189286232,
-0.22594933211803436,
0.04934931546449661,
0.05239808186888695,
-0.04837993159890175,
0.11718830466270447,
0.06401555240154266,
-0.08957511931657791,
0.050729092210531235,
0.007168694399297237,
-0.1076980009675026,
0.0204435084015131,
0.08303739875555038,
-0.11561193317174911,
0.13501831889152527,
0.02590383030474186,
0.20337516069412231,
0.06010933592915535,
-0.017887616530060768,
-0.09107348322868347,
0.04632583633065224,
0.017732886597514153,
-0.08505672961473465,
0.05843787267804146,
0.0364188589155674,
-0.05712759867310524,
-0.03330783545970917,
0.032499752938747406,
0.05447933077812195,
0.047804515808820724,
-0.12173481285572052,
-0.19101226329803467,
-0.041241686791181564,
0.051739826798439026,
0.07055249810218811,
0.045050669461488724,
0.02717537060379982,
0.22048325836658478,
-0.09720751643180847,
0.08081714063882828,
0.12003070116043091,
-0.3719193935394287,
-0.006757120136171579,
0.0910382866859436,
0.11352323740720749,
-0.034212153404951096,
-0.06943153589963913,
0.0457155704498291,
0.039199668914079666,
0.013270460069179535,
0.10764279961585999,
-0.059100162237882614,
-0.017182867974042892,
0.013622044585645199,
-0.07830870896577835,
-0.023511312901973724,
0.11930250376462936,
-0.038995757699012756,
0.031681131571531296,
-0.05530000850558281,
-0.09394295513629913,
-0.03396616131067276,
-0.026036636903882027,
-0.027121445164084435,
-0.01613118126988411,
0.048496756702661514,
-0.04215778410434723,
-0.014198867604136467,
-0.14817047119140625,
0.011320176534354687,
-0.1903955042362213,
0.18621063232421875,
0.01951727643609047,
0.06328967958688736,
-0.18486759066581726,
0.054639145731925964,
0.010728524066507816,
-0.1257254183292389,
0.055923137813806534,
-0.06881802529096603,
0.04935339838266373,
-0.019489001482725143,
-0.010423894040286541,
-0.0767328292131424,
0.09169863909482956,
0.17122651636600494,
0.024486279115080833,
0.025080889463424683,
0.0022494031582027674,
0.11646007746458054,
-0.0229735616594553,
0.0643421933054924,
0.02520241215825081,
0.015151814557611942,
0.0631338432431221,
-0.06832760572433472,
0.062244828790426254,
-0.041934993118047714,
-0.12146597355604172,
-0.008856214582920074,
0.027703329920768738,
0.09654325246810913,
0.025681424885988235,
0.0689210370182991,
-0.0823797956109047,
0.03815275430679321,
0.10786376893520355,
-0.05997653305530548,
0.023641282692551613,
-0.012837810441851616,
0.08844316750764847,
0.020471319556236267,
0.01628977432847023,
-0.009221072308719158,
0.022822801023721695,
0.15329022705554962,
-0.1022505834698677,
-0.02536892332136631,
-0.048262231051921844,
-0.06866610795259476,
0.06550715118646622,
-0.1208847388625145,
0.03741215541958809,
-0.16868279874324799,
-0.1313013881444931,
0.06021646037697792,
0.06419367343187332,
0.01931786723434925,
-0.017156103625893593,
0.05222572013735771,
-0.028588704764842987,
0.01753249019384384,
-0.04768184572458267,
-0.04144912213087082,
-0.04887816682457924,
0.10247237980365753,
-0.036634188145399094,
0.07230180501937866,
-0.10224217921495438,
0.007662965916097164,
-0.10088691860437393,
0.02158999815583229,
-0.122444748878479,
-0.09129178524017334,
-0.056739166378974915,
0.1619042605161667,
-0.00307621737010777,
-0.020596805959939957,
-0.09890753030776978,
0.03674488514661789,
-0.009598663076758385,
0.14745411276817322,
-0.11131645739078522,
-0.09434925764799118,
0.23510430753231049,
-0.13513626158237457,
-0.16224627196788788,
0.09389673173427582,
0.0033346759155392647,
0.03679216653108597,
0.06018972024321556,
0.11603866517543793,
0.04116412252187729,
-0.19194911420345306,
0.05436662957072258,
0.11732403934001923,
-0.1474473923444748,
-0.15761704742908478,
0.02509951964020729,
-0.026311183348298073,
-0.09251535683870316,
0.03530241176486015,
0.07724179327487946,
0.09534279257059097,
-0.05387989804148674,
-0.06890145689249039,
-0.0313105545938015,
-0.02891208790242672,
0.10640475153923035,
0.04928993061184883,
0.08203747123479843,
-0.08985262364149094,
-0.06639306992292404,
-0.006443474907428026,
-0.020210199058055878,
0.04389634728431702,
0.020541444420814514,
-0.11679462343454361,
0.11787637323141098,
-0.05136789754033089,
-0.02765965275466442,
-0.12986747920513153,
-0.12428443878889084,
-0.014818445779383183,
0.0025456836447119713,
-0.03549642115831375,
0.10301877558231354,
0.12127302587032318,
-0.014616822823882103,
-0.01875634677708149,
-0.02378939837217331,
0.13284547626972198,
0.04985865578055382,
-0.039837125688791275,
-0.14962603151798248,
0.023208782076835632,
-0.09354647994041443,
-0.009907696396112442,
-0.04095982387661934,
0.02407715655863285,
0.04210161790251732,
0.12697476148605347,
0.011217649094760418,
0.03227078169584274,
-0.06243770942091942,
0.0024792535696178675,
-0.0276203416287899,
-0.0016917525790631771,
0.09908489137887955,
0.02856813371181488,
-0.0671112909913063,
0.1664602905511856,
-0.15868228673934937,
0.36090537905693054,
0.1992374211549759,
-0.16983158886432648,
-0.025362256914377213,
0.010044198483228683,
-0.031127315014600754,
-0.0007160692475736141,
0.019852928817272186,
-0.010831709019839764,
-0.008089764043688774,
0.0009805964073166251,
0.14215493202209473,
-0.0398545078933239,
-0.05282105877995491,
0.04184499755501747,
-0.06455313414335251,
-0.06889189779758453,
0.020802870392799377,
0.12665212154388428,
-0.15971305966377258,
0.18967784941196442,
0.2827411890029907,
-0.015459774993360043,
0.15959137678146362,
-0.027991294860839844,
0.011529847979545593,
-0.012942896224558353,
0.00009152899292530492,
0.004115731455385685,
0.11486215144395828,
-0.16147483885288239,
-0.005443362519145012,
0.05151417851448059,
-0.048392731696367264,
0.02887892723083496,
-0.15782564878463745,
-0.06486787647008896,
-0.0008918087114579976,
0.037282757461071014,
-0.02992927096784115,
0.11250949651002884,
0.010279037989675999,
0.08199111372232437,
-0.04657960310578346,
-0.12348925322294235,
0.10997560620307922,
-0.0054166740737855434,
-0.055928003042936325,
0.1559029370546341,
-0.10792895406484604,
-0.27733832597732544,
-0.12275099009275436,
-0.12015373259782791,
0.048460885882377625,
0.006742804776877165,
0.07822621613740921,
-0.05340396240353584,
-0.05568621680140495,
0.03421024978160858,
-0.04930942505598068,
-0.007183073554188013,
0.06660091131925583,
-0.07441141456365585,
0.0276553463190794,
-0.017781207337975502,
-0.08992716670036316,
-0.06607323884963989,
-0.03924563527107239,
-0.03349098563194275,
0.11869535595178604,
-0.020088685676455498,
0.05205914378166199,
0.12016767263412476,
-0.0026630812790244818,
0.031626030802726746,
-0.0437479205429554,
0.14182688295841217,
-0.05726718530058861,
0.0174572691321373,
0.15228994190692902,
-0.0470881462097168,
0.0963379293680191,
0.1902734786272049,
0.06754507124423981,
-0.03968431428074837,
-0.008564762771129608,
-0.03857547044754028,
-0.11036766320466995,
-0.18558640778064728,
-0.06811164319515228,
-0.10293558239936829,
0.017236031591892242,
0.0506926067173481,
0.07796891778707504,
0.13543130457401276,
0.1003708466887474,
0.029179943725466728,
-0.047648172825574875,
-0.02841532789170742,
0.0536525622010231,
0.13685093820095062,
-0.022751780226826668,
0.12745113670825958,
-0.05243319272994995,
-0.14151531457901,
0.0391109436750412,
0.040494926273822784,
0.0731588676571846,
0.11843390017747879,
0.017722895368933678,
0.07273824512958527,
0.20645248889923096,
0.15188521146774292,
0.13177618384361267,
0.003941067028790712,
-0.0861406996846199,
0.004413537681102753,
-0.034953709691762924,
0.002834457904100418,
0.021887492388486862,
0.08337042480707169,
-0.055651914328336716,
-0.011639488860964775,
-0.13307639956474304,
0.04137316718697548,
0.10058068484067917,
0.05324067175388336,
-0.24577687680721283,
0.015576052479445934,
0.06968480348587036,
0.018700743094086647,
-0.049088042229413986,
0.04985438659787178,
0.015511707402765751,
-0.0682995617389679,
0.06399346888065338,
-0.09937611222267151,
0.059225864708423615,
0.06402944028377533,
0.06453178822994232,
-0.0005237808800302446,
-0.04265730082988739,
0.01036942657083273,
0.0483875572681427,
-0.24259068071842194,
0.2528129816055298,
0.009800615720450878,
0.022083112969994545,
-0.0669383704662323,
0.011411432176828384,
0.033359136432409286,
0.12078159302473068,
0.16348667442798615,
0.003479299833998084,
-0.04889138787984848,
-0.08386821299791336,
-0.027272293344140053,
0.02734636887907982,
0.05853172764182091,
-0.009947889484465122,
-0.025339817628264427,
-0.028916483744978905,
-0.037741769105196,
0.03235979378223419,
0.04776323214173317,
-0.04180528223514557,
-0.1359785497188568,
0.055781878530979156,
0.0558345764875412,
-0.037296973168849945,
-0.04586891829967499,
-0.07395175099372864,
-0.1511903554201126,
0.19081339240074158,
-0.08121585100889206,
-0.04549212381243706,
-0.10691075772047043,
-0.1266229897737503,
0.05221056938171387,
-0.0771704837679863,
0.08362652361392975,
-0.07088416069746017,
0.015300318598747253,
-0.10302268713712692,
-0.16105179488658905,
0.16063159704208374,
-0.13318687677383423,
-0.026222331449389458,
-0.11398971080780029,
0.15847662091255188,
-0.06510274857282639,
0.019937345758080482,
0.023548657074570656,
0.028031429275870323,
-0.055707741528749466,
-0.056088887155056,
0.03355936333537102,
-0.05802454426884651,
0.059564802795648575,
-0.067842036485672,
-0.06551468372344971,
-0.07546316087245941,
0.03200118988752365,
0.015513197518885136,
0.1833188682794571,
0.27343815565109253,
-0.07514744997024536,
0.139654740691185,
0.1925148367881775,
-0.03875972330570221,
-0.32694748044013977,
-0.10496734827756882,
-0.15709419548511505,
-0.0190112441778183,
0.07184940576553345,
-0.06150704249739647,
0.10250221192836761,
0.007354458328336477,
-0.084912970662117,
0.13537247478961945,
-0.18891137838363647,
-0.11099117249250412,
0.22476589679718018,
0.0712931677699089,
0.3889031410217285,
-0.14316333830356598,
-0.07079913467168808,
0.00376050709746778,
-0.11354570835828781,
0.10555583983659744,
-0.05364134907722473,
0.05963348224759102,
-0.005107896868139505,
0.013901076279580593,
0.020230596885085106,
-0.11215802282094955,
0.10354182869195938,
-0.07346910983324051,
0.04817589744925499,
-0.09853760898113251,
-0.07437587529420853,
0.11746165156364441,
-0.0021094062831252813,
-0.0030077937990427017,
-0.08748302608728409,
-0.00776673574000597,
0.00635985191911459,
-0.021949240937829018,
-0.07813567668199539,
0.13817347586154938,
-0.00012953049736097455,
-0.08664733916521072,
0.02365995943546295,
0.005135178565979004,
-0.03252754360437393,
-0.044410016387701035,
0.24458946287631989,
0.0196524728089571,
0.22359175980091095,
0.12936262786388397,
0.058032188564538956,
-0.14435279369354248,
-0.08303273469209671,
-0.037752337753772736,
-0.09903694689273834,
0.08932293951511383,
-0.013998403213918209,
0.03690456598997116,
0.09015966206789017,
0.009358986280858517,
0.05959872528910637,
0.10811720043420792,
-0.020682567730545998,
-0.03414340689778328,
0.1571417599916458,
-0.2018885761499405,
-0.052340973168611526,
0.009733128361403942,
0.03006415069103241,
0.036200884729623795,
0.09185266494750977,
0.08324716240167618,
0.00837450660765171,
-0.019705727696418762,
0.010163374245166779,
0.012341988272964954,
-0.0435212142765522,
0.03808226436376572,
0.06961125880479813,
0.046386536210775375,
-0.09873227775096893,
0.00903214979916811,
-0.018802417442202568,
-0.20841355621814728,
-0.023207444697618484,
0.06399031728506088,
-0.1029278039932251,
-0.10875013470649719,
0.021340252831578255,
0.11522848159074783,
-0.0362098403275013,
-0.056466586887836456,
-0.06740019470453262,
-0.1296987682580948,
0.029580704867839813,
0.22950731217861176,
0.08420679718255997,
0.08180615305900574,
-0.00212405645288527,
-0.015883157029747963,
-0.031808000057935715,
0.03955797478556633,
-0.042550958693027496,
0.036003634333610535,
-0.12272360920906067,
0.010133461095392704,
0.009997655637562275,
0.08798736333847046,
-0.09448116272687912,
-0.005773879121989012,
-0.17543765902519226,
0.017882592976093292,
-0.034622643142938614,
-0.04939392954111099,
-0.1154937818646431,
-0.06042744219303131,
0.018928928300738335,
-0.06379815936088562,
-0.05143722891807556,
-0.032179392874240875,
-0.10214992612600327,
0.026079513132572174,
0.05732308328151703,
0.018075603991746902,
-0.09801927953958511,
-0.03960283100605011,
0.08773364126682281,
-0.03794870898127556,
0.07748691737651825,
0.0678698867559433,
-0.05068324878811836,
0.09763733297586441,
-0.1891028881072998,
-0.06878392398357391,
0.09360197186470032,
-0.002904762513935566,
0.05918241664767265,
0.06229094788432121,
0.010789794847369194,
0.06426828354597092,
0.017979200929403305,
0.04701625928282738,
0.018682915717363358,
-0.12335624545812607,
0.06722599267959595,
0.035929106175899506,
-0.1525404453277588,
-0.03178991749882698,
-0.09013422578573227,
0.08674131333827972,
-0.046920742839574814,
0.16677342355251312,
-0.05403118208050728,
0.052203238010406494,
-0.09483359754085541,
0.020739175379276276,
-0.020995739847421646,
-0.13224847614765167,
-0.024628037586808205,
-0.02309376187622547,
-0.01311187818646431,
-0.02592545375227928,
0.2139275223016739,
0.020624596625566483,
-0.07590018957853317,
0.06486779451370239,
0.0403849259018898,
0.008244701661169529,
0.007340037263929844,
0.2016836553812027,
0.03301567584276199,
-0.04342440888285637,
-0.0969504565000534,
0.054210565984249115,
0.008978467434644699,
-0.0884128138422966,
0.11444550007581711,
0.09159162640571594,
0.0039588878862559795,
0.07890953123569489,
0.06033860146999359,
0.016702698543667793,
-0.10013801604509354,
-0.1344558596611023,
-0.043388593941926956,
0.04591689258813858,
0.023089714348316193,
0.04733617603778839,
0.1965356022119522,
-0.004590844735503197,
0.02294895052909851,
-0.051196902990341187,
-0.020215697586536407,
-0.19551357626914978,
-0.17872309684753418,
-0.07584331184625626,
-0.04207252338528633,
0.04485052824020386,
0.00014350614219438285,
-0.01811668463051319,
0.07259388267993927,
0.04439481720328331,
-0.03152700513601303,
0.1009894534945488,
0.030198784545063972,
0.010843431577086449,
-0.0000218834920815425,
0.030214136466383934,
0.0024417233653366566,
-0.039238061755895615,
-0.007921474054455757,
-0.1448175609111786,
-0.024258123710751534,
-0.062484804540872574,
-0.015666423365473747,
-0.041089024394750595,
0.03532031178474426,
-0.0725335106253624,
-0.11463896185159683,
-0.04509016126394272,
0.029223227873444557,
-0.01456448994576931,
0.06786336749792099,
0.0006070724339224398,
0.048283521085977554,
0.021793154999613762,
0.12909866869449615,
-0.05120810121297836,
-0.09721840918064117,
-0.03210452198982239,
0.17701241374015808,
0.01185791939496994,
0.08624467998743057,
0.013800588436424732,
0.02206527628004551,
-0.02864238992333412,
0.24983695149421692,
0.3255981206893921,
-0.014965823851525784,
0.08990848809480667,
0.02475915290415287,
0.012800599448382854,
0.0018431865610182285,
0.10450667142868042,
0.0587494894862175,
0.29603371024131775,
-0.10048644989728928,
-0.014799602329730988,
-0.04430117830634117,
-0.02271808125078678,
-0.11379837244749069,
0.022303162142634392,
0.01096273772418499,
-0.016399074345827103,
-0.04403850436210632,
0.07953173667192459,
-0.12496073544025421,
0.06965024024248123,
0.08787734806537628,
-0.1686658263206482,
-0.0506553128361702,
-0.0024112847167998552,
0.21353980898857117,
-0.0120114516466856,
0.07958746701478958,
-0.03695142641663551,
-0.05622292309999466,
0.007658248767256737,
0.0030996412970125675,
-0.19058111310005188,
-0.033789366483688354,
0.07648404687643051,
0.008486080914735794,
0.15723367035388947,
-0.020028548315167427,
0.045548394322395325,
0.09726200997829437,
0.04900163784623146,
-0.04612848535180092,
0.04713185504078865,
0.039377517998218536,
-0.11464125663042068,
-0.03791426122188568,
-0.05375576764345169,
0.01399106252938509,
-0.0697578638792038,
0.021707287058234215,
-0.11637066304683685,
0.05236086621880531,
-0.14021466672420502,
-0.06160830706357956,
-0.03569510951638222,
0.0791899785399437,
-0.028123142197728157,
0.07131034135818481,
0.02101096883416176,
0.02381461299955845,
-0.037364378571510315,
-0.03423060476779938,
-0.004234993830323219,
0.07683389633893967,
-0.11343815177679062,
-0.11224411427974701,
-0.0940643697977066,
-0.015069068409502506,
0.036211930215358734,
-0.009945334866642952,
-0.18212677538394928,
-0.06349700689315796,
-0.09080420434474945,
-0.002229458885267377,
-0.18334639072418213,
-0.005613410845398903,
0.12346287071704865,
0.055603817105293274,
-0.0015299151418730617,
-0.054562631994485855,
0.023288439959287643,
0.033847250044345856,
-0.15259726345539093,
-0.08916255086660385
] |
null | null |
transformers
|
# hmBERT: Historical Multilingual Language Models for Named Entity Recognition
More information about our hmBERT model can be found in our new paper:
["hmBERT: Historical Multilingual Language Models for Named Entity Recognition"](https://arxiv.org/abs/2205.15575).
## Languages
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
| Language | Training data | Size
| -------- | ------------- | ----
| German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered)
| French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered)
| English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
## Smaller Models
We have also released smaller models for the multilingual model:
| Model identifier | Model Hub link
| ----------------------------------------------- | ---------------------------------------------------------------------------
| `dbmdz/bert-tiny-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-tiny-historic-multilingual-cased)
| `dbmdz/bert-mini-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-mini-historic-multilingual-cased)
| `dbmdz/bert-small-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-small-historic-multilingual-cased)
| `dbmdz/bert-medium-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
# Corpora Stats
## German Europeana Corpus
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
and use less-noisier data:
| OCR confidence | Size
| -------------- | ----
| **0.60** | 28GB
| 0.65 | 18GB
| 0.70 | 13GB
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:

## French Europeana Corpus
Like German, we use different ocr confidence thresholds:
| OCR confidence | Size
| -------------- | ----
| 0.60 | 31GB
| 0.65 | 27GB
| **0.70** | 27GB
| 0.75 | 23GB
| 0.80 | 11GB
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:

## British Library Corpus
Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:
| Years | Size
| ----------------- | ----
| ALL | 24GB
| >= 1800 && < 1900 | 24GB
We use the year filtered variant. The following plot shows a tokens per year distribution:

## Finnish Europeana Corpus
| OCR confidence | Size
| -------------- | ----
| 0.60 | 1.2GB
The following plot shows a tokens per year distribution:

## Swedish Europeana Corpus
| OCR confidence | Size
| -------------- | ----
| 0.60 | 1.1GB
The following plot shows a tokens per year distribution:

## All Corpora
The following plot shows a tokens per year distribution of the complete training corpus:

# Multilingual Vocab generation
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
| Language | Size
| -------- | ----
| German | 10GB
| French | 10GB
| English | 10GB
| Finnish | 9.5GB
| Swedish | 9.7GB
We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:
| Language | NER corpora
| -------- | ------------------
| German | CLEF-HIPE, NewsEye
| French | CLEF-HIPE, NewsEye
| English | CLEF-HIPE
| Finnish | NewsEye
| Swedish | NewsEye
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
| Language | Subword fertility | Unknown portion
| -------- | ------------------ | ---------------
| German | 1.43 | 0.0004
| French | 1.25 | 0.0001
| English | 1.25 | 0.0
| Finnish | 1.69 | 0.0007
| Swedish | 1.43 | 0.0
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
| Language | Subword fertility | Unknown portion
| -------- | ------------------ | ---------------
| German | 1.31 | 0.0004
| French | 1.16 | 0.0001
| English | 1.17 | 0.0
| Finnish | 1.54 | 0.0007
| Swedish | 1.32 | 0.0
# Final pretraining corpora
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
| Language | Size
| -------- | ----
| German | 28GB
| French | 27GB
| English | 24GB
| Finnish | 27GB
| Swedish | 27GB
Total size is 130GB.
# Pretraining
## Multilingual model
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
on a v3-32 TPU using the following parameters:
```bash
python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \
--output_dir gs://histolectra/bert-base-historic-multilingual-cased \
--bert_config_file ./config.json \
--max_seq_length=512 \
--max_predictions_per_seq=75 \
--do_train=True \
--train_batch_size=128 \
--num_train_steps=3000000 \
--learning_rate=1e-4 \
--save_checkpoints_steps=100000 \
--keep_checkpoint_max=20 \
--use_tpu=True \
--tpu_name=electra-2 \
--num_tpu_cores=32
```
The following plot shows the pretraining loss curve:

# Acknowledgments
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "multilingual", "license": "mit", "widget": [{"text": "and I cannot conceive the reafon why [MASK] hath"}, {"text": "T\u00e4k\u00e4l\u00e4inen sanomalehdist\u00f6 [MASK] erit - t\u00e4in"}, {"text": "Det vore [MASK] h\u00e4ller n\u00f6dv\u00e4ndigt att be"}, {"text": "Comme, \u00e0 cette \u00e9poque [MASK] \u00e9tait celle de la"}, {"text": "In [MASK] an atmosph\u00e4rischen Nahrungsmitteln"}]}
|
fill-mask
|
dbmdz/bert-base-historic-multilingual-cased
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"safetensors",
"bert",
"fill-mask",
"multilingual",
"arxiv:2205.15575",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2205.15575"
] |
[
"multilingual"
] |
TAGS
#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #multilingual #arxiv-2205.15575 #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
hmBERT: Historical Multilingual Language Models for Named Entity Recognition
============================================================================
More information about our hmBERT model can be found in our new paper:
"hmBERT: Historical Multilingual Language Models for Named Entity Recognition".
Languages
---------
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
Language: German, Training data: Europeana, Size: 13-28GB (filtered)
Language: French, Training data: Europeana, Size: 11-31GB (filtered)
Language: English, Training data: British Library, Size: 24GB (year filtered)
Language: Finnish, Training data: Europeana, Size: 1.2GB
Language: Swedish, Training data: Europeana, Size: 1.1GB
Smaller Models
--------------
We have also released smaller models for the multilingual model:
Corpora Stats
=============
German Europeana Corpus
-----------------------
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
and use less-noisier data:
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:
!German Europeana Corpus Stats
French Europeana Corpus
-----------------------
Like German, we use different ocr confidence thresholds:
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:
!French Europeana Corpus Stats
British Library Corpus
----------------------
Metadata is taken from here. Stats incl. year filtering:
We use the year filtered variant. The following plot shows a tokens per year distribution:
!British Library Corpus Stats
Finnish Europeana Corpus
------------------------
The following plot shows a tokens per year distribution:
!Finnish Europeana Corpus Stats
Swedish Europeana Corpus
------------------------
The following plot shows a tokens per year distribution:
!Swedish Europeana Corpus Stats
All Corpora
-----------
The following plot shows a tokens per year distribution of the complete training corpus:
!All Corpora Stats
Multilingual Vocab generation
=============================
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
We then calculate the subword fertility rate and portion of '[UNK]'s over the following NER corpora:
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
Language: German, Subword fertility: 1.43, Unknown portion: 0.0004
Language: French, Subword fertility: 1.25, Unknown portion: 0.0001
Language: English, Subword fertility: 1.25, Unknown portion: 0.0
Language: Finnish, Subword fertility: 1.69, Unknown portion: 0.0007
Language: Swedish, Subword fertility: 1.43, Unknown portion: 0.0
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
Language: German, Subword fertility: 1.31, Unknown portion: 0.0004
Language: French, Subword fertility: 1.16, Unknown portion: 0.0001
Language: English, Subword fertility: 1.17, Unknown portion: 0.0
Language: Finnish, Subword fertility: 1.54, Unknown portion: 0.0007
Language: Swedish, Subword fertility: 1.32, Unknown portion: 0.0
Final pretraining corpora
=========================
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
Total size is 130GB.
Pretraining
===========
Multilingual model
------------------
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
on a v3-32 TPU using the following parameters:
The following plot shows the pretraining loss curve:
!Training loss curve
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #multilingual #arxiv-2205.15575 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
66
] |
[
"passage: TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #multilingual #arxiv-2205.15575 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.0823097750544548,
0.05790502578020096,
-0.006636320613324642,
0.06099153310060501,
0.09956224262714386,
0.023819655179977417,
0.19313327968120575,
0.08569980412721634,
0.06811918318271637,
-0.0015144911594688892,
0.1546626091003418,
0.19708751142024994,
0.013128778897225857,
0.1097177267074585,
-0.04369549825787544,
-0.2446916550397873,
0.026008201763033867,
0.03700700402259827,
-0.011212470941245556,
0.10445897281169891,
0.0719655379652977,
-0.06317144632339478,
0.054567936807870865,
0.0067375474609434605,
-0.1341913342475891,
0.03229576349258423,
0.07903192192316055,
-0.10803600400686264,
0.13143299520015717,
0.06167119741439819,
0.17132171988487244,
0.05929442122578621,
0.015401937067508698,
-0.08354055881500244,
0.03285898640751839,
-0.0037636314518749714,
-0.09320957213640213,
0.06075868010520935,
0.0436616986989975,
-0.046670958399772644,
0.012159516103565693,
0.020138537511229515,
0.028187815099954605,
0.049017444252967834,
-0.1103290319442749,
-0.1862621307373047,
-0.04434879496693611,
0.0897732675075531,
0.05419132485985756,
0.051457714289426804,
0.039155106991529465,
0.1922122687101364,
-0.05298163369297981,
0.09161100536584854,
0.11126381158828735,
-0.39431267976760864,
-0.02636214904487133,
0.07566256076097488,
0.10112117975950241,
-0.013177336193621159,
-0.06443915516138077,
0.05502620339393616,
0.05430302023887634,
0.007900514639914036,
0.047371845692396164,
-0.08577393740415573,
-0.03999917581677437,
-0.007368037477135658,
-0.05858180299401283,
0.008521108888089657,
0.14342151582241058,
-0.031113488599658012,
0.018170537427067757,
-0.029211916029453278,
-0.06111035495996475,
-0.018521828576922417,
-0.032530128955841064,
-0.0064179482869803905,
-0.007589308079332113,
0.03514757752418518,
-0.02639186754822731,
-0.029046079143881798,
-0.15068760514259338,
0.011352011002600193,
-0.21657705307006836,
0.17208509147167206,
0.0225558839738369,
0.06192130222916603,
-0.15734176337718964,
0.02224610559642315,
-0.025830954313278198,
-0.11857711523771286,
0.04744774475693703,
-0.0700143575668335,
0.055033981800079346,
0.008612201549112797,
0.0013073342852294445,
-0.09181150048971176,
0.08522069454193115,
0.10944078862667084,
0.011590898036956787,
0.05562623590230942,
-0.035457149147987366,
0.11585676670074463,
-0.03795881196856499,
0.07129351049661636,
0.03307754546403885,
0.008099176920950413,
0.05606018006801605,
-0.05678681284189224,
0.08083248883485794,
-0.045624613761901855,
-0.16690461337566376,
-0.019869256764650345,
-0.010688806883990765,
0.10839521884918213,
0.00806925818324089,
0.05927632376551628,
-0.06243729591369629,
0.04153851792216301,
0.09690383821725845,
-0.07095812261104584,
0.03900526091456413,
-0.01643122360110283,
0.0871308222413063,
0.021517900750041008,
0.00570395914837718,
-0.017750661820173264,
-0.009999481029808521,
0.13257572054862976,
-0.07964871823787689,
0.01482078991830349,
-0.04658176749944687,
-0.08276661485433578,
0.06254231929779053,
-0.075386643409729,
0.010749723762273788,
-0.17494089901447296,
-0.09682101756334305,
0.04927024990320206,
0.05150815099477768,
-0.0030010316986590624,
-0.015116827562451363,
0.031151873990893364,
-0.009005299769341946,
0.057897232472896576,
-0.052273984998464584,
-0.04914962872862816,
-0.04915444180369377,
0.0853695496916771,
-0.013376877643167973,
0.07866884768009186,
-0.14135125279426575,
0.009380475617945194,
-0.0740126371383667,
0.0036055368836969137,
-0.09193668514490128,
-0.07407159358263016,
-0.07040979713201523,
0.12744879722595215,
-0.004837007261812687,
-0.03475218638777733,
-0.08053938299417496,
0.05039840191602707,
0.000865467416588217,
0.12240827828645706,
-0.14962947368621826,
-0.09177267551422119,
0.2519482374191284,
-0.12997038662433624,
-0.14584636688232422,
0.09893272817134857,
0.018316252157092094,
0.003795360680669546,
0.057646043598651886,
0.12372151762247086,
0.02931125834584236,
-0.19650530815124512,
0.06619974225759506,
0.12469487637281418,
-0.12166828662157059,
-0.1611107736825943,
0.034949056804180145,
-0.04414360970258713,
-0.10027296841144562,
0.03479667007923126,
0.05699922889471054,
0.10149049013853073,
-0.0378020815551281,
-0.06728476285934448,
-0.01569770835340023,
-0.022080453112721443,
0.0918770283460617,
0.055689312517642975,
0.10018908977508545,
-0.10530547797679901,
-0.055635519325733185,
-0.014568322338163853,
-0.004978138487786055,
0.04771789163351059,
0.022527961060404778,
-0.1048518642783165,
0.0879087820649147,
-0.024638956412672997,
-0.02472671866416931,
-0.11138774454593658,
-0.0885668396949768,
-0.021024487912654877,
0.022230662405490875,
0.015842288732528687,
0.09405045956373215,
0.09454784542322159,
0.003636805107817054,
-0.04652799293398857,
-0.009574810974299908,
0.13900986313819885,
0.036444682627916336,
-0.03530682995915413,
-0.15237949788570404,
0.055762577801942825,
-0.07942195981740952,
-0.029039492830634117,
-0.06380970776081085,
0.006630769930779934,
0.008025133050978184,
0.09119979292154312,
-0.0003768188471440226,
0.04938090592622757,
-0.06642645597457886,
0.028000086545944214,
-0.041347961872816086,
-0.0002896309888456017,
0.11195854097604752,
0.028341474011540413,
-0.05964602157473564,
0.20312438905239105,
-0.1508716642856598,
0.3598484694957733,
0.19898581504821777,
-0.147178053855896,
-0.03275984525680542,
-0.0064641693606972694,
-0.004409892950206995,
-0.0049659074284136295,
0.0314810685813427,
0.010812222957611084,
-0.018306249752640724,
-0.008243700489401817,
0.16372233629226685,
-0.046206969767808914,
-0.0007885053637437522,
0.03678332269191742,
-0.06300795078277588,
-0.08331473171710968,
0.043726012110710144,
0.11375606060028076,
-0.19519634544849396,
0.17982898652553558,
0.2574077844619751,
-0.03530215844511986,
0.18825730681419373,
-0.00846032239496708,
0.029514918103814125,
-0.031183777377009392,
0.009608425199985504,
0.01762893982231617,
0.1081266924738884,
-0.1290562003850937,
-0.02863195352256298,
0.029381489381194115,
-0.03401791304349899,
0.016477666795253754,
-0.16076162457466125,
-0.07582532614469528,
-0.012121587991714478,
0.01517993863672018,
-0.051128875464200974,
0.1014229878783226,
-0.00010902881331276149,
0.08642612397670746,
-0.04847249388694763,
-0.12405025213956833,
0.10540713369846344,
-0.004332376178354025,
-0.0601578913629055,
0.1517118662595749,
-0.13753533363342285,
-0.29682374000549316,
-0.15416690707206726,
-0.15210290253162384,
0.004919049795717001,
0.012267686426639557,
0.0900065153837204,
-0.06289798766374588,
-0.04351791739463806,
0.025942601263523102,
-0.060434628278017044,
-0.04791809618473053,
0.03322882950305939,
-0.0625816136598587,
0.040245991200208664,
-0.01673058234155178,
-0.10051329433917999,
-0.05628063902258873,
-0.029031366109848022,
-0.028986124321818352,
0.10388915985822678,
-0.03359301760792732,
0.05456529185175896,
0.10385430604219437,
-0.012633966282010078,
0.03577280044555664,
-0.048496734350919724,
0.09516839683055878,
-0.041565317660570145,
-0.019655855372548103,
0.13744179904460907,
-0.017575904726982117,
0.09585645794868469,
0.18650208413600922,
0.09325810521841049,
-0.03585582971572876,
-0.01020081341266632,
-0.03737522289156914,
-0.0919945016503334,
-0.19774144887924194,
-0.0624849870800972,
-0.11299531161785126,
0.025966079905629158,
0.052867136895656586,
0.07927843183279037,
0.10862018167972565,
0.07611705362796783,
0.01867404580116272,
-0.005225392058491707,
-0.019688041880726814,
0.06126420199871063,
0.17951133847236633,
-0.025083579123020172,
0.13155874609947205,
-0.07494182139635086,
-0.12655720114707947,
0.055291056632995605,
0.04057585448026657,
0.08905220031738281,
0.12169335037469864,
0.014333452098071575,
0.06075248122215271,
0.18867285549640656,
0.15151117742061615,
0.11633772403001785,
0.023404497653245926,
-0.08248443901538849,
0.0058561405166983604,
-0.03596949577331543,
0.01877695880830288,
0.02382487989962101,
0.09516255557537079,
-0.06301935762166977,
-0.011067550629377365,
-0.11097242683172226,
0.017009306699037552,
0.07973726838827133,
0.04449085146188736,
-0.2155783772468567,
0.03293254226446152,
0.06517577171325684,
0.018473243340849876,
-0.07829786092042923,
0.050834763795137405,
0.025472352281212807,
-0.07665788382291794,
0.10588165372610092,
-0.0842880830168724,
0.06157334893941879,
0.04848099127411842,
0.04508316144347191,
-0.030916715040802956,
-0.042473506182432175,
0.008123599924147129,
0.07417656481266022,
-0.2999246120452881,
0.2691495716571808,
0.021175049245357513,
0.02403510920703411,
-0.050757743418216705,
0.012907467782497406,
0.04083941876888275,
0.13900958001613617,
0.15183265507221222,
0.011170370504260063,
-0.06824567168951035,
-0.09849053621292114,
-0.011029498651623726,
0.014478215016424656,
0.06890648603439331,
0.04648886248469353,
-0.05544966459274292,
-0.02412305399775505,
-0.047632064670324326,
0.014347651973366737,
0.03639540448784828,
-0.08607098460197449,
-0.16297610104084015,
0.06993823498487473,
0.06533243507146835,
-0.05339745804667473,
-0.03637458756566048,
-0.09691119194030762,
-0.15562476217746735,
0.18502561748027802,
-0.10336539149284363,
-0.04134215787053108,
-0.09236238896846771,
-0.1205802783370018,
0.04302180930972099,
-0.09501826763153076,
0.06748206168413162,
-0.07274140417575836,
0.002932552248239517,
-0.1019124835729599,
-0.14055649936199188,
0.15416888892650604,
-0.12054535001516342,
-0.012602653354406357,
-0.1131914034485817,
0.15362319350242615,
-0.07716233283281326,
0.027700170874595642,
0.015382721088826656,
0.015767376869916916,
-0.04302481934428215,
-0.07428242266178131,
0.03161557391285896,
-0.05401964485645294,
0.058721840381622314,
-0.06625401973724365,
-0.07434594631195068,
-0.12997329235076904,
0.019691871479153633,
-0.02183680050075054,
0.1930406242609024,
0.2610369324684143,
-0.0720079094171524,
0.1316002458333969,
0.18842941522598267,
-0.05806836485862732,
-0.307975172996521,
-0.12421556562185287,
-0.12668801844120026,
0.004040117841213942,
0.046930208802223206,
-0.07307977974414825,
0.056487563997507095,
0.017135322093963623,
-0.08280806243419647,
0.132241353392601,
-0.17844589054584503,
-0.12603910267353058,
0.19210509955883026,
0.05493321269750595,
0.36136770248413086,
-0.15195493400096893,
-0.08625582605600357,
-0.035814423114061356,
-0.10665323585271835,
0.11488444358110428,
-0.021982135251164436,
0.08035952597856522,
-0.016994774341583252,
-0.0010441035265102983,
0.009420539252460003,
-0.08691398054361343,
0.10597757250070572,
-0.08588308840990067,
0.03763715177774429,
-0.11208361387252808,
-0.09313295781612396,
0.12193392217159271,
0.008575495332479477,
0.015680016949772835,
-0.11985526978969574,
-0.02226695604622364,
0.0004803585179615766,
-0.02241409569978714,
-0.07323019951581955,
0.11541949957609177,
-0.009508136659860611,
-0.05538982152938843,
0.02525760792195797,
0.006923083681613207,
-0.0524129718542099,
-0.04590878635644913,
0.2469356209039688,
0.011950482614338398,
0.1846553087234497,
0.13151277601718903,
0.07671378552913666,
-0.12474516779184341,
-0.04706772044301033,
-0.049177974462509155,
-0.09656751900911331,
0.07903357595205307,
-0.025003256276249886,
0.03039538487792015,
0.07878779619932175,
0.00804413203150034,
0.07366173714399338,
0.08858069032430649,
-0.01918298937380314,
-0.012282870709896088,
0.16590847074985504,
-0.15542800724506378,
-0.06622137874364853,
0.007854224182665348,
0.05897738039493561,
0.06169126555323601,
0.08850936591625214,
0.09382573515176773,
0.002650872338563204,
-0.018738912418484688,
0.00392485223710537,
0.006007175426930189,
-0.04134998843073845,
0.047008901834487915,
0.08177684992551804,
0.030028769746422768,
-0.09630760550498962,
0.01578272320330143,
0.0006553177372552454,
-0.1870809644460678,
-0.01480336394160986,
0.11116770654916763,
-0.09362344443798065,
-0.1133498102426529,
0.022044699639081955,
0.1168300062417984,
-0.06749109923839569,
-0.08679737150669098,
-0.05352763086557388,
-0.11869363486766815,
0.017807377502322197,
0.19899964332580566,
0.05846136063337326,
0.05090707913041115,
-0.02197154238820076,
-0.0358995757997036,
-0.005240346770733595,
0.03696352243423462,
-0.04101162776350975,
0.05568557232618332,
-0.12135985493659973,
0.020278358832001686,
0.024764513596892357,
0.09829960763454437,
-0.08362411707639694,
-0.001958719687536359,
-0.16354937851428986,
0.01695983298122883,
-0.045107465237379074,
-0.01372463908046484,
-0.11428222060203552,
-0.04309731349349022,
0.011395846493542194,
-0.07010412216186523,
-0.04915269464254379,
-0.02136748656630516,
-0.09546293318271637,
0.02577688731253147,
0.0396021343767643,
0.03564830496907234,
-0.08985976874828339,
-0.03592415526509285,
0.05990740284323692,
-0.006086535751819611,
0.07575073838233948,
0.06405424326658249,
-0.04383125901222229,
0.10475477576255798,
-0.19564993679523468,
-0.055137962102890015,
0.07670191675424576,
0.016814228147268295,
0.0503503680229187,
0.052880093455314636,
0.015235590748488903,
0.08211789280176163,
0.045746006071567535,
0.04441463574767113,
0.05901201814413071,
-0.11917092651128769,
0.038339316844940186,
0.006518456619232893,
-0.17165520787239075,
-0.02501850016415119,
-0.032127149403095245,
0.08095463365316391,
-0.035001467913389206,
0.15364885330200195,
-0.07550553977489471,
0.03224492818117142,
-0.07278675585985184,
0.02365794964134693,
-0.024394411593675613,
-0.13694614171981812,
-0.03510136157274246,
-0.04503714665770531,
-0.004032884258776903,
-0.01505502313375473,
0.1947014182806015,
0.030312374234199524,
-0.06509219110012054,
0.04797405004501343,
0.027227722108364105,
-0.027990641072392464,
-0.001111253397539258,
0.18369223177433014,
0.013918446376919746,
-0.027518048882484436,
-0.09868036210536957,
0.045587316155433655,
-0.0030596647411584854,
-0.027028312906622887,
0.09712241590023041,
0.08156155794858932,
0.024568980559706688,
0.07787880301475525,
0.08540824800729752,
0.005852408707141876,
-0.0964561179280281,
-0.1207006424665451,
-0.033920932561159134,
0.04221361130475998,
-0.002577058970928192,
0.07345979660749435,
0.18436534702777863,
0.0010497384937480092,
0.01611323468387127,
-0.0601617805659771,
-0.040563106536865234,
-0.18805567920207977,
-0.18139638006687164,
-0.07701943069696426,
-0.06631428748369217,
0.044801030308008194,
0.002185764955356717,
0.037700507789850235,
0.05247354134917259,
0.06265774369239807,
-0.044014427810907364,
0.058762501925230026,
0.01659538969397545,
-0.022813089191913605,
0.018749644979834557,
0.02195526286959648,
0.02783309482038021,
-0.024012204259634018,
0.005185981281101704,
-0.13711975514888763,
-0.06022651493549347,
-0.041129618883132935,
-0.0016521662473678589,
-0.01679155044257641,
0.039330996572971344,
-0.07385986298322678,
-0.09667376428842545,
-0.03605477884411812,
0.041619617491960526,
0.036947399377822876,
0.12141884118318558,
0.01806696131825447,
0.032486286014318466,
0.02498512528836727,
0.11987540125846863,
-0.03852906450629234,
-0.09506042301654816,
-0.01588917151093483,
0.17377211153507233,
0.008115191012620926,
0.10079681128263474,
-0.01905115880072117,
0.025019703432917595,
-0.016603153198957443,
0.23411881923675537,
0.31464090943336487,
-0.023048853501677513,
0.06873740255832672,
0.021368874236941338,
0.014152969233691692,
0.008675427176058292,
0.11313376575708389,
0.06712498515844345,
0.29081857204437256,
-0.08305803686380386,
-0.01811552233994007,
-0.053343236446380615,
0.005113624967634678,
-0.12920936942100525,
0.033445537090301514,
-0.006975141819566488,
-0.03380655497312546,
-0.0168331116437912,
0.08211958408355713,
-0.08676745742559433,
0.09905369579792023,
0.0721692442893982,
-0.15549619495868683,
-0.06031390652060509,
0.020933818072080612,
0.2173718512058258,
0.006778704933822155,
0.057531002908945084,
-0.040927864611148834,
-0.03348466753959656,
0.006831123027950525,
-0.003955405671149492,
-0.1931408792734146,
-0.05195622146129608,
0.04972090572118759,
-0.02387099526822567,
0.13347995281219482,
-0.01286389585584402,
0.07982146739959717,
0.09700147807598114,
0.07588855177164078,
-0.025643350556492805,
0.07977426797151566,
0.028153827413916588,
-0.07619984447956085,
0.008086716756224632,
-0.040578655898571014,
0.00936858169734478,
-0.05204275622963905,
0.029119590297341347,
-0.047205716371536255,
0.06027103215456009,
-0.09572210162878036,
-0.06827031821012497,
-0.04933733120560646,
0.10708355903625488,
-0.06726659834384918,
0.07528527081012726,
0.04737493023276329,
0.02709689550101757,
-0.06293129175901413,
-0.027136782184243202,
-0.019189534708857536,
0.07244980335235596,
-0.07438021153211594,
-0.10650710016489029,
-0.09151026606559753,
-0.014676013961434364,
0.0329887829720974,
0.02306204102933407,
-0.1894010305404663,
-0.05069953203201294,
-0.11394121497869492,
0.004975265823304653,
-0.17264962196350098,
0.005634039640426636,
0.11268699169158936,
0.025042306631803513,
-0.003910454921424389,
-0.128409281373024,
0.03243667259812355,
0.030518779531121254,
-0.15046821534633636,
-0.08884690701961517
] |
null | null |
transformers
|
# π€ + π dbmdz BERT and ELECTRA models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models π
# Italian BERT
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/).
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in `config.json`. However, the model is working and all
evaluations were done under those circumstances.
See [this issue](https://github.com/dbmdz/berts/issues/7) for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra).
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt)
| `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt)
| `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt)
| `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt)
| `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt)
| `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[this repository](https://github.com/stefan-it/italian-bertelectra).
## Usage
With Transformers >= 2.3 our Italian BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/bert-base-italian-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
To load the (recommended) Italian XXL BERT models, just use:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/bert-base-italian-xxl-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelWithLMHead.from_pretrained(model_name)
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT/ELECTRA models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "it", "license": "mit", "datasets": ["wikipedia"]}
|
fill-mask
|
dbmdz/bert-base-italian-cased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"it",
"dataset:wikipedia",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"it"
] |
TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
|
+ dbmdz BERT and ELECTRA models
===============================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models
Italian BERT
============
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the OPUS corpora collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the OSCAR corpus.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in 'URL'. However, the model is working and all
evaluations were done under those circumstances.
See this issue for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
BERTurk.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Results
-------
For results on downstream tasks like NER or PoS tagging, please refer to
this repository.
Usage
-----
With Transformers >= 2.3 our Italian BERT models can be loaded like:
To load the (recommended) Italian XXL BERT models, just use:
To load the Italian XXL ELECTRA model (discriminator), just use:
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT/ELECTRA models just open an issue
here
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
63
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.03144901990890503,
0.05854027345776558,
-0.004188124090433121,
0.06036433205008507,
0.051557283848524094,
0.03873739391565323,
0.11041123420000076,
0.11060477793216705,
0.0863788053393364,
-0.029641637578606606,
0.15443755686283112,
0.17204220592975616,
-0.012625621631741524,
0.17014209926128387,
-0.044999562203884125,
-0.21072407066822052,
0.07855599373579025,
0.020639553666114807,
-0.05758114904165268,
0.0963280126452446,
0.11153198778629303,
-0.09529268741607666,
0.07312631607055664,
-0.027606908231973648,
-0.09869106858968735,
0.02841472066938877,
0.07728268951177597,
-0.128292515873909,
0.16028107702732086,
0.024775950238108635,
0.1541043221950531,
0.0715877041220665,
-0.005523725878447294,
-0.058382708579301834,
0.04880261793732643,
0.033075954765081406,
-0.09826786071062088,
0.05918964371085167,
-0.007543542422354221,
-0.003412701888009906,
0.01918160356581211,
0.017287692055106163,
0.03401283547282219,
0.03143518790602684,
-0.13649532198905945,
-0.22641871869564056,
-0.043292004615068436,
0.07718246430158615,
-0.005592833738774061,
0.041108593344688416,
0.020133988931775093,
0.22117376327514648,
-0.11687124520540237,
0.08956889808177948,
0.15401144325733185,
-0.3452942669391632,
-0.014158590696752071,
0.12416345626115799,
0.09963758289813995,
-0.03311759978532791,
-0.06903373450040817,
0.06951580941677094,
0.04049041494727135,
0.023327240720391273,
0.156740203499794,
-0.06454635411500931,
-0.11232343316078186,
0.024779122322797775,
-0.06444192677736282,
-0.06058662384748459,
0.24154765903949738,
-0.017528509721159935,
0.041595909744501114,
-0.027407687157392502,
-0.09137009084224701,
0.007568745408207178,
0.005233417730778456,
-0.01410981547087431,
-0.002625934546813369,
0.0439850352704525,
-0.025206733494997025,
-0.03678491711616516,
-0.14961186051368713,
0.014721560291945934,
-0.21681168675422668,
0.1460883468389511,
0.0022241633851081133,
0.08195005357265472,
-0.15717004239559174,
0.04794975370168686,
-0.03039838746190071,
-0.13515789806842804,
0.0279084425419569,
-0.07354824244976044,
0.044932346791028976,
-0.0233241505920887,
-0.036789488047361374,
0.008855697698891163,
0.11425842344760895,
0.1795344203710556,
-0.01531186606734991,
-0.02696632593870163,
-0.004399584606289864,
0.10471630096435547,
0.038269203156232834,
0.03384626656770706,
-0.05592123046517372,
-0.03266245499253273,
0.07595837116241455,
-0.07286292314529419,
0.033828407526016235,
-0.043786585330963135,
-0.1146988719701767,
-0.03872992843389511,
0.05120108276605606,
0.06487059593200684,
0.09213831275701523,
0.07635670155286789,
-0.04047691449522972,
0.04384591802954674,
0.11326323449611664,
-0.06309189647436142,
0.023670870810747147,
-0.0273696631193161,
0.06519407778978348,
-0.026196355000138283,
0.03981487825512886,
-0.018057534471154213,
0.038738369941711426,
0.08367914706468582,
-0.10344544053077698,
-0.04339142143726349,
-0.02349952422082424,
-0.10968120396137238,
0.07210395485162735,
-0.08489822596311569,
0.04445529729127884,
-0.20664772391319275,
-0.12924428284168243,
0.06710048019886017,
0.06648959219455719,
0.0031082977075129747,
-0.03812678903341293,
0.10534710437059402,
-0.050859689712524414,
0.043306201696395874,
-0.05750270560383797,
-0.022046102210879326,
-0.0801021084189415,
0.09301342815160751,
-0.062158625572919846,
0.11640278249979019,
-0.17355765402317047,
0.019326455891132355,
-0.10700299590826035,
0.004467794205993414,
-0.08820194005966187,
-0.0950864925980568,
-0.05050978437066078,
0.12027618288993835,
0.0033777474891394377,
-0.023756666108965874,
-0.09530726075172424,
0.04434765502810478,
-0.01766241528093815,
0.12926118075847626,
-0.15436215698719025,
-0.041233740746974945,
0.19149872660636902,
-0.11932158470153809,
-0.19320830702781677,
0.09037571400403976,
0.003406671341508627,
0.06210070848464966,
0.023967741057276726,
0.143472358584404,
0.0214950293302536,
-0.16092701256275177,
0.005376800894737244,
0.13087591528892517,
-0.10077619552612305,
-0.10540637373924255,
0.0422029122710228,
0.01352185383439064,
-0.07983606308698654,
0.025786127895116806,
0.03632491081953049,
0.09048963338136673,
-0.051843054592609406,
-0.06692621856927872,
-0.06027568131685257,
-0.04632158577442169,
0.08938415348529816,
0.02295895479619503,
0.07142791152000427,
-0.08804074674844742,
-0.0506293810904026,
-0.00774125661700964,
0.005537777673453093,
0.07491549104452133,
0.01573457010090351,
-0.0700371041893959,
0.15276019275188446,
-0.03181974217295647,
-0.007995451800525188,
-0.12478707730770111,
-0.12022557854652405,
-0.02801925130188465,
0.06113366410136223,
-0.025082334876060486,
0.1317245215177536,
0.08310271799564362,
-0.02972123958170414,
-0.024850189685821533,
-0.011585807427763939,
0.08702750504016876,
0.09271751344203949,
-0.008627946488559246,
-0.14053715765476227,
0.011878272518515587,
-0.07517044246196747,
-0.03331832215189934,
-0.021331606432795525,
0.002725784434005618,
0.01869233325123787,
0.13801677525043488,
-0.015113862231373787,
0.0574360117316246,
-0.04713618382811546,
-0.007016147021204233,
-0.058433182537555695,
-0.015670357272028923,
0.06405242532491684,
0.025655051693320274,
-0.02180594764649868,
0.18959954380989075,
-0.10559067130088806,
0.3904063105583191,
0.22533245384693146,
-0.16992908716201782,
-0.0469900481402874,
0.07227721065282822,
-0.020012686029076576,
0.02008911594748497,
-0.008221147581934929,
-0.05014408007264137,
-0.11294964700937271,
-0.05279801785945892,
0.12118250131607056,
-0.05677775666117668,
-0.02497856318950653,
0.03579603135585785,
-0.06537231802940369,
-0.07346660643815994,
-0.007879146374762058,
0.10057283937931061,
-0.20648621022701263,
0.20758166909217834,
0.3370943069458008,
0.0016041017370298505,
0.16857531666755676,
-0.015764424577355385,
0.01334374863654375,
-0.02267409674823284,
-0.071954645216465,
-0.04447801783680916,
0.15765301883220673,
-0.12539438903331757,
0.0005366833065636456,
0.07757876068353653,
-0.015057948417961597,
0.006524246651679277,
-0.13046082854270935,
-0.07071764022111893,
0.019871026277542114,
0.03303470462560654,
-0.0834750309586525,
0.12739069759845734,
0.027606187388300896,
0.12225323170423508,
-0.023834584280848503,
-0.11499354243278503,
0.08613267540931702,
0.013063579797744751,
-0.03750155493617058,
0.14102493226528168,
-0.13269661366939545,
-0.2984454035758972,
-0.05361165478825569,
-0.09377358108758926,
0.034427642822265625,
0.002435486065223813,
0.09498973935842514,
-0.016105838119983673,
-0.0524451844394207,
-0.009501424618065357,
-0.0526929534971714,
-0.026364993304014206,
0.06698987632989883,
-0.08291114866733551,
0.0265326090157032,
-0.011920190416276455,
-0.0925455391407013,
-0.08490684628486633,
0.013155301101505756,
-0.03193218633532524,
0.13952812552452087,
-0.01455309521406889,
0.06689346581697464,
0.05807040259242058,
-0.03954888880252838,
0.03610776737332344,
-0.050470709800720215,
0.2034851461648941,
-0.06095454841852188,
0.07059455662965775,
0.16722947359085083,
0.00034867561771534383,
0.050391945987939835,
0.2171790450811386,
0.049416568130254745,
-0.02912399359047413,
-0.0035983100533485413,
-0.05426141619682312,
-0.10095076262950897,
-0.1346467286348343,
-0.09474164992570877,
-0.11796128749847412,
0.01666877418756485,
0.059089295566082,
0.07316222786903381,
0.12278780341148376,
0.06504905968904495,
0.01870509423315525,
-0.033289410173892975,
-0.05174848064780235,
0.03319428861141205,
0.1362489014863968,
-0.03811149299144745,
0.12117476761341095,
-0.055135998874902725,
-0.08933935314416885,
0.08425705879926682,
0.045832883566617966,
0.051958344876766205,
0.07261020690202713,
-0.035726822912693024,
0.07683989405632019,
0.23767052590847015,
0.09993770718574524,
0.13585761189460754,
0.03799533471465111,
-0.07357838749885559,
-0.01476721465587616,
-0.03972688317298889,
0.021265795454382896,
0.03373446315526962,
0.07592004537582397,
-0.07478447258472443,
-0.014178633689880371,
-0.14880473911762238,
0.05133147910237312,
0.10089993476867676,
0.08351755887269974,
-0.22767697274684906,
0.0050148251466453075,
0.0603671558201313,
0.01884431205689907,
-0.05598069727420807,
0.040486495941877365,
0.07850667089223862,
-0.07171114534139633,
0.057137347757816315,
-0.016195015981793404,
0.054731398820877075,
0.11314485967159271,
0.059613220393657684,
-0.011893562972545624,
-0.09518411755561829,
0.00832071341574192,
0.05203060805797577,
-0.26882606744766235,
0.2720224857330322,
-0.001259648590348661,
-0.025494784116744995,
-0.0732392817735672,
-0.01791258342564106,
0.04706120863556862,
0.15806648135185242,
0.14525389671325684,
0.03873208537697792,
-0.07296478003263474,
-0.09295020252466202,
-0.0014682351611554623,
0.016040237620472908,
0.010875867679715157,
-0.0004254695086274296,
-0.009264419786632061,
-0.05298523232340813,
-0.021411139518022537,
0.04106349125504494,
0.18481747806072235,
-0.06904920190572739,
-0.10553858429193497,
0.043943557888269424,
0.08616431057453156,
-0.0018871626816689968,
-0.05199446156620979,
-0.0706803947687149,
-0.1469653695821762,
0.15312573313713074,
0.01307235099375248,
-0.02674057148396969,
-0.11896248906850815,
-0.07301674783229828,
0.08429568260908127,
-0.06522175669670105,
0.08853866904973984,
-0.07370575517416,
0.022650204598903656,
-0.0900392085313797,
-0.1672184318304062,
0.14997068047523499,
-0.15274344384670258,
-0.02674228325486183,
-0.0989171490073204,
0.09248842298984528,
-0.09865066409111023,
0.04431848227977753,
0.055093247443437576,
0.05554470419883728,
-0.0948527529835701,
-0.05225265026092529,
0.03290088474750519,
-0.07247074693441391,
0.05558758229017258,
-0.031211799010634422,
-0.061044465750455856,
-0.11053448170423508,
0.08361943066120148,
-0.007295351475477219,
0.19607241451740265,
0.23635821044445038,
-0.11197329312562943,
0.12184832245111465,
0.13546445965766907,
-0.025089509785175323,
-0.3595547378063202,
-0.11624498665332794,
-0.17609205842018127,
-0.01060901116579771,
0.08956968039274216,
-0.02859932743012905,
0.07481575757265091,
-0.013153026811778545,
-0.09035028517246246,
0.09789188206195831,
-0.14695404469966888,
-0.09083974361419678,
0.21613535284996033,
0.018660401925444603,
0.3399328589439392,
-0.14511457085609436,
-0.024024315178394318,
-0.009512635879218578,
-0.11091649532318115,
0.15369760990142822,
-0.10533967614173889,
0.05911485478281975,
-0.013909237459301949,
0.004139552358537912,
0.012183205224573612,
-0.07813585549592972,
0.09954077750444412,
-0.10108282417058945,
0.0321965292096138,
-0.11407190561294556,
-0.0811825767159462,
0.12100551277399063,
-0.025202220305800438,
0.035652369260787964,
-0.04711417853832245,
0.012638144195079803,
-0.02103186398744583,
0.01458238810300827,
-0.12779991328716278,
0.1409309208393097,
-0.01114159356802702,
-0.0891025960445404,
-0.013689546845853329,
0.0447087436914444,
-0.011901319026947021,
-0.05258827656507492,
0.20707644522190094,
0.017609955742955208,
0.2205880731344223,
0.13022127747535706,
0.01245747972279787,
-0.14182347059249878,
-0.05552227050065994,
0.004726429004222155,
-0.09754383563995361,
0.07945490628480911,
-0.07810647785663605,
0.03913445025682449,
0.05111776292324066,
0.001342486939392984,
0.06283694505691528,
0.09253716468811035,
-0.024310005828738213,
-0.04345175251364708,
0.18278281390666962,
-0.21058645844459534,
-0.03082706592977047,
-0.0076413387432694435,
0.00901560578495264,
0.03737424314022064,
0.013118859380483627,
0.09628792852163315,
-0.0349426232278347,
-0.025654003024101257,
-0.010936541482806206,
0.018751977011561394,
-0.06672031432390213,
0.0308033749461174,
0.10096185654401779,
0.042084451764822006,
-0.09766431152820587,
0.024060342460870743,
0.0007986105047166348,
-0.11456049978733063,
-0.005025430582463741,
0.05746957287192345,
-0.09132248908281326,
-0.14922763407230377,
0.009266253560781479,
0.018580442294478416,
-0.049363743513822556,
-0.0565616674721241,
-0.0344686359167099,
-0.12042242288589478,
0.01690557599067688,
0.20458851754665375,
0.08372139930725098,
0.07254569232463837,
0.0236162431538105,
-0.04879440739750862,
0.010211420245468616,
0.037708718329668045,
-0.0686349868774414,
0.032822925597429276,
-0.1248563900589943,
0.03449467942118645,
-0.008577791973948479,
0.12436963617801666,
-0.09835115075111389,
0.014217514544725418,
-0.1753753423690796,
-0.015422840602695942,
-0.03269396722316742,
-0.05784007906913757,
-0.11257720738649368,
-0.06603407859802246,
0.02994263358414173,
-0.09766007214784622,
-0.05303233861923218,
-0.02479202300310135,
-0.10329461097717285,
-0.0008629703079350293,
0.045386385172605515,
0.0547492578625679,
-0.10937243700027466,
-0.06124405935406685,
0.08060261607170105,
-0.013958820141851902,
0.07729014754295349,
0.04823029041290283,
-0.05647318437695503,
0.08084550499916077,
-0.14249326288700104,
-0.11217918992042542,
0.0715373232960701,
0.012011321261525154,
0.08645838499069214,
0.016264446079730988,
0.006923564709722996,
0.06594253331422806,
0.007847819477319717,
0.04597339779138565,
0.0019507452379912138,
-0.10722078382968903,
0.017426669597625732,
0.01513566542416811,
-0.12296707928180695,
0.01982063055038452,
-0.08475609123706818,
0.13200309872627258,
-0.07486012578010559,
0.13159026205539703,
-0.0484512634575367,
0.021160248667001724,
-0.12629885971546173,
0.017842687666416168,
-0.06064259260892868,
-0.1535007506608963,
-0.07519461214542389,
-0.01859966106712818,
0.005336684174835682,
-0.02454289421439171,
0.23430657386779785,
0.08391255885362625,
-0.07443144172430038,
0.06781987845897675,
0.04008927941322327,
-0.008381889201700687,
-0.00537219038233161,
0.20057016611099243,
0.014817800372838974,
-0.06181533262133598,
-0.09569287300109863,
0.05355997383594513,
-0.004710820969194174,
-0.06815414130687714,
0.09051362425088882,
0.1089104413986206,
0.07243208587169647,
0.03835507109761238,
0.0843275636434555,
-0.03273425251245499,
-0.06024431064724922,
-0.19648230075836182,
-0.020339075475931168,
0.07434237003326416,
-0.01697203703224659,
-0.05200304463505745,
0.17569980025291443,
-0.03281139209866524,
0.0388525165617466,
-0.08036508411169052,
0.00637404527515173,
-0.1709703952074051,
-0.13046398758888245,
-0.0818382203578949,
-0.055347222834825516,
0.002187883947044611,
-0.04884792119264603,
0.003143428824841976,
0.10745321959257126,
0.037850357592105865,
-0.03836483508348465,
0.07187864184379578,
0.028515469282865524,
-0.025324800983071327,
0.0132627347484231,
0.03378914296627045,
0.017587963491678238,
-0.061733588576316833,
-0.002607495989650488,
-0.1278763711452484,
-0.007940826006233692,
-0.06782500445842743,
-0.0006724119884893298,
-0.05052383989095688,
0.03583437204360962,
-0.10249804705381393,
-0.10403111577033997,
-0.05312073975801468,
0.0072165061719715595,
-0.019971877336502075,
0.08456313610076904,
0.008245921693742275,
0.050485167652368546,
0.04855545982718468,
0.1739550679922104,
-0.056285761296749115,
-0.11999597400426865,
-0.05260586366057396,
0.16893337666988373,
0.007780720945447683,
0.06141001358628273,
-0.0008094902150332928,
0.015051943250000477,
-0.07314229756593704,
0.23802264034748077,
0.36269980669021606,
-0.03039684146642685,
0.09878816455602646,
0.014932559803128242,
0.0037695609498769045,
0.006866013165563345,
0.11345569044351578,
0.081180140376091,
0.22856149077415466,
-0.0782909095287323,
0.0203280970454216,
-0.07192746549844742,
0.0010582675458863378,
-0.09624478965997696,
0.005493991542607546,
0.03974740952253342,
-0.02725783735513687,
-0.03942658752202988,
0.061702899634838104,
-0.09006039798259735,
0.022075269371271133,
0.06750493496656418,
-0.1925891488790512,
-0.0576685406267643,
-0.007592036854475737,
0.15044863522052765,
0.012218899093568325,
0.05498522147536278,
-0.06204594299197197,
-0.005358158145099878,
0.02347307838499546,
-0.009988884441554546,
-0.16145776212215424,
-0.04563358053565025,
0.10574255883693695,
-0.000813603401184082,
0.167389377951622,
-0.038182564079761505,
0.04914161190390587,
0.10359542816877365,
0.03578212857246399,
-0.08180972188711166,
0.07255859673023224,
0.04672904312610626,
-0.06536328792572021,
-0.04047081992030144,
-0.07085221260786057,
0.0159338116645813,
-0.06863084435462952,
0.057261962443590164,
-0.10662814229726791,
0.042127788066864014,
-0.06456221640110016,
-0.044417981058359146,
-0.03230605646967888,
0.07978640496730804,
-0.023842306807637215,
0.09732840955257416,
0.03711596131324768,
-0.021140318363904953,
-0.0406796894967556,
-0.057747721672058105,
-0.006715268362313509,
0.08127989619970322,
-0.12402404844760895,
-0.1207892969250679,
-0.04117708280682564,
-0.020187996327877045,
0.006530333310365677,
-0.00792099628597498,
-0.13863492012023926,
-0.05397247523069382,
-0.07846809178590775,
-0.005218826234340668,
-0.14102043211460114,
0.028515931218862534,
0.12040777504444122,
0.03800107538700104,
0.00020001627854071558,
0.006143919657915831,
0.009102629497647285,
0.032907046377658844,
-0.14336857199668884,
-0.08396632969379425
] |
null | null |
transformers
|
# π€ + π dbmdz BERT and ELECTRA models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models π
# Italian BERT
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/).
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in `config.json`. However, the model is working and all
evaluations were done under those circumstances.
See [this issue](https://github.com/dbmdz/berts/issues/7) for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra).
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt)
| `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt)
| `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt)
| `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt)
| `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt)
| `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[this repository](https://github.com/stefan-it/italian-bertelectra).
## Usage
With Transformers >= 2.3 our Italian BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/bert-base-italian-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
To load the (recommended) Italian XXL BERT models, just use:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/bert-base-italian-xxl-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelWithLMHead.from_pretrained(model_name)
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT/ELECTRA models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "it", "license": "mit", "datasets": ["wikipedia"]}
|
fill-mask
|
dbmdz/bert-base-italian-uncased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"it",
"dataset:wikipedia",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"it"
] |
TAGS
#transformers #pytorch #tf #jax #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
|
+ dbmdz BERT and ELECTRA models
===============================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models
Italian BERT
============
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the OPUS corpora collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the OSCAR corpus.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in 'URL'. However, the model is working and all
evaluations were done under those circumstances.
See this issue for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
BERTurk.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Results
-------
For results on downstream tasks like NER or PoS tagging, please refer to
this repository.
Usage
-----
With Transformers >= 2.3 our Italian BERT models can be loaded like:
To load the (recommended) Italian XXL BERT models, just use:
To load the Italian XXL ELECTRA model (discriminator), just use:
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT/ELECTRA models just open an issue
here
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
58
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.0123423021286726,
0.06960970163345337,
-0.004287904594093561,
0.056210022419691086,
0.06078420206904411,
0.05983934551477432,
0.0901472344994545,
0.13448967039585114,
0.09696845710277557,
-0.03528768941760063,
0.15353113412857056,
0.17072099447250366,
-0.010234556160867214,
0.13402511179447174,
-0.037960074841976166,
-0.2406189739704132,
0.07097458839416504,
0.033534057438373566,
-0.09989599883556366,
0.08475048840045929,
0.10446876287460327,
-0.09210571646690369,
0.06988074630498886,
-0.027568409219384193,
-0.11936627328395844,
0.04405082017183304,
0.05478954315185547,
-0.10960250347852707,
0.15582211315631866,
0.038776788860559464,
0.1302952617406845,
0.060681480914354324,
-0.026761258020997047,
-0.06436172127723694,
0.04759268835186958,
0.015877913683652878,
-0.10127976536750793,
0.0682627260684967,
-0.025295618921518326,
0.009219893254339695,
0.04111871123313904,
0.03038332797586918,
0.017128217965364456,
0.027338601648807526,
-0.15072543919086456,
-0.21668843924999237,
-0.048782262951135635,
0.060286249965429306,
-0.03420818969607353,
0.037736982107162476,
0.02016262151300907,
0.19076021015644073,
-0.13475856184959412,
0.06915326416492462,
0.16581451892852783,
-0.3344060480594635,
-0.00551473768427968,
0.135944664478302,
0.08002737164497375,
-0.03400056064128876,
-0.060280218720436096,
0.08377251774072647,
0.035981569439172745,
0.019427945837378502,
0.13159912824630737,
-0.07338635623455048,
-0.08788415044546127,
0.0429658517241478,
-0.05926695838570595,
-0.07829806208610535,
0.2667873799800873,
-0.011837316676974297,
0.0578838512301445,
0.00584555696696043,
-0.09007968008518219,
0.0007916679023765028,
0.006258293054997921,
-0.00369505537673831,
0.01476280577480793,
0.05637478083372116,
-0.009573807008564472,
-0.06020015850663185,
-0.14672113955020905,
0.026031382381916046,
-0.22862154245376587,
0.12316060811281204,
0.0008923103450797498,
0.08270001411437988,
-0.15426144003868103,
0.037391964346170425,
-0.03595045208930969,
-0.11864857375621796,
0.022688042372465134,
-0.06412734091281891,
0.024390067905187607,
-0.01611780934035778,
-0.0598231703042984,
0.01961890049278736,
0.10710380971431732,
0.18416807055473328,
0.014005966484546661,
-0.029802288860082626,
0.006438467651605606,
0.11871923506259918,
0.061616215854883194,
0.02533571794629097,
-0.07606656849384308,
-0.039369549602270126,
0.05847761407494545,
-0.10168522596359253,
0.008546746335923672,
-0.05558732524514198,
-0.13838841021060944,
-0.05790054425597191,
0.02524450235068798,
0.05056488886475563,
0.10614310204982758,
0.06479182839393616,
-0.040179215371608734,
0.029001004993915558,
0.0908079445362091,
-0.056106992065906525,
0.028978755697607994,
-0.029021581634879112,
0.046357981860637665,
0.01617784984409809,
0.024007881060242653,
-0.01802070625126362,
0.03933955356478691,
0.06936293095350266,
-0.10778488963842392,
-0.03296510502696037,
-0.026460150256752968,
-0.10942183434963226,
0.07564949244260788,
-0.09871495515108109,
0.050698354840278625,
-0.18678033351898193,
-0.10874006897211075,
0.05227474495768547,
0.08163196593523026,
-0.019328024238348007,
-0.041391052305698395,
0.11283364146947861,
-0.03865863010287285,
0.06159832328557968,
-0.053575240075588226,
-0.0039854953065514565,
-0.0829584151506424,
0.08603538572788239,
-0.07280127704143524,
0.1308279186487198,
-0.1998862326145172,
0.03764006495475769,
-0.08451013267040253,
-0.0009883666643872857,
-0.08007358759641647,
-0.07631918787956238,
-0.04498798027634621,
0.11529432237148285,
-0.008006646297872066,
-0.02790892869234085,
-0.10569994896650314,
0.044099822640419006,
-0.01910499483346939,
0.12328179180622101,
-0.17386706173419952,
-0.049380864948034286,
0.16645772755146027,
-0.0856119841337204,
-0.1839640736579895,
0.09558304399251938,
-0.010086686350405216,
0.07555178552865982,
0.006513345520943403,
0.16825616359710693,
0.018435467034578323,
-0.14001025259494781,
0.02047627978026867,
0.1329781413078308,
-0.08535772562026978,
-0.11304625123739243,
0.05418941378593445,
0.003765739966183901,
-0.06125772371888161,
0.022817304357886314,
0.03267774358391762,
0.08838513493537903,
-0.043770529329776764,
-0.05974378436803818,
-0.05007459223270416,
-0.03933003917336464,
0.08202677965164185,
0.02240084856748581,
0.09522487223148346,
-0.0675610825419426,
-0.03505637124180794,
0.025336239486932755,
0.009940346702933311,
0.08726304024457932,
0.039433564990758896,
-0.048411209136247635,
0.16450007259845734,
-0.03319668769836426,
-0.006057661958038807,
-0.1378682553768158,
-0.0789538025856018,
-0.039903946220874786,
0.06940007954835892,
-0.0008540085982531309,
0.18708905577659607,
0.056869544088840485,
-0.07077677547931671,
-0.019055308774113655,
0.01369277760386467,
0.0832725465297699,
0.08642760664224625,
-0.009168891236186028,
-0.12489844858646393,
0.0004662727296818048,
-0.06790173798799515,
-0.056341446936130524,
-0.006999194622039795,
-0.004547270946204662,
0.017096111550927162,
0.1227419450879097,
-0.02554198168218136,
0.062403056770563126,
-0.04344181716442108,
-0.0036310823634266853,
-0.0677606388926506,
-0.003891945583745837,
0.07003413140773773,
0.023088181391358376,
-0.019109273329377174,
0.19696302711963654,
-0.07599681615829468,
0.36112967133522034,
0.2226603776216507,
-0.20044392347335815,
-0.04291095957159996,
0.06664679944515228,
-0.01942305825650692,
0.01898644119501114,
0.01284167543053627,
-0.05877948924899101,
-0.09036438912153244,
-0.05570138618350029,
0.11471772193908691,
-0.04368029534816742,
-0.013721276074647903,
0.02293384075164795,
-0.06707686930894852,
-0.0712336078286171,
-0.006657490041106939,
0.12793856859207153,
-0.2088271826505661,
0.21012909710407257,
0.3337938189506531,
0.010216687805950642,
0.18579627573490143,
-0.005559393670409918,
0.008520673960447311,
-0.03836343437433243,
-0.10039110481739044,
-0.058082010596990585,
0.14218345284461975,
-0.16238170862197876,
-0.017008326947689056,
0.08506922423839569,
-0.009287707507610321,
0.0230522733181715,
-0.1221771165728569,
-0.06899303942918777,
0.0292176716029644,
0.04332450404763222,
-0.09542664140462875,
0.13173224031925201,
0.026835989207029343,
0.11206769198179245,
0.002839339431375265,
-0.08942670375108719,
0.08258050680160522,
0.01270714309066534,
-0.03088993765413761,
0.12646439671516418,
-0.14049914479255676,
-0.29712045192718506,
-0.05622323602437973,
-0.10770534723997116,
0.04072663560509682,
0.003940840717405081,
0.1007598266005516,
-0.007055110298097134,
-0.040889278054237366,
0.016058554872870445,
-0.031439587473869324,
-0.08477406203746796,
0.05901949480175972,
-0.09381844103336334,
0.025701094418764114,
-0.04326919838786125,
-0.08559241145849228,
-0.08975054323673248,
0.014501889236271381,
-0.01701708696782589,
0.13186456263065338,
-0.04004604369401932,
0.07418113946914673,
0.06040409952402115,
-0.026756882667541504,
0.055430445820093155,
-0.04715827852487564,
0.21288838982582092,
-0.06312914937734604,
0.06574461609125137,
0.14738458395004272,
0.020051829516887665,
0.041432976722717285,
0.20726794004440308,
0.054641079157590866,
-0.030498521402478218,
-0.016753200441598892,
-0.04821178689599037,
-0.10293816030025482,
-0.1288023740053177,
-0.09030130505561829,
-0.14225627481937408,
0.0115209287032485,
0.06310831755399704,
0.07279907912015915,
0.12334568798542023,
0.05048249661922455,
0.03527852147817612,
-0.014859357848763466,
-0.0776318609714508,
0.027751987800002098,
0.18525876104831696,
-0.04340371489524841,
0.10981151461601257,
-0.0625150129199028,
-0.06316479295492172,
0.09739808738231659,
0.06918933242559433,
0.06443417072296143,
0.09348360449075699,
0.013913366012275219,
0.07806439697742462,
0.2233395129442215,
0.09507486969232559,
0.10893416404724121,
0.04387054964900017,
-0.05754684656858444,
-0.02756577543914318,
-0.02745187282562256,
0.02375398762524128,
0.0478290356695652,
0.1354692280292511,
-0.12123100459575653,
-0.011083897203207016,
-0.1777254343032837,
0.036630891263484955,
0.09971143305301666,
0.09775368124246597,
-0.1890123337507248,
0.007063701283186674,
0.05493449419736862,
0.008696883916854858,
-0.05293913558125496,
0.03812875971198082,
0.05241202563047409,
-0.08881682902574539,
0.0492570735514164,
0.003938499838113785,
0.06445849686861038,
0.0926271602511406,
0.0602429173886776,
-0.01021028496325016,
-0.12498094141483307,
0.020771287381649017,
0.05668611824512482,
-0.29479238390922546,
0.27991798520088196,
-0.006930578034371138,
-0.06630441546440125,
-0.06961748003959656,
-0.030534548684954643,
0.04823891445994377,
0.14511261880397797,
0.12799422442913055,
0.04486884921789169,
-0.07082336395978928,
-0.08220968395471573,
0.019325869157910347,
0.004811927210539579,
0.014041339978575706,
-0.02172860875725746,
-0.016722455620765686,
-0.04918324947357178,
-0.01062828116118908,
0.034418314695358276,
0.24118280410766602,
-0.042195964604616165,
-0.12283410131931305,
0.06408853828907013,
0.0712258592247963,
-0.02169884741306305,
-0.020689528435468674,
-0.06677062064409256,
-0.1466464400291443,
0.15358464419841766,
0.03662516176700592,
-0.01650458388030529,
-0.12574808299541473,
-0.04317038878798485,
0.09977131336927414,
-0.06921367347240448,
0.08743380010128021,
-0.0794135108590126,
0.006118261720985174,
-0.09096290171146393,
-0.17536909878253937,
0.15561430156230927,
-0.12978094816207886,
0.00003798930993070826,
-0.08818244934082031,
0.07637012749910355,
-0.10441350936889648,
0.06371624022722244,
0.05094944313168526,
0.06443934887647629,
-0.11202456057071686,
-0.05448295176029205,
0.05370492488145828,
-0.0826888456940651,
0.04680169001221657,
-0.029918504878878593,
-0.05517594888806343,
-0.044968876987695694,
0.09298849105834961,
-0.01437368057668209,
0.23836329579353333,
0.22418025135993958,
-0.11367640644311905,
0.14868129789829254,
0.10653345286846161,
-0.048631906509399414,
-0.34967705607414246,
-0.10208708792924881,
-0.17687945067882538,
-0.006809190381318331,
0.07899457216262817,
-0.08982130140066147,
0.04858841374516487,
-0.016753556206822395,
-0.07814488559961319,
0.0965719074010849,
-0.16107721626758575,
-0.08395279943943024,
0.19781124591827393,
-0.01497599296271801,
0.3677157461643219,
-0.13534773886203766,
-0.027362151071429253,
-0.021906744688749313,
-0.1391974687576294,
0.16936412453651428,
-0.061810798943042755,
0.07832776755094528,
-0.024369528517127037,
0.027047600597143173,
0.01093039009720087,
-0.06609918922185898,
0.10983236134052277,
-0.07469891011714935,
0.013358849100768566,
-0.11152362078428268,
-0.10395874828100204,
0.12298362702131271,
-0.02856322191655636,
0.02044290490448475,
-0.020076893270015717,
-0.006490872707217932,
-0.07556027919054031,
0.020258190110325813,
-0.1348794847726822,
0.12854675948619843,
-0.01062439288944006,
-0.07907208800315857,
-0.039040956646203995,
0.053093548864126205,
0.01129979733377695,
-0.04061036929488182,
0.21897481381893158,
0.006809186656028032,
0.1887577623128891,
0.10975421220064163,
-0.01412395853549242,
-0.14491145312786102,
-0.07630062103271484,
0.005702093709260225,
-0.08795531839132309,
0.0661965161561966,
-0.10025772452354431,
0.02824859879910946,
0.06718521565198898,
-0.0007757659768685699,
0.06581725180149078,
0.09439423680305481,
-0.027014635503292084,
-0.027681633830070496,
0.17619040608406067,
-0.1877608448266983,
-0.03548908978700638,
-0.007022913079708815,
-0.030089832842350006,
0.05489673465490341,
-0.03320687264204025,
0.09325133264064789,
-0.019090525805950165,
-0.02890617400407791,
0.007103626616299152,
0.003785594366490841,
-0.07010561972856522,
0.016945019364356995,
0.1019146665930748,
0.030822312459349632,
-0.10521619021892548,
0.036730460822582245,
0.010818296112120152,
-0.12176946550607681,
0.0031532233115285635,
0.06573352962732315,
-0.07623987644910812,
-0.15630283951759338,
-0.015943050384521484,
-0.0004854082071688026,
-0.09398313611745834,
-0.03916698321700096,
-0.02806662768125534,
-0.10334222763776779,
0.028209121897816658,
0.1771848052740097,
0.08762253820896149,
0.06944871693849564,
-0.0009599996265023947,
-0.05249864608049393,
0.032261453568935394,
0.013816404156386852,
-0.06797133386135101,
0.024238040670752525,
-0.0924883559346199,
0.0336950346827507,
-0.016047438606619835,
0.14510808885097504,
-0.0928204134106636,
-0.00278139254078269,
-0.17182166874408722,
-0.011561998166143894,
-0.04741371050477028,
-0.07044190913438797,
-0.11699992418289185,
-0.08099594712257385,
0.03476296737790108,
-0.10013563185930252,
-0.061917081475257874,
-0.036514174193143845,
-0.13068875670433044,
-0.011728855781257153,
0.03517148643732071,
0.06469765305519104,
-0.09315013885498047,
-0.054478805512189865,
0.0936288833618164,
-0.008271314203739166,
0.07488863915205002,
0.05518278852105141,
-0.04850151389837265,
0.0808572918176651,
-0.09903602302074432,
-0.12347307801246643,
0.06630121916532516,
0.013971241191029549,
0.09377416223287582,
0.003027375089004636,
-0.0005354568711481988,
0.05823840945959091,
0.015987670049071312,
0.04489261656999588,
-0.00985968578606844,
-0.10089888423681259,
-0.0021063194144517183,
0.0031941330526024103,
-0.12773774564266205,
0.026122678071260452,
-0.07459545135498047,
0.1340571641921997,
-0.04024606570601463,
0.10434878617525101,
-0.02757790870964527,
0.03087184578180313,
-0.111562579870224,
0.015905367210507393,
-0.05911262705922127,
-0.1500050276517868,
-0.042551733553409576,
-0.038738664239645004,
0.00561034120619297,
-0.02082783542573452,
0.25150543451309204,
0.08530066907405853,
-0.07630661129951477,
0.06448537856340408,
0.05574234947562218,
-0.021863741800189018,
-0.00944671593606472,
0.20261405408382416,
0.03418722376227379,
-0.06364060938358307,
-0.0852823257446289,
0.08000911772251129,
-0.006247511599212885,
-0.010427664034068584,
0.10461641103029251,
0.10208731144666672,
0.10728034377098083,
0.038207780569791794,
0.07307850569486618,
-0.02952686883509159,
-0.05921756848692894,
-0.18301071226596832,
0.0024631174746900797,
0.09957721084356308,
-0.028973126783967018,
-0.04478603973984718,
0.15549980103969574,
-0.05458717793226242,
0.06511835753917694,
-0.07893074303865433,
0.0063300891779363155,
-0.16131938993930817,
-0.13939063251018524,
-0.06942322105169296,
-0.06730885803699493,
-0.006115925498306751,
-0.04871873930096626,
0.03174860030412674,
0.12916013598442078,
0.03581157699227333,
-0.03166601061820984,
0.03128352761268616,
0.028809884563088417,
-0.04904387518763542,
0.02073153480887413,
0.017187856137752533,
0.011405852623283863,
-0.08465924113988876,
0.005183892790228128,
-0.12510448694229126,
-0.010067648254334927,
-0.06610588729381561,
0.010713782161474228,
-0.04857220873236656,
0.021481771022081375,
-0.11710675805807114,
-0.10452664643526077,
-0.0589592345058918,
0.0053769005462527275,
-0.024067524820566177,
0.10665146261453629,
0.008030543103814125,
0.05108560621738434,
0.036255739629268646,
0.17529088258743286,
-0.06104917824268341,
-0.08220652490854263,
-0.05647243931889534,
0.1349743753671646,
0.01731470786035061,
0.054861877113580704,
-0.007728576194494963,
0.01409253291785717,
-0.09339787811040878,
0.24649322032928467,
0.3786972761154175,
-0.04200957715511322,
0.08925673365592957,
0.038677312433719635,
0.005293946713209152,
0.04145250469446182,
0.1193942278623581,
0.06999761611223221,
0.20624415576457977,
-0.08701010793447495,
-0.001487924251705408,
-0.08017564564943314,
-0.011906268075108528,
-0.08570309728384018,
0.023806801065802574,
0.06032536178827286,
-0.04394211992621422,
-0.036334313452243805,
0.0663493424654007,
-0.11698085814714432,
-0.0019733558874577284,
0.07057087123394012,
-0.20476719737052917,
-0.059526391327381134,
-0.009259851649403572,
0.12459055334329605,
0.017956696450710297,
0.07252734899520874,
-0.06741425395011902,
-0.019048716872930527,
0.04639396071434021,
-0.002100491663441062,
-0.19627679884433746,
-0.06069067120552063,
0.13382844626903534,
-0.0030528767965734005,
0.11499309539794922,
-0.04709955304861069,
0.036810748279094696,
0.1023169606924057,
0.05633113160729408,
-0.0750550627708435,
0.041621703654527664,
0.04566929116845131,
-0.04745350405573845,
-0.052053652703762054,
-0.06470023840665817,
0.015316318720579147,
-0.09180168807506561,
0.07124556601047516,
-0.09082870930433273,
0.05194232985377312,
-0.06005537137389183,
-0.03210873156785965,
-0.027229970321059227,
0.06533197313547134,
-0.04401508346199989,
0.09085561335086823,
0.050845786929130554,
-0.022294718772172928,
-0.04622364044189453,
-0.05715195834636688,
-0.030446067452430725,
0.08551090210676193,
-0.1317061483860016,
-0.1554967314004898,
-0.01919250376522541,
-0.0343664214015007,
-0.0033288034610450268,
-0.014071433804929256,
-0.11445792019367218,
-0.05230281502008438,
-0.06866638362407684,
0.003371031489223242,
-0.1094975695014,
0.05045987293124199,
0.09839677065610886,
0.02714494802057743,
-0.0016390405362471938,
0.0015494455583393574,
0.02039778232574463,
0.025072675198316574,
-0.14829814434051514,
-0.07653535157442093
] |
null | null |
transformers
|
# π€ + π dbmdz BERT and ELECTRA models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models π
# Italian BERT
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/).
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in `config.json`. However, the model is working and all
evaluations were done under those circumstances.
See [this issue](https://github.com/dbmdz/berts/issues/7) for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra).
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt)
| `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt)
| `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt)
| `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt)
| `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt)
| `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[this repository](https://github.com/stefan-it/italian-bertelectra).
## Usage
With Transformers >= 2.3 our Italian BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/bert-base-italian-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
To load the (recommended) Italian XXL BERT models, just use:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/bert-base-italian-xxl-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelWithLMHead.from_pretrained(model_name)
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT/ELECTRA models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "it", "license": "mit", "datasets": ["wikipedia"]}
|
fill-mask
|
dbmdz/bert-base-italian-xxl-cased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"it",
"dataset:wikipedia",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"it"
] |
TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
|
+ dbmdz BERT and ELECTRA models
===============================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models
Italian BERT
============
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the OPUS corpora collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the OSCAR corpus.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in 'URL'. However, the model is working and all
evaluations were done under those circumstances.
See this issue for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
BERTurk.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Results
-------
For results on downstream tasks like NER or PoS tagging, please refer to
this repository.
Usage
-----
With Transformers >= 2.3 our Italian BERT models can be loaded like:
To load the (recommended) Italian XXL BERT models, just use:
To load the Italian XXL ELECTRA model (discriminator), just use:
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT/ELECTRA models just open an issue
here
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
63
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.03144901990890503,
0.05854027345776558,
-0.004188124090433121,
0.06036433205008507,
0.051557283848524094,
0.03873739391565323,
0.11041123420000076,
0.11060477793216705,
0.0863788053393364,
-0.029641637578606606,
0.15443755686283112,
0.17204220592975616,
-0.012625621631741524,
0.17014209926128387,
-0.044999562203884125,
-0.21072407066822052,
0.07855599373579025,
0.020639553666114807,
-0.05758114904165268,
0.0963280126452446,
0.11153198778629303,
-0.09529268741607666,
0.07312631607055664,
-0.027606908231973648,
-0.09869106858968735,
0.02841472066938877,
0.07728268951177597,
-0.128292515873909,
0.16028107702732086,
0.024775950238108635,
0.1541043221950531,
0.0715877041220665,
-0.005523725878447294,
-0.058382708579301834,
0.04880261793732643,
0.033075954765081406,
-0.09826786071062088,
0.05918964371085167,
-0.007543542422354221,
-0.003412701888009906,
0.01918160356581211,
0.017287692055106163,
0.03401283547282219,
0.03143518790602684,
-0.13649532198905945,
-0.22641871869564056,
-0.043292004615068436,
0.07718246430158615,
-0.005592833738774061,
0.041108593344688416,
0.020133988931775093,
0.22117376327514648,
-0.11687124520540237,
0.08956889808177948,
0.15401144325733185,
-0.3452942669391632,
-0.014158590696752071,
0.12416345626115799,
0.09963758289813995,
-0.03311759978532791,
-0.06903373450040817,
0.06951580941677094,
0.04049041494727135,
0.023327240720391273,
0.156740203499794,
-0.06454635411500931,
-0.11232343316078186,
0.024779122322797775,
-0.06444192677736282,
-0.06058662384748459,
0.24154765903949738,
-0.017528509721159935,
0.041595909744501114,
-0.027407687157392502,
-0.09137009084224701,
0.007568745408207178,
0.005233417730778456,
-0.01410981547087431,
-0.002625934546813369,
0.0439850352704525,
-0.025206733494997025,
-0.03678491711616516,
-0.14961186051368713,
0.014721560291945934,
-0.21681168675422668,
0.1460883468389511,
0.0022241633851081133,
0.08195005357265472,
-0.15717004239559174,
0.04794975370168686,
-0.03039838746190071,
-0.13515789806842804,
0.0279084425419569,
-0.07354824244976044,
0.044932346791028976,
-0.0233241505920887,
-0.036789488047361374,
0.008855697698891163,
0.11425842344760895,
0.1795344203710556,
-0.01531186606734991,
-0.02696632593870163,
-0.004399584606289864,
0.10471630096435547,
0.038269203156232834,
0.03384626656770706,
-0.05592123046517372,
-0.03266245499253273,
0.07595837116241455,
-0.07286292314529419,
0.033828407526016235,
-0.043786585330963135,
-0.1146988719701767,
-0.03872992843389511,
0.05120108276605606,
0.06487059593200684,
0.09213831275701523,
0.07635670155286789,
-0.04047691449522972,
0.04384591802954674,
0.11326323449611664,
-0.06309189647436142,
0.023670870810747147,
-0.0273696631193161,
0.06519407778978348,
-0.026196355000138283,
0.03981487825512886,
-0.018057534471154213,
0.038738369941711426,
0.08367914706468582,
-0.10344544053077698,
-0.04339142143726349,
-0.02349952422082424,
-0.10968120396137238,
0.07210395485162735,
-0.08489822596311569,
0.04445529729127884,
-0.20664772391319275,
-0.12924428284168243,
0.06710048019886017,
0.06648959219455719,
0.0031082977075129747,
-0.03812678903341293,
0.10534710437059402,
-0.050859689712524414,
0.043306201696395874,
-0.05750270560383797,
-0.022046102210879326,
-0.0801021084189415,
0.09301342815160751,
-0.062158625572919846,
0.11640278249979019,
-0.17355765402317047,
0.019326455891132355,
-0.10700299590826035,
0.004467794205993414,
-0.08820194005966187,
-0.0950864925980568,
-0.05050978437066078,
0.12027618288993835,
0.0033777474891394377,
-0.023756666108965874,
-0.09530726075172424,
0.04434765502810478,
-0.01766241528093815,
0.12926118075847626,
-0.15436215698719025,
-0.041233740746974945,
0.19149872660636902,
-0.11932158470153809,
-0.19320830702781677,
0.09037571400403976,
0.003406671341508627,
0.06210070848464966,
0.023967741057276726,
0.143472358584404,
0.0214950293302536,
-0.16092701256275177,
0.005376800894737244,
0.13087591528892517,
-0.10077619552612305,
-0.10540637373924255,
0.0422029122710228,
0.01352185383439064,
-0.07983606308698654,
0.025786127895116806,
0.03632491081953049,
0.09048963338136673,
-0.051843054592609406,
-0.06692621856927872,
-0.06027568131685257,
-0.04632158577442169,
0.08938415348529816,
0.02295895479619503,
0.07142791152000427,
-0.08804074674844742,
-0.0506293810904026,
-0.00774125661700964,
0.005537777673453093,
0.07491549104452133,
0.01573457010090351,
-0.0700371041893959,
0.15276019275188446,
-0.03181974217295647,
-0.007995451800525188,
-0.12478707730770111,
-0.12022557854652405,
-0.02801925130188465,
0.06113366410136223,
-0.025082334876060486,
0.1317245215177536,
0.08310271799564362,
-0.02972123958170414,
-0.024850189685821533,
-0.011585807427763939,
0.08702750504016876,
0.09271751344203949,
-0.008627946488559246,
-0.14053715765476227,
0.011878272518515587,
-0.07517044246196747,
-0.03331832215189934,
-0.021331606432795525,
0.002725784434005618,
0.01869233325123787,
0.13801677525043488,
-0.015113862231373787,
0.0574360117316246,
-0.04713618382811546,
-0.007016147021204233,
-0.058433182537555695,
-0.015670357272028923,
0.06405242532491684,
0.025655051693320274,
-0.02180594764649868,
0.18959954380989075,
-0.10559067130088806,
0.3904063105583191,
0.22533245384693146,
-0.16992908716201782,
-0.0469900481402874,
0.07227721065282822,
-0.020012686029076576,
0.02008911594748497,
-0.008221147581934929,
-0.05014408007264137,
-0.11294964700937271,
-0.05279801785945892,
0.12118250131607056,
-0.05677775666117668,
-0.02497856318950653,
0.03579603135585785,
-0.06537231802940369,
-0.07346660643815994,
-0.007879146374762058,
0.10057283937931061,
-0.20648621022701263,
0.20758166909217834,
0.3370943069458008,
0.0016041017370298505,
0.16857531666755676,
-0.015764424577355385,
0.01334374863654375,
-0.02267409674823284,
-0.071954645216465,
-0.04447801783680916,
0.15765301883220673,
-0.12539438903331757,
0.0005366833065636456,
0.07757876068353653,
-0.015057948417961597,
0.006524246651679277,
-0.13046082854270935,
-0.07071764022111893,
0.019871026277542114,
0.03303470462560654,
-0.0834750309586525,
0.12739069759845734,
0.027606187388300896,
0.12225323170423508,
-0.023834584280848503,
-0.11499354243278503,
0.08613267540931702,
0.013063579797744751,
-0.03750155493617058,
0.14102493226528168,
-0.13269661366939545,
-0.2984454035758972,
-0.05361165478825569,
-0.09377358108758926,
0.034427642822265625,
0.002435486065223813,
0.09498973935842514,
-0.016105838119983673,
-0.0524451844394207,
-0.009501424618065357,
-0.0526929534971714,
-0.026364993304014206,
0.06698987632989883,
-0.08291114866733551,
0.0265326090157032,
-0.011920190416276455,
-0.0925455391407013,
-0.08490684628486633,
0.013155301101505756,
-0.03193218633532524,
0.13952812552452087,
-0.01455309521406889,
0.06689346581697464,
0.05807040259242058,
-0.03954888880252838,
0.03610776737332344,
-0.050470709800720215,
0.2034851461648941,
-0.06095454841852188,
0.07059455662965775,
0.16722947359085083,
0.00034867561771534383,
0.050391945987939835,
0.2171790450811386,
0.049416568130254745,
-0.02912399359047413,
-0.0035983100533485413,
-0.05426141619682312,
-0.10095076262950897,
-0.1346467286348343,
-0.09474164992570877,
-0.11796128749847412,
0.01666877418756485,
0.059089295566082,
0.07316222786903381,
0.12278780341148376,
0.06504905968904495,
0.01870509423315525,
-0.033289410173892975,
-0.05174848064780235,
0.03319428861141205,
0.1362489014863968,
-0.03811149299144745,
0.12117476761341095,
-0.055135998874902725,
-0.08933935314416885,
0.08425705879926682,
0.045832883566617966,
0.051958344876766205,
0.07261020690202713,
-0.035726822912693024,
0.07683989405632019,
0.23767052590847015,
0.09993770718574524,
0.13585761189460754,
0.03799533471465111,
-0.07357838749885559,
-0.01476721465587616,
-0.03972688317298889,
0.021265795454382896,
0.03373446315526962,
0.07592004537582397,
-0.07478447258472443,
-0.014178633689880371,
-0.14880473911762238,
0.05133147910237312,
0.10089993476867676,
0.08351755887269974,
-0.22767697274684906,
0.0050148251466453075,
0.0603671558201313,
0.01884431205689907,
-0.05598069727420807,
0.040486495941877365,
0.07850667089223862,
-0.07171114534139633,
0.057137347757816315,
-0.016195015981793404,
0.054731398820877075,
0.11314485967159271,
0.059613220393657684,
-0.011893562972545624,
-0.09518411755561829,
0.00832071341574192,
0.05203060805797577,
-0.26882606744766235,
0.2720224857330322,
-0.001259648590348661,
-0.025494784116744995,
-0.0732392817735672,
-0.01791258342564106,
0.04706120863556862,
0.15806648135185242,
0.14525389671325684,
0.03873208537697792,
-0.07296478003263474,
-0.09295020252466202,
-0.0014682351611554623,
0.016040237620472908,
0.010875867679715157,
-0.0004254695086274296,
-0.009264419786632061,
-0.05298523232340813,
-0.021411139518022537,
0.04106349125504494,
0.18481747806072235,
-0.06904920190572739,
-0.10553858429193497,
0.043943557888269424,
0.08616431057453156,
-0.0018871626816689968,
-0.05199446156620979,
-0.0706803947687149,
-0.1469653695821762,
0.15312573313713074,
0.01307235099375248,
-0.02674057148396969,
-0.11896248906850815,
-0.07301674783229828,
0.08429568260908127,
-0.06522175669670105,
0.08853866904973984,
-0.07370575517416,
0.022650204598903656,
-0.0900392085313797,
-0.1672184318304062,
0.14997068047523499,
-0.15274344384670258,
-0.02674228325486183,
-0.0989171490073204,
0.09248842298984528,
-0.09865066409111023,
0.04431848227977753,
0.055093247443437576,
0.05554470419883728,
-0.0948527529835701,
-0.05225265026092529,
0.03290088474750519,
-0.07247074693441391,
0.05558758229017258,
-0.031211799010634422,
-0.061044465750455856,
-0.11053448170423508,
0.08361943066120148,
-0.007295351475477219,
0.19607241451740265,
0.23635821044445038,
-0.11197329312562943,
0.12184832245111465,
0.13546445965766907,
-0.025089509785175323,
-0.3595547378063202,
-0.11624498665332794,
-0.17609205842018127,
-0.01060901116579771,
0.08956968039274216,
-0.02859932743012905,
0.07481575757265091,
-0.013153026811778545,
-0.09035028517246246,
0.09789188206195831,
-0.14695404469966888,
-0.09083974361419678,
0.21613535284996033,
0.018660401925444603,
0.3399328589439392,
-0.14511457085609436,
-0.024024315178394318,
-0.009512635879218578,
-0.11091649532318115,
0.15369760990142822,
-0.10533967614173889,
0.05911485478281975,
-0.013909237459301949,
0.004139552358537912,
0.012183205224573612,
-0.07813585549592972,
0.09954077750444412,
-0.10108282417058945,
0.0321965292096138,
-0.11407190561294556,
-0.0811825767159462,
0.12100551277399063,
-0.025202220305800438,
0.035652369260787964,
-0.04711417853832245,
0.012638144195079803,
-0.02103186398744583,
0.01458238810300827,
-0.12779991328716278,
0.1409309208393097,
-0.01114159356802702,
-0.0891025960445404,
-0.013689546845853329,
0.0447087436914444,
-0.011901319026947021,
-0.05258827656507492,
0.20707644522190094,
0.017609955742955208,
0.2205880731344223,
0.13022127747535706,
0.01245747972279787,
-0.14182347059249878,
-0.05552227050065994,
0.004726429004222155,
-0.09754383563995361,
0.07945490628480911,
-0.07810647785663605,
0.03913445025682449,
0.05111776292324066,
0.001342486939392984,
0.06283694505691528,
0.09253716468811035,
-0.024310005828738213,
-0.04345175251364708,
0.18278281390666962,
-0.21058645844459534,
-0.03082706592977047,
-0.0076413387432694435,
0.00901560578495264,
0.03737424314022064,
0.013118859380483627,
0.09628792852163315,
-0.0349426232278347,
-0.025654003024101257,
-0.010936541482806206,
0.018751977011561394,
-0.06672031432390213,
0.0308033749461174,
0.10096185654401779,
0.042084451764822006,
-0.09766431152820587,
0.024060342460870743,
0.0007986105047166348,
-0.11456049978733063,
-0.005025430582463741,
0.05746957287192345,
-0.09132248908281326,
-0.14922763407230377,
0.009266253560781479,
0.018580442294478416,
-0.049363743513822556,
-0.0565616674721241,
-0.0344686359167099,
-0.12042242288589478,
0.01690557599067688,
0.20458851754665375,
0.08372139930725098,
0.07254569232463837,
0.0236162431538105,
-0.04879440739750862,
0.010211420245468616,
0.037708718329668045,
-0.0686349868774414,
0.032822925597429276,
-0.1248563900589943,
0.03449467942118645,
-0.008577791973948479,
0.12436963617801666,
-0.09835115075111389,
0.014217514544725418,
-0.1753753423690796,
-0.015422840602695942,
-0.03269396722316742,
-0.05784007906913757,
-0.11257720738649368,
-0.06603407859802246,
0.02994263358414173,
-0.09766007214784622,
-0.05303233861923218,
-0.02479202300310135,
-0.10329461097717285,
-0.0008629703079350293,
0.045386385172605515,
0.0547492578625679,
-0.10937243700027466,
-0.06124405935406685,
0.08060261607170105,
-0.013958820141851902,
0.07729014754295349,
0.04823029041290283,
-0.05647318437695503,
0.08084550499916077,
-0.14249326288700104,
-0.11217918992042542,
0.0715373232960701,
0.012011321261525154,
0.08645838499069214,
0.016264446079730988,
0.006923564709722996,
0.06594253331422806,
0.007847819477319717,
0.04597339779138565,
0.0019507452379912138,
-0.10722078382968903,
0.017426669597625732,
0.01513566542416811,
-0.12296707928180695,
0.01982063055038452,
-0.08475609123706818,
0.13200309872627258,
-0.07486012578010559,
0.13159026205539703,
-0.0484512634575367,
0.021160248667001724,
-0.12629885971546173,
0.017842687666416168,
-0.06064259260892868,
-0.1535007506608963,
-0.07519461214542389,
-0.01859966106712818,
0.005336684174835682,
-0.02454289421439171,
0.23430657386779785,
0.08391255885362625,
-0.07443144172430038,
0.06781987845897675,
0.04008927941322327,
-0.008381889201700687,
-0.00537219038233161,
0.20057016611099243,
0.014817800372838974,
-0.06181533262133598,
-0.09569287300109863,
0.05355997383594513,
-0.004710820969194174,
-0.06815414130687714,
0.09051362425088882,
0.1089104413986206,
0.07243208587169647,
0.03835507109761238,
0.0843275636434555,
-0.03273425251245499,
-0.06024431064724922,
-0.19648230075836182,
-0.020339075475931168,
0.07434237003326416,
-0.01697203703224659,
-0.05200304463505745,
0.17569980025291443,
-0.03281139209866524,
0.0388525165617466,
-0.08036508411169052,
0.00637404527515173,
-0.1709703952074051,
-0.13046398758888245,
-0.0818382203578949,
-0.055347222834825516,
0.002187883947044611,
-0.04884792119264603,
0.003143428824841976,
0.10745321959257126,
0.037850357592105865,
-0.03836483508348465,
0.07187864184379578,
0.028515469282865524,
-0.025324800983071327,
0.0132627347484231,
0.03378914296627045,
0.017587963491678238,
-0.061733588576316833,
-0.002607495989650488,
-0.1278763711452484,
-0.007940826006233692,
-0.06782500445842743,
-0.0006724119884893298,
-0.05052383989095688,
0.03583437204360962,
-0.10249804705381393,
-0.10403111577033997,
-0.05312073975801468,
0.0072165061719715595,
-0.019971877336502075,
0.08456313610076904,
0.008245921693742275,
0.050485167652368546,
0.04855545982718468,
0.1739550679922104,
-0.056285761296749115,
-0.11999597400426865,
-0.05260586366057396,
0.16893337666988373,
0.007780720945447683,
0.06141001358628273,
-0.0008094902150332928,
0.015051943250000477,
-0.07314229756593704,
0.23802264034748077,
0.36269980669021606,
-0.03039684146642685,
0.09878816455602646,
0.014932559803128242,
0.0037695609498769045,
0.006866013165563345,
0.11345569044351578,
0.081180140376091,
0.22856149077415466,
-0.0782909095287323,
0.0203280970454216,
-0.07192746549844742,
0.0010582675458863378,
-0.09624478965997696,
0.005493991542607546,
0.03974740952253342,
-0.02725783735513687,
-0.03942658752202988,
0.061702899634838104,
-0.09006039798259735,
0.022075269371271133,
0.06750493496656418,
-0.1925891488790512,
-0.0576685406267643,
-0.007592036854475737,
0.15044863522052765,
0.012218899093568325,
0.05498522147536278,
-0.06204594299197197,
-0.005358158145099878,
0.02347307838499546,
-0.009988884441554546,
-0.16145776212215424,
-0.04563358053565025,
0.10574255883693695,
-0.000813603401184082,
0.167389377951622,
-0.038182564079761505,
0.04914161190390587,
0.10359542816877365,
0.03578212857246399,
-0.08180972188711166,
0.07255859673023224,
0.04672904312610626,
-0.06536328792572021,
-0.04047081992030144,
-0.07085221260786057,
0.0159338116645813,
-0.06863084435462952,
0.057261962443590164,
-0.10662814229726791,
0.042127788066864014,
-0.06456221640110016,
-0.044417981058359146,
-0.03230605646967888,
0.07978640496730804,
-0.023842306807637215,
0.09732840955257416,
0.03711596131324768,
-0.021140318363904953,
-0.0406796894967556,
-0.057747721672058105,
-0.006715268362313509,
0.08127989619970322,
-0.12402404844760895,
-0.1207892969250679,
-0.04117708280682564,
-0.020187996327877045,
0.006530333310365677,
-0.00792099628597498,
-0.13863492012023926,
-0.05397247523069382,
-0.07846809178590775,
-0.005218826234340668,
-0.14102043211460114,
0.028515931218862534,
0.12040777504444122,
0.03800107538700104,
0.00020001627854071558,
0.006143919657915831,
0.009102629497647285,
0.032907046377658844,
-0.14336857199668884,
-0.08396632969379425
] |
null | null |
transformers
|
# π€ + π dbmdz BERT and ELECTRA models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models π
# Italian BERT
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/).
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in `config.json`. However, the model is working and all
evaluations were done under those circumstances.
See [this issue](https://github.com/dbmdz/berts/issues/7) for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra).
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt)
| `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt)
| `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt)
| `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt)
| `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt)
| `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[this repository](https://github.com/stefan-it/italian-bertelectra).
## Usage
With Transformers >= 2.3 our Italian BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/bert-base-italian-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
To load the (recommended) Italian XXL BERT models, just use:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/bert-base-italian-xxl-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelWithLMHead.from_pretrained(model_name)
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT/ELECTRA models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "it", "license": "mit", "datasets": ["wikipedia"]}
|
fill-mask
|
dbmdz/bert-base-italian-xxl-uncased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"it",
"dataset:wikipedia",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"it"
] |
TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
|
+ dbmdz BERT and ELECTRA models
===============================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models
Italian BERT
============
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the OPUS corpora collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the OSCAR corpus.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in 'URL'. However, the model is working and all
evaluations were done under those circumstances.
See this issue for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
BERTurk.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Results
-------
For results on downstream tasks like NER or PoS tagging, please refer to
this repository.
Usage
-----
With Transformers >= 2.3 our Italian BERT models can be loaded like:
To load the (recommended) Italian XXL BERT models, just use:
To load the Italian XXL ELECTRA model (discriminator), just use:
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT/ELECTRA models just open an issue
here
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
63
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.03144901990890503,
0.05854027345776558,
-0.004188124090433121,
0.06036433205008507,
0.051557283848524094,
0.03873739391565323,
0.11041123420000076,
0.11060477793216705,
0.0863788053393364,
-0.029641637578606606,
0.15443755686283112,
0.17204220592975616,
-0.012625621631741524,
0.17014209926128387,
-0.044999562203884125,
-0.21072407066822052,
0.07855599373579025,
0.020639553666114807,
-0.05758114904165268,
0.0963280126452446,
0.11153198778629303,
-0.09529268741607666,
0.07312631607055664,
-0.027606908231973648,
-0.09869106858968735,
0.02841472066938877,
0.07728268951177597,
-0.128292515873909,
0.16028107702732086,
0.024775950238108635,
0.1541043221950531,
0.0715877041220665,
-0.005523725878447294,
-0.058382708579301834,
0.04880261793732643,
0.033075954765081406,
-0.09826786071062088,
0.05918964371085167,
-0.007543542422354221,
-0.003412701888009906,
0.01918160356581211,
0.017287692055106163,
0.03401283547282219,
0.03143518790602684,
-0.13649532198905945,
-0.22641871869564056,
-0.043292004615068436,
0.07718246430158615,
-0.005592833738774061,
0.041108593344688416,
0.020133988931775093,
0.22117376327514648,
-0.11687124520540237,
0.08956889808177948,
0.15401144325733185,
-0.3452942669391632,
-0.014158590696752071,
0.12416345626115799,
0.09963758289813995,
-0.03311759978532791,
-0.06903373450040817,
0.06951580941677094,
0.04049041494727135,
0.023327240720391273,
0.156740203499794,
-0.06454635411500931,
-0.11232343316078186,
0.024779122322797775,
-0.06444192677736282,
-0.06058662384748459,
0.24154765903949738,
-0.017528509721159935,
0.041595909744501114,
-0.027407687157392502,
-0.09137009084224701,
0.007568745408207178,
0.005233417730778456,
-0.01410981547087431,
-0.002625934546813369,
0.0439850352704525,
-0.025206733494997025,
-0.03678491711616516,
-0.14961186051368713,
0.014721560291945934,
-0.21681168675422668,
0.1460883468389511,
0.0022241633851081133,
0.08195005357265472,
-0.15717004239559174,
0.04794975370168686,
-0.03039838746190071,
-0.13515789806842804,
0.0279084425419569,
-0.07354824244976044,
0.044932346791028976,
-0.0233241505920887,
-0.036789488047361374,
0.008855697698891163,
0.11425842344760895,
0.1795344203710556,
-0.01531186606734991,
-0.02696632593870163,
-0.004399584606289864,
0.10471630096435547,
0.038269203156232834,
0.03384626656770706,
-0.05592123046517372,
-0.03266245499253273,
0.07595837116241455,
-0.07286292314529419,
0.033828407526016235,
-0.043786585330963135,
-0.1146988719701767,
-0.03872992843389511,
0.05120108276605606,
0.06487059593200684,
0.09213831275701523,
0.07635670155286789,
-0.04047691449522972,
0.04384591802954674,
0.11326323449611664,
-0.06309189647436142,
0.023670870810747147,
-0.0273696631193161,
0.06519407778978348,
-0.026196355000138283,
0.03981487825512886,
-0.018057534471154213,
0.038738369941711426,
0.08367914706468582,
-0.10344544053077698,
-0.04339142143726349,
-0.02349952422082424,
-0.10968120396137238,
0.07210395485162735,
-0.08489822596311569,
0.04445529729127884,
-0.20664772391319275,
-0.12924428284168243,
0.06710048019886017,
0.06648959219455719,
0.0031082977075129747,
-0.03812678903341293,
0.10534710437059402,
-0.050859689712524414,
0.043306201696395874,
-0.05750270560383797,
-0.022046102210879326,
-0.0801021084189415,
0.09301342815160751,
-0.062158625572919846,
0.11640278249979019,
-0.17355765402317047,
0.019326455891132355,
-0.10700299590826035,
0.004467794205993414,
-0.08820194005966187,
-0.0950864925980568,
-0.05050978437066078,
0.12027618288993835,
0.0033777474891394377,
-0.023756666108965874,
-0.09530726075172424,
0.04434765502810478,
-0.01766241528093815,
0.12926118075847626,
-0.15436215698719025,
-0.041233740746974945,
0.19149872660636902,
-0.11932158470153809,
-0.19320830702781677,
0.09037571400403976,
0.003406671341508627,
0.06210070848464966,
0.023967741057276726,
0.143472358584404,
0.0214950293302536,
-0.16092701256275177,
0.005376800894737244,
0.13087591528892517,
-0.10077619552612305,
-0.10540637373924255,
0.0422029122710228,
0.01352185383439064,
-0.07983606308698654,
0.025786127895116806,
0.03632491081953049,
0.09048963338136673,
-0.051843054592609406,
-0.06692621856927872,
-0.06027568131685257,
-0.04632158577442169,
0.08938415348529816,
0.02295895479619503,
0.07142791152000427,
-0.08804074674844742,
-0.0506293810904026,
-0.00774125661700964,
0.005537777673453093,
0.07491549104452133,
0.01573457010090351,
-0.0700371041893959,
0.15276019275188446,
-0.03181974217295647,
-0.007995451800525188,
-0.12478707730770111,
-0.12022557854652405,
-0.02801925130188465,
0.06113366410136223,
-0.025082334876060486,
0.1317245215177536,
0.08310271799564362,
-0.02972123958170414,
-0.024850189685821533,
-0.011585807427763939,
0.08702750504016876,
0.09271751344203949,
-0.008627946488559246,
-0.14053715765476227,
0.011878272518515587,
-0.07517044246196747,
-0.03331832215189934,
-0.021331606432795525,
0.002725784434005618,
0.01869233325123787,
0.13801677525043488,
-0.015113862231373787,
0.0574360117316246,
-0.04713618382811546,
-0.007016147021204233,
-0.058433182537555695,
-0.015670357272028923,
0.06405242532491684,
0.025655051693320274,
-0.02180594764649868,
0.18959954380989075,
-0.10559067130088806,
0.3904063105583191,
0.22533245384693146,
-0.16992908716201782,
-0.0469900481402874,
0.07227721065282822,
-0.020012686029076576,
0.02008911594748497,
-0.008221147581934929,
-0.05014408007264137,
-0.11294964700937271,
-0.05279801785945892,
0.12118250131607056,
-0.05677775666117668,
-0.02497856318950653,
0.03579603135585785,
-0.06537231802940369,
-0.07346660643815994,
-0.007879146374762058,
0.10057283937931061,
-0.20648621022701263,
0.20758166909217834,
0.3370943069458008,
0.0016041017370298505,
0.16857531666755676,
-0.015764424577355385,
0.01334374863654375,
-0.02267409674823284,
-0.071954645216465,
-0.04447801783680916,
0.15765301883220673,
-0.12539438903331757,
0.0005366833065636456,
0.07757876068353653,
-0.015057948417961597,
0.006524246651679277,
-0.13046082854270935,
-0.07071764022111893,
0.019871026277542114,
0.03303470462560654,
-0.0834750309586525,
0.12739069759845734,
0.027606187388300896,
0.12225323170423508,
-0.023834584280848503,
-0.11499354243278503,
0.08613267540931702,
0.013063579797744751,
-0.03750155493617058,
0.14102493226528168,
-0.13269661366939545,
-0.2984454035758972,
-0.05361165478825569,
-0.09377358108758926,
0.034427642822265625,
0.002435486065223813,
0.09498973935842514,
-0.016105838119983673,
-0.0524451844394207,
-0.009501424618065357,
-0.0526929534971714,
-0.026364993304014206,
0.06698987632989883,
-0.08291114866733551,
0.0265326090157032,
-0.011920190416276455,
-0.0925455391407013,
-0.08490684628486633,
0.013155301101505756,
-0.03193218633532524,
0.13952812552452087,
-0.01455309521406889,
0.06689346581697464,
0.05807040259242058,
-0.03954888880252838,
0.03610776737332344,
-0.050470709800720215,
0.2034851461648941,
-0.06095454841852188,
0.07059455662965775,
0.16722947359085083,
0.00034867561771534383,
0.050391945987939835,
0.2171790450811386,
0.049416568130254745,
-0.02912399359047413,
-0.0035983100533485413,
-0.05426141619682312,
-0.10095076262950897,
-0.1346467286348343,
-0.09474164992570877,
-0.11796128749847412,
0.01666877418756485,
0.059089295566082,
0.07316222786903381,
0.12278780341148376,
0.06504905968904495,
0.01870509423315525,
-0.033289410173892975,
-0.05174848064780235,
0.03319428861141205,
0.1362489014863968,
-0.03811149299144745,
0.12117476761341095,
-0.055135998874902725,
-0.08933935314416885,
0.08425705879926682,
0.045832883566617966,
0.051958344876766205,
0.07261020690202713,
-0.035726822912693024,
0.07683989405632019,
0.23767052590847015,
0.09993770718574524,
0.13585761189460754,
0.03799533471465111,
-0.07357838749885559,
-0.01476721465587616,
-0.03972688317298889,
0.021265795454382896,
0.03373446315526962,
0.07592004537582397,
-0.07478447258472443,
-0.014178633689880371,
-0.14880473911762238,
0.05133147910237312,
0.10089993476867676,
0.08351755887269974,
-0.22767697274684906,
0.0050148251466453075,
0.0603671558201313,
0.01884431205689907,
-0.05598069727420807,
0.040486495941877365,
0.07850667089223862,
-0.07171114534139633,
0.057137347757816315,
-0.016195015981793404,
0.054731398820877075,
0.11314485967159271,
0.059613220393657684,
-0.011893562972545624,
-0.09518411755561829,
0.00832071341574192,
0.05203060805797577,
-0.26882606744766235,
0.2720224857330322,
-0.001259648590348661,
-0.025494784116744995,
-0.0732392817735672,
-0.01791258342564106,
0.04706120863556862,
0.15806648135185242,
0.14525389671325684,
0.03873208537697792,
-0.07296478003263474,
-0.09295020252466202,
-0.0014682351611554623,
0.016040237620472908,
0.010875867679715157,
-0.0004254695086274296,
-0.009264419786632061,
-0.05298523232340813,
-0.021411139518022537,
0.04106349125504494,
0.18481747806072235,
-0.06904920190572739,
-0.10553858429193497,
0.043943557888269424,
0.08616431057453156,
-0.0018871626816689968,
-0.05199446156620979,
-0.0706803947687149,
-0.1469653695821762,
0.15312573313713074,
0.01307235099375248,
-0.02674057148396969,
-0.11896248906850815,
-0.07301674783229828,
0.08429568260908127,
-0.06522175669670105,
0.08853866904973984,
-0.07370575517416,
0.022650204598903656,
-0.0900392085313797,
-0.1672184318304062,
0.14997068047523499,
-0.15274344384670258,
-0.02674228325486183,
-0.0989171490073204,
0.09248842298984528,
-0.09865066409111023,
0.04431848227977753,
0.055093247443437576,
0.05554470419883728,
-0.0948527529835701,
-0.05225265026092529,
0.03290088474750519,
-0.07247074693441391,
0.05558758229017258,
-0.031211799010634422,
-0.061044465750455856,
-0.11053448170423508,
0.08361943066120148,
-0.007295351475477219,
0.19607241451740265,
0.23635821044445038,
-0.11197329312562943,
0.12184832245111465,
0.13546445965766907,
-0.025089509785175323,
-0.3595547378063202,
-0.11624498665332794,
-0.17609205842018127,
-0.01060901116579771,
0.08956968039274216,
-0.02859932743012905,
0.07481575757265091,
-0.013153026811778545,
-0.09035028517246246,
0.09789188206195831,
-0.14695404469966888,
-0.09083974361419678,
0.21613535284996033,
0.018660401925444603,
0.3399328589439392,
-0.14511457085609436,
-0.024024315178394318,
-0.009512635879218578,
-0.11091649532318115,
0.15369760990142822,
-0.10533967614173889,
0.05911485478281975,
-0.013909237459301949,
0.004139552358537912,
0.012183205224573612,
-0.07813585549592972,
0.09954077750444412,
-0.10108282417058945,
0.0321965292096138,
-0.11407190561294556,
-0.0811825767159462,
0.12100551277399063,
-0.025202220305800438,
0.035652369260787964,
-0.04711417853832245,
0.012638144195079803,
-0.02103186398744583,
0.01458238810300827,
-0.12779991328716278,
0.1409309208393097,
-0.01114159356802702,
-0.0891025960445404,
-0.013689546845853329,
0.0447087436914444,
-0.011901319026947021,
-0.05258827656507492,
0.20707644522190094,
0.017609955742955208,
0.2205880731344223,
0.13022127747535706,
0.01245747972279787,
-0.14182347059249878,
-0.05552227050065994,
0.004726429004222155,
-0.09754383563995361,
0.07945490628480911,
-0.07810647785663605,
0.03913445025682449,
0.05111776292324066,
0.001342486939392984,
0.06283694505691528,
0.09253716468811035,
-0.024310005828738213,
-0.04345175251364708,
0.18278281390666962,
-0.21058645844459534,
-0.03082706592977047,
-0.0076413387432694435,
0.00901560578495264,
0.03737424314022064,
0.013118859380483627,
0.09628792852163315,
-0.0349426232278347,
-0.025654003024101257,
-0.010936541482806206,
0.018751977011561394,
-0.06672031432390213,
0.0308033749461174,
0.10096185654401779,
0.042084451764822006,
-0.09766431152820587,
0.024060342460870743,
0.0007986105047166348,
-0.11456049978733063,
-0.005025430582463741,
0.05746957287192345,
-0.09132248908281326,
-0.14922763407230377,
0.009266253560781479,
0.018580442294478416,
-0.049363743513822556,
-0.0565616674721241,
-0.0344686359167099,
-0.12042242288589478,
0.01690557599067688,
0.20458851754665375,
0.08372139930725098,
0.07254569232463837,
0.0236162431538105,
-0.04879440739750862,
0.010211420245468616,
0.037708718329668045,
-0.0686349868774414,
0.032822925597429276,
-0.1248563900589943,
0.03449467942118645,
-0.008577791973948479,
0.12436963617801666,
-0.09835115075111389,
0.014217514544725418,
-0.1753753423690796,
-0.015422840602695942,
-0.03269396722316742,
-0.05784007906913757,
-0.11257720738649368,
-0.06603407859802246,
0.02994263358414173,
-0.09766007214784622,
-0.05303233861923218,
-0.02479202300310135,
-0.10329461097717285,
-0.0008629703079350293,
0.045386385172605515,
0.0547492578625679,
-0.10937243700027466,
-0.06124405935406685,
0.08060261607170105,
-0.013958820141851902,
0.07729014754295349,
0.04823029041290283,
-0.05647318437695503,
0.08084550499916077,
-0.14249326288700104,
-0.11217918992042542,
0.0715373232960701,
0.012011321261525154,
0.08645838499069214,
0.016264446079730988,
0.006923564709722996,
0.06594253331422806,
0.007847819477319717,
0.04597339779138565,
0.0019507452379912138,
-0.10722078382968903,
0.017426669597625732,
0.01513566542416811,
-0.12296707928180695,
0.01982063055038452,
-0.08475609123706818,
0.13200309872627258,
-0.07486012578010559,
0.13159026205539703,
-0.0484512634575367,
0.021160248667001724,
-0.12629885971546173,
0.017842687666416168,
-0.06064259260892868,
-0.1535007506608963,
-0.07519461214542389,
-0.01859966106712818,
0.005336684174835682,
-0.02454289421439171,
0.23430657386779785,
0.08391255885362625,
-0.07443144172430038,
0.06781987845897675,
0.04008927941322327,
-0.008381889201700687,
-0.00537219038233161,
0.20057016611099243,
0.014817800372838974,
-0.06181533262133598,
-0.09569287300109863,
0.05355997383594513,
-0.004710820969194174,
-0.06815414130687714,
0.09051362425088882,
0.1089104413986206,
0.07243208587169647,
0.03835507109761238,
0.0843275636434555,
-0.03273425251245499,
-0.06024431064724922,
-0.19648230075836182,
-0.020339075475931168,
0.07434237003326416,
-0.01697203703224659,
-0.05200304463505745,
0.17569980025291443,
-0.03281139209866524,
0.0388525165617466,
-0.08036508411169052,
0.00637404527515173,
-0.1709703952074051,
-0.13046398758888245,
-0.0818382203578949,
-0.055347222834825516,
0.002187883947044611,
-0.04884792119264603,
0.003143428824841976,
0.10745321959257126,
0.037850357592105865,
-0.03836483508348465,
0.07187864184379578,
0.028515469282865524,
-0.025324800983071327,
0.0132627347484231,
0.03378914296627045,
0.017587963491678238,
-0.061733588576316833,
-0.002607495989650488,
-0.1278763711452484,
-0.007940826006233692,
-0.06782500445842743,
-0.0006724119884893298,
-0.05052383989095688,
0.03583437204360962,
-0.10249804705381393,
-0.10403111577033997,
-0.05312073975801468,
0.0072165061719715595,
-0.019971877336502075,
0.08456313610076904,
0.008245921693742275,
0.050485167652368546,
0.04855545982718468,
0.1739550679922104,
-0.056285761296749115,
-0.11999597400426865,
-0.05260586366057396,
0.16893337666988373,
0.007780720945447683,
0.06141001358628273,
-0.0008094902150332928,
0.015051943250000477,
-0.07314229756593704,
0.23802264034748077,
0.36269980669021606,
-0.03039684146642685,
0.09878816455602646,
0.014932559803128242,
0.0037695609498769045,
0.006866013165563345,
0.11345569044351578,
0.081180140376091,
0.22856149077415466,
-0.0782909095287323,
0.0203280970454216,
-0.07192746549844742,
0.0010582675458863378,
-0.09624478965997696,
0.005493991542607546,
0.03974740952253342,
-0.02725783735513687,
-0.03942658752202988,
0.061702899634838104,
-0.09006039798259735,
0.022075269371271133,
0.06750493496656418,
-0.1925891488790512,
-0.0576685406267643,
-0.007592036854475737,
0.15044863522052765,
0.012218899093568325,
0.05498522147536278,
-0.06204594299197197,
-0.005358158145099878,
0.02347307838499546,
-0.009988884441554546,
-0.16145776212215424,
-0.04563358053565025,
0.10574255883693695,
-0.000813603401184082,
0.167389377951622,
-0.038182564079761505,
0.04914161190390587,
0.10359542816877365,
0.03578212857246399,
-0.08180972188711166,
0.07255859673023224,
0.04672904312610626,
-0.06536328792572021,
-0.04047081992030144,
-0.07085221260786057,
0.0159338116645813,
-0.06863084435462952,
0.057261962443590164,
-0.10662814229726791,
0.042127788066864014,
-0.06456221640110016,
-0.044417981058359146,
-0.03230605646967888,
0.07978640496730804,
-0.023842306807637215,
0.09732840955257416,
0.03711596131324768,
-0.021140318363904953,
-0.0406796894967556,
-0.057747721672058105,
-0.006715268362313509,
0.08127989619970322,
-0.12402404844760895,
-0.1207892969250679,
-0.04117708280682564,
-0.020187996327877045,
0.006530333310365677,
-0.00792099628597498,
-0.13863492012023926,
-0.05397247523069382,
-0.07846809178590775,
-0.005218826234340668,
-0.14102043211460114,
0.028515931218862534,
0.12040777504444122,
0.03800107538700104,
0.00020001627854071558,
0.006143919657915831,
0.009102629497647285,
0.032907046377658844,
-0.14336857199668884,
-0.08396632969379425
] |
null | null |
transformers
|
# Historic Language Models (HLMs)
## Languages
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
| Language | Training data | Size
| -------- | ------------- | ----
| German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered)
| French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered)
| English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
## Models
At the moment, the following models are available on the model hub:
| Model identifier | Model Hub link
| --------------------------------------------- | --------------------------------------------------------------------------
| `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
| `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased)
| `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased)
| `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased)
# Corpora Stats
## German Europeana Corpus
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
and use less-noisier data:
| OCR confidence | Size
| -------------- | ----
| **0.60** | 28GB
| 0.65 | 18GB
| 0.70 | 13GB
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:

## French Europeana Corpus
Like German, we use different ocr confidence thresholds:
| OCR confidence | Size
| -------------- | ----
| 0.60 | 31GB
| 0.65 | 27GB
| **0.70** | 27GB
| 0.75 | 23GB
| 0.80 | 11GB
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:

## British Library Corpus
Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:
| Years | Size
| ----------------- | ----
| ALL | 24GB
| >= 1800 && < 1900 | 24GB
We use the year filtered variant. The following plot shows a tokens per year distribution:

## Finnish Europeana Corpus
| OCR confidence | Size
| -------------- | ----
| 0.60 | 1.2GB
The following plot shows a tokens per year distribution:

## Swedish Europeana Corpus
| OCR confidence | Size
| -------------- | ----
| 0.60 | 1.1GB
The following plot shows a tokens per year distribution:

## All Corpora
The following plot shows a tokens per year distribution of the complete training corpus:

# Multilingual Vocab generation
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
| Language | Size
| -------- | ----
| German | 10GB
| French | 10GB
| English | 10GB
| Finnish | 9.5GB
| Swedish | 9.7GB
We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:
| Language | NER corpora
| -------- | ------------------
| German | CLEF-HIPE, NewsEye
| French | CLEF-HIPE, NewsEye
| English | CLEF-HIPE
| Finnish | NewsEye
| Swedish | NewsEye
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
| Language | Subword fertility | Unknown portion
| -------- | ------------------ | ---------------
| German | 1.43 | 0.0004
| French | 1.25 | 0.0001
| English | 1.25 | 0.0
| Finnish | 1.69 | 0.0007
| Swedish | 1.43 | 0.0
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
| Language | Subword fertility | Unknown portion
| -------- | ------------------ | ---------------
| German | 1.31 | 0.0004
| French | 1.16 | 0.0001
| English | 1.17 | 0.0
| Finnish | 1.54 | 0.0007
| Swedish | 1.32 | 0.0
# Final pretraining corpora
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
| Language | Size
| -------- | ----
| German | 28GB
| French | 27GB
| English | 24GB
| Finnish | 27GB
| Swedish | 27GB
Total size is 130GB.
# Pretraining
## Multilingual model
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
on a v3-32 TPU using the following parameters:
```bash
python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \
--output_dir gs://histolectra/bert-base-historic-multilingual-cased \
--bert_config_file ./config.json \
--max_seq_length=512 \
--max_predictions_per_seq=75 \
--do_train=True \
--train_batch_size=128 \
--num_train_steps=3000000 \
--learning_rate=1e-4 \
--save_checkpoints_steps=100000 \
--keep_checkpoint_max=20 \
--use_tpu=True \
--tpu_name=electra-2 \
--num_tpu_cores=32
```
The following plot shows the pretraining loss curve:

## English model
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-historic-english-cased/ \
--tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \
--train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \
--validation_file /mnt/datasets/bl-corpus/english_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 10 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```
The following plot shows the pretraining loss curve:

## Finnish model
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
--tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
--train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \
--validation_file /mnt/datasets/hlms/finnish_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 40 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```
The following plot shows the pretraining loss curve:

## Swedish model
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:
```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
--tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
--train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \
--validation_file /mnt/datasets/hlms/swedish_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 40 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```
The following plot shows the pretraining loss curve:

# Acknowledgments
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "swedish", "license": "mit", "widget": [{"text": "Det vore [MASK] h\u00e4ller n\u00f6dv\u00e4ndigt att be"}]}
|
fill-mask
|
dbmdz/bert-base-swedish-europeana-cased
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"bert",
"fill-mask",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"swedish"
] |
TAGS
#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
Historic Language Models (HLMs)
===============================
Languages
---------
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
Language: German, Training data: Europeana, Size: 13-28GB (filtered)
Language: French, Training data: Europeana, Size: 11-31GB (filtered)
Language: English, Training data: British Library, Size: 24GB (year filtered)
Language: Finnish, Training data: Europeana, Size: 1.2GB
Language: Swedish, Training data: Europeana, Size: 1.1GB
Models
------
At the moment, the following models are available on the model hub:
Corpora Stats
=============
German Europeana Corpus
-----------------------
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
and use less-noisier data:
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:
!German Europeana Corpus Stats
French Europeana Corpus
-----------------------
Like German, we use different ocr confidence thresholds:
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:
!French Europeana Corpus Stats
British Library Corpus
----------------------
Metadata is taken from here. Stats incl. year filtering:
We use the year filtered variant. The following plot shows a tokens per year distribution:
!British Library Corpus Stats
Finnish Europeana Corpus
------------------------
The following plot shows a tokens per year distribution:
!Finnish Europeana Corpus Stats
Swedish Europeana Corpus
------------------------
The following plot shows a tokens per year distribution:
!Swedish Europeana Corpus Stats
All Corpora
-----------
The following plot shows a tokens per year distribution of the complete training corpus:
!All Corpora Stats
Multilingual Vocab generation
=============================
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
We then calculate the subword fertility rate and portion of '[UNK]'s over the following NER corpora:
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
Language: German, Subword fertility: 1.43, Unknown portion: 0.0004
Language: French, Subword fertility: 1.25, Unknown portion: 0.0001
Language: English, Subword fertility: 1.25, Unknown portion: 0.0
Language: Finnish, Subword fertility: 1.69, Unknown portion: 0.0007
Language: Swedish, Subword fertility: 1.43, Unknown portion: 0.0
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
Language: German, Subword fertility: 1.31, Unknown portion: 0.0004
Language: French, Subword fertility: 1.16, Unknown portion: 0.0001
Language: English, Subword fertility: 1.17, Unknown portion: 0.0
Language: Finnish, Subword fertility: 1.54, Unknown portion: 0.0007
Language: Swedish, Subword fertility: 1.32, Unknown portion: 0.0
Final pretraining corpora
=========================
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
Total size is 130GB.
Pretraining
===========
Multilingual model
------------------
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
on a v3-32 TPU using the following parameters:
The following plot shows the pretraining loss curve:
!Training loss curve
English model
-------------
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
The following plot shows the pretraining loss curve:
!Training loss curve
Finnish model
-------------
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
The following plot shows the pretraining loss curve:
!Training loss curve
Swedish model
-------------
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:
The following plot shows the pretraining loss curve:
!Training loss curve
Acknowledgments
===============
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
48
] |
[
"passage: TAGS\n#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.051839087158441544,
0.05754934996366501,
-0.007044851314276457,
0.041297439485788345,
0.09591711312532425,
0.03318804129958153,
0.16328027844429016,
0.10409025847911835,
0.11346999555826187,
-0.02286713197827339,
0.15823522210121155,
0.23975786566734314,
-0.00003775725053856149,
0.08866453915834427,
-0.04481581225991249,
-0.25359246134757996,
0.03618115931749344,
0.0695963203907013,
-0.05953308194875717,
0.10630111396312714,
0.0596819743514061,
-0.08269041031599045,
0.052472591400146484,
0.01378200389444828,
-0.14518128335475922,
0.02707573026418686,
0.07519200444221497,
-0.10383649915456772,
0.12508544325828552,
0.0433732271194458,
0.17881076037883759,
0.06339889019727707,
-0.017478372901678085,
-0.07896658778190613,
0.04197794571518898,
0.004860857967287302,
-0.09716035425662994,
0.06864118576049805,
0.027406109496951103,
-0.03776439651846886,
-0.003476001787930727,
0.06514570116996765,
0.04294067621231079,
0.04420726001262665,
-0.12576407194137573,
-0.1709623485803604,
-0.0360589362680912,
0.054294403642416,
0.04851033538579941,
0.04180488735437393,
0.03695087879896164,
0.1995430886745453,
-0.09633425623178482,
0.07450947165489197,
0.11653825640678406,
-0.36659589409828186,
-0.008363665081560612,
0.10942085832357407,
0.10457140952348709,
-0.03534732386469841,
-0.06376351416110992,
0.050919707864522934,
0.02920958772301674,
0.014826401136815548,
0.08352810889482498,
-0.07175076752901077,
-0.014460613951086998,
0.02491201087832451,
-0.06551115214824677,
-0.03304477035999298,
0.13222791254520416,
-0.038642678409814835,
0.03505551069974899,
-0.02563815377652645,
-0.08383870124816895,
-0.05164634808897972,
-0.029250452294945717,
-0.021677307784557343,
-0.01075158454477787,
0.06485699862241745,
-0.04472553730010986,
-0.04322175681591034,
-0.1437714695930481,
0.0076313200406730175,
-0.21628887951374054,
0.16907206177711487,
0.02317557856440544,
0.07413893193006516,
-0.1858559548854828,
0.04917579144239426,
-0.007590844761580229,
-0.11577427387237549,
0.045862987637519836,
-0.06356300413608551,
0.03290265426039696,
-0.011133072897791862,
-0.027505923062562943,
-0.0779840424656868,
0.07944668084383011,
0.17087888717651367,
0.06365145742893219,
0.03157023340463638,
0.015674419701099396,
0.1266307681798935,
-0.011389723047614098,
0.08015039563179016,
0.02824932336807251,
0.01610643044114113,
0.05071786418557167,
-0.10003328323364258,
0.04134458303451538,
-0.05608224496245384,
-0.16160239279270172,
-0.015702534466981888,
0.005432740319520235,
0.07704494893550873,
0.02900170162320137,
0.05996039882302284,
-0.07861769944429398,
0.010046935640275478,
0.10924363881349564,
-0.05051092803478241,
0.028501121327280998,
-0.019385457038879395,
0.06689273566007614,
0.05005209147930145,
0.01764431782066822,
-0.017253749072551727,
0.021859822794795036,
0.13077451288700104,
-0.09576339274644852,
-0.02259950153529644,
-0.06218148022890091,
-0.06952331960201263,
0.06361450999975204,
-0.13742409646511078,
0.032379306852817535,
-0.1531393676996231,
-0.12872178852558136,
0.0583975687623024,
0.07879997044801712,
-0.0029057052452117205,
-0.026596834883093834,
0.05234909430146217,
-0.015052029862999916,
0.035987064242362976,
-0.04892256110906601,
-0.03233768045902252,
-0.040373124182224274,
0.09831603616476059,
-0.03175034746527672,
0.08473435044288635,
-0.132827490568161,
0.032071348279714584,
-0.08683327585458755,
0.010430431924760342,
-0.10835381597280502,
-0.07438201457262039,
-0.0563921257853508,
0.14807508885860443,
-0.01091169472783804,
-0.02032788284122944,
-0.09476069360971451,
0.0321950800716877,
-0.013892212882637978,
0.12639537453651428,
-0.12116212397813797,
-0.10733946412801743,
0.20915240049362183,
-0.10810822993516922,
-0.156493678689003,
0.08271043002605438,
-0.004864166956394911,
0.050146594643592834,
0.04925102740526199,
0.12580396234989166,
0.053800199180841446,
-0.18147921562194824,
0.08178479224443436,
0.11974798887968063,
-0.1459348350763321,
-0.18781527876853943,
0.029233399778604507,
-0.022758232429623604,
-0.0795423686504364,
0.04159080237150192,
0.06728886067867279,
0.10079384595155716,
-0.050104327499866486,
-0.06692779064178467,
-0.017265694215893745,
-0.023115774616599083,
0.09473375976085663,
0.0565795935690403,
0.10753615945577621,
-0.07294490188360214,
-0.05410412698984146,
0.023177023977041245,
-0.018046695739030838,
0.052323512732982635,
0.02665993943810463,
-0.10995971411466599,
0.11724098026752472,
-0.05950678139925003,
-0.01724715158343315,
-0.1377701610326767,
-0.1042751744389534,
-0.014335145242512226,
0.01023098174482584,
0.004034374374896288,
0.1414593756198883,
0.11034344136714935,
-0.036746613681316376,
-0.012011022306978703,
-0.0007765699992887676,
0.12691988050937653,
0.04082172363996506,
-0.048998214304447174,
-0.14070849120616913,
0.01667923294007778,
-0.08377831429243088,
-0.03244642913341522,
-0.026370462030172348,
0.016483787447214127,
0.028443288058042526,
0.10919671505689621,
0.002071693539619446,
0.041054923087358475,
-0.0700719952583313,
0.005429381504654884,
-0.0364571288228035,
0.007942723110318184,
0.11245082318782806,
0.03030509501695633,
-0.06307957321405411,
0.1839832216501236,
-0.1323608011007309,
0.32725489139556885,
0.2046183943748474,
-0.19289125502109528,
-0.019637007266283035,
0.0009156471351161599,
-0.024633921682834625,
-0.007956132292747498,
0.0386410616338253,
-0.0053722793236374855,
0.014699874445796013,
-0.004269861616194248,
0.1440020352602005,
-0.024756651371717453,
-0.03608123958110809,
0.03660302236676216,
-0.05308288335800171,
-0.06696303933858871,
0.017729435116052628,
0.17938023805618286,
-0.15947386622428894,
0.186334028840065,
0.2784985601902008,
-0.019922513514757156,
0.17141041159629822,
-0.017979402095079422,
0.009529639966785908,
-0.016522187739610672,
-0.03248045593500137,
-0.0017459237715229392,
0.10581375658512115,
-0.16977661848068237,
-0.02442942187190056,
0.05657196417450905,
-0.04820196330547333,
0.0367211252450943,
-0.1557922065258026,
-0.06153831258416176,
0.0046255639754235744,
0.03477578982710838,
-0.03999156504869461,
0.11825788766145706,
0.005560677964240313,
0.06265360116958618,
-0.029660245403647423,
-0.12107476592063904,
0.1185598075389862,
0.003983780741691589,
-0.04350627213716507,
0.13773678243160248,
-0.11095631122589111,
-0.25883549451828003,
-0.13851222395896912,
-0.14722876250743866,
0.032133907079696655,
0.012513358145952225,
0.0875658169388771,
-0.043020691722631454,
-0.044536370784044266,
0.05340518057346344,
-0.0527057982981205,
-0.033743273466825485,
0.05804596096277237,
-0.09910064190626144,
0.026906810700893402,
-0.039901137351989746,
-0.09379890561103821,
-0.07148706912994385,
-0.034090571105480194,
-0.022384006530046463,
0.11453430354595184,
-0.04843152314424515,
0.06025031954050064,
0.1229909211397171,
0.0012367932358756661,
0.04999570548534393,
-0.03751353546977043,
0.14375580847263336,
-0.058938167989254,
0.011961431242525578,
0.14838910102844238,
-0.02548835799098015,
0.08804616332054138,
0.17703141272068024,
0.0717308446764946,
-0.040495675057172775,
-0.01974266953766346,
-0.04183902218937874,
-0.1138993352651596,
-0.1841747760772705,
-0.06022971495985985,
-0.12477733194828033,
0.011241169646382332,
0.0656278133392334,
0.0810658186674118,
0.15626436471939087,
0.09519478678703308,
0.04322393983602524,
-0.0052810064516961575,
-0.041275665163993835,
0.05319063365459442,
0.17378507554531097,
-0.024185262620449066,
0.13222216069698334,
-0.06188523396849632,
-0.12739427387714386,
0.052776601165533066,
0.05350898951292038,
0.09967032074928284,
0.1358156055212021,
0.07174052298069,
0.07048027962446213,
0.19707077741622925,
0.15132512152194977,
0.11540325731039047,
0.009118536487221718,
-0.07258951663970947,
-0.012697822414338589,
-0.026483604684472084,
0.0018536752322688699,
0.03314098343253136,
0.13619084656238556,
-0.0936734527349472,
-0.003583400510251522,
-0.15562011301517487,
0.021646199747920036,
0.10743267834186554,
0.044912099838256836,
-0.23810602724552155,
0.021326176822185516,
0.058489538729190826,
0.016327740624547005,
-0.0408952459692955,
0.03618145361542702,
-0.018795009702444077,
-0.08605646342039108,
0.052121520042419434,
-0.08796849846839905,
0.07939128577709198,
0.05301116034388542,
0.05718093365430832,
0.01501370407640934,
-0.05106685310602188,
0.029419032856822014,
0.06364542990922928,
-0.26543474197387695,
0.25326597690582275,
0.00487210787832737,
0.0043363976292312145,
-0.07396209985017776,
0.006647484377026558,
0.04047825187444687,
0.11821144074201584,
0.12877273559570312,
0.005635477136820555,
-0.05992585048079491,
-0.08850368857383728,
-0.011659959331154823,
0.022363774478435516,
0.05690794810652733,
-0.02064673788845539,
-0.041216276586055756,
-0.03176962956786156,
-0.03796757757663727,
0.025560200214385986,
0.0741967260837555,
-0.023853270336985588,
-0.14801272749900818,
0.07090052217245102,
0.048615556210279465,
-0.05302291736006737,
-0.014554938301444054,
-0.07732009142637253,
-0.1491258442401886,
0.1990075260400772,
-0.06817089021205902,
-0.038704097270965576,
-0.10542717576026917,
-0.11808627098798752,
0.04854150861501694,
-0.08662097901105881,
0.07648878544569016,
-0.07729719579219818,
0.003190411953255534,
-0.0940379798412323,
-0.18273860216140747,
0.16613228619098663,
-0.11264490336179733,
-0.0028398162685334682,
-0.11429493874311447,
0.1359773725271225,
-0.07341937720775604,
0.04110720381140709,
0.019658420234918594,
0.033366985619068146,
-0.07361281663179398,
-0.05781092122197151,
0.03920722380280495,
-0.06033698841929436,
0.03932926431298256,
-0.0902203693985939,
-0.06301779299974442,
-0.020242007449269295,
0.037884000688791275,
0.010747263208031654,
0.20396296679973602,
0.2425672858953476,
-0.08453952521085739,
0.16882392764091492,
0.17954322695732117,
-0.06344646960496902,
-0.32538944482803345,
-0.10425965487957001,
-0.14501461386680603,
-0.01634250581264496,
0.05451434105634689,
-0.11082664877176285,
0.08978450298309326,
0.008248848840594292,
-0.07513584196567535,
0.14275631308555603,
-0.19474728405475616,
-0.11187044531106949,
0.20845681428909302,
0.05579433590173721,
0.3933327794075012,
-0.13834621012210846,
-0.07903703302145004,
-0.009891088120639324,
-0.14639325439929962,
0.13047440350055695,
-0.00960923358798027,
0.08409277349710464,
-0.016912955790758133,
0.037252143025398254,
0.012626886367797852,
-0.0973510667681694,
0.09767425805330276,
-0.058244552463293076,
0.03351347893476486,
-0.09784480184316635,
-0.08591212332248688,
0.1170773133635521,
-0.001281982404179871,
-0.0034382434096187353,
-0.0754755288362503,
-0.02535209245979786,
-0.021615367382764816,
-0.016926495358347893,
-0.08591051399707794,
0.12156950682401657,
0.007478289306163788,
-0.07721824198961258,
0.011062739416956902,
0.0038660054560750723,
-0.0330260768532753,
-0.03820240870118141,
0.25861606001853943,
0.0170921441167593,
0.18053272366523743,
0.11620441824197769,
0.030003072693943977,
-0.1481519639492035,
-0.104375921189785,
-0.059928957372903824,
-0.09123123437166214,
0.09249807149171829,
-0.0357370525598526,
0.027171293273568153,
0.10260025411844254,
0.0031277118250727654,
0.07188498228788376,
0.10620100051164627,
-0.024698913097381592,
-0.02230875939130783,
0.15182016789913177,
-0.18328966200351715,
-0.033344004303216934,
0.006184643134474754,
0.011690312065184116,
0.061225686222314835,
0.06334849447011948,
0.0791446641087532,
0.007221914362162352,
-0.024311354383826256,
0.022815369069576263,
-0.0005053107161074877,
-0.05260808765888214,
0.03716006129980087,
0.06872495263814926,
0.0327146053314209,
-0.10883650183677673,
0.013456217013299465,
-0.0019058872712776065,
-0.2148330956697464,
-0.022956423461437225,
0.08037687838077545,
-0.09310910105705261,
-0.11530756205320358,
0.017102990299463272,
0.113884337246418,
-0.0841464102268219,
-0.04327096790075302,
-0.07041926681995392,
-0.11280620843172073,
0.0430489256978035,
0.1925356388092041,
0.08974827826023102,
0.07247795909643173,
-0.02806892618536949,
-0.0164092555642128,
-0.017467768862843513,
0.017731059342622757,
-0.050591472536325455,
0.04203501716256142,
-0.10063640773296356,
-0.0031517846509814262,
0.012646375223994255,
0.11142874509096146,
-0.0931754782795906,
-0.024791259318590164,
-0.17504200339317322,
0.021976035088300705,
-0.037535302340984344,
-0.06035265699028969,
-0.11085670441389084,
-0.06535400450229645,
0.027930792421102524,
-0.06336884945631027,
-0.057974524796009064,
-0.028940336778759956,
-0.12112385779619217,
0.016414426267147064,
0.053685106337070465,
0.026378681883215904,
-0.08713769167661667,
-0.035030003637075424,
0.0878349021077156,
-0.021211396902799606,
0.06460617482662201,
0.07175175100564957,
-0.0402694009244442,
0.09869219362735748,
-0.14973975718021393,
-0.07678456604480743,
0.07971728593111038,
0.014169992879033089,
0.07108218967914581,
0.05858078971505165,
0.015226340852677822,
0.06820400059223175,
0.026210330426692963,
0.04431380331516266,
0.01753648743033409,
-0.12533506751060486,
0.041553743183612823,
0.013296058401465416,
-0.16332706809043884,
-0.0298130102455616,
-0.07173781096935272,
0.08729584515094757,
-0.01501238252967596,
0.16193018853664398,
-0.04326019436120987,
0.05969846248626709,
-0.08368222415447235,
0.015430950559675694,
-0.019609758630394936,
-0.13675250113010406,
-0.01440459955483675,
-0.048768334090709686,
-0.01726621389389038,
-0.02894338220357895,
0.21556170284748077,
0.034025728702545166,
-0.07295025140047073,
0.05880950018763542,
0.05583763122558594,
-0.007627020590007305,
-0.004625181667506695,
0.20452307164669037,
0.04921839013695717,
-0.030866626650094986,
-0.08676791191101074,
0.0849846750497818,
0.002669571666046977,
-0.037294305860996246,
0.11639133095741272,
0.07645279914140701,
0.0235174261033535,
0.08199748396873474,
0.07498408854007721,
0.024055490270256996,
-0.10256751626729965,
-0.12409424781799316,
-0.020988034084439278,
0.07267990708351135,
0.015765473246574402,
0.061739638447761536,
0.17407315969467163,
-0.01526327058672905,
0.0382017157971859,
-0.05325338989496231,
-0.026040609925985336,
-0.18832086026668549,
-0.1911710947751999,
-0.07335403561592102,
-0.05790076404809952,
0.03999705612659454,
0.011681041680276394,
-0.0029665471520274878,
0.08131464570760727,
0.04593855142593384,
-0.04019766300916672,
0.06636624783277512,
0.016111889854073524,
-0.0026994480285793543,
-0.0064181974157691,
0.01357024535536766,
-0.012806694954633713,
-0.047783851623535156,
0.0009643658995628357,
-0.1458704173564911,
-0.024162521585822105,
-0.054115138947963715,
-0.006142050959169865,
-0.03249034658074379,
0.02736322395503521,
-0.07529088109731674,
-0.12222789973020554,
-0.04713910073041916,
0.024412820115685463,
-0.00910845398902893,
0.08779486268758774,
0.0005544011946767569,
0.056242428719997406,
0.017034195363521576,
0.11104237288236618,
-0.05557795241475105,
-0.067995086312294,
-0.034098390489816666,
0.17240868508815765,
0.028613146394491196,
0.07676767557859421,
0.006966684479266405,
0.025836698710918427,
-0.04986418038606644,
0.27340570092201233,
0.34872251749038696,
-0.028487324714660645,
0.07248261570930481,
0.04611162096261978,
0.014016358181834221,
0.026035044342279434,
0.12757743895053864,
0.043587591499090195,
0.2774013876914978,
-0.10004895180463791,
-0.027175065129995346,
-0.05126895010471344,
-0.02630932442843914,
-0.10253342241048813,
0.031530920416116714,
0.025629648938775063,
-0.03382710739970207,
-0.03744705766439438,
0.07364004850387573,
-0.13574041426181793,
0.0781281366944313,
0.09348227083683014,
-0.16991128027439117,
-0.054955340921878815,
-0.0016502125654369593,
0.20376285910606384,
-0.002897647675126791,
0.08135446906089783,
-0.04521779716014862,
-0.050024330615997314,
0.02881374955177307,
0.003952203318476677,
-0.22811630368232727,
-0.045949339866638184,
0.09744052588939667,
-0.00003140247645205818,
0.1293671429157257,
-0.03242747485637665,
0.053703803569078445,
0.09328465163707733,
0.07485628873109818,
-0.038082055747509,
0.03144281730055809,
0.029686324298381805,
-0.11715757846832275,
-0.03903829678893089,
-0.04384990781545639,
0.011899519711732864,
-0.08750861138105392,
0.025666406378149986,
-0.09675184637308121,
0.05073103681206703,
-0.15704932808876038,
-0.05274903029203415,
-0.030182145535945892,
0.07677976042032242,
-0.04176807031035423,
0.07733786851167679,
0.034905530512332916,
0.033319562673568726,
-0.057139553129673004,
-0.0438762828707695,
-0.017986563965678215,
0.09237773716449738,
-0.12231916934251785,
-0.14325374364852905,
-0.06759541481733322,
-0.03438451513648033,
0.020126324146986008,
-0.007274150382727385,
-0.17977534234523773,
-0.05907084420323372,
-0.10031711310148239,
-0.006800706963986158,
-0.16756941378116608,
0.013188323006033897,
0.11622919142246246,
0.049342717975378036,
-0.0021123301703482866,
-0.06798454374074936,
0.026009880006313324,
0.014629384502768517,
-0.16717568039894104,
-0.08709432184696198
] |
null | null |
transformers
|
# π€ + π dbmdz Turkish BERT model
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources a cased model for Turkish π
# πΉπ· BERTurk
BERTurk is a community-driven cased BERT model for Turkish.
Some datasets used for pretraining and evaluation are contributed from the
awesome Turkish NLP community, as well as the decision for the model name: BERTurk.
## Stats
The current version of the model is trained on a filtered and sentence
segmented version of the Turkish [OSCAR corpus](https://traces1.inria.fr/oscar/),
a recent Wikipedia dump, various [OPUS corpora](http://opus.nlpl.eu/) and a
special corpus provided by [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/).
The final training corpus has a size of 35GB and 44,04,976,662 tokens.
Thanks to Google's TensorFlow Research Cloud (TFRC) we could train a cased model
on a TPU v3-8 for 2M steps.
For this model we use a vocab size of 128k.
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-turkish-128k-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-128k-cased/config.json) β’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-128k-cased/pytorch_model.bin) β’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-128k-cased/vocab.txt)
## Usage
With Transformers >= 2.3 our BERTurk cased model can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-128k-cased")
model = AutoModel.from_pretrained("dbmdz/bert-base-turkish-128k-cased")
```
## Results
For results on PoS tagging or NER tasks, please refer to
[this repository](https://github.com/stefan-it/turkish-bert).
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) π€
# Acknowledgments
Thanks to [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/) for providing us
additional large corpora for Turkish. Many thanks to Reyyan Yeniterzi for providing
us the Turkish NER dataset for evaluation.
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC β€οΈ
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage π€
|
{"language": "tr", "license": "mit"}
| null |
dbmdz/bert-base-turkish-128k-cased
|
[
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"tr",
"license:mit",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"tr"
] |
TAGS
#transformers #pytorch #tf #jax #bert #tr #license-mit #endpoints_compatible #has_space #region-us
|
+ dbmdz Turkish BERT model
==========================
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources a cased model for Turkish
πΉπ· BERTurk
==========
BERTurk is a community-driven cased BERT model for Turkish.
Some datasets used for pretraining and evaluation are contributed from the
awesome Turkish NLP community, as well as the decision for the model name: BERTurk.
Stats
-----
The current version of the model is trained on a filtered and sentence
segmented version of the Turkish OSCAR corpus,
a recent Wikipedia dump, various OPUS corpora and a
special corpus provided by Kemal Oflazer.
The final training corpus has a size of 35GB and 44,04,976,662 tokens.
Thanks to Google's TensorFlow Research Cloud (TFRC) we could train a cased model
on a TPU v3-8 for 2M steps.
For this model we use a vocab size of 128k.
Model weights
-------------
Currently only PyTorch-Transformers
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
Usage
-----
With Transformers >= 2.3 our BERTurk cased model can be loaded like:
Results
-------
For results on PoS tagging or NER tasks, please refer to
this repository.
Huggingface model hub
=====================
All models are available on the Huggingface model hub.
Contact (Bugs, Feedback, Contribution and more)
===============================================
For questions about our BERT models just open an issue
here
Acknowledgments
===============
Thanks to Kemal Oflazer for providing us
additional large corpora for Turkish. Many thanks to Reyyan Yeniterzi for providing
us the Turkish NER dataset for evaluation.
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC οΈ
Thanks to the generous support from the Hugging Face team,
it is possible to download both cased and uncased models from their S3 storage
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #bert #tr #license-mit #endpoints_compatible #has_space #region-us \n"
] |
[
40
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #bert #tr #license-mit #endpoints_compatible #has_space #region-us \n"
] |
[
0.018921364098787308,
-0.00019106945546809584,
-0.006394296884536743,
0.03337884694337845,
0.054041218012571335,
0.031650494784116745,
0.06662475317716599,
0.10807959735393524,
0.05830428749322891,
-0.019409330561757088,
0.13395871222019196,
0.18363657593727112,
-0.042950283735990524,
0.03756747394800186,
-0.033980563282966614,
-0.23781342804431915,
0.0514480322599411,
0.052651047706604004,
-0.07216320186853409,
0.11049067229032516,
0.07754318416118622,
-0.07751429826021194,
0.05530031770467758,
-0.009757393039762974,
-0.12986992299556732,
0.03262612968683243,
0.04725905507802963,
-0.07637171447277069,
0.1480608433485031,
0.044089175760746,
0.12649399042129517,
0.09060006588697433,
-0.03512771427631378,
-0.0813177078962326,
0.034379344433546066,
0.012670991010963917,
-0.12737680971622467,
0.04784052446484566,
0.0038243152666836977,
-0.03693895414471626,
0.13288435339927673,
0.05445465072989464,
0.0063299741595983505,
0.03950441628694534,
-0.16893337666988373,
-0.2548118233680725,
-0.07381822168827057,
0.08884354680776596,
-0.02052173763513565,
0.04091643914580345,
0.03058725595474243,
0.20716851949691772,
-0.13842296600341797,
0.05934154987335205,
0.19126549363136292,
-0.39465510845184326,
-0.011868304572999477,
0.16808973252773285,
0.12622633576393127,
0.032379381358623505,
-0.06192849576473236,
0.06399940699338913,
0.05275721848011017,
0.019478803500533104,
0.12466363608837128,
-0.07277891039848328,
-0.04720394313335419,
0.10058879852294922,
-0.10866198688745499,
-0.08265569061040878,
0.22826968133449554,
-0.020683445036411285,
0.03560272604227066,
0.03850972279906273,
-0.07584118098020554,
-0.07571636140346527,
0.025144880637526512,
-0.022743092849850655,
0.0026006216648966074,
0.07900294661521912,
-0.01369452103972435,
-0.04454221948981285,
-0.15518058836460114,
0.025484146550297737,
-0.22992919385433197,
0.13037264347076416,
-0.0037297243252396584,
0.08252513408660889,
-0.17930646240711212,
0.0790943130850792,
-0.019592057913541794,
-0.07786344736814499,
0.03198960795998573,
-0.09400814026594162,
0.05977398529648781,
0.004003958310931921,
-0.05471600219607353,
0.07530807703733444,
0.05432100594043732,
0.14611782133579254,
0.012070882134139538,
-0.01876658946275711,
0.017675457522273064,
0.12192820757627487,
-0.024760860949754715,
0.04574089124798775,
-0.015430393628776073,
0.02416994422674179,
0.01457999087870121,
-0.11165327578783035,
-0.008331339806318283,
-0.04006664454936981,
-0.13114413619041443,
-0.053011540323495865,
-0.00046386977192014456,
0.06673956662416458,
0.05116226524114609,
0.05029689148068428,
-0.04164477437734604,
0.04405054822564125,
0.0799972265958786,
-0.014050222001969814,
0.007079362403601408,
-0.018930165097117424,
0.07033229619264603,
0.044898953288793564,
0.004350714851170778,
-0.013392960652709007,
0.06401839852333069,
0.06933358311653137,
-0.11029591411352158,
-0.032753556966781616,
-0.024227159097790718,
-0.08324852585792542,
0.07242018729448318,
-0.09464021027088165,
0.04510653018951416,
-0.19161643087863922,
-0.03341130539774895,
0.04895780235528946,
0.06587915122509003,
-0.003518822602927685,
-0.02106628008186817,
0.09844736754894257,
-0.07420367002487183,
0.04550398886203766,
-0.05749610438942909,
-0.023689400404691696,
-0.061869945377111435,
0.11284130066633224,
-0.08427777886390686,
0.09290680289268494,
-0.15307174623012543,
0.041453663259744644,
-0.07665122300386429,
0.013973030261695385,
-0.05626176297664642,
-0.07523717731237411,
-0.04507468268275261,
0.15355731546878815,
0.008108905516564846,
-0.06740334630012512,
-0.14346280694007874,
0.046696294099092484,
-0.04539621248841286,
0.09800661355257034,
-0.12722671031951904,
-0.058843065053224564,
0.17224109172821045,
-0.07735142111778259,
-0.1869661957025528,
0.05597550794482231,
0.013961449265480042,
0.05645507201552391,
0.013563055545091629,
0.22008489072322845,
0.05232677236199379,
-0.14414089918136597,
0.03595493361353874,
0.14881235361099243,
-0.13480418920516968,
-0.1392943114042282,
0.07309679687023163,
0.005714767146855593,
-0.08493904769420624,
-0.008863232098519802,
0.007384501863270998,
0.10543231666088104,
-0.05483245849609375,
-0.04142352193593979,
-0.04210564121603966,
-0.00836840271949768,
0.0716710314154625,
0.03725959360599518,
0.08052113652229309,
-0.09881141036748886,
-0.056291595101356506,
0.05348818004131317,
0.0003750566393136978,
0.09270141273736954,
0.0430111289024353,
-0.050984617322683334,
0.10983968526124954,
0.001625535194762051,
-0.039218783378601074,
-0.12669385969638824,
-0.08412294834852219,
-0.041719261556863785,
0.06811828911304474,
0.0077491686679422855,
0.28311729431152344,
0.06907472014427185,
-0.08319556713104248,
-0.017015645280480385,
-0.006065546069294214,
0.0952838882803917,
0.07185361534357071,
-0.022340446710586548,
-0.09672259539365768,
-0.0047282068990170956,
-0.06517353653907776,
-0.08806779235601425,
-0.04047058895230293,
0.026650212705135345,
0.13822844624519348,
0.12135589867830276,
-0.02114042267203331,
0.06477739661931992,
-0.0375421978533268,
0.01081872172653675,
-0.04319320619106293,
-0.01595330238342285,
0.08564510196447372,
0.023633481934666634,
-0.0436147004365921,
0.22958077490329742,
-0.08547714352607727,
0.3939151465892792,
0.22446800768375397,
-0.1657782644033432,
-0.031030558049678802,
0.06123265251517296,
-0.051767002791166306,
0.03748093545436859,
0.06632548570632935,
-0.0631106048822403,
-0.040214505046606064,
-0.05183693394064903,
0.1000824049115181,
-0.04166794940829277,
-0.0760674849152565,
0.005690592806786299,
-0.03536844626069069,
-0.07515683025121689,
0.046796247363090515,
0.07047999650239944,
-0.2172105759382248,
0.19383907318115234,
0.3774738013744354,
0.05013132467865944,
0.14449995756149292,
-0.03993186727166176,
0.012442865408957005,
-0.032865963876247406,
-0.03054577298462391,
-0.04821619763970375,
0.10719674080610275,
-0.16407407820224762,
-0.037437137216329575,
0.07295597344636917,
0.006247274111956358,
0.034409135580062866,
-0.15331147611141205,
-0.10955478996038437,
0.04336130619049072,
0.029929859563708305,
-0.09580295532941818,
0.1635720133781433,
0.010531868785619736,
0.10101879388093948,
-0.012210089713335037,
-0.12064392119646072,
0.09066576510667801,
0.014052140526473522,
-0.05228690803050995,
0.09404075145721436,
-0.13077005743980408,
-0.2045978605747223,
-0.06662975996732712,
-0.06628576666116714,
0.073656365275383,
-0.01600862666964531,
0.1302538514137268,
-0.026411157101392746,
-0.0007316036499105394,
0.020127976313233376,
-0.026053689420223236,
-0.1503445953130722,
0.06380217522382736,
-0.08932972699403763,
0.02396491914987564,
-0.06136816740036011,
-0.10904357582330704,
-0.09035322815179825,
-0.014093480072915554,
-0.07301399111747742,
0.1116311103105545,
-0.05141761153936386,
0.0725216194987297,
0.09947564452886581,
-0.028806697577238083,
0.053319692611694336,
-0.06826431304216385,
0.20720802247524261,
-0.059331413358449936,
0.030779873952269554,
0.15294189751148224,
0.054447006434202194,
0.07210250198841095,
0.15391798317432404,
0.07699142396450043,
-0.03385859355330467,
-0.011553134769201279,
-0.05508512631058693,
-0.11758847534656525,
-0.1600302904844284,
-0.05947500467300415,
-0.1385406106710434,
0.0024164041969925165,
-0.005456132814288139,
0.08605465292930603,
0.13780304789543152,
0.03569338470697403,
0.028745347633957863,
-0.046719420701265335,
-0.05642664059996605,
0.056320443749427795,
0.2243598997592926,
-0.058458078652620316,
0.10283274203538895,
-0.08308514952659607,
-0.07471421360969543,
0.10732393711805344,
0.02800784818828106,
0.08840981125831604,
0.1018141582608223,
-0.031360968947410583,
0.10143575817346573,
0.2378867119550705,
0.11593813449144363,
0.08610434830188751,
-0.00764454435557127,
-0.058286938816308975,
-0.04331653192639351,
-0.03456863388419151,
0.03303278237581253,
0.0610777847468853,
0.10405449569225311,
-0.11127109825611115,
0.0004154023772571236,
-0.2587382197380066,
0.047090817242860794,
0.04537611082196236,
0.06576401740312576,
-0.15773995220661163,
0.014254134148359299,
0.06556764245033264,
0.011166803538799286,
-0.02129744365811348,
0.07596481591463089,
0.0803239718079567,
-0.07936139404773712,
0.03128942474722862,
-0.0033386985305696726,
0.07891964167356491,
0.141982302069664,
0.08221472799777985,
0.026959864422678947,
-0.14622759819030762,
0.018382223322987556,
0.05415626987814903,
-0.29122474789619446,
0.2603740990161896,
-0.016298852860927582,
-0.08506055176258087,
-0.017716290429234505,
-0.051800116896629333,
0.02599170058965683,
0.17704296112060547,
0.11179764568805695,
0.047093238681554794,
-0.08303944021463394,
-0.09443166106939316,
0.06625372916460037,
0.006351374089717865,
0.06221204996109009,
-0.048077523708343506,
-0.039894506335258484,
-0.038912419229745865,
-0.006282614544034004,
0.03132876753807068,
0.1985524743795395,
-0.00042567605851218104,
-0.09110472351312637,
0.05488983541727066,
0.033157818019390106,
-0.012798459269106388,
-0.04242902994155884,
-0.040151726454496384,
-0.1195252388715744,
0.07019954174757004,
-0.012865433469414711,
-0.01390661671757698,
-0.11006497591733932,
-0.1635427623987198,
0.0876099169254303,
-0.054369423538446426,
0.06406673043966293,
-0.03894845396280289,
-0.07413246482610703,
-0.0853787437081337,
-0.1807815432548523,
0.14632569253444672,
-0.10285159945487976,
0.005677650682628155,
-0.07375694811344147,
0.1498737931251526,
-0.10922247916460037,
0.07183880358934402,
0.012159033678472042,
0.04959312453866005,
-0.11737602204084396,
-0.09297776967287064,
0.02451600506901741,
-0.09403116255998611,
0.04706693813204765,
-0.09736547619104385,
-0.04247691482305527,
0.05206327140331268,
0.07581953704357147,
-0.009907481260597706,
0.18349303305149078,
0.22155191004276276,
-0.12401971220970154,
0.1636885553598404,
0.07030263543128967,
-0.02478925697505474,
-0.2698127031326294,
-0.08735955506563187,
-0.18858814239501953,
-0.037029486149549484,
0.09425146132707596,
-0.04421720281243324,
0.016336563974618912,
0.026114607229828835,
-0.0652138963341713,
0.11724712699651718,
-0.24414044618606567,
-0.06941452622413635,
0.12150342017412186,
-0.030888468027114868,
0.3945734202861786,
-0.15146198868751526,
-0.043057575821876526,
0.05751958116889,
-0.23613524436950684,
0.15220879018306732,
-0.06982243061065674,
0.059932176023721695,
-0.024687664583325386,
0.009625919163227081,
0.012956679798662663,
-0.058646511286497116,
0.11852645874023438,
-0.028607038781046867,
0.03917904198169708,
-0.0995291993021965,
-0.14747604727745056,
0.15192294120788574,
-0.010339842177927494,
-0.0039353701286017895,
-0.0560183972120285,
0.0014862052630633116,
-0.14887772500514984,
0.02288043312728405,
-0.14148478209972382,
0.09924518316984177,
-0.013591835275292397,
-0.08339280635118484,
-0.06405390053987503,
0.030689138919115067,
-0.0006512186955660582,
-0.0655183494091034,
0.22220633924007416,
-0.01301235519349575,
0.23067015409469604,
0.09011214226484299,
-0.001718861167319119,
-0.16529352962970734,
-0.1028117686510086,
-0.0182523000985384,
-0.06786543875932693,
0.07782507687807083,
-0.14629456400871277,
0.00777800939977169,
0.10193872451782227,
0.0008055730140767992,
0.03828044235706329,
0.10511858016252518,
-0.018135055899620056,
-0.01799452118575573,
0.17199650406837463,
-0.17657452821731567,
-0.10651668906211853,
-0.0373256579041481,
0.004737530369311571,
0.11901739239692688,
0.04452887549996376,
0.08069372177124023,
-0.035874053835868835,
-0.00571437506005168,
0.006929844152182341,
-0.04200324788689613,
-0.10143157839775085,
-0.026781678199768066,
0.09098425507545471,
0.04007735103368759,
-0.08146607875823975,
-0.014658465050160885,
0.018745744600892067,
-0.14638830721378326,
-0.04493904858827591,
0.09320402890443802,
-0.0856664702296257,
-0.1383364200592041,
-0.03634100779891014,
-0.028726182878017426,
-0.1471620500087738,
0.005056874826550484,
0.021310318261384964,
-0.11028612405061722,
0.046193405985832214,
0.23917366564273834,
0.07942447811365128,
0.12003888934850693,
-0.00624223193153739,
-0.014540894888341427,
0.06047806888818741,
-0.03106739930808544,
-0.09156856685876846,
0.028075164183974266,
-0.13165976107120514,
0.06659668684005737,
-0.015198924578726292,
0.13404253125190735,
-0.09143192321062088,
-0.013847830705344677,
-0.16979002952575684,
0.01005585864186287,
-0.03643380478024483,
-0.11661911755800247,
-0.1018761694431305,
-0.0664786621928215,
0.03516659885644913,
-0.12889797985553741,
-0.06750722229480743,
-0.014512577094137669,
-0.1366327852010727,
0.030165666714310646,
0.040125224739313126,
0.08488902449607849,
-0.084175243973732,
-0.04602627828717232,
0.0952710434794426,
-0.007860500365495682,
0.07812531292438507,
0.0796566754579544,
-0.04677276313304901,
0.09265077859163284,
-0.0742633044719696,
-0.09033126384019852,
0.07081255316734314,
0.008014141581952572,
0.07401663064956665,
0.06573578715324402,
-0.005506083834916353,
0.033054232597351074,
0.011137601919472218,
0.060951173305511475,
-0.06692736595869064,
-0.09784119576215744,
0.002001343760639429,
0.012363482266664505,
-0.1226206123828888,
0.005838602315634489,
-0.0842478796839714,
0.16003870964050293,
-0.0031541911885142326,
0.09600365906953812,
0.014077738858759403,
0.019272007048130035,
-0.11455035954713821,
-0.0005564488237723708,
-0.031815413385629654,
-0.16153185069561005,
-0.020841067656874657,
-0.04984382167458534,
-0.014035704545676708,
-0.014970787800848484,
0.21103821694850922,
0.052751973271369934,
-0.12153859436511993,
0.06305060535669327,
0.06090157851576805,
0.014134160242974758,
-0.024568676948547363,
0.22517432272434235,
0.04472561925649643,
-0.04426772892475128,
-0.11429143697023392,
0.06277164816856384,
-0.031958941370248795,
-0.0988655537366867,
0.1007656380534172,
0.12398026138544083,
0.05795013904571533,
0.04358082637190819,
0.0883537083864212,
-0.016972195357084274,
-0.11261337250471115,
-0.2075732797384262,
0.04702022299170494,
0.05454430729150772,
-0.0723206102848053,
0.0690259262919426,
0.19904738664627075,
-0.04785175248980522,
0.054873671382665634,
-0.061130229383707047,
0.03585329279303551,
-0.14385195076465607,
-0.09793546795845032,
-0.02680368348956108,
-0.112136609852314,
0.00018097730935551226,
-0.025985533371567726,
0.05662226676940918,
0.1552053987979889,
0.05158377066254616,
-0.0050090644508600235,
0.013797912746667862,
0.034431930631399155,
-0.05215965583920479,
0.00695808045566082,
0.01798609457910061,
0.0237100999802351,
-0.097680002450943,
0.021873442456126213,
-0.0972055122256279,
-0.09044606238603592,
-0.07261839509010315,
0.003794738557189703,
-0.04609888419508934,
-0.02652757056057453,
-0.1192617192864418,
-0.08353544026613235,
-0.05491027981042862,
0.03775608912110329,
-0.020447196438908577,
0.09760937839746475,
0.0010796304559335113,
0.03233664855360985,
0.017549393698573112,
0.2191435843706131,
-0.07920964062213898,
-0.041005779057741165,
0.005028486717492342,
0.1873423457145691,
0.03238807991147041,
0.09078659117221832,
-0.00025332922814413905,
0.026695407927036285,
-0.06992001086473465,
0.21113532781600952,
0.3371700942516327,
-0.03200918808579445,
0.08686735481023788,
0.04957680404186249,
0.014318463392555714,
0.06563498079776764,
0.10330832004547119,
0.10295400023460388,
0.23794005811214447,
-0.11865480244159698,
0.003639715723693371,
-0.0632590800523758,
0.03249784931540489,
-0.060046788305044174,
0.04283567890524864,
0.03338109329342842,
-0.07934872806072235,
-0.02819124050438404,
0.06159615516662598,
-0.08641811460256577,
0.055679332464933395,
0.07948239147663116,
-0.20277303457260132,
-0.0322968028485775,
-0.012311164289712906,
0.1655222773551941,
-0.0081708999350667,
0.09296835213899612,
-0.058473922312259674,
-0.07403064519166946,
0.013284390792250633,
0.010752661153674126,
-0.24578692018985748,
-0.05873711407184601,
0.1534961313009262,
0.02293015830218792,
0.060544077306985855,
-0.06414378434419632,
0.025068385526537895,
0.09329359978437424,
0.06718573719263077,
-0.06130964681506157,
0.05137915909290314,
0.05769737809896469,
-0.09846795350313187,
-0.11652769893407822,
-0.10557594150304794,
0.024011142551898956,
-0.06896069645881653,
0.04533424600958824,
-0.14160817861557007,
0.049556341022253036,
-0.004323633853346109,
-0.011176121421158314,
-0.027610979974269867,
0.02008398436009884,
-0.029410140588879585,
0.08877939730882645,
0.033858463168144226,
-0.008892212063074112,
-0.047436561435461044,
-0.04151783511042595,
-0.06487058103084564,
0.10949592292308807,
-0.09368491172790527,
-0.118156798183918,
0.02916806749999523,
-0.047728683799505234,
0.015931548550724983,
-0.028221987187862396,
-0.07404676824808121,
-0.07388848811388016,
-0.03162632882595062,
0.030543042346835136,
-0.11053670197725296,
0.04174854978919029,
0.08706703037023544,
0.030031858012080193,
0.012773646973073483,
-0.06605713814496994,
0.01675252430140972,
0.042071882635354996,
-0.13691921532154083,
-0.03748135268688202
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.