sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
# Vision-and-Language Transformer (ViLT), fine-tuned on COCO Vision-and-Language Transformer (ViLT) model fine-tuned on [COCO](https://cocodataset.org/#home). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the model for image and text retrieval. ### How to use Here is how to use the model in PyTorch: ``` from transformers import ViltProcessor, ViltForImageAndTextRetrieval import requests from PIL import Image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco") model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass scores = dict() for text in texts: encoding = processor(image, text, return_tensors="pt") outputs = model(**encoding) scores[text] = outputs.logits[0, :].item() ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
{"license": "apache-2.0"}
null
dandelin/vilt-b32-finetuned-coco
[ "transformers", "pytorch", "vilt", "arxiv:2102.03334", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.03334" ]
[]
TAGS #transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us
# Vision-and-Language Transformer (ViLT), fine-tuned on COCO Vision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the model for image and text retrieval. ### How to use Here is how to use the model in PyTorch: ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info
[ "# Vision-and-Language Transformer (ViLT), fine-tuned on COCO\n\nVision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the model for image and text retrieval.", "### How to use\n\nHere is how to use the model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n", "# Vision-and-Language Transformer (ViLT), fine-tuned on COCO\n\nVision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the model for image and text retrieval.", "### How to use\n\nHere is how to use the model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ 40, 115, 22, 17, 7, 3, 9, 8, 8, 11 ]
[ "passage: TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n# Vision-and-Language Transformer (ViLT), fine-tuned on COCO\n\nVision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the model for image and text retrieval.### How to use\n\nHere is how to use the model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info" ]
[ -0.06131885200738907, 0.03359616920351982, -0.002222111215814948, 0.03491804748773575, 0.1571560949087143, 0.04417775571346283, 0.10672325640916824, 0.08876167237758636, -0.0669664815068245, 0.04459856450557709, 0.11000601202249527, 0.08625166863203049, 0.12380868941545486, 0.1133391410112381, 0.006334159057587385, -0.21579965949058533, 0.0403447262942791, 0.03820009157061577, 0.10585819184780121, 0.11470106989145279, 0.07443269342184067, -0.09960590302944183, 0.10282018780708313, 0.029008837416768074, -0.16519461572170258, -0.05617513880133629, -0.05291979759931564, -0.027783401310443878, 0.08607777953147888, 0.06179238110780716, 0.13360972702503204, 0.03813407942652702, 0.06545434147119522, -0.14556293189525604, 0.02534790150821209, 0.04858969524502754, -0.02015279233455658, 0.05934686213731766, 0.07747459411621094, -0.03152991458773613, 0.176719531416893, -0.002927699824795127, 0.07254111021757126, 0.054775599390268326, -0.1142350435256958, -0.16401517391204834, -0.1047375351190567, 0.11107073724269867, 0.09783817082643509, 0.08381231129169464, -0.010594388470053673, 0.1464477777481079, -0.04182735085487366, 0.04940633475780487, 0.09438684582710266, -0.11573807150125504, -0.07250381261110306, 0.10981105268001556, 0.06049944460391998, 0.039958786219358444, -0.0695398822426796, 0.014155053533613682, 0.0670088604092598, 0.007185662165284157, 0.02550487592816353, -0.04945334047079086, -0.012844635173678398, -0.04370740428566933, -0.12296106666326523, -0.10400953143835068, 0.12349359691143036, -0.03301357477903366, -0.07986733317375183, -0.06341404467821121, -0.019473539665341377, 0.018864205107092857, -0.019061453640460968, -0.02197951450943947, 0.030644865706562996, -0.009735559113323689, 0.10653992742300034, -0.13143211603164673, -0.14035536348819733, -0.11390681564807892, 0.03209536522626877, 0.0017854629550129175, 0.03475814312696457, 0.026849159970879555, -0.07739858329296112, 0.12550371885299683, -0.09579605609178543, -0.05958954617381096, -0.05395985394716263, -0.08459572494029999, -0.043928112834692, -0.02566312439739704, -0.00010903509246418253, -0.06596267968416214, -0.036112792789936066, 0.02965099923312664, 0.045651860535144806, 0.06733312457799911, -0.06260329484939575, 0.0725543349981308, 0.01031825877726078, 0.19451770186424255, -0.047248706221580505, 0.10537582635879517, -0.028683215379714966, -0.012823904864490032, 0.007047675084322691, -0.049036771059036255, -0.07759864628314972, -0.010795618407428265, -0.0372038409113884, 0.07093937695026398, 0.014439706690609455, 0.02731597237288952, 0.001600748160853982, -0.01750289462506771, 0.2226063311100006, -0.044999539852142334, 0.014405774883925915, 0.05306406319141388, 0.002129643689841032, 0.0318378284573555, 0.13295604288578033, -0.026860171929001808, -0.07057253271341324, 0.1004185602068901, -0.06223968043923378, 0.025810474529862404, -0.107481449842453, -0.0774613469839096, 0.02401842549443245, -0.15756598114967346, 0.004127772059291601, -0.11369992792606354, -0.15104228258132935, -0.0290856771171093, 0.03589063137769699, -0.040523502975702286, 0.042176004499197006, -0.04549152031540871, -0.02145661786198616, 0.016652118414640427, 0.04088631644845009, 0.08876024186611176, -0.015060646459460258, 0.06311116367578506, 0.002114369999617338, 0.03719611465930939, -0.03792600333690643, 0.053461361676454544, -0.0697154775261879, 0.04917324706912041, -0.0736331194639206, 0.018913311883807182, -0.043296054005622864, -0.0035314178094267845, -0.10240893065929413, -0.06601299345493317, 0.013576201163232327, 0.016816021874547005, 0.048653729259967804, 0.11799456179141998, -0.12442265450954437, -0.011682800017297268, 0.17544320225715637, -0.15252847969532013, -0.058398135006427765, 0.09256115555763245, -0.023149602115154266, 0.09209013730287552, 0.02169777825474739, 0.06489351391792297, 0.2013920396566391, -0.19083380699157715, 0.046138275414705276, 0.04475105553865433, -0.10640356689691544, -0.0476863831281662, 0.044101227074861526, -0.0015260139480233192, -0.13114236295223236, 0.02313479222357273, -0.13956329226493835, -0.035898204892873764, -0.043776605278253555, -0.06689672917127609, -0.02822469361126423, -0.04373856633901596, -0.0012757231015712023, 0.04938246309757233, -0.01634838618338108, -0.008150650188326836, -0.05916031450033188, -0.03463296592235565, 0.1079939529299736, -0.055529698729515076, 0.015247074887156487, -0.05351005867123604, 0.10931947082281113, -0.11617005616426468, -0.0007919935160316527, -0.10924485325813293, 0.06905193626880646, 0.009345312602818012, -0.03989007696509361, 0.09020847827196121, 0.09470970183610916, 0.020566577091813087, 0.05989019200205803, -0.006846026051789522, -0.028131235390901566, -0.00296386587433517, -0.027891453355550766, -0.05727475881576538, -0.11247530579566956, -0.0018915141699835658, -0.06794722378253937, 0.09920770674943924, -0.16566219925880432, 0.01484469510614872, 0.0017941390397027135, 0.0014623776078224182, -0.05114689841866493, -0.013031203299760818, 0.023669390007853508, 0.025545524433255196, 0.005720456130802631, -0.046505074948072433, 0.0960858166217804, 0.04292142018675804, -0.03284771740436554, 0.0969516783952713, -0.1683945506811142, -0.20965518057346344, 0.1383243352174759, -0.04205437749624252, -0.11764226108789444, -0.013408963568508625, 0.0052194492891430855, -0.037558335810899734, -0.0398225411772728, 0.018894704058766365, 0.1747722029685974, 0.0026283732149749994, 0.144869863986969, -0.11904256045818329, -0.00719848508015275, 0.07378415763378143, -0.06546639651060104, -0.06429456919431686, 0.09710241854190826, 0.1497490406036377, -0.11931070685386658, 0.07793597131967545, 0.06448625028133392, -0.07698661834001541, 0.1542925387620926, 0.05127234384417534, -0.05946021527051926, -0.020067544654011726, 0.06143337860703468, 0.031005460768938065, 0.1338036060333252, -0.14749367535114288, 0.0007193605415523052, 0.050257034599781036, -0.01968836598098278, 0.03272448852658272, -0.17664897441864014, -0.008556351996958256, 0.049047280102968216, -0.00960586592555046, -0.05561267212033272, 0.025062866508960724, -0.027569111436605453, 0.06435835361480713, 0.04112328588962555, 0.030602581799030304, 0.021120069548487663, -0.032107315957546234, -0.10289561748504639, 0.19023944437503815, -0.09236373007297516, -0.27332088351249695, -0.1454080045223236, -0.001395198400132358, 0.03194547817111015, 0.025901587679982185, 0.04568655416369438, -0.07411858439445496, -0.06678901612758636, -0.045938026160001755, -0.007179895415902138, -0.09944005310535431, -0.08574560284614563, -0.051663827151060104, -0.03292416036128998, -0.03916163370013237, -0.11762656271457672, 0.014391195960342884, -0.01809752732515335, -0.08411451429128647, 0.07134309411048889, -0.08149401843547821, 0.0639902651309967, 0.17546547949314117, -0.03898058459162712, 0.027167320251464844, -0.03390511870384216, 0.10722289979457855, -0.09237614274024963, -0.004731480497866869, 0.20123663544654846, -0.016264619305729866, 0.05897502973675728, 0.08819103240966797, -0.005665856879204512, -0.051754917949438095, -0.00705574220046401, -0.010322914458811283, -0.12685774266719818, -0.20279225707054138, -0.04570427164435387, -0.05328090488910675, 0.07139810174703598, 0.062357254326343536, 0.03453106805682182, 0.08156487345695496, 0.13015492260456085, -0.05221030116081238, -0.0212114118039608, 0.010082571767270565, 0.10929834097623825, 0.020524725317955017, -0.018721649423241615, 0.05002463608980179, -0.08829572796821594, 0.04337413236498833, 0.07410626858472824, 0.06929408013820648, 0.17956596612930298, 0.04491610825061798, 0.08705385029315948, 0.07525533437728882, 0.097495436668396, 0.044770196080207825, 0.0806846022605896, -0.06860630959272385, 0.03573670983314514, -0.05009796470403671, -0.06998419016599655, -0.06997925043106079, 0.07816462963819504, 0.05698807165026665, -0.006462798919528723, -0.09734425693750381, -0.007930637337267399, -0.006609098520129919, 0.06904222071170807, -0.0009460529545322061, -0.2285008579492569, -0.02798096090555191, 0.027088331058621407, 0.058689747005701065, -0.150664284825325, 0.0001232146460097283, 0.01991698332130909, -0.15671569108963013, 0.01833711750805378, -0.03464236855506897, 0.11348135024309158, -0.08750683069229126, -0.04351034015417099, -0.06689031422138214, 0.022676216438412666, 0.023335307836532593, 0.13197200000286102, -0.18641409277915955, 0.14513768255710602, -0.009912793524563313, 0.07068338990211487, -0.06517543643712997, 0.022653505206108093, 0.00420621782541275, 0.14508824050426483, 0.19597890973091125, -0.010784074664115906, 0.11202727258205414, -0.0887061059474945, -0.0055201416835188866, -0.0037602174561470747, 0.06031224504113197, 0.006579707842320204, 0.01818998157978058, -0.017272429540753365, -0.0037926018703728914, -0.026237495243549347, -0.028665758669376373, -0.04545460641384125, -0.11888328194618225, 0.06680047512054443, -0.0964866578578949, 0.02305244281888008, -0.028808102011680603, -0.03711804002523422, -0.05075587332248688, 0.14532814919948578, -0.10357329249382019, -0.07588458806276321, -0.1439330130815506, -0.04061328247189522, 0.0590902678668499, -0.06941551715135574, 0.057504814118146896, -0.09038184583187103, 0.10666432976722717, -0.06910549849271774, -0.05777759104967117, 0.011762437410652637, -0.09159733355045319, -0.15940351784229279, -0.011544229462742805, 0.10677508264780045, 0.043499935418367386, 0.013120639137923717, 0.03509579971432686, -0.0031555432360619307, -0.08837258070707321, -0.12505370378494263, 0.03758765384554863, 0.11955495178699493, 0.09617282450199127, -0.0073045785538852215, 0.05041104927659035, -0.05371849238872528, -0.07336711883544922, -0.01206124760210514, 0.10572342574596405, 0.1319754719734192, -0.06341622769832611, 0.14736777544021606, 0.18249620497226715, -0.1390063315629959, -0.2642194330692291, 0.002205249620601535, 0.014624574221670628, 0.028923891484737396, -0.07777359336614609, -0.12806087732315063, -0.014908474870026112, -0.01463839691132307, -0.03361991047859192, 0.015136218629777431, -0.21137750148773193, -0.09616672247648239, 0.1270325630903244, 0.1399526298046112, 0.04650965332984924, -0.11326143890619278, -0.06412003189325333, -0.009425237774848938, -0.16575433313846588, 0.13775570690631866, -0.046395957469940186, 0.08853879570960999, -0.029353981837630272, 0.034462034702301025, 0.02092711813747883, -0.07592032849788666, 0.14495660364627838, -0.09328682720661163, 0.041072357445955276, -0.07150538265705109, -0.07633885741233826, 0.03515087813138962, -0.03984242305159569, 0.09886392205953598, 0.010797726921737194, 0.06684334576129913, -0.10558447241783142, -0.05694417655467987, -0.10548113286495209, 0.05830014869570732, -0.0768420472741127, -0.06467494368553162, -0.04667631536722183, 0.041727565228939056, 0.03397781774401665, -0.01900283619761467, 0.005842890590429306, -0.11552994698286057, -0.05031414330005646, 0.15635985136032104, 0.17484770715236664, 0.04950874298810959, -0.06950709223747253, -0.024108590558171272, -0.04355858638882637, 0.10426057875156403, -0.2006053924560547, 0.013827136717736721, 0.05671337991952896, 0.016266461461782455, 0.11121760308742523, 0.027849985286593437, -0.09730047732591629, 0.01228207815438509, 0.027205774560570717, -0.08880388736724854, -0.1169249638915062, -0.006630119867622852, 0.11193454265594482, -0.019086867570877075, -0.018247004598379135, 0.10233525931835175, -0.10516853630542755, -0.022177405655384064, -0.015334198251366615, 0.008601216599345207, -0.03725897893309593, 0.040659841150045395, 0.09280115365982056, 0.03675348311662674, -0.08457411825656891, 0.06077169254422188, 0.06757292151451111, -0.10869699716567993, 0.028120869770646095, 0.06746761500835419, -0.10067958384752274, -0.09822007268667221, 0.025863077491521835, 0.16735966503620148, -0.09921249002218246, -0.11014795303344727, 0.040424928069114685, -0.10830163210630417, 0.028029335662722588, 0.15805190801620483, 0.04074189066886902, 0.0008468868327327073, -0.04098571464419365, 0.021320294588804245, -0.15116631984710693, 0.04417242482304573, -0.035957060754299164, 0.03369848430156708, -0.07006718218326569, 0.08415240049362183, 0.058573830872774124, 0.12289883196353912, -0.03380491957068443, -0.054479166865348816, -0.09088060259819031, 0.03030022419989109, -0.0839209333062172, 0.08729507774114609, -0.06367801129817963, 0.008590606972575188, -0.0026859878562390804, -0.022055072709918022, 0.032100778073072433, 0.009552271105349064, -0.06032823398709297, 0.017471911385655403, -0.021416515111923218, 0.06255143135786057, -0.10239765793085098, 0.00029985563014633954, 0.05235391855239868, -0.026360876858234406, 0.04471834376454353, 0.013515589758753777, -0.022468987852334976, 0.052267249673604965, -0.14304162561893463, 0.045320264995098114, 0.01351636741310358, 0.025719812139868736, -0.005240931175649166, -0.12250331044197083, 0.008328910917043686, -0.022696426138281822, -0.0838196724653244, -0.02668188512325287, 0.11588182300329208, -0.11456874012947083, 0.05636756122112274, 0.0242757648229599, -0.07937559485435486, -0.025617435574531555, 0.09326840937137604, 0.01038541179150343, 0.06117897853255272, 0.018411092460155487, -0.0182180255651474, 0.10660317540168762, -0.07521195709705353, -0.010825315490365028, 0.014041511341929436, -0.03662527725100517, -0.05865098163485527, -0.10107129067182541, 0.053982362151145935, -0.02099589630961418, 0.053541116416454315, 0.03776010870933533, 0.030188310891389847, -0.010659852996468544, 0.040716737508773804, 0.0030282442457973957, 0.012439743615686893, 0.09940683841705322, -0.02109552174806595, 0.017615780234336853, 0.026657281443476677, 0.04059808328747749, -0.016620155423879623, -0.04044267535209656, 0.1090063527226448, 0.10315831750631332, 0.06982612609863281, 0.07469245046377182, 0.04195161908864975, -0.031290169805288315, -0.07708429545164108, -0.07050246745347977, -0.03727070242166519, 0.031549256294965744, -0.07770179957151413, 0.06516507267951965, 0.1679345667362213, -0.12082422524690628, 0.0690663531422615, -0.006614638492465019, -0.07971061766147614, -0.0764850378036499, -0.17527224123477936, -0.05024615675210953, -0.027836762368679047, 0.03741547092795372, -0.05618719756603241, 0.061403725296258926, 0.05920989066362381, 0.02315462753176689, -0.05570981279015541, 0.15392060577869415, 0.0009970067767426372, -0.03251958265900612, 0.044933903962373734, 0.03437007963657379, 0.05740823596715927, -0.09622185677289963, 0.038529958575963974, 0.023360691964626312, 0.022259341552853584, 0.04910492151975632, 0.050309956073760986, 0.0693545788526535, 0.04014747589826584, -0.01226817350834608, -0.07710888236761093, -0.0025001761969178915, 0.04476585611701012, 0.02894113026559353, 0.11942429840564728, -0.025450848042964935, 0.03183671832084656, -0.0124739371240139, 0.0972941517829895, -0.05177099630236626, -0.06608427315950394, -0.09146279841661453, 0.26007750630378723, -0.0419786274433136, -0.011291645467281342, 0.030361758545041084, -0.04088923707604408, 0.010540954768657684, 0.35329726338386536, 0.18106836080551147, 0.012589739635586739, 0.01175344455987215, 0.028883544728159904, 0.021962633356451988, 0.02742704749107361, 0.10876654088497162, 0.031478479504585266, 0.1838904619216919, -0.10594780743122101, 0.08326158672571182, -0.040678005665540695, -0.031959038227796555, 0.039857782423496246, 0.08579379320144653, -0.009442268870770931, -0.05194993317127228, -0.05417162552475929, 0.04703642055392265, -0.06409496814012527, -0.13469180464744568, 0.12113778293132782, -0.03243771940469742, -0.03991738706827164, -0.0016072788275778294, 0.05910234525799751, -0.03619137778878212, 0.01650630682706833, -0.04079970344901085, -0.029208194464445114, 0.15208208560943604, 0.019153881818056107, -0.13343515992164612, -0.041636910289525986, 0.03380496799945831, -0.09886888414621353, 0.19098550081253052, 0.015313501469790936, 0.05697484314441681, 0.04789774492383003, 0.0536385178565979, -0.08346257358789444, 0.06456214189529419, 0.04329058527946472, -0.03166792541742325, 0.03191845491528511, 0.11116567999124527, -0.03388766199350357, -0.0396038182079792, -0.0018952091922983527, -0.12911711633205414, 0.05921432748436928, -0.06543435901403427, -0.02611021138727665, -0.04086213931441307, 0.10102476179599762, -0.12846849858760834, 0.14574052393436432, 0.1412293165922165, -0.0023098362144082785, -0.0666857361793518, -0.07089848816394806, 0.03946757689118385, -0.0362059511244297, 0.05606590211391449, 0.006152798887342215, -0.07877042889595032, -0.008931725285947323, 0.009589895606040955, 0.07753534615039825, -0.22243037819862366, -0.033724550157785416, -0.026521150022745132, -0.03204537183046341, -0.02855253592133522, 0.04542026296257973, 0.005333768203854561, -0.00932092871516943, -0.051648326218128204, -0.04628292843699455, -0.010317396372556686, 0.12270257622003555, -0.06385156512260437, -0.075584277510643 ]
null
null
transformers
# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k Vision-and-Language Transformer (ViLT) model fine-tuned on [Flickr30k](https://arxiv.org/abs/1505.04870#:~:text=The%20Flickr30k%20dataset%20has%20become,for%20sentence%2Dbased%20image%20description.&text=Such%20annotations%20are%20essential%20for,entity%20mentions%20in%20an%20image.). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the model for image and text retrieval. ### How to use Here is how to use the model in PyTorch: ``` from transformers import ViltProcessor, ViltForImageAndTextRetrieval import requests from PIL import Image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-flickr30k") model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-flickr30k") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass scores = dict() for text in texts: encoding = processor(image, text, return_tensors="pt") outputs = model(**encoding) scores[text] = outputs.logits[0, :].item() ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
{"license": "apache-2.0"}
null
dandelin/vilt-b32-finetuned-flickr30k
[ "transformers", "pytorch", "vilt", "arxiv:1505.04870", "arxiv:2102.03334", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1505.04870", "2102.03334" ]
[]
TAGS #transformers #pytorch #vilt #arxiv-1505.04870 #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us
# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k Vision-and-Language Transformer (ViLT) model fine-tuned on Flickr30k. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the model for image and text retrieval. ### How to use Here is how to use the model in PyTorch: ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info
[ "# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k\n\nVision-and-Language Transformer (ViLT) model fine-tuned on Flickr30k. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the model for image and text retrieval.", "### How to use\n\nHere is how to use the model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #vilt #arxiv-1505.04870 #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n", "# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k\n\nVision-and-Language Transformer (ViLT) model fine-tuned on Flickr30k. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the model for image and text retrieval.", "### How to use\n\nHere is how to use the model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ 48, 117, 22, 17, 7, 3, 9, 8, 8, 11 ]
[ "passage: TAGS\n#transformers #pytorch #vilt #arxiv-1505.04870 #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n# Vision-and-Language Transformer (ViLT), fine-tuned on Flickr30k\n\nVision-and-Language Transformer (ViLT) model fine-tuned on Flickr30k. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the model for image and text retrieval.### How to use\n\nHere is how to use the model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info" ]
[ -0.06805937737226486, 0.05900660902261734, -0.0024869386106729507, 0.05577206239104271, 0.17949703335762024, 0.06650010496377945, 0.10941033065319061, 0.09165266156196594, -0.057377975434064865, 0.0488504134118557, 0.10236510634422302, 0.09820116311311722, 0.10313563793897629, 0.09958039224147797, 0.012215705588459969, -0.2566187083721161, 0.009533848613500595, 0.03421337530016899, 0.08026140928268433, 0.11342120170593262, 0.08636635541915894, -0.08267497271299362, 0.09290912747383118, 0.03660515695810318, -0.17839623987674713, -0.025303389877080917, -0.014435576274991035, -0.029533425346016884, 0.1097094863653183, 0.06063111871480942, 0.10103261470794678, 0.013084967620670795, 0.08991970866918564, -0.1267649084329605, 0.02011668123304844, 0.06672780215740204, -0.00656149024143815, 0.07004721462726593, 0.08803873509168625, -0.003462340449914336, 0.19140155613422394, -0.038415487855672836, 0.0657564178109169, 0.05942899361252785, -0.10763011872768402, -0.22927598655223846, -0.09539438039064407, 0.12994082272052765, 0.049780067056417465, 0.08999089151620865, -0.005313671659678221, 0.14072589576244354, -0.008032656274735928, 0.07352497428655624, 0.11412730067968369, -0.1575736254453659, -0.07498989254236221, 0.08846669644117355, 0.03673456236720085, 0.02291334606707096, -0.09622329473495483, 0.00578169384971261, 0.054745327681303024, 0.005785083398222923, 0.028105860576033592, -0.03351916745305061, -0.01233730185776949, -0.06353598833084106, -0.12867991626262665, -0.09680353850126266, 0.13453920185565948, -0.019218094646930695, -0.07335187494754791, -0.07710640132427216, -0.04970536381006241, 0.045355334877967834, 0.004187747836112976, -0.015534892678260803, 0.0057670120149850845, -0.03246508166193962, 0.09244722872972488, -0.1622997224330902, -0.12153264135122299, -0.11137278378009796, 0.052253562957048416, 0.038405075669288635, 0.06513145565986633, 0.04064507037401199, -0.09910265356302261, 0.11400055885314941, -0.12476091831922531, -0.06709777563810349, -0.01685740426182747, -0.08393334597349167, -0.044443074613809586, -0.02254297025501728, 0.026089290156960487, -0.1018342599272728, -0.052967507392168045, 0.06297080963850021, 0.009946582838892937, 0.08124002069234848, -0.054425518959760666, 0.0436418280005455, 0.014589512720704079, 0.15602967143058777, -0.05578033626079559, 0.07560524344444275, -0.025410475209355354, 0.0018458818085491657, -0.010683313012123108, -0.020604051649570465, -0.04061874747276306, -0.04142865538597107, -0.019846057519316673, 0.048311930149793625, 0.024333182722330093, 0.06233811005949974, 0.04310596361756325, -0.04856730252504349, 0.17342697083950043, -0.08288638293743134, -0.013717377558350563, 0.04003528133034706, -0.020980345085263252, 0.04151218757033348, 0.11403174698352814, -0.07099584490060806, -0.10074174404144287, 0.09302880614995956, -0.06521669030189514, 0.02181524597108364, -0.09463254362344742, -0.1053241491317749, -0.012890626676380634, -0.16407079994678497, -0.01362264808267355, -0.09283895790576935, -0.1724262237548828, -0.02337847277522087, 0.07043200731277466, -0.047325391322374344, 0.015501816757023335, -0.013958710245788097, -0.013881651684641838, 0.0330432765185833, 0.029267529025673866, 0.05328923463821411, 0.00474467733874917, 0.09743717312812805, 0.045851144939661026, 0.039988234639167786, -0.02262558974325657, 0.06578885763883591, -0.06798513233661652, 0.023601848632097244, -0.08909177035093307, 0.013668030500411987, -0.049248598515987396, -0.03831011801958084, -0.11337902396917343, -0.1007343977689743, 0.007349601946771145, 0.004349716007709503, 0.06183960661292076, 0.1209031194448471, -0.1390155851840973, -0.002739671152085066, 0.14929896593093872, -0.1712350994348526, -0.0130879245698452, 0.09466272592544556, -0.018613923341035843, 0.0880194827914238, 0.012580635026097298, 0.12054471671581268, 0.17176970839500427, -0.19652032852172852, 0.04789566248655319, 0.03177816793322563, -0.1277010142803192, -0.029396837577223778, 0.023717759177088737, 0.007263957988470793, -0.1188201755285263, 0.031332895159721375, -0.16835692524909973, -0.017628349363803864, -0.05747107043862343, -0.04380420222878456, -0.03648917376995087, -0.02864709682762623, 0.05134115740656853, 0.0688583254814148, -0.01343767624348402, 0.011753343977034092, -0.061991166323423386, 0.04892069101333618, 0.12827633321285248, -0.04998691380023956, 0.004806785378605127, -0.0503409281373024, 0.0641588568687439, -0.1115834191441536, -0.007285424508154392, -0.13134397566318512, 0.06292442232370377, 0.003999017179012299, -0.08621012419462204, 0.08996953070163727, 0.11421150714159012, 0.037904076278209686, 0.04688768833875656, -0.02977587841451168, -0.0483357235789299, -0.034230783581733704, -0.025627829134464264, -0.04195193946361542, -0.12386823445558548, -0.04008067399263382, -0.0461842305958271, 0.04472474381327629, -0.19510193169116974, 0.01793675869703293, -0.027089161798357964, 0.014937696978449821, -0.05422406643629074, -0.03317161649465561, 0.017446357756853104, -0.008717859163880348, 0.00826951302587986, -0.051728129386901855, 0.10463673621416092, 0.03446049988269806, 0.03168433904647827, 0.04781397059559822, -0.120061956346035, -0.1779816746711731, 0.11871303617954254, -0.040914200246334076, -0.13098521530628204, 0.02358068898320198, 0.002675063908100128, -0.03299024701118469, -0.046512097120285034, 0.02514289692044258, 0.12054263055324554, 0.01684447191655636, 0.1576773226261139, -0.08676894754171371, 0.005554107017815113, 0.06925680488348007, -0.06318414211273193, -0.07856859266757965, 0.09013604372739792, 0.14014163613319397, -0.12120649218559265, 0.07708405703306198, 0.021044397726655006, -0.05305051431059837, 0.18890157341957092, 0.06527147442102432, -0.048984311521053314, -0.03589601069688797, 0.07259046286344528, 0.015012035146355629, 0.1457405686378479, -0.15546058118343353, -0.007240311708301306, 0.04342665523290634, -0.007272847928106785, 0.022997571155428886, -0.14877082407474518, -0.0024785292334854603, 0.03806121274828911, -0.01917191967368126, -0.051762718707323074, 0.04673184081912041, -0.021916283294558525, 0.0720447450876236, 0.03507091477513313, 0.07654955983161926, 0.024824395775794983, -0.032033372670412064, -0.09167585521936417, 0.17185348272323608, -0.07676834613084793, -0.2563570439815521, -0.15640266239643097, -0.000955479103140533, -0.020716963335871696, -0.010797171853482723, 0.02750404365360737, -0.09953838586807251, -0.06558344513177872, -0.02433839812874794, 0.04059364274144173, -0.11188214272260666, -0.09957274794578552, -0.03954313322901726, -0.03645908832550049, 0.008564312942326069, -0.1214987188577652, 0.025596819818019867, -0.020751075819134712, -0.08898792415857315, 0.06176462396979332, -0.010469585657119751, 0.04374339431524277, 0.10203999280929565, -0.05894193425774574, 0.04878532513976097, -0.022969422861933708, 0.16826419532299042, -0.0759885236620903, 0.030909953638911247, 0.26304957270622253, 0.00980515219271183, 0.0696948990225792, 0.09208960086107254, -0.006254193838685751, -0.054050128906965256, 0.004243591800332069, 0.03263555094599724, -0.09792838990688324, -0.21152928471565247, -0.03370983153581619, -0.05882922187447548, 0.03919091448187828, 0.0901038721203804, 0.04492983594536781, 0.06989802420139313, 0.10243832319974899, -0.057121001183986664, -0.014445973560214043, 0.008008399978280067, 0.11806246638298035, 0.10760671645402908, -0.02635960653424263, 0.03202207759022713, -0.07117893546819687, 0.051145076751708984, 0.07434745132923126, 0.043385978788137436, 0.20232169330120087, 0.005544361192733049, 0.061293210834264755, 0.06464621424674988, 0.1426435261964798, 0.039622753858566284, 0.07319961488246918, -0.08698387444019318, 0.03938787057995796, -0.032047338783741, -0.058189757168293, -0.06859255582094193, 0.0376896858215332, 0.000947491847909987, 0.014669260941445827, -0.08838243782520294, 0.001105084433220327, -0.028771866112947464, 0.11408129334449768, 0.008310108445584774, -0.1908409148454666, -0.05130704864859581, -0.0023398431949317455, 0.03458545729517937, -0.17314983904361725, 0.005959698464721441, 0.04416194185614586, -0.15846288204193115, 0.030326638370752335, -0.06732634454965591, 0.09122176468372345, -0.08537629246711731, -0.02553049474954605, -0.02062118984758854, 0.06864938139915466, 0.01948453113436699, 0.12449690699577332, -0.186430886387825, 0.15925781428813934, -0.007533613126724958, 0.09297847747802734, -0.044518519192934036, 0.014473630115389824, -0.0061174905858933926, 0.11590731143951416, 0.20283465087413788, -0.003256335388869047, 0.1392524391412735, -0.08525719493627548, 0.032869186252355576, -0.020430386066436768, 0.08125600963830948, 0.05195453017950058, 0.026309829205274582, -0.05484864488244057, 0.0033771672751754522, -0.014513175934553146, -0.02238515019416809, -0.1142071932554245, -0.11293653398752213, 0.06303272396326065, -0.10871205478906631, 0.018681222572922707, -0.019709551706910133, -0.03220008313655853, -0.023158570751547813, 0.13169842958450317, -0.11016266793012619, -0.08353295922279358, -0.14985287189483643, 0.012980910018086433, 0.08353082835674286, -0.09262136369943619, 0.06838089227676392, -0.08723416924476624, 0.08132991939783096, -0.059988874942064285, -0.08561097085475922, -0.006645519752055407, -0.08708914369344711, -0.1442103236913681, 0.020561227574944496, 0.08433510363101959, 0.041378699243068695, -0.007847812958061695, 0.00929115992039442, 0.012354490347206593, -0.05976032838225365, -0.11530457437038422, 0.047601569443941116, 0.08191324025392532, 0.0444331169128418, -0.03584020584821701, -0.0052148690447211266, -0.09386119991540909, -0.06068521738052368, -0.036151908338069916, 0.11356113851070404, 0.15331071615219116, -0.07185622304677963, 0.12181200087070465, 0.20556168258190155, -0.12873998284339905, -0.24384814500808716, 0.022144077345728874, 0.03980585187673569, 0.008166065439581871, -0.03305837884545326, -0.17341528832912445, -0.01656883768737316, -0.008193903602659702, -0.013391214422881603, 0.002456322079524398, -0.22727364301681519, -0.10036728531122208, 0.11808554828166962, 0.15497279167175293, 0.033866848796606064, -0.09333234280347824, -0.04890882223844528, -0.003778786165639758, -0.1746574193239212, 0.12562650442123413, 0.04387682303786278, 0.09460923820734024, -0.04567437246441841, 0.041291654109954834, 0.032780010253190994, -0.0835316851735115, 0.09739886969327927, -0.08329453319311142, 0.06411001086235046, -0.0800672098994255, -0.11121031641960144, 0.032163672149181366, -0.026808684691786766, 0.139532670378685, 0.04688698798418045, 0.07677414268255234, -0.13270507752895355, -0.05579179897904396, -0.15067079663276672, 0.062912218272686, -0.0858771800994873, -0.07122808694839478, -0.008652325719594955, 0.07311712950468063, 0.03071162849664688, -0.026476522907614708, -0.0030726364348083735, -0.08269301801919937, -0.03745963051915169, 0.1471954733133316, 0.1272296905517578, 0.09837698936462402, -0.12496422231197357, -0.022230640053749084, -0.01635804772377014, 0.10064631700515747, -0.16768944263458252, 0.005798262543976307, 0.05280093476176262, 0.05423220247030258, 0.12406107783317566, 0.01310498546808958, -0.08403175324201584, -0.00022888969397172332, -0.00006400594429578632, -0.10811025649309158, -0.15920500457286835, -0.014002644456923008, 0.0710938572883606, -0.01920200139284134, -0.003364612814038992, 0.09745843708515167, -0.12111232429742813, -0.027782872319221497, -0.022644663229584694, 0.01432704832404852, -0.01721845380961895, 0.06134505569934845, 0.11093754321336746, 0.03905680775642395, -0.07652133703231812, 0.05729273706674576, 0.07833380997180939, -0.10344540327787399, 0.04264555498957634, 0.09895588457584381, -0.09662533551454544, -0.08591549843549728, 0.0037350542843341827, 0.10800713300704956, -0.10353292524814606, -0.07186640053987503, 0.026440104469656944, -0.08225877583026886, 0.009337952360510826, 0.1343405544757843, 0.02641317807137966, -0.025624748319387436, -0.06029774621129036, 0.031836532056331635, -0.15208591520786285, 0.06069004163146019, -0.016859320923686028, 0.02464534342288971, -0.12478942424058914, 0.12436512112617493, 0.06346175819635391, 0.10943635553121567, -0.023027600720524788, -0.04858637973666191, -0.10510886460542679, 0.009498314931988716, -0.0565701425075531, 0.041758306324481964, -0.03723325952887535, 0.01736202836036682, -0.0238418597728014, -0.03711060807108879, 0.044762659817934036, 0.030494889244437218, -0.04934562370181084, -0.006839635316282511, 0.001293843612074852, 0.049397919327020645, -0.11611580103635788, 0.013213141821324825, 0.03584831580519676, -0.02235843800008297, 0.0528859943151474, 0.02511519566178322, -0.0283906701952219, 0.04006749019026756, -0.09161276370286942, 0.007552381604909897, -0.027875499799847603, 0.02395288646221161, 0.0005922490381635725, -0.10212597250938416, 0.0317361019551754, -0.04713888093829155, -0.0484238937497139, -0.035503070801496506, 0.13706621527671814, -0.13232246041297913, 0.061505407094955444, 0.012038267217576504, -0.06230383738875389, -0.04731985554099083, 0.09921174496412277, 0.01317079458385706, 0.058035530149936676, 0.05270225554704666, -0.04223112016916275, 0.09576617926359177, -0.11931769549846649, -0.013792190700769424, 0.01903134398162365, -0.030821332708001137, -0.043188996613025665, -0.07612143456935883, 0.05298098176717758, -0.01556994765996933, -0.009029342792928219, 0.07650244235992432, -0.02156982384622097, 0.021911900490522385, 0.020649254322052002, -0.0933179035782814, -0.030190544202923775, 0.055678535252809525, -0.05438457801938057, 0.01680472493171692, 0.04184805974364281, 0.037326082587242126, -0.056629639118909836, -0.01792619563639164, 0.13248442113399506, 0.1414734274148941, 0.009449067525565624, 0.023093363270163536, 0.053838953375816345, -0.04728781431913376, -0.10176506638526917, -0.023616129532456398, -0.016924994066357613, 0.07090818881988525, -0.10223805904388428, 0.10461520403623581, 0.17230504751205444, -0.10994262993335724, 0.10351396352052689, -0.02461807057261467, -0.08318999409675598, -0.08055439591407776, -0.2144506871700287, -0.036124709993600845, -0.028423089534044266, 0.049115002155303955, -0.06063961610198021, 0.09661401063203812, 0.05326324701309204, 0.034037139266729355, -0.055226296186447144, 0.1552032083272934, 0.023566676303744316, -0.06263181567192078, 0.0381505973637104, 0.037376560270786285, 0.025567904114723206, -0.08633466064929962, 0.06222127005457878, 0.04242083430290222, 0.028679082170128822, 0.04645233973860741, 0.03599298745393753, 0.028743131086230278, 0.02739754691720009, 0.00433889776468277, -0.07215023785829544, -0.009451852180063725, 0.05855313315987587, 0.06227600574493408, 0.12636655569076538, -0.02316293865442276, 0.0172603577375412, -0.042869992554187775, 0.1353360265493393, -0.04587259516119957, -0.09581319242715836, -0.07615217566490173, 0.2387923151254654, -0.028275836259126663, -0.012410201132297516, 0.02235787734389305, -0.051115982234478, 0.025053199380636215, 0.3367663025856018, 0.18079298734664917, 0.03874761983752251, -0.0053649176843464375, 0.03438565135002136, 0.016391200944781303, 0.02558022364974022, 0.11733997613191605, 0.04248037561774254, 0.20689156651496887, -0.09277846664190292, 0.11841529607772827, -0.06505806744098663, -0.016408875584602356, 0.03996296599507332, 0.12258172035217285, 0.003081993665546179, -0.026836680248379707, -0.05637769401073456, 0.04563680291175842, -0.01750279776751995, -0.19637511670589447, 0.08756954967975616, -0.022043926641345024, -0.05727982893586159, -0.028561919927597046, 0.0831066444516182, -0.02802262455224991, 0.0065384963527321815, -0.03482179716229439, -0.006567169912159443, 0.1638144552707672, 0.0283577311784029, -0.11185461282730103, -0.09374862909317017, 0.07634137570858002, -0.07718070596456528, 0.15957863628864288, 0.005898976698517799, 0.051121439784765244, 0.0423821397125721, 0.005091148894280195, -0.08530523627996445, 0.05571407452225685, 0.022105325013399124, -0.03731429949402809, 0.019770022481679916, 0.1415962427854538, -0.017272870987653732, -0.00820310227572918, -0.03792799264192581, -0.1451382040977478, 0.04019772633910179, 0.005864729639142752, -0.04471319168806076, -0.049576181918382645, 0.13947844505310059, -0.11337785422801971, 0.14617934823036194, 0.1871737539768219, -0.011025230400264263, -0.0622229278087616, -0.12671831250190735, 0.023578844964504242, -0.00732432771474123, 0.07791486382484436, 0.01896272972226143, -0.09940081089735031, -0.000985810998827219, -0.06951325386762619, 0.05186626315116882, -0.20236600935459137, -0.04631467163562775, -0.022118261083960533, -0.04366466775536537, -0.032573409378528595, 0.04008517786860466, 0.013660592958331108, 0.02803238481283188, -0.03593359515070915, 0.0022645238786935806, -0.018229536712169647, 0.13073624670505524, -0.08566576987504959, -0.04812752828001976 ]
null
null
transformers
# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2 Vision-and-Language Transformer (ViLT) model fine-tuned on [NLVR2](https://lil.nlp.cornell.edu/nlvr/). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the model to determine whether a sentence is true or false given 2 images. ### How to use Here is how to use the model in PyTorch: ``` from transformers import ViltProcessor, ViltForImagesAndTextClassification import requests from PIL import Image image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg", stream=True).raw) text = "The left image contains twice the number of dogs as the right image." processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") # prepare inputs encoding = processor([image1, image2], text, return_tensors="pt") # forward pass outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) logits = outputs.logits idx = logits.argmax(-1).item() print("Predicted answer:", model.config.id2label[idx]) ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
{"license": "apache-2.0"}
null
dandelin/vilt-b32-finetuned-nlvr2
[ "transformers", "pytorch", "vilt", "arxiv:2102.03334", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.03334" ]
[]
TAGS #transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us
# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2 Vision-and-Language Transformer (ViLT) model fine-tuned on NLVR2. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the model to determine whether a sentence is true or false given 2 images. ### How to use Here is how to use the model in PyTorch: ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info
[ "# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on NLVR2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the model to determine whether a sentence is true or false given 2 images.", "### How to use\n\nHere is how to use the model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on NLVR2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the model to determine whether a sentence is true or false given 2 images.", "### How to use\n\nHere is how to use the model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ 44, 118, 27, 17, 7, 3, 9, 8, 8, 11 ]
[ "passage: TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on NLVR2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the model to determine whether a sentence is true or false given 2 images.### How to use\n\nHere is how to use the model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info" ]
[ -0.028564289212226868, 0.04073359817266464, -0.0019601776730269194, 0.06207162141799927, 0.14058233797550201, 0.02884635329246521, 0.07726264744997025, 0.1013403981924057, -0.057337686419487, 0.04910721629858017, 0.10995318740606308, 0.07410313189029694, 0.11127879470586777, 0.0490049310028553, 0.035382162779569626, -0.21877071261405945, 0.03567396104335785, 0.005216662771999836, 0.10345031321048737, 0.10869896411895752, 0.08193589001893997, -0.08976816385984421, 0.08985716104507446, 0.04792938008904457, -0.15178938210010529, -0.01444193720817566, -0.001970290206372738, -0.010081391781568527, 0.09625238925218582, 0.057227715849876404, 0.10034531354904175, 0.022049156948924065, 0.09352795034646988, -0.16501714289188385, 0.013117289170622826, 0.0625486895442009, -0.024914054200053215, 0.04729147627949715, 0.0806683599948883, 0.009193018078804016, 0.21729379892349243, -0.050314560532569885, 0.06423919647932053, 0.04958447068929672, -0.10787028074264526, -0.25346922874450684, -0.08159131556749344, 0.09171047061681747, 0.05267194285988808, 0.09574533253908157, -0.02825058437883854, 0.15122687816619873, -0.06104610487818718, 0.08110915124416351, 0.07638224959373474, -0.17026250064373016, -0.05548159033060074, 0.12773621082305908, 0.04782789945602417, 0.04173951968550682, -0.08392506092786789, 0.022336244583129883, 0.06091989949345589, 0.02061077207326889, 0.03163985162973404, -0.02292797341942787, -0.02871987596154213, -0.009966813027858734, -0.1423795372247696, -0.09837283194065094, 0.10400393605232239, -0.02979167178273201, -0.054678112268447876, -0.07325226068496704, -0.016314223408699036, 0.026389874517917633, 0.03266904130578041, -0.014497837983071804, -0.010079625062644482, -0.03347620368003845, 0.0628250315785408, -0.13323061168193817, -0.12289752066135406, -0.11892686784267426, 0.01187669113278389, 0.018671801313757896, 0.05126936733722687, 0.04925674572587013, -0.10401000082492828, 0.12357078492641449, -0.13069267570972443, -0.07682715356349945, -0.04524039849638939, -0.07788527011871338, -0.07373899221420288, -0.01520129106938839, -0.00009528978262096643, -0.06184383109211922, -0.05094307288527489, 0.018531106412410736, -0.00003653788007795811, 0.06883567571640015, -0.05786889046430588, 0.037887636572122574, 0.029695678502321243, 0.18137718737125397, -0.06737484782934189, 0.10008326172828674, -0.0558260977268219, -0.0034386208280920982, 0.013597014360129833, -0.03740116208791733, -0.06758110970258713, -0.03571813926100731, -0.026802908629179, 0.06755632162094116, 0.019415564835071564, 0.028217999264597893, 0.01568746007978916, -0.024632353335618973, 0.11796600371599197, -0.0831037387251854, 0.02240847982466221, 0.039551086723804474, -0.030317682772874832, 0.015701500698924065, 0.1076490730047226, -0.0459204837679863, -0.08602188527584076, 0.06588558107614517, -0.05493959039449692, 0.017392106354236603, -0.1052008718252182, -0.1202125996351242, 0.017394937574863434, -0.14330805838108063, -0.016853325068950653, -0.09962434321641922, -0.15031276643276215, -0.029468214139342308, 0.036920979619026184, -0.07149980217218399, 0.05383666604757309, -0.02782079577445984, -0.026439890265464783, 0.027457069605588913, 0.03664850816130638, 0.07534247636795044, -0.00411572027951479, 0.08422703295946121, 0.022847913205623627, 0.05362715199589729, -0.003771205898374319, 0.057177796959877014, -0.07821012288331985, 0.02914484031498432, 0.002952554263174534, 0.029285117983818054, -0.05609450489282608, -0.04689565300941467, -0.1009933352470398, -0.09679689258337021, -0.004083296749740839, 0.011590871028602123, 0.06383062154054642, 0.09450934827327728, -0.19205176830291748, -0.007994999177753925, 0.1689419150352478, -0.15745025873184204, -0.05723334848880768, 0.10480184108018875, -0.020854445174336433, 0.06864967197179794, 0.025533923879265785, 0.10475519299507141, 0.18437784910202026, -0.1929445117712021, 0.02571842260658741, 0.037528567016124725, -0.09303900599479675, 0.009824171662330627, 0.04113500937819481, 0.025018850341439247, -0.1636732816696167, 0.020459366962313652, -0.12983742356300354, -0.01914660632610321, -0.04746606945991516, -0.05727623775601387, -0.042334381490945816, -0.023447098210453987, 0.07338448613882065, 0.06018313020467758, -0.03528822585940361, -0.012219845317304134, -0.0815272182226181, 0.0255599245429039, 0.1345747709274292, -0.04659951850771904, 0.009393202140927315, -0.06410650163888931, 0.09119804948568344, -0.104427769780159, -0.006867441814392805, -0.12294889986515045, 0.052861087024211884, 0.011841658502817154, -0.10118405520915985, 0.09807809442281723, 0.14090432226657867, 0.03973621129989624, 0.057014890015125275, -0.021494371816515923, -0.03851582109928131, -0.04155527055263519, -0.003591443644836545, -0.025575924664735794, -0.1356787532567978, -0.023569265380501747, -0.0606144554913044, 0.021949876099824905, -0.18405817449092865, 0.004119562450796366, 0.005909627303481102, 0.03342502564191818, -0.035082027316093445, -0.010303467512130737, -0.004375701770186424, 0.013823023065924644, -0.007990466430783272, -0.03496033698320389, 0.07317249476909637, 0.0016564202960580587, -0.026360945776104927, 0.08163122832775116, -0.1483062207698822, -0.19536811113357544, 0.11855527013540268, -0.017409639433026314, -0.08982999622821808, 0.04368748143315315, 0.007329052314162254, -0.019855596125125885, -0.06394073367118835, 0.00047505798283964396, 0.11348856985569, 0.010056053288280964, 0.11533470451831818, -0.11151465028524399, -0.019225945696234703, 0.0630393922328949, -0.06857772171497345, -0.09167441725730896, 0.12242715060710907, 0.1275397092103958, -0.12385333329439163, 0.06941689550876617, 0.08679564297199249, -0.0659196749329567, 0.19561785459518433, 0.060812078416347504, -0.06055738776922226, -0.05574095621705055, 0.057200245559215546, 0.018113303929567337, 0.13551007211208344, -0.13557939231395721, 0.006582590751349926, 0.04892631620168686, 0.004054744262248278, 0.026840003207325935, -0.1699039787054062, -0.007184751331806183, 0.05639831721782684, -0.030637580901384354, -0.06283517181873322, 0.05634232237935066, -0.01772325299680233, 0.07997751235961914, 0.02530200220644474, 0.05246662721037865, 0.020307445898652077, -0.04627882316708565, -0.10341116786003113, 0.15902887284755707, -0.0999271422624588, -0.28571397066116333, -0.1629817932844162, -0.002003125147894025, -0.023517217487096786, 0.014080958440899849, 0.03765561059117317, -0.12425441294908524, -0.06899212300777435, -0.06726489216089249, 0.028252098709344864, -0.11455322802066803, -0.08498076349496841, -0.05282972753047943, -0.008659783750772476, 0.007187500596046448, -0.11710013449192047, 0.013056020252406597, -0.008944250643253326, -0.09470896422863007, 0.06162111461162567, -0.0067458138801157475, 0.05747503787279129, 0.14709904789924622, -0.04425802454352379, 0.03565429151058197, -0.02153938077390194, 0.1764732003211975, -0.07010044902563095, 0.02525452710688114, 0.250244677066803, 0.009688066318631172, 0.06283821165561676, 0.13029484450817108, 0.0013445753138512373, -0.03625733032822609, 0.02121920883655548, 0.02172073721885681, -0.10466130822896957, -0.22230884432792664, -0.059024378657341, -0.04676971212029457, 0.02295253425836563, 0.06934518367052078, 0.04389079660177231, 0.08253124356269836, 0.07333049178123474, -0.03603237867355347, -0.039428938180208206, 0.025256583467125893, 0.10160517692565918, 0.09864801913499832, -0.05197182297706604, 0.0563652403652668, -0.070542111992836, 0.042577020823955536, 0.08180026710033417, 0.03319135680794716, 0.18463027477264404, 0.01293382328003645, 0.020083844661712646, 0.0856429859995842, 0.12319707125425339, 0.042598072439432144, 0.03773294389247894, -0.06927564740180969, 0.0194046963006258, -0.023720109835267067, -0.06785844266414642, -0.04775146394968033, 0.06468994915485382, 0.07279938459396362, 0.022462837398052216, -0.07855053246021271, -0.02140684798359871, 0.0016337740235030651, 0.017856385558843613, 0.07678812742233276, -0.18443503975868225, -0.045461662113666534, 0.02805996686220169, 0.042395271360874176, -0.1441943347454071, 0.0120858708396554, 0.08747364580631256, -0.14940416812896729, 0.00938335806131363, -0.026055406779050827, 0.09253204613924026, -0.03311930596828461, -0.022968502715229988, -0.02599547989666462, 0.04597393423318863, 0.015998337417840958, 0.15590856969356537, -0.20834507048130035, 0.16627715528011322, -0.011772002093493938, 0.06767702102661133, -0.05246787518262863, 0.006439294200390577, -0.028640160337090492, 0.125051349401474, 0.20100037753582, 0.006812761537730694, 0.06579220294952393, -0.10930003970861435, 0.029459010809659958, -0.009858333505690098, 0.08670321851968765, 0.04203205928206444, 0.01843729056417942, -0.04196728765964508, 0.007974714040756226, -0.016815518960356712, -0.015848416835069656, -0.09173951297998428, -0.1086491271853447, 0.054739322513341904, -0.08430279791355133, -0.006257935427129269, -0.03880022466182709, -0.041131772100925446, -0.06043140962719917, 0.11300905048847198, -0.10497653484344482, -0.07009739428758621, -0.14308959245681763, -0.011052604764699936, 0.09922155737876892, -0.09244602173566818, 0.036615680903196335, -0.08135983347892761, 0.11528241634368896, -0.0521940179169178, -0.07302176207304001, -0.017139798030257225, -0.07424663007259369, -0.14434018731117249, -0.0012063391041010618, 0.11531856656074524, 0.06471879035234451, 0.024440092965960503, 0.01934630051255226, 0.023514069616794586, -0.07798094302415848, -0.13487443327903748, 0.04123751074075699, 0.13651181757450104, 0.008025351911783218, -0.0017362582730129361, 0.013482904992997646, -0.044120728969573975, -0.0658777579665184, -0.03823458030819893, 0.11650915443897247, 0.16108757257461548, -0.09688346832990646, 0.15302377939224243, 0.1914805918931961, -0.11720101535320282, -0.26902538537979126, 0.0015133873093873262, 0.02571686916053295, 0.03239680826663971, -0.0028550387360155582, -0.11811601370573044, -0.015139106661081314, -0.025330331176519394, -0.014902038499712944, -0.049329861998558044, -0.253884494304657, -0.10522264987230301, 0.10046285390853882, 0.12698473036289215, -0.005717580672353506, -0.06493126600980759, -0.04821239784359932, 0.0067821647971868515, -0.1283300817012787, 0.15153983235359192, -0.04064873233437538, 0.09207041561603546, -0.030690496787428856, 0.06903793662786484, 0.02946491353213787, -0.06378386169672012, 0.1467522531747818, -0.08826182037591934, 0.059126242995262146, -0.0742751955986023, -0.08544249087572098, -0.0010810414096340537, -0.053576987236738205, 0.12159643322229385, 0.018816594034433365, 0.07980526983737946, -0.1353922337293625, -0.05067141354084015, -0.13806480169296265, 0.05464159697294235, -0.08817242085933685, -0.0733218565583229, -0.04910370334982872, 0.08649951964616776, 0.0483982190489769, -0.04325300082564354, 0.001357341418042779, -0.10826343297958374, -0.02267332375049591, 0.16549226641654968, 0.1269247978925705, 0.0920305848121643, -0.05052771046757698, -0.0015802779234945774, -0.018987184390425682, 0.09885895252227783, -0.1685568243265152, 0.031110387295484543, 0.07288071513175964, 0.032917045056819916, 0.12990354001522064, 0.020733866840600967, -0.11139052361249924, -0.01571175828576088, 0.011190530844032764, -0.08929289877414703, -0.16460658609867096, -0.031022606417536736, 0.08253321051597595, -0.020875010639429092, -0.03410886228084564, 0.0990087166428566, -0.11831699311733246, -0.009070251137018204, -0.013695054687559605, 0.035938508808612823, -0.04138121381402016, 0.05944705754518509, 0.09680876135826111, 0.04216047748923302, -0.07356438040733337, 0.05793100222945213, 0.07400424778461456, -0.09833603352308273, 0.048414215445518494, 0.06790933758020401, -0.0719611868262291, -0.09062357991933823, 0.0021966053172945976, 0.11365793645381927, -0.07386816293001175, -0.09748481214046478, 0.056016597896814346, -0.10819344967603683, 0.027544651180505753, 0.14710715413093567, 0.03399517387151718, 0.016353793442249298, -0.05658574402332306, 0.013459439389407635, -0.13727149367332458, 0.09091600030660629, -0.002479236340150237, 0.018215687945485115, -0.1163085326552391, 0.12185211479663849, 0.05992254987359047, 0.13157491385936737, -0.037341367453336716, -0.055564191192388535, -0.12164796888828278, 0.027673594653606415, -0.09951543807983398, 0.036809902638196945, -0.02298085205256939, 0.01357960794121027, 0.002544999588280916, -0.04871983826160431, 0.025979286059737206, 0.037719689309597015, -0.05520385876297951, -0.0019220917019993067, -0.010649082250893116, 0.046281859278678894, -0.12224706262350082, -0.003741624066606164, 0.06088194251060486, -0.022769717499613762, 0.02776912786066532, -0.0036144766490906477, -0.017726320773363113, 0.06281955540180206, -0.15262043476104736, 0.01781049370765686, -0.023925194516777992, 0.04052119702100754, 0.016060708090662956, -0.14821021258831024, 0.026094693690538406, -0.03660350292921066, -0.08223337680101395, -0.01792719215154648, 0.07418040931224823, -0.10392290353775024, 0.055332791060209274, 0.00982875656336546, -0.08643684536218643, -0.03728582710027695, 0.11082950234413147, -0.02648923732340336, 0.0838315412402153, 0.05100381746888161, -0.03718707710504532, 0.1077158972620964, -0.09850943088531494, -0.010434405878186226, -0.004879695829004049, -0.0000920251477509737, -0.05198054760694504, -0.08517085760831833, 0.05031048506498337, -0.02367057278752327, 0.022732900455594063, 0.09713280946016312, -0.014952683821320534, 0.007822479121387005, 0.017812330275774002, -0.062154337763786316, -0.024180859327316284, 0.062265872955322266, -0.05206979066133499, 0.02582111768424511, 0.023765549063682556, -0.000296743237413466, -0.06758947670459747, 0.0017484966665506363, 0.1251167505979538, 0.10373011976480484, 0.04826592653989792, 0.028774846345186234, 0.0715133398771286, -0.04671267420053482, -0.08598083257675171, -0.03873830288648605, -0.034513674676418304, 0.04047548025846481, -0.09854745864868164, 0.10743776708841324, 0.14757084846496582, -0.14320050179958344, 0.08683956414461136, -0.018740836530923843, -0.09464818239212036, -0.10428940504789352, -0.22693628072738647, -0.04570036381483078, -0.03041127510368824, 0.044031500816345215, -0.06996890902519226, 0.07975632697343826, 0.004853658843785524, 0.05345318466424942, -0.05857784301042557, 0.1377708613872528, -0.025423862040042877, -0.04367196559906006, 0.011735890060663223, 0.03353431820869446, 0.053581394255161285, -0.047392137348651886, 0.0781535729765892, 0.056243136525154114, 0.021258540451526642, 0.03437720984220505, 0.05022558197379112, 0.036695919930934906, 0.018486272543668747, -0.01676458679139614, -0.05060947686433792, -0.0054414598271250725, 0.03268134966492653, 0.04981287196278572, 0.1568720042705536, 0.01241587195545435, 0.01114216260612011, -0.040769774466753006, 0.1654297411441803, -0.0737147405743599, -0.08837836235761642, -0.09333328902721405, 0.28658491373062134, -0.05028502270579338, 0.006574488710612059, 0.011712429113686085, -0.06559459120035172, -0.010774193331599236, 0.31681859493255615, 0.1617458611726761, 0.020898111164569855, 0.0026345839723944664, 0.02616325579583645, 0.024585101753473282, 0.007081976626068354, 0.0904051661491394, 0.03051326423883438, 0.21554182469844818, -0.0921381488442421, 0.10840815305709839, -0.0588250607252121, -0.013431674800813198, 0.05004680156707764, 0.08821015059947968, -0.015204684808850288, -0.05021532624959946, -0.06943945586681366, 0.042537011206150055, -0.044035810977220535, -0.1391541063785553, 0.09272990375757217, -0.022928090766072273, -0.045425087213516235, 0.005922713782638311, 0.12031984329223633, -0.03739044442772865, 0.0067923483438789845, -0.04501296952366829, 0.004021172411739826, 0.13566945493221283, 0.026887202635407448, -0.09283827990293503, -0.06328297406435013, 0.08056750893592834, -0.03362758457660675, 0.16631759703159332, 0.005549037363380194, 0.06903798133134842, 0.06211315840482712, 0.017204631119966507, -0.09528836607933044, 0.09916689246892929, 0.0319332480430603, -0.052899736911058426, -0.0032278967555612326, 0.16212084889411926, 0.004615591373294592, 0.015196104533970356, -0.003094370011240244, -0.12323544174432755, 0.04743887856602669, -0.02789241634309292, -0.02062569558620453, -0.05383092164993286, 0.1265123039484024, -0.10325530916452408, 0.1446194052696228, 0.186872661113739, -0.017339421436190605, -0.052154116332530975, -0.11174925416707993, 0.03320344537496567, -0.04488451033830643, 0.0869099423289299, 0.03750111162662506, -0.06440892070531845, 0.01912788115441799, -0.050069671124219894, 0.05642376095056534, -0.2108467072248459, -0.060190558433532715, -0.0068467180244624615, -0.048492975533008575, -0.009696717374026775, 0.07077588886022568, 0.01611403003334999, 0.019733469933271408, -0.03612680733203888, -0.045058123767375946, 0.0034831520169973373, 0.11501193791627884, -0.07357538491487503, -0.051073603332042694 ]
null
null
transformers
# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2 Vision-and-Language Transformer (ViLT) model fine-tuned on [VQAv2](https://visualqa.org/). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the raw model for visual question answering. ### How to use Here is how to use this model in PyTorch: ```python from transformers import ViltProcessor, ViltForQuestionAnswering import requests from PIL import Image # prepare image + question url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) text = "How many cats are there?" processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(**encoding) logits = outputs.logits idx = logits.argmax(-1).item() print("Predicted answer:", model.config.id2label[idx]) ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
{"license": "apache-2.0", "tags": ["visual-question-answering"], "widget": [{"text": "What's the animal doing?", "src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg"}, {"text": "What is on top of the building?", "src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg"}]}
visual-question-answering
dandelin/vilt-b32-finetuned-vqa
[ "transformers", "pytorch", "vilt", "visual-question-answering", "arxiv:2102.03334", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.03334" ]
[]
TAGS #transformers #pytorch #vilt #visual-question-answering #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us
# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2 Vision-and-Language Transformer (ViLT) model fine-tuned on VQAv2. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the raw model for visual question answering. ### How to use Here is how to use this model in PyTorch: ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info
[ "# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on VQAv2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the raw model for visual question answering.", "### How to use\n\nHere is how to use this model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #vilt #visual-question-answering #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on VQAv2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the raw model for visual question answering.", "### How to use\n\nHere is how to use this model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ 53, 118, 21, 17, 7, 3, 9, 8, 8, 11 ]
[ "passage: TAGS\n#transformers #pytorch #vilt #visual-question-answering #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2\n\nVision-and-Language Transformer (ViLT) model fine-tuned on VQAv2. It was introduced in the paper ViLT: Vision-and-Language Transformer\nWithout Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the raw model for visual question answering.### How to use\n\nHere is how to use this model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info" ]
[ -0.05531284213066101, 0.043694935739040375, -0.0027142041362822056, 0.04724341630935669, 0.16190052032470703, 0.055136844515800476, 0.07061278820037842, 0.12305285781621933, -0.08675549924373627, 0.043442536145448685, 0.10722402483224869, 0.07569784671068192, 0.10581852495670319, 0.07724853605031967, 0.04032813012599945, -0.25119948387145996, 0.014342522248625755, 0.031535401940345764, 0.06558248400688171, 0.11192984133958817, 0.1002734899520874, -0.10635745525360107, 0.0859026163816452, 0.026170456781983376, -0.124481201171875, -0.010563063435256481, -0.04492777958512306, -0.0242596585303545, 0.1047307550907135, 0.05092882364988327, 0.09547535330057144, 0.012232358567416668, 0.0745776817202568, -0.17590604722499847, 0.02151366136968136, 0.0643218383193016, -0.021217873319983482, 0.07492570579051971, 0.08987879753112793, 0.005068484228104353, 0.14089837670326233, -0.08035901933908463, 0.059880539774894714, 0.06608140468597412, -0.12394842505455017, -0.2575398087501526, -0.07201281934976578, 0.11213630437850952, 0.06316583603620529, 0.0997205451130867, -0.02780941314995289, 0.16303588449954987, -0.03999798372387886, 0.07577462494373322, 0.11967039108276367, -0.18344226479530334, -0.07176656275987625, 0.0989387035369873, 0.055949050933122635, 0.041313596069812775, -0.10022545605897903, 0.010956198908388615, 0.055903367698192596, 0.011110791936516762, 0.02883346937596798, -0.02407064102590084, -0.06131640821695328, -0.029243361204862595, -0.15141518414020538, -0.11055335402488708, 0.16462092101573944, -0.01752541773021221, -0.04926200211048126, -0.06733819097280502, -0.04679396003484726, 0.02483382821083069, 0.01952461339533329, -0.034429632127285004, 0.008055181242525578, -0.031764645129442215, 0.07629186660051346, -0.1587192267179489, -0.1497345119714737, -0.10345862805843353, 0.03917638584971428, -0.028925782069563866, 0.05966567620635033, 0.04020996764302254, -0.09121725708246231, 0.12407422065734863, -0.11292532831430435, -0.06833876669406891, -0.03139818459749222, -0.08881878852844238, -0.08097268640995026, -0.03659166768193245, 0.016953522339463234, -0.12590157985687256, -0.048820070922374725, 0.029907969757914543, 0.006343692075461149, 0.04736403003334999, -0.05854632332921028, 0.037166912108659744, 0.02335992082953453, 0.18764467537403107, -0.0942961722612381, 0.10014598816633224, -0.04561049863696098, 0.013569219969213009, -0.02168251760303974, -0.016321230679750443, -0.059388067573308945, -0.04416683316230774, -0.015555977821350098, 0.07652151584625244, 0.041360728442668915, 0.06497274339199066, 0.021497560665011406, -0.04722539708018303, 0.11409244686365128, -0.07455558329820633, -0.01633329503238201, 0.040782224386930466, -0.015567651018500328, 0.0018448751652613282, 0.1005241796374321, -0.0438748300075531, -0.10373266041278839, 0.05218612775206566, -0.06658890843391418, 0.014228688552975655, -0.10505837947130203, -0.1009746715426445, 0.0010145674459636211, -0.11075286567211151, -0.02624010108411312, -0.08209078013896942, -0.1359516680240631, -0.02029346488416195, 0.05632566660642624, -0.04885384440422058, 0.03014984168112278, -0.012917467392981052, -0.025405578315258026, 0.01924828439950943, 0.033449672162532806, 0.10168368369340897, 0.0009934778790920973, 0.09567801654338837, 0.02366924285888672, 0.05248226597905159, -0.002704889513552189, 0.0743284523487091, -0.07637923955917358, 0.02025754004716873, -0.0062797293066978455, 0.025741595774888992, -0.046783655881881714, -0.03835659101605415, -0.12238600850105286, -0.10478194057941437, 0.015368640422821045, 0.003569674212485552, 0.0627489984035492, 0.1285959780216217, -0.2129286676645279, 0.008599909022450447, 0.17356076836585999, -0.13813520967960358, -0.05460992455482483, 0.11225133389234543, -0.012765150517225266, 0.0882248729467392, 0.01697775349020958, 0.12149260938167572, 0.14986158907413483, -0.20698758959770203, 0.027742382138967514, 0.02976023033261299, -0.10423535853624344, 0.010531970299780369, 0.055698901414871216, 0.004290065262466669, -0.06813853234052658, 0.020880945026874542, -0.1464657336473465, -0.04426828771829605, -0.06750991195440292, -0.073584645986557, -0.033844441175460815, -0.03109433688223362, 0.04740341007709503, 0.06310811638832092, -0.020301248878240585, 0.012963839806616306, -0.0767424926161766, 0.013270645402371883, 0.11654424667358398, -0.030869366601109505, 0.009913659654557705, -0.06149216368794441, 0.07847855985164642, -0.10977673530578613, 0.00043501961044967175, -0.12169333547353745, 0.05637039989233017, 0.008239547722041607, -0.06321965903043747, 0.07940899580717087, 0.16098463535308838, 0.034067004919052124, 0.04150107130408287, -0.028327075764536858, -0.05458005517721176, -0.059914860874414444, -0.015758080407977104, -0.042522888630628586, -0.13909737765789032, -0.03980940952897072, -0.054774340242147446, 0.0231272354722023, -0.14663352072238922, 0.021939188241958618, 0.03356219083070755, 0.0320807546377182, -0.018183434382081032, -0.02344604767858982, 0.03347659111022949, 0.0020172770600765944, 0.014339152723550797, -0.03864481672644615, 0.09671225398778915, 0.0005240347818471491, 0.010254387743771076, 0.052803706377744675, -0.11703865230083466, -0.16338305175304413, 0.11242686212062836, -0.03649384155869484, -0.09486819058656693, 0.018941380083560944, -0.02676001377403736, -0.023143712431192398, -0.04061082378029823, -0.004626686684787273, 0.11995287239551544, 0.013893410563468933, 0.12339259684085846, -0.08772303909063339, -0.00687424186617136, 0.044307492673397064, -0.06131903454661369, -0.08505035936832428, 0.10037709772586823, 0.1099439486861229, -0.11555269360542297, 0.08916844427585602, 0.06645233184099197, -0.03479582816362381, 0.22254116833209991, 0.04958071932196617, -0.070822574198246, -0.0523938313126564, 0.06172609701752663, 0.014206462539732456, 0.14884425699710846, -0.19626426696777344, 0.0059428527019917965, 0.055765535682439804, 0.005315279588103294, 0.032555755227804184, -0.14302463829517365, -0.014106785878539085, 0.03166528046131134, -0.02795175276696682, -0.032744988799095154, 0.061306461691856384, -0.010716849006712437, 0.08750864863395691, 0.0324617475271225, 0.09564213454723358, 0.012088337913155556, -0.05465896055102348, -0.09159323573112488, 0.15375523269176483, -0.10167958587408066, -0.28685152530670166, -0.13856589794158936, 0.022191571071743965, -0.0021076530683785677, 0.0044615184888243675, 0.046082060784101486, -0.12359990179538727, -0.05808261036872864, -0.03613527864217758, 0.06395501643419266, -0.1193944662809372, -0.0854063406586647, -0.05432808771729469, -0.018635360524058342, 0.01824960485100746, -0.1357652246952057, 0.036150723695755005, -0.022586748003959656, -0.13346178829669952, 0.06942993402481079, -0.0029430047143250704, 0.059431739151477814, 0.11105094105005264, -0.04000493511557579, 0.03605670481920242, -0.038573332130908966, 0.21630606055259705, -0.08467879146337509, 0.027452923357486725, 0.22934193909168243, 0.0010073562152683735, 0.06027712672948837, 0.13539999723434448, -0.006948210299015045, -0.058949586004018784, 0.00625987071543932, 0.02154894545674324, -0.08099189400672913, -0.23192815482616425, -0.03969638794660568, -0.07158426940441132, 0.047388024628162384, 0.0618555061519146, 0.04050379619002342, 0.06790991127490997, 0.07560358941555023, -0.07134387642145157, -0.03242367133498192, -0.0036300907377153635, 0.10571303218603134, 0.11739686131477356, -0.05959713086485863, 0.035536617040634155, -0.06504426896572113, 0.032521720975637436, 0.0839930921792984, 0.07224682718515396, 0.178299218416214, 0.008428404107689857, 0.07175824046134949, 0.08712968230247498, 0.144745871424675, 0.03340548649430275, 0.0553075410425663, -0.08947335928678513, 0.028188422322273254, -0.045602958649396896, -0.06689111143350601, -0.0549079030752182, 0.048425935208797455, 0.08869389444589615, 0.015450822189450264, -0.08192172646522522, -0.006392551586031914, 0.019284192472696304, 0.1344977766275406, 0.04516543820500374, -0.13915759325027466, -0.04643166437745094, 0.026327352970838547, 0.03375331684947014, -0.16132257878780365, -0.005162301938980818, 0.07811403274536133, -0.1556912511587143, -0.0052795447409152985, -0.04181978106498718, 0.09167841821908951, -0.06176463142037392, -0.005810731090605259, -0.03161771222949028, 0.02884560078382492, 0.015218706801533699, 0.14683295786380768, -0.23884524405002594, 0.1818571388721466, 0.008105426095426083, 0.07671352475881577, -0.0466952808201313, 0.015626126900315285, -0.029689352959394455, 0.1124926283955574, 0.20232439041137695, 0.0028941556811332703, 0.15620453655719757, -0.0705169066786766, 0.03161527216434479, -0.006262642331421375, 0.08159539103507996, 0.027832606807351112, 0.022266123443841934, -0.05636332184076309, 0.013881980441510677, -0.015918828547000885, 0.06560947000980377, -0.09677507728338242, -0.115839883685112, 0.0759015902876854, -0.10149949043989182, 0.07010288536548615, -0.044743191450834274, -0.03863430768251419, -0.02399633824825287, 0.12358156591653824, -0.13274894654750824, -0.07010209560394287, -0.13884244859218597, 0.018145278096199036, 0.09399563819169998, -0.07448767125606537, 0.05030381307005882, -0.0832357332110405, 0.0968412533402443, -0.053453825414180756, -0.04779161885380745, -0.004937910474836826, -0.08069460093975067, -0.16326040029525757, -0.013879997655749321, 0.11956829577684402, 0.019934872165322304, 0.02131768688559532, 0.011451500467956066, 0.00951304193586111, -0.08257865160703659, -0.11292975395917892, 0.0705466940999031, 0.0992644652724266, 0.03034091182053089, -0.02273457683622837, -0.021767830476164818, -0.13133011758327484, -0.06682083755731583, -0.04189891368150711, 0.15015198290348053, 0.16929365694522858, -0.08589700609445572, 0.14486877620220184, 0.1943988800048828, -0.12336511164903641, -0.24963679909706116, 0.008085602894425392, 0.05067874491214752, 0.012353770434856415, 0.002537648193538189, -0.14574892818927765, -0.050623249262571335, -0.024786081165075302, -0.010558606125414371, -0.04363410174846649, -0.23908531665802002, -0.09269881248474121, 0.09391337633132935, 0.1323852837085724, -0.006910579279065132, -0.10232232511043549, -0.040072232484817505, 0.020475655794143677, -0.14680279791355133, 0.13041871786117554, 0.02706773392856121, 0.11522761732339859, -0.044669680297374725, 0.051982007920742035, 0.035423703491687775, -0.0807449072599411, 0.12258296459913254, -0.09307719767093658, 0.047582369297742844, -0.07258496433496475, -0.10555434226989746, 0.06971504539251328, -0.03166906535625458, 0.11538591980934143, 0.07209557294845581, 0.08007766306400299, -0.1483742743730545, -0.03724714741110802, -0.14475445449352264, 0.0519753098487854, -0.10216166824102402, -0.09802763909101486, -0.016294054687023163, 0.08463452756404877, 0.05874871835112572, -0.03516118973493576, -0.01639346405863762, -0.09745994955301285, 0.0037135884631425142, 0.16394446790218353, 0.13492351770401, 0.09112836420536041, -0.10608624666929245, -0.010572178289294243, -0.009447985328733921, 0.1019243523478508, -0.15969227254390717, 0.03284044191241264, 0.07331133633852005, 0.02356015518307686, 0.13545605540275574, 0.014337549917399883, -0.10841596871614456, -0.0028036762960255146, 0.008513894863426685, -0.11495181173086166, -0.18101027607917786, -0.013921179808676243, 0.09434418380260468, -0.04730682447552681, -0.009118637070059776, 0.09278065711259842, -0.09699512273073196, -0.02755332551896572, -0.005097901914268732, 0.026073014363646507, -0.02021808922290802, 0.055894527584314346, 0.11369679868221283, 0.05420438572764397, -0.06004348769783974, 0.050262317061424255, 0.07784504443407059, -0.10249171406030655, 0.03826699033379555, 0.06774330139160156, -0.08148567378520966, -0.10399085283279419, 0.009320519864559174, 0.08507274091243744, -0.049769166857004166, -0.05580170080065727, 0.04737209901213646, -0.08345131576061249, 0.020815148949623108, 0.12846511602401733, 0.021640732884407043, -0.005560185760259628, -0.0472213514149189, 0.024660395458340645, -0.12164032459259033, 0.09343964606523514, -0.048642829060554504, -0.004398096352815628, -0.10372690856456757, 0.1308944821357727, 0.046244047582149506, 0.12074312567710876, -0.024301446974277496, -0.06748242676258087, -0.11091293394565582, 0.021414311602711678, -0.09390643239021301, 0.01629658043384552, -0.02152022160589695, 0.00900305900722742, -0.01554839313030243, -0.05361397936940193, 0.027269860729575157, 0.02774992771446705, -0.05898912250995636, 0.0015767569420859218, -0.011262724176049232, 0.07098963856697083, -0.13813157379627228, -0.0027307039126753807, 0.046102073043584824, -0.015269509516656399, 0.06511100381612778, -0.01169495563954115, -0.03396941348910332, 0.035762954503297806, -0.1298372596502304, 0.007715869694948196, -0.03829996660351753, 0.03489820286631584, 0.013264664448797703, -0.10725494474172592, 0.00891419593244791, -0.048314303159713745, -0.07423891872167587, -0.020343957468867302, 0.12533514201641083, -0.11144573241472244, 0.06876581162214279, 0.03605515509843826, -0.060996972024440765, -0.03383504971861839, 0.08800350874662399, -0.024415023624897003, 0.058366402983665466, 0.053780943155288696, -0.03505868464708328, 0.11475560814142227, -0.12327603250741959, -0.006330764386802912, 0.0014334263978525996, -0.013064892962574959, -0.06046361103653908, -0.08061596006155014, 0.05411330610513687, -0.03845399618148804, 0.026827314868569374, 0.07611949741840363, 0.013403082266449928, 0.03309544175863266, 0.010961415246129036, -0.07446034997701645, -0.022428592666983604, 0.045355673879384995, -0.0651516392827034, 0.030650518834590912, 0.025312364101409912, 0.021387722343206406, -0.07671256363391876, 0.01908733882009983, 0.10908515006303787, 0.10479918122291565, 0.04845227673649788, 0.0093224523589015, 0.05409140884876251, -0.043707478791475296, -0.11378378421068192, -0.060474708676338196, 0.002506977180019021, 0.053149495273828506, -0.11746620386838913, 0.0777716115117073, 0.172675222158432, -0.12936362624168396, 0.10170599818229675, -0.04531456530094147, -0.07583867013454437, -0.06793826818466187, -0.18926750123500824, -0.02799810841679573, -0.031071968376636505, 0.03713899105787277, -0.08780225366353989, 0.087337926030159, 0.024454019963741302, 0.03830965608358383, -0.05177326872944832, 0.17098067700862885, 0.02875686250627041, -0.05974181368947029, 0.022250233218073845, 0.03684721514582634, 0.04963932931423187, -0.11277176439762115, 0.10018826276063919, 0.03728918731212616, 0.02453269250690937, 0.032351016998291016, 0.05292027071118355, 0.008492737077176571, 0.0006829083431512117, -0.035290468484163284, -0.06751791387796402, -0.016094472259283066, 0.04257877543568611, 0.030113941058516502, 0.15724022686481476, -0.01317169051617384, 0.0029274497646838427, -0.0272903461009264, 0.1723203808069229, -0.05973190814256668, -0.10157889872789383, -0.10469632595777512, 0.23672878742218018, -0.02503392845392227, -0.005544499959796667, 0.030950535088777542, -0.061295393854379654, 0.013251821510493755, 0.3264695405960083, 0.193374365568161, 0.010386168956756592, 0.009845864027738571, 0.03809191659092903, 0.030143549665808678, 0.013359407894313335, 0.0814594179391861, 0.060441453009843826, 0.20683909952640533, -0.1077960953116417, 0.13889504969120026, -0.05819879099726677, -0.013546392321586609, 0.05844658613204956, 0.11690064519643784, 0.003432418452575803, -0.026058776304125786, -0.052597951143980026, 0.05200949311256409, -0.0478922575712204, -0.20607566833496094, 0.06737781316041946, -0.05568845942616463, -0.057587455958127975, -0.02050054632127285, 0.12100999057292938, -0.023624461144208908, 0.02081429772078991, -0.027301106601953506, -0.008340598084032536, 0.1507551521062851, 0.03555823117494583, -0.08732281625270844, -0.08121201395988464, 0.11630022525787354, -0.10326790064573288, 0.17079441249370575, -0.0004913226584903896, 0.037927914410829544, 0.04536260664463043, 0.0027632771525532007, -0.08864090591669083, 0.06421729922294617, 0.045050594955682755, -0.048396095633506775, -0.01124492846429348, 0.14107061922550201, -0.004817546345293522, 0.023968970403075218, -0.00924611184746027, -0.15475837886333466, 0.04644487798213959, 0.007008072454482317, -0.01979660615324974, -0.045358188450336456, 0.14091911911964417, -0.10362452268600464, 0.13827191293239594, 0.18468943238258362, -0.024644115939736366, -0.06179057061672211, -0.13180877268314362, 0.027207354083657265, -0.024573463946580887, 0.07555149495601654, 0.007957146503031254, -0.0966317355632782, 0.013245088048279285, -0.04394235834479332, 0.05634109675884247, -0.16783270239830017, -0.06981636583805084, 0.0021358926314860582, -0.03867785632610321, -0.03428928926587105, 0.06385409086942673, 0.03333766385912895, 0.011222856119275093, -0.032366182655096054, 0.009472324512898922, -0.013143099844455719, 0.11733651906251907, -0.09188893437385559, -0.04026741534471512 ]
null
null
transformers
# Vision-and-Language Transformer (ViLT), pre-trained only Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description (to do) ## Intended uses & limitations You can use the raw model for visual question answering. ### How to use (to do) ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
{"license": "apache-2.0"}
null
dandelin/vilt-b32-mlm-itm
[ "transformers", "pytorch", "vilt", "arxiv:2102.03334", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.03334" ]
[]
TAGS #transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us
# Vision-and-Language Transformer (ViLT), pre-trained only Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description (to do) ## Intended uses & limitations You can use the raw model for visual question answering. ### How to use (to do) ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info
[ "# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\n(to do)", "## Intended uses & limitations\n\nYou can use the raw model for visual question answering.", "### How to use\n\n(to do)", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n", "# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\n(to do)", "## Intended uses & limitations\n\nYou can use the raw model for visual question answering.", "### How to use\n\n(to do)", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ 40, 125, 7, 21, 9, 7, 3, 9, 8, 8, 11 ]
[ "passage: TAGS\n#transformers #pytorch #vilt #arxiv-2102.03334 #license-apache-2.0 #endpoints_compatible #region-us \n# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. \n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Model description\n\n(to do)## Intended uses & limitations\n\nYou can use the raw model for visual question answering.### How to use\n\n(to do)## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info" ]
[ -0.07054779678583145, 0.057640302926301956, -0.0017178659327328205, 0.03322206437587738, 0.16312934458255768, 0.07315270602703094, 0.11384540051221848, 0.09157150983810425, -0.05451732501387596, 0.04992339387536049, 0.12525850534439087, 0.05808262899518013, 0.11552893370389938, 0.08717464655637741, 0.028306923806667328, -0.23047153651714325, 0.030892761424183846, 0.017142420634627342, 0.072393998503685, 0.09863051772117615, 0.07710251957178116, -0.07916003465652466, 0.09129296988248825, 0.014933658763766289, -0.14312244951725006, -0.03856433182954788, -0.040817469358444214, -0.015244798734784126, 0.10392210632562637, 0.060416679829359055, 0.08640894293785095, 0.01732494868338108, 0.08511274307966232, -0.1714867800474167, 0.019055014476180077, 0.06848421692848206, -0.015263735316693783, 0.06051813066005707, 0.06133474037051201, 0.007767551578581333, 0.14390598237514496, -0.013639464043080807, 0.08655305951833725, 0.06939198821783066, -0.13151060044765472, -0.2339516282081604, -0.07278386503458023, 0.09769810736179352, 0.08882825821638107, 0.08826626092195511, -0.016118323430418968, 0.12317652255296707, -0.018758544698357582, 0.0539529025554657, 0.07985799014568329, -0.15408064424991608, -0.09172713756561279, 0.14127501845359802, 0.05656079947948456, 0.06930393725633621, -0.09975157678127289, 0.005321876611560583, 0.0675860345363617, 0.020434634760022163, -0.0020098856184631586, -0.029094737023115158, -0.0194010641425848, -0.03855316713452339, -0.13711221516132355, -0.09895043075084686, 0.18139702081680298, -0.0343928299844265, -0.08473024517297745, -0.04435233399271965, -0.03413696587085724, 0.010506588034331799, 0.006673920433968306, -0.032252829521894455, 0.024202559143304825, -0.0013990565203130245, 0.10254047065973282, -0.1652403622865677, -0.1206275150179863, -0.15630488097667694, 0.06643306463956833, 0.020482558757066727, 0.05235333368182182, 0.032332468777894974, -0.0878758355975151, 0.12368081510066986, -0.13535836338996887, -0.06189635396003723, -0.06413398683071136, -0.08821357041597366, -0.08720358461141586, -0.03554845601320267, 0.016930164769291878, -0.09444442391395569, -0.04433170333504677, 0.058558110147714615, 0.0448235422372818, 0.09569716453552246, -0.05790717527270317, 0.044881001114845276, 0.000777403824031353, 0.16740389168262482, -0.047325726598501205, 0.0973590537905693, -0.058431096374988556, -0.0022599122021347284, -0.019457422196865082, -0.03558947145938873, -0.06517432630062103, -0.017251674085855484, -0.051110927015542984, 0.06629016250371933, 0.007577546406537294, 0.049917593598365784, 0.026288462802767754, -0.0376136340200901, 0.13501563668251038, -0.06170975789427757, -0.027966702356934547, 0.029998965561389923, 0.004595410544425249, -0.02915097214281559, 0.10056950896978378, -0.03443161025643349, -0.06300141662359238, 0.08785508573055267, -0.06754930317401886, 0.006486326921731234, -0.10876553505659103, -0.08418804407119751, -0.007276018615812063, -0.14292936027050018, -0.01469883881509304, -0.06841469556093216, -0.17123262584209442, -0.030986901372671127, 0.08645118772983551, -0.05134613439440727, 0.024838095530867577, -0.029071342200040817, -0.0067849839106202126, 0.02430732361972332, 0.035406697541475296, 0.07440576702356339, -0.004733034875243902, 0.06986202299594879, 0.034405164420604706, 0.03817005455493927, -0.02276865392923355, 0.05820923298597336, -0.05877835676074028, 0.046616747975349426, -0.03781215474009514, 0.0168705303221941, -0.058598488569259644, -0.01902741566300392, -0.12102488428354263, -0.07392071187496185, -0.017887653782963753, 0.016281863674521446, 0.06051371619105339, 0.11561021953821182, -0.16542276740074158, 0.011537955142557621, 0.18933598697185516, -0.16216056048870087, -0.04208151251077652, 0.09095367789268494, -0.01840505190193653, 0.11068746447563171, 0.014926000498235226, 0.11973156780004501, 0.1560215801000595, -0.1861276775598526, 0.07386226207017899, 0.04661117121577263, -0.09153266251087189, -0.013869460672140121, 0.051565464586019516, -0.018790973350405693, -0.15885666012763977, 0.026672620326280594, -0.1626114845275879, -0.05646882206201553, -0.05737476423382759, -0.060526683926582336, -0.025009751319885254, -0.03819766640663147, 0.026462452486157417, 0.04893350973725319, -0.028014443814754486, 0.00959270354360342, -0.06791593134403229, 0.007692511659115553, 0.11930269002914429, -0.042835015803575516, -0.002011785749346018, -0.06013122573494911, 0.024348877370357513, -0.1309414505958557, 0.002055206336081028, -0.10072135180234909, 0.05549655109643936, 0.01574232056736946, -0.07723909616470337, 0.08804349601268768, 0.15485355257987976, 0.030432268977165222, 0.05268732085824013, -0.017630960792303085, -0.03077549859881401, -0.04142840951681137, -0.03228912502527237, -0.04577171057462692, -0.1427430659532547, -0.023529600352048874, -0.06858502328395844, 0.043952010571956635, -0.1888236552476883, 0.0321330800652504, -0.015291151590645313, -0.036411017179489136, -0.042130205780267715, -0.041648589074611664, 0.02411251701414585, -0.014414406381547451, 0.010570586659014225, -0.05308228358626366, 0.09156530350446701, 0.04272704944014549, -0.0023368599358946085, 0.029056526720523834, -0.13839858770370483, -0.19969360530376434, 0.09810217469930649, 0.007585637271404266, -0.12456855922937393, 0.016038643196225166, -0.005266915541142225, -0.04113984480500221, -0.035032015293836594, 0.030486682429909706, 0.15261492133140564, 0.004205996636301279, 0.127046599984169, -0.10012511163949966, -0.0011637741699814796, 0.0674961507320404, -0.0674547553062439, -0.07254574447870255, 0.07995667308568954, 0.15328852832317352, -0.10667186975479126, 0.0756918266415596, 0.02456527017056942, -0.06442348659038544, 0.20620191097259521, 0.07006948441267014, -0.037997275590896606, -0.044482823461294174, 0.08989211916923523, 0.018247079104185104, 0.168463796377182, -0.2313956320285797, -0.0010202175471931696, 0.03222384676337242, 0.014150483533740044, 0.03245237097144127, -0.14998061954975128, -0.019079582765698433, 0.03127368912100792, -0.037239670753479004, -0.0524950847029686, 0.03836248815059662, -0.06339339166879654, 0.0643063634634018, 0.053890325129032135, 0.08879552036523819, 0.028540916740894318, -0.05273047089576721, -0.09859075397253036, 0.17821234464645386, -0.0940982773900032, -0.22374117374420166, -0.14293470978736877, -0.006043900735676289, -0.011983352713286877, 0.029436005279421806, 0.04523910582065582, -0.12105557322502136, -0.06349942088127136, -0.03365914523601532, 0.03466141223907471, -0.1503070443868637, -0.09871403872966766, -0.03251655772328377, -0.02727627195417881, -0.011463497765362263, -0.12041312456130981, 0.03321436420083046, -0.02808619663119316, -0.12270265817642212, 0.034991905093193054, -0.047483038157224655, 0.040396548807621, 0.14432956278324127, -0.014536158181726933, 0.044478029012680054, -0.022245407104492188, 0.17289581894874573, -0.07958555966615677, -0.008863274939358234, 0.22002968192100525, -0.008641289547085762, 0.04811415821313858, 0.12900994718074799, -0.0036062488798052073, -0.0861225426197052, 0.010621943511068821, 0.02270561270415783, -0.11302710324525833, -0.23507070541381836, -0.021247509866952896, -0.07319112867116928, 0.05298200622200966, 0.06511451303958893, 0.054967958480119705, 0.0692056268453598, 0.10678539425134659, -0.06695675849914551, -0.008948362432420254, 0.013139786198735237, 0.1211756244301796, 0.055721528828144073, -0.034678999334573746, 0.03229280933737755, -0.055900994688272476, 0.06090739741921425, 0.06418382376432419, 0.0643840953707695, 0.20559795200824738, 0.04998783394694328, 0.0828990563750267, 0.08493318408727646, 0.11381051689386368, 0.041640713810920715, 0.045551519840955734, -0.09163422882556915, 0.030451877042651176, -0.04677477106451988, -0.0588604174554348, -0.08115856349468231, 0.06736986339092255, 0.014321036636829376, 0.012867636978626251, -0.07756412774324417, 0.00888985674828291, -0.03009370155632496, 0.14648868143558502, 0.009047679603099823, -0.1768161803483963, -0.051577068865299225, 0.029832657426595688, 0.04824753478169441, -0.19331899285316467, 0.005413535982370377, 0.05243362858891487, -0.14190758764743805, 0.008688420057296753, -0.04390549287199974, 0.09361275285482407, -0.06614623963832855, -0.022409401834011078, -0.009907685220241547, 0.050962869077920914, 0.002190227620303631, 0.13781535625457764, -0.2147577702999115, 0.1734859049320221, 0.00015734077896922827, 0.09421208500862122, -0.034511320292949677, 0.03141402453184128, -0.03213561326265335, 0.12743891775608063, 0.21691609919071198, -0.002016030717641115, 0.10543984174728394, -0.06445912271738052, 0.03972931578755379, 0.004105370491743088, 0.09562977403402328, -0.003204476088285446, 0.010466513223946095, -0.04381100833415985, 0.021638302132487297, -0.01144024170935154, -0.012687936425209045, -0.10913487523794174, -0.1114690750837326, 0.08394647389650345, -0.11720433086156845, 0.0653499886393547, -0.04195303097367287, -0.006394691299647093, 0.013742129318416119, 0.16176404058933258, -0.152439147233963, -0.06623265892267227, -0.14568746089935303, -0.015216097235679626, 0.07678800076246262, -0.06600186973810196, 0.058031655848026276, -0.09420529007911682, 0.08798528462648392, -0.04693851247429848, -0.04082707315683365, 0.023017264902591705, -0.09831314533948898, -0.16545246541500092, -0.024909187108278275, 0.09343460202217102, 0.05176662281155586, 0.009101989679038525, 0.004086955450475216, 0.0019164344994351268, -0.07194577902555466, -0.1243191808462143, 0.06324862688779831, 0.1159655749797821, 0.04251498356461525, -0.03487411513924599, -0.009102916345000267, -0.056398842483758926, -0.044620536267757416, -0.04895276948809624, 0.0990305095911026, 0.16095885634422302, -0.062445905059576035, 0.14761219918727875, 0.23453430831432343, -0.14716678857803345, -0.2370547652244568, 0.03625669702887535, 0.048338383436203, 0.011990536004304886, -0.058822713792324066, -0.188156858086586, -0.013956681825220585, -0.003450932912528515, -0.028418201953172684, -0.0030057737603783607, -0.22630734741687775, -0.08533339947462082, 0.10460591316223145, 0.1350891888141632, 0.04347195848822594, -0.10080531984567642, -0.057899266481399536, -0.014066825620830059, -0.16111034154891968, 0.10695106536149979, 0.020281361415982246, 0.10615290701389313, -0.0320621058344841, 0.014082614332437515, 0.027242304757237434, -0.08033444732427597, 0.14233152568340302, -0.06601904332637787, 0.06376464664936066, -0.07208202034235, -0.09236764162778854, 0.04537299647927284, -0.03245311975479126, 0.11375701427459717, 0.04892263561487198, 0.07230483740568161, -0.10372121632099152, -0.07230078428983688, -0.11095315217971802, 0.04621060565114021, -0.09056296944618225, -0.09567660093307495, -0.01278735138475895, 0.07135940343141556, 0.025377845391631126, -0.020684128627181053, 0.0011957846581935883, -0.11741053313016891, -0.015261429361999035, 0.1311369091272354, 0.16690693795681, 0.06824449449777603, -0.08999902009963989, 0.00843064859509468, -0.012038965709507465, 0.10954548418521881, -0.1925252228975296, 0.02540517784655094, 0.0460018627345562, 0.029308831319212914, 0.1266200840473175, 0.02760062739253044, -0.09818883240222931, 0.0036228089593350887, -0.004404228180646896, -0.09671613574028015, -0.1744687706232071, -0.003810760797932744, 0.12816473841667175, -0.057690009474754333, 0.004899255465716124, 0.0907488539814949, -0.09924100339412689, -0.00924781896173954, -0.015599207021296024, 0.019292697310447693, -0.02692391164600849, 0.05927543342113495, 0.08753064274787903, 0.05077146366238594, -0.0690947026014328, 0.04975119233131409, 0.07223090529441833, -0.07504680752754211, 0.04320153594017029, 0.05969474837183952, -0.09822145849466324, -0.09501475840806961, -0.009500169195234776, 0.13827362656593323, -0.04236653819680214, -0.06675488501787186, 0.04690343514084816, -0.09650420397520065, 0.011382625438272953, 0.12043704837560654, 0.017370913177728653, -0.00913020595908165, -0.052875179797410965, 0.048249661922454834, -0.13073493540287018, 0.05611608177423477, -0.048541054129600525, 0.02486804500222206, -0.09499648958444595, 0.09167744964361191, 0.06049928069114685, 0.1096644401550293, -0.016266316175460815, -0.06791943311691284, -0.11674237251281738, 0.03107517398893833, -0.08550837635993958, 0.047588758170604706, -0.03279365226626396, 0.018960928544402122, -0.003603361314162612, -0.04155493155121803, 0.027728984132409096, 0.01029603835195303, -0.06347235292196274, 0.012625624425709248, -0.014014411717653275, 0.06755997240543365, -0.09257106482982635, 0.020319918170571327, 0.046407245099544525, -0.026825258508324623, 0.055873241275548935, -0.004756032023578882, -0.013374407775700092, 0.03686773031949997, -0.12369070947170258, 0.05610158294439316, -0.04180271923542023, 0.018671799451112747, -0.017268646508455276, -0.09819404780864716, 0.009790751151740551, -0.05541015416383743, -0.06508486717939377, -0.028466396033763885, 0.12616899609565735, -0.12457432597875595, 0.07051672041416168, 0.01561448723077774, -0.07773830741643906, -0.02501348964869976, 0.08069200813770294, -0.009521097876131535, 0.07531014829874039, 0.025085462257266045, -0.025201568379998207, 0.09242285788059235, -0.10895790904760361, -0.013193260878324509, 0.03153995797038078, -0.0015273676253855228, -0.05809104070067406, -0.09388787299394608, 0.05423004552721977, -0.026737943291664124, 0.03514188900589943, 0.06001943349838257, 0.010720236226916313, 0.015550132840871811, -0.007434250321239233, -0.02612823061645031, -0.016087999567389488, 0.06834391504526138, -0.03270126134157181, 0.030258851125836372, 0.04338670149445534, 0.03420484811067581, -0.06186497211456299, -0.03193141147494316, 0.12204303592443466, 0.11445601284503937, 0.045581284910440445, 0.02573520503938198, 0.03564799949526787, -0.06709142029285431, -0.08734049648046494, 0.00434474553912878, -0.005119647830724716, 0.0487745925784111, -0.09516482800245285, 0.08079899102449417, 0.17816802859306335, -0.12295389175415039, 0.08402244001626968, -0.021579217165708542, -0.0930970162153244, -0.09948167204856873, -0.20237088203430176, -0.035774119198322296, -0.04239070415496826, 0.05158976837992668, -0.07343307882547379, 0.07808127999305725, 0.06691914051771164, 0.03429131954908371, -0.036243047565221786, 0.15219232439994812, 0.03190631791949272, -0.045631539076566696, 0.011883671395480633, 0.029692448675632477, 0.046591274440288544, -0.11494752019643784, 0.04924632981419563, 0.04124204441905022, 0.015356850810348988, 0.03950592130422592, 0.0361211858689785, 0.02649017423391342, 0.01043110340833664, -0.0027223112992942333, -0.06122289597988129, -0.009680385701358318, 0.056880008429288864, 0.03115122951567173, 0.11999485641717911, -0.024722212925553322, 0.0003666398406494409, -0.011868750676512718, 0.13429765403270721, -0.059265438467264175, -0.07750170677900314, -0.0998658537864685, 0.24942733347415924, -0.045151203870773315, 0.006518710870295763, 0.014094816520810127, -0.04332343116402626, 0.032168079167604446, 0.33538514375686646, 0.18108941614627838, 0.02079121023416519, -0.008334189653396606, 0.045958589762449265, 0.017981529235839844, 0.01532384566962719, 0.10276585072278976, 0.032736971974372864, 0.20542165637016296, -0.10306338965892792, 0.11441009491682053, -0.028092756867408752, -0.012514459900557995, 0.06754205375909805, 0.11431185901165009, 0.00643643643707037, -0.02466839924454689, -0.055235035717487335, 0.06043006852269173, -0.04244674742221832, -0.1836337000131607, 0.09402447193861008, -0.00275916769169271, -0.055484626442193985, -0.015777170658111572, 0.07488136738538742, -0.047366246581077576, 0.017995581030845642, -0.04062528535723686, -0.046360116451978683, 0.15515616536140442, 0.025149215012788773, -0.10686225444078445, -0.11886241286993027, 0.10109057277441025, -0.05407930538058281, 0.19897542893886566, -0.002749829785898328, 0.040519386529922485, 0.03899404779076576, 0.007660140749067068, -0.07072259485721588, 0.06418391317129135, 0.033063698559999466, -0.042010631412267685, 0.00617397902533412, 0.12185923755168915, -0.03753712773323059, 0.03755142539739609, -0.011488950811326504, -0.1497611552476883, 0.047756925225257874, -0.012637142091989517, -0.047537967562675476, -0.05444230139255524, 0.12859205901622772, -0.12877227365970612, 0.15081144869327545, 0.16965192556381226, -0.012954505160450935, -0.07048901170492172, -0.10631968826055527, 0.05523037165403366, -0.02709534950554371, 0.10620690882205963, 0.015538457781076431, -0.11862260848283768, 0.008860060013830662, -0.02694273740053177, 0.055081456899642944, -0.21788708865642548, -0.06218311935663223, 0.00017097203817684203, -0.020762169733643532, -0.002735174261033535, 0.044469669461250305, 0.029391895979642868, 0.012170782312750816, -0.0610102079808712, -0.025772714987397194, -0.013973560184240341, 0.1310613453388214, -0.07762202620506287, -0.0686311349272728 ]
null
null
transformers
# Vision-and-Language Transformer (ViLT), pre-trained only Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Note: this model only includes the language modeling head. Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens. ### How to use Here is how to use this model in PyTorch: ``` from transformers import ViltProcessor, ViltForMaskedLM import requests from PIL import Image import re url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) text = "a bunch of [MASK] laying on a [MASK]." processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(**encoding) tl = len(re.findall("\[MASK\]", text)) inferred_token = [text] # gradually fill in the MASK tokens, one by one with torch.no_grad(): for i in range(tl): encoded = processor.tokenizer(inferred_token) input_ids = torch.tensor(encoded.input_ids).to(device) encoded = encoded["input_ids"][0][1:-1] outputs = model(input_ids=input_ids, pixel_values=pixel_values) mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size) # only take into account text features (minus CLS and SEP token) mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :] mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1) # only take into account text mlm_values[torch.tensor(encoded) != 103] = 0 select = mlm_values.argmax().item() encoded[select] = mlm_ids[select].item() inferred_token = [processor.decode(encoded)] selected_token = "" encoded = processor.tokenizer(inferred_token) processor.decode(encoded.input_ids[0], skip_special_tokens=True) ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
{"license": "apache-2.0"}
fill-mask
dandelin/vilt-b32-mlm
[ "transformers", "pytorch", "vilt", "fill-mask", "arxiv:2102.03334", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2102.03334" ]
[]
TAGS #transformers #pytorch #vilt #fill-mask #arxiv-2102.03334 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Vision-and-Language Transformer (ViLT), pre-trained only Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Note: this model only includes the language modeling head. Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens. ### How to use Here is how to use this model in PyTorch: ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info
[ "# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Note: this model only includes the language modeling head.\n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens.", "### How to use\n\nHere is how to use this model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #vilt #fill-mask #arxiv-2102.03334 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Note: this model only includes the language modeling head.\n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Intended uses & limitations\n\nYou can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens.", "### How to use\n\nHere is how to use this model in PyTorch:", "## Training data\n\n(to do)", "## Training procedure", "### Preprocessing\n\n(to do)", "### Pretraining\n\n(to do)", "## Evaluation results\n\n(to do)", "### BibTeX entry and citation info" ]
[ 57, 137, 37, 17, 7, 3, 9, 8, 8, 11 ]
[ "passage: TAGS\n#transformers #pytorch #vilt #fill-mask #arxiv-2102.03334 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Vision-and-Language Transformer (ViLT), pre-trained only\n\nVision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository. Note: this model only includes the language modeling head.\n\nDisclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.## Intended uses & limitations\n\nYou can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens.### How to use\n\nHere is how to use this model in PyTorch:## Training data\n\n(to do)## Training procedure### Preprocessing\n\n(to do)### Pretraining\n\n(to do)## Evaluation results\n\n(to do)### BibTeX entry and citation info" ]
[ -0.04889468476176262, 0.03951264172792435, -0.004259373992681503, 0.04498325288295746, 0.11948470026254654, 0.048700399696826935, 0.14012831449508667, 0.11494965851306915, -0.0034103982616215944, 0.07543580234050751, 0.05483810976147652, 0.038362033665180206, 0.13925734162330627, 0.15305598080158234, 0.03827759250998497, -0.27749985456466675, 0.01466322224587202, -0.02550382912158966, 0.08029798418283463, 0.10170844197273254, 0.10689537972211838, -0.09138178080320358, 0.07459431141614914, 0.03560230880975723, -0.09491406381130219, -0.035055771470069885, -0.04706111550331116, -0.029322665184736252, 0.08671677112579346, 0.03445488587021828, 0.08550414443016052, -0.005224345251917839, 0.08457188308238983, -0.1345563530921936, 0.025465216487646103, 0.07934639602899551, -0.005936035420745611, 0.09331423789262772, 0.07493769377470016, -0.029885662719607353, 0.13081786036491394, -0.0820440798997879, 0.061133891344070435, 0.03805479407310486, -0.12816166877746582, -0.20568926632404327, -0.09146451950073242, 0.14037209749221802, 0.11655741184949875, 0.06538539379835129, -0.01585417240858078, 0.10046007484197617, 0.02863166108727455, 0.06812184303998947, 0.1483944207429886, -0.1843269318342209, -0.06103077903389931, 0.047062862664461136, 0.08847849816083908, 0.05446561425924301, -0.08974157273769379, 0.007131489925086498, 0.03328745812177658, 0.00947756227105856, 0.04574725031852722, -0.010056523606181145, 0.022447368130087852, -0.05513497069478035, -0.14880754053592682, -0.08656934648752213, 0.11863184720277786, -0.02685469761490822, -0.06833240389823914, -0.10551676154136658, -0.05480581894516945, 0.021306175738573074, -0.013116893358528614, -0.023238327354192734, 0.011297115124762058, -0.012168113142251968, 0.11691280454397202, -0.15137945115566254, -0.09993123263120651, -0.07296540588140488, -0.0035174405202269554, 0.08189655840396881, 0.021739954128861427, 0.0652376189827919, -0.06153223291039467, 0.09737269580364227, -0.10055248439311981, -0.11724365502595901, -0.024177735671401024, -0.06249518692493439, -0.057640787214040756, -0.027709567919373512, 0.0228528194129467, -0.15968018770217896, -0.03706284239888191, 0.06615951657295227, -0.05455426126718521, 0.0333561971783638, -0.1019776314496994, 0.07060980796813965, 0.050626449286937714, 0.1544693112373352, -0.08539490401744843, 0.0464642271399498, -0.006180833093822002, -0.00952511839568615, 0.027059007436037064, -0.045327428728342056, -0.0589822456240654, -0.02392825484275818, -0.007307411637157202, 0.05825328826904297, 0.05722762271761894, 0.03542101010680199, -0.009275545366108418, -0.04557979851961136, 0.16313335299491882, -0.11167020350694656, 0.01937462016940117, 0.03328222781419754, -0.028418853878974915, -0.03689391165971756, 0.127033531665802, -0.005167437717318535, -0.08555839210748672, 0.08880390226840973, -0.0648883730173111, 0.029249047860503197, -0.10161571204662323, -0.10736703127622604, -0.0050728279165923595, -0.07740993797779083, -0.06521578878164291, -0.05657917261123657, -0.13683189451694489, -0.021054115146398544, 0.07213494926691055, -0.06280718743801117, 0.017098788172006607, -0.012621484696865082, 0.00022972890292294323, 0.05110738053917885, 0.03809952735900879, 0.015534589998424053, -0.016698503866791725, 0.0496288537979126, -0.028178518638014793, 0.08467987924814224, -0.01255129650235176, 0.056540776044130325, -0.05717421695590019, 0.05717052146792412, -0.11594850569963455, 0.07903152704238892, -0.02797923982143402, -0.023637207224965096, -0.1310575008392334, -0.059289637953042984, -0.05128723010420799, -0.019162161275744438, 0.06834541261196136, 0.14159539341926575, -0.152060866355896, -0.002687153173610568, 0.23226343095302582, -0.13541698455810547, -0.05531798675656319, 0.09522140771150589, -0.04496113210916519, 0.09858061373233795, 0.01768415793776512, 0.09571228921413422, 0.11103778332471848, -0.21467234194278717, 0.04904981702566147, 0.04867299646139145, -0.07402683794498444, 0.02812991663813591, 0.0639692097902298, -0.027384400367736816, -0.039135534316301346, -0.0058440761640667915, -0.07736517488956451, -0.019151704385876656, -0.04368463531136513, -0.06850186735391617, -0.006351656746119261, -0.010992392897605896, 0.03320786729454994, 0.03562801331281662, -0.02096371538937092, 0.00741307670250535, -0.08109047263860703, 0.014852568507194519, 0.08927728980779648, -0.03700658306479454, 0.025013722479343414, -0.026374727487564087, 0.05274537205696106, -0.11241654306650162, -0.01437984686344862, -0.14003866910934448, 0.03340166434645653, 0.03508319333195686, -0.04390373453497887, 0.08211781084537506, 0.019572801887989044, 0.03413372486829758, 0.05394217371940613, 0.0012255830224603415, -0.0074303532019257545, -0.0020969025790691376, -0.025488518178462982, -0.06419996172189713, -0.15048979222774506, -0.03453904017806053, -0.0542859248816967, 0.0719158872961998, -0.11233384907245636, 0.024322424083948135, -0.026919396594166756, 0.021166207268834114, -0.011887560598552227, -0.03160012513399124, 0.02876027300953865, -0.025899790227413177, -0.00880924891680479, -0.04825291037559509, 0.05722462385892868, 0.03254207223653793, -0.02279471978545189, 0.11193673312664032, -0.12846693396568298, -0.22482942044734955, 0.09988582879304886, 0.006616880651563406, -0.10872054845094681, -0.0025520622730255127, -0.03146832063794136, -0.04753321781754494, -0.05190145969390869, 0.004387584049254656, 0.13653144240379333, 0.020925041288137436, 0.11771934479475021, -0.10238678008317947, -0.03711361065506935, 0.031565114855766296, -0.07491187006235123, -0.09183315187692642, 0.04279639571905136, 0.08493003249168396, -0.165513813495636, 0.08202829211950302, 0.040354300290346146, -0.0302939061075449, 0.17378051578998566, 0.07206320017576218, -0.07410912215709686, -0.051691934466362, 0.04675998166203499, 0.026099085807800293, 0.1057446300983429, -0.10166799277067184, 0.015929171815514565, 0.04743598401546478, 0.0009978495072573423, 0.04063403978943825, -0.13782142102718353, 0.030605152249336243, 0.015711426734924316, -0.0561380460858345, -0.024237941950559616, 0.035087455064058304, -0.017548397183418274, 0.09017926454544067, 0.0765426903963089, 0.07305784523487091, -0.00836288370192051, -0.06613177061080933, -0.12551170587539673, 0.15220138430595398, -0.12145531177520752, -0.2833946645259857, -0.172316312789917, -0.021054008975625038, -0.006631388794630766, 0.022553278133273125, 0.025899551808834076, -0.02279692143201828, -0.05097108334302902, -0.047965940088033676, 0.02801343984901905, -0.09072532504796982, -0.06286360323429108, -0.026579098775982857, -0.024859584867954254, -0.0026473647449165583, -0.11667317897081375, 0.0014079391257837415, -0.014299584552645683, -0.05834976211190224, 0.02973359078168869, -0.039377495646476746, 0.05273884907364845, 0.15672625601291656, -0.04870070889592171, 0.028538044542074203, -0.016630858182907104, 0.20715051889419556, -0.10090933740139008, 0.0767006054520607, 0.16850484907627106, -0.04639514535665512, 0.10286194086074829, 0.1553492248058319, 0.0066979145631194115, -0.019396532326936722, 0.013949442654848099, -0.015800585970282555, -0.07219728827476501, -0.22400885820388794, -0.03247904032468796, -0.08803413808345795, -0.04524825140833855, 0.09357304871082306, 0.039165377616882324, 0.08201145380735397, 0.06945757567882538, -0.08611737936735153, 0.00024515349650755525, 0.06198636814951897, 0.10920975357294083, -0.00019790262740571052, -0.0014169560745358467, 0.0571211613714695, -0.05077768489718437, 0.013978108763694763, 0.07514753937721252, 0.04808255657553673, 0.16796378791332245, -0.0013855784200131893, 0.08072372525930405, 0.09229990094900131, 0.09347032010555267, 0.019270412623882294, 0.08785159140825272, -0.10372595489025116, 0.0733688697218895, -0.044357672333717346, -0.0946393609046936, -0.02807655557990074, 0.06877782195806503, 0.04577198252081871, 0.0490630678832531, -0.05606164410710335, -0.03898829221725464, 0.01027518417686224, 0.22991348803043365, 0.04039372503757477, -0.18921709060668945, -0.05724618211388588, 0.04330846294760704, 0.04650089517235756, -0.14483419060707092, -0.03813447803258896, 0.026509033516049385, -0.15127231180667877, 0.06951842457056046, -0.04858638346195221, 0.09912675619125366, -0.04310597851872444, -0.05111643671989441, -0.0062771691009402275, 0.05044284462928772, -0.019706085324287415, 0.10688646137714386, -0.21536333858966827, 0.15983368456363678, 0.011413355357944965, 0.05439024791121483, -0.06613379716873169, 0.06479895859956741, 0.003667793469503522, 0.10117358714342117, 0.1674540638923645, 0.014805024489760399, 0.06139238178730011, -0.03191937878727913, -0.02732042409479618, -0.053787924349308014, 0.07669094204902649, -0.029181644320487976, 0.03282111510634422, -0.020472530275583267, -0.015425543300807476, -0.006817199289798737, 0.03146171569824219, -0.0881117656826973, -0.12283609062433243, 0.08736629784107208, -0.0708112046122551, -0.018422458320856094, -0.027471253648400307, -0.04648327827453613, 0.004805657081305981, 0.15800121426582336, -0.08833402395248413, -0.09655146300792694, -0.12909021973609924, -0.009031969122588634, 0.10917547345161438, -0.08790677040815353, 0.050253964960575104, -0.0921744704246521, 0.1318003237247467, -0.07740836590528488, -0.07844771444797516, 0.02805381454527378, -0.08483920991420746, -0.14016073942184448, -0.03568875789642334, 0.11138155311346054, 0.06533545255661011, 0.012372580356895924, 0.008443609811365604, 0.03570208325982094, -0.06323062628507614, -0.08724596351385117, 0.04300621524453163, 0.09933388978242874, 0.06444567441940308, 0.057159796357154846, -0.05803311616182327, -0.1812504529953003, -0.10091134160757065, -0.00961328949779272, 0.08600901067256927, 0.1395447701215744, -0.07786540687084198, 0.1701759397983551, 0.17252564430236816, -0.14680902659893036, -0.22880233824253082, 0.006399902980774641, 0.07252977043390274, 0.036497004330158234, -0.02703833393752575, -0.1480485200881958, -0.011270330287516117, -0.031028984114527702, -0.05187052860856056, 0.026520822197198868, -0.24519504606723785, -0.1021847277879715, 0.10471031814813614, 0.07852596789598465, -0.015438185073435307, -0.11972497403621674, -0.06435728073120117, -0.020687201991677284, -0.07834028452634811, 0.11421451717615128, 0.021405093371868134, 0.08165247738361359, -0.019190147519111633, 0.013229697942733765, 0.04217379912734032, -0.0632271096110344, 0.12184526026248932, -0.0646529421210289, 0.0301352608948946, -0.10260949283838272, -0.07547461986541748, 0.05673480033874512, -0.061697959899902344, 0.1269274801015854, 0.06314567476511002, 0.0589027926325798, -0.10381053388118744, -0.025064481422305107, -0.09296327829360962, 0.07635446637868881, -0.07515096664428711, -0.07704688608646393, -0.052700530737638474, 0.07861822843551636, 0.06778773665428162, -0.00011025500134564936, 0.03897304832935333, -0.0638236328959465, 0.05290086939930916, 0.13797003030776978, 0.10539897531270981, 0.10900288820266724, -0.04963697865605354, -0.007002587430179119, -0.019832493737339973, 0.07803068310022354, -0.1460307389497757, 0.034792426973581314, 0.0410999059677124, 0.02658124268054962, 0.14461565017700195, 0.02816472016274929, -0.1599237024784088, -0.01295428816229105, 0.049683403223752975, -0.09883350878953934, -0.09753145277500153, -0.012973391450941563, 0.04757045954465866, -0.0737529769539833, -0.024154525250196457, 0.1125587522983551, -0.06409043073654175, -0.03467759117484093, -0.005292214918881655, 0.07049798965454102, -0.02403826266527176, 0.02965129353106022, 0.09623010456562042, 0.04070768877863884, -0.03875823691487312, 0.05376753211021423, 0.14114812016487122, -0.004403301049023867, 0.02143235132098198, 0.12309723347425461, -0.06712035089731216, -0.05615527555346489, 0.011409307830035686, 0.07773014158010483, 0.023491734638810158, -0.05225302278995514, 0.0480625294148922, -0.06240764632821083, 0.008724299259483814, 0.1252702921628952, 0.007725839503109455, -0.025514673441648483, -0.009654562920331955, 0.019115660339593887, -0.08952417224645615, 0.11050381511449814, -0.030277803540229797, 0.008883770555257797, -0.03321043774485588, 0.09386090189218521, 0.03863777965307236, 0.13221630454063416, -0.02598886936903, -0.05062200501561165, -0.09846673905849457, 0.012946171686053276, -0.024808652698993683, 0.07776757329702377, -0.06087566912174225, -0.0054756649769842625, -0.03123818151652813, -0.045720502734184265, 0.010227581486105919, 0.027768973261117935, -0.04916775971651077, -0.02139655314385891, -0.05652303621172905, 0.0601813942193985, -0.1345975548028946, -0.032074421644210815, 0.06806658953428268, -0.05062996223568916, 0.07741633802652359, 0.0220160074532032, -0.0223355982452631, 0.0044671655632555485, -0.13285024464130402, 0.037113312631845474, -0.02356530725955963, 0.034060362726449966, -0.004686552565544844, -0.11191656440496445, 0.024079574272036552, -0.03882300481200218, -0.049927134066820145, -0.027338335290551186, 0.08214441686868668, -0.11110446602106094, 0.05460231751203537, -0.014933699741959572, -0.051704440265893936, -0.04000133275985718, 0.11889608949422836, -0.008704161271452904, 0.055302657186985016, 0.026643963530659676, -0.05122853443026543, 0.13546346127986908, -0.14012853801250458, -0.011709261685609818, 0.009908975102007389, 0.004635598044842482, -0.018294868990778923, -0.0783633142709732, 0.052715402096509933, -0.02952744998037815, 0.08267609030008316, 0.13032272458076477, 0.016620200127363205, 0.009202378802001476, 0.0022969862911850214, -0.07200751453638077, 0.006227724254131317, 0.06870609521865845, -0.047806378453969955, -0.0016587452264502645, 0.038103584200143814, 0.011834243312478065, -0.05977913364768028, -0.004408678505569696, 0.11610022187232971, 0.10795416682958603, 0.11234308034181595, 0.029297294095158577, 0.06093679368495941, -0.05284469947218895, -0.04733683913946152, -0.055598337203264236, 0.008225359953939915, 0.022836189717054367, -0.050941161811351776, 0.07595288753509521, 0.15051387250423431, -0.16925466060638428, 0.11963553726673126, 0.007810685317963362, -0.07872829586267471, -0.12142547219991684, -0.1605558544397354, -0.023112859576940536, -0.006130794528871775, 0.011953398585319519, -0.08941274881362915, 0.07086706906557083, 0.015969956293702126, 0.008898969739675522, -0.030697349458932877, 0.09567441046237946, -0.001233370741829276, -0.07496245205402374, 0.051055166870355606, 0.04338862746953964, 0.07232532650232315, -0.08094042539596558, 0.04398496821522713, 0.044573426246643066, 0.052947212010622025, 0.05355622619390488, 0.05192660540342331, 0.05768287554383278, 0.05065275356173515, -0.021001096814870834, -0.09531712532043457, 0.009847758337855339, 0.0104875098913908, 0.03684947267174721, 0.1176815927028656, 0.025592749938368797, 0.009567013010382652, -0.020883912220597267, 0.10807950049638748, -0.05296116694808006, -0.11085627973079681, -0.10328710079193115, 0.2226267009973526, -0.04913538321852684, -0.026882827281951904, -0.003831923473626375, -0.09705612808465958, -0.019367946311831474, 0.2631833851337433, 0.23579445481300354, -0.006977816578000784, 0.009433872997760773, 0.022896265611052513, 0.016407664865255356, 0.058787185698747635, 0.0774477943778038, 0.053960274904966354, 0.24463008344173431, -0.06628049165010452, 0.1433757245540619, -0.04571313038468361, -0.004829855635762215, -0.022027714177966118, 0.09198415279388428, -0.04004448652267456, -0.012139520607888699, -0.04163691774010658, 0.08943670243024826, -0.04508402943611145, -0.24693769216537476, 0.036000967025756836, -0.06972828507423401, -0.07303600758314133, -0.0020253872498869896, 0.016172613948583603, -0.014843652956187725, 0.02444264478981495, -0.003447385039180517, -0.024099327623844147, 0.1643737256526947, 0.032973889261484146, -0.07825266569852829, -0.05803992599248886, 0.06368771195411682, -0.15291109681129456, 0.19060702621936798, 0.010318191722035408, 0.06739117205142975, 0.053401753306388855, 0.006374320946633816, -0.0654633492231369, 0.028990143910050392, 0.02033242955803871, 0.026023823767900467, 0.029177069664001465, 0.1396370381116867, -0.020437972620129585, -0.058847151696681976, 0.03633008152246475, -0.09971301257610321, 0.0498456135392189, -0.06915123015642166, -0.04341752827167511, -0.09161458909511566, 0.10990049690008163, -0.11094245314598083, 0.14454211294651031, 0.16308088600635529, -0.02112051099538803, -0.03679149970412254, -0.07968046516180038, -0.0074675362557172775, -0.026963042095303535, 0.10444843024015427, -0.02149791829288006, -0.09260624647140503, 0.00038518462679348886, -0.05970924347639084, 0.09106193482875824, -0.2469591498374939, -0.04158644750714302, -0.0031754609663039446, -0.05215292051434517, -0.049676354974508286, 0.05269132927060127, 0.025618502870202065, -0.008798806928098202, -0.03785370662808418, -0.06767291575670242, 0.006714662536978722, 0.10525377094745636, -0.09786480665206909, -0.02759961225092411 ]
null
null
transformers
# GPT-2 Fine-tuning in Vietnamese Wikipedia ## Model description This is a Vietnamese GPT-2 model which is finetuned on the [Latest pages articles of Vietnamese Wikipedia](https://dumps.wikimedia.org/viwiki/latest/viwiki-latest-pages-articles.xml.bz2). ## Dataset The dataset is about 800MB, includes many articles from Wikipedia. ## How to use You can use this model to: - Tokenize Vietnamese sentences with GPT2Tokenizer. - Generate text seems like a Wikipedia article. - Finetune it to other downstream tasks. Here is how to use the model to generate text in Pytorch: ```python import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('danghuy1999/gpt2-viwiki') model = GPT2LMHeadModel.from_pretrained('danghuy1999/gpt2-viwiki').to('cuda') text = "Albert Einstein lΓ  nhΓ  vαΊ­t lΓ½ học tαΊ‘o ra thuyαΊΏt lượng tα»­" input_ids = tokenizer.encode(text, return_tensors='pt').to('cuda') max_length = 100 sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id, do_sample=True, max_length=max_length, min_length=max_length, top_k=40, num_beams=5, early_stopping=True, no_repeat_ngram_size=2, num_return_sequences=3) for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist()))) print('\n---') ``` And the results are: ```bash >> Generated text 1 Albert Einstein lΓ  nhΓ  vαΊ­t lΓ½ học tαΊ‘o ra thuyαΊΏt lượng tα»­. MαΊ·c dΓΉ thuyαΊΏt tΖ°Ζ‘ng Δ‘α»‘i tα»•ng quΓ‘t khΓ΄ng được Γ‘p dα»₯ng rα»™ng rΓ£i trong nhiều lΔ©nh vα»±c khΓ‘c nhau, nhΖ°ng cΓ‘c nhΓ  lΓ½ thuyαΊΏt Δ‘Γ£ Δ‘Ζ°a ra khΓ‘i niệm rα»™ng hΖ‘n về tΓ­nh chαΊ₯t cα»§a vαΊ­t chαΊ₯t. Mα»™t trong nhα»―ng nghiΓͺn cα»©u cα»§a Albert Einstein về sα»± tα»“n tαΊ‘i cα»§a hệ quy chiαΊΏu quΓ‘n tΓ­nh, Γ΄ng Δ‘Γ£ đề xuαΊ₯t rαΊ±ng mα»™t lα»±c hαΊ₯p dαΊ«n cΓ³ thể cΓ³ khα»‘i lượng bαΊ±ng nΔƒng lượng cα»§a nΓ³. Tuy nhiΓͺn, nhα»―ng người cho rαΊ±ng --- >> Generated text 2 Albert Einstein lΓ  nhΓ  vαΊ­t lΓ½ học tαΊ‘o ra thuyαΊΏt lượng tα»­. Tuy nhiΓͺn, thuyαΊΏt tΖ°Ζ‘ng Δ‘α»‘i hαΊΉp khΓ΄ng phαΊ£i lΓ  lΓ½ thuyαΊΏt cα»§a Einstein. Cho Δ‘αΊΏn tαΊ­n cuα»‘i thαΊΏ kα»· 19, Albert Einstein Δ‘Γ£ chα»©ng minh được sα»± tα»“n tαΊ‘i cα»§a lα»±c hαΊ₯p dαΊ«n trong mα»™t sα»‘ trường hợp Δ‘αΊ·c biệt. NΔƒm 1915, Γ΄ng Δ‘Ζ°a ra khΓ‘i niệm "khα»‘i lượng" để miΓͺu tαΊ£ chuyển Δ‘α»™ng lượng cα»§a mα»™t hαΊ‘t bαΊ±ng khα»‘i lượng nghỉ cα»§a nΓ³. Γ”ng cho rαΊ±ng nΔƒng lượng "m" lΓ  mα»™t thΓ nh phαΊ§n cα»§a --- >> Generated text 3 Albert Einstein lΓ  nhΓ  vαΊ­t lΓ½ học tαΊ‘o ra thuyαΊΏt lượng tα»­. Tuy nhiΓͺn, thuyαΊΏt tΖ°Ζ‘ng Δ‘α»‘i hαΊΉp khΓ΄ng được chαΊ₯p nhαΊ­n rα»™ng rΓ£i bởi cΓ‘c nhΓ  lΓ½ thuyαΊΏt. Mα»™t trong nhα»―ng nghiΓͺn cα»©u cα»§a Einstein về tΓ­nh chαΊ₯t cα»§a lα»±c hαΊ₯p dαΊ«n lΓ  vΓ o nΔƒm 1905, Γ΄ng Δ‘Γ£ Δ‘Ζ°a ra mα»™t khΓ‘i niệm về lα»±c học. Γ”ng Δ‘Γ£ phΓ‘t biểu rαΊ±ng nαΊΏu mα»™t hαΊ‘t mang Δ‘iện tΓ­ch dΖ°Ζ‘ng, nΓ³ cΓ³ thể chuyển Δ‘α»•i nΔƒng lượng cα»§a nΓ³ thΓ nh cΓ‘c hαΊ‘t khΓ‘c. NΔƒm 1915, Arthur Eddington phΓ‘t minh ra --- ``` You can do the same with **Tensorflow** by using the model **TFGPT2Tokenizer** instead.
{"language": "vi", "license": "mit", "tags": ["gpt2-viwiki"]}
null
danghuy1999/gpt2-viwiki
[ "transformers", "pytorch", "tf", "gpt2", "gpt2-viwiki", "vi", "license:mit", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "vi" ]
TAGS #transformers #pytorch #tf #gpt2 #gpt2-viwiki #vi #license-mit #endpoints_compatible #text-generation-inference #region-us
# GPT-2 Fine-tuning in Vietnamese Wikipedia ## Model description This is a Vietnamese GPT-2 model which is finetuned on the Latest pages articles of Vietnamese Wikipedia. ## Dataset The dataset is about 800MB, includes many articles from Wikipedia. ## How to use You can use this model to: - Tokenize Vietnamese sentences with GPT2Tokenizer. - Generate text seems like a Wikipedia article. - Finetune it to other downstream tasks. Here is how to use the model to generate text in Pytorch: And the results are: You can do the same with Tensorflow by using the model TFGPT2Tokenizer instead.
[ "# GPT-2 Fine-tuning in Vietnamese Wikipedia", "## Model description\n\nThis is a Vietnamese GPT-2 model which is finetuned on the Latest pages articles of Vietnamese Wikipedia.", "## Dataset\n\nThe dataset is about 800MB, includes many articles from Wikipedia.", "## How to use\n\nYou can use this model to:\n\n- Tokenize Vietnamese sentences with GPT2Tokenizer.\n- Generate text seems like a Wikipedia article.\n- Finetune it to other downstream tasks.\n\nHere is how to use the model to generate text in Pytorch:\n\n\n\nAnd the results are:\n\n\n\nYou can do the same with Tensorflow by using the model TFGPT2Tokenizer instead." ]
[ "TAGS\n#transformers #pytorch #tf #gpt2 #gpt2-viwiki #vi #license-mit #endpoints_compatible #text-generation-inference #region-us \n", "# GPT-2 Fine-tuning in Vietnamese Wikipedia", "## Model description\n\nThis is a Vietnamese GPT-2 model which is finetuned on the Latest pages articles of Vietnamese Wikipedia.", "## Dataset\n\nThe dataset is about 800MB, includes many articles from Wikipedia.", "## How to use\n\nYou can use this model to:\n\n- Tokenize Vietnamese sentences with GPT2Tokenizer.\n- Generate text seems like a Wikipedia article.\n- Finetune it to other downstream tasks.\n\nHere is how to use the model to generate text in Pytorch:\n\n\n\nAnd the results are:\n\n\n\nYou can do the same with Tensorflow by using the model TFGPT2Tokenizer instead." ]
[ 50, 12, 27, 17, 90 ]
[ "passage: TAGS\n#transformers #pytorch #tf #gpt2 #gpt2-viwiki #vi #license-mit #endpoints_compatible #text-generation-inference #region-us \n# GPT-2 Fine-tuning in Vietnamese Wikipedia## Model description\n\nThis is a Vietnamese GPT-2 model which is finetuned on the Latest pages articles of Vietnamese Wikipedia.## Dataset\n\nThe dataset is about 800MB, includes many articles from Wikipedia.## How to use\n\nYou can use this model to:\n\n- Tokenize Vietnamese sentences with GPT2Tokenizer.\n- Generate text seems like a Wikipedia article.\n- Finetune it to other downstream tasks.\n\nHere is how to use the model to generate text in Pytorch:\n\n\n\nAnd the results are:\n\n\n\nYou can do the same with Tensorflow by using the model TFGPT2Tokenizer instead." ]
[ -0.025421086698770523, 0.06762370467185974, -0.003115792525932193, 0.08804202079772949, 0.09280010312795639, -0.010106329806149006, 0.03380400687456131, 0.14072924852371216, 0.008932764641940594, -0.017817365005612373, 0.09240097552537918, 0.116930291056633, 0.045930035412311554, 0.163442000746727, 0.038829728960990906, -0.365597665309906, 0.0428447350859642, 0.08766528218984604, 0.041875191032886505, 0.09885194897651672, 0.09088756889104843, -0.031057557091116905, 0.1424400955438614, 0.05630987510085106, -0.14779359102249146, -0.008799504488706589, 0.013154793530702591, -0.09397958964109421, 0.12770438194274902, 0.01621275395154953, -0.037447065114974976, 0.053675953298807144, 0.010723352432250977, -0.03294484317302704, 0.020252585411071777, 0.032474685460329056, -0.03142152354121208, 0.054754890501499176, 0.05508304014801979, 0.06818956881761551, 0.370619535446167, -0.1026558130979538, -0.018464475870132446, 0.013978011906147003, -0.08400395512580872, -0.16216474771499634, -0.066486656665802, 0.15164506435394287, 0.1479645073413849, 0.039749257266521454, -0.02528482861816883, 0.11903036385774612, -0.07826505601406097, 0.05516118183732033, 0.17509505152702332, -0.3667871356010437, -0.02654123120009899, 0.1262136697769165, 0.027173170819878578, -0.036779794842004776, -0.05558566749095917, 0.09455867111682892, -0.029872426763176918, 0.0577247329056263, 0.09801752865314484, -0.12068884074687958, -0.03311680257320404, -0.007991882972419262, -0.10758854448795319, 0.005796887446194887, 0.14551745355129242, 0.009012749418616295, -0.03773802891373634, -0.14649051427841187, -0.08554036170244217, 0.041880782693624496, -0.04740767553448677, -0.10809951275587082, -0.010653281584382057, 0.037105195224285126, 0.10185673832893372, -0.18989352881908417, -0.12309657782316208, -0.06534512341022491, -0.14148859679698944, -0.09159527719020844, 0.04274051636457443, 0.029787560924887657, -0.05695108696818352, 0.10424534976482391, -0.24630782008171082, 0.0035890787839889526, -0.027396002784371376, -0.06815925240516663, -0.049769673496484756, 0.019551781937479973, 0.04653676971793175, -0.07512261718511581, 0.014620482921600342, 0.0026439493522047997, -0.0956580638885498, 0.0276491716504097, 0.03576810657978058, 0.057668108493089676, -0.006163525395095348, 0.13228173553943634, -0.18222685158252716, 0.056988198310136795, 0.07793309539556503, -0.10274235159158707, -0.024152114987373352, -0.004051018040627241, -0.12221476435661316, -0.09379369020462036, 0.027569537982344627, -0.01619577407836914, -0.018750064074993134, 0.07810158282518387, -0.01647932454943657, -0.0920729711651802, 0.2339881807565689, -0.03015054017305374, -0.015955666080117226, -0.05697966367006302, -0.02029414288699627, 0.13771530985832214, 0.08899059146642685, 0.008910714648663998, -0.12602917850017548, -0.002182221971452236, -0.02568170242011547, -0.008160535246133804, 0.004471195861697197, -0.05227648466825485, -0.009964965283870697, -0.11916379630565643, -0.053754936903715134, -0.08057387918233871, -0.17652204632759094, 0.04267455264925957, 0.07142779231071472, -0.05375237390398979, -0.05942583456635475, -0.020408613607287407, -0.00852698739618063, -0.03917314112186432, 0.012500653974711895, 0.015810221433639526, 0.004129575565457344, 0.04635298252105713, -0.06849480420351028, 0.15218785405158997, -0.11998511105775833, 0.03573451191186905, -0.0672113224864006, 0.04969390481710434, -0.16848193109035492, 0.10461946576833725, 0.07816844433546066, -0.05422031134366989, -0.09945397824048996, -0.08108444511890411, -0.01840953901410103, -0.01984095759689808, -0.005475902929902077, 0.10700986534357071, -0.11872965842485428, -0.04836287349462509, 0.21268096566200256, -0.08387956768274307, -0.05649644136428833, 0.1801709681749344, 0.04402048885822296, 0.14290061593055725, 0.11396502703428268, 0.19299426674842834, 0.03088809736073017, -0.11000178754329681, 0.09171223640441895, 0.09580142050981522, -0.17020028829574585, -0.05088111013174057, 0.08170466870069504, 0.03832948952913284, 0.0008215217385441065, 0.037106405943632126, -0.0515410453081131, 0.05440281331539154, -0.051680486649274826, -0.0205499567091465, -0.00011623015598161146, -0.04945250600576401, 0.11942597478628159, 0.00020455279445741326, 0.08118969947099686, 0.032835450023412704, -0.07464599609375, -0.006496616173535585, 0.05873386561870575, -0.061544422060251236, 0.03730444982647896, -0.11865470558404922, 0.06852228939533234, -0.0006543051567859948, 0.05246072635054588, -0.09727752208709717, 0.039639659225940704, 0.027058720588684082, 0.10953085124492645, 0.04956972971558571, 0.018413744866847992, 0.02373824268579483, 0.05084777623414993, -0.0609307698905468, 0.04376477375626564, 0.05869969353079796, -0.016995739191770554, -0.055141571909189224, -0.009951945394277573, 0.006507770158350468, 0.03408999368548393, 0.025548700243234634, -0.13329334557056427, 0.0019116636831313372, 0.09378533810377121, 0.02311365306377411, -0.02169853076338768, 0.022774526849389076, 0.06325386464595795, -0.02594805881381035, 0.00996362417936325, -0.04232876002788544, 0.08757796883583069, 0.0061714001931250095, -0.052670616656541824, 0.18467900156974792, 0.0218342375010252, 0.02192855440080166, 0.12540793418884277, 0.014861409552395344, -0.06043732911348343, 0.016613420099020004, -0.02050088718533516, -0.020194927230477333, -0.05029790475964546, 0.040747031569480896, 0.0990096852183342, 0.02717314101755619, 0.13244867324829102, -0.09301915764808655, 0.01580759882926941, 0.0490085631608963, -0.047318167984485626, 0.03602457046508789, 0.0814407616853714, 0.10145027935504913, -0.163621723651886, 0.03995239734649658, 0.007756584323942661, 0.044678203761577606, 0.1123417317867279, 0.06281663477420807, -0.05303603783249855, -0.022781776264309883, 0.06549866497516632, 0.002860368462279439, -0.0074011823162436485, -0.13806279003620148, 0.0017179823480546474, 0.07620587944984436, 0.03038225881755352, 0.03685091435909271, -0.13890479505062103, -0.041246797889471054, -0.025735272094607353, -0.08325191587209702, 0.012094034813344479, 0.13284116983413696, -0.02084493450820446, 0.08274305611848831, 0.055173393338918686, 0.07439778000116348, 0.01411892008036375, 0.05450822785496712, -0.08411537855863571, 0.16476348042488098, -0.03118094615638256, -0.39930349588394165, -0.061318330466747284, -0.06118270009756088, -0.04590597376227379, 0.024620605632662773, 0.05763790383934975, -0.1250796616077423, -0.04297076538205147, -0.02104494534432888, 0.05372515693306923, 0.04808570072054863, 0.04534967243671417, -0.041935089975595474, -0.0023950161412358284, -0.09342534840106964, -0.04696720093488693, -0.058200545608997345, -0.05977020412683487, -0.12049433588981628, 0.12305305898189545, -0.19245004653930664, 0.01686127297580242, 0.1418646275997162, -0.04821590334177017, 0.058196164667606354, -0.023902911692857742, 0.17900773882865906, -0.07666635513305664, 0.15993104875087738, 0.21609561145305634, 0.11134956777095795, 0.08091168105602264, 0.014040997251868248, -0.0041410233825445175, -0.0661122053861618, 0.05420519784092903, 0.033597856760025024, -0.09443295001983643, -0.1643906980752945, -0.0786394476890564, -0.07007251679897308, 0.04878704994916916, 0.05124548450112343, 0.08599723130464554, 0.06576154381036758, 0.11228394508361816, 0.01979355327785015, 0.1571011245250702, 0.037054866552352905, 0.04396616294980049, 0.15458691120147705, 0.0008188087376765907, 0.050637077540159225, -0.07992053776979446, -0.020734546706080437, 0.16241620481014252, 0.040269963443279266, 0.1654682755470276, -0.025926979258656502, 0.09877532720565796, 0.08603311330080032, 0.13210076093673706, 0.055913280695676804, 0.10149035602807999, -0.11160782724618912, -0.02245345152914524, -0.039306044578552246, -0.05685228854417801, 0.04426624998450279, 0.05089482665061951, -0.030283208936452866, -0.13172540068626404, -0.03207002207636833, 0.12054125964641571, 0.04750456660985947, 0.1640223115682602, 0.05018945410847664, -0.17505227029323578, -0.07032088935375214, -0.03324177861213684, 0.004858700092881918, -0.06450265645980835, 0.03915352374315262, 0.1096748635172844, -0.19499540328979492, 0.06479854136705399, -0.027392596006393433, 0.10667400807142258, -0.05429888516664505, 0.01586991176009178, 0.00989620666950941, -0.0112944096326828, 0.03551382198929787, 0.10371062904596329, -0.1680183857679367, 0.14600154757499695, -0.013051262125372887, -0.014232535846531391, -0.12491259723901749, -0.038504038006067276, 0.013240746222436428, 0.17731209099292755, 0.21712419390678406, 0.03491387888789177, 0.1487557291984558, -0.0159310195595026, -0.11264142394065857, 0.007959859445691109, -0.018758639693260193, 0.01171882264316082, -0.03553398326039314, -0.003937417175620794, -0.04665530100464821, -0.04928998649120331, 0.03473372384905815, -0.024891190230846405, -0.07172200828790665, 0.04065358266234398, 0.04357403144240379, -0.020049341022968292, 0.009015125222504139, -0.03655323386192322, 0.007224095053970814, 0.29834288358688354, 0.05746413767337799, -0.11823625862598419, -0.08465885370969772, -0.033702269196510315, 0.09588976204395294, -0.0883096233010292, 0.05120929330587387, -0.04793114960193634, 0.06260432302951813, -0.036420561373233795, -0.09855267405509949, 0.10218703746795654, -0.03125278279185295, -0.06289583444595337, 0.046598393470048904, 0.13398005068302155, 0.049816761165857315, 0.003897659946233034, 0.08403939008712769, -0.01923462562263012, -0.013524779118597507, -0.18503665924072266, -0.036103758960962296, 0.03951588645577431, 0.025338830426335335, -0.05837428197264671, -0.04521917551755905, -0.025976017117500305, -0.049555689096450806, -0.07961715757846832, 0.1881410777568817, 0.09236029535531998, -0.06987062841653824, 0.19008022546768188, 0.1054743155837059, -0.03155941143631935, -0.2440565675497055, -0.0945511981844902, -0.00848068855702877, 0.033142488449811935, -0.00701546436175704, -0.14344210922718048, 0.06929957121610641, 0.05861525237560272, -0.0027322254609316587, -0.0015992764383554459, -0.31843245029449463, -0.15899917483329773, 0.057546813040971756, 0.052590321749448776, 0.07999970763921738, -0.08316913992166519, -0.025232965126633644, 0.002248115371912718, -0.16722504794597626, 0.22489280998706818, -0.1216847375035286, 0.08133553713560104, -0.0639587938785553, 0.0868130475282669, 0.019049452617764473, 0.0018490275833755732, 0.08014161884784698, 0.03095831163227558, -0.01937570609152317, -0.0511506162583828, -0.06012300029397011, 0.16338151693344116, 0.012813441455364227, 0.21957330405712128, 0.0674767717719078, 0.012178885750472546, -0.11570905148983002, -0.10006994009017944, -0.1398863047361374, -0.03331854194402695, 0.012256521731615067, -0.10995417833328247, -0.052782218903303146, 0.08349702507257462, 0.016233688220381737, 0.010190366767346859, -0.030372044071555138, -0.007862338796257973, -0.07470838725566864, 0.07237983494997025, 0.06464658677577972, -0.1396493911743164, -0.02943773940205574, -0.03189612925052643, -0.008231873624026775, 0.03506520390510559, -0.20196597278118134, 0.020159075036644936, 0.05816037207841873, -0.012217432260513306, 0.08738286793231964, 0.009554577991366386, -0.07897433638572693, 0.01755428873002529, 0.06396717578172684, -0.17031480371952057, -0.16888439655303955, -0.07510768622159958, -0.044434547424316406, 0.10384663939476013, 0.03216075897216797, 0.029873961582779884, -0.08093786239624023, -0.07491634786128998, 0.01819659397006035, -0.007892073132097721, -0.09544573724269867, 0.03720090910792351, 0.009085780940949917, 0.025638168677687645, -0.0912410095334053, 0.03654322028160095, 0.11007175594568253, -0.12338393181562424, 0.011141309514641762, 0.2145875096321106, -0.1610603779554367, -0.06834011524915695, 0.015672592446208, -0.027728592976927757, -0.03563157841563225, -0.051603298634290695, 0.03291976451873779, -0.026775037869811058, 0.03327656164765358, -0.03184870257973671, 0.07571293413639069, 0.03237738087773323, -0.05793265998363495, -0.06291478127241135, -0.10845084488391876, -0.010875909589231014, 0.09351128339767456, -0.03820792958140373, -0.11249227821826935, 0.020049210637807846, 0.043508145958185196, 0.20385128259658813, -0.08184052258729935, -0.05905090272426605, -0.08479643613100052, 0.009946214966475964, -0.07066578418016434, 0.03794034942984581, -0.16813014447689056, -0.0615898035466671, -0.06154711917042732, -0.050716474652290344, -0.01706036739051342, 0.01365368627011776, -0.03345350921154022, 0.009345238097012043, -0.05032782629132271, -0.01744673028588295, -0.08254864066839218, -0.035885825753211975, 0.051001403480768204, -0.007084468845278025, 0.14207108318805695, -0.0038181280251592398, -0.08474192768335342, 0.04788872227072716, -0.06887371838092804, -0.017963722348213196, 0.0831482782959938, -0.003119423985481262, 0.059434082359075546, -0.06481088697910309, 0.03186291828751564, 0.019550461322069168, 0.061548471450805664, 0.026765916496515274, 0.10748197883367538, -0.0869435966014862, -0.04559634253382683, -0.1210104376077652, -0.06578705459833145, -0.07887934893369675, 0.07242821156978607, 0.04270274192094803, 0.05696893855929375, 0.039986930787563324, -0.06822824478149414, 0.012931900098919868, -0.07588497549295425, -0.015145783312618732, -0.050483740866184235, -0.027522778138518333, 0.05478674918413162, -0.09318849444389343, 0.0065643941052258015, 0.015433660708367825, 0.1350957453250885, 0.04229651391506195, -0.01609060727059841, 0.003117141779512167, 0.00940215028822422, -0.03729606419801712, -0.041911568492650986, 0.11493242532014847, 0.015120359137654305, -0.016623344272375107, -0.03640654683113098, 0.08899117261171341, -0.020817335695028305, 0.13076841831207275, 0.14014223217964172, -0.04309682920575142, 0.043118249624967575, 0.03167518973350525, -0.06701453030109406, 0.08667910099029541, -0.1985241025686264, 0.0039453101344406605, -0.11829549074172974, 0.043557289987802505, -0.09650415182113647, -0.013524034060537815, 0.16135306656360626, -0.13550859689712524, 0.0930444598197937, 0.058139607310295105, -0.1062035784125328, -0.11647338420152664, -0.3278733491897583, -0.06220831722021103, -0.11849594861268997, -0.016967780888080597, -0.06786659359931946, 0.04410446435213089, -0.02853858843445778, 0.10264084488153458, -0.056404054164886475, 0.16791558265686035, -0.08662079274654388, -0.08668848127126694, 0.09464693069458008, -0.017282595857977867, 0.004238700959831476, 0.04124941676855087, 0.09148363769054413, -0.0024641614872962236, 0.006234352011233568, 0.060328591614961624, 0.06968973577022552, -0.0026381227653473616, 0.016656670719385147, -0.08157997578382492, -0.03034125827252865, -0.06448165327310562, 0.03057132661342621, 0.013555270619690418, 0.009574441239237785, 0.03004903346300125, -0.10531748831272125, 0.011254147626459599, 0.15205849707126617, -0.003980427049100399, -0.15020966529846191, -0.10351663827896118, 0.22834469377994537, 0.01228418480604887, -0.03194967657327652, 0.0282038114964962, -0.006128801964223385, -0.05866933986544609, 0.3355400860309601, 0.21925215423107147, 0.014620252884924412, -0.03357827663421631, 0.0003416624094825238, 0.018830906599760056, 0.02574477158486843, 0.1351921707391739, 0.08810324221849442, 0.2752009630203247, -0.0800003930926323, -0.005178350023925304, -0.08748824894428253, -0.057894978672266006, -0.10577713698148727, 0.008575130254030228, 0.09835396707057953, 0.010980363003909588, -0.016459792852401733, 0.1014738380908966, -0.12899933755397797, 0.016877245157957077, -0.04589390382170677, -0.0877811387181282, -0.07644763588905334, 0.01870226301252842, -0.14790545403957367, 0.03115682117640972, 0.05278661474585533, -0.018087632954120636, 0.04839552938938141, 0.09103614091873169, 0.05314607545733452, -0.1883956342935562, 0.059312853962183, 0.11894764751195908, 0.01934555172920227, 0.08117882162332535, 0.0019337002886459231, 0.08291170001029968, 0.04551684856414795, -0.003913172520697117, -0.07727339118719101, 0.07571864873170853, -0.057445600628852844, 0.09172951430082321, 0.012595727108418941, 0.027989370748400688, 0.006725847255438566, -0.14538413286209106, -0.03638738766312599, -0.04677441343665123, -0.0018530486850067973, -0.04706624150276184, 0.09192485362291336, -0.08546241372823715, 0.09801196306943893, -0.10534955561161041, 0.08893068134784698, 0.10672866553068161, -0.022087249904870987, 0.05737952142953873, -0.11865115165710449, 0.06100979819893837, -0.01562130730599165, -0.07367512583732605, -0.046333372592926025, -0.06254749745130539, 0.0029869768768548965, 0.009443194605410099, 0.04804301634430885, -0.1923627406358719, -0.0173654668033123, -0.09254289418458939, 0.004390786401927471, -0.10931724309921265, 0.0975022166967392, -0.0032654020469635725, 0.021175963804125786, -0.018038909882307053, -0.06723245978355408, -0.03850223124027252, 0.03196007013320923, -0.1377858966588974, -0.1072116270661354 ]
null
null
transformers
## Description: [**Sentence-CamemBERT-Large**](https://huggingface.co/dangvantuan/sentence-camembert-large) is the Embedding Model for French developed by [La Javaness](https://www.lajavaness.com/). The purpose of this embedding model is to represent the content and semantics of a French sentence in a mathematical vector which allows it to understand the meaning of the text-beyond individual words in queries and documents, offering a powerful semantic search. ## Pre-trained sentence embedding models are state-of-the-art of Sentence Embeddings for French. The model is Fine-tuned using pre-trained [facebook/camembert-large](https://huggingface.co/camembert/camembert-large) and [Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/) on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) ## Usage The model can be used directly (without a language model) as follows: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("dangvantuan/sentence-camembert-large") sentences = ["Un avion est en train de dΓ©coller.", "Un homme joue d'une grande flΓ»te.", "Un homme Γ©tale du fromage rΓ’pΓ© sur une pizza.", "Une personne jette un chat au plafond.", "Une personne est en train de plier un morceau de papier.", ] embeddings = model.encode(sentences) ``` ## Evaluation The model can be evaluated as follows on the French test data of stsb. ```python from sentence_transformers import SentenceTransformer from sentence_transformers.readers import InputExample from datasets import load_dataset def convert_dataset(dataset): dataset_samples=[] for df in dataset: score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[df['sentence1'], df['sentence2']], label=score) dataset_samples.append(inp_example) return dataset_samples # Loading the dataset for evaluation df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev") df_test = load_dataset("stsb_multi_mt", name="fr", split="test") # Convert the dataset for evaluation # For Dev set: dev_samples = convert_dataset(df_dev) val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') val_evaluator(model, output_path="./") # For Test set: test_samples = convert_dataset(df_test) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') test_evaluator(model, output_path="./") ``` **Test Result**: The performance is measured using Pearson and Spearman correlation: - On dev | Model | Pearson correlation | Spearman correlation | #params | | ------------- | ------------- | ------------- |------------- | | [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 88.2 |88.02 | 336M| | [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base) | 86.73|86.54 | 110M | | [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 79.22 | 79.16|135M | | [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 85 | NaN|175B | | [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.75 | 80.44|NaN | - On test | Model | Pearson correlation | Spearman correlation | | ------------- | ------------- | ------------- | | [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 85.9 | 85.8| | [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base)| 82.36 | 81.64| | [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 78.62 | 77.48| | [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 82 | NaN|175B | | [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.05 | 77.56|NaN | ## Citation @article{reimers2019sentence, title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, author={Nils Reimers, Iryna Gurevych}, journal={https://arxiv.org/abs/1908.10084}, year={2019} } @article{martin2020camembert, title={CamemBERT: a Tasty French Language Mode}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} }
{"language": "fr", "license": "apache-2.0", "tags": ["Text", "Sentence Similarity", "Sentence-Embedding", "camembert-large"], "datasets": ["stsb_multi_mt"], "pipeline_tag": "sentence-similarity", "model-index": [{"name": "sentence-camembert-large by Van Tuan DANG", "results": [{"task": {"type": "Text Similarity", "name": "Sentence-Embedding"}, "dataset": {"name": "Text Similarity fr", "type": "stsb_multi_mt", "args": "fr"}, "metrics": [{"type": "Pearson_correlation_coefficient", "value": "xx.xx", "name": "Test Pearson correlation coefficient"}]}]}]}
sentence-similarity
dangvantuan/sentence-camembert-large
[ "transformers", "pytorch", "tf", "safetensors", "camembert", "feature-extraction", "Text", "Sentence Similarity", "Sentence-Embedding", "camembert-large", "sentence-similarity", "fr", "dataset:stsb_multi_mt", "arxiv:1908.10084", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1908.10084" ]
[ "fr" ]
TAGS #transformers #pytorch #tf #safetensors #camembert #feature-extraction #Text #Sentence Similarity #Sentence-Embedding #camembert-large #sentence-similarity #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
Description: ------------ Sentence-CamemBERT-Large is the Embedding Model for French developed by La Javaness. The purpose of this embedding model is to represent the content and semantics of a French sentence in a mathematical vector which allows it to understand the meaning of the text-beyond individual words in queries and documents, offering a powerful semantic search. Pre-trained sentence embedding models are state-of-the-art of Sentence Embeddings for French. --------------------------------------------------------------------------------------------- The model is Fine-tuned using pre-trained facebook/camembert-large and Siamese BERT-Networks with 'sentences-transformers' on dataset stsb Usage ----- The model can be used directly (without a language model) as follows: Evaluation ---------- The model can be evaluated as follows on the French test data of stsb. Test Result: The performance is measured using Pearson and Spearman correlation: * On dev * On test Model: dangvantuan/sentence-camembert-large, Pearson correlation: 85.9, Spearman correlation: 85.8 Model: dangvantuan/sentence-camembert-base, Pearson correlation: 82.36, Spearman correlation: 81.64 Model: distiluse-base-multilingual-cased, Pearson correlation: 78.62, Spearman correlation: 77.48 Model: GPT-3 (text-davinci-003), Pearson correlation: 82, Spearman correlation: NaN Model: GPT-(text-embedding-ada-002), Pearson correlation: 79.05, Spearman correlation: 77.56 @article{reimers2019sentence, title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, author={Nils Reimers, Iryna Gurevych}, journal={URL year={2019} } ``` @article{martin2020camembert, title={CamemBERT: a Tasty French Language Mode}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
[]
[ "TAGS\n#transformers #pytorch #tf #safetensors #camembert #feature-extraction #Text #Sentence Similarity #Sentence-Embedding #camembert-large #sentence-similarity #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n" ]
[ 107 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #camembert #feature-extraction #Text #Sentence Similarity #Sentence-Embedding #camembert-large #sentence-similarity #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n" ]
[ -0.06660515815019608, 0.049158934503793716, -0.0072651635855436325, 0.056815192103385925, 0.010279997251927853, 0.006490158382803202, 0.07528635114431381, 0.11158791929483414, -0.0012443712912499905, 0.03511728346347809, 0.11260858923196793, 0.0594920851290226, 0.024546954780817032, 0.0015330263413488865, -0.047761254012584686, -0.19559112191200256, 0.08999556303024292, 0.06148327887058258, -0.07169290632009506, 0.10805763304233551, 0.13464964926242828, -0.04657426476478577, 0.0879506841301918, -0.014208772219717503, -0.041577260941267014, 0.04294801503419876, 0.0029696947894990444, -0.06858653575181961, 0.144586443901062, 0.043032336980104446, 0.03602134808897972, 0.08019687235355377, -0.04628121480345726, -0.15251260995864868, 0.03132309392094612, 0.013938230462372303, -0.06517282873392105, 0.039047323167324066, 0.052973680198192596, -0.1066252738237381, 0.082107312977314, -0.030139703303575516, 0.0015074318507686257, 0.024088209494948387, -0.12159013003110886, -0.13969166576862335, -0.05889715254306793, 0.0648551732301712, -0.013198760338127613, 0.0570213757455349, -0.015868211165070534, 0.12059785425662994, -0.1264156848192215, 0.09213846921920776, 0.19252094626426697, -0.29659053683280945, -0.017518993467092514, 0.08782403916120529, 0.06808032840490341, 0.03950038552284241, -0.015447655692696571, 0.039740752428770065, 0.04806729778647423, 0.0697292760014534, 0.04788064956665039, -0.058665111660957336, -0.08057408034801483, 0.08565133064985275, -0.11659988760948181, -0.03590327501296997, 0.2976630628108978, 0.027066122740507126, 0.052790720015764236, -0.05378825217485428, -0.09039530903100967, 0.08559642732143402, -0.02063237503170967, 0.02201147750020027, 0.00032081277458928525, 0.0691063404083252, 0.016005299985408783, -0.019246594980359077, -0.1348411589860916, -0.010474534705281258, -0.19510214030742645, -0.0023624899331480265, 0.027140183374285698, 0.010033158585429192, -0.12288795411586761, 0.019196003675460815, -0.1403246968984604, -0.13613352179527283, 0.030173299834132195, -0.07773612439632416, 0.051368553191423416, 0.057830844074487686, -0.08813121169805527, -0.041905779391527176, 0.16454972326755524, 0.09484829753637314, -0.005284782964736223, -0.01684429869055748, -0.03509565070271492, 0.11238515377044678, -0.01801527850329876, 0.08938787877559662, -0.11290033906698227, -0.07508128136396408, 0.006680707447230816, 0.024338748306035995, 0.03127353638410568, -0.006065988447517157, -0.11403365433216095, -0.049257807433605194, 0.06583159416913986, 0.05738695710897446, 0.0807376354932785, 0.07588016986846924, -0.036274246871471405, 0.033843375742435455, 0.037025343626737595, -0.09006383270025253, -0.01807231642305851, 0.005293167196214199, 0.043953750282526016, 0.0708126425743103, 0.014789765700697899, 0.010996834374964237, -0.07070456445217133, -0.0010970194125548005, -0.08534083515405655, 0.0003009540669154376, 0.020798562094569206, -0.08731001615524292, 0.07851792126893997, -0.06329625099897385, -0.003972839564085007, -0.11715371906757355, -0.06991113722324371, 0.02620924822986126, 0.016240788623690605, -0.004353330936282873, -0.03282198682427406, -0.005453003570437431, -0.03799916058778763, 0.019275832921266556, -0.029900938272476196, -0.05326981469988823, -0.07199423015117645, 0.08050805330276489, -0.07361556589603424, 0.07246746867895126, -0.09789291769266129, 0.0444195531308651, -0.1682758629322052, 0.015061723068356514, -0.11046768724918365, -0.026897896081209183, -0.02244110405445099, 0.08281690627336502, -0.04882809519767761, -0.061981961131095886, -0.12063677608966827, 0.03543699160218239, -0.017574118450284004, 0.16344544291496277, -0.18808422982692719, -0.08420984447002411, 0.23478879034519196, -0.10041328519582748, -0.17002147436141968, 0.1659170240163803, 0.04151872545480728, -0.04794028401374817, 0.07219851016998291, 0.2703658640384674, -0.005809467285871506, -0.0031976429745554924, 0.03581133484840393, 0.14754100143909454, -0.025964902713894844, 0.012286079116165638, 0.07582736760377884, -0.0432889424264431, 0.02320787124335766, 0.03126687929034233, 0.015198779292404652, 0.03755290061235428, -0.03745535761117935, -0.04431798309087753, -0.07865969091653824, -0.023765433579683304, 0.011358494870364666, -0.011281955987215042, -0.029846835881471634, -0.11587591469287872, -0.027393324300646782, -0.03769994154572487, 0.06354700773954391, -0.036299195140600204, 0.04565432667732239, -0.023169035091996193, 0.1488046944141388, 0.016316400840878487, 0.007865098305046558, -0.1403454691171646, 0.020799648016691208, -0.023304961621761322, 0.06603290885686874, 0.04919928312301636, 0.1317162960767746, 0.056689441204071045, -0.007126609329134226, -0.05348474532365799, 0.00874987244606018, 0.09261301159858704, 0.031197281554341316, 0.0018301131203770638, -0.17451298236846924, 0.05516497418284416, -0.03474436700344086, 0.09457683563232422, -0.02310878597199917, 0.045687105506658554, 0.07335063070058823, 0.12834587693214417, -0.04975665733218193, 0.08069754391908646, 0.024455362930893898, -0.01027524285018444, -0.04047079011797905, -0.0016299801645800471, 0.058623068034648895, 0.006997439544647932, -0.095069020986557, 0.25569432973861694, -0.1666458398103714, 0.24855870008468628, 0.19916917383670807, -0.1532575935125351, 0.03634844347834587, -0.040865279734134674, -0.0252221692353487, 0.038983095437288284, 0.02354230359196663, -0.08457823097705841, 0.003509053261950612, -0.015362453646957874, 0.11461818218231201, -0.1373499631881714, -0.05063008517026901, -0.0022229438181966543, -0.036063302308321, -0.053753409534692764, 0.13632556796073914, -0.0018323106924071908, -0.22329552471637726, 0.18371373414993286, 0.3378761112689972, 0.015599159523844719, 0.08003049343824387, -0.07961485534906387, -0.031297191977500916, 0.007069896440953016, 0.010850406251847744, -0.05980980396270752, 0.05955236777663231, -0.13294973969459534, -0.008021818473935127, 0.08516361564397812, 0.0648784264922142, 0.058016564697027206, -0.12796682119369507, -0.05535911023616791, 0.033500973135232925, -0.05168633162975311, -0.05639154464006424, 0.05285407230257988, 0.058108408004045486, 0.14927083253860474, -0.0611475445330143, -0.13016913831233978, 0.018990689888596535, 0.003507449524477124, -0.08784012496471405, 0.1685795783996582, -0.1429121345281601, -0.2656244933605194, -0.0589866079390049, 0.03158057853579521, -0.0622413344681263, 0.0035013763699680567, 0.11454162001609802, -0.056025415658950806, 0.007889507338404655, -0.09837909787893295, 0.03888741135597229, -0.05910658463835716, 0.016379058361053467, -0.13671517372131348, 0.032609108835458755, -0.0025412682443857193, -0.13882479071617126, -0.06402760744094849, -0.019659269601106644, -0.021984141319990158, 0.07607041299343109, -0.11974052339792252, 0.09589537978172302, 0.12864112854003906, 0.029506264254450798, 0.018449483439326286, -0.04888369143009186, 0.16677208244800568, -0.022773180156946182, 0.06110763177275658, 0.2199765294790268, 0.04682353511452675, 0.07211372256278992, 0.13145442306995392, 0.019910084083676338, -0.02685939520597458, -0.004280938301235437, -0.007106710225343704, -0.028026247397065163, -0.1573590487241745, -0.10610570013523102, -0.10840458422899246, 0.10785184800624847, 0.00805965717881918, 0.033963706344366074, 0.06749802082777023, 0.024472147226333618, -0.06260303407907486, -0.06485848128795624, 0.07006804645061493, 0.03968119993805885, 0.21532268822193146, -0.03290214762091637, 0.145860493183136, -0.05715326964855194, -0.10237067192792892, 0.11062443256378174, 0.015167459845542908, 0.0626840814948082, 0.004054453689604998, 0.0308846402913332, 0.09747064113616943, 0.12044136971235275, 0.03300635516643524, 0.0702001228928566, -0.037578023970127106, -0.024591373279690742, -0.07876654714345932, -0.09522591531276703, 0.03673345595598221, 0.027932729572057724, 0.042995620518922806, -0.03372082859277725, -0.06151484325528145, -0.10088032484054565, 0.14274519681930542, 0.09351518750190735, 0.13283057510852814, -0.1719624251127243, 0.02027052454650402, 0.05319637432694435, 0.019661277532577515, -0.015315524302423, 0.0936029702425003, 0.08531739562749863, -0.03640555962920189, 0.08415837585926056, 0.0337880440056324, 0.10568457096815109, 0.09915681928396225, 0.08419571071863174, -0.11508902162313461, -0.06450702995061874, -0.009833518415689468, 0.07941750437021255, -0.28475990891456604, 0.2617588937282562, 0.026675771921873093, -0.10361241549253464, -0.05364784598350525, -0.006667000707238913, 0.0610501728951931, 0.2402280569076538, 0.11532232165336609, 0.012238946743309498, -0.052381716668605804, -0.0024478184059262276, -0.04146727919578552, 0.06264034658670425, 0.060018390417099, -0.04332219809293747, -0.012737415730953217, -0.057736463844776154, -0.023780999705195427, 0.021390944719314575, 0.20527063310146332, -0.0013228515163064003, -0.132162407040596, 0.02191835269331932, 0.05913754180073738, -0.07687965780496597, -0.07100104540586472, -0.038818929344415665, -0.1603655368089676, 0.07664532214403152, -0.02491823211312294, -0.028108030557632446, -0.0628804862499237, -0.07310987263917923, 0.10939568281173706, -0.04363133758306503, -0.011128959245979786, -0.06310107558965683, 0.019063159823417664, -0.09322947263717651, -0.1407935470342636, 0.10316841304302216, -0.09822852909564972, -0.050218481570482254, -0.03463561832904816, 0.21195073425769806, -0.11581408232450485, 0.09514930844306946, 0.03927304223179817, 0.05564434826374054, -0.10074454545974731, -0.065669484436512, -0.033702149987220764, -0.013660495169460773, 0.11844395846128464, 0.05071840062737465, -0.10071785748004913, -0.06192931532859802, 0.005125785246491432, 0.007414797320961952, 0.16906625032424927, 0.20674528181552887, -0.06077052280306816, 0.0855090543627739, 0.17091713845729828, -0.009800434112548828, -0.2900660037994385, -0.08075614273548126, -0.17606304585933685, -0.009615830145776272, 0.0461946465075016, -0.01726534217596054, 0.07406878471374512, 0.05106167495250702, -0.03161463886499405, -0.05306432396173477, -0.2708413004875183, -0.07465995103120804, 0.1308109313249588, -0.05517185851931572, 0.2109525352716446, -0.116431325674057, -0.040167395025491714, -0.02262185327708721, -0.17219583690166473, 0.08878006041049957, -0.17803290486335754, 0.046310193836688995, 0.018527312204241753, -0.05043627321720123, 0.027750732377171516, -0.025952378287911415, 0.1556953638792038, 0.005999602843075991, 0.07193908095359802, -0.07368119060993195, 0.0005544713931158185, 0.06326344609260559, 0.0032526475843042135, 0.09235073626041412, -0.23529942333698273, 0.0558340921998024, -0.028113633394241333, 0.0011303655337542295, -0.12179996073246002, 0.06582403182983398, -0.01619088463485241, -0.06829709559679031, -0.08235783874988556, 0.013400503434240818, 0.03371553495526314, -0.023380151018500328, 0.14536285400390625, -0.07399650663137436, 0.10331203043460846, 0.10112351179122925, 0.09598146378993988, -0.1921095848083496, -0.05656592547893524, -0.05088404566049576, -0.06130531057715416, 0.04435017332434654, -0.15838287770748138, 0.07023389637470245, 0.0834265947341919, -0.01923537440598011, 0.07448264956474304, 0.08112908154726028, -0.009779654443264008, -0.09720361232757568, 0.130440354347229, -0.1535627692937851, -0.09416057914495468, -0.052969422191381454, -0.008006399497389793, 0.01034478284418583, 0.026614606380462646, 0.12197896838188171, -0.012231671251356602, -0.011426384560763836, -0.002750287763774395, 0.023450566455721855, -0.06941156834363937, 0.061457790434360504, 0.06370068341493607, 0.03997582942247391, -0.0993257611989975, 0.082788847386837, 0.02275586687028408, -0.17448748648166656, -0.0190229844301939, 0.0958588495850563, -0.09947390854358673, -0.11434976756572723, -0.02890343777835369, 0.044590629637241364, -0.03428550809621811, -0.07229645550251007, -0.10693879425525665, -0.15347659587860107, 0.057676296681165695, 0.2090795487165451, 0.10461744666099548, 0.0921097919344902, 0.020278749987483025, -0.08771896362304688, 0.03507841005921364, 0.06885123252868652, 0.013533135876059532, 0.026126662269234657, -0.0702098160982132, 0.07316891849040985, -0.03520713746547699, 0.09133892506361008, -0.04323958605527878, 0.021214600652456284, -0.05877416208386421, -0.011065203696489334, -0.09235431998968124, -0.040265507996082306, -0.08668749034404755, -0.048588983714580536, -0.013386573642492294, -0.08325117826461792, -0.038329511880874634, -0.024098439142107964, -0.07983055710792542, 0.0011574820382520556, -0.032351527363061905, 0.12554387748241425, -0.09752195328474045, -0.037170153111219406, 0.10636395215988159, -0.06096171587705612, 0.09537511318922043, 0.04246469587087631, -0.10400892049074173, 0.06640408933162689, -0.12875871360301971, -0.13363133370876312, 0.0544360913336277, 0.05859653279185295, -0.006070295348763466, -0.0031823080498725176, 0.008041419088840485, 0.05779324844479561, -0.007757249753922224, 0.05073611065745354, -0.04414477199316025, -0.08800702542066574, -0.008055984042584896, -0.015461915172636509, -0.14422863721847534, -0.01824144460260868, -0.0781572237610817, 0.09331674128770828, 0.03945987671613693, 0.10221661627292633, -0.04102911427617073, 0.0026801556814461946, -0.18237073719501495, 0.03898915275931358, -0.03731671720743179, -0.17863623797893524, -0.08840730041265488, -0.056180283427238464, 0.019421273842453957, 0.003181002102792263, 0.18057014048099518, 0.01773983985185623, -0.07498370110988617, 0.0657925084233284, 0.12391224503517151, 0.10222696512937546, 0.03300173208117485, 0.19349169731140137, 0.03219744563102722, -0.05120832100510597, -0.12907841801643372, 0.019314292818307877, 0.0338631272315979, 0.06734170019626617, 0.059287458658218384, 0.20721641182899475, 0.12903942167758942, 0.07386885583400726, 0.07959387451410294, 0.024534333497285843, 0.0349566712975502, -0.08067364245653152, 0.06479501724243164, 0.0778106078505516, 0.005098490044474602, 0.10531763732433319, 0.22774656116962433, -0.07156630605459213, 0.06628672778606415, -0.06840153783559799, -0.004151726607233286, -0.11472208052873611, -0.10504269599914551, -0.07631223648786545, -0.08842591196298599, -0.04631270840764046, -0.11121547967195511, 0.019459595903754234, 0.12170342355966568, 0.06844509392976761, -0.025081008672714233, 0.03718656301498413, -0.04266130551695824, -0.0832144096493721, 0.045828334987163544, -0.014070216566324234, 0.04786098003387451, 0.03541254252195358, -0.06348134577274323, 0.01303115300834179, -0.00005784469612990506, -0.02154679037630558, 0.009641535580158234, 0.059185903519392014, -0.021889209747314453, -0.15585877001285553, -0.07435102760791779, -0.03640570864081383, -0.040664199739694595, -0.0017591998912394047, 0.0742514580488205, 0.039293237030506134, -0.0120736388489604, 0.07673760503530502, 0.24842531979084015, -0.06842917948961258, -0.18426278233528137, -0.08937854319810867, 0.1476043164730072, 0.031119266524910927, 0.069331094622612, 0.014467454515397549, -0.04304132238030434, -0.05458013340830803, 0.21229679882526398, 0.29771488904953003, -0.09501390159130096, 0.03760239854454994, 0.029762618243694305, 0.020559702068567276, 0.04667328670620918, -0.03708813712000847, 0.11008486151695251, 0.16643941402435303, -0.07267767190933228, 0.02878495864570141, -0.08300432562828064, 0.01416692417114973, -0.1228301152586937, 0.0825437605381012, 0.05967305600643158, -0.07172577828168869, 0.026070239022374153, 0.10260888934135437, 0.004983043763786554, 0.0953085795044899, -0.1045471578836441, -0.21449996531009674, -0.08393724262714386, -0.0250575989484787, 0.1333378702402115, 0.05028887838125229, 0.06640960276126862, -0.04855157062411308, -0.017942428588867188, -0.007076756563037634, 0.0002523035218473524, -0.17252027988433838, -0.06543399393558502, 0.08421366661787033, -0.023449376225471497, 0.04675351083278656, 0.0008523464202880859, 0.04577916860580444, 0.11542584747076035, 0.025197839364409447, 0.0049204472452402115, 0.08579255640506744, 0.07143919914960861, 0.04742351174354553, -0.014555330388247967, -0.08346998691558838, 0.020234528928995132, -0.038795728236436844, 0.08552014827728271, -0.15712566673755646, 0.056943558156490326, 0.036521244794130325, -0.08748942613601685, -0.04651741683483124, 0.04540620744228363, -0.0457615852355957, 0.04263675957918167, 0.07867234200239182, -0.03327496722340584, -0.05177885293960571, -0.05416908487677574, -0.036775849759578705, 0.044293034821748734, -0.09484420716762543, -0.020067201927304268, -0.042496208101511, -0.02577912248671055, -0.041505590081214905, 0.0037598663475364447, -0.17325174808502197, -0.08838889747858047, -0.007154648192226887, 0.03169794753193855, -0.11838633567094803, 0.07539371401071548, 0.09494278579950333, 0.0026043669786304235, -0.0029682598542422056, -0.0767132043838501, 0.05678786337375641, 0.05259490758180618, -0.06546049565076828, -0.06989370286464691 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-pt This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3295 - Bleu: 5.6807 - Gen Len: 18.6772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.5787 | 1.0 | 6250 | 0.4928 | 4.1007 | 18.638 | | 0.5089 | 2.0 | 12500 | 0.4463 | 4.3492 | 18.663 | | 0.4652 | 3.0 | 18750 | 0.4215 | 4.68 | 18.6652 | | 0.4353 | 4.0 | 25000 | 0.3980 | 4.8172 | 18.6708 | | 0.4042 | 5.0 | 31250 | 0.3799 | 4.9719 | 18.6514 | | 0.3734 | 6.0 | 37500 | 0.3676 | 5.2226 | 18.6572 | | 0.3396 | 7.0 | 43750 | 0.3513 | 5.2693 | 18.6596 | | 0.308 | 8.0 | 50000 | 0.3400 | 5.4546 | 18.676 | | 0.2767 | 9.0 | 56250 | 0.3331 | 5.5649 | 18.6708 | | 0.2424 | 10.0 | 62500 | 0.3295 | 5.6807 | 18.6772 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-pt", "results": []}]}
text2text-generation
danhsf/t5-small-finetuned-en-to-pt
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-pt =========================== This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3295 * Bleu: 5.6807 * Gen Len: 18.6772 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.005 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.005\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.005\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 67, 97, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.005\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.08834715932607651, 0.04774978384375572, -0.0027600200846791267, 0.11220227926969528, 0.14685240387916565, 0.017715144902467728, 0.13807284832000732, 0.13690778613090515, -0.1201547235250473, 0.03410015627741814, 0.1322575956583023, 0.16117118299007416, 0.01969009079039097, 0.10335364192724228, -0.0514589361846447, -0.2550477683544159, -0.007882479578256607, 0.041799455881118774, -0.049369003623723984, 0.13620969653129578, 0.08890630304813385, -0.11479265242815018, 0.09053237736225128, -0.0012478061253204942, -0.18759022653102875, 0.019926615059375763, 0.0012736826902255416, -0.054899659007787704, 0.1514187604188919, 0.03239260986447334, 0.1083890050649643, 0.009949684143066406, 0.06689133495092392, -0.1894035041332245, 0.011407049372792244, 0.06063782423734665, -0.006028021220117807, 0.08595988899469376, 0.051443833857774734, 0.0015550950774922967, 0.18889620900154114, -0.08163394778966904, 0.0437462143599987, 0.0256346445530653, -0.11757417023181915, -0.17881309986114502, -0.08394937217235565, 0.03588097169995308, 0.07189727574586868, 0.11746874451637268, -0.010038121603429317, 0.1320616751909256, -0.0737663060426712, 0.1109580248594284, 0.24540163576602936, -0.2971794903278351, -0.06218256056308746, 0.011343344114720821, 0.03198673576116562, 0.08140451461076736, -0.08336681127548218, -0.018830958753824234, 0.056723762303590775, 0.05066367983818054, 0.1230933666229248, -0.032152798026800156, -0.12806977331638336, 0.015614115633070469, -0.14465174078941345, -0.05263059213757515, 0.17351503670215607, 0.031312428414821625, -0.030217245221138, -0.049961112439632416, -0.0838673934340477, -0.1694701761007309, -0.019654694944620132, -0.012692230753600597, 0.03974658623337746, -0.019515005871653557, -0.054404012858867645, -0.039477888494729996, -0.11339499056339264, -0.06923077255487442, -0.0786779448390007, 0.12009245902299881, 0.043931104242801666, 0.007037831470370293, -0.0495438277721405, 0.10828156024217606, 0.004166996572166681, -0.12846983969211578, 0.016011234372854233, 0.038474421948194504, 0.02109253592789173, -0.029715675860643387, -0.0600254163146019, -0.10525306314229965, 0.0186212956905365, 0.114298015832901, -0.055660542100667953, 0.045061204582452774, 0.014144851826131344, 0.04630975052714348, -0.1023721918463707, 0.1691797524690628, -0.028373008593916893, -0.0025378279387950897, 0.015015708282589912, 0.04017656296491623, 0.04209601879119873, -0.02255125716328621, -0.13022227585315704, 0.00349140795879066, 0.09343109279870987, 0.02243497036397457, -0.056999873369932175, 0.07611753046512604, -0.036586400121450424, -0.014776368625462055, -0.008886737748980522, -0.09692812711000443, 0.018031297251582146, -0.00041965334094129503, -0.0738874301314354, 0.00003839093551505357, 0.040019888430833817, 0.005325085483491421, -0.05131646245718002, 0.09366686642169952, -0.08155693113803864, 0.020802263170480728, -0.0967516079545021, -0.11850783228874207, 0.02280575782060623, -0.09765852242708206, 0.015248625539243221, -0.10164272040128708, -0.1982787549495697, -0.006990344729274511, 0.050584644079208374, -0.020453816279768944, -0.05524096637964249, -0.07248088717460632, -0.08431647717952728, 0.019680162891745567, -0.019389376044273376, 0.13401520252227783, -0.0641017034649849, 0.09949891269207001, 0.026970937848091125, 0.0604417622089386, -0.05323446914553642, 0.053985580801963806, -0.09455934911966324, 0.005714172963052988, -0.14608661830425262, 0.04354213923215866, -0.03034321777522564, 0.06365229934453964, -0.08373680710792542, -0.09704181551933289, -0.007899655029177666, 0.006254385691136122, 0.07649974524974823, 0.10368932038545609, -0.17578957974910736, -0.08471005409955978, 0.17861796915531158, -0.06979936361312866, -0.1322958767414093, 0.1335982382297516, -0.05372358113527298, 0.051891304552555084, 0.06631141155958176, 0.1767672300338745, 0.05440928786993027, -0.0926855131983757, 0.010219073854386806, 0.016264313831925392, 0.04316645860671997, -0.058972764760255814, 0.059939853847026825, -0.007913360372185707, 0.0323420912027359, 0.022731490433216095, -0.007243737578392029, 0.05227653309702873, -0.08640438318252563, -0.08479327708482742, -0.05314984545111656, -0.07740893214941025, 0.025695370510220528, 0.05861489847302437, 0.074721559882164, -0.11230544000864029, -0.09804797172546387, 0.04374582692980766, 0.08521532267332077, -0.07760286331176758, 0.049148596823215485, -0.053028516471385956, 0.08008130639791489, -0.02516890875995159, -0.007965357042849064, -0.17330384254455566, -0.017091374844312668, 0.010387164540588856, 0.007114094216376543, 0.03171072527766228, 0.02057149074971676, 0.0668196827173233, 0.06520450115203857, -0.04438348114490509, -0.016535650938749313, -0.040587738156318665, -0.016521787270903587, -0.12719713151454926, -0.1968344897031784, -0.0213263388723135, -0.021140139549970627, 0.1292341947555542, -0.2042427659034729, 0.05001658573746681, 0.00801904033869505, 0.06472903490066528, 0.010604334995150566, -0.0038308172952383757, -0.04121905937790871, 0.07547798752784729, -0.0650099664926529, -0.049710363149642944, 0.07214277982711792, 0.01370893232524395, -0.09688008576631546, -0.027359647676348686, -0.12942877411842346, 0.13583491742610931, 0.1441480815410614, -0.12893496453762054, -0.06585609912872314, 0.002710448345169425, -0.057691916823387146, -0.03267836570739746, -0.03430576249957085, 0.007353276014328003, 0.19350314140319824, -0.009186472743749619, 0.16185639798641205, -0.08321747928857803, -0.05262232944369316, 0.02330073155462742, -0.03365027531981468, 0.03174946829676628, 0.13344347476959229, 0.11649280041456223, -0.05733412876725197, 0.1453648954629898, 0.1383415162563324, -0.09729249775409698, 0.15179239213466644, -0.04639824107289314, -0.0835823342204094, -0.0030895506497472525, 0.0016888842219486833, 0.0006827312172390521, 0.0727478414773941, -0.17992529273033142, -0.00886610895395279, 0.023187320679426193, 0.023524006828665733, 0.037822429090738297, -0.22633865475654602, -0.025640901178121567, 0.041764259338378906, -0.059096455574035645, -0.007504551205784082, -0.007312423549592495, -0.002199566690251231, 0.11083360016345978, -0.007581467740237713, -0.07759670913219452, 0.03835129737854004, 0.004062317777425051, -0.09074904024600983, 0.2140669971704483, -0.08165708184242249, -0.15753106772899628, -0.1327233910560608, -0.07485692948102951, -0.059258513152599335, 0.007216073106974363, 0.08237229287624359, -0.0896502435207367, -0.027367403730750084, -0.09090492129325867, 0.03910240903496742, -0.008227101527154446, 0.02684823051095009, 0.004311303608119488, -0.0003322188858874142, 0.04816580191254616, -0.12040654569864273, -0.012978323735296726, -0.05036823824048042, -0.06792028993368149, 0.04244387894868851, 0.019769566133618355, 0.12102044373750687, 0.16176487505435944, -0.019779333844780922, 0.016360700130462646, -0.03730936720967293, 0.20612889528274536, -0.062496040016412735, -0.02020903490483761, 0.1548323631286621, 0.0014049762394279242, 0.05765701085329056, 0.09117071330547333, 0.055079080164432526, -0.0837201401591301, 0.015945008024573326, 0.032484956085681915, -0.040579210966825485, -0.24965637922286987, -0.03692806139588356, -0.066761814057827, 0.013907521031796932, 0.08081956952810287, 0.03603312745690346, 0.06016942858695984, 0.06170448288321495, 0.02834971621632576, 0.09042669832706451, -0.028438979759812355, 0.06693927198648453, 0.12968659400939941, 0.03865865245461464, 0.12099406868219376, -0.060500871390104294, -0.05575929582118988, 0.05122886598110199, -0.011244283057749271, 0.22506599128246307, 0.0012773432536050677, 0.18052810430526733, 0.061211902648210526, 0.14821361005306244, -0.012492171488702297, 0.08881457895040512, -0.015851764008402824, -0.03247132897377014, -0.017502926290035248, -0.05195360258221626, -0.03439406305551529, 0.02393370307981968, -0.09510570019483566, 0.06059366092085838, -0.12043440341949463, 0.024618329480290413, 0.059199683368206024, 0.2596934139728546, 0.036353472620248795, -0.3218814730644226, -0.08658524602651596, 0.006427180487662554, -0.04297308996319771, -0.020926350727677345, 0.039162248373031616, 0.11078961193561554, -0.07865435630083084, 0.03393789008259773, -0.06579835712909698, 0.1035487949848175, -0.03858918324112892, 0.054246898740530014, 0.05011340230703354, 0.09331431239843369, 0.004227517172694206, 0.09014205634593964, -0.32240262627601624, 0.27394160628318787, 0.0028319775592535734, 0.07131952792406082, -0.08291797339916229, 0.012606984004378319, 0.029657458886504173, 0.05878657475113869, 0.0732455775141716, -0.018844017758965492, -0.036421604454517365, -0.1446385681629181, -0.060563068836927414, 0.029873717576265335, 0.09362920373678207, -0.02222740650177002, 0.09896400570869446, -0.03331729769706726, 0.010821078903973103, 0.07133590430021286, 0.009026659652590752, -0.05069725215435028, -0.10524331778287888, -0.007413665764033794, 0.027851704508066177, -0.052573516964912415, -0.05764349550008774, -0.10487154871225357, -0.11848902702331543, 0.1543796956539154, -0.03617338463664055, -0.04023626819252968, -0.10657838732004166, 0.06418117135763168, 0.0516984760761261, -0.09217209368944168, 0.03972539305686951, 0.008583594113588333, 0.06363555788993835, 0.01957324706017971, -0.07945699989795685, 0.10756188631057739, -0.06398617476224899, -0.16592924296855927, -0.05501681938767433, 0.11431054770946503, 0.016722334548830986, 0.05964066460728645, -0.01818864792585373, 0.003737588645890355, -0.05333063006401062, -0.08938100934028625, 0.014678280800580978, -0.01163763739168644, 0.07370676845312119, 0.012880031019449234, -0.05573108047246933, 0.016830090433359146, -0.06425974518060684, -0.04530448466539383, 0.20856915414333344, 0.23232977092266083, -0.08033313602209091, 0.026244057342410088, 0.029391389340162277, -0.0823545977473259, -0.19854886829853058, 0.019220037385821342, 0.041322458535432816, 0.008628154173493385, 0.01918690651655197, -0.18722452223300934, 0.09796575456857681, 0.1035698875784874, -0.003782650688663125, 0.11768490821123123, -0.358672171831131, -0.13218756020069122, 0.11421474069356918, 0.1389663815498352, 0.11190546303987503, -0.15113532543182373, -0.024922382086515427, -0.03302253037691116, -0.11873522400856018, 0.10596121847629547, -0.12409351766109467, 0.1252928227186203, -0.0303348395973444, 0.10538018494844437, 0.003971325233578682, -0.055174268782138824, 0.10692881792783737, 0.009533780626952648, 0.09417594969272614, -0.06782092899084091, -0.007228330243378878, 0.05296974629163742, -0.04042814299464226, 0.038610026240348816, -0.1285502314567566, 0.03174658864736557, -0.09888064116239548, -0.02013392746448517, -0.06414695084095001, 0.04618401452898979, -0.03982848674058914, -0.06491430848836899, -0.041329510509967804, -0.018189048394560814, 0.053017713129520416, -0.006038785446435213, 0.1523195207118988, 0.012166452594101429, 0.1443876028060913, 0.118972547352314, 0.08296256512403488, -0.0719408467411995, -0.05021442472934723, -0.012986885383725166, -0.011653573252260685, 0.05533068627119064, -0.17038634419441223, 0.02040957286953926, 0.1425919085741043, 0.023075319826602936, 0.142761692404747, 0.08491920679807663, -0.036558352410793304, 0.019683144986629486, 0.05659976974129677, -0.17464546859264374, -0.09561894088983536, -0.021988464519381523, -0.054905541241168976, -0.0933363288640976, 0.06196441501379013, 0.10477794706821442, -0.07523077726364136, -0.0010108714923262596, -0.012997878715395927, 0.007822575978934765, -0.05789694935083389, 0.17549768090248108, 0.045230645686388016, 0.04325567185878754, -0.09563873708248138, 0.08252184092998505, 0.04384494945406914, -0.08870124071836472, 0.027160290628671646, 0.10846695303916931, -0.07532136142253876, -0.05250553414225578, 0.07939515262842178, 0.18873761594295502, -0.050804562866687775, -0.05421216040849686, -0.1439516544342041, -0.12176505476236343, 0.09035476297140121, 0.18052202463150024, 0.09744726866483688, 0.015842271968722343, -0.06792871654033661, 0.015125087462365627, -0.12278935313224792, 0.09340529143810272, 0.03706596419215202, 0.06340010464191437, -0.12964117527008057, 0.16275838017463684, 0.013898763805627823, 0.04076003655791283, -0.021017372608184814, 0.023901162669062614, -0.09198029339313507, 0.01446828618645668, -0.12340252846479416, -0.017883138731122017, -0.017519701272249222, -0.00252524227835238, -0.006021130830049515, -0.03798183426260948, -0.06051918491721153, 0.019185781478881836, -0.11046290397644043, -0.02473103627562523, 0.0247641671448946, 0.05791625380516052, -0.11680113524198532, -0.027353763580322266, 0.02068432979285717, -0.07191307097673416, 0.07913152128458023, 0.05468948930501938, 0.0032174449879676104, 0.06672843545675278, -0.14938132464885712, 0.02630201168358326, 0.07232561707496643, 0.031460534781217575, 0.05247555300593376, -0.06435032188892365, -0.010248735547065735, 0.0029948153533041477, 0.05073646456003189, 0.015007803216576576, 0.062112320214509964, -0.13263171911239624, 0.009646622464060783, -0.021561594679951668, -0.08525369316339493, -0.06939400732517242, 0.044294510036706924, 0.0688532292842865, 0.012667190283536911, 0.19072410464286804, -0.08190303295850754, 0.03994851931929588, -0.2096068412065506, 0.011500419117510319, 0.008339504711329937, -0.11398588865995407, -0.1222025603055954, -0.07214859127998352, 0.06199567764997482, -0.06829673796892166, 0.12523293495178223, 0.026243852451443672, 0.025305308401584625, 0.026574674993753433, -0.014655460603535175, 0.00979895144701004, 0.007951503619551659, 0.21977971494197845, 0.02845078893005848, -0.03471359238028526, 0.03599415346980095, 0.03237846493721008, 0.11519359797239304, 0.11972609907388687, 0.2109585404396057, 0.13539275527000427, -0.01037527248263359, 0.11747154593467712, 0.03546016663312912, -0.050972484052181244, -0.16088493168354034, 0.029242265969514847, -0.0274024847894907, 0.12055374681949615, -0.025569897145032883, 0.2165345400571823, 0.10336146503686905, -0.1490596979856491, 0.04035259410738945, -0.039507392793893814, -0.08121363073587418, -0.12407126277685165, -0.06975050270557404, -0.08036962151527405, -0.14106504619121552, -0.0007058643968775868, -0.12069474905729294, 0.03342447429895401, 0.10560358315706253, 0.015859924256801605, -0.02716304175555706, 0.1600608080625534, 0.026202306151390076, 0.0049166204407811165, 0.058656636625528336, -0.0006964732892811298, -0.02270640805363655, -0.11286264657974243, -0.06898164004087448, -0.0040276567451655865, -0.024107085540890694, 0.0367664210498333, -0.039453621953725815, -0.035482119768857956, 0.04087831825017929, -0.036568593233823776, -0.09084466844797134, 0.012865389697253704, 0.02117850072681904, 0.061392903327941895, 0.05972033739089966, 0.013606841675937176, -0.00003104035567957908, -0.005660024005919695, 0.21307185292243958, -0.08372752368450165, -0.08229152113199234, -0.08159271627664566, 0.2403385192155838, 0.04411764442920685, -0.010484738275408745, 0.025358861312270164, -0.06603036820888519, -0.011331833899021149, 0.2633504867553711, 0.20240193605422974, -0.06731335818767548, -0.014210519380867481, 0.0049416664987802505, -0.0020343202631920576, -0.022983530536293983, 0.11242469400167465, 0.14575037360191345, 0.061431046575307846, -0.0821448564529419, -0.039171505719423294, -0.04745642840862274, -0.001581480260938406, -0.052460238337516785, 0.0809851586818695, 0.03436528518795967, -0.005958070047199726, -0.022014502435922623, 0.05015384033322334, -0.07354052364826202, -0.08510306477546692, 0.025429727509617805, -0.20409175753593445, -0.14601242542266846, -0.003671539481729269, 0.12440316379070282, 0.003937555942684412, 0.06570862978696823, -0.024462375789880753, -0.0008245782228186727, 0.07911795377731323, -0.018313530832529068, -0.10943716764450073, -0.05445541813969612, 0.08418196439743042, -0.15328776836395264, 0.19550040364265442, -0.04381672292947769, 0.060335706919431686, 0.12766267359256744, 0.06211553514003754, -0.0681716650724411, 0.08088386058807373, 0.04098772630095482, -0.04932957515120506, 0.029016777873039246, 0.07612576335668564, -0.031478747725486755, 0.048841286450624466, 0.04716240614652634, -0.1217695102095604, 0.018176862969994545, -0.03830408304929733, -0.05428507179021835, -0.035365547984838486, -0.04268427565693855, -0.06272977590560913, 0.12161405384540558, 0.20732566714286804, -0.027474284172058105, 0.008040966466069221, -0.08222240209579468, -0.0010364901972934604, 0.05463138967752457, 0.024940716102719307, -0.049575306475162506, -0.2171623855829239, 0.0009906283812597394, 0.06467512249946594, -0.01820749044418335, -0.26982709765434265, -0.08347900211811066, -0.002245913725346327, -0.06424462795257568, -0.11878794431686401, 0.06983662396669388, 0.10919130593538284, 0.047163743525743484, -0.052164431661367416, -0.046258628368377686, -0.07056241482496262, 0.15861181914806366, -0.1386287659406662, -0.0897151455283165 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-lr_2e-3-fp_false This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4239 - Bleu: 7.1921 - Gen Len: 18.2611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.8922 | 0.05 | 2000 | 1.7000 | 6.5274 | 18.2656 | | 0.8621 | 0.1 | 4000 | 1.6409 | 6.6411 | 18.2311 | | 0.8433 | 0.16 | 6000 | 1.6396 | 6.6601 | 18.2596 | | 0.8297 | 0.21 | 8000 | 1.6304 | 6.7129 | 18.2581 | | 0.8006 | 0.26 | 10000 | 1.6022 | 6.6067 | 18.2816 | | 0.793 | 0.31 | 12000 | 1.5999 | 6.551 | 18.2631 | | 0.774 | 0.37 | 14000 | 1.5586 | 6.7105 | 18.2661 | | 0.7618 | 0.42 | 16000 | 1.5769 | 6.7278 | 18.2526 | | 0.7463 | 0.47 | 18000 | 1.5625 | 6.6972 | 18.2201 | | 0.7394 | 0.52 | 20000 | 1.5377 | 6.936 | 18.2491 | | 0.7203 | 0.58 | 22000 | 1.5191 | 7.0205 | 18.2731 | | 0.7158 | 0.63 | 24000 | 1.5055 | 6.835 | 18.2506 | | 0.688 | 0.68 | 26000 | 1.4779 | 7.0534 | 18.2716 | | 0.678 | 0.73 | 28000 | 1.4691 | 6.9735 | 18.2616 | | 0.6677 | 0.79 | 30000 | 1.4702 | 7.0359 | 18.2496 | | 0.6568 | 0.84 | 32000 | 1.4534 | 6.9982 | 18.2556 | | 0.6475 | 0.89 | 34000 | 1.4427 | 7.0443 | 18.2466 | | 0.6395 | 0.94 | 36000 | 1.4265 | 7.1205 | 18.2721 | | 0.6319 | 1.0 | 38000 | 1.4239 | 7.1921 | 18.2611 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-lr_2e-3-fp_false", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 7.1921, "name": "Bleu"}]}]}]}
text2text-generation
danhsf/t5-small-finetuned-en-to-ro-lr_2e-3-fp_false
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-ro-lr\_2e-3-fp\_false ============================================== This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.4239 * Bleu: 7.1921 * Gen Len: 18.2611 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.002 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 78, 97, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.1062561497092247, 0.10275673121213913, -0.0019632908515632153, 0.12153957784175873, 0.1349707841873169, 0.008975919336080551, 0.14095041155815125, 0.14363139867782593, -0.0732484832406044, 0.024050947278738022, 0.1407383382320404, 0.13402217626571655, 0.03866170719265938, 0.0990511029958725, -0.04309215769171715, -0.2359904646873474, -0.004465804900974035, 0.05184900760650635, -0.05780528113245964, 0.1476311832666397, 0.09074056893587112, -0.10781461000442505, 0.10567955672740936, 0.0047362614423036575, -0.1681816577911377, -0.0014622821472585201, 0.0031356706749647856, -0.04769640415906906, 0.1440178006887436, 0.036889899522066116, 0.07996398955583572, 0.010965811088681221, 0.06027805805206299, -0.17597460746765137, 0.009861389175057411, 0.05803856626152992, 0.002827921649441123, 0.10287361592054367, 0.06092572584748268, 0.007408854551613331, 0.1098707914352417, -0.06675076484680176, 0.027347316965460777, 0.036939289420843124, -0.12225428968667984, -0.21632669866085052, -0.0797775536775589, 0.04640711471438408, 0.068039171397686, 0.11548718065023422, -0.010064206086099148, 0.13221284747123718, -0.03519778326153755, 0.10261313617229462, 0.2224467694759369, -0.29879963397979736, -0.056387439370155334, 0.04289545863866806, 0.04259319230914116, 0.08850429207086563, -0.08636551350355148, -0.017256835475564003, 0.040920574218034744, 0.05322102829813957, 0.14631065726280212, -0.026979198679327965, -0.05193357542157173, 0.013060472905635834, -0.1338537037372589, -0.06089766323566437, 0.19903412461280823, 0.05986013263463974, -0.02651173062622547, -0.05204344168305397, -0.08550917357206345, -0.1565668284893036, -0.016081733629107475, 0.007629765663295984, 0.04032487794756889, -0.011883452534675598, -0.07065427303314209, -0.03096325881779194, -0.10977233201265335, -0.05838887393474579, -0.0586039200425148, 0.07905077189207077, 0.02371777407824993, 0.010460334829986095, -0.04907390847802162, 0.11298661679029465, 0.008525666780769825, -0.15100200474262238, 0.025746162980794907, 0.030887123197317123, 0.016310784965753555, -0.01569691114127636, -0.053665563464164734, -0.1008177250623703, 0.010780775919556618, 0.10023561865091324, -0.047434087842702866, 0.04008087143301964, 0.017094222828745842, 0.05139725282788277, -0.09591174125671387, 0.18074414134025574, -0.07008494436740875, -0.058404590934515, 0.00953828264027834, 0.07676910609006882, 0.04170813784003258, -0.020829837769269943, -0.13446642458438873, -0.00324417045339942, 0.1134990006685257, 0.013163652271032333, -0.020881418138742447, 0.07323324680328369, -0.046942342072725296, -0.04528503865003586, 0.01661866158246994, -0.0848163440823555, -0.00258844718337059, -0.013125071302056313, -0.07520239800214767, -0.02436181530356407, 0.03477669507265091, 0.014599044807255268, -0.035630930215120316, 0.07042456418275833, -0.10264001041650772, 0.005237854551523924, -0.07464193552732468, -0.10755298286676407, 0.02343045361340046, -0.06818655133247375, 0.014182169921696186, -0.09725628793239594, -0.2064078152179718, -0.004441789351403713, 0.0577339269220829, -0.02665763348340988, -0.07238937169313431, -0.05237288773059845, -0.0760621726512909, 0.022336287423968315, -0.01960243657231331, 0.13514971733093262, -0.06810223311185837, 0.11054282635450363, 0.02511974796652794, 0.052775464951992035, -0.05180690065026283, 0.057620979845523834, -0.10651151090860367, 0.031199725344777107, -0.12313750386238098, 0.053360503166913986, -0.021771617233753204, 0.07459782809019089, -0.11205914616584778, -0.09065545350313187, -0.007139069028198719, -0.01829574629664421, 0.07486393302679062, 0.10019280761480331, -0.17672882974147797, -0.07527533918619156, 0.17633594572544098, -0.04659712314605713, -0.15493573248386383, 0.13947802782058716, -0.04369716718792915, 0.05368431657552719, 0.06530839949846268, 0.20506741106510162, 0.06904980540275574, -0.06656518578529358, 0.006344090681523085, 0.016377098858356476, 0.07033481448888779, -0.08187232166528702, 0.10347504168748856, -0.00587027333676815, 0.012910498306155205, 0.018352163955569267, -0.046159692108631134, 0.06717990338802338, -0.0766046941280365, -0.08823522180318832, -0.039842765778303146, -0.10107126086950302, 0.04324258863925934, 0.05478169396519661, 0.06701333075761795, -0.09623313695192337, -0.09653215110301971, 0.023040855303406715, 0.08454344421625137, -0.07768077403306961, 0.03923412039875984, -0.058453720062971115, 0.0853227749466896, -0.07584775239229202, -0.005401269067078829, -0.1693091243505478, -0.011660441756248474, 0.011442196555435658, 0.013179386034607887, 0.028635263442993164, 0.029027363285422325, 0.06814434379339218, 0.058696601539850235, -0.05905598774552345, -0.02960040234029293, -0.028338586911559105, -0.005827782209962606, -0.12531031668186188, -0.18440032005310059, -0.04392573609948158, -0.013532944954931736, 0.14609916508197784, -0.1925939917564392, 0.044199973344802856, -0.011342616751790047, 0.0684211477637291, 0.015194900333881378, -0.016273004934191704, -0.024969644844532013, 0.05128217488527298, -0.05419326573610306, -0.05942480266094208, 0.07771637290716171, 0.019962934777140617, -0.1160719096660614, -0.0047094798646867275, -0.13853539526462555, 0.15926523506641388, 0.1321854144334793, -0.08298291265964508, -0.04360315576195717, 0.004244321491569281, -0.05156289041042328, -0.04325037822127342, -0.025339776650071144, -0.019454501569271088, 0.1530664712190628, 0.009253283031284809, 0.16480739414691925, -0.09525943547487259, -0.04939912632107735, 0.025063514709472656, -0.028486672788858414, 0.016822021454572678, 0.13781200349330902, 0.08281178027391434, -0.11243603378534317, 0.15291385352611542, 0.17431160807609558, -0.05793148651719093, 0.142081156373024, -0.04372479394078255, -0.07793213427066803, -0.0307561457157135, -0.010400891304016113, 0.003073485102504492, 0.0888867974281311, -0.14075955748558044, 0.01295256707817316, 0.03765325993299484, 0.03171977028250694, 0.024704834446310997, -0.20114891231060028, -0.03251342102885246, 0.04634349048137665, -0.05331233888864517, -0.032280877232551575, -0.00317708239890635, -0.015443301759660244, 0.10209011286497116, 0.007277340162545443, -0.07026155292987823, 0.04667225107550621, -0.00008847169374348596, -0.08047454804182053, 0.20336322486400604, -0.07740869373083115, -0.18570148944854736, -0.15103788673877716, -0.08401760458946228, -0.07560988515615463, 0.011296594515442848, 0.07008069008588791, -0.06667279452085495, -0.025289511308073997, -0.0960969477891922, 0.026379769667983055, -0.02413259632885456, 0.008797181770205498, 0.024782858788967133, -0.011785094626247883, 0.07532039284706116, -0.11546454578638077, -0.01034568715840578, -0.016445066779851913, -0.030190952122211456, 0.033985208719968796, 0.004324367269873619, 0.11588878929615021, 0.15033447742462158, -0.00008531325875082985, 0.015359184704720974, -0.025897348299622536, 0.24809513986110687, -0.060158051550388336, -0.00764903798699379, 0.16764633357524872, -0.001341422670520842, 0.06754627823829651, 0.10743575543165207, 0.05757022649049759, -0.08008236438035965, 0.00574599951505661, 0.020111083984375, -0.04066222161054611, -0.22850383818149567, -0.03267141059041023, -0.06458695232868195, 0.03337616100907326, 0.09303015470504761, 0.021893350407481194, 0.05529266968369484, 0.06437169015407562, 0.019180597737431526, 0.09516758471727371, -0.029553256928920746, 0.0676693543791771, 0.12318459898233414, 0.0414847731590271, 0.12521898746490479, -0.04887770116329193, -0.033635418862104416, 0.04762323200702667, 0.029968274757266045, 0.19616378843784332, -0.005354000721126795, 0.21265678107738495, 0.047922126948833466, 0.1661122590303421, -0.014128952287137508, 0.08129492402076721, -0.019134456291794777, -0.017719896510243416, -0.02974165417253971, -0.04962114617228508, -0.03942083194851875, 0.017408397048711777, -0.05421629175543785, 0.05669301003217697, -0.10191082954406738, 0.005302756559103727, 0.04426512494683266, 0.2647702693939209, 0.04952554032206535, -0.34262168407440186, -0.10610557347536087, 0.00767655810341239, -0.03715125471353531, -0.02789969928562641, 0.0262435469776392, 0.11914973706007004, -0.09055985510349274, 0.0326363630592823, -0.07821418344974518, 0.1084216833114624, -0.0430024079978466, 0.05469314754009247, 0.06692107766866684, 0.07493250072002411, 0.0015045226318761706, 0.09313187748193741, -0.28593528270721436, 0.2678266167640686, 0.00939946062862873, 0.04046120494604111, -0.08216840028762817, -0.0030083616729825735, 0.023482905700802803, 0.05387163534760475, 0.0776262879371643, -0.0025649038143455982, 0.006895868573337793, -0.16226571798324585, -0.07782864570617676, 0.02014262042939663, 0.06510630995035172, -0.05958566442131996, 0.10357753187417984, -0.040453843772411346, 0.005145157687366009, 0.06798586249351501, 0.04059133678674698, -0.032844845205545425, -0.10729148238897324, 0.015929436311125755, 0.046187061816453934, -0.030420782044529915, -0.0625281035900116, -0.10136045515537262, -0.10234755277633667, 0.1358456313610077, -0.020996714010834694, -0.05571277067065239, -0.10069437325000763, 0.07148396223783493, 0.07947367429733276, -0.10048629343509674, 0.018760917708277702, -0.0025450014509260654, 0.07511398941278458, 0.020210618153214455, -0.08135544508695602, 0.10941127687692642, -0.06155388429760933, -0.15926367044448853, -0.0480387806892395, 0.13205350935459137, 0.006059905979782343, 0.06370451301336288, -0.017789611592888832, 0.007333959918469191, -0.06033045053482056, -0.07317272573709488, 0.01743936538696289, -0.014252051711082458, 0.07516667246818542, -0.005697185639292002, -0.019948309287428856, 0.031171435490250587, -0.07023868709802628, -0.046280886977910995, 0.19302159547805786, 0.24075736105442047, -0.08069616556167603, 0.021427370607852936, 0.05192543566226959, -0.0597635917365551, -0.17867861688137054, 0.009537158533930779, 0.04329438880085945, 0.003797134617343545, 0.06514893472194672, -0.17048175632953644, 0.0845918208360672, 0.08528583496809006, -0.013040827587246895, 0.11485046148300171, -0.36117732524871826, -0.12750723958015442, 0.08159887790679932, 0.1313391625881195, 0.10576902329921722, -0.15230023860931396, -0.042985957115888596, -0.0352763794362545, -0.17169253528118134, 0.1286257952451706, -0.09800828993320465, 0.13000771403312683, -0.025454454123973846, 0.10221227258443832, 0.007701451424509287, -0.05983057618141174, 0.12515921890735626, 0.004154018592089415, 0.07293948531150818, -0.06637020409107208, 0.006270607002079487, 0.08330883830785751, -0.049813322722911835, 0.033252183347940445, -0.13907687366008759, 0.040280673652887344, -0.11185387521982193, -0.022842098027467728, -0.0827556848526001, 0.022762181237339973, -0.04064071550965309, -0.06846319884061813, -0.024956030771136284, 0.019288010895252228, 0.06548040360212326, -0.011718763038516045, 0.1407627910375595, 0.01725657470524311, 0.12424051761627197, 0.14513880014419556, 0.08061528205871582, -0.07514185458421707, -0.0772092342376709, -0.040198661386966705, -0.022143416106700897, 0.05050724744796753, -0.16601817309856415, 0.022694503888487816, 0.13330109417438507, 0.017482955008745193, 0.13762368261814117, 0.07139061391353607, -0.04382854700088501, 0.0030553583055734634, 0.04980253428220749, -0.17149598896503448, -0.13834623992443085, -0.0395449660718441, -0.01913975551724434, -0.13082429766654968, 0.041974153369665146, 0.12325365096330643, -0.06767555326223373, -0.007139404769986868, 0.0017789057455956936, 0.01791931688785553, -0.05205858126282692, 0.18173247575759888, 0.05023150146007538, 0.052765753120183945, -0.09881123900413513, 0.09100335836410522, 0.05828508362174034, -0.07485432177782059, 0.015905097126960754, 0.07793575525283813, -0.08625136315822601, -0.04860564321279526, 0.02232840657234192, 0.1601693481206894, -0.07173532992601395, -0.041511520743370056, -0.1407778263092041, -0.10506986826658249, 0.07569071650505066, 0.1290183961391449, 0.09098878502845764, 0.02008916810154915, -0.06072130426764488, -0.01534437108784914, -0.10535690188407898, 0.1113223284482956, 0.055057816207408905, 0.06914996355772018, -0.14792798459529877, 0.12564362585544586, -0.001964391442015767, 0.05732924863696098, -0.010372644290328026, 0.024057116359472275, -0.07853680849075317, 0.009954025037586689, -0.14393499493598938, -0.020438235253095627, -0.02982891909778118, -0.0012588384561240673, -0.025935452431440353, -0.05132116377353668, -0.05853309854865074, 0.02053946629166603, -0.11082427203655243, -0.03664712235331535, 0.02469809167087078, 0.05167975649237633, -0.11375097185373306, -0.02929506078362465, 0.03162330016493797, -0.06706824153661728, 0.08458918333053589, 0.028759874403476715, -0.002287650713697076, 0.04859226569533348, -0.0978751927614212, 0.024971799924969673, 0.030854349955916405, 0.027818819507956505, 0.05318628251552582, -0.07681897282600403, -0.017905501648783684, -0.007950901053845882, 0.03810551017522812, 0.01591690257191658, 0.08555953204631805, -0.13209976255893707, -0.006007385440170765, -0.011921558529138565, -0.04965062066912651, -0.07614057511091232, 0.04297462850809097, 0.05914364755153656, 0.04025127366185188, 0.20024007558822632, -0.05880571901798248, 0.041934724897146225, -0.22187353670597076, 0.010406284593045712, 0.006410558708012104, -0.1297011822462082, -0.10080582648515701, -0.06440933048725128, 0.05743841081857681, -0.06526949256658554, 0.1010642796754837, 0.005811754614114761, 0.04092637449502945, 0.02350115031003952, 0.00693839555606246, 0.030013330280780792, -0.006049801595509052, 0.2280440330505371, 0.009135843254625797, -0.02927052043378353, 0.05271871015429497, 0.03988400474190712, 0.09571025520563126, 0.14860855042934418, 0.18854688107967377, 0.14824837446212769, 0.00016807549400255084, 0.08744683861732483, 0.024918213486671448, -0.033752020448446274, -0.1869398057460785, 0.020101910457015038, -0.0221929419785738, 0.1312035471200943, -0.019827183336019516, 0.2266974002122879, 0.09084688872098923, -0.16506722569465637, 0.03791329637169838, -0.058584511280059814, -0.07474502176046371, -0.09313435107469559, -0.11824411898851395, -0.06833053380250931, -0.13202188909053802, -0.014258339069783688, -0.11646975576877594, 0.029178326949477196, 0.12621881067752838, 0.010016623884439468, -0.03916380926966667, 0.14856258034706116, 0.015079553239047527, -0.013849247246980667, 0.05257555842399597, -0.0021742836106568575, -0.03301691636443138, -0.08690257370471954, -0.06632919609546661, 0.007546053733676672, 0.002545206109061837, 0.03717217221856117, -0.04234777390956879, -0.04136150702834129, 0.031587354838848114, -0.032009709626436234, -0.10757419466972351, -0.0031139173079282045, 0.02204093150794506, 0.058969248086214066, 0.06439990550279617, 0.009356456808745861, 0.010111912153661251, -0.005768192932009697, 0.24127396941184998, -0.08391647040843964, -0.06771457195281982, -0.09331095218658447, 0.20164929330348969, 0.012150166556239128, -0.04400035738945007, 0.031525734812021255, -0.07139942049980164, 0.009767042472958565, 0.2630941867828369, 0.19563890993595123, -0.10326076298952103, -0.019983747974038124, 0.0037656996864825487, -0.0014374313177540898, -0.017160411924123764, 0.1095891073346138, 0.12126123160123825, 0.04087824746966362, -0.09610819816589355, -0.018499184399843216, -0.060990430414676666, -0.010332681238651276, -0.03428073599934578, 0.08005718886852264, 0.023118291050195694, -0.007205862086266279, -0.02878631092607975, 0.061890799552202225, -0.0650859996676445, -0.0970059484243393, -0.0031355167739093304, -0.20383042097091675, -0.15135221183300018, -0.028925251215696335, 0.10876821726560593, 0.004940529819577932, 0.05600149556994438, -0.02491558901965618, 0.03622051328420639, 0.07466055452823639, -0.01635521464049816, -0.09148096293210983, -0.061867620795965195, 0.09267494827508926, -0.11711303889751434, 0.19354453682899475, -0.046726591885089874, 0.03595202788710594, 0.12614235281944275, 0.0600622184574604, -0.0961698368191719, 0.0717962458729744, 0.050965193659067154, -0.012861104682087898, 0.029816484078764915, 0.08124285191297531, -0.016438569873571396, 0.07388748228549957, 0.036537494510412216, -0.11395194381475449, 0.0005326890968717635, -0.02309086173772812, -0.024579094722867012, -0.0386623814702034, -0.05021308735013008, -0.04931611567735672, 0.14116999506950378, 0.19694697856903076, -0.05904671549797058, -0.02017137035727501, -0.07605693489313126, -0.002871656557545066, 0.06399159878492355, 0.008793514221906662, -0.05394838750362396, -0.2188493013381958, -0.006570830941200256, 0.043360400944948196, -0.00214608246460557, -0.2736107409000397, -0.08329947292804718, -0.003603266319260001, -0.06394641101360321, -0.09701747447252274, 0.08942282944917679, 0.09919945895671844, 0.038867589086294174, -0.0512310154736042, -0.0037236222997307777, -0.0787869542837143, 0.151788592338562, -0.14867529273033142, -0.09071886539459229 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 457311749 - CO2 Emissions (in grams): 10.148805588432941 ## Validation Metrics - Loss: 1.647747278213501 - Rouge1: 32.4854 - Rouge2: 19.8974 - RougeL: 30.0602 - RougeLsum: 29.9377 - Gen Len: 46.6556 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/danicodes/autonlp-legal-text-summary-457311749 ```
{"language": "unk", "tags": "autonlp", "datasets": ["danicodes/autonlp-data-legal-text-summary"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 10.148805588432941}
text2text-generation
danicodes/autonlp-legal-text-summary-457311749
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:danicodes/autonlp-data-legal-text-summary", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "unk" ]
TAGS #transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-danicodes/autonlp-data-legal-text-summary #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 457311749 - CO2 Emissions (in grams): 10.148805588432941 ## Validation Metrics - Loss: 1.647747278213501 - Rouge1: 32.4854 - Rouge2: 19.8974 - RougeL: 30.0602 - RougeLsum: 29.9377 - Gen Len: 46.6556 ## Usage You can use cURL to access this model:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 457311749\n- CO2 Emissions (in grams): 10.148805588432941", "## Validation Metrics\n\n- Loss: 1.647747278213501\n- Rouge1: 32.4854\n- Rouge2: 19.8974\n- RougeL: 30.0602\n- RougeLsum: 29.9377\n- Gen Len: 46.6556", "## Usage\n\nYou can use cURL to access this model:" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-danicodes/autonlp-data-legal-text-summary #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 457311749\n- CO2 Emissions (in grams): 10.148805588432941", "## Validation Metrics\n\n- Loss: 1.647747278213501\n- Rouge1: 32.4854\n- Rouge2: 19.8974\n- RougeL: 30.0602\n- RougeLsum: 29.9377\n- Gen Len: 46.6556", "## Usage\n\nYou can use cURL to access this model:" ]
[ 75, 41, 54, 13 ]
[ "passage: TAGS\n#transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-danicodes/autonlp-data-legal-text-summary #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 457311749\n- CO2 Emissions (in grams): 10.148805588432941## Validation Metrics\n\n- Loss: 1.647747278213501\n- Rouge1: 32.4854\n- Rouge2: 19.8974\n- RougeL: 30.0602\n- RougeLsum: 29.9377\n- Gen Len: 46.6556## Usage\n\nYou can use cURL to access this model:" ]
[ -0.19320963323116302, 0.13215458393096924, -0.001642912975512445, 0.05495886877179146, 0.048746634274721146, 0.026004506275057793, 0.11865246295928955, 0.08040344715118408, 0.020085357129573822, 0.028375905007123947, 0.14769355952739716, 0.12064440548419952, -0.005060236435383558, 0.1816992610692978, -0.054213933646678925, -0.15347200632095337, 0.06543529778718948, 0.038493331521749496, 0.022809548303484917, 0.11960286647081375, 0.1196298822760582, -0.08116846531629562, 0.142195925116539, 0.07962419837713242, -0.11480171233415604, -0.02879583090543747, 0.0427151583135128, -0.07776545733213425, 0.13399632275104523, 0.12000017613172531, 0.1513769030570984, 0.09885707497596741, 0.11415748298168182, -0.09247096627950668, 0.0055486056953668594, -0.043033212423324585, -0.06199316680431366, 0.12360462546348572, 0.022348882630467415, -0.037036921828985214, 0.014051484875380993, 0.0001910488063003868, 0.006560334470123053, 0.030534405261278152, -0.0942649245262146, -0.023002438247203827, -0.06150662899017334, -0.044413164258003235, 0.11687802523374557, 0.10855071246623993, -0.021288471296429634, 0.2582162022590637, -0.146338552236557, 0.030896110460162163, 0.16827690601348877, -0.17173150181770325, -0.006607272662222385, 0.1354859173297882, 0.02098970301449299, -0.10789026319980621, -0.03666146844625473, 0.09144850820302963, 0.10259730368852615, -0.02289242297410965, 0.042058154940605164, -0.0917460098862648, -0.008589522913098335, 0.020637033507227898, -0.10728456825017929, -0.00834495760500431, 0.2502451539039612, 0.051160987466573715, -0.08691313117742538, 0.0122324638068676, -0.06710188835859299, -0.11298924684524536, -0.04937416687607765, -0.07879124581813812, 0.01261170208454132, -0.05545806884765625, -0.0338861458003521, 0.043124113231897354, -0.1634145826101303, -0.03491676598787308, -0.14139316976070404, 0.04054257646203041, -0.050493981689214706, 0.0032528063748031855, -0.03261975571513176, 0.11645149439573288, -0.1798185110092163, -0.08437076210975647, -0.03656213730573654, -0.060276102274656296, -0.03599799796938896, -0.018238307908177376, -0.04805241897702217, 0.08487661182880402, 0.02647004835307598, 0.1953517496585846, 0.02802411839365959, -0.02656192146241665, 0.10722094029188156, 0.026542287319898605, 0.0022381278686225414, 0.16948778927326202, -0.09279752522706985, -0.06740939617156982, 0.06760886311531067, -0.07441611588001251, 0.04864468798041344, -0.059773221611976624, -0.13471288979053497, -0.10285869985818863, 0.04739667475223541, 0.028839852660894394, 0.03559129685163498, -0.01255055982619524, -0.11356088519096375, -0.013117270544171333, 0.18597480654716492, -0.002294141100719571, 0.03782375156879425, -0.02183411829173565, -0.019750433042645454, 0.04757154732942581, 0.11410778760910034, 0.053255874663591385, -0.021226998418569565, 0.09665995836257935, -0.13641032576560974, -0.016404131427407265, -0.029976749792695045, -0.08640893548727036, 0.06502661108970642, -0.08900613337755203, 0.04150864854454994, -0.2080237716436386, -0.08233357220888138, 0.010855157859623432, -0.01677660644054413, -0.039888471364974976, -0.06641433387994766, -0.03687787428498268, -0.020710501819849014, 0.038535021245479584, 0.0014492241898551583, -0.0239238440990448, -0.04022114723920822, -0.0075861006043851376, 0.005002028774470091, 0.05173267424106598, -0.1652422547340393, 0.006109124049544334, -0.09289061278104782, -0.0013339390279725194, -0.1265164613723755, 0.0025012646801769733, 0.01585981622338295, -0.03245504945516586, -0.12137749791145325, -0.05768222361803055, 0.02046443335711956, -0.020629635080695152, 0.1100473552942276, 0.22274628281593323, -0.08767369389533997, -0.06719698756933212, 0.06836199015378952, -0.06910736858844757, -0.11782584339380264, 0.08382183313369751, -0.018737301230430603, 0.010774124413728714, 0.025521093979477882, -0.04639415070414543, 0.11076857894659042, -0.17614951729774475, -0.03001522459089756, 0.07240249216556549, -0.002188541227951646, -0.1503605842590332, 0.10161372274160385, -0.035186510533094406, -0.13760286569595337, -0.017036501318216324, 0.04891622066497803, 0.02889997512102127, -0.0962335392832756, -0.12489806115627289, -0.04673650860786438, -0.0012016447726637125, 0.04524631053209305, -0.054017432034015656, 0.05782470852136612, -0.019891999661922455, -0.07646554708480835, -0.07332547754049301, 0.09597783535718918, 0.003714122110977769, 0.017141813412308693, -0.07975862920284271, 0.10734313726425171, -0.1440347284078598, -0.05403730273246765, -0.138513445854187, -0.07333259284496307, -0.023625941947102547, -0.01392069086432457, -0.026990216225385666, 0.041565049439668655, 0.02652784064412117, 0.0684620812535286, -0.02597510814666748, 0.018306463956832886, 0.021080603823065758, -0.012377871200442314, -0.12439172714948654, -0.1340622901916504, 0.009288251399993896, -0.009335947223007679, 0.2500664293766022, -0.08952382951974869, -0.0004588523297570646, 0.002811735961586237, 0.08059396594762802, -0.03245452791452408, 0.042427290230989456, -0.01427658274769783, 0.015795083716511726, -0.08601216971874237, 0.01505879033356905, 0.016826609149575233, -0.005424300208687782, -0.17804785072803497, 0.09443695098161697, -0.13586805760860443, 0.1390695571899414, 0.1821543127298355, -0.04092389717698097, -0.07456649839878082, -0.02838020771741867, 0.009539742022752762, 0.000378828844986856, -0.09321039170026779, -0.029978787526488304, 0.01416150201112032, -0.0007848821696825325, 0.08840417861938477, -0.06714817881584167, -0.028993971645832062, 0.11541048437356949, -0.07537255436182022, 0.005407034419476986, 0.1334570348262787, 0.1982400119304657, -0.10476663708686829, 0.08641137927770615, 0.143479123711586, -0.11236194521188736, 0.009221632964909077, 0.03422335907816887, -0.0653136819601059, -0.05406443402171135, -0.10148043185472488, 0.03725558519363403, 0.12572500109672546, -0.03473355248570442, 0.08781091868877411, 0.09422443807125092, -0.035917021334171295, -0.0016150878509506583, -0.16240988671779633, -0.04425322264432907, 0.019490161910653114, 0.032936692237854004, -0.09671466797590256, 0.060004763305187225, -0.022432120516896248, 0.13922464847564697, -0.01582478918135166, -0.14022678136825562, 0.018149761483073235, 0.038448456674814224, -0.15391379594802856, 0.27725017070770264, -0.08251739293336868, -0.2549380958080292, -0.12915298342704773, 0.011653068475425243, -0.009773503988981247, 0.05151040852069855, 0.07033461332321167, -0.07218223810195923, -0.0959920734167099, -0.03081825003027916, 0.00517719192430377, 0.011537235230207443, 0.09474364668130875, -0.050688691437244415, -0.06052163988351822, -0.027692226693034172, -0.11202637851238251, -0.03525786101818085, -0.010438039898872375, 0.0358995646238327, 0.14072595536708832, -0.0920330062508583, 0.13812664151191711, 0.17893527448177338, -0.03727777302265167, -0.04172709211707115, 0.04268166050314903, 0.26874884963035583, -0.07103069126605988, 0.06155860796570778, 0.12375596165657043, 0.05849380046129227, 0.03998967632651329, 0.10416833311319351, 0.03320646286010742, -0.06691546738147736, 0.001319024246186018, -0.0198532585054636, -0.07093460857868195, -0.22694827616214752, -0.1352352797985077, -0.030872410163283348, 0.02141910046339035, 0.0548265278339386, -0.00417630048468709, 0.1520666927099228, 0.17079748213291168, -0.017386388033628464, 0.0592225082218647, -0.06481879949569702, 0.08999811112880707, 0.15047363936901093, -0.001533324713818729, 0.15518024563789368, -0.07231752574443817, -0.10360182821750641, 0.119890958070755, -0.0725802481174469, 0.12004540115594864, 0.13122175633907318, 0.01818511076271534, -0.008475396782159805, 0.1045522540807724, 0.07310869544744492, 0.16222679615020752, 0.10861220210790634, -0.062117479741573334, -0.033521704375743866, -0.07512470334768295, -0.0063499566167593, 0.08366488665342331, 0.05941940099000931, -0.03197194263339043, -0.10852202028036118, 0.04255536571145058, 0.019852302968502045, 0.009016166441142559, 0.1818409115076065, -0.37619325518608093, -0.08237312734127045, 0.014672129414975643, 0.06140813231468201, -0.0689229667186737, -0.043184567242860794, -0.03836280480027199, -0.14962494373321533, 0.05680488422513008, -0.0024449315387755632, 0.08747496455907822, 0.029426826164126396, 0.01059788279235363, -0.10260941088199615, 0.01741047389805317, -0.02733187936246395, 0.06557277590036392, -0.24064430594444275, 0.2796820104122162, 0.05838781222701073, -0.04839102923870087, -0.07669685781002045, 0.0117580471560359, -0.0012300342787057161, 0.20609983801841736, 0.1625889241695404, 0.04392893239855766, 0.020486442372202873, -0.09239794313907623, -0.20696207880973816, 0.08140073716640472, -0.0017082454869523644, -0.08061777055263519, 0.04515519365668297, 0.039208948612213135, -0.06986510753631592, 0.03089309297502041, 0.016653208062052727, -0.13842768967151642, -0.07378068566322327, 0.09313099831342697, 0.10808679461479187, -0.04528852552175522, 0.004024038556963205, -0.124296635389328, -0.020877594128251076, 0.2111632525920868, -0.03714215010404587, -0.03525245562195778, -0.13616903126239777, -0.026926545426249504, 0.14593027532100677, -0.1062815710902214, 0.06618312746286392, -0.050624068826436996, 0.0826115608215332, -0.057368602603673935, -0.04384174570441246, 0.15663351118564606, -0.11352914571762085, -0.09668301790952682, -0.03771975263953209, 0.13787142932415009, 0.02385287545621395, 0.09564784914255142, 0.05848138406872749, 0.012518269941210747, -0.10217104852199554, -0.1618487387895584, 0.01659071445465088, 0.012527871876955032, 0.07894422113895416, -0.019515907391905785, 0.026186544448137283, -0.06560856103897095, 0.001626417739316821, -0.003345848759636283, 0.14495030045509338, 0.22001202404499054, -0.09592895954847336, 0.03070676699280739, 0.17211730778217316, -0.0304842758923769, -0.23857524991035461, -0.0030833773780614138, -0.03832315653562546, 0.07334594428539276, -0.10600096732378006, -0.09581443667411804, 0.07353312522172928, 0.11055935174226761, -0.05774776637554169, 0.009147685952484608, -0.2072470784187317, -0.17463281750679016, 0.20115570724010468, -0.00014106668822932988, 0.27672073245048523, -0.041362833231687546, -0.017234385013580322, -0.10590691864490509, -0.2784776985645294, 0.17375075817108154, -0.05573451146483421, 0.07150521874427795, -0.00302546052262187, 0.0840306356549263, 0.03724830970168114, -0.040743403136730194, 0.22040529549121857, 0.04998420923948288, -0.0025392493698745966, 0.012418190948665142, -0.08683093637228012, 0.060212813317775726, -0.02789154276251793, 0.10876886546611786, 0.009324053302407265, 0.04769172891974449, -0.11060266941785812, -0.037188973277807236, -0.006451656110584736, 0.14492064714431763, -0.05862031131982803, -0.0933300331234932, -0.028266260400414467, -0.0019074924057349563, -0.033536966890096664, -0.05611537769436836, 0.10583905875682831, -0.0024083321914076805, 0.010417142882943153, 0.09484415501356125, 0.16963914036750793, -0.045734915882349014, 0.01918567344546318, 0.054906100034713745, -0.09234127402305603, 0.08836463838815689, -0.16280019283294678, 0.05690138041973114, 0.13130205869674683, -0.010073862038552761, 0.03916454315185547, 0.035352952778339386, -0.05833350121974945, -0.02007506787776947, 0.12291116267442703, -0.16204001009464264, 0.03850226849317551, -0.040155377238988876, -0.018175240606069565, -0.05229312181472778, 0.10651274770498276, 0.1439242660999298, -0.03938552364706993, -0.04849758744239807, 0.004026107955724001, -0.02714754268527031, -0.03613680601119995, 0.19262580573558807, 0.053895898163318634, 0.07335031777620316, -0.11764353513717651, 0.018074534833431244, 0.014095825143158436, -0.05749814584851265, -0.03763624653220177, -0.0005094538209959865, -0.12430024892091751, -0.10304312407970428, 0.010610338300466537, 0.09638529270887375, -0.3549448549747467, -0.045512113720178604, -0.05877917632460594, -0.08002673089504242, 0.05036391317844391, 0.1691252440214157, 0.10808540135622025, 0.05472898855805397, 0.029655683785676956, -0.12564735114574432, -0.12888075411319733, -0.022067701444029808, 0.08075880259275436, 0.0532938651740551, -0.03960471227765083, 0.028588978573679924, -0.028576502576470375, 0.12061144411563873, -0.043063536286354065, 0.021892527118325233, -0.1248956173658371, -0.032614484429359436, -0.10769229382276535, 0.0029510660097002983, -0.06389941275119781, -0.022781116887927055, -0.03284915164113045, -0.06275969743728638, -0.07361072301864624, 0.024652158841490746, -0.0652892217040062, -0.0020268752705305815, -0.01895246095955372, 0.03268133103847504, -0.06431398540735245, -0.02026824839413166, 0.06322361528873444, -0.020976025611162186, 0.0902961865067482, 0.11084750294685364, 0.06401747465133667, 0.058416370302438736, -0.14698955416679382, 0.04178128018975258, 0.10719987750053406, 0.030413003638386726, 0.10595902055501938, -0.18036490678787231, 0.03432285785675049, 0.03635574132204056, 0.04605879634618759, 0.003650772152468562, 0.023228980600833893, -0.12027473747730255, 0.06156904622912407, -0.05235421657562256, -0.1287820190191269, -0.07112052291631699, -0.014349328354001045, 0.07733199000358582, 0.021286435425281525, 0.0421074703335762, -0.001414801343344152, 0.07092839479446411, -0.10412763804197311, 0.05419877544045448, -0.07934000343084335, -0.04516489431262016, -0.10940727591514587, -0.0694994404911995, 0.06039736419916153, -0.008033791556954384, 0.14691057801246643, -0.05249175801873207, 0.17928235232830048, -0.005407386459410191, 0.05515148118138313, 0.04893755540251732, 0.002069707028567791, 0.11995869874954224, 0.1097538024187088, 0.015441016294062138, 0.0117936497554183, 0.13534508645534515, 0.08640848100185394, 0.006964085623621941, 0.14495867490768433, -0.0766359195113182, 0.04948035255074501, 0.1804303526878357, -0.015682687982916832, -0.10966594517230988, -0.051549188792705536, -0.05189089849591255, -0.06576798111200333, 0.001759319449774921, 0.005857113748788834, 0.03420303016901016, 0.09275674819946289, -0.08281265944242477, -0.02606992796063423, -0.01803682930767536, -0.05242810770869255, -0.24521775543689728, -0.059206824749708176, -0.13503098487854004, -0.07142100483179092, -0.023827914148569107, -0.11503398418426514, -0.041838388890028, 0.011794613674283028, 0.055014777928590775, -0.026383109390735626, 0.06413020193576813, -0.06729909032583237, -0.025379324331879616, -0.0015397982206195593, 0.04415934532880783, 0.058849986642599106, -0.06281637400388718, -0.013700976967811584, 0.006913609802722931, 0.017619499936699867, 0.002335653407499194, -0.02500220760703087, 0.04630841687321663, 0.10720030963420868, 0.029287951067090034, -0.09584587067365646, -0.06805408000946045, 0.015013309195637703, 0.08111286908388138, 0.03717778995633125, 0.002649239031597972, 0.044182561337947845, 0.016160884872078896, 0.16227829456329346, -0.07500666379928589, -0.030925679951906204, -0.1286616027355194, 0.22349222004413605, -0.03700041025876999, 0.061618488281965256, 0.029203522950410843, -0.03984278440475464, 0.005072806496173143, 0.19526995718479156, 0.18925094604492188, 0.00001007476203085389, 0.0402178019285202, 0.024066481739282608, 0.014781521633267403, 0.030322276055812836, -0.040871236473321915, 0.0584273524582386, 0.17178493738174438, -0.13536758720874786, -0.021375060081481934, -0.019090404734015465, 0.0032112374901771545, 0.016810504719614983, 0.052754003554582596, -0.012757611460983753, -0.05522047355771065, -0.033656664192676544, 0.070058673620224, -0.06213659420609474, 0.029030872508883476, 0.06777439266443253, -0.15980100631713867, -0.11650621145963669, 0.023984616622328758, -0.05700386315584183, 0.025894101709127426, 0.1128932386636734, -0.10333084315061569, -0.08319475501775742, 0.13261401653289795, 0.042303137481212616, -0.20739860832691193, -0.08405628800392151, 0.03344041854143143, 0.10059146583080292, 0.12497168034315109, 0.02356189861893654, 0.17229324579238892, 0.11988893151283264, 0.07380013912916183, -0.10708507895469666, 0.08423099666833878, 0.06698457151651382, -0.07633428275585175, 0.10425873100757599, -0.04016968980431557, -0.02215643972158432, 0.05930975079536438, 0.0304497592151165, -0.12996986508369446, 0.05583583936095238, -0.027160730212926865, 0.01445780135691166, -0.04605966433882713, 0.008640367537736893, -0.10738296061754227, 0.11547417938709259, 0.07478540390729904, -0.07734784483909607, -0.08390695601701736, -0.011931910179555416, 0.10557142645120621, 0.07058511674404144, -0.13459795713424683, -0.010526520200073719, -0.10105644911527634, 0.08598697930574417, 0.034977298229932785, 0.0546681173145771, -0.14177651703357697, -0.029745474457740784, -0.05879746377468109, -0.0522589236497879, -0.05936666578054428, 0.033815763890743256, -0.022269675508141518, 0.016991320997476578, -0.027280086651444435, -0.08229715377092361, -0.004054229240864515, 0.06364505738019943, -0.0764784961938858, -0.18580813705921173 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-fi-to-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt19 dataset. It achieves the following results on the evaluation set: - Loss: 3.5235 - Bleu: 1.129 - Gen Len: 17.088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-----:|:-------:| | 3.414 | 1.0 | 6250 | 3.5235 | 1.129 | 17.088 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt19"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-fi-to-en", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt19", "type": "wmt19", "args": "fi-en"}, "metrics": [{"type": "bleu", "value": 1.129, "name": "Bleu"}]}]}]}
text2text-generation
danielbispov/t5-small-finetuned-fi-to-en
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt19", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt19 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-fi-to-en =========================== This model is a fine-tuned version of t5-small on the wmt19 dataset. It achieves the following results on the evaluation set: * Loss: 3.5235 * Bleu: 1.129 * Gen Len: 17.088 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.9.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt19 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 78, 113, 4, 31 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt19 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10018763691186905, 0.1020846888422966, -0.003068779595196247, 0.09225403517484665, 0.11054647713899612, -0.006213840562850237, 0.1617499440908432, 0.162706196308136, -0.114800363779068, 0.04455270618200302, 0.13961674273014069, 0.1435156911611557, 0.04854437708854675, 0.16310958564281464, -0.06632992625236511, -0.2530263364315033, 0.043470803648233414, 0.061283789575099945, -0.012580701150000095, 0.1338246911764145, 0.0904705822467804, -0.12272895127534866, 0.0896165519952774, 0.03833270072937012, -0.19326481223106384, -0.011609970591962337, 0.0059687127359211445, -0.08158375322818756, 0.11036525666713715, 0.03099856898188591, 0.08436957746744156, 0.039180938154459, 0.045189373195171356, -0.1550242155790329, 0.010375169105827808, 0.05498515069484711, 0.00827142782509327, 0.10604949295520782, 0.056162938475608826, -0.010299665853381157, 0.10616742819547653, -0.0669391006231308, 0.06652136147022247, 0.022880258038640022, -0.12801775336265564, -0.27871155738830566, -0.10212668031454086, 0.04871084913611412, 0.0693507120013237, 0.08826534450054169, -0.004520665854215622, 0.19702355563640594, -0.022306036204099655, 0.11174735426902771, 0.24653120338916779, -0.3087678849697113, -0.049290891736745834, -0.01921570487320423, 0.04577462375164032, 0.07205170392990112, -0.07492587715387344, -0.02931707724928856, 0.019380899146199226, 0.04735000431537628, 0.15927506983280182, -0.014448489062488079, -0.012800455093383789, -0.014281049370765686, -0.1337154507637024, -0.07792136073112488, 0.1774699091911316, 0.03921618312597275, -0.04285382479429245, -0.07829474657773972, -0.07784807682037354, -0.1647094488143921, -0.050074536353349686, 0.004097722936421633, 0.03582059592008591, -0.03727676719427109, -0.0920134112238884, -0.018563522025942802, -0.07967954874038696, -0.036789871752262115, -0.04771464690566063, 0.1373450756072998, 0.042789045721292496, 0.022503841668367386, -0.06761586666107178, 0.07799156755208969, -0.028913171961903572, -0.16636113822460175, -0.004351222887635231, 0.012087524868547916, 0.01453577820211649, -0.03473612293601036, -0.040222372859716415, -0.14462514221668243, 0.000259148160694167, 0.1468612402677536, -0.09334859251976013, 0.07446911931037903, -0.023643674328923225, 0.038803085684776306, -0.07430234551429749, 0.18703024089336395, -0.023472825065255165, 0.024703796952962875, 0.01715351641178131, 0.07596509158611298, 0.05584677308797836, -0.03435618430376053, -0.12055395543575287, 0.03844399377703667, 0.11864006519317627, 0.01588430441915989, -0.02454064041376114, 0.06577832996845245, -0.047562096267938614, -0.03462990000844002, 0.061708513647317886, -0.10162343829870224, 0.02910531684756279, -0.019021380692720413, -0.06431005150079727, -0.01667419821023941, 0.01940012350678444, 0.005663660354912281, -0.046590231359004974, 0.07883727550506592, -0.08945700526237488, 0.019512144848704338, -0.08141499012708664, -0.13866153359413147, 0.027348272502422333, -0.07426105439662933, 0.006277119275182486, -0.09613287448883057, -0.15284103155136108, -0.0039021640550345182, 0.06136146932840347, -0.04219929501414299, -0.05902670696377754, -0.04299786686897278, -0.0868426263332367, 0.04926447942852974, -0.019756818190217018, 0.08416874706745148, -0.06971218436956406, 0.09078147262334824, 0.04638383165001869, 0.07213754951953888, -0.03984277322888374, 0.04497559368610382, -0.09281358867883682, 0.041922248899936676, -0.2172863781452179, 0.06157746911048889, -0.04312095046043396, 0.08662452548742294, -0.10385770350694656, -0.10326875001192093, 0.03069126233458519, -0.026302341371774673, 0.1007145345211029, 0.09796161204576492, -0.15941861271858215, -0.07684922963380814, 0.2003459483385086, -0.08972305059432983, -0.14009089767932892, 0.13591672480106354, -0.04871119558811188, 0.014289581216871738, 0.05544539541006088, 0.2317148894071579, 0.055908702313899994, -0.09179017692804337, -0.008614196442067623, -0.042321786284446716, 0.06010192260146141, -0.07324924319982529, 0.07647610455751419, 0.00991632230579853, 0.06145457923412323, 0.009714977815747261, 0.014831996522843838, 0.039630450308322906, -0.08423927426338196, -0.07801096886396408, -0.05849820002913475, -0.07193876057863235, 0.020310724154114723, 0.04425632581114769, 0.0717134177684784, -0.13394947350025177, -0.11368897557258606, 0.06131714582443237, 0.07428808510303497, -0.08134866505861282, 0.05585301294922829, -0.10654421150684357, 0.11364541202783585, -0.07551930844783783, -0.0008307253010571003, -0.18427656590938568, -0.012058502063155174, 0.032651256769895554, -0.004908444359898567, 0.01981928199529648, -0.04268219321966171, 0.07159537822008133, 0.06758479028940201, -0.0454409159719944, -0.039951834827661514, -0.02546634152531624, 0.003112686099484563, -0.1129593625664711, -0.19479155540466309, -0.042033739387989044, -0.03840361908078194, 0.08614470809698105, -0.14758265018463135, 0.04368523508310318, 0.05486701801419258, 0.11014524847269058, 0.041494220495224, -0.027607671916484833, -0.0022278637625277042, 0.06243022531270981, -0.04838660731911659, -0.06537848711013794, 0.061123572289943695, 0.03182387724518776, -0.09600108116865158, 0.014401034452021122, -0.1599268764257431, 0.17221617698669434, 0.13894468545913696, -0.014114472083747387, -0.050131455063819885, -0.008900337852537632, -0.052476607263088226, -0.026773352175951004, -0.017601974308490753, 0.01672980561852455, 0.15561625361442566, 0.020717434585094452, 0.16096404194831848, -0.10199111700057983, -0.05529586970806122, 0.0493716299533844, -0.03665054216980934, -0.010622305795550346, 0.11059325933456421, 0.02662118338048458, -0.12866270542144775, 0.13846920430660248, 0.14286133646965027, -0.04404761642217636, 0.1358369141817093, -0.066703200340271, -0.06732253730297089, -0.036458831280469894, -0.012704506516456604, 0.031152628362178802, 0.09622544050216675, -0.11676729470491409, -0.01631728745996952, 0.0448470339179039, 0.03376463055610657, 0.006583698559552431, -0.1879774034023285, -0.0009514066623523831, 0.043630145490169525, -0.04815473034977913, -0.05524202436208725, -0.005423141643404961, 0.005827711429446936, 0.10021030902862549, 0.015520267188549042, -0.051317181438207626, 0.0346757210791111, 0.01522294245660305, -0.06749412417411804, 0.1842164397239685, -0.10602883994579315, -0.17849291861057281, -0.1230456680059433, -0.10149050503969193, -0.06708266586065292, -0.004150925204157829, 0.0843280777335167, -0.08161202073097229, -0.05000532418489456, -0.10126762837171555, -0.02306601032614708, -0.009696278721094131, 0.0240644384175539, 0.05365544185042381, -0.02094155177474022, 0.07344329357147217, -0.1127854585647583, -0.031708747148513794, -0.014876692555844784, 0.02543807588517666, 0.07116822153329849, 0.008927240036427975, 0.11151015013456345, 0.1279984563589096, -0.0242888443171978, 0.04513131454586983, -0.038922835141420364, 0.24176450073719025, -0.06830469518899918, -0.01417594961822033, 0.1426510363817215, -0.009647167287766933, 0.09138821065425873, 0.11491662263870239, 0.05251104384660721, -0.09115907549858093, -0.0015367405721917748, -0.00041505557601340115, -0.04727872088551521, -0.21514791250228882, -0.01625802554190159, -0.054274171590805054, -0.003881246317178011, 0.10052440315485, 0.026576703414320946, 0.0366966687142849, 0.05031925067305565, 0.014330320060253143, 0.05342646688222885, -0.013777720741927624, 0.11247818171977997, 0.13427524268627167, 0.06212279200553894, 0.146734818816185, -0.059854548424482346, -0.029770830646157265, 0.04593222588300705, 0.012001479044556618, 0.20769736170768738, -0.004520060028880835, 0.20818497240543365, 0.04629175364971161, 0.1476970911026001, 0.027173694223165512, 0.07598870992660522, -0.02254333347082138, -0.013118457049131393, -0.015776121988892555, -0.04557669907808304, -0.03777977451682091, 0.016659578308463097, -0.06125941127538681, 0.03827628865838051, -0.11847175657749176, 0.016849497333168983, 0.053374625742435455, 0.29953569173812866, 0.038882024586200714, -0.3712882101535797, -0.11650913953781128, 0.007000518497079611, -0.05181701481342316, -0.04291817173361778, 0.002645885804668069, 0.08292568475008011, -0.07723570615053177, 0.07746873050928116, -0.08541270345449448, 0.11191704124212265, -0.05196968466043472, 0.03893275558948517, 0.04198085144162178, 0.09454268217086792, -0.011730986647307873, 0.05784764140844345, -0.29936105012893677, 0.2732609808444977, 0.027074739336967468, 0.06433761864900589, -0.07817383855581284, 0.015040147118270397, 0.004691777750849724, 0.05168619379401207, 0.05657634511590004, -0.005691114813089371, -0.10781347751617432, -0.15011364221572876, -0.09195749461650848, 0.009990077465772629, 0.07840804010629654, 0.01623954065144062, 0.11786516010761261, -0.0145232193171978, -0.0015449393540620804, 0.049491994082927704, -0.013675522059202194, -0.035708434879779816, -0.11374549567699432, 0.02914362959563732, 0.039247266948223114, -0.031697556376457214, -0.07419957965612411, -0.10647760331630707, -0.059273213148117065, 0.17128615081310272, 0.04077592119574547, -0.07561281323432922, -0.12755049765110016, 0.044117044657468796, 0.07491014152765274, -0.09065021574497223, 0.02600887604057789, -0.01437362376600504, 0.11996328830718994, -0.004594895988702774, -0.08028590679168701, 0.1202910989522934, -0.05557899549603462, -0.16314399242401123, -0.041699301451444626, 0.1180524155497551, 0.009735427796840668, 0.06057346239686012, -0.010378982871770859, 0.03900416940450668, -0.03765861690044403, -0.07123029232025146, 0.03556712344288826, -0.007789004128426313, 0.09825917333364487, -0.04796770215034485, -0.0009896435076370835, 0.033016085624694824, -0.06960947811603546, -0.027153439819812775, 0.18108122050762177, 0.266105055809021, -0.08588437736034393, 0.0673796758055687, 0.0362028069794178, -0.050399087369441986, -0.14879798889160156, 0.008192582987248898, 0.054714757949113846, 0.0035161178093403578, 0.010161531157791615, -0.16965854167938232, 0.02221534587442875, 0.07710161805152893, -0.015185222961008549, 0.06606222689151764, -0.31467893719673157, -0.12734904885292053, 0.08964621275663376, 0.13493612408638, 0.097837895154953, -0.15706242620944977, -0.04531409963965416, -0.030369957908988, -0.14819741249084473, 0.1336977630853653, -0.09590937942266464, 0.11140712350606918, -0.033226314932107925, 0.10642417520284653, 0.014789297245442867, -0.06322453916072845, 0.1176949217915535, -0.012947356328368187, 0.0779290646314621, -0.07025248557329178, 0.04366183653473854, 0.11597884446382523, -0.08242516964673996, 0.05078281834721565, -0.10572516918182373, 0.039296962320804596, -0.12145008146762848, -0.018549833446741104, -0.07246318459510803, 0.004954969976097345, -0.030171753838658333, -0.03906407952308655, -0.037583135068416595, 0.005628174636512995, 0.07399932295084, -0.027488160878419876, 0.19540078938007355, 0.01930144615471363, 0.147178053855896, 0.17262719571590424, 0.10053175687789917, -0.1310165673494339, -0.05786973983049393, -0.00041452344157733023, -0.030882958322763443, 0.043887894600629807, -0.1660018116235733, 0.039319250732660294, 0.13272079825401306, 0.0029261172749102116, 0.12074041366577148, 0.06462981551885605, -0.06618103384971619, 0.02116284891963005, 0.05464329198002815, -0.17308880388736725, -0.1185058131814003, -0.005367597099393606, 0.053829092532396317, -0.12104032188653946, 0.045562442392110825, 0.12125708162784576, -0.056052759289741516, -0.023098310455679893, 0.008229565806686878, 0.01741304062306881, -0.017695661634206772, 0.18055808544158936, 0.031234538182616234, 0.07005497813224792, -0.10988664627075195, 0.08031564205884933, 0.05452023446559906, -0.10929570347070694, 0.053878139704465866, 0.10350678861141205, -0.1005036011338234, -0.02862250804901123, 0.04278114438056946, 0.1660299003124237, -0.057480089366436005, -0.048328131437301636, -0.16644708812236786, -0.12406480312347412, 0.0968790054321289, 0.16366170346736908, 0.06660693138837814, 0.0017572676297277212, -0.04054222255945206, -0.010881980881094933, -0.12618380784988403, 0.10076475143432617, 0.055830687284469604, 0.07968033105134964, -0.13435396552085876, 0.11342677474021912, -0.011321359314024448, 0.050156112760305405, -0.011622069403529167, 0.014238107949495316, -0.11041751503944397, 0.01038625929504633, -0.14443741738796234, -0.004826387856155634, -0.05337183550000191, -0.0009759929962456226, -0.025580905377864838, -0.041120514273643494, -0.058523211628198624, 0.020469864830374718, -0.1198640838265419, -0.0324748270213604, 0.020423399284482002, 0.02045697718858719, -0.1141161099076271, -0.024624794721603394, 0.011345991864800453, -0.08571263402700424, 0.08150087296962738, 0.052220724523067474, -0.012837125919759274, 0.02815367840230465, -0.011058763600885868, 0.0009309215238317847, 0.05295306071639061, 0.006905372720211744, 0.07237394899129868, -0.11434946209192276, -0.015455376356840134, 0.014208587817847729, 0.017158471047878265, 0.025686489418148994, 0.11869373917579651, -0.11686389148235321, 0.0013386178761720657, -0.0015236497856676579, -0.059656914323568344, -0.07277462631464005, 0.07228334248065948, 0.09348870068788528, 0.01784394681453705, 0.19061405956745148, -0.07530587911605835, 0.02783544361591339, -0.2032882571220398, -0.000046619719796581194, 0.012749255634844303, -0.15050595998764038, -0.05861150845885277, -0.043253593146800995, 0.06526286900043488, -0.07326818257570267, 0.11756386607885361, 0.0037997306790202856, 0.031071355566382408, 0.04546111822128296, -0.031089970842003822, -0.018179098144173622, 0.006781864445656538, 0.18242749571800232, 0.013275309465825558, -0.04055717587471008, 0.08462826162576675, 0.022592388093471527, 0.0844791904091835, 0.12972228229045868, 0.1882862150669098, 0.12850001454353333, 0.04441741853952408, 0.09765543043613434, 0.027607252821326256, -0.021371791139245033, -0.19375315308570862, 0.04546856880187988, -0.03152036294341087, 0.15109731256961823, -0.0053464933298528194, 0.18965791165828705, 0.13437248766422272, -0.15117903053760529, 0.05496416240930557, -0.03718271479010582, -0.08447819948196411, -0.10388675332069397, -0.11438137292861938, -0.08708535879850388, -0.15624243021011353, -0.007010945584625006, -0.12222159653902054, 0.04700343310832977, 0.045942310243844986, 0.016012543812394142, -0.009619242511689663, 0.12341272085905075, 0.0379907451570034, 0.009403780102729797, 0.05509466305375099, -0.01028603408485651, -0.04945056140422821, -0.04538772255182266, -0.06734171509742737, 0.01758095622062683, 0.004124753177165985, 0.0479586198925972, -0.0033020121045410633, -0.016076944768428802, 0.041341427713632584, -0.030365191400051117, -0.11980807781219482, 0.009200275875627995, 0.03388967365026474, 0.06859467178583145, 0.03605712205171585, 0.00964408926665783, -0.006429165601730347, -0.017445210367441177, 0.20029008388519287, -0.0778028815984726, -0.06454338878393173, -0.11159073561429977, 0.24533361196517944, 0.015221815556287766, -0.04924832284450531, 0.03743290156126022, -0.06514857709407806, -0.01128551084548235, 0.19773198664188385, 0.18003909289836884, -0.028993869200348854, -0.011101912707090378, -0.023961631581187248, -0.010179453529417515, -0.02414572983980179, 0.10797380656003952, 0.12682725489139557, 0.015175841748714447, -0.07314962148666382, -0.02750057354569435, -0.06978408247232437, -0.012233402580022812, -0.04853658750653267, 0.08325102180242538, 0.02740413136780262, -0.00790634285658598, -0.03012262098491192, 0.050401680171489716, -0.05184215307235718, -0.050676379352808, 0.0010681282728910446, -0.20641648769378662, -0.1564837396144867, 0.001258727046661079, 0.07120426744222641, -0.011828050948679447, 0.06194399669766426, -0.0016786691267043352, 0.011356505565345287, 0.08475343883037567, -0.013957642950117588, -0.08048684149980545, -0.07302670180797577, 0.1064569428563118, -0.16903699934482574, 0.17045174539089203, -0.031197749078273773, 0.03137723356485367, 0.14252908527851105, 0.04793757200241089, -0.11161505430936813, 0.06817005574703217, 0.04081493616104126, -0.03937619552016258, 0.01232004165649414, 0.1295044869184494, -0.022150332108139992, 0.06825726479291916, 0.03677710145711899, -0.12171033024787903, -0.01735503599047661, -0.09996425360441208, -0.017751330509781837, -0.01939964108169079, -0.04474543407559395, -0.04336847364902496, 0.1229143813252449, 0.19188235700130463, -0.04552793502807617, -0.003605414414778352, -0.0658259242773056, 0.018996112048625946, 0.06964480131864548, -0.017464837059378624, -0.05967002734541893, -0.26397693157196045, 0.00014406282571144402, 0.0853632315993309, -0.008590152487158775, -0.27040284872055054, -0.09224291890859604, -0.004014668054878712, -0.04969894513487816, -0.10462602972984314, 0.09157435595989227, 0.0920664519071579, 0.04601920768618584, -0.07135192304849625, -0.0007167996373027563, -0.07177214324474335, 0.16927465796470642, -0.13975684344768524, -0.058497440069913864 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bangla_asr This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200) on the None dataset. It achieves the following results on the evaluation set: - Loss: 157.8652 - Wer: 0.4507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2601.5363 | 7.46 | 500 | 259.6630 | 0.6863 | | 417.7386 | 14.93 | 1000 | 156.6117 | 0.5275 | | 262.9455 | 22.39 | 1500 | 155.0886 | 0.5006 | | 178.7715 | 29.85 | 2000 | 155.1077 | 0.4840 | | 132.448 | 37.31 | 2500 | 163.8623 | 0.4770 | | 116.3943 | 44.78 | 3000 | 161.5531 | 0.4609 | | 87.1653 | 52.24 | 3500 | 165.6857 | 0.4597 | | 80.5606 | 59.7 | 4000 | 157.8652 | 0.4507 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bangla_asr", "results": []}]}
automatic-speech-recognition
danielbubiola/bangla_asr
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us
bangla\_asr =========== This model is a fine-tuned version of Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200 on the None dataset. It achieves the following results on the evaluation set: * Loss: 157.8652 * Wer: 0.4507 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 60 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 48, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.12255808711051941, 0.058131176978349686, -0.002464908640831709, 0.07896807789802551, 0.14656300842761993, 0.0035955181811004877, 0.09428741782903671, 0.12115810811519623, -0.05210718512535095, 0.07519831508398056, 0.10286389291286469, 0.1257193237543106, 0.04120578244328499, 0.08762868493795395, -0.042812179774045944, -0.29237064719200134, -0.005849851761013269, 0.020821774378418922, -0.02561732940375805, 0.1293853223323822, 0.07513270527124405, -0.1436576247215271, 0.04718299210071564, 0.0007861403282731771, -0.14568078517913818, 0.004525233060121536, -0.0006785414880141616, -0.07613945752382278, 0.145655557513237, 0.0027360895182937384, 0.10778140276670456, 0.0319146066904068, 0.09930718690156937, -0.2338450849056244, 0.012144471518695354, 0.04134216904640198, 0.04362785816192627, 0.06339626759290695, 0.06966274976730347, -0.03817705065011978, 0.10618661344051361, -0.10180585831403732, 0.06756625324487686, 0.02524532377719879, -0.1178969219326973, -0.24440014362335205, -0.05462191626429558, 0.019233006983995438, 0.07286718487739563, 0.11299456655979156, -0.029813138768076897, 0.10509881377220154, -0.10188894718885422, 0.1054760292172432, 0.2523745894432068, -0.26685452461242676, -0.05877234786748886, -0.030815109610557556, 0.035049550235271454, 0.07161182910203934, -0.12069609016180038, -0.009910637512803078, 0.02129214070737362, 0.058649562299251556, 0.1032237559556961, -0.015258653089404106, -0.09857463091611862, 0.020778954029083252, -0.1521921157836914, -0.021207520738244057, 0.06845143437385559, 0.029087934643030167, -0.022693177685141563, -0.08558401465415955, -0.04878377169370651, -0.20221151411533356, -0.05985281616449356, -0.017770830541849136, 0.037050727754831314, -0.0569012388586998, -0.10629703849554062, -0.007091280538588762, -0.0887422114610672, -0.08995165675878525, -0.04096921160817146, 0.1710052192211151, 0.04057891666889191, -0.013874777592718601, -0.02082989364862442, 0.09820719063282013, -0.0018885042518377304, -0.1289864033460617, 0.016116345301270485, 0.04635412245988846, -0.06740586459636688, -0.0197122972458601, -0.05836579576134682, -0.042507048696279526, 0.005897873546928167, 0.09978754818439484, -0.06893860548734665, 0.08173898607492447, 0.007089041173458099, 0.03534476459026337, -0.10187258571386337, 0.20369119942188263, -0.0800740197300911, -0.02356131002306938, -0.03841671720147133, 0.06632503122091293, -0.004328225273638964, -0.025388037785887718, -0.09296070784330368, -0.0012429928174242377, 0.10949372500181198, 0.03020271100103855, -0.0659068152308464, 0.05072912573814392, -0.03797898441553116, -0.009695366956293583, -0.0579235777258873, -0.10930456221103668, 0.03773307800292969, 0.044265080243349075, -0.08428896218538284, 0.02665567211806774, 0.014292251318693161, 0.024499353021383286, -0.043934620916843414, 0.11136134713888168, -0.06458032131195068, 0.043713003396987915, -0.06264699995517731, -0.12547975778579712, 0.012854449450969696, -0.10600978136062622, 0.006618719547986984, -0.08888807892799377, -0.10728981345891953, -0.022691823542118073, 0.029153775423765182, -0.05196627974510193, -0.00676848366856575, -0.09886269271373749, -0.0758521631360054, 0.0287928469479084, -0.028773855417966843, 0.13949093222618103, -0.06072946637868881, 0.11427337676286697, 0.03706176578998566, 0.08345657587051392, -0.011967608705163002, 0.06927581131458282, -0.06193471699953079, 0.01457204483449459, -0.16827307641506195, 0.09784678369760513, -0.07721510529518127, 0.0223623588681221, -0.11176171153783798, -0.12270431965589523, -0.0009158992324955761, 0.003480709856376052, 0.1065155416727066, 0.10892010480165482, -0.1991490125656128, -0.09720192849636078, 0.185397669672966, -0.05447150021791458, -0.05498918890953064, 0.13822796940803528, -0.04006165638566017, 0.0006005134782753885, 0.0692245215177536, 0.2434341162443161, 0.0430353544652462, -0.11808072030544281, 0.023560887202620506, -0.02717006392776966, 0.07004228234291077, -0.0013459686888381839, 0.055664192885160446, -0.02515697479248047, 0.04483426362276077, 0.016378985717892647, -0.02133338898420334, 0.06864938139915466, -0.10747722536325455, -0.08479474484920502, -0.02204653061926365, -0.10371799021959305, 0.062156643718481064, 0.056879088282585144, 0.06077712029218674, -0.09295038133859634, -0.0938417911529541, 0.03077104687690735, 0.07453855872154236, -0.10069622844457626, 0.052785392850637436, -0.0878961831331253, 0.05488477274775505, -0.00601259246468544, -0.027025150135159492, -0.19401030242443085, 0.032076943665742874, 0.016449397429823875, 0.01472802460193634, 0.04196688160300255, -0.028766950592398643, 0.09153088927268982, 0.05622298642992973, -0.04378362372517586, -0.041764482855796814, -0.02214186266064644, 0.007687556557357311, -0.1098986342549324, -0.21819253265857697, -0.03816014528274536, -0.020227566361427307, 0.13474246859550476, -0.1984669417142868, 0.014796503819525242, 0.012502738274633884, 0.0842888355255127, 0.011748052202165127, -0.03244612738490105, -0.013559347949922085, 0.09624337404966354, -0.004755084402859211, -0.04913606122136116, 0.0647846981883049, -0.013312125578522682, -0.10423074662685394, 0.005984843242913485, -0.13861681520938873, 0.086484894156456, 0.1360032856464386, -0.0871107205748558, -0.08984585106372833, -0.0022632863838225603, -0.0547591894865036, -0.04106676205992699, -0.030784571543335915, 0.02404683642089367, 0.2489083707332611, 0.011542887426912785, 0.12969890236854553, -0.06927564740180969, -0.03296871855854988, 0.03519996255636215, -0.007954414933919907, 0.016605425626039505, 0.15756089985370636, 0.09294679015874863, -0.03248213976621628, 0.10451707988977432, 0.07693419605493546, -0.09686999768018723, 0.1415051966905594, -0.03246443718671799, -0.09870678931474686, -0.013748494908213615, -0.00422052713111043, -0.0014129955088719726, 0.11630424857139587, -0.17888475954532623, -0.03148752823472023, 0.0074560376815497875, 0.014007531106472015, 0.03261648863554001, -0.23380953073501587, -0.02007419243454933, 0.03149404376745224, -0.069548599421978, -0.04030890390276909, -0.009314493276178837, 0.02658197656273842, 0.11303867399692535, 0.003531559370458126, -0.09287109225988388, -0.008055542595684528, -0.01839449629187584, -0.08333853632211685, 0.19295403361320496, -0.08710509538650513, -0.15430603921413422, -0.0818890705704689, -0.07439872622489929, -0.01732049137353897, 0.006569880060851574, 0.049366310238838196, -0.11486560106277466, -0.007891763001680374, -0.06391788274049759, 0.03354742005467415, -0.03391558304429054, 0.04578781872987747, -0.015143598429858685, -0.013436499051749706, 0.050308212637901306, -0.0983007475733757, -0.003241816535592079, -0.0696415975689888, -0.0312746986746788, 0.0430184081196785, 0.0535818487405777, 0.11197143793106079, 0.19206133484840393, -0.0007197543163783848, 0.028177428990602493, -0.04297765716910362, 0.194746196269989, -0.08636987954378128, -0.038695190101861954, 0.09764818102121353, -0.02419102191925049, 0.038958590477705, 0.1144421398639679, 0.057627998292446136, -0.09065298736095428, -0.004931393079459667, 0.03055328130722046, -0.037770017981529236, -0.2148125320672989, -0.04871755465865135, -0.04830031841993332, -0.007416100706905127, 0.09049983322620392, 0.014033052138984203, 0.008660892955958843, 0.023549774661660194, 0.043899379670619965, -0.001175158889964223, -0.013737169094383717, 0.03982039541006088, 0.09470053762197495, 0.015910129994153976, 0.11787478625774384, -0.014697345905005932, -0.07418251037597656, 0.016321906819939613, -0.005932820029556751, 0.22626057267189026, 0.005934275221079588, 0.13632796704769135, 0.04635113105177879, 0.17817069590091705, 0.010700172744691372, 0.06908184289932251, 0.008065909147262573, -0.036406032741069794, 0.017005780711770058, -0.05269432067871094, -0.035711564123630524, 0.021382303908467293, 0.06961861997842789, 0.03278343752026558, -0.1358121931552887, -0.03338028863072395, 0.035193778574466705, 0.3008727729320526, 0.05701757222414017, -0.29971808195114136, -0.08329018950462341, -0.00912307295948267, -0.06607692688703537, -0.014065315946936607, 0.041045110672712326, 0.13365229964256287, -0.08709374070167542, 0.026711566373705864, -0.05166345462203026, 0.08343342691659927, -0.05621456727385521, 0.03743140771985054, 0.03376442566514015, 0.0768030509352684, -0.0005354033201001585, 0.04994470626115799, -0.29348474740982056, 0.29598379135131836, -0.0004895817255601287, 0.07624459266662598, -0.07245582342147827, -0.02161380462348461, 0.025151394307613373, -0.023043673485517502, 0.09288311749696732, -0.020525526255369186, -0.04967557638883591, -0.21554575860500336, -0.07374876737594604, 0.023212578147649765, 0.1530889868736267, -0.014910043217241764, 0.11966236680746078, -0.004710397217422724, -0.011920193210244179, 0.07224271446466446, -0.07093056291341782, -0.08015259355306625, -0.084128238260746, -0.009060959331691265, 0.07322856783866882, -0.00535443564876914, -0.05470691993832588, -0.11723785847425461, -0.12630513310432434, 0.10836213827133179, -0.08299858868122101, -0.01869938150048256, -0.1119505912065506, 0.07262551039457321, 0.13007967174053192, -0.07635591179132462, 0.03712217137217522, 0.041917528957128525, 0.07647199928760529, 0.017326053231954575, -0.04678928479552269, 0.11825450509786606, -0.0705653503537178, -0.17425526678562164, -0.044139113277196884, 0.16305255889892578, 0.07433224469423294, 0.08168185502290726, -0.01957441121339798, 0.023023994639515877, -0.024057438597083092, -0.07560016959905624, 0.06417933851480484, 0.01586359739303589, 0.010637566447257996, 0.05270249769091606, -0.03400731086730957, -0.02317163534462452, -0.09962762147188187, -0.015741625800728798, 0.21518518030643463, 0.22516658902168274, -0.08763626217842102, 0.05873551964759827, 0.06206109747290611, -0.04909674823284149, -0.1855851113796234, 0.038226108998060226, 0.08966833353042603, 0.02945444919168949, 0.006399964448064566, -0.19804508984088898, 0.07577596604824066, 0.061999253928661346, -0.004145246930420399, 0.10649481415748596, -0.3328333795070648, -0.14239539206027985, 0.14292855560779572, 0.12525321543216705, 0.05752275884151459, -0.130907341837883, -0.03605283051729202, 0.00013091940490994602, -0.07865435630083084, 0.0912465900182724, -0.08149254322052002, 0.14934785664081573, -0.006919337902218103, 0.11382922530174255, 0.023554915562272072, -0.060805544257164, 0.10803208500146866, 0.02452465333044529, 0.05943433195352554, -0.030344752594828606, -0.01987464167177677, -0.004857208114117384, -0.024380235001444817, 0.011367565020918846, -0.04934056103229523, 0.017909877002239227, -0.07776401191949844, -0.04143449291586876, -0.11073822528123856, 0.02392500266432762, -0.016548100858926773, -0.05639323219656944, -0.014065694995224476, 0.027849696576595306, 0.05594656616449356, 0.0030579983722418547, 0.07571468502283096, -0.05926806852221489, 0.13687200844287872, 0.10030045360326767, 0.11810826510190964, -0.03060215339064598, -0.05535431578755379, -0.0007386225624941289, -0.02094789780676365, 0.046123065054416656, -0.08996480703353882, 0.01794401928782463, 0.16001452505588531, 0.05491172894835472, 0.1347094476222992, 0.08048679679632187, -0.061647601425647736, 0.025821493938565254, 0.03995967283844948, -0.12946151196956635, -0.13171182572841644, -0.006010845303535461, -0.03758759796619415, -0.0840613916516304, 0.04120359569787979, 0.10253290086984634, -0.06257550418376923, -0.006314931437373161, -0.01443435624241829, 0.007677602116018534, -0.06928708404302597, 0.2292211651802063, 0.059869538992643356, 0.0529833659529686, -0.11436871439218521, 0.06363669037818909, 0.037111714482307434, -0.1419776827096939, 0.04545643925666809, 0.10009143501520157, -0.07050769776105881, -0.032020583748817444, 0.017128074541687965, 0.13142432272434235, -0.023137472569942474, -0.05454433336853981, -0.12400081008672714, -0.1439129263162613, 0.09654968976974487, 0.19294588267803192, 0.058406416326761246, 0.009649546816945076, -0.0778987780213356, 0.03066154569387436, -0.13101589679718018, 0.07674692571163177, 0.0498155914247036, 0.042977750301361084, -0.11661864072084427, 0.20302096009254456, 0.016505230218172073, 0.04320695623755455, -0.022484181448817253, -0.0019481118069961667, -0.11535821110010147, 0.05954505503177643, -0.1312047392129898, -0.01972087472677231, -0.033782828599214554, -0.007136882282793522, -0.002741120057180524, -0.07057196646928787, -0.05922083184123039, 0.016494207084178925, -0.11629830300807953, -0.016990993171930313, 0.009748696349561214, 0.03169182315468788, -0.11966636776924133, -0.03113476186990738, 0.02603294514119625, -0.07708746194839478, 0.0945044681429863, 0.09594982862472534, -0.02064749412238598, 0.07557482272386551, -0.1560376137495041, -0.021841730922460556, 0.05323703587055206, -0.0002049610047833994, 0.04978566616773605, -0.10625874251127243, -0.0156171303242445, -0.017983652651309967, 0.06667947769165039, 0.025852786377072334, 0.0846029594540596, -0.11476806551218033, 0.008990929462015629, -0.034895192831754684, -0.06449714303016663, -0.07074177265167236, 0.03967580199241638, 0.06759746372699738, 0.04502340033650398, 0.14236319065093994, -0.09773244708776474, 0.0713571086525917, -0.19610488414764404, 0.004013096913695335, -0.03382158651947975, -0.08137229084968567, -0.059489257633686066, -0.04859227314591408, 0.10096988081932068, -0.06621373444795609, 0.12173453718423843, -0.019519146531820297, 0.06542795896530151, 0.017182689160108566, -0.07560185343027115, -0.026135141029953957, 0.049773458391427994, 0.22906750440597534, 0.04885638505220413, -0.051653627306222916, 0.0640447810292244, 0.0474516786634922, 0.09187739342451096, 0.18422982096672058, 0.1909758597612381, 0.1852409988641739, 0.04331167787313461, 0.1018202006816864, 0.06874928623437881, -0.0887993574142456, -0.13939040899276733, 0.07213026285171509, -0.06406675279140472, 0.09131637960672379, -0.03089294396340847, 0.27141857147216797, 0.06537306308746338, -0.16103088855743408, 0.06640761345624924, -0.04720815643668175, -0.10851714015007019, -0.1124228909611702, -0.0294183362275362, -0.07374627888202667, -0.1409999281167984, 0.0075592598877847195, -0.10608840733766556, 0.0475890189409256, 0.07509338855743408, 0.04820955544710159, -0.00040004521724767983, 0.1736796796321869, 0.027219226583838463, 0.01132875680923462, 0.11362005770206451, 0.02025645412504673, -0.01829584687948227, -0.08692409843206406, -0.0819012001156807, 0.04010652005672455, -0.018079478293657303, 0.051133278757333755, -0.052785392850637436, -0.11138041317462921, 0.037050891667604446, -0.02069595456123352, -0.10328596085309982, 0.018478231504559517, 0.006414590869098902, 0.08480095863342285, 0.060850873589515686, 0.03110898844897747, -0.02731246128678322, -0.021933116018772125, 0.2244497537612915, -0.10105686634778976, -0.0969788059592247, -0.09427797794342041, 0.2658438980579376, 0.02735685557126999, 0.00181659369263798, 0.008797690272331238, -0.07733361423015594, -0.011875451542437077, 0.24086762964725494, 0.1835109144449234, -0.08550232648849487, 0.004827525932341814, 0.007044768426567316, 0.000209997539059259, -0.028836186975240707, 0.07466654479503632, 0.15218870341777802, 0.09427345544099808, -0.09176868945360184, -0.04601743444800377, -0.0526464618742466, -0.038854725658893585, -0.033011991530656815, 0.0861997902393341, 0.042186103761196136, -0.005159482359886169, -0.06070839241147041, 0.08689295500516891, -0.1218114048242569, -0.1195443645119667, 0.03125690296292305, -0.22776345908641815, -0.16777478158473969, -0.01946130208671093, 0.07430119067430496, 0.033909253776073456, 0.041569340974092484, -0.017426155507564545, -0.001297911163419485, 0.06581727415323257, 0.0013830377720296383, -0.0738905817270279, -0.0468255952000618, 0.07063864916563034, -0.09173531830310822, 0.15016546845436096, -0.052905190736055374, 0.068050816655159, 0.1148127093911171, 0.10484421998262405, -0.042409498244524, 0.08913303166627884, 0.05362311005592346, -0.12655457854270935, 0.03511400893330574, 0.1838226020336151, -0.041261035948991776, 0.08986642956733704, 0.041949812322854996, -0.14761829376220703, 0.04143727943301201, -0.0757807195186615, -0.06318017840385437, -0.04981842264533043, -0.03854231536388397, -0.04470812901854515, 0.12009411305189133, 0.1881646066904068, -0.04139705374836922, 0.009704675525426865, -0.06152604520320892, -0.009886637330055237, 0.035794127732515335, 0.07317820191383362, -0.07213467359542847, -0.2721250653266907, 0.009841972962021828, 0.013579953461885452, -0.0022460666950792074, -0.27718809247016907, -0.08114158362150192, 0.025863535702228546, -0.06226150691509247, -0.06912156939506531, 0.09351218491792679, 0.07110096514225006, 0.05831169709563255, -0.04484178125858307, -0.08193827420473099, -0.024965159595012665, 0.1950874626636505, -0.17891860008239746, -0.06747063994407654 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daniel_asr This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4565 - Wer: 0.3423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4909 | 4.0 | 500 | 1.3485 | 0.8887 | | 0.5887 | 8.0 | 1000 | 0.4957 | 0.4641 | | 0.2207 | 12.0 | 1500 | 0.4621 | 0.3971 | | 0.125 | 16.0 | 2000 | 0.4339 | 0.3756 | | 0.0829 | 20.0 | 2500 | 0.4618 | 0.3613 | | 0.0601 | 24.0 | 3000 | 0.4564 | 0.3535 | | 0.0456 | 28.0 | 3500 | 0.4565 | 0.3423 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "daniel_asr", "results": []}]}
automatic-speech-recognition
danielbubiola/daniel_asr
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
daniel\_asr =========== This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4565 * Wer: 0.3423 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.10822959244251251, 0.099675752222538, -0.003300065640360117, 0.06340761482715607, 0.10860926657915115, -0.020167825743556023, 0.1288769543170929, 0.15049001574516296, -0.09271349757909775, 0.07457399368286133, 0.12636904418468475, 0.1505885273218155, 0.04232662543654442, 0.1459311991930008, -0.05005314201116562, -0.2829117476940155, 0.046162717044353485, 0.0348406657576561, -0.0121766971424222, 0.12717968225479126, 0.08421128243207932, -0.12457819283008575, 0.057947319000959396, 0.034365277737379074, -0.1584104299545288, -0.003970644436776638, -0.005117249675095081, -0.10462873429059982, 0.12317385524511337, 0.006251727696508169, 0.07064329087734222, 0.04838201776146889, 0.06631770730018616, -0.2193475365638733, 0.006690362934023142, 0.043937861919403076, 0.028387419879436493, 0.07415802031755447, 0.0581994503736496, -0.02945130504667759, 0.10399823635816574, -0.07501231133937836, 0.08020306378602982, 0.03743743896484375, -0.10571174323558807, -0.29113149642944336, -0.08603336662054062, 0.04763360694050789, 0.06857916712760925, 0.08891522884368896, -0.012067495845258236, 0.144022136926651, -0.05461663380265236, 0.11053165048360825, 0.28164494037628174, -0.31383398175239563, -0.04501998424530029, -0.03997642174363136, 0.05645865947008133, 0.060465965420007706, -0.09994802623987198, -0.017910847440361977, 0.015012132935225964, 0.044832006096839905, 0.13800188899040222, -0.016268642619252205, -0.05933629348874092, -0.006875182036310434, -0.149040088057518, -0.060275666415691376, 0.11524058878421783, 0.022648070007562637, -0.039792802184820175, -0.09874942153692245, -0.055090054869651794, -0.21280622482299805, -0.06727685779333115, -0.01608140580356121, 0.04322221875190735, -0.0424761027097702, -0.10445226728916168, -0.011462483555078506, -0.067214734852314, -0.07468024641275406, -0.04020216315984726, 0.19049659371376038, 0.0569683313369751, -0.0015599278267472982, -0.03913375735282898, 0.07671435922384262, -0.02081478387117386, -0.13849472999572754, -0.024057583883404732, 0.036882609128952026, -0.020599735900759697, -0.01540920790284872, -0.041751619428396225, -0.059525419026613235, 0.02147202007472515, 0.16159066557884216, -0.10229084640741348, 0.09610845148563385, -0.02040909230709076, 0.03964505344629288, -0.1023506298661232, 0.20751461386680603, -0.04149479418992996, 0.017300888895988464, -0.01036039274185896, 0.055753905326128006, 0.029493195936083794, -0.026112813502550125, -0.0944448858499527, 0.03134589642286301, 0.1209908202290535, 0.04713206738233566, -0.04747193679213524, 0.06453514844179153, -0.034078627824783325, -0.00976975541561842, 0.0015425614546984434, -0.1116979643702507, 0.036166802048683167, 0.019734438508749008, -0.06563939899206161, 0.004243024159222841, 0.014517679810523987, 0.007364774588495493, -0.054604124277830124, 0.08333495259284973, -0.06161367520689964, 0.03338611125946045, -0.05673642084002495, -0.1255759745836258, 0.0254832673817873, -0.11468040943145752, -0.003398764180019498, -0.09991598129272461, -0.10067108273506165, -0.011766123585402966, 0.03731279447674751, -0.03822978585958481, -0.02582731656730175, -0.07831884920597076, -0.0903376117348671, 0.045774877071380615, -0.03446253389120102, 0.07107189297676086, -0.07455966621637344, 0.09409195184707642, 0.03365432471036911, 0.08763306587934494, -0.01564944162964821, 0.06029713898897171, -0.07134567946195602, 0.026744363829493523, -0.19970214366912842, 0.07492507249116898, -0.08829209953546524, 0.05765917897224426, -0.12506166100502014, -0.11516561359167099, 0.02212962694466114, -0.007345497142523527, 0.09889665991067886, 0.0976170003414154, -0.17107638716697693, -0.08861831575632095, 0.20791228115558624, -0.08212082087993622, -0.08377639949321747, 0.12448340654373169, -0.02486608363687992, -0.00034487590892240405, 0.05570755526423454, 0.25771892070770264, 0.04567098990082741, -0.12561871111392975, 0.007944315671920776, -0.040438469499349594, 0.0426238514482975, -0.035683345049619675, 0.058901671320199966, -0.028174052014946938, 0.06841765344142914, 0.01783875562250614, -0.004300459288060665, 0.0377449095249176, -0.08730132132768631, -0.0771728903055191, -0.043716900050640106, -0.07817266881465912, 0.029336441308259964, 0.032532043755054474, 0.06398753076791763, -0.11690137535333633, -0.10784720629453659, 0.03895878419280052, 0.0814940482378006, -0.10364940762519836, 0.07184524834156036, -0.1202312484383583, 0.08338981866836548, -0.01493844948709011, -0.005216938443481922, -0.19063900411128998, 0.03534865006804466, 0.03775133937597275, -0.028579330071806908, 0.04033041372895241, -0.06452071666717529, 0.07755736261606216, 0.045356228947639465, -0.026059629395604134, -0.04673822969198227, -0.009306485764682293, 0.010259725153446198, -0.08931370079517365, -0.20704664289951324, -0.03785887360572815, -0.038044244050979614, 0.07835710793733597, -0.13819026947021484, 0.034040216356515884, 0.07705976814031601, 0.0922568067908287, 0.032501887530088425, -0.03155825659632683, -0.0013533032033592463, 0.08992743492126465, -0.020763428881764412, -0.06439613550901413, 0.05805477127432823, 0.020028982311487198, -0.08660950511693954, 0.03891601413488388, -0.14935077726840973, 0.12675049901008606, 0.14704614877700806, -0.015051227062940598, -0.06689473241567612, 0.00010667734750313684, -0.04766694828867912, -0.03477296233177185, -0.0042805140838027, 0.03377611190080643, 0.2151905596256256, 0.013937880285084248, 0.14332830905914307, -0.0892372876405716, -0.04220341518521309, 0.04966939240694046, -0.02212832309305668, -0.0064864978194236755, 0.11720538139343262, 0.0451214499771595, -0.05501340702176094, 0.11844924837350845, 0.0907815545797348, -0.0788188949227333, 0.12142251431941986, -0.06029483675956726, -0.07461198419332504, -0.020842645317316055, 0.005617763847112656, 0.023748908191919327, 0.09859650582075119, -0.16244098544120789, -0.039806708693504333, 0.025940977036952972, 0.025764435529708862, 0.020472196862101555, -0.20870044827461243, 0.014138329774141312, 0.02901417203247547, -0.08571688830852509, -0.04336029291152954, 0.0030441186390817165, 0.012708943337202072, 0.09419949352741241, 0.01257222518324852, -0.0939040407538414, 0.01075243204832077, 0.003870375920087099, -0.07392288744449615, 0.1760009527206421, -0.11667042225599289, -0.17668895423412323, -0.10546509921550751, -0.09277024120092392, -0.03984987363219261, -0.002946222200989723, 0.08907544612884521, -0.09253612160682678, -0.03951948508620262, -0.08322479575872421, -0.015800848603248596, -0.02584817260503769, 0.041999366134405136, 0.0313355028629303, -0.011593472212553024, 0.06448721885681152, -0.11675503849983215, -0.021844986826181412, -0.0398770235478878, -0.0008108904585242271, 0.05417420715093613, 0.03741366043686867, 0.10862545669078827, 0.15839046239852905, -0.01037275604903698, 0.050479814410209656, -0.0457041934132576, 0.18834930658340454, -0.07471095770597458, -0.03741134703159332, 0.11121487617492676, -0.0058354721404612064, 0.06876740604639053, 0.11724447458982468, 0.048488009721040726, -0.09788484871387482, -0.012771572917699814, 0.004045606590807438, -0.04586487263441086, -0.21520774066448212, -0.03567230701446533, -0.04488169774413109, -0.0015765558928251266, 0.10597339272499084, 0.04105941206216812, 0.03757038712501526, 0.021633010357618332, 0.03250035271048546, 0.0055378032848238945, 0.0024906140752136707, 0.09663364291191101, 0.1290869563817978, 0.040204159915447235, 0.13291816413402557, -0.03813957795500755, -0.03726104274392128, 0.030234666541218758, 0.00462446128949523, 0.23055092990398407, 0.019664591178297997, 0.19055898487567902, 0.056628961116075516, 0.17497165501117706, 0.04161965847015381, 0.06674608588218689, -0.001665950519964099, -0.011428255587816238, 0.011377641931176186, -0.05277388170361519, -0.039488013833761215, 0.024215510115027428, 0.024078506976366043, 0.010328367352485657, -0.11433999240398407, -0.011104782111942768, 0.046694785356521606, 0.35245031118392944, 0.028211859986186028, -0.33761468529701233, -0.09064370393753052, -0.012201257050037384, -0.08551396429538727, -0.030578618869185448, 0.04586395248770714, 0.08793317526578903, -0.08076810091733932, 0.06415379047393799, -0.062390632927417755, 0.08992937952280045, -0.0642600953578949, 0.03401235491037369, 0.03723759949207306, 0.07146970927715302, 0.004128440748900175, 0.03326454013586044, -0.29203230142593384, 0.28165560960769653, 0.005191357806324959, 0.07652265578508377, -0.06112175062298775, 0.008107251487672329, 0.025618722662329674, 0.01830456405878067, 0.08772759884595871, -0.025723259896039963, -0.11981545388698578, -0.17462708055973053, -0.09302173554897308, 0.011321182362735271, 0.12884265184402466, 0.01404081005603075, 0.11067666113376617, -0.011263678781688213, -0.016661478206515312, 0.049431778490543365, -0.09618551284074783, -0.06534599512815475, -0.09206702560186386, 0.011860211379826069, 0.08234149217605591, 0.03347118943929672, -0.07286433130502701, -0.10325606167316437, -0.08850222080945969, 0.14942961931228638, -0.05208592489361763, -0.042645301669836044, -0.11885630339384079, 0.008311794139444828, 0.109124094247818, -0.07936578243970871, 0.06090658903121948, 0.009680752642452717, 0.10459772497415543, 0.011390188708901405, -0.06779034435749054, 0.11945819109678268, -0.06419113278388977, -0.16671337187290192, -0.028847509995102882, 0.14494214951992035, 0.03056386671960354, 0.060433026403188705, -0.008058210834860802, 0.038120876997709274, -0.021853651851415634, -0.0774228423833847, 0.0406605489552021, 0.026499440893530846, 0.0439123660326004, -0.013164152391254902, -0.018967239186167717, -0.006070209201425314, -0.09074874222278595, -0.01814614050090313, 0.2064867615699768, 0.24344108998775482, -0.09640686959028244, 0.09291441738605499, 0.06943506747484207, -0.042097147554159164, -0.17234089970588684, -0.0038790483959019184, 0.06509050726890564, 0.000005351470463210717, -0.0248651634901762, -0.1938454508781433, 0.023908907547593117, 0.06926876306533813, -0.020998604595661163, 0.08171622455120087, -0.3183232247829437, -0.1406307816505432, 0.1374066323041916, 0.11396436393260956, 0.059524938464164734, -0.14593273401260376, -0.05537234991788864, -0.010357857681810856, -0.1036871075630188, 0.09447412192821503, -0.07449747622013092, 0.1356905996799469, -0.02407083474099636, 0.09048546850681305, 0.011327960528433323, -0.05825302377343178, 0.10642484575510025, 0.012443309649825096, 0.059944190084934235, -0.045728690922260284, 0.017388567328453064, 0.04785845801234245, -0.06322921067476273, 0.055156588554382324, -0.08024109899997711, 0.02839946746826172, -0.08033619076013565, -0.03248301148414612, -0.08508959412574768, 0.01420549862086773, -0.009605566039681435, -0.0333847776055336, -0.037120092660188675, 0.0018844814039766788, 0.06282699108123779, -0.010366815142333508, 0.15573710203170776, -0.027310438454151154, 0.12642912566661835, 0.16214096546173096, 0.10141889750957489, -0.10404428839683533, -0.07683391124010086, 0.005353863351047039, -0.03425366058945656, 0.05507161468267441, -0.11772949248552322, 0.0374416708946228, 0.1360854059457779, 0.031792279332876205, 0.1228531077504158, 0.06948218494653702, -0.06524974852800369, 0.03323432430624962, 0.04207287356257439, -0.13784939050674438, -0.12749193608760834, 0.013279353268444538, 0.02333078719675541, -0.07195265591144562, 0.07305441796779633, 0.11555314809083939, -0.055095698684453964, -0.013801833614706993, -0.0019095407333225012, 0.013798229396343231, -0.04101138189435005, 0.19526535272598267, 0.03678850829601288, 0.06154259294271469, -0.1245705634355545, 0.08053390681743622, 0.038583576679229736, -0.1331944614648819, 0.060929812490940094, 0.10616770386695862, -0.09484384208917618, -0.02851886674761772, 0.028711074963212013, 0.11185205727815628, -0.028263479471206665, -0.07390765845775604, -0.14269445836544037, -0.1429070234298706, 0.10887688398361206, 0.20547187328338623, 0.056251514703035355, 0.016643211245536804, -0.05918126553297043, 0.016913002356886864, -0.11840061843395233, 0.06926038861274719, 0.04077918455004692, 0.06004178896546364, -0.1290147453546524, 0.14634470641613007, 0.01732582412660122, 0.03992059826850891, -0.014602077193558216, -0.011380162090063095, -0.11204449087381363, 0.03977004438638687, -0.12899863719940186, 0.004968761000782251, -0.06649181246757507, 0.0010107652051374316, 0.003637960646301508, -0.04961981624364853, -0.06380630284547806, 0.034933269023895264, -0.11994827538728714, -0.023454628884792328, 0.0013668711762875319, 0.03702240437269211, -0.12869490683078766, -0.00937681831419468, 0.01491378154605627, -0.09351558983325958, 0.09738873690366745, 0.08695000410079956, -0.03262457251548767, 0.05093376338481903, -0.060065679252147675, -0.026180030778050423, 0.07850224524736404, -0.006546197924762964, 0.05116262659430504, -0.13098447024822235, -0.019763074815273285, 0.011079980991780758, 0.034322094172239304, 0.024183884263038635, 0.11216950416564941, -0.11596840620040894, 0.0009172951686196029, -0.027726253494620323, -0.05208310857415199, -0.06831369549036026, 0.05034910887479782, 0.10944218933582306, 0.027158264070749283, 0.16378004848957062, -0.09329521656036377, 0.02864367887377739, -0.1659409999847412, 0.006244651973247528, -0.015402473509311676, -0.12141422927379608, -0.05091831088066101, -0.031923726201057434, 0.07782353460788727, -0.06372612714767456, 0.12926429510116577, -0.0302314143627882, 0.02521517500281334, 0.03747618943452835, -0.07651915401220322, -0.05347057059407234, 0.039878156036138535, 0.20521073043346405, 0.038992080837488174, -0.04332895576953888, 0.0748397707939148, 0.020881792530417442, 0.08104509860277176, 0.12795478105545044, 0.17392674088478088, 0.16054309904575348, 0.06415445357561111, 0.11675389856100082, 0.0548175610601902, -0.05325957387685776, -0.17404964566230774, 0.09129635989665985, -0.05973295867443085, 0.1303301602602005, -0.013782957568764687, 0.2406129240989685, 0.12073571979999542, -0.15380768477916718, 0.06590574234724045, -0.019002273678779602, -0.08930869400501251, -0.11625064164400101, -0.0640975832939148, -0.08643919974565506, -0.17592790722846985, 0.009026954881846905, -0.10206138342618942, 0.06300023943185806, 0.046582844108343124, 0.037413351237773895, 0.016993701457977295, 0.1380058079957962, 0.015221303328871727, 0.0026881019584834576, 0.09175070375204086, -0.003382439725100994, -0.055894702672958374, -0.07345172762870789, -0.0844438374042511, 0.03444278612732887, -0.013464136980473995, 0.0579255074262619, -0.0041413637809455395, -0.06932219862937927, 0.04745379090309143, -0.038733821362257004, -0.09639431536197662, 0.023092305287718773, 0.02144113928079605, 0.06993499398231506, 0.050396792590618134, 0.03458376228809357, -0.041390322148799896, -0.0023561420384794474, 0.19505612552165985, -0.09454663842916489, -0.09351488947868347, -0.10949129611253738, 0.25379374623298645, 0.039379071444272995, -0.015554843470454216, 0.02151809260249138, -0.060560062527656555, -0.03180092200636864, 0.2114194929599762, 0.1723226010799408, -0.01116170920431614, 0.004614291246980429, -0.01414461899548769, -0.006181462202221155, -0.03659471869468689, 0.07935505360364914, 0.14721040427684784, 0.0624801442027092, -0.06336896121501923, -0.051964882761240005, -0.05117638781666756, -0.03481784462928772, -0.06592334061861038, 0.07547760754823685, 0.006828696001321077, -0.025172237306833267, -0.044893521815538406, 0.06380100548267365, -0.09479472041130066, -0.08201537281274796, 0.024797851219773293, -0.19570329785346985, -0.14996619522571564, 0.006833694875240326, 0.07076682895421982, 0.011772987432777882, 0.034874558448791504, 0.003135041566565633, -0.009663884527981281, 0.08166079223155975, -0.0014469854068011045, -0.08074266463518143, -0.06594680994749069, 0.08451119065284729, -0.1334533542394638, 0.1663215011358261, -0.04209939017891884, 0.04780808091163635, 0.12325333803892136, 0.08858786523342133, -0.08054462820291519, 0.08672730624675751, 0.04238315671682358, -0.10697498172521591, 0.021263642236590385, 0.1536252200603485, -0.033488329499959946, 0.09508569538593292, 0.030688641592860222, -0.11497800052165985, 0.014703071676194668, -0.08972270041704178, -0.03808770328760147, -0.04114031791687012, -0.050166599452495575, -0.044312071055173874, 0.10966888070106506, 0.1632404923439026, -0.04387403652071953, 0.003933595027774572, -0.05213035270571709, 0.011972117237746716, 0.04762331768870354, -0.0004025105736218393, -0.061575230211019516, -0.27876561880111694, 0.011589550413191319, 0.036713045090436935, 0.0030818863306194544, -0.2576640844345093, -0.09719633311033249, 0.013703498058021069, -0.04294035583734512, -0.08798902481794357, 0.08574584126472473, 0.07478064298629761, 0.04632873460650444, -0.0524776466190815, -0.057823486626148224, -0.03551657870411873, 0.18890078365802765, -0.1751941740512848, -0.05986809358000755 ]
null
null
spacy
| Feature | Description | | --- | --- | | **Name** | `en_acnl_electra_pipeline` | | **Version** | `0.0.1` | | **spaCy** | `>=3.1.3,<3.2.0` | | **Default Pipeline** | `transformer`, `tagger`, `parser` | | **Components** | `transformer`, `tagger`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | GPL | | **Author** | Daniel Vasić() | ### Label Scheme <details> <summary>View label scheme (87 labels for 2 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `VERB`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `dative`, `dep`, `det`, `dobj`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nummod`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 97.69 | | `DEP_UAS` | 95.77 | | `DEP_LAS` | 94.52 | | `SENTS_P` | 95.09 | | `SENTS_R` | 94.81 | | `SENTS_F` | 94.95 | | `TRANSFORMER_LOSS` | 6123357.72 | | `TAGGER_LOSS` | 338995.26 | | `PARSER_LOSS` | 4101825.66 |
{"language": ["en"], "tags": ["spacy", "token-classification"]}
token-classification
danielvasic/en_acnl_electra_pipeline
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #spacy #token-classification #en #model-index #region-us
### Label Scheme View label scheme (87 labels for 2 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #en #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)", "### Accuracy" ]
[ 21, 17, 5 ]
[ "passage: TAGS\n#spacy #token-classification #en #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)### Accuracy" ]
[ -0.057152312248945236, 0.13800309598445892, -0.0033150282688438892, 0.012250912375748158, 0.0830731987953186, 0.06638222187757492, 0.20220614969730377, 0.08131004869937897, 0.2455916553735733, 0.06313537806272507, 0.018921395763754845, 0.06293158233165741, 0.06318740546703339, 0.2671758532524109, -0.12007240951061249, -0.26282915472984314, 0.0829298123717308, -0.008438033983111382, 0.06422018259763718, 0.1368921548128128, 0.0628293976187706, -0.13070359826087952, 0.050118036568164825, -0.05853686481714249, -0.22085127234458923, 0.023273572325706482, 0.03060390055179596, -0.09133976697921753, 0.06963930279016495, -0.04468533396720886, 0.23156920075416565, 0.016941513866186142, 0.0637373998761177, -0.21542714536190033, -0.0008655186975374818, -0.02269713021814823, -0.03820877894759178, 0.09244001656770706, 0.050130050629377365, 0.0032324804924428463, -0.039988357573747635, -0.05592114478349686, 0.06124134734272957, 0.028903618454933167, -0.1295434981584549, -0.14392633736133575, -0.03996284678578377, 0.1505800485610962, 0.12900204956531525, -0.08970668911933899, -0.003804229898378253, 0.09081469476222992, -0.062423914670944214, 0.051486410200595856, 0.1477360725402832, -0.29435595870018005, -0.0018454663222655654, 0.1913992017507553, -0.07786543667316437, 0.09305085241794586, -0.023037247359752655, 0.12768469750881195, 0.11329462379217148, -0.04462427645921707, -0.03663673251867294, 0.0031230763997882605, 0.07006819546222687, 0.00789865106344223, -0.11953528970479965, -0.07675537467002869, 0.4525396525859833, 0.11387424916028976, -0.016987251117825508, -0.09286662936210632, -0.11032483726739883, -0.12167204171419144, -0.08495309203863144, -0.08577335625886917, 0.05319289490580559, 0.01223006471991539, 0.13651618361473083, 0.07412046194076538, -0.09842687845230103, -0.0721902847290039, -0.1683671921491623, 0.26262980699539185, 0.0023303686175495386, 0.09180504083633423, -0.17533153295516968, 0.014683948829770088, -0.14241154491901398, -0.08631644397974014, 0.01997695490717888, -0.08359312266111374, -0.11601488292217255, -0.042401645332574844, 0.05179128795862198, 0.09178037196397781, 0.042571209371089935, 0.037077855318784714, -0.01833527162671089, 0.04958958178758621, -0.02680257149040699, 0.06692151725292206, 0.13081727921962738, 0.18758609890937805, -0.039728160947561264, -0.004528952296823263, -0.06994414329528809, -0.06705186516046524, 0.049543898552656174, -0.04075894132256508, -0.13438786566257477, -0.01957840286195278, 0.11715883761644363, 0.08018650859594345, -0.0618702732026577, -0.0815625786781311, -0.11780805140733719, -0.06582112610340118, 0.08426586538553238, -0.11751954257488251, 0.04108145833015442, -0.0013597954530268908, -0.009531412273645401, 0.0961131751537323, -0.1339999884366989, 0.007481673266738653, 0.05094737932085991, 0.012921283952891827, -0.09689155966043472, 0.0050482372753322124, -0.02621474303305149, -0.09847669303417206, 0.013584353029727936, -0.10568928718566895, 0.014159312471747398, -0.039157141000032425, -0.08463284373283386, -0.007394405081868172, -0.016582775861024857, -0.07162721455097198, 0.030563727021217346, -0.020647449418902397, -0.041690073907375336, -0.001966511830687523, 0.02998025342822075, -0.05780544877052307, -0.06297149509191513, 0.0016922925133258104, -0.023908881470561028, 0.09733322262763977, -0.06805180758237839, 0.02888592705130577, -0.06614413112401962, 0.0779150053858757, -0.16934062540531158, 0.03126400336623192, -0.04923524707555771, 0.04739852994680405, -0.0689319297671318, -0.06546375155448914, -0.005043318960815668, -0.015483845956623554, -0.09886471927165985, 0.1560620367527008, -0.21165572106838226, -0.06709557771682739, 0.22005042433738708, -0.19510029256343842, -0.125153586268425, 0.028060471639037132, -0.0026061367243528366, 0.06447041779756546, 0.0714440792798996, 0.1534087210893631, 0.03459012508392334, -0.10239694267511368, 0.018506089225411415, 0.09891219437122345, -0.06135997176170349, -0.042909711599349976, 0.1164589524269104, 0.01933760941028595, -0.0033746594563126564, 0.01341299433261156, 0.054750122129917145, -0.11031518131494522, -0.0667669028043747, -0.06825774908065796, -0.01837930828332901, 0.023533504456281662, 0.04877325892448425, 0.044488612562417984, 0.03172789514064789, -0.03598916530609131, 0.017098957672715187, 0.018847018480300903, 0.05174529552459717, 0.027716947719454765, -0.05704905837774277, -0.032888613641262054, 0.12702998518943787, -0.12195032835006714, -0.0819939449429512, -0.16076752543449402, -0.13933810591697693, 0.05835196375846863, 0.014185702428221703, -0.006130717229098082, 0.16627760231494904, 0.021154770627617836, -0.005661454983055592, 0.0017038292717188597, -0.013219759799540043, -0.02037736587226391, 0.07236050069332123, -0.08148198574781418, -0.15354962646961212, -0.0403670035302639, -0.100799560546875, 0.03496351093053818, -0.01162484660744667, 0.0011716692242771387, 0.15142489969730377, 0.09655783325433731, 0.06130561605095863, 0.04300365969538689, 0.03908638283610344, 0.00815635360777378, -0.03848059102892876, -0.045574966818094254, 0.07000467926263809, -0.09961271286010742, -0.05783297121524811, -0.060301847755908966, -0.12681743502616882, 0.10841433703899384, 0.12049197405576706, -0.0793490782380104, -0.04117117077112198, -0.09276986867189407, -0.0022112710867077112, 0.0010565642733126879, -0.11624149978160858, 0.008813065476715565, -0.08360216021537781, -0.022685671225190163, 0.028390375897288322, -0.09024903923273087, -0.02964886836707592, 0.028971228748559952, -0.037681251764297485, -0.17445410788059235, 0.10558994114398956, -0.027425043284893036, -0.2741320729255676, 0.1482386440038681, 0.2762889862060547, 0.1803625077009201, 0.08245206624269485, -0.023052405565977097, -0.05459245294332504, -0.036713916808366776, -0.00449610548093915, -0.08989900350570679, 0.16103336215019226, -0.15590424835681915, -0.023621713742613792, 0.06041721627116203, 0.05371766909956932, 0.008869505487382412, -0.2040521204471588, 0.00045851877075619996, 0.0012867737095803022, -0.03512196987867355, -0.07237520068883896, -0.049630243331193924, 0.03117859549820423, 0.14886930584907532, 0.06882447004318237, -0.1869809329509735, 0.046950746327638626, -0.06254755705595016, -0.06989168375730515, 0.1506679356098175, -0.06802543252706528, -0.24817408621311188, -0.14145684242248535, -0.0485897958278656, -0.03287768363952637, 0.05842692777514458, -0.030157921835780144, -0.09283468127250671, -0.024881336838006973, 0.030614642426371574, -0.03576026111841202, -0.1643519401550293, -0.03252643719315529, -0.01015640702098608, 0.09337835758924484, -0.13971799612045288, -0.028741510584950447, -0.09790706634521484, -0.10327740013599396, 0.12229204922914505, 0.09207667410373688, -0.18514838814735413, 0.07657281309366226, 0.305261492729187, -0.05828725919127464, 0.09632711857557297, 0.005444981623440981, 0.079426109790802, -0.08621656894683838, 0.04065782204270363, 0.1003747209906578, 0.03562196344137192, 0.058586906641721725, 0.2502802610397339, 0.05723921209573746, -0.13960421085357666, -0.0382801778614521, -0.053739067167043686, -0.11503519862890244, -0.1299077272415161, -0.1213003620505333, -0.043341848999261856, -0.051060304045677185, 0.04521794244647026, 0.01262952946126461, -0.009240075014531612, 0.06193150579929352, 0.01116043608635664, -0.04215052351355553, 0.029156584292650223, 0.04077644273638725, 0.05693695694208145, -0.04966011643409729, 0.0776301696896553, -0.03603509068489075, -0.07717160880565643, 0.09677641093730927, 0.08092992007732391, 0.16702954471111298, 0.18737465143203735, -0.004925957415252924, 0.045723333954811096, 0.006592819932848215, 0.13349279761314392, 0.09156155586242676, 0.1371668130159378, -0.009421689435839653, -0.03791619464755058, -0.056122660636901855, -0.016057001426815987, 0.07575606554746628, -0.007654028944671154, -0.0593695268034935, -0.07349181920289993, -0.06270252168178558, 0.06256448477506638, 0.00851444061845541, 0.2904307246208191, -0.20452934503555298, 0.015977049246430397, 0.13573551177978516, 0.08796423673629761, -0.10869663953781128, 0.07228608429431915, 0.05202128738164902, -0.09790775924921036, 0.0604483038187027, -0.014946878887712955, 0.12563681602478027, -0.1140604242682457, -0.016761427745223045, -0.09792184829711914, -0.07463736832141876, -0.011510838754475117, 0.10679370164871216, -0.019508184865117073, 0.35984137654304504, 0.0355466827750206, -0.058124978095293045, -0.05939790606498718, -0.008658098988234997, 0.010624154470860958, 0.2033543437719345, 0.21638600528240204, 0.05093038082122803, -0.20038531720638275, -0.20919132232666016, -0.03650602698326111, -0.025199485942721367, 0.1732368916273117, -0.07035110145807266, 0.022069646045565605, 0.009954690001904964, 0.0024179648607969284, -0.008838384412229061, 0.0335104838013649, -0.01984229125082493, 0.002993224188685417, 0.028415972366929054, 0.0779053121805191, -0.10584351420402527, -0.005153282079845667, -0.07713568955659866, -0.12288744747638702, 0.16858522593975067, -0.03255358710885048, -0.10297685116529465, -0.0900120958685875, 0.0009093452827073634, 0.10466041415929794, -0.04277057945728302, -0.03668851777911186, -0.05520283803343773, 0.17188268899917603, 0.006451378110796213, -0.098769910633564, 0.1349518746137619, -0.01687386818230152, -0.03547317534685135, -0.060361143201589584, 0.1626829206943512, -0.015803981572389603, -0.015580661594867706, 0.07602816820144653, 0.08627356588840485, -0.025707243010401726, -0.10096614062786102, 0.12422196567058563, 0.011809981428086758, 0.0270732119679451, 0.30106639862060547, -0.08433733135461807, -0.14133386313915253, -0.04531488195061684, 0.0973440632224083, 0.10929147154092789, 0.2550390362739563, -0.09569846838712692, 0.05983462929725647, 0.0854097530245781, -0.03131996467709541, -0.1718723028898239, -0.036555834114551544, -0.15424366295337677, 0.040438469499349594, -0.02543683350086212, -0.05183150991797447, 0.12090382725000381, 0.042068060487508774, -0.08526752144098282, 0.02590012364089489, -0.2023628056049347, -0.055439580231904984, 0.21835659444332123, 0.054207514971494675, 0.20664182305335999, -0.043812867254018784, -0.12076068669557571, -0.0696553960442543, -0.18828962743282318, 0.15783001482486725, 0.026463063433766365, 0.08401717990636826, -0.06514384597539902, 0.0025628209114074707, 0.04725109413266182, -0.013034343719482422, 0.22904275357723236, 0.10281534492969513, 0.09121250361204147, 0.019891485571861267, -0.1974612921476364, 0.16928261518478394, -0.020716482773423195, 0.009841732680797577, 0.21796312928199768, 0.03969115391373634, -0.14379671216011047, -0.015147880651056767, -0.00014895452477503568, -0.0008342427900061011, -0.03542499989271164, -0.0774906575679779, -0.09957122057676315, -0.004035636316984892, -0.06400809437036514, -0.045811742544174194, 0.2937476933002472, -0.03165191784501076, 0.13660037517547607, 0.14512644708156586, -0.009330184198915958, -0.11667399108409882, 0.013384700752794743, -0.08933872729539871, -0.05322686955332756, 0.060300327837467194, -0.17191043496131897, 0.07864382863044739, 0.13197541236877441, 0.06327632069587708, 0.12255186587572098, 0.12299492210149765, -0.03383553400635719, -0.04544408246874809, 0.11586346477270126, -0.1097799763083458, -0.19760185480117798, -0.01583540253341198, -0.19223551452159882, -0.013159403577446938, 0.057075146585702896, 0.05705895647406578, 0.044730592519044876, -0.01871422491967678, 0.004843065049499273, 0.037969909608364105, -0.04444088041782379, 0.09457902610301971, 0.0261592585593462, 0.07026853412389755, -0.13502514362335205, 0.12316496670246124, 0.0699426680803299, 0.0038242621812969446, -0.07196854054927826, -0.04781164973974228, -0.12240660935640335, -0.031008051708340645, 0.013658490031957626, 0.13749904930591583, -0.12549707293510437, -0.1013883501291275, -0.07065417617559433, -0.14969173073768616, 0.016811517998576164, 0.09401708841323853, 0.15861397981643677, 0.1136108785867691, 0.007114945445209742, -0.11242792010307312, 0.04267791658639908, 0.04491377994418144, -0.03274621441960335, 0.016640707850456238, -0.23788024485111237, 0.013984528370201588, -0.0467904657125473, 0.1403784304857254, -0.11435999721288681, -0.09522054344415665, -0.11389242112636566, 0.00526709808036685, -0.03234682232141495, 0.057372771203517914, -0.03038076125085354, -0.010458080098032951, -0.005780900362879038, -0.028342844918370247, -0.05869007110595703, -0.026725299656391144, -0.10660036653280258, 0.06118190661072731, -0.02785356715321541, 0.12292170524597168, -0.09209985285997391, -0.03125116229057312, 0.10292289406061172, -0.030727505683898926, 0.0673142746090889, 0.05433689430356026, 0.034987159073352814, 0.060986850410699844, -0.20531797409057617, -0.00569527642801404, 0.11099904775619507, 0.029557963833212852, 0.09918348491191864, -0.1401883065700531, 0.0033174825366586447, 0.017630496993660927, -0.05018268898129463, 0.08693228662014008, -0.04597897082567215, -0.10874225944280624, -0.13868752121925354, -0.1591709852218628, -0.1762489676475525, -0.030856961384415627, 0.030091363936662674, 0.19661711156368256, 0.05338926240801811, -0.006573121063411236, 0.06259210407733917, 0.02527030184864998, -0.0660807341337204, -0.007090229541063309, -0.03951553255319595, -0.08023996651172638, 0.046763110905885696, -0.00427223090082407, -0.006151063833385706, -0.019064849242568016, 0.3149872124195099, 0.050293032079935074, 0.053165167570114136, 0.051770035177469254, 0.1565920114517212, -0.005468236282467842, 0.04236302524805069, 0.23799560964107513, 0.08315402269363403, -0.07466419786214828, 0.07293114811182022, 0.039652176201343536, 0.0199894979596138, 0.07375718653202057, 0.17182157933712006, 0.09489099681377411, -0.1505325585603714, 0.06806941330432892, 0.034342192113399506, 0.02089337259531021, -0.06781914085149765, 0.056650955229997635, 0.026475489139556885, 0.005214688368141651, 0.07532723993062973, -0.07864707708358765, 0.13264904916286469, -0.17583318054676056, 0.12485572695732117, -0.016695331782102585, -0.09394131600856781, -0.20115450024604797, -0.04110546410083771, -0.11887486279010773, -0.037928834557533264, -0.0028526177629828453, -0.11364870518445969, -0.03737104311585426, 0.1909932643175125, 0.021532442420721054, 0.011818252503871918, 0.0296438317745924, -0.2187914252281189, -0.001187300542369485, 0.12622056901454926, 0.029999177902936935, 0.007562283426523209, -0.03593451902270317, -0.026033349335193634, 0.04293077439069748, -0.04635179415345192, -0.03367828577756882, -0.03588152304291725, 0.05171411857008934, -0.05223653465509415, -0.15807130932807922, -0.08212433010339737, -0.06547842919826508, -0.026363464072346687, -0.015356892719864845, -0.14120423793792725, 0.03763454779982567, -0.004116964992135763, 0.005342239048331976, 0.28811636567115784, -0.08266224712133408, 0.0726175382733345, -0.07136500626802444, 0.24832753837108612, -0.06431891769170761, 0.1163448691368103, 0.06154779717326164, -0.06529421359300613, -0.05055110901594162, 0.05621825531125069, 0.11999450623989105, 0.011642886325716972, -0.014799515716731548, 0.010342568159103394, 0.02209443971514702, 0.07346116751432419, 0.000035281089367344975, -0.04751373454928398, 0.12159673124551773, -0.04330778494477272, 0.09390523284673691, -0.0736519992351532, -0.04186752066016197, -0.03832106292247772, -0.019643248990178108, 0.15128979086875916, -0.03463607653975487, -0.15107791125774384, 0.21570630371570587, -0.015639154240489006, 0.022148726508021355, 0.24434806406497955, -0.1587686985731125, -0.13117314875125885, 0.01586708426475525, 0.017168806865811348, -0.023592699319124222, 0.06856240332126617, -0.12322857230901718, 0.009131002239882946, 0.00020229039364494383, 0.05113540589809418, -0.2126489281654358, -0.08753957599401474, 0.01294443104416132, -0.06517971307039261, 0.07243984192609787, 0.016205284744501114, 0.1302272528409958, 0.07996469736099243, -0.04701492190361023, -0.03509578853845596, 0.062237925827503204, 0.0009699753718450665, 0.06404175609350204, -0.00478194048628211, 0.124242402613163, -0.0194870438426733, -0.11061614751815796, 0.12826713919639587, -0.14887429773807526, -0.04732167720794678, -0.04328717663884163, -0.09465040266513824, -0.04656675457954407, 0.042634934186935425, -0.0992901399731636, 0.09809276461601257, 0.09694507718086243, -0.008613484911620617, 0.008267230354249477, 0.01604572869837284, 0.08583158254623413, 0.07282815128564835, -0.0404682494699955, 0.010962238535284996, 0.008024080656468868, -0.038951851427555084, 0.08521640300750732, -0.036743324249982834, -0.19810894131660461, -0.023710066452622414, -0.09087252616882324, 0.02636953815817833, -0.03803541883826256, 0.10741214454174042, 0.10428708791732788, 0.03311615064740181, -0.04554145410656929, -0.26387152075767517, 0.06765580922365189, 0.09941332042217255, -0.07316619157791138, -0.0591566301882267 ]
null
null
spacy
| Feature | Description | | --- | --- | | **Name** | `en_acnl_roberta_pipeline` | | **Version** | `0.0.1` | | **spaCy** | `>=3.1.3,<3.2.0` | | **Default Pipeline** | `transformer`, `tagger`, `parser` | | **Components** | `transformer`, `tagger`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | OntoNotes | | **License** | CC BY-SA 4.0 | | **Author** | Daniel Vasić | ### Label Scheme <details> <summary>View label scheme (87 labels for 2 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `VERB`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `dative`, `dep`, `det`, `dobj`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nummod`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 98.05 | | `DEP_UAS` | 95.98 | | `DEP_LAS` | 94.83 | | `SENTS_P` | 93.80 | | `SENTS_R` | 95.42 | | `SENTS_F` | 94.61 | | `TRANSFORMER_LOSS` | 3784861.59 | | `TAGGER_LOSS` | 698704.80 | | `PARSER_LOSS` | 5540167.00 |
{"language": ["en"], "license": "cc-by-4.0", "library_name": "spacy", "tags": ["spacy", "token-classification"], "datasets": ["conll2012_ontonotesv5"], "metrics": ["f1"], "pipeline_tag": "text-classification"}
text-classification
danielvasic/en_acnl_roberta_pipeline
[ "spacy", "token-classification", "text-classification", "en", "dataset:conll2012_ontonotesv5", "license:cc-by-4.0", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #spacy #token-classification #text-classification #en #dataset-conll2012_ontonotesv5 #license-cc-by-4.0 #model-index #region-us
### Label Scheme View label scheme (87 labels for 2 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #text-classification #en #dataset-conll2012_ontonotesv5 #license-cc-by-4.0 #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)", "### Accuracy" ]
[ 47, 17, 5 ]
[ "passage: TAGS\n#spacy #token-classification #text-classification #en #dataset-conll2012_ontonotesv5 #license-cc-by-4.0 #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (87 labels for 2 components)### Accuracy" ]
[ -0.08344817906618118, 0.2074509859085083, -0.0021221712231636047, 0.05794493481516838, 0.06630004197359085, 0.047653280198574066, 0.21690542995929718, 0.10941839963197708, 0.15552103519439697, 0.059663593769073486, 0.05664549767971039, 0.1015668585896492, 0.08682838082313538, 0.2168969064950943, -0.16345466673374176, -0.2139432430267334, 0.06923739612102509, -0.021159019321203232, 0.09871816635131836, 0.1349206417798996, 0.08780346810817719, -0.1044435054063797, 0.08067791908979416, -0.0468282550573349, -0.22381040453910828, -0.0012236200273036957, 0.05962144583463669, -0.12102588266134262, 0.06117869168519974, 0.00541708804666996, 0.15497446060180664, 0.03386881574988365, 0.08774037659168243, -0.19388531148433685, 0.008779003284871578, -0.02734486013650894, -0.09473589062690735, 0.09456360340118408, 0.06687277555465698, 0.001858311239629984, 0.02455727383494377, -0.08414319157600403, 0.02671561948955059, 0.05067279189825058, -0.12165987491607666, -0.079926997423172, -0.09686139225959778, 0.1793321669101715, 0.11126469075679779, -0.08443111181259155, 0.0025344083551317453, 0.08328918367624283, -0.03499499335885048, 0.07811710238456726, 0.09982556104660034, -0.31463760137557983, -0.0059025827795267105, 0.21529148519039154, -0.06896671652793884, 0.07217366248369217, -0.05664399638772011, 0.10259159654378891, 0.10200908035039902, -0.034473076462745667, -0.036721281707286835, -0.00926691759377718, -0.02111601084470749, 0.01845688186585903, -0.07717736065387726, -0.08809871226549149, 0.41381335258483887, 0.11495921015739441, -0.02933025360107422, -0.11238408088684082, -0.08775001019239426, -0.09844464808702469, -0.06286037713289261, -0.024537894874811172, 0.04644889384508133, 0.03147590532898903, 0.09263856709003448, 0.06652556359767914, -0.11615518480539322, -0.08318200707435608, -0.16116727888584137, 0.17682769894599915, -0.015191207639873028, 0.08711759001016617, -0.1462211310863495, 0.01863669604063034, -0.09864471107721329, -0.09460612386465073, -0.005015613045543432, -0.047779690474271774, -0.07010602951049805, -0.04549984261393547, 0.04052629694342613, 0.09374961256980896, 0.07825706154108047, 0.037110522389411926, -0.03019607998430729, 0.019485006108880043, -0.06806431710720062, 0.06411410123109818, 0.10141829401254654, 0.1553986370563507, -0.03872935101389885, 0.018508773297071457, -0.014719072729349136, -0.0800337940454483, 0.06879957765340805, -0.030596600845456123, -0.1561771184206009, -0.045931968837976456, 0.06741568446159363, 0.06573089957237244, -0.03232410177588463, -0.03194783627986908, -0.10528147965669632, -0.040848951786756516, 0.13773073256015778, -0.11966235190629959, 0.05649162828922272, 0.018231676891446114, -0.028582314029335976, 0.049762237817049026, -0.0649915561079979, 0.01642443984746933, 0.048977360129356384, -0.009982443414628506, -0.09492481499910355, 0.03377369046211243, 0.009073950350284576, -0.09107960760593414, 0.07081707566976547, -0.0793992131948471, 0.001970876008272171, -0.06972955912351608, -0.16321513056755066, -0.02444739267230034, -0.035149455070495605, -0.0596969798207283, -0.004421154968440533, -0.03672564774751663, -0.0796811431646347, 0.011748003773391247, 0.012439722195267677, -0.04404103755950928, -0.08425942063331604, 0.03457145392894745, -0.0462651401758194, 0.07617169618606567, -0.13052955269813538, 0.021045280620455742, -0.08388170599937439, 0.031750261783599854, -0.12238727509975433, 0.04530167579650879, -0.05659050494432449, 0.05368863418698311, -0.08172760158777237, -0.052666500210762024, 0.036321867257356644, -0.01733008213341236, -0.09049858897924423, 0.20085062086582184, -0.26218897104263306, -0.020748713985085487, 0.24173657596111298, -0.1743672639131546, -0.14227335155010223, 0.03513903543353081, -0.015767181292176247, 0.10093733668327332, 0.09651336073875427, 0.1496768295764923, 0.02212647721171379, -0.12295295298099518, -0.049037959426641464, 0.0878942534327507, -0.05697987973690033, -0.07737782597541809, 0.10760928690433502, 0.0017734745051711798, 0.028036780655384064, 0.028860880061984062, 0.05445634573698044, -0.1320764720439911, -0.038984667509794235, -0.07847762852907181, -0.05567934736609459, 0.037819843739271164, 0.0055391923524439335, 0.03441614657640457, 0.005618439055979252, -0.04588480666279793, 0.010545841418206692, 0.01697094924747944, 0.04288826882839203, 0.018058529123663902, -0.02814260497689247, -0.06272844970226288, 0.09339545667171478, -0.08783838152885437, -0.060426194220781326, -0.1401272416114807, -0.11279577761888504, 0.030679715797305107, 0.026410020887851715, 0.03582485392689705, 0.08884511142969131, -0.004348634742200375, -0.0025823877658694983, -0.008166098035871983, 0.00776453735306859, 0.020478446036577225, 0.0706063061952591, -0.07848775386810303, -0.1840342879295349, -0.0071212416514754295, -0.07197728008031845, 0.08556093275547028, -0.08367406576871872, 0.012375026009976864, 0.19930744171142578, 0.08448275923728943, 0.027066733688116074, 0.041829369962215424, 0.05305341258645058, 0.00522585678845644, -0.044597115367650986, -0.04883217811584473, 0.07677089422941208, -0.0435929112136364, -0.07406029105186462, 0.015014052391052246, -0.10669881850481033, 0.05125310644507408, 0.1391817182302475, -0.03939444199204445, -0.03359738737344742, -0.12866538763046265, 0.002468039281666279, -0.004019010812044144, -0.11865166574716568, 0.011242032051086426, -0.04215003550052643, -0.035590559244155884, 0.060069091618061066, -0.12357388436794281, -0.01475691981613636, 0.040110185742378235, -0.03980373218655586, -0.14697504043579102, 0.126238152384758, 0.022032376378774643, -0.2725570797920227, 0.14660438895225525, 0.2590562403202057, 0.15100671350955963, 0.07233098149299622, -0.02724633924663067, -0.03777376934885979, -0.06625555455684662, -0.011658110655844212, -0.06106038764119148, 0.1355484426021576, -0.09737636893987656, -0.0062898313626646996, 0.07322512567043304, 0.045355863869190216, 0.0001760309824021533, -0.2124367356300354, -0.0016039011534303427, -0.020015785470604897, -0.0673900693655014, -0.12232258915901184, -0.023171909153461456, 0.028638329356908798, 0.15835769474506378, 0.024785945191979408, -0.18632449209690094, 0.09060206264257431, -0.052702996879816055, -0.10503514111042023, 0.14776206016540527, -0.09526252746582031, -0.21235373616218567, -0.16456522047519684, -0.08806682378053665, -0.07723572850227356, 0.04614943265914917, 0.0093881506472826, -0.04667514190077782, -0.01970669813454151, -0.039878636598587036, -0.10606294870376587, -0.12303528189659119, -0.04240206256508827, -0.04902885854244232, 0.10527817904949188, -0.11968754231929779, -0.05803556740283966, -0.08941733837127686, -0.05719030648469925, 0.04021559655666351, 0.10314220935106277, -0.1442558616399765, 0.07912652939558029, 0.27642300724983215, -0.06768722087144852, 0.08406445384025574, -0.046114783734083176, 0.06038257107138634, -0.05106388032436371, 0.04616280645132065, 0.12229380011558533, 0.026455078274011612, 0.04372074455022812, 0.26418620347976685, 0.05687950178980827, -0.12720288336277008, -0.03176824375987053, -0.08265862613916397, -0.0912538543343544, -0.19895854592323303, -0.12073571234941483, -0.03127911314368248, 0.02606063336133957, 0.06078697741031647, 0.0494479276239872, 0.05356986075639725, 0.046069368720054626, 0.006672089919447899, -0.017030835151672363, 0.07224175333976746, 0.061317093670368195, 0.1318797469139099, -0.016204314306378365, 0.08340819180011749, -0.051608603447675705, 0.015603580512106419, 0.10780970007181168, 0.08837593346834183, 0.12403114885091782, 0.16805750131607056, 0.04301004111766815, 0.05984124913811684, 0.011715210042893887, 0.10546329617500305, 0.03216179087758064, 0.16806109249591827, 0.00045014856732450426, -0.019741777330636978, -0.08002264052629471, -0.00917412992566824, 0.08939854055643082, -0.02960924245417118, -0.03748833015561104, -0.07083138823509216, -0.0643402487039566, 0.06997572630643845, 0.030455078929662704, 0.24540826678276062, -0.23700502514839172, -0.009108396247029305, 0.10993991792201996, 0.06293726712465286, -0.08937141299247742, 0.09042628109455109, 0.03499647229909897, -0.09833455085754395, 0.08237756788730621, -0.013833052478730679, 0.13462404906749725, -0.09260983765125275, -0.03783990442752838, -0.07214292883872986, -0.08877462893724442, -0.016756683588027954, 0.09556012600660324, -0.09794285148382187, 0.3256774842739105, 0.055101532489061356, -0.002716455841436982, -0.054866306483745575, -0.011921429075300694, 0.005822129547595978, 0.20730379223823547, 0.228072851896286, 0.019452247768640518, -0.20188842713832855, -0.14356327056884766, -0.07462933659553528, -0.015563243068754673, 0.11156296730041504, -0.025045566260814667, 0.011566666886210442, 0.01883435808122158, -0.0007002225611358881, 0.0008752553258091211, 0.022668085992336273, -0.056318242102861404, -0.020126134157180786, 0.013212321326136589, 0.1392814815044403, -0.06586907804012299, -0.01454099640250206, -0.06779078394174576, -0.1893748641014099, 0.1587807834148407, -0.09337696433067322, -0.06726424396038055, -0.09341753274202347, 0.030000004917383194, 0.050740256905555725, -0.022888051345944405, -0.037074021995067596, -0.06573738902807236, 0.13652248680591583, -0.007026071194559336, -0.10142672806978226, 0.11550518125295639, -0.025137044489383698, -0.06424032896757126, -0.059801749885082245, 0.1710759550333023, -0.018804268911480904, -0.005180548410862684, 0.0850333422422409, 0.10499300807714462, -0.019989298656582832, -0.0966058000922203, 0.10124918818473816, 0.0711599662899971, 0.09772665053606033, 0.238583505153656, -0.08841398358345032, -0.2260236144065857, -0.03784206882119179, 0.049773767590522766, 0.12013859301805496, 0.29893583059310913, -0.10484432429075241, 0.09866145998239517, 0.09064412117004395, -0.06599830090999603, -0.19571040570735931, -0.013635234907269478, -0.15765716135501862, 0.019749047234654427, -0.008802895434200764, -0.027934841811656952, 0.11791527271270752, 0.06399759650230408, -0.07798313349485397, 0.02667870745062828, -0.2525365948677063, -0.09142157435417175, 0.1551026999950409, 0.022523045539855957, 0.12821348011493683, -0.06478366255760193, -0.12781192362308502, -0.08582594245672226, -0.21471282839775085, 0.1827813982963562, -0.027417363598942757, 0.07368627935647964, -0.04709073528647423, 0.026739148423075676, 0.01752489060163498, 0.011012214235961437, 0.22720769047737122, 0.10682643949985504, 0.08924630284309387, 0.009303448721766472, -0.16714201867580414, 0.19528135657310486, -0.024645036086440086, 0.011005539447069168, 0.11377537250518799, 0.047499142587184906, -0.1441519409418106, -0.002204225165769458, 0.01026091631501913, 0.03780432045459747, -0.05038941651582718, -0.03938044607639313, -0.10461662709712982, -0.0052171386778354645, -0.04741522669792175, -0.04769420623779297, 0.27273425459861755, -0.07167019695043564, 0.08208728581666946, 0.17156356573104858, 0.011814962141215801, -0.08481104671955109, 0.04022468626499176, -0.08640487492084503, -0.084356389939785, 0.02890671230852604, -0.21461719274520874, 0.05745045840740204, 0.1204901784658432, 0.07260700315237045, 0.14014506340026855, 0.09255300462245941, 0.0008512370986863971, -0.02496616169810295, 0.08991961181163788, -0.1190989688038826, -0.12473656237125397, 0.00950278714299202, -0.12344833463430405, -0.012876291759312153, 0.04938974604010582, 0.08796587586402893, 0.0032340616453438997, -0.018153676763176918, 0.014001276344060898, 0.05766304209828377, -0.04090695083141327, 0.07784072309732437, 0.02796056866645813, 0.03029630519449711, -0.1523865908384323, 0.1463545262813568, 0.08444318175315857, 0.005610158201307058, -0.05340045690536499, -0.04532702639698982, -0.12444337457418442, -0.035614460706710815, -0.019545067101716995, 0.11369010806083679, -0.11118902266025543, -0.14068496227264404, -0.061479583382606506, -0.11059457063674927, 0.026939747855067253, 0.14853093028068542, 0.14053063094615936, 0.09295710176229477, 0.009221842512488365, -0.1316208839416504, 0.00480642169713974, 0.08042436093091965, -0.04476144164800644, 0.005653546657413244, -0.20722931623458862, 0.07522379606962204, -0.04503992944955826, 0.09077848494052887, -0.07574796676635742, -0.05319540202617645, -0.09507279098033905, -0.004533795174211264, -0.009382938034832478, 0.10738098621368408, -0.0749645084142685, 0.010501048527657986, 0.00006357932579703629, -0.02416347526013851, -0.07561273127794266, -0.01526704803109169, -0.07032597064971924, 0.047303542494773865, -0.02181714028120041, 0.16322572529315948, -0.14479170739650726, -0.050067238509655, 0.06015126034617424, -0.02184794656932354, 0.07515713572502136, 0.060578133910894394, -0.004012261983007193, 0.05640859156847, -0.2671622633934021, 0.018140017986297607, 0.11575053632259369, 0.022008532658219337, 0.07491134107112885, -0.12874597311019897, 0.012259709648787975, 0.07429991662502289, -0.07414320111274719, 0.08823484182357788, -0.039880771189928055, -0.09520293027162552, -0.12290683388710022, -0.15413898229599, -0.11063500493764877, -0.04517437145113945, 0.06379611045122147, 0.21139657497406006, 0.039123859256505966, 0.04828198254108429, 0.010651224292814732, 0.014157142490148544, -0.08668142557144165, -0.0073653096333146095, -0.0578775480389595, -0.10246476531028748, -0.06458611786365509, -0.009749162010848522, 0.007533086463809013, -0.011012744158506393, 0.2677345275878906, 0.05913577601313591, -0.02186712995171547, 0.06530637294054031, 0.1629881113767624, -0.03229348734021187, 0.02761128358542919, 0.2822151780128479, 0.061185888946056366, -0.03715880215167999, 0.08828181773424149, 0.035013504326343536, 0.010559005662798882, 0.03670568764209747, 0.18537920713424683, 0.11100553721189499, -0.12566302716732025, 0.08145859837532043, 0.062070250511169434, -0.019351942464709282, -0.027438286691904068, 0.12763553857803345, 0.013637249357998371, 0.037408217787742615, 0.006020242813974619, -0.05717619135975838, 0.11508233100175858, -0.16527420282363892, 0.05935422703623772, -0.029089100658893585, -0.09670713543891907, -0.19070491194725037, -0.083146832883358, -0.14102810621261597, -0.03305967524647713, 0.00825184490531683, -0.10792619735002518, 0.010539302602410316, 0.15457414090633392, 0.0034915348514914513, -0.016695542261004448, -0.022974655032157898, -0.22809070348739624, -0.0031535641755908728, 0.12016843259334564, -0.0021304483525455, 0.023133935406804085, -0.0791841670870781, -0.028416458517313004, 0.058735352009534836, -0.05264417082071304, -0.015910394489765167, 0.015075448900461197, 0.12308859825134277, -0.04269658029079437, -0.1882440447807312, -0.06867126375436783, -0.055649857968091965, -0.0009459181455895305, 0.00985723827034235, -0.04211714491248131, 0.07757125794887543, 0.0004636018129531294, 0.05220466107130051, 0.26781564950942993, -0.06285512447357178, 0.03949417173862457, -0.07967673242092133, 0.19648650288581848, -0.04056350886821747, 0.07333756983280182, 0.08352340757846832, -0.0911887139081955, 0.0030493487138301134, 0.015510395169258118, 0.1144765317440033, -0.00208986084908247, -0.005579071585088968, -0.0017945902654901147, 0.010535560548305511, 0.0670265331864357, -0.006931856740266085, -0.06604692339897156, 0.10930013656616211, -0.029278377071022987, 0.04168007895350456, -0.0633617416024208, -0.03314436972141266, -0.045224301517009735, -0.037143152207136154, 0.07047173380851746, -0.062048546969890594, -0.10482839494943619, 0.22244180738925934, -0.017562322318553925, -0.05049007385969162, 0.22462214529514313, -0.13700206577777863, -0.0940466821193695, 0.03779815882444382, 0.01723710633814335, 0.007716486230492592, 0.041177231818437576, -0.1300320327281952, 0.0238628052175045, 0.042222488671541214, 0.023805836215615273, -0.18962717056274414, -0.03217498958110809, 0.009518245235085487, -0.11110500246286392, 0.12894879281520844, -0.00017341475177090615, 0.21742179989814758, 0.08439909666776657, -0.03406517952680588, -0.07550061494112015, 0.07391870766878128, 0.005185352638363838, 0.04232226684689522, 0.030314527451992035, 0.047358546406030655, -0.014165948145091534, -0.06370387226343155, 0.13679224252700806, -0.07685666531324387, -0.007789865136146545, -0.03377944231033325, -0.09421944618225098, -0.0896943211555481, 0.04984673485159874, -0.10164156556129456, 0.0938340350985527, 0.04643802344799042, -0.04007065296173096, 0.008775019086897373, 0.006249747704714537, 0.0707307904958725, 0.05244268476963043, -0.05606837570667267, 0.04496746137738228, -0.02405277080833912, -0.010199222713708878, 0.06556174159049988, 0.03407134860754013, -0.2005574107170105, -0.034084197133779526, -0.07523681968450546, -0.00923463236540556, -0.07367956638336182, 0.11896305531263351, 0.1066611260175705, 0.006325248163193464, -0.04986944422125816, -0.19753368198871613, 0.05391731113195419, 0.10191991180181503, -0.05798300728201866, -0.07816535234451294 ]
null
null
spacy
| Feature | Description | | --- | --- | | **Name** | `hr_bertic_pipeline` | | **Version** | `0.0.1` | | **spaCy** | `>=3.1.3,<3.2.0` | | **Default Pipeline** | `transformer`, `morphologizer`, `tagger`, `parser` | | **Components** | `transformer`, `morphologizer`, `tagger`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1392 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Case=nominative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|POS=ADP`, `Case=locative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=instrumental\|POS=ADP`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Degree=positive\|POS=ADV\|Type=general`, `Number=singular\|POS=VERB\|Person=third\|Type=main\|VForm=present`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `POS=PUNCT`, `POS=PART\|Type=modal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `POS=SCONJ\|Type=subordinating`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=accusative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `POS=CCONJ\|Type=coordinating`, `Case=genitive\|POS=ADP`, `Case=dative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Number=plural\|POS=VERB\|Person=third\|Type=main\|VForm=present`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=present`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|POS=ADP`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Animate=no\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `POS=VERB\|Type=main\|VForm=infinitive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `POS=PART\|Type=negative`, `Case=accusative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Degree=comparative\|POS=ADV\|Type=general`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Gender=masculine\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=locative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Form=digit\|POS=ADJ\|Type=ordinal`, `Number=singular\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=present`, `Number=plural\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=present`, `Case=accusative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Gender=feminine\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Gender=neuter\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Degree=superlative\|POS=ADV\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Number=plural\|POS=VERB\|Person=first\|Type=main\|VForm=present`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Gender=feminine\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Gender=masculine\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Gender=masculine\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Form=digit\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Gender=feminine\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Gender=neuter\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=locative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Number=plural\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=aorist`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=aorist`, `POS=X`, `Case=genitive\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Form=letter\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `POS=X\|Type=foreign`, `Number=plural\|POS=VERB\|Person=second\|Type=main\|VForm=present`, `POS=PART\|Type=interrogative`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `POS=ADV\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=VERB\|Person=first\|Type=main\|VForm=present`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=dative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=yes\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Number=plural\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=present`, `POS=AUX\|Type=auxiliary\|VForm=infinitive`, `Case=locative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Gender=feminine\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Animate=no\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=dative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Number=plural\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=aorist`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `POS=NOUN`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=nominative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=present`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Number=singular\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=aorist`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=interrogative`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=no\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=instrumental\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|POS=ADP`, `Case=instrumental\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Gender=neuter\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Case=nominative\|Form=letter\|Gender=neuter\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=dative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Form=letter\|POS=NUM\|Type=special`, `Case=accusative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=genitive\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=genitive\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=nominative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Gender=masculine\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `POS=PROPN`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=locative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Gender=neuter\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Number=plural\|POS=VERB\|Person=second\|Type=main\|VForm=imperative`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Form=digit\|POS=SYM\|Type=special`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Form=digit\|POS=NUM\|Type=special`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=locative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=aorist`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `POS=SYM`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=vocative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Form=digit\|POS=NUM\|Type=multiple`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Animate=yes\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Number=plural\|POS=VERB\|Person=first\|Type=main\|VForm=imperative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=cardinal`, `Case=accusative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=accusative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=locative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Animate=no\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=dative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PRON\|Type=indefinite`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=locative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=locative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=accusative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=locative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=VERB\|Person=third\|Type=main\|VForm=aorist`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `POS=ADJ`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=dative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Number=singular\|POS=VERB\|Person=second\|Type=main\|VForm=imperative`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Form=roman\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=special`, `Case=locative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=genitive\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Form=roman\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=PROPN\|Type=proper`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=aorist`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|POS=SYM`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=nominative\|Gender=masculine\|POS=PRON\|Person=third\|Type=interrogative`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `POS=PART`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=dative\|Gender=masculine\|POS=PRON\|Person=third\|Type=interrogative`, `Case=instrumental\|Definiteness=no\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `POS=INTJ`, `Case=locative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `POS=PART\|Type=affirmative`, `Number=singular\|POS=VERB\|Person=second\|Type=main\|VForm=present`, `Case=dative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=neuter\|POS=NUM\|Type=special`, `Case=locative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=cardinal`, `Case=accusative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=locative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Number=singular\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=present`, `Case=vocative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=vocative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=vocative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=imperative`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=imperfect`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `POS=ADV`, `Case=locative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=PROPN\|Type=proper`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=vocative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=vocative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=vocative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive` | | **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmply`, `Agcmpny`, `Agcmsany`, `Agcmsay`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpay`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsin`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmpvy`, `Agpmsan`, `Agpmsann`, `Agpmsany`, `Agpmsay`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmpvy`, `Agsmsany`, `Agsmsay`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfpiy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsiy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsayn`, `Aspmsayy`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsdn`, `Aspnsgn`, `Aspnsgy`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpl`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsl`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlomsv`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-d`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsmpn`, `Mlsn-n`, `Mrc`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npd`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sg`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pg`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp2-sv`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsi`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpd`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, `Ps1fsv`, `Ps1mpa`, `Ps1mpd`, `Ps1mpg`, `Ps1mpi`, `Ps1mpl`, `Ps1mpn`, `Ps1mpv`, `Ps1msan`, `Ps1msay`, `Ps1msd`, `Ps1msg`, `Ps1msi`, `Ps1msl`, `Ps1msn`, `Ps1msv`, `Ps1npd`, `Ps1npn`, `Ps1nsa`, `Ps1nsg`, `Ps1nsi`, `Ps1nsl`, `Ps1nsn`, `Ps2fpa`, `Ps2fpl`, `Ps2fpn`, `Ps2fsa`, `Ps2fsd`, `Ps2fsg`, `Ps2fsn`, `Ps2mpa`, `Ps2mpg`, `Ps2mpl`, `Ps2mpn`, `Ps2msan`, `Ps2msd`, `Ps2msg`, `Ps2msi`, `Ps2msl`, `Ps2msn`, `Ps2npn`, `Ps2nsa`, `Ps2nsg`, `Ps2nsi`, `Ps2nsl`, `Ps2nsn`, `Ps3fpa`, `Ps3fpg`, `Ps3fpl`, `Ps3fpn`, `Ps3fsa`, `Ps3fsd`, `Ps3fsg`, `Ps3fsi`, `Ps3fsl`, `Ps3fsn`, `Ps3mpa`, `Ps3mpd`, `Ps3mpg`, `Ps3mpi`, `Ps3mpl`, `Ps3mpn`, `Ps3msan`, `Ps3msay`, `Ps3msd`, `Ps3msg`, `Ps3msi`, `Ps3msl`, `Ps3msn`, `Ps3npa`, `Ps3npg`, `Ps3npl`, `Ps3npn`, `Ps3nsa`, `Ps3nsg`, `Ps3nsi`, `Ps3nsl`, `Ps3nsn`, `Px--sa`, `Px--sd`, `Px--sg`, `Px--si`, `Px--sl`, `Px-fpa`, `Px-fpg`, `Px-fpi`, `Px-fpl`, `Px-fpn`, `Px-fsa`, `Px-fsd`, `Px-fsg`, `Px-fsi`, `Px-fsl`, `Px-mpa`, `Px-mpd`, `Px-mpg`, `Px-mpi`, `Px-mpl`, `Px-msan`, `Px-msay`, `Px-msd`, `Px-msg`, `Px-msi`, `Px-msl`, `Px-npa`, `Px-npg`, `Px-npi`, `Px-npl`, `Px-nsa`, `Px-nsg`, `Px-nsi`, `Px-nsl`, `Qo`, `Qq`, `Qr`, `Qz`, `Rgc`, `Rgp`, `Rgs`, `Rr`, `Sa`, `Sd`, `Sg`, `Si`, `Sl`, `Vaa1p`, `Vaa1s`, `Vaa2p`, `Vaa2s`, `Vaa3p`, `Vaa3s`, `Vae3s`, `Vam2p`, `Van`, `Vap-pf`, `Vap-pm`, `Vap-pn`, `Vap-sf`, `Vap-sm`, `Vap-sn`, `Var1p`, `Var1s`, `Var2p`, `Var2s`, `Var3p`, `Var3s`, `Vma3s`, `Vmm1p`, `Vmm2p`, `Vmm2s`, `Vmn`, `Vmp-pf`, `Vmp-pm`, `Vmp-pn`, `Vmp-sf`, `Vmp-sm`, `Vmp-sn`, `Vmr1p`, `Vmr1s`, `Vmr2p`, `Vmr2s`, `Vmr3p`, `Vmr3s`, `X`, `Xf`, `Y`, `Z` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `goeswith`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `POS_ACC` | 98.70 | | `MORPH_ACC` | 95.55 | | `TAG_ACC` | 95.52 | | `DEP_UAS` | 91.29 | | `DEP_LAS` | 86.17 | | `SENTS_P` | 95.36 | | `SENTS_R` | 96.16 | | `SENTS_F` | 95.76 | | `TRANSFORMER_LOSS` | 24668298.17 | | `MORPHOLOGIZER_LOSS` | 362811.40 | | `TAGGER_LOSS` | 349660.11 | | `PARSER_LOSS` | 2088768.64 |
{"language": ["hr"], "tags": ["spacy", "token-classification"]}
token-classification
danielvasic/hr_bertic_pipeline
[ "spacy", "token-classification", "hr", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hr" ]
TAGS #spacy #token-classification #hr #model-index #region-us
### Label Scheme View label scheme (1392 labels for 3 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #hr #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)", "### Accuracy" ]
[ 21, 17, 5 ]
[ "passage: TAGS\n#spacy #token-classification #hr #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)### Accuracy" ]
[ -0.0796990767121315, 0.09978848695755005, -0.002440925221890211, 0.025016965344548225, 0.1024184450507164, 0.07309037446975708, 0.2068420946598053, 0.07676097750663757, 0.20966650545597076, 0.04694100096821785, 0.028043806552886963, 0.06893902271986008, 0.058413319289684296, 0.2409026324748993, -0.11319645494222641, -0.23179991543293, 0.09747600555419922, -0.002382761798799038, 0.03473158925771713, 0.13475631177425385, 0.04419410228729248, -0.13590650260448456, 0.0758470669388771, -0.07364154607057571, -0.20504331588745117, 0.041807547211647034, 0.021040314808487892, -0.08807668834924698, 0.07284485548734665, -0.041648972779512405, 0.2160262018442154, 0.03921559080481529, 0.08629351109266281, -0.19826677441596985, 0.00048236289876513183, -0.04483496770262718, -0.04906124994158745, 0.077703557908535, 0.03082146868109703, 0.010677946731448174, -0.0360332727432251, -0.0850231871008873, 0.05062519386410713, 0.03083108365535736, -0.11767493188381195, -0.11279251426458359, -0.06300169974565506, 0.17923232913017273, 0.11104610562324524, -0.06348464637994766, -0.00788150355219841, 0.10183898359537125, -0.08501064032316208, 0.054728444665670395, 0.17800922691822052, -0.28611981868743896, -0.008457704447209835, 0.22839203476905823, -0.061135049909353256, 0.1073150709271431, -0.013252083212137222, 0.14156456291675568, 0.120869480073452, -0.003779943799600005, -0.019066529348492622, -0.02504793368279934, 0.05470968410372734, 0.017511555925011635, -0.12850452959537506, -0.049714285880327225, 0.49731719493865967, 0.10250724107027054, -0.021564261987805367, -0.0797402560710907, -0.08399004489183426, -0.16479183733463287, -0.08684160560369492, -0.0746610090136528, 0.04858358949422836, -0.02171107567846775, 0.13465633988380432, 0.10278148949146271, -0.08915282040834427, -0.06804108619689941, -0.15083922445774078, 0.2626902461051941, 0.020426003262400627, 0.08641521632671356, -0.14950546622276306, 0.012623373419046402, -0.09562869369983673, -0.07587146013975143, 0.011645780876278877, -0.09743721783161163, -0.0867866724729538, -0.04825165867805481, 0.034961603581905365, 0.09327917546033859, 0.06875769793987274, 0.04268942400813103, -0.0684969499707222, 0.0717272162437439, 0.001374275190755725, 0.04756812006235123, 0.11877849698066711, 0.15185080468654633, -0.06912294030189514, -0.02075222320854664, -0.045324016362428665, -0.04644985869526863, 0.049784135073423386, -0.038273368030786514, -0.1306450366973877, -0.01307495404034853, 0.1198410764336586, 0.10092153400182724, -0.08734522759914398, -0.0348019078373909, -0.11435294151306152, -0.05987825244665146, 0.10836866497993469, -0.1211816743016243, 0.006746399682015181, 0.00492544611915946, -0.016911813989281654, 0.08114480972290039, -0.12335904687643051, -0.01672869734466076, 0.042544811964035034, 0.002668410539627075, -0.0954449251294136, -0.011042055673897266, -0.007766404189169407, -0.11001469939947128, 0.007407984230667353, -0.0780925452709198, 0.014359074644744396, -0.05049879103899002, -0.09571575373411179, -0.0171465165913105, -0.022405020892620087, -0.07277627289295197, 0.04561537876725197, -0.0012798730749636889, -0.0528179295361042, -0.0017780769849196076, 0.01423276774585247, -0.06743767112493515, -0.080318883061409, -0.017613662406802177, 0.0020895444322377443, 0.10247425734996796, -0.0885273814201355, 0.017883997410535812, -0.04636459797620773, 0.07571744173765182, -0.19955779612064362, 0.016904737800359726, -0.07276701927185059, 0.0834304541349411, -0.053629565984010696, -0.09986963123083115, 0.011838582344353199, 0.003219832433387637, -0.09411729872226715, 0.16427192091941833, -0.19330047070980072, -0.05889757350087166, 0.19013798236846924, -0.17577409744262695, -0.11921219527721405, 0.01634799875319004, 0.003170120296999812, 0.02654755674302578, 0.08775296062231064, 0.1355028748512268, 0.035944823175668716, -0.09736647456884384, -0.0048798685893416405, 0.08526874333620071, -0.051504768431186676, -0.06650557368993759, 0.10091792047023773, 0.027473153546452522, -0.03144529461860657, 0.02467074617743492, 0.027657508850097656, -0.10941561311483383, -0.06144468113780022, -0.06306793540716171, -0.003967857453972101, 0.01749355159699917, 0.04744255915284157, 0.03290381282567978, 0.04469561204314232, -0.05689365789294243, 0.03295714035630226, 0.025571683421730995, 0.0533110573887825, 0.00617078086361289, -0.054049573838710785, -0.03697219863533974, 0.13343307375907898, -0.10026950389146805, -0.08217579126358032, -0.15723399817943573, -0.1610536128282547, 0.03972324728965759, 0.01751830242574215, 0.008182523772120476, 0.15316228568553925, 0.02447746880352497, 0.015856070443987846, -0.023672766983509064, -0.011155820451676846, -0.004139026161283255, 0.08875614404678345, -0.04911705106496811, -0.18415044248104095, -0.060425881296396255, -0.08048706501722336, 0.03658926859498024, -0.016428876668214798, 0.013272669166326523, 0.1527230590581894, 0.08524587750434875, 0.04046129062771797, 0.052629537880420685, 0.051357705146074295, 0.035383645445108414, -0.02231455408036709, -0.04755095764994621, 0.07200045883655548, -0.10488791763782501, -0.05697410926222801, -0.06738942861557007, -0.10863056033849716, 0.08854532986879349, 0.14101357758045197, -0.07722289860248566, -0.0642731711268425, -0.06561628729104996, 0.0018892457010224462, 0.005037900060415268, -0.08652655780315399, 0.0011797494953498244, -0.10429254919290543, -0.030428357422351837, 0.01541340071707964, -0.07928778976202011, -0.0343523807823658, 0.03117104433476925, -0.030637020245194435, -0.15685340762138367, 0.09859687089920044, 0.0023341996129602194, -0.255545437335968, 0.13852618634700775, 0.22968937456607819, 0.16883143782615662, 0.07759567350149155, -0.01581915281713009, -0.03305353969335556, -0.030186323449015617, -0.009151422418653965, -0.08830655366182327, 0.18868504464626312, -0.16689613461494446, -0.04687730222940445, 0.040831808000802994, 0.05303043872117996, 0.018262675032019615, -0.18687720596790314, -0.005169329233467579, -0.013002411462366581, -0.030854355543851852, -0.08128299564123154, -0.04336564615368843, 0.013047358021140099, 0.14133629202842712, 0.06773273646831512, -0.1912141889333725, 0.046809688210487366, -0.059137556701898575, -0.07872813940048218, 0.17040680348873138, -0.08273462951183319, -0.2390545904636383, -0.1327913999557495, -0.08316357433795929, -0.07659585773944855, 0.049775052815675735, -0.03255840390920639, -0.13582997024059296, -0.052314918488264084, 0.01825147494673729, -0.018408246338367462, -0.13252507150173187, -0.026865288615226746, 0.004131919704377651, 0.07385265082120895, -0.12543416023254395, -0.03238407522439957, -0.10782390832901001, -0.0986795425415039, 0.12663601338863373, 0.1021202951669693, -0.19545315206050873, 0.09722518920898438, 0.2776281535625458, -0.029584091156721115, 0.0916285514831543, -0.003513708710670471, 0.11234395205974579, -0.06572877615690231, 0.03906862437725067, 0.10078858584165573, 0.05555791035294533, 0.03547376021742821, 0.2648550868034363, 0.07953763008117676, -0.15629249811172485, -0.03462054580450058, -0.05115513131022453, -0.1052197590470314, -0.14056262373924255, -0.12975071370601654, -0.0634174570441246, -0.047115031629800797, 0.02441224828362465, 0.019757727161049843, 0.0058384304866194725, 0.06121378019452095, 0.013731386512517929, -0.01513401698321104, 0.02984379231929779, 0.03212926536798477, 0.09365511685609818, -0.04876966029405594, 0.07936334609985352, -0.03679431602358818, -0.06163459271192551, 0.09891609847545624, 0.08292149752378464, 0.18581518530845642, 0.16550303995609283, 0.0018193161813542247, 0.07427015155553818, 0.03421660512685776, 0.12148451805114746, 0.101702980697155, 0.1369778960943222, -0.03331790864467621, -0.019930744543671608, -0.07035697251558304, -0.0035176854580640793, 0.049692846834659576, -0.03123752772808075, -0.05657234415411949, -0.07950318604707718, -0.0491899810731411, 0.06560713052749634, 0.02053910680115223, 0.26516804099082947, -0.241373211145401, 0.00817788578569889, 0.12371103465557098, 0.10508310049772263, -0.08733067661523819, 0.08425100892782211, 0.03172433748841286, -0.09857413917779922, 0.08766712248325348, 0.0029015722684562206, 0.10183168202638626, -0.10800830274820328, -0.010718139819800854, -0.06039344146847725, -0.055333882570266724, -0.021794499829411507, 0.08527933061122894, -0.036076176911592484, 0.33513468503952026, 0.03111046366393566, -0.05744660273194313, -0.057121723890304565, -0.012726545333862305, 0.023651672527194023, 0.22745028138160706, 0.21016259491443634, 0.05834334343671799, -0.188084214925766, -0.25235486030578613, -0.03316182270646095, -0.011539499275386333, 0.15996776521205902, -0.032365214079618454, 0.0418093204498291, 0.02098674699664116, -0.00115579750854522, -0.024018650874495506, 0.0342477485537529, -0.0696147233247757, 0.0007738993153907359, 0.03168651461601257, 0.07997030019760132, -0.10643088072538376, -0.013355052098631859, -0.09638208895921707, -0.14020882546901703, 0.14884324371814728, 0.013729002326726913, -0.11737439036369324, -0.09733413904905319, -0.01724502258002758, 0.11018932610750198, -0.035646144300699234, -0.03887610137462616, -0.04478180781006813, 0.13515961170196533, 0.030301816761493683, -0.11002827435731888, 0.13549557328224182, -0.024516034871339798, -0.02687986008822918, -0.05070185661315918, 0.17233608663082123, 0.009210661053657532, -0.0005572570953518152, 0.06449992954730988, 0.07329961657524109, 0.010208544321358204, -0.11202266812324524, 0.09826560318470001, -0.0012834130320698023, 0.06703731417655945, 0.3088286221027374, -0.1022408977150917, -0.16158024966716766, -0.039316970854997635, 0.08970291912555695, 0.10866092890501022, 0.2138870656490326, -0.07366011291742325, 0.050533268600702286, 0.0936591625213623, -0.010898184962570667, -0.19183115661144257, -0.014077160507440567, -0.1533866822719574, 0.03630044311285019, -0.0363614447414875, -0.04376356676220894, 0.1487272083759308, 0.043572477996349335, -0.05645187944173813, 0.031246516853570938, -0.2233593910932541, -0.06501760333776474, 0.20365451276302338, 0.10217856615781784, 0.19416342675685883, -0.0596412718296051, -0.10311099886894226, -0.08162536472082138, -0.24841701984405518, 0.13089615106582642, -0.020342746749520302, 0.09497517347335815, -0.07576402276754379, -0.006827430799603462, 0.027646701782941818, -0.019082071259617805, 0.2258445769548416, 0.12230311334133148, 0.08587341755628586, 0.011682186275720596, -0.1654091626405716, 0.20313802361488342, -0.025668509304523468, 0.016688518226146698, 0.1796923130750656, 0.01732262223958969, -0.13942638039588928, -0.016191516071558, -0.017801368609070778, -0.01000824011862278, -0.04800686240196228, -0.065711110830307, -0.07836052775382996, 0.02021894045174122, -0.061558328568935394, -0.06263308227062225, 0.26264795660972595, -0.05181016027927399, 0.14029474556446075, 0.11999824643135071, 0.02182300016283989, -0.15688472986221313, 0.016642604023218155, -0.06631220877170563, -0.060463450849056244, 0.04500500112771988, -0.15323223173618317, 0.06464655697345734, 0.14061760902404785, 0.04749349504709244, 0.12413051724433899, 0.12634961307048798, -0.0034603087697178125, -0.04603702202439308, 0.13776372373104095, -0.12740027904510498, -0.1500125378370285, -0.006942036561667919, -0.260402649641037, -0.012485927902162075, 0.10127070546150208, 0.0671519786119461, 0.038971688598394394, -0.024432478472590446, 0.0036809451412409544, 0.030605025589466095, -0.0731736347079277, 0.14248140156269073, 0.02724863588809967, 0.06654386967420578, -0.15756163001060486, 0.11269237846136093, 0.03929625824093819, 0.03973851352930069, -0.06611838191747665, -0.01263917051255703, -0.15220090746879578, -0.04251343756914139, 0.031012337654829025, 0.14924252033233643, -0.13954204320907593, -0.11203843355178833, -0.10749940574169159, -0.19061805307865143, 0.020030101761221886, 0.10862293094396591, 0.15736356377601624, 0.09818170219659805, 0.007407978177070618, -0.1185298040509224, 0.033052265644073486, 0.02857813611626625, -0.03242200240492821, 0.03070211224257946, -0.2450118511915207, 0.017254773527383804, -0.03930428624153137, 0.1273115873336792, -0.11268088966608047, -0.07596297562122345, -0.13825814425945282, 0.013491646386682987, -0.12772813439369202, 0.040572892874479294, -0.05342956632375717, 0.0036058425903320312, -0.02137892134487629, -0.006323239300400019, -0.07625968009233475, -0.0005975831882096827, -0.10194351524114609, 0.058591634035110474, -0.003749316791072488, 0.13184480369091034, -0.09182517230510712, -0.006720780860632658, 0.07491664588451385, -0.03294168412685394, 0.07034563273191452, 0.056262437254190445, 0.0255753006786108, 0.08529896289110184, -0.1299351155757904, -0.021333061158657074, 0.1098790094256401, 0.0299514252692461, 0.11073616147041321, -0.12957243621349335, -0.011890582740306854, 0.030174843966960907, -0.05009019374847412, 0.10792534053325653, -0.05486202612519264, -0.08290152996778488, -0.11305176466703415, -0.1816343367099762, -0.1342238485813141, -0.03261043131351471, 0.04308926686644554, 0.23073282837867737, 0.045416250824928284, -0.011655588634312153, 0.04710335284471512, 0.0016395847778767347, -0.07006509602069855, -0.018530715256929398, -0.04084832966327667, -0.09674190729856491, -0.03163493797183037, -0.007405618671327829, 0.020799703896045685, -0.025025898590683937, 0.3315463662147522, 0.017635535448789597, 0.06567379832267761, 0.04897279292345047, 0.18914242088794708, -0.012874415144324303, 0.032333191484212875, 0.22814129292964935, 0.06219802796840668, -0.0797601193189621, 0.08394018560647964, 0.05624765902757645, 0.020643917843699455, 0.03993133455514908, 0.2163984328508377, 0.0760151669383049, -0.11067201942205429, 0.059901975095272064, 0.03624134138226509, 0.014492333866655827, -0.05605338513851166, 0.04017096012830734, 0.027951041236519814, 0.01280610729008913, 0.07079686224460602, -0.09521188586950302, 0.11536251753568649, -0.1878827065229416, 0.11112774163484573, -0.03987859934568405, -0.10897580534219742, -0.19059060513973236, -0.043856553733348846, -0.09631509333848953, -0.06445233523845673, 0.0020729717798531055, -0.1300416886806488, -0.07978102564811707, 0.20316973328590393, 0.04356473311781883, 0.02128118835389614, 0.07355420291423798, -0.21636082231998444, 0.002238526940345764, 0.09915349632501602, 0.02250896580517292, 0.0074397362768650055, -0.0295583326369524, -0.013914009556174278, 0.027383221313357353, -0.061533715575933456, -0.03530443087220192, -0.03957279771566391, 0.022182729095220566, -0.048860058188438416, -0.1501423865556717, -0.07737291604280472, -0.055411919951438904, -0.014628012664616108, -0.00006360495899571106, -0.09388518333435059, 0.030470283702015877, -0.024807395413517952, 0.01398632675409317, 0.261669784784317, -0.06869842857122421, 0.05250438302755356, -0.07920503616333008, 0.24525633454322815, -0.042446549981832504, 0.09129966050386429, 0.07246566563844681, -0.0630195140838623, -0.047964416444301605, 0.08940569311380386, 0.16729284822940826, -0.0018902731826528907, -0.00013601293903775513, 0.006887298543006182, 0.020688697695732117, 0.04539439082145691, 0.0263198409229517, -0.028400905430316925, 0.11624118685722351, -0.04719448462128639, 0.07303697615861893, -0.07170523703098297, -0.045033495873212814, -0.04712771251797676, -0.053188253194093704, 0.16946814954280853, -0.044288408011198044, -0.14042960107326508, 0.2103784829378128, -0.02594730630517006, 0.0013883606297895312, 0.25540030002593994, -0.15532298386096954, -0.12899795174598694, -0.008265485055744648, -0.002696485724300146, -0.009386763907968998, 0.06097524240612984, -0.12037501484155655, 0.006154727656394243, 0.03425805643200874, 0.04548594355583191, -0.2074056714773178, -0.11501093208789825, 0.05152744799852371, -0.00897617544978857, 0.05672334134578705, -0.0033412768971174955, 0.14107011258602142, 0.08958204090595245, -0.03976847976446152, -0.05171399563550949, 0.06979141384363174, 0.004669857211410999, 0.04379357025027275, -0.012172376736998558, 0.09602151811122894, -0.016468266025185585, -0.09321869909763336, 0.10264790803194046, -0.12399845570325851, -0.04047570750117302, -0.008770852349698544, -0.06699226051568985, -0.05355291813611984, 0.03443155437707901, -0.10788882523775101, 0.10262510180473328, 0.11548876017332077, -0.007692517247051001, 0.0054726689122617245, 0.012302475050091743, 0.07788091897964478, 0.0832291767001152, -0.0577276237308979, -0.00017110517364926636, -0.03271262347698212, -0.029600363224744797, 0.0625314861536026, -0.03435911238193512, -0.21214282512664795, -0.027109015733003616, -0.09483689069747925, 0.03975595161318779, -0.051447879523038864, 0.11786560714244843, 0.10557689517736435, 0.058350563049316406, -0.03988077864050865, -0.19556836783885956, 0.04556624963879585, 0.11069678515195847, -0.10321944952011108, -0.07066752016544342 ]
null
null
spacy
| Feature | Description | | --- | --- | | **Name** | `hr_hroberta_pipeline` | | **Version** | `0.0.1` | | **spaCy** | `>=3.1.3,<3.2.0` | | **Default Pipeline** | `transformer`, `morphologizer`, `tagger`, `parser` | | **Components** | `transformer`, `morphologizer`, `tagger`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | HR500k | | **License** | CC BY-SA 4.0 | | **Author** | [Daniel Vasić](https://github.com/danielvasic) | ### Label Scheme <details> <summary>View label scheme (1392 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Case=nominative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|POS=ADP`, `Case=locative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=instrumental\|POS=ADP`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Degree=positive\|POS=ADV\|Type=general`, `Number=singular\|POS=VERB\|Person=third\|Type=main\|VForm=present`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `POS=PUNCT`, `POS=PART\|Type=modal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `POS=SCONJ\|Type=subordinating`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=accusative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `POS=CCONJ\|Type=coordinating`, `Case=genitive\|POS=ADP`, `Case=dative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Number=plural\|POS=VERB\|Person=third\|Type=main\|VForm=present`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=present`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|POS=ADP`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Animate=no\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `POS=VERB\|Type=main\|VForm=infinitive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `POS=PART\|Type=negative`, `Case=accusative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Degree=comparative\|POS=ADV\|Type=general`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Gender=masculine\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=locative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Form=digit\|POS=ADJ\|Type=ordinal`, `Number=singular\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=present`, `Number=plural\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=present`, `Case=accusative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Gender=feminine\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Gender=neuter\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Degree=superlative\|POS=ADV\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Number=plural\|POS=VERB\|Person=first\|Type=main\|VForm=present`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Gender=feminine\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Gender=masculine\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Gender=masculine\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Form=digit\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Gender=feminine\|Number=singular\|POS=VERB\|Type=main\|VForm=participle`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Gender=neuter\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=locative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Number=plural\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=aorist`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=aorist`, `POS=X`, `Case=genitive\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Form=letter\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `POS=X\|Type=foreign`, `Number=plural\|POS=VERB\|Person=second\|Type=main\|VForm=present`, `POS=PART\|Type=interrogative`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `POS=ADV\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=VERB\|Person=first\|Type=main\|VForm=present`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=dative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=yes\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Number=plural\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=present`, `POS=AUX\|Type=auxiliary\|VForm=infinitive`, `Case=locative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Gender=feminine\|Number=singular\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Animate=no\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=dative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Number=plural\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=aorist`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `POS=NOUN`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=NOUN\|Type=common`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=nominative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=present`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Number=singular\|POS=AUX\|Person=first\|Type=auxiliary\|VForm=aorist`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Type=interrogative`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=no\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=instrumental\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|POS=ADP`, `Case=instrumental\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Gender=neuter\|Number=plural\|POS=VERB\|Type=main\|VForm=participle`, `Case=nominative\|Form=letter\|Gender=neuter\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=dative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Form=letter\|POS=NUM\|Type=special`, `Case=accusative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=genitive\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=genitive\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=nominative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=plural\|POS=NOUN\|Type=common`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Gender=masculine\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `POS=PROPN`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=genitive\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=locative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Gender=neuter\|Number=plural\|POS=AUX\|Type=auxiliary\|VForm=participle`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Form=letter\|Gender=masculine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Number=plural\|POS=VERB\|Person=second\|Type=main\|VForm=imperative`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=neuter\|Number=singular\|POS=PROPN\|Type=proper`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=dative\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Form=digit\|POS=SYM\|Type=special`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Form=digit\|POS=NUM\|Type=special`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=locative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=aorist`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `POS=SYM`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=vocative\|Gender=masculine\|Number=plural\|POS=NOUN\|Type=common`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=genitive\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=genitive\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Form=digit\|POS=NUM\|Type=multiple`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Animate=yes\|Case=accusative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Number=plural\|POS=VERB\|Person=first\|Type=main\|VForm=imperative`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=locative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=cardinal`, `Case=accusative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=accusative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=locative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Animate=no\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Animate=no\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Gender=masculine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=dative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=PRON\|Type=indefinite`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=dative\|Number=singular\|POS=PRON\|Type=reflexive`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=locative\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=locative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=accusative\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=locative\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Number=singular\|POS=VERB\|Person=third\|Type=main\|VForm=aorist`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=feminine\|POS=NUM\|Type=special`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `POS=ADJ`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Number=plural\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=indefinite`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=instrumental\|Form=letter\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=accusative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Type=demonstrative`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=PRON\|Person=third\|Type=personal`, `Case=accusative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=dative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Number=singular\|POS=VERB\|Person=second\|Type=main\|VForm=imperative`, `Case=nominative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Form=roman\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=plural\|POS=DET\|Type=indefinite`, `Case=dative\|Form=letter\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=special`, `Case=locative\|Form=letter\|Gender=feminine\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=instrumental\|Form=letter\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=accusative\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Form=letter\|POS=NUM\|Type=cardinal`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=instrumental\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=participle`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Type=reflexive`, `Case=genitive\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Form=roman\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=genitive\|Gender=neuter\|Number=plural\|POS=PROPN\|Type=proper`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=reflexive`, `Case=locative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=locative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=aorist`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=third\|Type=possessive`, `Case=genitive\|POS=SYM`, `Case=locative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=nominative\|Gender=masculine\|POS=PRON\|Person=third\|Type=interrogative`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `POS=PART`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Number=plural\|POS=PRON\|Person=first\|Type=personal`, `Case=genitive\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=dative\|Gender=masculine\|POS=PRON\|Person=third\|Type=interrogative`, `Case=instrumental\|Definiteness=no\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `POS=INTJ`, `Case=locative\|Gender=neuter\|POS=PRON\|Person=third\|Type=interrogative`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `POS=PART\|Type=affirmative`, `Number=singular\|POS=VERB\|Person=second\|Type=main\|VForm=present`, `Case=dative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=dative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Type=demonstrative`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Type=indefinite`, `Case=locative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Gender=masculine\|POS=PRON\|Person=third\|Type=indefinite`, `Case=locative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=dative\|Gender=neuter\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Gender=masculine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Type=reflexive`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=neuter\|POS=NUM\|Type=special`, `Case=locative\|Form=letter\|Gender=masculine\|Number=plural\|POS=NUM\|Type=cardinal`, `Case=accusative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=locative\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Number=singular\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=present`, `Case=vocative\|Gender=neuter\|Number=singular\|POS=NOUN\|Type=common`, `Case=genitive\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=vocative\|Gender=feminine\|Number=singular\|POS=NOUN\|Type=common`, `Case=locative\|Form=letter\|Gender=neuter\|Number=singular\|POS=NUM\|Type=cardinal`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=vocative\|Form=letter\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Person=third\|Type=possessive`, `Case=locative\|Gender=feminine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=instrumental\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Gender=feminine\|Number=plural\|POS=NOUN\|Type=common`, `Case=nominative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=genitive\|Number=plural\|POS=PRON\|Person=second\|Type=personal`, `Case=locative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Number=plural\|POS=AUX\|Person=second\|Type=auxiliary\|VForm=imperative`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=PROPN\|Type=proper`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=possessive`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Number=singular\|POS=AUX\|Person=third\|Type=auxiliary\|VForm=imperfect`, `Case=accusative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=nominative\|Form=letter\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=ordinal`, `Case=genitive\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Form=letter\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=ordinal`, `Case=locative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `POS=ADV`, `Case=locative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=nominative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Gender=masculine\|Number=singular\|POS=PROPN\|Type=proper`, `Case=accusative\|Gender=feminine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=dative\|Gender=feminine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=special`, `Case=nominative\|Gender=neuter\|Number=plural\|POS=PROPN\|Type=proper`, `Animate=no\|Case=accusative\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=vocative\|Definiteness=yes\|Degree=positive\|Gender=feminine\|Number=singular\|POS=ADJ\|Type=general`, `Case=vocative\|Gender=feminine\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=dative\|Definiteness=yes\|Degree=positive\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=participle`, `Case=genitive\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Case=instrumental\|Gender=masculine\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=nominative\|Form=letter\|Gender=masculine\|POS=NUM\|Type=cardinal`, `Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive`, `Case=genitive\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Definiteness=yes\|Degree=superlative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=superlative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=locative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=plural\|POS=DET\|Type=interrogative`, `Case=dative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=singular\|POS=ADJ\|Type=general`, `Case=instrumental\|Number=singular\|POS=PRON\|Person=first\|Type=personal`, `Case=instrumental\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=vocative\|Number=singular\|POS=PRON\|Person=second\|Type=personal`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=positive\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=participle`, `Case=dative\|Form=letter\|Gender=feminine\|POS=NUM\|Type=cardinal`, `Case=dative\|Definiteness=yes\|Degree=superlative\|Gender=feminine\|Number=plural\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Gender=neuter\|Number=plural\|POS=DET\|Type=reflexive`, `Case=dative\|Gender=neuter\|POS=PRON\|Person=third\|Type=indefinite`, `Case=vocative\|Definiteness=yes\|Degree=superlative\|Gender=masculine\|Number=plural\|POS=ADJ\|Type=general`, `Case=vocative\|Gender=masculine\|Number=plural\|POS=DET\|Person=first\|Type=possessive`, `Animate=yes\|Case=accusative\|Definiteness=no\|Degree=comparative\|Gender=masculine\|Number=singular\|POS=ADJ\|Type=general`, `Case=accusative\|Gender=neuter\|Number=singular\|POS=DET\|Person=first\|Type=possessive`, `Case=accusative\|Definiteness=yes\|Degree=comparative\|Gender=neuter\|Number=plural\|POS=ADJ\|Type=general`, `Case=nominative\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=locative\|Gender=masculine\|Number=plural\|POS=DET\|Person=second\|Type=possessive`, `Case=instrumental\|Gender=feminine\|Number=singular\|POS=DET\|Type=interrogative`, `Case=genitive\|Gender=neuter\|Number=singular\|POS=DET\|Person=second\|Type=possessive` | | **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmply`, `Agcmpny`, `Agcmsany`, `Agcmsay`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpay`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsin`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmpvy`, `Agpmsan`, `Agpmsann`, `Agpmsany`, `Agpmsay`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmpvy`, `Agsmsany`, `Agsmsay`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfpiy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsiy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsayn`, `Aspmsayy`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsdn`, `Aspnsgn`, `Aspnsgy`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpl`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsl`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlomsv`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-d`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsmpn`, `Mlsn-n`, `Mrc`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npd`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sg`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pg`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp2-sv`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsi`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpd`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, `Ps1fsv`, `Ps1mpa`, `Ps1mpd`, `Ps1mpg`, `Ps1mpi`, `Ps1mpl`, `Ps1mpn`, `Ps1mpv`, `Ps1msan`, `Ps1msay`, `Ps1msd`, `Ps1msg`, `Ps1msi`, `Ps1msl`, `Ps1msn`, `Ps1msv`, `Ps1npd`, `Ps1npn`, `Ps1nsa`, `Ps1nsg`, `Ps1nsi`, `Ps1nsl`, `Ps1nsn`, `Ps2fpa`, `Ps2fpl`, `Ps2fpn`, `Ps2fsa`, `Ps2fsd`, `Ps2fsg`, `Ps2fsn`, `Ps2mpa`, `Ps2mpg`, `Ps2mpl`, `Ps2mpn`, `Ps2msan`, `Ps2msd`, `Ps2msg`, `Ps2msi`, `Ps2msl`, `Ps2msn`, `Ps2npn`, `Ps2nsa`, `Ps2nsg`, `Ps2nsi`, `Ps2nsl`, `Ps2nsn`, `Ps3fpa`, `Ps3fpg`, `Ps3fpl`, `Ps3fpn`, `Ps3fsa`, `Ps3fsd`, `Ps3fsg`, `Ps3fsi`, `Ps3fsl`, `Ps3fsn`, `Ps3mpa`, `Ps3mpd`, `Ps3mpg`, `Ps3mpi`, `Ps3mpl`, `Ps3mpn`, `Ps3msan`, `Ps3msay`, `Ps3msd`, `Ps3msg`, `Ps3msi`, `Ps3msl`, `Ps3msn`, `Ps3npa`, `Ps3npg`, `Ps3npl`, `Ps3npn`, `Ps3nsa`, `Ps3nsg`, `Ps3nsi`, `Ps3nsl`, `Ps3nsn`, `Px--sa`, `Px--sd`, `Px--sg`, `Px--si`, `Px--sl`, `Px-fpa`, `Px-fpg`, `Px-fpi`, `Px-fpl`, `Px-fpn`, `Px-fsa`, `Px-fsd`, `Px-fsg`, `Px-fsi`, `Px-fsl`, `Px-mpa`, `Px-mpd`, `Px-mpg`, `Px-mpi`, `Px-mpl`, `Px-msan`, `Px-msay`, `Px-msd`, `Px-msg`, `Px-msi`, `Px-msl`, `Px-npa`, `Px-npg`, `Px-npi`, `Px-npl`, `Px-nsa`, `Px-nsg`, `Px-nsi`, `Px-nsl`, `Qo`, `Qq`, `Qr`, `Qz`, `Rgc`, `Rgp`, `Rgs`, `Rr`, `Sa`, `Sd`, `Sg`, `Si`, `Sl`, `Vaa1p`, `Vaa1s`, `Vaa2p`, `Vaa2s`, `Vaa3p`, `Vaa3s`, `Vae3s`, `Vam2p`, `Van`, `Vap-pf`, `Vap-pm`, `Vap-pn`, `Vap-sf`, `Vap-sm`, `Vap-sn`, `Var1p`, `Var1s`, `Var2p`, `Var2s`, `Var3p`, `Var3s`, `Vma3s`, `Vmm1p`, `Vmm2p`, `Vmm2s`, `Vmn`, `Vmp-pf`, `Vmp-pm`, `Vmp-pn`, `Vmp-sf`, `Vmp-sm`, `Vmp-sn`, `Vmr1p`, `Vmr1s`, `Vmr2p`, `Vmr2s`, `Vmr3p`, `Vmr3s`, `X`, `Xf`, `Y`, `Z` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `goeswith`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `POS_ACC` | 97.94 | | `MORPH_ACC` | 93.45 | | `TAG_ACC` | 93.42 | | `DEP_UAS` | 88.33 | | `DEP_LAS` | 82.92 | | `SENTS_P` | 96.67 | | `SENTS_R` | 96.83 | | `SENTS_F` | 96.75 | | `TRANSFORMER_LOSS` | 3301725.19 | | `MORPHOLOGIZER_LOSS` | 410128.51 | | `TAGGER_LOSS` | 393243.89 | | `PARSER_LOSS` | 3074279.42 |
{"language": ["hr"], "license": "cc", "library_name": "spacy", "tags": ["spacy", "token-classification"], "datasets": ["classla/hr500k"], "metrics": ["f1", "accuracy"], "pipeline_tag": "token-classification"}
token-classification
danielvasic/hr_hroberta_pipeline
[ "spacy", "token-classification", "hr", "dataset:classla/hr500k", "license:cc", "model-index", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hr" ]
TAGS #spacy #token-classification #hr #dataset-classla/hr500k #license-cc #model-index #region-us
### Label Scheme View label scheme (1392 labels for 3 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #hr #dataset-classla/hr500k #license-cc #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)", "### Accuracy" ]
[ 36, 17, 5 ]
[ "passage: TAGS\n#spacy #token-classification #hr #dataset-classla/hr500k #license-cc #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (1392 labels for 3 components)### Accuracy" ]
[ -0.10042384266853333, 0.14356568455696106, -0.0008400313672609627, 0.06652381271123886, 0.09397587180137634, 0.06794865429401398, 0.23594799637794495, 0.08842702209949493, 0.17497128248214722, 0.03832004964351654, 0.05174848809838295, 0.09169356524944305, 0.07969111949205399, 0.20906707644462585, -0.10120546817779541, -0.1940533071756363, 0.08402541279792786, -0.011265053413808346, 0.034070197492837906, 0.11941245198249817, 0.07664044201374054, -0.1298520714044571, 0.1099897101521492, -0.04562447592616081, -0.20454087853431702, 0.02684767171740532, 0.036028824746608734, -0.09834688901901245, 0.07467035949230194, -0.014561733230948448, 0.18382233381271362, 0.05974079668521881, 0.1290382444858551, -0.18063539266586304, -0.003913729917258024, -0.05547763407230377, -0.07165031880140305, 0.07639708369970322, 0.01991949789226055, 0.03082025796175003, -0.015700602903962135, -0.08084145188331604, 0.04468654468655586, 0.033581946045160294, -0.10714800655841827, -0.09888649731874466, -0.11159303039312363, 0.1922662854194641, 0.10585016012191772, -0.04467380419373512, 0.01127586979418993, 0.09010523557662964, -0.08995763957500458, 0.04794848710298538, 0.1626814305782318, -0.3403674364089966, 0.0019244180293753743, 0.2628185451030731, -0.050924625247716904, 0.06976570188999176, -0.035288188606500626, 0.1325111985206604, 0.12459062039852142, -0.011415739543735981, 0.008457559160888195, -0.02272704616189003, 0.002025271998718381, 0.02944488823413849, -0.097885362803936, -0.046717092394828796, 0.49739307165145874, 0.09283408522605896, -0.026286553591489792, -0.09138529747724533, -0.03642123565077782, -0.1682213693857193, -0.07253636419773102, -0.04888299107551575, 0.05884415656328201, -0.003587923478335142, 0.08631782978773117, 0.10733113437891006, -0.09233054518699646, -0.07216835021972656, -0.143684983253479, 0.15352466702461243, 0.017967980355024338, 0.08187831938266754, -0.11325433850288391, 0.03410064056515694, -0.04844885319471359, -0.06674572080373764, -0.014003933407366276, -0.06355063617229462, -0.058850500732660294, -0.0439567007124424, 0.03617824614048004, 0.14211754500865936, 0.08139505982398987, 0.06558462232351303, -0.044799670577049255, 0.029540453106164932, 0.03282388672232628, 0.046352338045835495, 0.07946489751338959, 0.12292611598968506, -0.06758080422878265, -0.033919431269168854, -0.019421420991420746, -0.04873408004641533, 0.06362228840589523, -0.030450286343693733, -0.1395556926727295, -0.021348487585783005, 0.0768684446811676, 0.11544644832611084, -0.076728455722332, -0.011566263623535633, -0.11760716140270233, -0.026494015008211136, 0.11354312300682068, -0.1234653890132904, 0.018113739788532257, -0.006205657962709665, -0.026215262711048126, 0.034923940896987915, -0.08492332696914673, -0.009606302715837955, 0.05250951275229454, -0.003980291076004505, -0.10291533172130585, -0.02008478343486786, -0.011409874074161053, -0.09379256516695023, 0.04136345162987709, -0.08312179893255234, 0.013563226908445358, -0.05675977095961571, -0.15135236084461212, -0.01591440849006176, -0.010755700059235096, -0.08024492114782333, -0.006284644361585379, -0.011715554632246494, -0.07290322333574295, 0.016596224159002304, -0.0046129063703119755, -0.049796320497989655, -0.07782505452632904, -0.00044002983486279845, -0.022868819534778595, 0.08496430516242981, -0.11756405979394913, 0.019837437197566032, -0.06367001682519913, 0.055868424475193024, -0.13157881796360016, 0.01416450459510088, -0.0872577354311943, 0.07191137969493866, -0.06465054303407669, -0.09374938160181046, 0.05939362943172455, -0.0027809899765998125, -0.07485856860876083, 0.15158788859844208, -0.23514391481876373, -0.022991588339209557, 0.15932883322238922, -0.16849935054779053, -0.1629858762025833, 0.00742126302793622, -0.008470556698739529, 0.05900057032704353, 0.09905458986759186, 0.11294540017843246, 0.014874952845275402, -0.13143308460712433, -0.04196363314986229, 0.0769893229007721, -0.03840789198875427, -0.11594285815954208, 0.11591751873493195, 0.008737043477594852, -0.00507100997492671, 0.03832496702671051, 0.005424669943749905, -0.11222518980503082, -0.05063924938440323, -0.09668438881635666, -0.027786213904619217, 0.015290536917746067, -0.007676233537495136, 0.03253673389554024, 0.024125490337610245, -0.054032787680625916, 0.024299081414937973, 0.05032318830490112, 0.06820375472307205, 0.0065590268932282925, -0.05234881490468979, -0.05724446475505829, 0.13187220692634583, -0.07846011966466904, -0.08669011294841766, -0.11513743549585342, -0.15703019499778748, 0.02197839505970478, -0.00460535055026412, 0.01927262730896473, 0.12950557470321655, -0.007412085309624672, 0.016081003472208977, -0.029814861714839935, 0.010145192965865135, 0.014559527859091759, 0.09305781126022339, -0.0464266799390316, -0.2102605104446411, -0.0633612796664238, -0.04681272432208061, 0.06641159951686859, -0.04747946932911873, 0.015762869268655777, 0.16720612347126007, 0.07357794046401978, 0.01647454872727394, 0.05624866485595703, 0.02524081990122795, 0.0389820821583271, -0.03618156537413597, -0.057925913482904434, 0.0718989297747612, -0.07076869159936905, -0.058996230363845825, -0.03201619163155556, -0.06668341904878616, 0.05385389178991318, 0.156655415892601, -0.02203468792140484, -0.0649895891547203, -0.08005892485380173, 0.0022773267701268196, 0.010134636424481869, -0.09234832972288132, 0.016529375687241554, -0.11750105768442154, -0.043568141758441925, 0.024549109861254692, -0.1007649302482605, -0.029599720612168312, 0.03156999126076698, -0.02599770948290825, -0.14073537290096283, 0.0879397839307785, 0.07950305938720703, -0.2296316921710968, 0.15511181950569153, 0.21671731770038605, 0.13502568006515503, 0.07450494915246964, -0.040128305554389954, -0.024002743884921074, -0.06559079140424728, -0.023469040170311928, -0.0698031410574913, 0.21299374103546143, -0.09788581728935242, -0.0368170365691185, 0.05073220655322075, 0.03390386328101158, -0.007692929357290268, -0.1973642259836197, -0.015617242082953453, -0.029283374547958374, -0.04975726827979088, -0.10362248867750168, -0.028001731261610985, -0.006934528239071369, 0.13143961131572723, 0.03998764604330063, -0.194403275847435, 0.07058890908956528, -0.05269039794802666, -0.09134037792682648, 0.16462668776512146, -0.0921216756105423, -0.1927875280380249, -0.13977093994617462, -0.044973958283662796, -0.08039054274559021, 0.028507236391305923, -0.00569937052205205, -0.09116213768720627, -0.05175229161977768, -0.01607004925608635, -0.06852349638938904, -0.08781968057155609, -0.04030369967222214, -0.02726105786859989, 0.07186394184827805, -0.10878346860408783, -0.07478567957878113, -0.09965984523296356, -0.0529475212097168, 0.07242526113986969, 0.08383115381002426, -0.1391255259513855, 0.09870930016040802, 0.23969322443008423, -0.034385453909635544, 0.07038933783769608, -0.032753556966781616, 0.12147659808397293, -0.04537227749824524, 0.05161421000957489, 0.1020176112651825, 0.09168151021003723, 0.024924051016569138, 0.2739245891571045, 0.09023887664079666, -0.14684124290943146, -0.036999136209487915, -0.04979950562119484, -0.09441573917865753, -0.15941545367240906, -0.12441561371088028, -0.06273430585861206, -0.04296204075217247, 0.029942860826849937, 0.02717546373605728, -0.011918582022190094, 0.07300131767988205, 0.002502238843590021, 0.002105815103277564, 0.031813014298677444, 0.04366888478398323, 0.14658844470977783, -0.02162649855017662, 0.09850369393825531, -0.06462441384792328, -0.02481093443930149, 0.09140083938837051, 0.10315237194299698, 0.19489902257919312, 0.13701346516609192, 0.02728966251015663, 0.10606078803539276, 0.10130561143159866, 0.09388744086027145, 0.06736032664775848, 0.13618193566799164, -0.02744976617395878, -0.014701935462653637, -0.07924408465623856, 0.007487651892006397, 0.0567435622215271, -0.04823726788163185, -0.03360668197274208, -0.07393292337656021, -0.043814826756715775, 0.05401623994112015, 0.06760341674089432, 0.23977717757225037, -0.27265608310699463, 0.002317523816600442, 0.10861718654632568, 0.10930968821048737, -0.07470831274986267, 0.0868382528424263, 0.010697944089770317, -0.11012840270996094, 0.10068820416927338, 0.00007753489626338705, 0.0924798771739006, -0.06134398281574249, -0.038069721311330795, -0.022810470312833786, -0.052613481879234314, -0.017102226614952087, 0.09728004038333893, -0.11030832678079605, 0.31468889117240906, 0.03596181422472, -0.01225360855460167, -0.058760352432727814, -0.0194555576890707, 0.01760834828019142, 0.20083247125148773, 0.21536758542060852, 0.04882146045565605, -0.1885034739971161, -0.2382642924785614, -0.03828729689121246, -0.0047372872941195965, 0.10398836433887482, -0.01924300193786621, 0.035300154238939285, 0.01978966034948826, 0.0012929195072501898, -0.009160506539046764, 0.022803951054811478, -0.10720843076705933, -0.030739912763237953, 0.018790999427437782, 0.10574395954608917, -0.07371614873409271, -0.034369777888059616, -0.09871033579111099, -0.15905170142650604, 0.11568101495504379, -0.05283736810088158, -0.11172853410243988, -0.09916388243436813, -0.019479386508464813, 0.08559603989124298, -0.03093176893889904, -0.015821052715182304, -0.030431222170591354, 0.1161140725016594, 0.020774107426404953, -0.10186384618282318, 0.12506181001663208, -0.03556782007217407, -0.05910465493798256, -0.0612986795604229, 0.143715962767601, 0.0007797377184033394, 0.008087240159511566, 0.08245992660522461, 0.0897076427936554, 0.0216839499771595, -0.1107991635799408, 0.07191292196512222, 0.010612227953970432, 0.08143677562475204, 0.24116691946983337, -0.11490236967802048, -0.16545651853084564, -0.02220192737877369, 0.03154543414711952, 0.10190284252166748, 0.23584085702896118, -0.11227478086948395, 0.08319833874702454, 0.0930032730102539, -0.037568025290966034, -0.21431785821914673, -0.013312973082065582, -0.16096201539039612, 0.028136227279901505, -0.007904580794274807, -0.04187680780887604, 0.14858083426952362, 0.06111422926187515, -0.07322234660387039, 0.023946790024638176, -0.2435852587223053, -0.09546557068824768, 0.17559213936328888, 0.1009824350476265, 0.1254284530878067, -0.08083634823560715, -0.09517405927181244, -0.09499252587556839, -0.2607782185077667, 0.17345713078975677, -0.0150567926466465, 0.0878242775797844, -0.07483798265457153, 0.01304742880165577, 0.0036398584488779306, -0.007917225360870361, 0.2216363400220871, 0.12085923552513123, 0.09765221178531647, -0.0019127848790958524, -0.1358029544353485, 0.23658567667007446, -0.0221102237701416, 0.05631097033619881, 0.08196471631526947, 0.020745038986206055, -0.1265784353017807, -0.007831943221390247, -0.0010070748394355178, 0.025072600692510605, -0.08140750974416733, -0.0631052702665329, -0.10079129785299301, 0.04308575764298439, -0.04629174992442131, -0.08210157603025436, 0.21565839648246765, -0.024215633049607277, 0.09032780677080154, 0.10608099400997162, 0.017950110137462616, -0.12446328997612, -0.0015308719594031572, -0.06062742695212364, -0.07866179198026657, 0.047856368124485016, -0.15460750460624695, 0.040504854172468185, 0.13194428384304047, 0.052525073289871216, 0.13312119245529175, 0.101213738322258, -0.0063351914286613464, -0.03704148530960083, 0.12191204726696014, -0.10072062164545059, -0.10616044700145721, 0.014737877063453197, -0.20706236362457275, -0.013823248445987701, 0.08184453845024109, 0.058099087327718735, -0.004250723402947187, -0.029498549178242683, 0.007260398007929325, 0.05013398826122284, -0.06761422753334045, 0.13603471219539642, 0.03926770016551018, 0.055277932435274124, -0.16259042918682098, 0.12354133278131485, 0.04079154133796692, 0.028335846960544586, -0.042375437915325165, -0.04735143855214119, -0.1520390808582306, -0.04460708424448967, 0.04980801045894623, 0.14880047738552094, -0.1901223063468933, -0.12107228487730026, -0.10648341476917267, -0.19965562224388123, 0.021189304068684578, 0.09498665481805801, 0.1478690505027771, 0.09039038419723511, 0.023722190409898758, -0.13400481641292572, 0.020024467259645462, 0.0700836330652237, -0.03826642408967018, 0.033970676362514496, -0.2321934998035431, 0.04539266601204872, -0.02293909527361393, 0.08205999433994293, -0.08294938504695892, -0.04202905297279358, -0.131503626704216, 0.006207451689988375, -0.09988664835691452, 0.056384939700365067, -0.06553013622760773, 0.014711719937622547, -0.013444425538182259, -0.01833353191614151, -0.07798723131418228, 0.014626954682171345, -0.08117999881505966, 0.0441095232963562, 0.0066029685549438, 0.16713228821754456, -0.12687848508358002, -0.022804271429777145, 0.05977724492549896, -0.020042093470692635, 0.05087381601333618, 0.018711164593696594, 0.03268445283174515, 0.07659868150949478, -0.1477287858724594, 0.0023091970942914486, 0.07636803388595581, 0.040739692747592926, 0.10199271887540817, -0.14020973443984985, -0.003353734500706196, 0.06739174574613571, -0.04333159327507019, 0.10781517624855042, -0.0433933399617672, -0.0843767523765564, -0.13139328360557556, -0.15764419734477997, -0.09440506249666214, -0.034206047654151917, 0.07074642181396484, 0.2482321709394455, 0.02774009294807911, 0.06155426800251007, 0.009506563656032085, -0.029064808040857315, -0.08934419602155685, -0.025970881804823875, -0.06050094962120056, -0.07496707141399384, -0.1008843332529068, -0.015722250565886497, 0.015147416852414608, -0.02362518012523651, 0.3188974857330322, 0.051113441586494446, -0.026158032938838005, 0.05366213247179985, 0.18704889714717865, -0.02693255804479122, 0.01500622183084488, 0.2720627784729004, 0.053667061030864716, -0.03962945565581322, 0.07218419015407562, 0.05229756236076355, -0.0027534428518265486, 0.03272639960050583, 0.20159649848937988, 0.09025032073259354, -0.082655169069767, 0.05428490415215492, 0.07510192692279816, -0.043428774923086166, -0.0028699401300400496, 0.06567288190126419, 0.01984945312142372, 0.02835690975189209, 0.03440672904253006, -0.05140036344528198, 0.1078905537724495, -0.20361605286598206, 0.07808699458837509, -0.06231562793254852, -0.11023738980293274, -0.18159162998199463, -0.09972219169139862, -0.09264303743839264, -0.05517461523413658, 0.013970434665679932, -0.11257462203502655, -0.049706317484378815, 0.21689479053020477, 0.029932010918855667, -0.00021751005260739475, 0.020125743001699448, -0.23991627991199493, 0.018485553562641144, 0.05714210122823715, 0.030110854655504227, -0.0016480428166687489, -0.06441371142864227, -0.00645283842459321, 0.03330133482813835, -0.07167680561542511, -0.04081742838025093, -0.03007623367011547, 0.04595014825463295, -0.031125200912356377, -0.12009932100772858, -0.05369693785905838, -0.05042913928627968, -0.019975291565060616, 0.036919381469488144, -0.030636683106422424, 0.04194790869951248, 0.0022087490651756525, 0.03428181633353233, 0.2333717793226242, -0.05229949206113815, 0.00766393868252635, -0.07427531480789185, 0.20197466015815735, -0.03565002605319023, 0.06683927029371262, 0.08663135021924973, -0.07003752142190933, -0.007327234372496605, 0.07800399512052536, 0.19484639167785645, -0.009620314463973045, -0.0033999388106167316, -0.005809381138533354, 0.0002096025418723002, 0.007670060731470585, 0.036846622824668884, -0.03195472061634064, 0.10666360706090927, -0.0537744015455246, 0.07556004822254181, -0.09917296469211578, -0.02494347095489502, -0.05260424315929413, -0.04415401443839073, 0.11305499821901321, -0.07072107493877411, -0.10603488981723785, 0.1896428018808365, -0.0025369920767843723, -0.041729144752025604, 0.272734671831131, -0.13359275460243225, -0.12076082080602646, -0.0013509240234270692, -0.004674142692238092, 0.008305973373353481, 0.02919953688979149, -0.1277300864458084, 0.04148869588971138, 0.07411692291498184, 0.03427903726696968, -0.20461025834083557, -0.11157834529876709, 0.06401941180229187, -0.020819073542952538, 0.11354834586381912, -0.012699881568551064, 0.19626614451408386, 0.10662763565778732, -0.025814902037382126, -0.08015706390142441, 0.09231149405241013, 0.022903481498360634, 0.0432417057454586, 0.024299535900354385, 0.016863126307725906, -0.014097845181822777, -0.03667254373431206, 0.09513456374406815, -0.05461901053786278, -0.0011404650285840034, 0.00940672680735588, -0.06985151022672653, -0.09260182827711105, 0.054225195199251175, -0.1062120646238327, 0.10471376776695251, 0.08621371537446976, -0.03533318638801575, -0.0046050064265728, 0.00804159976541996, 0.07788950949907303, 0.09154052287340164, -0.09310927987098694, 0.036410510540008545, -0.03228907287120819, 0.011468946002423763, 0.01204474177211523, -0.00741258030757308, -0.21348479390144348, -0.03451769798994064, -0.10858148336410522, -0.0028453953564167023, -0.07184534519910812, 0.12667512893676758, 0.13433127105236053, 0.05371033400297165, -0.04497136175632477, -0.16648001968860626, 0.015778157860040665, 0.10257768630981445, -0.09326663613319397, -0.08063388615846634 ]
null
null
transformers
# Michael Scott DialoGPT Model
{"tags": ["conversational"]}
text-generation
danildany/DialoGPT-small-MichaelScott
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Michael Scott DialoGPT Model
[ "# Michael Scott DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Michael Scott DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Michael Scott DialoGPT Model" ]
[ -0.05219185724854469, 0.09866782277822495, -0.005691746715456247, 0.014186694286763668, 0.1394561529159546, -0.001829843153245747, 0.16353429853916168, 0.11410007625818253, 0.0003006179176736623, -0.04741425812244415, 0.1353054791688919, 0.15719813108444214, -0.014070987701416016, 0.08814262598752975, -0.06975510716438293, -0.2998508810997009, 0.039975605905056, 0.049550775438547134, 0.0006589151453226805, 0.12373805791139603, 0.09086789190769196, -0.04772906005382538, 0.07793775945901871, 0.010827907361090183, -0.15130233764648438, 0.00034275747020728886, 0.021106015890836716, -0.10742229968309402, 0.11193658411502838, 0.057059239596128464, 0.011923723854124546, 0.05351797118782997, -0.046079181134700775, -0.12970955669879913, 0.037044789642095566, -0.025121131911873817, -0.03236977010965347, 0.04242695868015289, 0.025312280282378197, -0.09374593198299408, 0.12003415822982788, 0.1303921341896057, 0.001079527661204338, 0.04427899792790413, -0.16276776790618896, 0.016268204897642136, -0.0005779521889053285, 0.04450548440217972, 0.08583608269691467, 0.12227486819028854, -0.04295159503817558, 0.12185361236333847, -0.0555940717458725, 0.11034291237592697, 0.06189177185297012, -0.3160879909992218, -0.01910942979156971, 0.10594988614320755, 0.01992202363908291, 0.05502206087112427, -0.029418546706438065, 0.08084716647863388, 0.013392501510679722, 0.0037920791655778885, -0.00698307016864419, -0.07697310298681259, -0.0839802697300911, 0.02420506812632084, -0.09330907464027405, -0.009450321085751057, 0.2700197696685791, -0.02744600921869278, 0.072395920753479, -0.08372221887111664, -0.08785450458526611, -0.022152839228510857, -0.028888678178191185, -0.0352373942732811, -0.07969874143600464, 0.0692928358912468, -0.02994782291352749, -0.0891190692782402, -0.12064703553915024, -0.015572070144116879, -0.1808616667985916, 0.1355033814907074, 0.02015385404229164, 0.04424908012151718, -0.2066064178943634, 0.10033243149518967, -0.0034225129056721926, -0.09585415571928024, 0.025406567379832268, -0.08791401237249374, 0.023702410981059074, 0.006199836265295744, -0.03435196727514267, -0.03682130575180054, 0.052537158131599426, 0.1017875000834465, 0.037624917924404144, 0.010535156354308128, -0.0018888848135247827, 0.03797334060072899, 0.051690686494112015, 0.09864642471075058, -0.012159604579210281, -0.09275422245264053, 0.02472686767578125, -0.07794763147830963, -0.005519283004105091, -0.058316051959991455, -0.18736064434051514, -0.015742581337690353, 0.0638531967997551, 0.044187113642692566, 0.038800206035375595, 0.12312106788158417, -0.010700120590627193, -0.04949404299259186, 0.030500246211886406, -0.011449377983808517, -0.04102412611246109, 0.0034441438037902117, -0.006849803030490875, 0.12526994943618774, 0.026637904345989227, 0.04344993084669113, -0.11248063296079636, 0.028229007497429848, -0.057886455208063126, -0.01740637980401516, -0.009245701134204865, -0.03968518599867821, -0.012927724979817867, -0.013261554762721062, 0.022976692765951157, -0.14569568634033203, -0.1517621874809265, -0.01016512792557478, -0.02071678265929222, -0.03244677186012268, -0.1160486489534378, -0.10807818174362183, -0.01673271879553795, 0.019136225804686546, -0.06594734638929367, -0.02844683639705181, -0.0698276236653328, 0.08516715466976166, -0.018525948747992516, 0.08600673824548721, -0.10450328141450882, 0.08221111446619034, -0.08476737141609192, -0.03818882256746292, -0.09571085125207901, 0.13696692883968353, 0.013556249439716339, 0.0781843289732933, -0.018449140712618828, -0.02062518522143364, -0.0882476195693016, 0.059506144374608994, -0.04792816564440727, 0.2627614736557007, -0.05373995751142502, -0.12228331714868546, 0.25644850730895996, -0.04264277219772339, -0.1323377937078476, 0.12074649333953857, -0.011831019073724747, 0.10573146492242813, 0.1418948471546173, 0.19843782484531403, 0.02438964881002903, -0.015437912195920944, 0.08063486218452454, 0.11468730866909027, -0.07269655913114548, -0.025499138981103897, 0.021268967539072037, -0.013782723806798458, -0.08294597268104553, 0.04756487160921097, 0.0545177198946476, 0.06714420020580292, -0.061176858842372894, -0.018936485052108765, 0.008749358355998993, -0.012960782274603844, 0.07812909036874771, -0.03309756517410278, 0.13732872903347015, -0.023552410304546356, -0.04682721197605133, 0.022938000038266182, 0.0061576031148433685, -0.03251919895410538, 0.029665304347872734, -0.0829462856054306, 0.06871046125888824, -0.03380677103996277, 0.046204015612602234, -0.1479959934949875, -0.06659089773893356, -0.0554286427795887, 0.19006399810314178, 0.0666101947426796, 0.11865320801734924, 0.050943177193403244, -0.050719913095235825, -0.022334067150950432, 0.026607545092701912, 0.1764538288116455, -0.00432533398270607, -0.08827561140060425, -0.0893583744764328, 0.10425122827291489, -0.050604887306690216, 0.14028102159500122, -0.04839342460036278, 0.02007957734167576, 0.0026882649399340153, 0.08945371210575104, -0.01477344986051321, 0.026225006207823753, 0.02395329251885414, -0.023401744663715363, -0.03615526854991913, 0.002531831618398428, 0.09866794943809509, 0.01095353439450264, -0.10495016723871231, 0.21652550995349884, -0.17865079641342163, 0.1712048351764679, 0.1963411271572113, -0.23899659514427185, -0.0015646020183339715, -0.11911866068840027, -0.028263965621590614, 0.001987667288631201, 0.06021636724472046, -0.0393366664648056, 0.22000858187675476, -0.016854142770171165, 0.17416520416736603, -0.02770877256989479, -0.040796905755996704, -0.037516918033361435, -0.03281911462545395, 0.006335647311061621, 0.10647379606962204, 0.11007938534021378, -0.15187709033489227, 0.16408798098564148, 0.11575789749622345, 0.0780109092593193, 0.17331485450267792, 0.034749943763017654, -0.0032106752041727304, 0.05403655767440796, -0.016047578305006027, -0.058072831481695175, -0.054366856813430786, -0.2821202278137207, -0.022700391709804535, 0.06727944314479828, 0.03511533513665199, 0.1157771497964859, -0.09771660715341568, -0.03510351851582527, 0.007726206444203854, -0.004056483972817659, -0.011832889169454575, 0.11260128766298294, 0.024472780525684357, 0.11891433596611023, -0.014555193483829498, -0.049464691430330276, 0.06548446416854858, 0.015799861401319504, -0.0911889299750328, 0.1808817833662033, -0.1293938159942627, -0.31928402185440063, -0.11005263775587082, -0.1739242821931839, -0.06692400574684143, 0.044659167528152466, 0.089129239320755, -0.0986839309334755, -0.012885700911283493, -0.010432631708681583, 0.10299661755561829, -0.1042117103934288, -0.00021655845921486616, -0.024086903780698776, -0.008923182263970375, -0.12579397857189178, -0.09363239258527756, -0.05231120064854622, -0.047037553042173386, -0.056600943207740784, 0.12313047051429749, -0.16023315489292145, 0.016609620302915573, 0.23161454498767853, 0.0652986690402031, 0.057193268090486526, -0.03880190849304199, 0.2495022416114807, -0.10808973759412766, -0.0023339898325502872, 0.18616418540477753, -0.04433102160692215, 0.05136839672923088, 0.11985351145267487, -0.0136415995657444, -0.06612838804721832, 0.02638145536184311, -0.026510832831263542, -0.06462612748146057, -0.20766602456569672, -0.12633801996707916, -0.10652592033147812, 0.09661045670509338, 0.014828304760158062, 0.031906623393297195, 0.13614897429943085, 0.06607432663440704, -0.028223717585206032, -0.021433252841234207, 0.051379118114709854, 0.0797564685344696, 0.2964741587638855, -0.08455753326416016, 0.1417170912027359, -0.013198381289839745, -0.15605655312538147, 0.07814671099185944, 0.044270530343055725, 0.0715622529387474, 0.06255177408456802, 0.05851732939481735, -0.0010256161913275719, 0.04383862763643265, 0.10823048651218414, 0.06493564695119858, 0.03111851029098034, -0.03486765921115875, -0.04263158515095711, -0.04394565895199776, -0.024241000413894653, 0.04993441700935364, 0.07002178579568863, -0.1495700478553772, -0.028503501787781715, -0.01351531594991684, 0.05873153731226921, 0.051203496754169464, 0.10058362036943436, -0.1801169514656067, -0.0331742949783802, 0.06462137401103973, -0.03960053250193596, -0.1126687154173851, 0.08458040654659271, 0.020008135586977005, -0.12716439366340637, 0.05063258856534958, -0.005617031827569008, 0.11739388853311539, -0.07477667927742004, 0.07746375352144241, -0.11893178522586823, -0.09835978597402573, -0.0009378000977449119, 0.09371139109134674, -0.25335580110549927, 0.20636585354804993, -0.0014321436174213886, -0.06408964097499847, -0.09884043782949448, -0.01885804533958435, 0.02359641157090664, 0.13839443027973175, 0.1132744550704956, -0.009273536503314972, 0.030854539945721626, 0.005529241636395454, -0.08657826483249664, 0.026634985581040382, 0.0939711406826973, -0.053410161286592484, -0.007721978239715099, -0.03209467604756355, -0.005074217449873686, -0.00485841603949666, -0.08350344747304916, 0.02240070514380932, -0.18551349639892578, 0.09220478683710098, 0.0513395220041275, 0.0812494307756424, 0.042932961136102676, -0.03902555629611015, -0.08352344483137131, 0.2238694131374359, -0.017721988260746002, -0.10115890949964523, -0.09303940832614899, -0.01734204962849617, 0.04749097675085068, -0.060149773955345154, 0.01021429430693388, -0.04765286669135094, 0.014978951774537563, -0.05359692499041557, -0.18430352210998535, 0.11967626214027405, -0.08449894189834595, -0.035681381821632385, -0.027693649753928185, 0.23086680471897125, -0.024970047175884247, 0.018091564998030663, 0.034332241863012314, 0.0026490986347198486, -0.11853642761707306, -0.09563998878002167, 0.012357753701508045, 0.003760053077712655, -0.0007214160868898034, 0.034301016479730606, -0.016425905749201775, -0.06487460434436798, -0.05784493684768677, -0.01362778339534998, 0.3071885406970978, 0.13983532786369324, -0.04023562744259834, 0.15182597935199738, 0.11129388213157654, -0.059501636773347855, -0.269977331161499, -0.05761236697435379, -0.09105021506547928, -0.04330240562558174, -0.03144540265202522, -0.1561248004436493, 0.1035873144865036, -0.043056048452854156, -0.00868955347687006, 0.1129111498594284, -0.2777594029903412, -0.1097259521484375, 0.17846046388149261, -0.030682211741805077, 0.4436364769935608, -0.09721767902374268, -0.07306288927793503, -0.04873170331120491, -0.2055576592683792, 0.13611987233161926, 0.011453157290816307, 0.1054515689611435, -0.0006767508457414806, 0.18992725014686584, 0.05275087431073189, -0.0010212045162916183, 0.07581665366888046, 0.018801437690854073, -0.06132015958428383, -0.08938997983932495, -0.10635406523942947, 0.005542214959859848, 0.02234536036849022, 0.015152977779507637, -0.0446556881070137, 0.03197968378663063, -0.13170892000198364, -0.0657021701335907, -0.08875783532857895, 0.03514505550265312, 0.02016925998032093, -0.06620988994836807, 0.01154492050409317, -0.040027666836977005, -0.003320010844618082, -0.009548322297632694, 0.10755529999732971, -0.12642329931259155, 0.12724217772483826, 0.07259592413902283, 0.14272688329219818, -0.13762855529785156, -0.02596178464591503, -0.05356896296143532, -0.06463674455881119, 0.06073172017931938, -0.09363619238138199, 0.02392594702541828, 0.1137228012084961, -0.02330799214541912, 0.07304049283266068, 0.09772489964962006, 0.006532188504934311, 0.011307611130177975, 0.08549375832080841, -0.2518516778945923, -0.09829720854759216, -0.08842265605926514, -0.006847918499261141, 0.07912944257259369, 0.10351879149675369, 0.21049904823303223, -0.011108608916401863, -0.028110411018133163, 0.015511404722929, 0.012660179287195206, -0.02552294172346592, 0.0629696473479271, -0.013685106299817562, 0.011273954063653946, -0.142191544175148, 0.04728856310248375, -0.010115091688930988, -0.10728852450847626, 0.0070778122171759605, 0.11895912885665894, -0.11085338890552521, -0.1132420152425766, -0.08729799091815948, 0.11374850571155548, -0.11740808933973312, 0.01583920791745186, -0.04273713007569313, -0.14329342544078827, 0.06087562441825867, 0.12644949555397034, 0.05289270728826523, 0.054770201444625854, -0.09863127022981644, -0.017707131803035736, -0.01886041834950447, 0.008445576764643192, 0.045651089400053024, -0.029413091018795967, -0.04314618930220604, 0.08987950533628464, -0.0398998036980629, 0.12349136173725128, -0.08804872632026672, -0.10643022507429123, -0.13970406353473663, 0.036211591213941574, -0.09100706875324249, -0.1015876904129982, -0.09673352539539337, -0.0404139868915081, -0.015968140214681625, -0.033703241497278214, -0.04924946650862694, -0.04616044834256172, -0.11585718393325806, 0.04197810962796211, -0.035671547055244446, 0.002554558916017413, -0.06397118419408798, 0.03164825960993767, 0.057608336210250854, -0.029087256640195847, 0.16798870265483856, 0.14900587499141693, -0.113084577023983, 0.08678457140922546, -0.10599664598703384, -0.08436369150876999, 0.09296881407499313, 0.015673324465751648, 0.050969187170267105, 0.05570908635854721, 0.0008179193246178329, 0.05604454129934311, 0.06767231225967407, 0.05749130994081497, 0.05125901848077774, -0.0781613439321518, 0.026795929297804832, -0.0353478379547596, -0.10971686244010925, -0.05053088814020157, -0.032386112958192825, 0.0321459099650383, 0.03835080564022064, 0.10419028252363205, -0.05157046392560005, 0.07967690378427505, -0.06761150062084198, 0.04166098311543465, 0.02458209916949272, -0.17817717790603638, -0.011017074808478355, -0.08725284785032272, 0.062094446271657944, 0.010369001887738705, 0.22922518849372864, 0.0010608482407405972, -0.016776392236351967, 0.04306100308895111, 0.09107155352830887, 0.039415836334228516, -0.008862773887813091, 0.17689786851406097, 0.11348211020231247, -0.04523318260908127, -0.08200377225875854, 0.09221187978982925, 0.028359251096844673, 0.0636616051197052, 0.1533689647912979, -0.009847167879343033, -0.029553398489952087, 0.08961945027112961, -0.00820152461528778, 0.04360003024339676, -0.11889488995075226, -0.17109516263008118, -0.035233404487371445, 0.07828069478273392, -0.054776258766651154, 0.125512033700943, 0.12796565890312195, -0.02143034152686596, 0.02544325962662697, -0.02652924321591854, -0.06300850212574005, -0.18642783164978027, -0.15833324193954468, -0.07247349619865417, -0.1361551433801651, 0.003649224527180195, -0.12954506278038025, 0.034160468727350235, 0.03228195384144783, 0.09627309441566467, -0.07396618276834488, 0.07815251499414444, 0.009733840823173523, -0.11123551428318024, 0.09365225583314896, -0.03206063434481621, 0.08423103392124176, -0.05801235884428024, 0.008146187290549278, -0.07326289266347885, 0.061165083199739456, 0.005733943078666925, 0.024489792063832283, -0.06499718874692917, 0.0006845087045803666, -0.12899963557720184, -0.08145640790462494, -0.07403001189231873, 0.07683531194925308, -0.00021575485880021006, 0.14871475100517273, 0.0007607350125908852, -0.024332456290721893, 0.022351602092385292, 0.2547334134578705, -0.0823284238576889, -0.1065358966588974, -0.0760388895869255, 0.1612902730703354, -0.01100313849747181, 0.09074048697948456, -0.027294078841805458, 0.005724847782403231, -0.07292640954256058, 0.3486209213733673, 0.31385937333106995, -0.12144593149423599, 0.008552278392016888, 0.004036948550492525, 0.042547158896923065, 0.12109120190143585, 0.08933079242706299, 0.08928026258945465, 0.29122135043144226, -0.06460609287023544, -0.029492847621440887, -0.01038265135139227, -0.028137030079960823, -0.03290077671408653, 0.061318300664424896, 0.06818705052137375, -0.06311694532632828, -0.037182971835136414, 0.11344512552022934, -0.24985961616039276, 0.07765885442495346, -0.16423965990543365, -0.19129236042499542, -0.0909482091665268, -0.005408334545791149, 0.09333501011133194, 0.025192279368638992, 0.08434837311506271, -0.004080671351402998, -0.05664246529340744, 0.06709237396717072, 0.018763625994324684, -0.2031526118516922, -0.014244482852518559, 0.09505189210176468, -0.03442936763167381, -0.05224468931555748, -0.013855420984327793, 0.06696508079767227, 0.06307736784219742, 0.05825239419937134, -0.015055189840495586, 0.04039718955755234, -0.0020734043791890144, -0.07968246936798096, 0.021742230281233788, 0.029902489855885506, 0.01116474624723196, -0.06253565847873688, 0.07943971455097198, -0.1343110054731369, 0.053404469043016434, -0.023831099271774292, -0.06456206738948822, -0.028253937140107155, 0.022574080154299736, -0.06423580646514893, 0.0817347913980484, 0.10829576104879379, -0.021677108481526375, -0.018034711480140686, -0.018499786034226418, -0.023955125361680984, -0.022458717226982117, -0.06042034551501274, -0.09595854580402374, -0.16020077466964722, -0.1087728962302208, 0.06417213380336761, -0.0026469272561371326, -0.2069835513830185, 0.0078546442091465, -0.12910261750221252, 0.05230732262134552, -0.10699926316738129, 0.12214474380016327, 0.07983854413032532, 0.01550530269742012, 0.0022410741075873375, 0.00903013814240694, 0.0417785719037056, 0.09253215044736862, -0.1290154904127121, -0.08394894748926163 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xxlarge-v2-finetuned-csqa-ih This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.5694 - Accuracy: 0.8026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8032 | 1.0 | 532 | 0.5217 | 0.8043 | | 0.3182 | 2.0 | 1064 | 0.6313 | 0.7985 | | 0.0668 | 3.0 | 1596 | 1.2971 | 0.7969 | | 0.0131 | 4.0 | 2128 | 1.4671 | 0.8026 | | 0.0046 | 5.0 | 2660 | 1.5694 | 0.8026 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model_index": {"name": "albert-xxlarge-v2-finetuned-csqa-ih"}}
multiple-choice
danlou/albert-xxlarge-v2-finetuned-csqa-ih
[ "transformers", "pytorch", "albert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #albert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
albert-xxlarge-v2-finetuned-csqa-ih =================================== This model is a fine-tuned version of albert-xxlarge-v2 on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 1.5694 * Accuracy: 0.8026 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.9.0 * Datasets 1.10.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #albert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ 45, 113, 4, 31 ]
[ "passage: TAGS\n#transformers #pytorch #albert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ -0.07461700588464737, 0.010397160425782204, -0.0022309976629912853, 0.09317922592163086, 0.1804187297821045, 0.03428122028708458, 0.12409866601228714, 0.10125970840454102, -0.10690811276435852, 0.016243236139416695, 0.08903932571411133, 0.1594969481229782, 0.019060153514146805, 0.09681719541549683, -0.04801539331674576, -0.2514762580394745, 0.01481617521494627, 0.0249700415879488, -0.05822109803557396, 0.12565404176712036, 0.07857062667608261, -0.14087064564228058, 0.06580238789319992, 0.005107985343784094, -0.20141226053237915, 0.030383657664060593, 0.010156497359275818, -0.05180198326706886, 0.14391793310642242, 0.02091699279844761, 0.1317889392375946, -0.004106101114302874, 0.08056735247373581, -0.24182267487049103, 0.008409381844103336, 0.05950474366545677, 0.013124427758157253, 0.05379107594490051, 0.06167406961321831, -0.01434355042874813, 0.11540387570858002, -0.07240096479654312, 0.06766075640916824, 0.020896179601550102, -0.14040014147758484, -0.2844333052635193, -0.10049450397491455, -0.00621719378978014, 0.06754369288682938, 0.09557730704545975, -0.006590139586478472, 0.15559276938438416, -0.11119848489761353, 0.08113781362771988, 0.27466699481010437, -0.28126201033592224, -0.06584079563617706, 0.017932042479515076, 0.009834075346589088, 0.07799838483333588, -0.09313711524009705, -0.028637977316975594, 0.051468413323163986, 0.05564889684319496, 0.13442477583885193, -0.03168529272079468, -0.12475776672363281, 0.02278313785791397, -0.1490330696105957, -0.014816448092460632, 0.09339714050292969, 0.05814828723669052, -0.033024754375219345, -0.007479759398847818, -0.04559753090143204, -0.1352495700120926, -0.051361508667469025, -0.007208611350506544, 0.07528599351644516, -0.035423874855041504, -0.048003457486629486, 0.02044849470257759, -0.08476944267749786, -0.060212261974811554, -0.06827608495950699, 0.17262335121631622, 0.052152104675769806, 0.02262541651725769, -0.02025548927485943, 0.0895736813545227, -0.04436220973730087, -0.1271335482597351, 0.026403803378343582, 0.02738487720489502, -0.037264224141836166, -0.04338611662387848, -0.08474172651767731, -0.034061234444379807, 0.02167491987347603, 0.11319591104984283, -0.053362347185611725, 0.06139877066016197, 0.014950857497751713, 0.03133436292409897, -0.11446323245763779, 0.18072636425495148, -0.05021980032324791, -0.004734014626592398, -0.004187291022390127, 0.03933596611022949, 0.017933150753378868, 0.0021686479449272156, -0.08098311722278595, 0.024214087054133415, 0.0841621682047844, 0.008927145041525364, -0.0913318544626236, 0.04332897067070007, -0.07120996713638306, -0.012213330715894699, -0.03314168006181717, -0.1003781333565712, 0.04673061519861221, 0.001106130424886942, -0.08467569947242737, 0.024466900154948235, 0.005407100543379784, 0.034792639315128326, -0.014805680140852928, 0.13624307513237, -0.06983475387096405, 0.06773368269205093, -0.11693445593118668, -0.12636429071426392, 0.024994488805532455, -0.02846762351691723, 0.03228148818016052, -0.07578276097774506, -0.1514004021883011, -0.008445793762803078, 0.0688328742980957, -0.02907308004796505, -0.03342892974615097, -0.03579233959317207, -0.07315356284379959, -0.004133614711463451, -0.026179024949669838, 0.15409190952777863, -0.07779376953840256, 0.09651882201433182, 0.04371226206421852, 0.06329536437988281, -0.055950477719306946, 0.06057212874293327, -0.08706196397542953, 0.0009568864479660988, -0.2104703038930893, 0.04216499999165535, -0.0648203045129776, 0.08536913990974426, -0.08449424058198929, -0.11497250199317932, 0.03248966485261917, -0.005585046485066414, 0.09490792453289032, 0.07885883003473282, -0.16654281318187714, -0.07673870027065277, 0.16468191146850586, -0.06922588497400284, -0.11335776001214981, 0.10695091634988785, -0.06453979015350342, 0.004552475176751614, 0.0915985032916069, 0.1576085239648819, 0.0311623252928257, -0.09949370473623276, 0.044218700379133224, -0.030991850420832634, 0.0697316899895668, -0.04615715146064758, 0.07183260470628738, 0.010111706331372261, -0.007844686508178711, 0.03530627861618996, -0.029661834239959717, 0.0831022635102272, -0.11303164809942245, -0.08432096987962723, -0.043026551604270935, -0.09388521313667297, 0.008072585798799992, 0.06489518284797668, 0.06945522874593735, -0.12659475207328796, -0.07353585958480835, 0.08994552493095398, 0.07099024951457977, -0.050565026700496674, 0.04137507826089859, -0.049530986696481705, 0.04028981924057007, -0.02876248210668564, -0.01722613535821438, -0.18611934781074524, -0.01340405736118555, 0.013580488972365856, -0.03152115270495415, 0.019440215080976486, 0.022842884063720703, 0.06447641551494598, 0.05529202148318291, -0.06300657242536545, -0.012063865549862385, -0.05916948989033699, -0.0017859437502920628, -0.11212002485990524, -0.207251638174057, -0.02592911757528782, -0.012902737595140934, 0.09665410965681076, -0.17091262340545654, 0.02665604278445244, -0.04852241650223732, 0.07090973109006882, 0.0037054456770420074, -0.008221099153161049, -0.05425297096371651, 0.10830279439687729, -0.0074127232655882835, -0.05355813354253769, 0.0672745332121849, 0.0016761700389906764, -0.08448763191699982, -0.05087021738290787, -0.08378329873085022, 0.1797175109386444, 0.14019151031970978, -0.15366585552692413, -0.061275966465473175, 0.03171675279736519, -0.04677582159638405, -0.03334560990333557, -0.054135482758283615, 0.062450747936964035, 0.18431346118450165, 0.001824402017518878, 0.13539937138557434, -0.07339277863502502, -0.02355821616947651, 0.010034277103841305, -0.02621328830718994, 0.05282771587371826, 0.11209491640329361, 0.10866675525903702, -0.03450475260615349, 0.12487920373678207, 0.16625837981700897, -0.09065189957618713, 0.07567984610795975, -0.058775994926691055, -0.08233538269996643, -0.017961986362934113, -0.014915680512785912, -0.01198602095246315, 0.09377692639827728, -0.12104353308677673, 0.015311512164771557, 0.012528500519692898, 0.04269115626811981, 0.013254478573799133, -0.24562454223632812, -0.042591918259859085, 0.03310241550207138, -0.04534444957971573, -0.04063662886619568, -0.03515003249049187, 0.018049711361527443, 0.10550820827484131, -0.008276907727122307, -0.06977517157793045, 0.01668996550142765, -0.011210387572646141, -0.06406048685312271, 0.20711638033390045, -0.10720721632242203, -0.10486496239900589, -0.08616296201944351, -0.11048250645399094, -0.047617245465517044, -0.0071157473139464855, 0.08160321414470673, -0.10129547119140625, -0.03445423021912575, -0.049296170473098755, 0.05751796439290047, -0.01251743733882904, 0.019692344591021538, 0.02966109849512577, -0.015900833532214165, 0.08232010900974274, -0.11843188107013702, -0.01609809696674347, -0.05500418320298195, -0.07232696563005447, 0.05323063209652901, 0.0643373429775238, 0.09732834994792938, 0.13846220076084137, -0.01578674651682377, -0.002273360500112176, -0.02638777531683445, 0.24199365079402924, -0.04231865331530571, -0.0665472000837326, 0.11146432906389236, 0.003167001297697425, 0.05807967856526375, 0.10657385736703873, 0.08499640226364136, -0.11700277775526047, 0.008062074892222881, 0.05385099723935127, -0.026970643550157547, -0.2392341047525406, -0.03079902194440365, -0.05355409160256386, -0.0810372456908226, 0.05414203181862831, 0.01324421726167202, -0.0028137555345892906, 0.04316969960927963, 0.04020664840936661, 0.0778663158416748, -0.03650043532252312, 0.049999989569187164, 0.14037339389324188, 0.05215354263782501, 0.1177753359079361, -0.05176636576652527, -0.05899946391582489, 0.037702322006225586, -0.03213886171579361, 0.2557956874370575, 0.031132502481341362, 0.09671683609485626, 0.07874804735183716, 0.1642836183309555, -0.011770759709179401, 0.09175606817007065, 0.015031782910227776, -0.04983685165643692, -0.022751016542315483, -0.038386765867471695, -0.02982523664832115, 0.012592305429279804, -0.07069690525531769, 0.06902997940778732, -0.12180256098508835, -0.05244588106870651, 0.05862104892730713, 0.2932600975036621, 0.008190070278942585, -0.2842090427875519, -0.050101324915885925, 0.010995457880198956, -0.06415648013353348, 0.0035851714201271534, 0.02195258066058159, 0.06733988970518112, -0.0866304337978363, 0.06840308755636215, -0.055439725518226624, 0.11120908707380295, -0.00273319729603827, 0.04700269550085068, 0.055629219859838486, 0.10581925511360168, 0.009618272073566914, 0.06483789533376694, -0.34982195496559143, 0.2878039479255676, -0.001328979036770761, 0.0781184732913971, -0.059514984488487244, 0.00413504708558321, 0.044057831168174744, 0.04342272877693176, 0.019011685624718666, -0.012889678589999676, -0.0462869368493557, -0.1873587816953659, -0.01603092812001705, 0.04785263538360596, 0.09604356437921524, 0.00254410644993186, 0.09902055561542511, -0.015302016399800777, 0.016412686556577682, 0.07934003323316574, 0.03408224508166313, -0.10185150057077408, -0.07113998383283615, -0.026360979303717613, 0.026970745995640755, -0.03278953209519386, -0.0781947672367096, -0.11859949678182602, -0.1368451863527298, 0.10176179558038712, 0.042643748223781586, -0.02005016803741455, -0.11150754988193512, 0.09561870992183685, 0.08925094455480576, -0.07297678291797638, 0.030628027394413948, 0.016831867396831512, 0.04247620329260826, 0.04317880794405937, -0.06483791023492813, 0.11018484085798264, -0.05785497650504112, -0.1415906399488449, -0.04743567109107971, 0.08514652401208878, 0.03666481748223305, 0.07894887030124664, -0.03506208211183548, 0.013459255918860435, -0.01699189469218254, -0.10193546861410141, 0.013210289180278778, -0.005827368702739477, 0.04445839300751686, 0.06645260006189346, -0.06013469770550728, 0.011677158996462822, -0.06370888650417328, -0.036443356424570084, 0.17290620505809784, 0.28452128171920776, -0.07676204293966293, 0.012192838825285435, 0.021671758964657784, -0.07161334156990051, -0.14680372178554535, 0.0621977299451828, 0.07093268632888794, -0.004213047679513693, 0.06662880629301071, -0.1847018301486969, 0.14186157286167145, 0.1318690925836563, -0.007558576762676239, 0.09726399928331375, -0.3195955455303192, -0.11581619828939438, 0.08929067850112915, 0.17867915332317352, 0.16981050372123718, -0.17421428859233856, -0.010700475424528122, -0.038981176912784576, -0.17367635667324066, 0.088090680539608, -0.07842682301998138, 0.11531838029623032, -0.025288090109825134, 0.06989048421382904, -0.00525726517662406, -0.04362299665808678, 0.13905765116214752, 0.02877696044743061, 0.12810464203357697, -0.049599554389715195, 0.023225098848342896, 0.05479723960161209, -0.022333666682243347, -0.016506215557456017, -0.07298404723405838, 0.006413614377379417, -0.0784105658531189, -0.018095584586262703, -0.09274303913116455, 0.014516904950141907, -0.029245441779494286, -0.04273723065853119, -0.02754412591457367, 0.012319729663431644, 0.07727275043725967, -0.01382110919803381, 0.1260664016008377, 0.014838089235126972, 0.16417934000492096, 0.037520576268434525, 0.05149516090750694, -0.08383290469646454, -0.06040029227733612, -0.018629934638738632, -0.0084571223706007, 0.04845087602734566, -0.1473853439092636, 0.03213971108198166, 0.1448233723640442, 0.010831144638359547, 0.1365206390619278, 0.0846758559346199, -0.04043063521385193, 0.017386168241500854, 0.06376231461763382, -0.13086561858654022, -0.10238219797611237, 0.0214354507625103, -0.02844258025288582, -0.06830660253763199, 0.03820089250802994, 0.07432831823825836, -0.06293033063411713, -0.01834651455283165, -0.021488970145583153, 0.00155333720613271, -0.08948114514350891, 0.20654882490634918, 0.029086168855428696, 0.04578538239002228, -0.12577243149280548, 0.09099400788545609, 0.043936073780059814, -0.09695835411548615, -0.008051515556871891, 0.06566725671291351, -0.058155305683612823, -0.02498055063188076, 0.1271556317806244, 0.20532076060771942, -0.042970169335603714, -0.04697100445628166, -0.13968001306056976, -0.14440816640853882, 0.08604102581739426, 0.16091565787792206, 0.11763569712638855, 0.00021807391021866351, -0.028632842004299164, 0.014934653416275978, -0.09529168903827667, 0.0549587681889534, 0.046092547476291656, 0.061232250183820724, -0.12337055802345276, 0.1339581310749054, 0.03204389661550522, 0.028820272535085678, -0.016491247341036797, 0.027496283873915672, -0.1008603498339653, 0.034068480134010315, -0.169951394200325, -0.03416803479194641, -0.02402852661907673, 0.009890406392514706, 0.011499046348035336, -0.08386507630348206, -0.07689402997493744, 0.017567455768585205, -0.1471061408519745, -0.029239075258374214, 0.02551112323999405, 0.06862682104110718, -0.1126653328537941, -0.05041319131851196, 0.026428623124957085, -0.0636853352189064, 0.042218275368213654, 0.06255225092172623, 0.003785019973292947, 0.0874081701040268, -0.17692546546459198, -0.03450116887688637, 0.07340364158153534, 0.008048014715313911, 0.06584146618843079, -0.1069604828953743, -0.003811052767559886, 0.014062329195439816, 0.0845903530716896, 0.007244102191179991, 0.03628484159708023, -0.13990135490894318, -0.0526776984333992, -0.032129574567079544, -0.1075243428349495, -0.03962085023522377, -0.008631084114313126, 0.1012890562415123, 0.021629780530929565, 0.19023409485816956, -0.07361946254968643, 0.044385310262441635, -0.20964792370796204, -0.012710129842162132, -0.02702939882874489, -0.10744882375001907, -0.12593308091163635, -0.07220464199781418, 0.06708990037441254, -0.040950339287519455, 0.17062340676784515, 0.002183619886636734, 0.07760423421859741, 0.02948237769305706, -0.04360179230570793, 0.010017643682658672, 0.03196629881858826, 0.24415744841098785, 0.03612411022186279, -0.02707843855023384, 0.0837198793888092, 0.05069710686802864, 0.10048872232437134, 0.10746055096387863, 0.21084021031856537, 0.20407305657863617, 0.019515153020620346, 0.09638354927301407, 0.03475528955459595, -0.06459555774927139, -0.10775862634181976, 0.029523583129048347, -0.02134288102388382, 0.10123946517705917, -0.0249655582010746, 0.2291536033153534, 0.04088302701711655, -0.17534556984901428, 0.07039859145879745, -0.05955154821276665, -0.06684413552284241, -0.11167867481708527, 0.029576357454061508, -0.08079779893159866, -0.1909976601600647, 0.010591267608106136, -0.11468625068664551, 0.04267953336238861, 0.17261773347854614, 0.013379694893956184, -0.0015944924671202898, 0.13896778225898743, 0.02986111491918564, 0.02362743206322193, 0.0602082759141922, -0.013460589572787285, -0.03981557860970497, -0.08402809500694275, -0.08098866045475006, -0.00024340691743418574, -0.03009636700153351, 0.03219733014702797, -0.03967013210058212, -0.09479493647813797, 0.04024895280599594, -0.04705091193318367, -0.10429980605840683, 0.032172635197639465, 0.004863224923610687, 0.07491301745176315, 0.05250028148293495, 0.01003623753786087, 0.013886537402868271, -0.013185117393732071, 0.22613593935966492, -0.08417113870382309, -0.09154510498046875, -0.10147129744291306, 0.26356250047683716, 0.057894084602594376, -0.007085946388542652, 0.032818663865327835, -0.05199681967496872, -0.018338162451982498, 0.21231912076473236, 0.14712080359458923, -0.09121078252792358, -0.018242649734020233, -0.006419191136956215, -0.014623505063354969, -0.03331240266561508, 0.1257258653640747, 0.14798349142074585, -0.01461730245500803, -0.11200329661369324, -0.03745563328266144, -0.0722334235906601, -0.019568905234336853, -0.049296893179416656, 0.0316372811794281, 0.052293531596660614, -0.01062480267137289, -0.03419247269630432, 0.0752880871295929, -0.03387646749615669, -0.10917329788208008, 0.08029676228761673, -0.18678928911685944, -0.1686682105064392, -0.026821857318282127, 0.10618993639945984, 0.022087253630161285, 0.06413695961236954, -0.029992906376719475, 0.0026864197570830584, 0.09115177392959595, -0.025858048349618912, -0.07843656092882156, -0.13111282885074615, 0.10777381807565689, -0.12230357527732849, 0.1665773093700409, -0.02829551137983799, 0.06396970897912979, 0.12530609965324402, 0.07792329788208008, -0.05088259279727936, 0.09818714112043381, 0.035715747624635696, -0.11083093285560608, 0.004879093263298273, 0.08847406506538391, -0.04507274553179741, 0.05233690142631531, 0.038318853825330734, -0.120399110019207, 0.029518432915210724, -0.054652728140354156, -0.06244610622525215, -0.027382802218198776, -0.057270728051662445, -0.0693996399641037, 0.10065768659114838, 0.2292400300502777, -0.027384888380765915, 0.0247169379144907, -0.07443223148584366, 0.020259682089090347, 0.0486692376434803, 0.061019524931907654, -0.0935746505856514, -0.23727929592132568, 0.026776175945997238, 0.06725719571113586, -0.021358419209718704, -0.19758495688438416, -0.09392891824245453, 0.01733202114701271, -0.07282337546348572, -0.10025181621313095, 0.09529022127389908, 0.0702715739607811, 0.04887061566114426, -0.05316290631890297, -0.1994830220937729, -0.07395243644714355, 0.18323273956775665, -0.13567252457141876, -0.08282924443483353 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xxlarge-v2-finetuned-csqa This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on the commonsense_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.6177 - Accuracy: 0.7871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7464 | 1.0 | 609 | 0.5319 | 0.7985 | | 0.3116 | 2.0 | 1218 | 0.6422 | 0.7936 | | 0.0769 | 3.0 | 1827 | 1.2674 | 0.7952 | | 0.0163 | 4.0 | 2436 | 1.4839 | 0.7903 | | 0.0122 | 5.0 | 3045 | 1.6177 | 0.7871 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["commonsense_qa"], "metrics": ["accuracy"], "model_index": [{"name": "albert-xxlarge-v2-finetuned-csqa", "results": [{"dataset": {"name": "commonsense_qa", "type": "commonsense_qa", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.7870597839355469}}]}]}
multiple-choice
danlou/albert-xxlarge-v2-finetuned-csqa
[ "transformers", "pytorch", "albert", "multiple-choice", "generated_from_trainer", "dataset:commonsense_qa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #albert #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-apache-2.0 #endpoints_compatible #region-us
albert-xxlarge-v2-finetuned-csqa ================================ This model is a fine-tuned version of albert-xxlarge-v2 on the commonsense\_qa dataset. It achieves the following results on the evaluation set: * Loss: 1.6177 * Accuracy: 0.7871 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.9.0 * Datasets 1.10.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #albert #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ 54, 113, 4, 31 ]
[ "passage: TAGS\n#transformers #pytorch #albert #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ -0.0963519886136055, 0.027724355459213257, -0.0018494362011551857, 0.09315092116594315, 0.16298450529575348, 0.04034257307648659, 0.11382833868265152, 0.12219134718179703, -0.09015464782714844, 0.0046377708204090595, 0.10004337131977081, 0.14040619134902954, 0.025108715519309044, 0.08961105346679688, -0.03889056295156479, -0.259052038192749, 0.012524943798780441, 0.024790100753307343, -0.07523098587989807, 0.13047392666339874, 0.0877496674656868, -0.136525496840477, 0.068617083132267, 0.012977282516658306, -0.16923119127750397, 0.016427675262093544, 0.005885991267859936, -0.04900965094566345, 0.1557493358850479, 0.03286917880177498, 0.11686787009239197, 0.013657959178090096, 0.07401638478040695, -0.2545584440231323, 0.014587379060685635, 0.04169398546218872, 0.011949836276471615, 0.057817500084638596, 0.059104692190885544, -0.0028073606081306934, 0.12253093719482422, -0.07491426169872284, 0.06502585858106613, 0.03173210471868515, -0.14061331748962402, -0.2690357565879822, -0.09471329301595688, 0.0008928660536184907, 0.07276169955730438, 0.0975618064403534, -0.008387078531086445, 0.13305313885211945, -0.11733847856521606, 0.07591433823108673, 0.23762136697769165, -0.3052469789981842, -0.060966577380895615, 0.014582197181880474, 0.026563216000795364, 0.07865655422210693, -0.10719314217567444, -0.030925460159778595, 0.03272388502955437, 0.0481996163725853, 0.1409982293844223, -0.03588152676820755, -0.0913608968257904, 0.03948569670319557, -0.14163997769355774, -0.03713192045688629, 0.14165492355823517, 0.06826412677764893, -0.033085983246564865, -0.0355248786509037, -0.027402883395552635, -0.13700561225414276, -0.03742760792374611, 0.014346209354698658, 0.05164425075054169, -0.03245694190263748, -0.06924585998058319, 0.004077243618667126, -0.0971638485789299, -0.07279003411531448, -0.05694655328989029, 0.1385524421930313, 0.03908644616603851, 0.0173545740544796, -0.0099400095641613, 0.10506977885961533, -0.018393317237496376, -0.12928906083106995, 0.00985033717006445, 0.0149117112159729, -0.061542633920907974, -0.03483328968286514, -0.07372624427080154, -0.029072480276226997, 0.023324642330408096, 0.09262467175722122, -0.01846751570701599, 0.05779384449124336, 0.030447369441390038, 0.0352996289730072, -0.10868436098098755, 0.1887398213148117, -0.06342639029026031, -0.01156536303460598, -0.01630060374736786, 0.06025910750031471, 0.005315059330314398, 0.002145057078450918, -0.0853104367852211, 0.012992637231945992, 0.07932832092046738, 0.018778491765260696, -0.08741430938243866, 0.05543836951255798, -0.06990616768598557, -0.02901245281100273, -0.011677724309265614, -0.08719823509454727, 0.03281889855861664, 0.007809392176568508, -0.08381083607673645, -0.0130428746342659, -0.0016535331960767508, 0.040747590363025665, -0.007510478608310223, 0.10659199953079224, -0.07114893943071365, 0.04282287135720253, -0.09841588139533997, -0.1280873864889145, 0.02169625647366047, -0.030760684981942177, 0.03494728356599808, -0.07780668884515762, -0.16651709377765656, -0.0015155909350141883, 0.06349314004182816, -0.02271430194377899, -0.04964304342865944, -0.03886595368385315, -0.059590429067611694, -0.003959544003009796, -0.015377268195152283, 0.16369087994098663, -0.08138210326433182, 0.10879743099212646, 0.03163941577076912, 0.057346269488334656, -0.034980207681655884, 0.062171000987291336, -0.08491207659244537, 0.012807998806238174, -0.17093095183372498, 0.06380362063646317, -0.0638229176402092, 0.0764600932598114, -0.0953829437494278, -0.11360695213079453, 0.046050719916820526, -0.014423305168747902, 0.08064885437488556, 0.08857038617134094, -0.17885074019432068, -0.06649607419967651, 0.15097029507160187, -0.05587151646614075, -0.13623814284801483, 0.11420132219791412, -0.07681173086166382, 0.01375866774469614, 0.07420352101325989, 0.15726806223392487, 0.07426299899816513, -0.08795683085918427, 0.0328969806432724, -0.010049697943031788, 0.06612793356180191, -0.05748100206255913, 0.10252489149570465, 0.020590266212821007, -0.019885139539837837, 0.027326537296175957, -0.041858311742544174, 0.08919649571180344, -0.10233501344919205, -0.09984390437602997, -0.034846484661102295, -0.10116907954216003, 0.03073681890964508, 0.05724361911416054, 0.06108156219124794, -0.10550011694431305, -0.08065763115882874, 0.052823446691036224, 0.08911202102899551, -0.056184664368629456, 0.025340789929032326, -0.055439166724681854, 0.02882528118789196, -0.045513469725847244, -0.016096439212560654, -0.17371691763401031, -0.021497774869203568, 0.011268747970461845, -0.028304848819971085, -0.0037067895755171776, 0.039384085685014725, 0.07189644873142242, 0.056917667388916016, -0.06944886595010757, -0.0315568670630455, -0.061492227017879486, 0.0018217791803181171, -0.10814391076564789, -0.1960420459508896, -0.04401423782110214, -0.025786306709051132, 0.13444171845912933, -0.17379620671272278, 0.025352587923407555, -0.027917757630348206, 0.05719831585884094, 0.01525980792939663, -0.010368392802774906, -0.02801576256752014, 0.08853522688150406, -0.007533068303018808, -0.05416763573884964, 0.07032214105129242, 0.014114725403487682, -0.11426746845245361, -0.02607339806854725, -0.07978574186563492, 0.16953718662261963, 0.11827319860458374, -0.11006636917591095, -0.04507524520158768, -0.01214673276990652, -0.05720444396138191, -0.04267466440796852, -0.05123544856905937, 0.05011469125747681, 0.19056792557239532, 0.012859136797487736, 0.13303469121456146, -0.07412363588809967, -0.029473064467310905, 0.01587805710732937, -0.010792304761707783, 0.039537981152534485, 0.12445876002311707, 0.08736450225114822, -0.06043771654367447, 0.11220553517341614, 0.15659940242767334, -0.06760847568511963, 0.09903505444526672, -0.0648699626326561, -0.08302118629217148, -0.02595123089849949, -0.006000361405313015, -0.004938166122883558, 0.11830069124698639, -0.13809753954410553, 0.015637658536434174, 0.027684150263667107, 0.034880295395851135, 0.00655089458450675, -0.23712854087352753, -0.05856286361813545, 0.04091564938426018, -0.05583886057138443, -0.06708740442991257, -0.030214473605155945, 0.008245822042226791, 0.09722461551427841, 0.002552307676523924, -0.06849440187215805, 0.03256252408027649, -0.011047459207475185, -0.06970395147800446, 0.21323879063129425, -0.09539853036403656, -0.1223110482096672, -0.10154756903648376, -0.0922522321343422, -0.045826807618141174, -0.015493186190724373, 0.0754457414150238, -0.08247720450162888, -0.02022213488817215, -0.058346185833215714, 0.04123838245868683, -0.019617784768342972, 0.012124007567763329, -0.00028458997257985175, -0.011796305887401104, 0.08056430518627167, -0.11068607121706009, -0.006621750071644783, -0.04473423585295677, -0.07322239130735397, 0.05232711881399155, 0.042777128517627716, 0.11487334966659546, 0.130001962184906, -0.009957087226212025, 0.008564434014260769, -0.03670964390039444, 0.2406308650970459, -0.05624660849571228, -0.05616564676165581, 0.10717374086380005, 0.014261703938245773, 0.05138656497001648, 0.12091556191444397, 0.08127906173467636, -0.08828093111515045, 0.006629045121371746, 0.04862381890416145, -0.028406433761119843, -0.23043183982372284, -0.030890071764588356, -0.06170482560992241, -0.0627397894859314, 0.06407874822616577, 0.018930917605757713, -0.002518437569960952, 0.05323764309287071, 0.034566450864076614, 0.058511313050985336, -0.03897334635257721, 0.053503748029470444, 0.1264193207025528, 0.05218257009983063, 0.11411960422992706, -0.05180690810084343, -0.05251680314540863, 0.038602445274591446, -0.0004972565802745521, 0.2636980712413788, 0.010710167698562145, 0.13660745322704315, 0.07745545357465744, 0.17398187518119812, -0.0040415870025753975, 0.09169901907444, 0.012940563261508942, -0.046631280332803726, -0.022269105538725853, -0.03632630035281181, -0.03488794341683388, 0.01901071146130562, -0.04349290952086449, 0.06943101435899734, -0.1337314248085022, -0.036707304418087006, 0.05180389806628227, 0.3109738826751709, 0.027450352907180786, -0.2827356457710266, -0.06731788069009781, 0.012183061800897121, -0.05538904294371605, -0.0073641156777739525, 0.026315970346331596, 0.093901127576828, -0.10115289688110352, 0.04500557854771614, -0.07067010551691055, 0.10909976065158844, -0.036320533603429794, 0.041407350450754166, 0.06248461827635765, 0.07345346361398697, -0.002402061130851507, 0.08990266919136047, -0.347540944814682, 0.29864874482154846, 0.00036998174618929625, 0.07580512762069702, -0.06571013480424881, -0.011826552450656891, 0.049417536705732346, 0.04805091395974159, 0.0493871308863163, -0.009740105830132961, -0.01715894602239132, -0.20456986129283905, -0.0349547304213047, 0.05575978383421898, 0.0636647567152977, -0.021172678098082542, 0.1035461351275444, -0.019874298945069313, 0.019211776554584503, 0.06928740441799164, 0.05490836501121521, -0.08354465663433075, -0.0924941822886467, -0.016924962401390076, 0.03258785977959633, -0.008581064641475677, -0.08715052902698517, -0.10972271859645844, -0.10522626340389252, 0.09473379701375961, 0.004543425515294075, -0.03301341459155083, -0.11673466116189957, 0.07162339985370636, 0.09253153949975967, -0.078952856361866, 0.024139726534485817, 0.016827011480927467, 0.05788577347993851, 0.03681895136833191, -0.05221950262784958, 0.09309457242488861, -0.0627717673778534, -0.1445370316505432, -0.04517709091305733, 0.0946335569024086, 0.03269320726394653, 0.08510889858007431, -0.022471636533737183, 0.0059493049047887325, -0.03351115435361862, -0.10236511379480362, 0.020866185426712036, -0.023698750883340836, 0.05074379965662956, 0.046028539538383484, -0.05658326297998428, 0.05412527918815613, -0.06568343192338943, -0.03765295818448067, 0.1946820467710495, 0.2600395381450653, -0.08607226610183716, 0.022292431443929672, 0.02136792615056038, -0.059554748237133026, -0.14581888914108276, 0.03365004435181618, 0.06609611958265305, 0.012725122272968292, 0.06480509787797928, -0.19648075103759766, 0.10053275525569916, 0.1190861314535141, -0.008729580789804459, 0.07035039365291595, -0.325878381729126, -0.10520685464143753, 0.10069186240434647, 0.16332504153251648, 0.13455605506896973, -0.16588325798511505, -0.016832560300827026, -0.024892503395676613, -0.16246162354946136, 0.0808209627866745, -0.07295689731836319, 0.128461554646492, -0.0325910709798336, 0.07829812914133072, 0.00044161779806017876, -0.049827706068754196, 0.15094727277755737, 0.025418119505047798, 0.11382594704627991, -0.038092803210020065, -0.0035703126341104507, 0.057161711156368256, -0.03997453674674034, -0.01590072177350521, -0.10222237557172775, 0.01833452843129635, -0.12771281599998474, -0.023732608184218407, -0.0969262346625328, 0.007723709102720022, -0.02502775378525257, -0.05661562457680702, -0.024812448769807816, 0.03376801684498787, 0.07638198137283325, -0.010023166425526142, 0.12196879088878632, 0.006778355687856674, 0.13990363478660583, 0.053717415779829025, 0.06645429134368896, -0.05285211279988289, -0.08648128062486649, -0.03468134254217148, -0.00734675582498312, 0.050137005746364594, -0.15145473182201385, 0.035028085112571716, 0.14630645513534546, 0.01733226887881756, 0.15607930719852448, 0.07849609106779099, -0.03795153275132179, 0.03088531270623207, 0.05784427374601364, -0.12467803061008453, -0.12860648334026337, -0.004346971865743399, -0.011802931316196918, -0.10457384586334229, 0.02302107773721218, 0.06835326552391052, -0.060633718967437744, -0.014913198538124561, -0.019070031121373177, 0.002596914069727063, -0.08077329397201538, 0.20639516413211823, 0.03084433637559414, 0.0660456046462059, -0.12179839611053467, 0.08137981593608856, 0.048246756196022034, -0.09380075335502625, -0.011198246851563454, 0.04381586238741875, -0.06846727430820465, -0.038394540548324585, 0.09767960757017136, 0.19531279802322388, -0.03852633759379387, -0.050637632608413696, -0.13712568581104279, -0.14609181880950928, 0.087881900370121, 0.13914118707180023, 0.10355287790298462, 0.017777081578969955, -0.04273737967014313, -0.004639292601495981, -0.0942058190703392, 0.07792849093675613, 0.042538922280073166, 0.048460863530635834, -0.12913593649864197, 0.12365659326314926, 0.017870943993330002, 0.048561375588178635, -0.009313801303505898, 0.008035831153392792, -0.08677523583173752, 0.029968684539198875, -0.1922665238380432, -0.02210603468120098, -0.031691163778305054, 0.018389984965324402, -0.001854864414781332, -0.07599174976348877, -0.06505979597568512, 0.014045925810933113, -0.1393529176712036, -0.02776241861283779, 0.022724656388163567, 0.07730033248662949, -0.11033252626657486, -0.057656437158584595, 0.02966924011707306, -0.06575483083724976, 0.06275054067373276, 0.04619273170828819, 0.013523373752832413, 0.06083235889673233, -0.12526611983776093, -0.014090521261096, 0.05389636009931564, 0.010415093973279, 0.05666235461831093, -0.1191129982471466, -0.0005648229853250086, -0.00013594051415566355, 0.0429324135184288, 0.00970261450856924, 0.03308303281664848, -0.13949300348758698, -0.038116928189992905, -0.023407461121678352, -0.08488404750823975, -0.05561940371990204, 0.0150652676820755, 0.09428421407938004, 0.032319530844688416, 0.1947762668132782, -0.07123847305774689, 0.045580971986055374, -0.2094699889421463, -0.013005321845412254, -0.01835613325238228, -0.10087533295154572, -0.1252717822790146, -0.07353099435567856, 0.062228865921497345, -0.04706629738211632, 0.1611054390668869, -0.005203118547797203, 0.0712333396077156, 0.023505058139562607, -0.03325521573424339, 0.03352218493819237, 0.019489560276269913, 0.25424304604530334, 0.03325539082288742, -0.033345289528369904, 0.0960119217634201, 0.04879210516810417, 0.07998745143413544, 0.15885448455810547, 0.1868281215429306, 0.18863533437252045, 0.02723897621035576, 0.08195041120052338, 0.040879301726818085, -0.06689969450235367, -0.10019268095493317, 0.035123735666275024, -0.00873776525259018, 0.10192170739173889, -0.02591576799750328, 0.22936522960662842, 0.05324860289692879, -0.1873546689748764, 0.06869225203990936, -0.04822918027639389, -0.07697787880897522, -0.0945352166891098, -0.0008983436855487525, -0.07407516986131668, -0.16685469448566437, 0.00012493820395320654, -0.1179923266172409, 0.027180615812540054, 0.16167105734348297, 0.0124822361394763, -0.0021501448936760426, 0.13681572675704956, 0.032689258456230164, 0.025252453982830048, 0.07233291119337082, -0.011529860086739063, -0.029231926426291466, -0.09079497307538986, -0.06555912643671036, 0.021662674844264984, -0.05661842226982117, 0.025942839682102203, -0.04298864305019379, -0.07791004329919815, 0.03752674162387848, -0.0425894670188427, -0.10858447849750519, 0.021775489673018456, 0.002172311535105109, 0.08173828572034836, 0.06172391027212143, 0.0238601453602314, 0.018682869151234627, -0.008860066533088684, 0.2420741617679596, -0.07298234105110168, -0.07637229561805725, -0.11162721365690231, 0.23929911851882935, 0.047035422176122665, -0.015721363946795464, 0.045764580368995667, -0.059875473380088806, 0.002589584095403552, 0.22468800842761993, 0.15744945406913757, -0.09121513366699219, -0.018843306228518486, -0.00684158131480217, -0.014629116281867027, -0.018098121508955956, 0.11523410677909851, 0.11878316849470139, -0.008387166075408459, -0.11650136858224869, -0.033662229776382446, -0.07075536251068115, -0.027228567749261856, -0.025016600266098976, 0.06197138875722885, 0.06960777193307877, -0.008914501406252384, -0.041546232998371124, 0.07596544176340103, -0.03907228261232376, -0.08449190109968185, 0.06590694189071655, -0.173580601811409, -0.16516290605068207, -0.04311032220721245, 0.08090393990278244, 0.03229571878910065, 0.0685257613658905, -0.031448476016521454, 0.011623592115938663, 0.09277277439832687, -0.018028499558568, -0.0918441042304039, -0.11633502691984177, 0.11748320609331131, -0.07542495429515839, 0.1723354309797287, -0.03180371969938278, 0.050335247069597244, 0.1303817182779312, 0.06372492015361786, -0.06674585491418839, 0.10053985565900803, 0.04790375381708145, -0.097039595246315, 0.013054197654128075, 0.09047719836235046, -0.03724832460284233, 0.07182979583740234, 0.0349789559841156, -0.11302606016397476, 0.038541752845048904, -0.06825491786003113, -0.05774335190653801, -0.032508790493011475, -0.038495179265737534, -0.04253121837973595, 0.11558430641889572, 0.22527499496936798, -0.03627406060695648, 0.02094539999961853, -0.07050467282533646, 0.01870564930140972, 0.06308396905660629, 0.058658234775066376, -0.07999332249164581, -0.2023112028837204, 0.015983114019036293, 0.04005855694413185, -0.02373080886900425, -0.23545661568641663, -0.10079764574766159, 0.01421445980668068, -0.07038968801498413, -0.0670652762055397, 0.10225879400968552, 0.07882580906152725, 0.05095046013593674, -0.05859871953725815, -0.13225775957107544, -0.06981716305017471, 0.16760055720806122, -0.13648712635040283, -0.08026175200939178 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aristo-roberta-finetuned-csqa This model is a fine-tuned version of [LIAMF-USP/aristo-roberta](https://huggingface.co/LIAMF-USP/aristo-roberta) on the commonsense_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.2187 - Accuracy: 0.7305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.131 | 1.0 | 609 | 0.7109 | 0.7232 | | 0.6957 | 2.0 | 1218 | 0.6912 | 0.7346 | | 0.459 | 3.0 | 1827 | 0.8364 | 0.7305 | | 0.3063 | 4.0 | 2436 | 1.0595 | 0.7322 | | 0.2283 | 5.0 | 3045 | 1.2187 | 0.7305 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["commonsense_qa"], "metrics": ["accuracy"], "model_index": [{"name": "aristo-roberta-finetuned-csqa", "results": [{"dataset": {"name": "commonsense_qa", "type": "commonsense_qa", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.7305487394332886}}]}]}
multiple-choice
danlou/aristo-roberta-finetuned-csqa
[ "transformers", "pytorch", "roberta", "multiple-choice", "generated_from_trainer", "dataset:commonsense_qa", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us
aristo-roberta-finetuned-csqa ============================= This model is a fine-tuned version of LIAMF-USP/aristo-roberta on the commonsense\_qa dataset. It achieves the following results on the evaluation set: * Loss: 1.2187 * Accuracy: 0.7305 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.9.0 * Pytorch 1.9.0 * Datasets 1.10.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ 51, 113, 4, 32 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ -0.09765328466892242, 0.04044581949710846, -0.0020228009670972824, 0.0912572368979454, 0.17281223833560944, 0.03972447291016579, 0.09181512892246246, 0.11879517883062363, -0.09186030179262161, 0.015430063009262085, 0.10662466287612915, 0.16499237716197968, 0.01889972575008869, 0.12703706324100494, -0.04801655188202858, -0.2661054730415344, 0.00412791920825839, 0.033399589359760284, -0.07401911914348602, 0.13578243553638458, 0.10193255543708801, -0.1535404771566391, 0.06459138542413712, 0.01259590033441782, -0.19954809546470642, 0.011589796282351017, 0.009764440357685089, -0.04046677425503731, 0.14821457862854004, 0.020436251536011696, 0.12813980877399445, 0.00978024210780859, 0.08195421099662781, -0.22842037677764893, 0.01651301421225071, 0.03988126292824745, 0.014555448666214943, 0.0615498386323452, 0.05159929022192955, -0.010107427835464478, 0.11421749740839005, -0.07402566075325012, 0.061444301158189774, 0.012356281280517578, -0.13220085203647614, -0.2531159520149231, -0.08810273557901382, 0.0066312882117927074, 0.05801946669816971, 0.09158049523830414, -0.013737693428993225, 0.15237711369991302, -0.11922582983970642, 0.08482438325881958, 0.20859944820404053, -0.28276216983795166, -0.06512404978275299, 0.02438638173043728, 0.01545619498938322, 0.08174271136522293, -0.11525698006153107, -0.03908475860953331, 0.03729039430618286, 0.051884498447179794, 0.1282631903886795, -0.0333729013800621, -0.09386859834194183, 0.03270994499325752, -0.14445385336875916, -0.025170372799038887, 0.12229989469051361, 0.05851099267601967, -0.02907012775540352, -0.030228199437260628, -0.023436015471816063, -0.13778914511203766, -0.04166913777589798, 0.00013070058776065707, 0.04175221174955368, -0.041589006781578064, -0.09728561341762543, 0.01155912782996893, -0.09604160487651825, -0.062152039259672165, -0.0605795755982399, 0.14617867767810822, 0.04627131298184395, 0.01618668995797634, -0.015592704527080059, 0.09514179080724716, -0.04763220623135567, -0.1219346821308136, 0.01586323417723179, 0.0065361857414245605, -0.04959932714700699, -0.05730457603931427, -0.07635138928890228, -0.04219724237918854, 0.027693314477801323, 0.08103004097938538, -0.0619279146194458, 0.05800081044435501, 0.0417604073882103, 0.026133883744478226, -0.08599971234798431, 0.16490940749645233, -0.0607558898627758, -0.006679923739284277, -0.01275074016302824, 0.05179246515035629, -0.02120199054479599, 0.008139061741530895, -0.08580706268548965, 0.009429492056369781, 0.10522330552339554, 0.006815433967858553, -0.08744174987077713, 0.06924820691347122, -0.05805497244000435, -0.02426190860569477, -0.036745112389326096, -0.08444280177354813, 0.03279459476470947, -0.0008580312714911997, -0.09180980920791626, -0.01698240265250206, -0.01826828345656395, 0.033924657851457596, -0.006013394799083471, 0.11171488463878632, -0.08909747749567032, 0.04801391810178757, -0.10532277077436447, -0.1313607096672058, 0.010580799542367458, -0.038173846900463104, 0.03685704618692398, -0.08365528285503387, -0.16414034366607666, -0.014632869511842728, 0.05203182250261307, -0.030600355938076973, -0.046885550022125244, -0.0439896360039711, -0.05950646474957466, -0.010900497436523438, -0.02016318030655384, 0.16385214030742645, -0.07311751693487167, 0.1258995532989502, 0.032100699841976166, 0.05775580555200577, -0.032374005764722824, 0.05569426342844963, -0.08952248096466064, 0.006412395276129246, -0.1781405210494995, 0.07239004969596863, -0.06242550164461136, 0.08591238409280777, -0.08897697180509567, -0.13097381591796875, 0.016896510496735573, -0.010524669662117958, 0.09068786352872849, 0.0853547602891922, -0.16953715682029724, -0.06192491948604584, 0.16852159798145294, -0.05818543955683708, -0.12186399847269058, 0.1102917417883873, -0.08755195885896683, 0.03979033604264259, 0.08545146882534027, 0.19862577319145203, 0.0813409760594368, -0.08792123943567276, 0.02979903668165207, -0.027085447683930397, 0.05312364920973778, -0.056639254093170166, 0.06993564963340759, 0.02775556407868862, -0.004219917114824057, 0.028101729229092598, -0.030250338837504387, 0.08175916224718094, -0.12358915060758591, -0.08957856148481369, -0.028811683878302574, -0.11283949762582779, 0.0370977520942688, 0.06286439299583435, 0.07681659609079361, -0.11580587178468704, -0.06607548892498016, 0.07174211740493774, 0.08640148490667343, -0.06220795959234238, 0.01832902617752552, -0.06380464881658554, 0.05499304458498955, -0.03956178203225136, -0.029679210856556892, -0.18931838870048523, -0.02718554064631462, 0.004662463441491127, 0.01084995735436678, 0.017193058505654335, 0.030041879042983055, 0.07122477144002914, 0.04926474392414093, -0.06127403303980827, -0.018778754398226738, -0.032655082643032074, 0.00475666206330061, -0.11459044367074966, -0.18663795292377472, -0.03187652677297592, -0.02628997340798378, 0.11682207137346268, -0.18913373351097107, 0.02242014929652214, -0.01991790346801281, 0.0694412887096405, 0.006680967286229134, -0.01647227816283703, -0.02892264351248741, 0.0951211228966713, -0.0037590069696307182, -0.04852190613746643, 0.07273944467306137, 0.011535122990608215, -0.09634295850992203, -0.05359191820025444, -0.07591919600963593, 0.16689500212669373, 0.11797156184911728, -0.11837384104728699, -0.07553242146968842, -0.031597547233104706, -0.05712487921118736, -0.027496080845594406, -0.048211079090833664, 0.054654087871313095, 0.17538690567016602, -0.0016203859122470021, 0.1276731938123703, -0.07718857377767563, -0.028965573757886887, 0.012170963920652866, -0.022138604894280434, 0.03921607881784439, 0.12164155393838882, 0.09288490563631058, -0.0992211103439331, 0.12066999822854996, 0.12425914406776428, -0.0628354474902153, 0.12162967026233673, -0.05792451649904251, -0.07253451645374298, -0.027915531769394875, -0.0036705092061311007, -0.019984129816293716, 0.10839967429637909, -0.1218637079000473, 0.010790678672492504, 0.023843923583626747, 0.03802390769124031, 0.01620822586119175, -0.2305901199579239, -0.058673225343227386, 0.027017395943403244, -0.043122127652168274, -0.05905645713210106, -0.019671468064188957, 0.021675188094377518, 0.10436709225177765, 0.004364846274256706, -0.053309887647628784, 0.028963787481188774, -0.005049432627856731, -0.06613633781671524, 0.21752244234085083, -0.09662871807813644, -0.10894015431404114, -0.07516008615493774, -0.08916176855564117, -0.03046320378780365, -0.013250908814370632, 0.06433754414319992, -0.08530411124229431, -0.015925845131278038, -0.042672622948884964, 0.03697308897972107, -0.017393510788679123, 0.017887001857161522, -0.00918295793235302, -0.003727180417627096, 0.06983823329210281, -0.11006224900484085, -0.007761284708976746, -0.0558861568570137, -0.060660552233457565, 0.06570539623498917, 0.036040786653757095, 0.11196152865886688, 0.1251630336046219, -0.030033357441425323, 0.014624539762735367, -0.042608581483364105, 0.2733503580093384, -0.0657431036233902, -0.04944522678852081, 0.10433000326156616, 0.01993890106678009, 0.05307180434465408, 0.12848563492298126, 0.07327082008123398, -0.09995101392269135, 0.009185383096337318, 0.0418650358915329, -0.030054399743676186, -0.20998486876487732, -0.040411874651908875, -0.05974287912249565, -0.08053134381771088, 0.0663808286190033, 0.013964232988655567, -0.004824260715395212, 0.06619593501091003, 0.04463117569684982, 0.03873177617788315, -0.04397595301270485, 0.05504237487912178, 0.13715234398841858, 0.05417407304048538, 0.1276119351387024, -0.04224485903978348, -0.06097816303372383, 0.034652967005968094, -0.0026535012293606997, 0.276290625333786, -0.007607859559357166, 0.10399024188518524, 0.08461591601371765, 0.19832080602645874, -0.002072681440040469, 0.08100374042987823, 0.0041134594939649105, -0.04697743430733681, -0.019378624856472015, -0.02459382824599743, -0.03736511990427971, 0.009703056886792183, -0.024653997272253036, 0.040848180651664734, -0.1304330676794052, -0.042094726115465164, 0.059247586876153946, 0.26371216773986816, 0.02170049026608467, -0.2908543646335602, -0.07975778728723526, 0.0007182887056842446, -0.05743928998708725, -0.008333923295140266, 0.016637565568089485, 0.09231052547693253, -0.10551078617572784, 0.04076116532087326, -0.06692422926425934, 0.1039975956082344, -0.02820744551718235, 0.04279102012515068, 0.05609622225165367, 0.09288340061903, -0.011524000205099583, 0.08835029602050781, -0.33354058861732483, 0.3009815812110901, 0.002276415005326271, 0.08276975899934769, -0.07018563151359558, -0.02629002183675766, 0.02747519500553608, 0.0439264290034771, 0.042351216077804565, -0.011828277260065079, -0.04892352968454361, -0.21086186170578003, -0.002812980441376567, 0.05202743783593178, 0.0877453088760376, 0.00369101669639349, 0.1113172397017479, -0.017026064917445183, 0.03223226219415665, 0.06637559831142426, 0.015530571341514587, -0.06931430101394653, -0.0815705806016922, -0.02850658819079399, 0.0220013540238142, -0.003737648483365774, -0.07315655797719955, -0.1072695255279541, -0.10948294401168823, 0.09868672490119934, 0.025103989988565445, -0.041467826813459396, -0.11689362674951553, 0.1088128387928009, 0.0985698401927948, -0.07918907701969147, 0.026172930374741554, 0.01825609803199768, 0.053514569997787476, 0.03653866797685623, -0.04062478244304657, 0.09099900722503662, -0.05193981155753136, -0.13894085586071014, -0.040053050965070724, 0.09323474019765854, 0.04130991920828819, 0.076805479824543, -0.010968861170113087, 0.005690377671271563, -0.04091561585664749, -0.10467918962240219, 0.015394282527267933, -0.05466413497924805, 0.0673169270157814, 0.044444404542446136, -0.055258046835660934, 0.03966698795557022, -0.06652633845806122, -0.03238021209836006, 0.19132542610168457, 0.2565009891986847, -0.08711034059524536, 0.019144469872117043, 0.03158639743924141, -0.058471471071243286, -0.15067647397518158, 0.050405777990818024, 0.08197303116321564, 0.0128439636901021, 0.06436454504728317, -0.18185769021511078, 0.09999752789735794, 0.11090532690286636, -0.0008244015625678003, 0.06857781112194061, -0.31276071071624756, -0.10773146897554398, 0.08410277217626572, 0.17578540742397308, 0.12631888687610626, -0.15748170018196106, -0.00881507433950901, -0.007307243067771196, -0.14858396351337433, 0.1037348285317421, -0.05235088989138603, 0.1258871853351593, -0.018447473645210266, 0.12560275197029114, 0.010381486266851425, -0.053658436983823776, 0.12939247488975525, 0.023690063506364822, 0.11564719676971436, -0.04911888390779495, -0.019398771226406097, 0.05611880496144295, -0.022240089252591133, -0.01202647015452385, -0.05761774629354477, 0.025591742247343063, -0.10878311842679977, -0.028118742629885674, -0.11364305764436722, 0.010508214123547077, -0.021188223734498024, -0.06445829570293427, -0.040615834295749664, 0.05601619929075241, 0.06909376382827759, -0.01646372862160206, 0.09891913831233978, -0.006011316552758217, 0.16392187774181366, 0.04550949111580849, 0.0721575990319252, -0.061374712735414505, -0.06732821464538574, -0.01845824532210827, -0.006265225820243359, 0.03546096384525299, -0.13833989202976227, 0.029540274292230606, 0.15293394029140472, 0.022118348628282547, 0.14773917198181152, 0.08141259104013443, -0.035379186272621155, 0.034323155879974365, 0.06835298985242844, -0.1289864182472229, -0.11633780598640442, 0.011700538918375969, -0.040453359484672546, -0.09877357631921768, 0.025028781965374947, 0.07369642704725266, -0.05455448105931282, -0.021400362253189087, -0.028753133490681648, -0.003497085301205516, -0.07519803196191788, 0.2150840014219284, 0.05820441618561745, 0.06114078685641289, -0.115081787109375, 0.05779239907860756, 0.048973631113767624, -0.08417001366615295, -0.0023456052877008915, 0.04683448746800423, -0.07752323895692825, -0.03515443205833435, 0.08891367167234421, 0.18288345634937286, -0.05631815269589424, -0.03925330191850662, -0.12822842597961426, -0.13081595301628113, 0.08453996479511261, 0.14839787781238556, 0.09968598932027817, 0.0077268886379897594, -0.039979640394449234, -0.0035080609377473593, -0.11512981355190277, 0.0750468447804451, 0.04992857575416565, 0.04062972590327263, -0.1318075805902481, 0.16450269520282745, -0.0031047079246491194, 0.05210214480757713, -0.01709200069308281, 0.016116591170430183, -0.10574866086244583, 0.030446263030171394, -0.1512969732284546, -0.030003519728779793, -0.04108938202261925, 0.014139174483716488, -0.0003449339128565043, -0.08530495315790176, -0.06968630105257034, 0.010182110592722893, -0.14041005074977875, -0.016002770513296127, 0.031657684594392776, 0.06163185462355614, -0.1072327271103859, -0.053516924381256104, 0.0207867082208395, -0.043504420667886734, 0.05649963766336441, 0.04591910541057587, 0.010334757156670094, 0.06491342186927795, -0.13349825143814087, -0.014069153927266598, 0.0488729365170002, -0.00009144112118519843, 0.06120843067765236, -0.10725002735853195, 0.006146361120045185, 0.008504526689648628, 0.06441498547792435, 0.022272735834121704, 0.03287919983267784, -0.13282056152820587, -0.023498307913541794, -0.028579862788319588, -0.08060406893491745, -0.06041015312075615, 0.021275535225868225, 0.08146695792675018, 0.03086809068918228, 0.18865516781806946, -0.07336816936731339, 0.04153991863131523, -0.20885129272937775, -0.02068595588207245, -0.018162116408348083, -0.10295692086219788, -0.10711468756198883, -0.07596832513809204, 0.07212376594543457, -0.04118652269244194, 0.16084100306034088, 0.014432206749916077, 0.0647682398557663, 0.025144200772047043, -0.034203290939331055, 0.016082294285297394, 0.019069714471697807, 0.24886582791805267, 0.019435208290815353, -0.036473874002695084, 0.08813813328742981, 0.06444689631462097, 0.06849438697099686, 0.14458714425563812, 0.19011123478412628, 0.1848195642232895, 0.024053309112787247, 0.05670926719903946, 0.03410819172859192, -0.05355551838874817, -0.10187877714633942, 0.038921721279621124, -0.013440149836242199, 0.07554630190134048, -0.03300990164279938, 0.22540827095508575, 0.05291277915239334, -0.18924233317375183, 0.07015664875507355, -0.058174874633550644, -0.09261640906333923, -0.08954811841249466, -0.02174297347664833, -0.0801069438457489, -0.1654403656721115, 0.013712484389543533, -0.12788592278957367, 0.02646646462380886, 0.14675188064575195, 0.020130325108766556, -0.013344565406441689, 0.14361028373241425, 0.02738521620631218, 0.017938712611794472, 0.06481845676898956, -0.008691297844052315, -0.020620904862880707, -0.08913421630859375, -0.06640546023845673, 0.0080906692892313, -0.04857960715889931, 0.03176918625831604, -0.05065915733575821, -0.08352441340684891, 0.018803944811224937, -0.04486212879419327, -0.09777064621448517, 0.01730957441031933, 0.021902505308389664, 0.09056898951530457, 0.057556506246328354, 0.010903213173151016, 0.0071424334309995174, -0.02146044373512268, 0.24638795852661133, -0.057365234941244125, -0.08856099098920822, -0.11469783633947372, 0.2430477738380432, 0.04746580496430397, -0.01169057097285986, 0.04851684346795082, -0.060807786881923676, 0.02210979349911213, 0.23101140558719635, 0.16808339953422546, -0.10814134776592255, -0.010721865110099316, -0.006385148968547583, -0.013860972598195076, -0.011623920872807503, 0.12268763035535812, 0.1206989660859108, 0.005009955260902643, -0.11370832473039627, -0.021828150376677513, -0.07526326179504395, -0.010142017155885696, -0.034953244030475616, 0.05442512780427933, 0.06722640991210938, -0.0001725073525449261, -0.04944809898734093, 0.08769486099481583, -0.056309156119823456, -0.10811272263526917, 0.06377773731946945, -0.18712981045246124, -0.168585866689682, -0.034453921020030975, 0.06988660991191864, 0.022933438420295715, 0.06439372152090073, -0.03929542377591133, 0.01777326501905918, 0.06001026928424835, -0.015370308421552181, -0.0756007730960846, -0.1107499748468399, 0.12420307099819183, -0.06762287765741348, 0.15276452898979187, -0.0393747016787529, 0.06224851682782173, 0.1343860775232315, 0.050327200442552567, -0.0568745955824852, 0.10120120644569397, 0.05213507264852524, -0.0896218940615654, 0.017200462520122528, 0.09549830853939056, -0.03280841186642647, 0.06550668179988861, 0.04254616051912308, -0.13847188651561737, 0.03563180938363075, -0.07971428334712982, -0.04683680087327957, -0.041236646473407745, -0.028614813461899757, -0.0490388348698616, 0.1261739879846573, 0.22435764968395233, -0.03346865996718407, 0.02636883221566677, -0.07305032759904861, 0.02911851368844509, 0.06026502698659897, 0.06256330013275146, -0.09022104740142822, -0.23455287516117096, 0.005963288713246584, 0.06714122742414474, -0.032632097601890564, -0.22440411150455475, -0.09041059017181396, 0.007789444178342819, -0.0654812902212143, -0.07104659080505371, 0.12265593558549881, 0.06767170131206512, 0.04511595144867897, -0.05236629396677017, -0.1145964115858078, -0.08003636449575424, 0.1675487756729126, -0.13670265674591064, -0.07550950348377228 ]
null
null
transformers
Testing
{}
text-classification
danlou/distilbert-base-uncased-finetuned-rte
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us
Testing
[]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 38 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.03533577919006348, 0.06443645805120468, -0.007824759930372238, 0.02963758073747158, 0.21134145557880402, 0.0368538573384285, 0.06359195709228516, 0.10786357522010803, 0.047846585512161255, -0.029699334874749184, 0.09624463319778442, 0.2456933856010437, -0.04527274891734123, 0.11506538093090057, -0.1315092295408249, -0.2995516061782837, 0.0646483302116394, 0.06820031255483627, 0.01968790777027607, 0.11027561128139496, 0.08955937623977661, -0.08577843010425568, 0.06416945904493332, -0.03987749293446541, -0.13028311729431152, 0.036934368312358856, 0.037670549005270004, -0.12557227909564972, 0.08850666880607605, 0.03936105594038963, 0.16363440454006195, 0.029493317008018494, -0.0571451373398304, -0.13760130107402802, 0.03542056307196617, 0.003107793163508177, -0.08173839002847672, 0.035451244562864304, 0.07971785217523575, -0.13606007397174835, 0.03269175812602043, 0.01657985709607601, 0.028779901564121246, 0.05034712329506874, -0.13549968600273132, -0.06766978651285172, -0.009825913235545158, 0.02846479043364525, 0.08123840391635895, 0.06563035398721695, -0.00027321543893776834, 0.11571130156517029, -0.14468228816986084, 0.13729768991470337, 0.08681581169366837, -0.26667332649230957, -0.01513616368174553, 0.09300960600376129, 0.014211298897862434, 0.03189397603273392, -0.05005642771720886, 0.03387840837240219, 0.021587392315268517, 0.012041964568197727, -0.005505601409822702, -0.06911619752645493, -0.12172640115022659, 0.01909228041768074, -0.0760328620672226, -0.039914727210998535, 0.2024218738079071, -0.06752687692642212, 0.06574457883834839, -0.03853347897529602, -0.09920144081115723, -0.04725521057844162, -0.028420861810445786, 0.03284634277224541, -0.05052020400762558, 0.06803859770298004, 0.04873250797390938, 0.02093963511288166, -0.10541380196809769, 0.027895580977201462, -0.2198127955198288, 0.21804359555244446, 0.00917235016822815, 0.04113364964723587, -0.17035873234272003, 0.06059039384126663, 0.043774571269750595, -0.10760118812322617, 0.049048252403736115, -0.10497406870126724, 0.019541887566447258, -0.04680290073156357, -0.07833123207092285, -0.044003088027238846, 0.0761561468243599, 0.15131190419197083, 0.024525625631213188, 0.0676354393362999, -0.023907558992505074, 0.08125972747802734, 0.03615585342049599, 0.12704050540924072, 0.04965166375041008, -0.030767392367124557, 0.03752761334180832, -0.13245059549808502, -0.00002132852932845708, -0.07070981711149216, -0.1520344465970993, -0.028104213997721672, 0.058518148958683014, 0.07771685719490051, 0.007545619271695614, 0.09117837250232697, -0.07305282354354858, -0.03670652583241463, 0.09205243736505508, -0.09038619697093964, 0.022389709949493408, 0.0189626757055521, 0.024910688400268555, 0.11437109857797623, -0.01640472002327442, -0.004441923461854458, -0.08554866164922714, 0.15481221675872803, -0.05412428826093674, 0.01906411163508892, -0.027951309457421303, -0.07562480866909027, 0.023844171315431595, -0.16517141461372375, 0.024268588051199913, -0.16968505084514618, -0.12177367508411407, 0.0011497566010802984, 0.01497613824903965, 0.0003558929602149874, -0.029599502682685852, -0.034584347158670425, 0.0028823118191212416, 0.05339471623301506, -0.05009040981531143, -0.08925710618495941, -0.0734119787812233, 0.09545788168907166, -0.03665677830576897, 0.07958490401506424, -0.12844105064868927, 0.0784672200679779, -0.0987219363451004, -0.0187049712985754, -0.14024826884269714, 0.05743253231048584, -0.04765705391764641, 0.18340644240379333, 0.01636499911546707, -0.05442013591527939, -0.05629796162247658, 0.05081459879875183, -0.06792773306369781, 0.17081454396247864, -0.10482346266508102, -0.11688733100891113, 0.18975088000297546, -0.09539731591939926, -0.11199936270713806, 0.08214274048805237, -0.012322766706347466, -0.002544441493228078, 0.10592521727085114, 0.18774141371250153, 0.11772145330905914, 0.015394842252135277, 0.071439228951931, 0.1266816407442093, -0.09738999605178833, -0.10514426231384277, -0.016195401549339294, -0.010998358018696308, -0.11682542413473129, 0.06311710923910141, 0.08283041417598724, 0.0693083181977272, -0.04381299018859863, -0.038738906383514404, -0.015374792739748955, -0.0029897931963205338, 0.14953550696372986, 0.06494788080453873, 0.11409911513328552, -0.07472079247236252, 0.010434641502797604, 0.010832404717803001, -0.008651630952954292, 0.016917014494538307, 0.02875317819416523, -0.061046965420246124, 0.11194391548633575, 0.03876045346260071, 0.02736404910683632, -0.24566538631916046, -0.06682449579238892, -0.011323003098368645, 0.1456235647201538, -0.02446315996348858, 0.10121438652276993, 0.045561324805021286, -0.0504569448530674, -0.010978372767567635, -0.029581138864159584, 0.17828664183616638, 0.022655870765447617, -0.06422974169254303, -0.0612877793610096, 0.0651540756225586, -0.07150227576494217, 0.012235969305038452, -0.07036937773227692, 0.020627280697226524, 0.08606486022472382, 0.12204300612211227, 0.010734139941632748, 0.06475073099136353, -0.02579765021800995, 0.07209211587905884, -0.07104320824146271, 0.019227510318160057, 0.11117701232433319, -0.010595849715173244, -0.07011682540178299, 0.13524381816387177, -0.1373681277036667, 0.2673107087612152, 0.19483336806297302, -0.2967563271522522, 0.0005786092369817197, -0.04439404606819153, -0.007282515522092581, 0.030610160902142525, 0.030042126774787903, 0.014859852381050587, 0.08437592536211014, 0.0014727829257026315, 0.20341786742210388, -0.021047484129667282, -0.03919289633631706, -0.018922755494713783, -0.04877391830086708, -0.03148360177874565, 0.08788784593343735, 0.06451795995235443, -0.192406564950943, 0.19050060212612152, 0.21731194853782654, 0.010114802047610283, 0.16024211049079895, -0.010486523620784283, 0.043989237397909164, 0.09252246469259262, -0.03757351264357567, -0.024272754788398743, -0.08932791650295258, -0.1848243772983551, -0.03918878361582756, 0.07472185045480728, 0.03010893426835537, 0.06895712018013, -0.10219920426607132, -0.027038687840104103, 0.0004840063920710236, 0.021132981404662132, -0.01947878859937191, 0.08704918622970581, 0.08203180879354477, 0.1052171140909195, -0.017219819128513336, -0.07267280668020248, 0.11330383270978928, -0.0011106154415756464, -0.07149384170770645, 0.18412140011787415, -0.15954560041427612, -0.36233094334602356, -0.1530739665031433, -0.20456592738628387, -0.02883506752550602, 0.06615062057971954, 0.10685895383358002, -0.12165717035531998, -0.048558108508586884, 0.0375000461935997, -0.013693227432668209, -0.04041895270347595, 0.03981194645166397, -0.05303730443120003, 0.07329315692186356, -0.05222955346107483, -0.06364883482456207, -0.06660815328359604, -0.03131863474845886, -0.004695216193795204, 0.16393853724002838, -0.12483653426170349, 0.06658802926540375, 0.1819998174905777, 0.0010995424818247557, 0.06644674390554428, -0.032483141869306564, 0.1697184294462204, -0.08651559799909592, -0.02343188226222992, 0.1893177032470703, -0.07345744967460632, 0.07808925211429596, 0.15666639804840088, 0.020104380324482918, -0.0712679922580719, 0.0352557972073555, -0.035343270748853683, -0.08934015780687332, -0.2058166265487671, -0.1703205555677414, -0.12546730041503906, 0.05237005278468132, 0.0663270428776741, 0.07582127302885056, 0.12632738053798676, 0.06528977304697037, 0.00627241050824523, 0.010700550861656666, 0.006936580874025822, 0.07483439892530441, 0.24698598682880402, -0.0010819705203175545, 0.14767786860466003, -0.057353224605321884, -0.13245494663715363, 0.08233633637428284, 0.000922833161894232, 0.1185675784945488, 0.08539658784866333, 0.017674902454018593, 0.005295653361827135, 0.05462205410003662, 0.164198637008667, 0.1299368292093277, 0.04298880323767662, -0.013622048310935497, -0.01172587089240551, 0.0032578855752944946, -0.0797785148024559, 0.006457295268774033, 0.07906489074230194, -0.14195358753204346, -0.08270972222089767, -0.11039547622203827, 0.10006770491600037, 0.08380265533924103, 0.042938295751810074, -0.2052999883890152, 0.005745685659348965, 0.09206069260835648, -0.027502331882715225, -0.09957162290811539, 0.06463603675365448, -0.04812092334032059, -0.13455109298229218, 0.10769277811050415, -0.029609164223074913, 0.13354617357254028, -0.0870715081691742, 0.08272852748632431, -0.0378170944750309, -0.11202792823314667, 0.03467349335551262, 0.10786684602499008, -0.27751585841178894, 0.2031957507133484, 0.007435075007379055, -0.06144534796476364, -0.07824365049600601, -0.015199865214526653, 0.039944443851709366, 0.22591036558151245, 0.06934285908937454, 0.004277070518583059, -0.05739999935030937, -0.1865520477294922, -0.009981787763535976, -0.008337096311151981, 0.12231403589248657, -0.03427664935588837, -0.01814279891550541, -0.036011241376399994, -0.030255382880568504, -0.03578435257077217, -0.06897740066051483, 0.02666986919939518, -0.17997102439403534, 0.056329283863306046, 0.034454237669706345, 0.05416429787874222, 0.01469043642282486, -0.04343695193529129, -0.11887014657258987, 0.19838201999664307, -0.10767136514186859, -0.09184177964925766, -0.11828504502773285, -0.07852382957935333, 0.02535579912364483, -0.08476060628890991, 0.06807194650173187, -0.08172672241926193, 0.018900277093052864, -0.06600436568260193, -0.20524995028972626, 0.11596046388149261, -0.10182060301303864, -0.03258875012397766, -0.058350928127765656, 0.1526644378900528, -0.07479622215032578, 0.010474151000380516, 0.03318091109395027, 0.02239469438791275, -0.08559903502464294, -0.08446884155273438, -0.018381169065833092, 0.03129338473081589, 0.06142119690775871, 0.08739607781171799, -0.09792511910200119, -0.07674866914749146, -0.03134889155626297, 0.02817792072892189, 0.2929084002971649, 0.1401015967130661, -0.06586769968271255, 0.1629326492547989, 0.10387758165597916, -0.06942285597324371, -0.3373493552207947, -0.09150945395231247, -0.09645266830921173, -0.03972399979829788, -0.042589932680130005, -0.16358928382396698, 0.13413257896900177, -0.004249863792210817, -0.010055972263216972, 0.08473600447177887, -0.16361457109451294, -0.08480892330408096, 0.19654500484466553, -0.0355062410235405, 0.36373743414878845, -0.09189414978027344, -0.09806639701128006, -0.07035496085882187, -0.1232207641005516, 0.12262474000453949, 0.007738110609352589, 0.08150525391101837, -0.02050303854048252, 0.04451111704111099, 0.04815887659788132, -0.03690929710865021, 0.10097026824951172, 0.036669690161943436, 0.025901002809405327, -0.11938466131687164, -0.09219347685575485, 0.023168733343482018, -0.019243339076638222, -0.007111898623406887, -0.01547485776245594, 0.01685570739209652, -0.17164339125156403, -0.04131095111370087, -0.07032524049282074, 0.05912882834672928, 0.04161927476525307, -0.029813537374138832, 0.012351144105196, -0.020498499274253845, -0.000361355283530429, 0.006620287895202637, 0.251852810382843, -0.03737054020166397, 0.1604781597852707, 0.08527542650699615, 0.141584113240242, -0.15723979473114014, 0.01194052491337061, -0.07652142643928528, -0.05061504244804382, 0.06191904842853546, -0.06635212153196335, 0.07575498521327972, 0.13591395318508148, -0.05730273202061653, 0.07247055321931839, 0.11612356454133987, 0.07706465572118759, -0.034392137080430984, 0.16330119967460632, -0.2292891889810562, 0.04589579999446869, -0.050483379513025284, -0.033954232931137085, 0.06465915590524673, 0.0655360221862793, 0.1258573830127716, 0.06694923341274261, -0.04017629101872444, 0.005630772560834885, 0.00028037314768880606, 0.005372054409235716, 0.07443340867757797, 0.04748379439115524, 0.04316747188568115, -0.14709694683551788, 0.05031560733914375, 0.05119774490594864, -0.15819577872753143, -0.022534551098942757, 0.1376158893108368, -0.1704932600259781, -0.1271103173494339, -0.021827740594744682, 0.12368015199899673, -0.09311434626579285, -0.046253565698862076, -0.07048245519399643, -0.13402129709720612, 0.07112511247396469, 0.18836617469787598, 0.12805050611495972, 0.09663103520870209, -0.06118634715676308, -0.04969988390803337, 0.0036050756461918354, -0.004089095629751682, 0.017009761184453964, 0.03120747022330761, -0.12284451723098755, 0.046005018055438995, -0.02090919390320778, 0.15390309691429138, -0.09199176728725433, -0.07624588906764984, -0.1582917422056198, 0.04238278418779373, -0.09195777773857117, -0.023019742220640182, -0.09330286085605621, -0.01648246869444847, 0.0030273916199803352, -0.030272169038653374, -0.026145517826080322, -0.06213071197271347, -0.11623096466064453, 0.04011767357587814, -0.028817979618906975, 0.04146858677268028, -0.06920336186885834, -0.04603973776102066, 0.09102679789066315, -0.03833403438329697, 0.10358903557062149, 0.10654495656490326, -0.0914529487490654, 0.0934479758143425, -0.14121071994304657, -0.1319282501935959, 0.1433861404657364, 0.030263781547546387, 0.07207431644201279, 0.07694290578365326, 0.03595962002873421, 0.07349478453397751, 0.004535248037427664, 0.06631990522146225, 0.06761990487575531, -0.12337382882833481, 0.061452679336071014, -0.046973392367362976, -0.17189696431159973, -0.05778007209300995, -0.04047338292002678, 0.10660306364297867, 0.010234192945063114, 0.1720496565103531, -0.05692226439714432, 0.1017514169216156, -0.03180769085884094, 0.0038062711246311665, -0.01604292169213295, -0.20698778331279755, -0.06364472210407257, -0.08077114075422287, 0.026275143027305603, 0.005083381198346615, 0.23303534090518951, 0.061751753091812134, 0.033835094422101974, 0.04869496077299118, 0.09752455353736877, -0.0014774927403777838, 0.023545393720269203, 0.17794077098369598, 0.10133370757102966, -0.05567975342273712, -0.05575546622276306, 0.05616139620542526, 0.029215605929493904, 0.006353367585688829, 0.14132826030254364, 0.07252193242311478, -0.041009921580553055, 0.07551323622465134, -0.03376345708966255, 0.04427867755293846, -0.1321653574705124, -0.16054923832416534, -0.05143791809678078, 0.07023841142654419, 0.01740087941288948, 0.03448288515210152, 0.07088012248277664, -0.028410857543349266, 0.05220868065953255, -0.033101536333560944, -0.05869230628013611, -0.18244294822216034, -0.09428907185792923, -0.09423913061618805, -0.09753676503896713, 0.0058974651619791985, -0.07943454384803772, -0.01026046834886074, 0.06547573953866959, 0.037508975714445114, -0.05198773369193077, 0.07752657681703568, 0.003285798244178295, -0.05593571066856384, 0.08687124401330948, -0.045962750911712646, 0.02649652026593685, 0.00841206219047308, -0.029707664623856544, -0.1380927860736847, -0.013390704058110714, -0.04401649907231331, 0.040850814431905746, -0.058590736240148544, 0.007230483461171389, -0.1483704298734665, -0.12039808928966522, -0.019934508949518204, 0.0580129399895668, -0.06074916571378708, 0.14175079762935638, 0.015395265072584152, 0.00611070916056633, 0.047287240624427795, 0.17810532450675964, -0.0544942207634449, -0.06539076566696167, -0.04489162564277649, 0.24079638719558716, 0.09303659200668335, 0.10803006589412689, 0.0026883413083851337, -0.013426939956843853, -0.07931891828775406, 0.28847232460975647, 0.27526742219924927, -0.04996299743652344, 0.054827310144901276, 0.007495596073567867, 0.03283945098519325, 0.15242771804332733, 0.1401364952325821, 0.09061526507139206, 0.24117816984653473, -0.0521743968129158, -0.05017128586769104, -0.026741530746221542, -0.03419290855526924, -0.13402216136455536, 0.0581725612282753, 0.05382576957345009, -0.0488528348505497, -0.06285785138607025, 0.10921014845371246, -0.21934591233730316, 0.16537490487098694, 0.019078493118286133, -0.20565392076969147, -0.06819386035203934, -0.03284084051847458, 0.1365688294172287, -0.0016830840613692999, 0.07499389350414276, -0.00323955318890512, -0.11883772164583206, 0.042848069220781326, 0.01306091621518135, -0.20812170207500458, -0.0041817850433290005, 0.06021128222346306, -0.05781300365924835, -0.0120098190382123, -0.02640264853835106, 0.03757385164499283, 0.06560133397579193, 0.07958315312862396, -0.0117155397310853, 0.04959989711642265, -0.012948726303875446, -0.030828366056084633, 0.029231732711195946, 0.02946082502603531, 0.0038178605027496815, -0.09871038049459457, 0.06783884763717651, -0.16667571663856506, 0.0549757145345211, -0.05383889377117157, -0.05352160334587097, -0.019258368760347366, 0.04339629411697388, -0.05456918105483055, 0.04438189044594765, 0.10450860112905502, 0.011940731666982174, -0.025312455371022224, -0.04523419588804245, -0.04262804985046387, -0.012295196764171124, -0.1369558572769165, -0.14967197179794312, -0.09997987747192383, -0.08965370059013367, 0.09313849359750748, 0.0034958450123667717, -0.12975360453128815, -0.006513827480375767, -0.11122267693281174, 0.05365913361310959, -0.16868756711483002, 0.09322161972522736, 0.0323028489947319, 0.015595607459545135, -0.011563225649297237, -0.040581803768873215, 0.04532773047685623, 0.07905946671962738, -0.1267605572938919, -0.08728102594614029 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-csqa This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the commonsense_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.9146 - Accuracy: 0.7330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3903 | 1.0 | 609 | 0.8845 | 0.6642 | | 0.8939 | 2.0 | 1218 | 0.7054 | 0.7281 | | 0.6163 | 3.0 | 1827 | 0.7452 | 0.7314 | | 0.4245 | 4.0 | 2436 | 0.8369 | 0.7355 | | 0.3258 | 5.0 | 3045 | 0.9146 | 0.7330 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["commonsense_qa"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-large-finetuned-csqa", "results": [{"dataset": {"name": "commonsense_qa", "type": "commonsense_qa", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.7330057621002197}}]}]}
multiple-choice
danlou/roberta-large-finetuned-csqa
[ "transformers", "pytorch", "roberta", "multiple-choice", "generated_from_trainer", "dataset:commonsense_qa", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us
roberta-large-finetuned-csqa ============================ This model is a fine-tuned version of roberta-large on the commonsense\_qa dataset. It achieves the following results on the evaluation set: * Loss: 0.9146 * Accuracy: 0.7330 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.9.0 * Pytorch 1.9.0 * Datasets 1.10.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ 51, 113, 4, 32 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #multiple-choice #generated_from_trainer #dataset-commonsense_qa #license-mit #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ -0.09765328466892242, 0.04044581949710846, -0.0020228009670972824, 0.0912572368979454, 0.17281223833560944, 0.03972447291016579, 0.09181512892246246, 0.11879517883062363, -0.09186030179262161, 0.015430063009262085, 0.10662466287612915, 0.16499237716197968, 0.01889972575008869, 0.12703706324100494, -0.04801655188202858, -0.2661054730415344, 0.00412791920825839, 0.033399589359760284, -0.07401911914348602, 0.13578243553638458, 0.10193255543708801, -0.1535404771566391, 0.06459138542413712, 0.01259590033441782, -0.19954809546470642, 0.011589796282351017, 0.009764440357685089, -0.04046677425503731, 0.14821457862854004, 0.020436251536011696, 0.12813980877399445, 0.00978024210780859, 0.08195421099662781, -0.22842037677764893, 0.01651301421225071, 0.03988126292824745, 0.014555448666214943, 0.0615498386323452, 0.05159929022192955, -0.010107427835464478, 0.11421749740839005, -0.07402566075325012, 0.061444301158189774, 0.012356281280517578, -0.13220085203647614, -0.2531159520149231, -0.08810273557901382, 0.0066312882117927074, 0.05801946669816971, 0.09158049523830414, -0.013737693428993225, 0.15237711369991302, -0.11922582983970642, 0.08482438325881958, 0.20859944820404053, -0.28276216983795166, -0.06512404978275299, 0.02438638173043728, 0.01545619498938322, 0.08174271136522293, -0.11525698006153107, -0.03908475860953331, 0.03729039430618286, 0.051884498447179794, 0.1282631903886795, -0.0333729013800621, -0.09386859834194183, 0.03270994499325752, -0.14445385336875916, -0.025170372799038887, 0.12229989469051361, 0.05851099267601967, -0.02907012775540352, -0.030228199437260628, -0.023436015471816063, -0.13778914511203766, -0.04166913777589798, 0.00013070058776065707, 0.04175221174955368, -0.041589006781578064, -0.09728561341762543, 0.01155912782996893, -0.09604160487651825, -0.062152039259672165, -0.0605795755982399, 0.14617867767810822, 0.04627131298184395, 0.01618668995797634, -0.015592704527080059, 0.09514179080724716, -0.04763220623135567, -0.1219346821308136, 0.01586323417723179, 0.0065361857414245605, -0.04959932714700699, -0.05730457603931427, -0.07635138928890228, -0.04219724237918854, 0.027693314477801323, 0.08103004097938538, -0.0619279146194458, 0.05800081044435501, 0.0417604073882103, 0.026133883744478226, -0.08599971234798431, 0.16490940749645233, -0.0607558898627758, -0.006679923739284277, -0.01275074016302824, 0.05179246515035629, -0.02120199054479599, 0.008139061741530895, -0.08580706268548965, 0.009429492056369781, 0.10522330552339554, 0.006815433967858553, -0.08744174987077713, 0.06924820691347122, -0.05805497244000435, -0.02426190860569477, -0.036745112389326096, -0.08444280177354813, 0.03279459476470947, -0.0008580312714911997, -0.09180980920791626, -0.01698240265250206, -0.01826828345656395, 0.033924657851457596, -0.006013394799083471, 0.11171488463878632, -0.08909747749567032, 0.04801391810178757, -0.10532277077436447, -0.1313607096672058, 0.010580799542367458, -0.038173846900463104, 0.03685704618692398, -0.08365528285503387, -0.16414034366607666, -0.014632869511842728, 0.05203182250261307, -0.030600355938076973, -0.046885550022125244, -0.0439896360039711, -0.05950646474957466, -0.010900497436523438, -0.02016318030655384, 0.16385214030742645, -0.07311751693487167, 0.1258995532989502, 0.032100699841976166, 0.05775580555200577, -0.032374005764722824, 0.05569426342844963, -0.08952248096466064, 0.006412395276129246, -0.1781405210494995, 0.07239004969596863, -0.06242550164461136, 0.08591238409280777, -0.08897697180509567, -0.13097381591796875, 0.016896510496735573, -0.010524669662117958, 0.09068786352872849, 0.0853547602891922, -0.16953715682029724, -0.06192491948604584, 0.16852159798145294, -0.05818543955683708, -0.12186399847269058, 0.1102917417883873, -0.08755195885896683, 0.03979033604264259, 0.08545146882534027, 0.19862577319145203, 0.0813409760594368, -0.08792123943567276, 0.02979903668165207, -0.027085447683930397, 0.05312364920973778, -0.056639254093170166, 0.06993564963340759, 0.02775556407868862, -0.004219917114824057, 0.028101729229092598, -0.030250338837504387, 0.08175916224718094, -0.12358915060758591, -0.08957856148481369, -0.028811683878302574, -0.11283949762582779, 0.0370977520942688, 0.06286439299583435, 0.07681659609079361, -0.11580587178468704, -0.06607548892498016, 0.07174211740493774, 0.08640148490667343, -0.06220795959234238, 0.01832902617752552, -0.06380464881658554, 0.05499304458498955, -0.03956178203225136, -0.029679210856556892, -0.18931838870048523, -0.02718554064631462, 0.004662463441491127, 0.01084995735436678, 0.017193058505654335, 0.030041879042983055, 0.07122477144002914, 0.04926474392414093, -0.06127403303980827, -0.018778754398226738, -0.032655082643032074, 0.00475666206330061, -0.11459044367074966, -0.18663795292377472, -0.03187652677297592, -0.02628997340798378, 0.11682207137346268, -0.18913373351097107, 0.02242014929652214, -0.01991790346801281, 0.0694412887096405, 0.006680967286229134, -0.01647227816283703, -0.02892264351248741, 0.0951211228966713, -0.0037590069696307182, -0.04852190613746643, 0.07273944467306137, 0.011535122990608215, -0.09634295850992203, -0.05359191820025444, -0.07591919600963593, 0.16689500212669373, 0.11797156184911728, -0.11837384104728699, -0.07553242146968842, -0.031597547233104706, -0.05712487921118736, -0.027496080845594406, -0.048211079090833664, 0.054654087871313095, 0.17538690567016602, -0.0016203859122470021, 0.1276731938123703, -0.07718857377767563, -0.028965573757886887, 0.012170963920652866, -0.022138604894280434, 0.03921607881784439, 0.12164155393838882, 0.09288490563631058, -0.0992211103439331, 0.12066999822854996, 0.12425914406776428, -0.0628354474902153, 0.12162967026233673, -0.05792451649904251, -0.07253451645374298, -0.027915531769394875, -0.0036705092061311007, -0.019984129816293716, 0.10839967429637909, -0.1218637079000473, 0.010790678672492504, 0.023843923583626747, 0.03802390769124031, 0.01620822586119175, -0.2305901199579239, -0.058673225343227386, 0.027017395943403244, -0.043122127652168274, -0.05905645713210106, -0.019671468064188957, 0.021675188094377518, 0.10436709225177765, 0.004364846274256706, -0.053309887647628784, 0.028963787481188774, -0.005049432627856731, -0.06613633781671524, 0.21752244234085083, -0.09662871807813644, -0.10894015431404114, -0.07516008615493774, -0.08916176855564117, -0.03046320378780365, -0.013250908814370632, 0.06433754414319992, -0.08530411124229431, -0.015925845131278038, -0.042672622948884964, 0.03697308897972107, -0.017393510788679123, 0.017887001857161522, -0.00918295793235302, -0.003727180417627096, 0.06983823329210281, -0.11006224900484085, -0.007761284708976746, -0.0558861568570137, -0.060660552233457565, 0.06570539623498917, 0.036040786653757095, 0.11196152865886688, 0.1251630336046219, -0.030033357441425323, 0.014624539762735367, -0.042608581483364105, 0.2733503580093384, -0.0657431036233902, -0.04944522678852081, 0.10433000326156616, 0.01993890106678009, 0.05307180434465408, 0.12848563492298126, 0.07327082008123398, -0.09995101392269135, 0.009185383096337318, 0.0418650358915329, -0.030054399743676186, -0.20998486876487732, -0.040411874651908875, -0.05974287912249565, -0.08053134381771088, 0.0663808286190033, 0.013964232988655567, -0.004824260715395212, 0.06619593501091003, 0.04463117569684982, 0.03873177617788315, -0.04397595301270485, 0.05504237487912178, 0.13715234398841858, 0.05417407304048538, 0.1276119351387024, -0.04224485903978348, -0.06097816303372383, 0.034652967005968094, -0.0026535012293606997, 0.276290625333786, -0.007607859559357166, 0.10399024188518524, 0.08461591601371765, 0.19832080602645874, -0.002072681440040469, 0.08100374042987823, 0.0041134594939649105, -0.04697743430733681, -0.019378624856472015, -0.02459382824599743, -0.03736511990427971, 0.009703056886792183, -0.024653997272253036, 0.040848180651664734, -0.1304330676794052, -0.042094726115465164, 0.059247586876153946, 0.26371216773986816, 0.02170049026608467, -0.2908543646335602, -0.07975778728723526, 0.0007182887056842446, -0.05743928998708725, -0.008333923295140266, 0.016637565568089485, 0.09231052547693253, -0.10551078617572784, 0.04076116532087326, -0.06692422926425934, 0.1039975956082344, -0.02820744551718235, 0.04279102012515068, 0.05609622225165367, 0.09288340061903, -0.011524000205099583, 0.08835029602050781, -0.33354058861732483, 0.3009815812110901, 0.002276415005326271, 0.08276975899934769, -0.07018563151359558, -0.02629002183675766, 0.02747519500553608, 0.0439264290034771, 0.042351216077804565, -0.011828277260065079, -0.04892352968454361, -0.21086186170578003, -0.002812980441376567, 0.05202743783593178, 0.0877453088760376, 0.00369101669639349, 0.1113172397017479, -0.017026064917445183, 0.03223226219415665, 0.06637559831142426, 0.015530571341514587, -0.06931430101394653, -0.0815705806016922, -0.02850658819079399, 0.0220013540238142, -0.003737648483365774, -0.07315655797719955, -0.1072695255279541, -0.10948294401168823, 0.09868672490119934, 0.025103989988565445, -0.041467826813459396, -0.11689362674951553, 0.1088128387928009, 0.0985698401927948, -0.07918907701969147, 0.026172930374741554, 0.01825609803199768, 0.053514569997787476, 0.03653866797685623, -0.04062478244304657, 0.09099900722503662, -0.05193981155753136, -0.13894085586071014, -0.040053050965070724, 0.09323474019765854, 0.04130991920828819, 0.076805479824543, -0.010968861170113087, 0.005690377671271563, -0.04091561585664749, -0.10467918962240219, 0.015394282527267933, -0.05466413497924805, 0.0673169270157814, 0.044444404542446136, -0.055258046835660934, 0.03966698795557022, -0.06652633845806122, -0.03238021209836006, 0.19132542610168457, 0.2565009891986847, -0.08711034059524536, 0.019144469872117043, 0.03158639743924141, -0.058471471071243286, -0.15067647397518158, 0.050405777990818024, 0.08197303116321564, 0.0128439636901021, 0.06436454504728317, -0.18185769021511078, 0.09999752789735794, 0.11090532690286636, -0.0008244015625678003, 0.06857781112194061, -0.31276071071624756, -0.10773146897554398, 0.08410277217626572, 0.17578540742397308, 0.12631888687610626, -0.15748170018196106, -0.00881507433950901, -0.007307243067771196, -0.14858396351337433, 0.1037348285317421, -0.05235088989138603, 0.1258871853351593, -0.018447473645210266, 0.12560275197029114, 0.010381486266851425, -0.053658436983823776, 0.12939247488975525, 0.023690063506364822, 0.11564719676971436, -0.04911888390779495, -0.019398771226406097, 0.05611880496144295, -0.022240089252591133, -0.01202647015452385, -0.05761774629354477, 0.025591742247343063, -0.10878311842679977, -0.028118742629885674, -0.11364305764436722, 0.010508214123547077, -0.021188223734498024, -0.06445829570293427, -0.040615834295749664, 0.05601619929075241, 0.06909376382827759, -0.01646372862160206, 0.09891913831233978, -0.006011316552758217, 0.16392187774181366, 0.04550949111580849, 0.0721575990319252, -0.061374712735414505, -0.06732821464538574, -0.01845824532210827, -0.006265225820243359, 0.03546096384525299, -0.13833989202976227, 0.029540274292230606, 0.15293394029140472, 0.022118348628282547, 0.14773917198181152, 0.08141259104013443, -0.035379186272621155, 0.034323155879974365, 0.06835298985242844, -0.1289864182472229, -0.11633780598640442, 0.011700538918375969, -0.040453359484672546, -0.09877357631921768, 0.025028781965374947, 0.07369642704725266, -0.05455448105931282, -0.021400362253189087, -0.028753133490681648, -0.003497085301205516, -0.07519803196191788, 0.2150840014219284, 0.05820441618561745, 0.06114078685641289, -0.115081787109375, 0.05779239907860756, 0.048973631113767624, -0.08417001366615295, -0.0023456052877008915, 0.04683448746800423, -0.07752323895692825, -0.03515443205833435, 0.08891367167234421, 0.18288345634937286, -0.05631815269589424, -0.03925330191850662, -0.12822842597961426, -0.13081595301628113, 0.08453996479511261, 0.14839787781238556, 0.09968598932027817, 0.0077268886379897594, -0.039979640394449234, -0.0035080609377473593, -0.11512981355190277, 0.0750468447804451, 0.04992857575416565, 0.04062972590327263, -0.1318075805902481, 0.16450269520282745, -0.0031047079246491194, 0.05210214480757713, -0.01709200069308281, 0.016116591170430183, -0.10574866086244583, 0.030446263030171394, -0.1512969732284546, -0.030003519728779793, -0.04108938202261925, 0.014139174483716488, -0.0003449339128565043, -0.08530495315790176, -0.06968630105257034, 0.010182110592722893, -0.14041005074977875, -0.016002770513296127, 0.031657684594392776, 0.06163185462355614, -0.1072327271103859, -0.053516924381256104, 0.0207867082208395, -0.043504420667886734, 0.05649963766336441, 0.04591910541057587, 0.010334757156670094, 0.06491342186927795, -0.13349825143814087, -0.014069153927266598, 0.0488729365170002, -0.00009144112118519843, 0.06120843067765236, -0.10725002735853195, 0.006146361120045185, 0.008504526689648628, 0.06441498547792435, 0.022272735834121704, 0.03287919983267784, -0.13282056152820587, -0.023498307913541794, -0.028579862788319588, -0.08060406893491745, -0.06041015312075615, 0.021275535225868225, 0.08146695792675018, 0.03086809068918228, 0.18865516781806946, -0.07336816936731339, 0.04153991863131523, -0.20885129272937775, -0.02068595588207245, -0.018162116408348083, -0.10295692086219788, -0.10711468756198883, -0.07596832513809204, 0.07212376594543457, -0.04118652269244194, 0.16084100306034088, 0.014432206749916077, 0.0647682398557663, 0.025144200772047043, -0.034203290939331055, 0.016082294285297394, 0.019069714471697807, 0.24886582791805267, 0.019435208290815353, -0.036473874002695084, 0.08813813328742981, 0.06444689631462097, 0.06849438697099686, 0.14458714425563812, 0.19011123478412628, 0.1848195642232895, 0.024053309112787247, 0.05670926719903946, 0.03410819172859192, -0.05355551838874817, -0.10187877714633942, 0.038921721279621124, -0.013440149836242199, 0.07554630190134048, -0.03300990164279938, 0.22540827095508575, 0.05291277915239334, -0.18924233317375183, 0.07015664875507355, -0.058174874633550644, -0.09261640906333923, -0.08954811841249466, -0.02174297347664833, -0.0801069438457489, -0.1654403656721115, 0.013712484389543533, -0.12788592278957367, 0.02646646462380886, 0.14675188064575195, 0.020130325108766556, -0.013344565406441689, 0.14361028373241425, 0.02738521620631218, 0.017938712611794472, 0.06481845676898956, -0.008691297844052315, -0.020620904862880707, -0.08913421630859375, -0.06640546023845673, 0.0080906692892313, -0.04857960715889931, 0.03176918625831604, -0.05065915733575821, -0.08352441340684891, 0.018803944811224937, -0.04486212879419327, -0.09777064621448517, 0.01730957441031933, 0.021902505308389664, 0.09056898951530457, 0.057556506246328354, 0.010903213173151016, 0.0071424334309995174, -0.02146044373512268, 0.24638795852661133, -0.057365234941244125, -0.08856099098920822, -0.11469783633947372, 0.2430477738380432, 0.04746580496430397, -0.01169057097285986, 0.04851684346795082, -0.060807786881923676, 0.02210979349911213, 0.23101140558719635, 0.16808339953422546, -0.10814134776592255, -0.010721865110099316, -0.006385148968547583, -0.013860972598195076, -0.011623920872807503, 0.12268763035535812, 0.1206989660859108, 0.005009955260902643, -0.11370832473039627, -0.021828150376677513, -0.07526326179504395, -0.010142017155885696, -0.034953244030475616, 0.05442512780427933, 0.06722640991210938, -0.0001725073525449261, -0.04944809898734093, 0.08769486099481583, -0.056309156119823456, -0.10811272263526917, 0.06377773731946945, -0.18712981045246124, -0.168585866689682, -0.034453921020030975, 0.06988660991191864, 0.022933438420295715, 0.06439372152090073, -0.03929542377591133, 0.01777326501905918, 0.06001026928424835, -0.015370308421552181, -0.0756007730960846, -0.1107499748468399, 0.12420307099819183, -0.06762287765741348, 0.15276452898979187, -0.0393747016787529, 0.06224851682782173, 0.1343860775232315, 0.050327200442552567, -0.0568745955824852, 0.10120120644569397, 0.05213507264852524, -0.0896218940615654, 0.017200462520122528, 0.09549830853939056, -0.03280841186642647, 0.06550668179988861, 0.04254616051912308, -0.13847188651561737, 0.03563180938363075, -0.07971428334712982, -0.04683680087327957, -0.041236646473407745, -0.028614813461899757, -0.0490388348698616, 0.1261739879846573, 0.22435764968395233, -0.03346865996718407, 0.02636883221566677, -0.07305032759904861, 0.02911851368844509, 0.06026502698659897, 0.06256330013275146, -0.09022104740142822, -0.23455287516117096, 0.005963288713246584, 0.06714122742414474, -0.032632097601890564, -0.22440411150455475, -0.09041059017181396, 0.007789444178342819, -0.0654812902212143, -0.07104659080505371, 0.12265593558549881, 0.06767170131206512, 0.04511595144867897, -0.05236629396677017, -0.1145964115858078, -0.08003636449575424, 0.1675487756729126, -0.13670265674591064, -0.07550950348377228 ]
null
null
transformers
#datnguyen
{"tags": ["conversational"]}
text-generation
danny481/DialoGPT-small-datnguyenchatbot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#datnguyen
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
#Harry Potter DialoGPT
{"tags": ["conversational"]}
text-generation
danny481/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Harry Potter DialoGPT
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
#ChatBot updated by datng
{"tags": ["conversational"]}
text-generation
danny481/Final_ChatBot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#ChatBot updated by datng
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
{}
text2text-generation
danny911kr/calm-base
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## CALM This model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense. Checkout our Project website for details!
[ "## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ 48, 39 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ -0.02213875763118267, -0.053692132234573364, -0.0025661347899585962, 0.015831509605050087, 0.09639463573694229, -0.02976060099899769, 0.23268507421016693, 0.07608936727046967, -0.0715661495923996, -0.013080974109470844, 0.1162995994091034, 0.12832635641098022, -0.012100313790142536, 0.05936559662222862, -0.11752409487962723, -0.3118003010749817, 0.0212676003575325, 0.09420181065797806, 0.04369969666004181, 0.153020441532135, 0.13204173743724823, -0.0819140374660492, 0.0455453060567379, 0.015504328534007072, -0.14329181611537933, -0.016385182738304138, -0.00909272488206625, -0.1094965785741806, 0.1173894926905632, -0.005285979714244604, 0.14429645240306854, 0.11828535050153732, 0.004681583493947983, -0.12633675336837769, 0.04294228181242943, -0.018749145790934563, -0.015094189904630184, 0.0716339722275734, 0.04892677441239357, -0.04472779855132103, 0.21594929695129395, 0.004946357570588589, 0.0395478680729866, 0.027348732575774193, -0.13733018934726715, 0.06642737984657288, 0.01898696832358837, 0.16843397915363312, 0.05167870968580246, 0.10676259547472, -0.030619490891695023, 0.17372162640094757, -0.058082737028598785, 0.15195584297180176, 0.12840527296066284, -0.23820210993289948, -0.042767543345689774, 0.017932241782546043, 0.012897558510303497, 0.05269491299986839, -0.03702845051884651, 0.07650173455476761, 0.04189238324761391, 0.028593052178621292, -0.02626916579902172, -0.017777441069483757, -0.11709718406200409, -0.014971928671002388, -0.160088449716568, -0.05685902759432793, 0.264946848154068, -0.05829567834734917, 0.017053816467523575, -0.06256061792373657, -0.1186247393488884, -0.07242804020643234, -0.03505663201212883, -0.10137107223272324, -0.07121593505144119, 0.02690543420612812, -0.03525686264038086, -0.07110963761806488, -0.15772408246994019, -0.011213449761271477, -0.12063959240913391, 0.30448514223098755, 0.006424648221582174, 0.008893989026546478, -0.20986869931221008, 0.11769037693738937, 0.1271514594554901, -0.12634338438510895, 0.06516974419355392, -0.036219920963048935, 0.05740749463438988, -0.03364246338605881, -0.046922557055950165, -0.13769935071468353, 0.002939812373369932, 0.06480640172958374, -0.015123008750379086, -0.0022475773002952337, 0.019668135792016983, 0.05972519516944885, 0.05491073429584503, 0.08883417397737503, -0.01049097254872322, 0.07905121892690659, 0.035565510392189026, -0.0002724541409406811, 0.023388197645545006, -0.03817138448357582, -0.13736321032047272, -0.029986834153532982, 0.09410113096237183, 0.06102295592427254, -0.021877069026231766, 0.1076698750257492, -0.00023742724442854524, -0.05351882800459862, 0.06205885857343674, -0.03260674327611923, -0.04322608560323715, 0.019157562404870987, 0.0014344961382448673, 0.1893707662820816, 0.06991018354892731, 0.000963839702308178, -0.1453278660774231, 0.0380861833691597, -0.03120371513068676, -0.03605009615421295, -0.04310320317745209, -0.061229407787323, 0.02193182334303856, -0.030869528651237488, 0.01874038204550743, -0.1608746498823166, -0.2210007756948471, 0.03260831907391548, 0.0318647064268589, -0.01827841065824032, -0.009213225916028023, -0.08320681750774384, -0.09832381457090378, 0.008558406494557858, -0.016378507018089294, -0.0223667174577713, -0.01793476939201355, 0.10655494034290314, 0.021374087780714035, 0.09125577658414841, -0.12455855309963226, 0.04126850515604019, -0.09531781077384949, -0.03970421105623245, -0.05437513068318367, 0.0687917172908783, 0.059697024524211884, -0.007902228273451328, -0.022269247099757195, -0.053975362330675125, -0.05069192871451378, 0.06274700909852982, 0.006063746754080057, 0.21367749571800232, -0.08543553203344345, -0.07120269536972046, 0.07157740741968155, -0.14241521060466766, -0.197284534573555, 0.13718822598457336, -0.003927021753042936, 0.20684243738651276, 0.11294548213481903, 0.144310861825943, -0.05454261973500252, -0.011518247425556183, -0.0012233714805915952, 0.04698266461491585, -0.1154492124915123, -0.02661997079849243, -0.037486396729946136, 0.14035233855247498, -0.11005157232284546, 0.03206806629896164, 0.014139273203909397, 0.022641276940703392, -0.09517434239387512, -0.040970128029584885, -0.04073343053460121, -0.01655869372189045, 0.09536156058311462, 0.013546488247811794, 0.10514288395643234, -0.04445604234933853, -0.03366793319582939, 0.09258734434843063, 0.028654370456933975, -0.047135163098573685, 0.030454235151410103, -0.06457594037055969, 0.036737121641635895, -0.08682605624198914, 0.025279805064201355, -0.21691074967384338, -0.043462201952934265, -0.05773052200675011, 0.19051501154899597, 0.12074965238571167, 0.12637807428836823, 0.06989112496376038, -0.010427274741232395, -0.05023663863539696, -0.04923082888126373, 0.11174612492322922, 0.0014573324006050825, -0.0899074599146843, -0.16587790846824646, 0.0769534781575203, -0.08418300002813339, 0.06057630106806755, -0.11430615931749344, 0.06504978984594345, 0.06682535260915756, 0.13279230892658234, -0.004007465671747923, 0.08147179335355759, 0.037075091153383255, 0.01296694204211235, -0.060854099690914154, 0.010814069770276546, 0.08812350034713745, -0.017087429761886597, -0.08366617560386658, 0.09927123785018921, -0.1207747608423233, 0.191177099943161, 0.18833282589912415, -0.24446627497673035, -0.056166425347328186, -0.04306641221046448, -0.03887525945901871, 0.005773721728473902, -0.005621087271720171, 0.028667906299233437, 0.24396488070487976, -0.02838079258799553, 0.1277797669172287, -0.07070665806531906, -0.053813301026821136, -0.011936871334910393, -0.08322979509830475, -0.007763223256915808, 0.06647387892007828, 0.05686479061841965, -0.20187711715698242, 0.10842813551425934, 0.133192241191864, -0.03670424222946167, 0.18838216364383698, -0.02052794210612774, 0.001011591055430472, 0.03546314314007759, 0.033614322543144226, -0.011637121438980103, 0.01210803259164095, -0.17794857919216156, -0.04734756797552109, 0.04654732346534729, -0.03613490238785744, 0.11010383814573288, -0.1677226722240448, 0.01327742449939251, 0.023325566202402115, 0.007838121615350246, -0.03165600076317787, 0.0921710953116417, -0.008869682438671589, 0.13731417059898376, -0.06149828061461449, -0.0851721316576004, 0.07415911555290222, 0.030516598373651505, -0.12148895859718323, 0.16661380231380463, -0.020498886704444885, -0.26435133814811707, -0.12267584353685379, 0.02638532780110836, -0.07947207242250443, 0.022162146866321564, 0.06118733063340187, -0.11104977875947952, -0.028784537687897682, -0.051722053438425064, 0.09039226174354553, -0.03153378888964653, 0.06950708478689194, -0.05075317248702049, 0.03302796185016632, -0.10192714631557465, -0.11548737436532974, -0.033472806215286255, -0.03913964703679085, 0.024136977270245552, 0.07699747383594513, -0.12834540009498596, 0.07205580919981003, 0.22683490812778473, -0.044690169394016266, 0.05820087715983391, -0.04178924486041069, 0.15154525637626648, -0.10969559103250504, 0.06067090854048729, 0.17706778645515442, -0.05725940689444542, 0.024582939222455025, 0.10237301886081696, -0.013237337581813335, -0.08532128483057022, 0.073553167283535, -0.06856559962034225, -0.07082600891590118, -0.2298869490623474, -0.07050113379955292, -0.05503133684396744, 0.027494776993989944, 0.003926288336515427, 0.02473466284573078, 0.14955052733421326, 0.10385037213563919, -0.057365722954273224, 0.006204094272106886, -0.0047340611927211285, 0.10997804999351501, 0.19296492636203766, -0.03780190274119377, 0.10694634914398193, -0.08101260662078857, -0.18132440745830536, 0.037267055362463, -0.04404900223016739, 0.042710427194833755, 0.01843162626028061, 0.14118382334709167, 0.013549376279115677, -0.04829089343547821, 0.16285660862922668, 0.22550025582313538, -0.014016357250511646, -0.02469935454428196, -0.019953278824687004, -0.038258541375398636, -0.09838946908712387, 0.027846869081258774, -0.04118996486067772, 0.011934615671634674, -0.0801384225487709, -0.01381471287459135, 0.10672082751989365, 0.0742652416229248, -0.0065581658855080605, -0.23659075796604156, -0.052875958383083344, 0.0541938953101635, -0.025925099849700928, -0.0900956466794014, 0.08567054569721222, 0.010514434427022934, -0.02309110388159752, -0.018976924940943718, -0.032130107283592224, 0.10321521759033203, -0.13697701692581177, 0.06834174692630768, -0.14658159017562866, -0.02718435227870941, -0.020369408652186394, 0.07554518431425095, -0.2101621925830841, 0.18150129914283752, -0.00017994928930420429, 0.027468757703900337, -0.08687372505664825, -0.06448948383331299, -0.0073283519595861435, 0.20557419955730438, 0.030573640018701553, -0.035777900367975235, -0.00970118585973978, -0.000966738210991025, 0.0023627039045095444, 0.0626191571354866, 0.15384474396705627, -0.026911769062280655, 0.06435231864452362, -0.013940917328000069, 0.002293296856805682, 0.06387174874544144, -0.17204231023788452, -0.10272736847400665, -0.10881566256284714, 0.09995514154434204, 0.028177615255117416, 0.11247072368860245, -0.0019187472062185407, -0.09144146740436554, -0.020635288208723068, 0.16116899251937866, -0.011469284072518349, -0.07970837503671646, -0.1414356231689453, -0.020087623968720436, 0.04751023277640343, -0.05080182105302811, -0.007146134972572327, -0.024708237498998642, 0.045727960765361786, -0.09156579524278641, -0.10732904076576233, 0.09778636693954468, -0.10136387497186661, -0.15677320957183838, -0.019665095955133438, 0.11737804859876633, -0.022150786593556404, 0.002031112089753151, 0.013316788710653782, -0.023414921015501022, -0.0775085836648941, -0.09471073746681213, -0.03184086084365845, -0.03982020914554596, -0.02514430694282055, -0.006699584890156984, 0.01431594043970108, -0.03645009547472, -0.05642728880047798, 0.0027186735533177853, 0.20622675120830536, 0.0870080441236496, 0.00516783120110631, 0.030505599454045296, 0.238352432847023, -0.015094328671693802, -0.25314244627952576, -0.057250238955020905, -0.051003433763980865, -0.01649274118244648, -0.15810665488243103, -0.07706109434366226, 0.09528271108865738, -0.1081964448094368, -0.00884206872433424, 0.029298201203346252, -0.2423953413963318, -0.11002448201179504, 0.21705493330955505, 0.10459912568330765, 0.30326083302497864, -0.14430153369903564, -0.02328754961490631, -0.03915722668170929, -0.06326118111610413, 0.16376478970050812, -0.13161545991897583, 0.10707247257232666, -0.01868697814643383, 0.12406831979751587, 0.045381419360637665, -0.028987254947423935, 0.05001193284988403, -0.01920020766556263, 0.041439007967710495, -0.06759390234947205, -0.15419559180736542, 0.0653853490948677, 0.028693100437521935, 0.1369631290435791, -0.020571522414684296, 0.063883937895298, -0.03264327347278595, -0.08574423938989639, -0.06178612634539604, 0.067904032766819, -0.00910107884556055, -0.10068217664957047, -0.012468229047954082, -0.10618802905082703, -0.03295028954744339, -0.034261610358953476, 0.15274599194526672, -0.05004609748721123, -0.0026274004485458136, 0.17143765091896057, 0.23421624302864075, -0.08529983460903168, 0.08941872417926788, -0.013867142610251904, -0.07954148948192596, 0.1136729046702385, -0.12710034847259521, -0.050296276807785034, 0.11080159991979599, 0.02141759730875492, 0.12523509562015533, 0.12511372566223145, -0.011174503713846207, -0.0478411503136158, 0.07432208955287933, -0.24849051237106323, -0.09135950356721878, -0.10595564544200897, 0.07367799431085587, -0.0016918517649173737, 0.15762484073638916, 0.1537594497203827, -0.12486367672681808, 0.012159325182437897, -0.009313134476542473, 0.000010316352017980535, -0.012238902971148491, 0.026923799887299538, 0.07644633203744888, 0.03471684828400612, -0.09692353755235672, 0.011561679653823376, 0.023897524923086166, -0.22975066304206848, 0.007225350942462683, 0.10383493453264236, -0.11177980899810791, -0.13887028396129608, 0.05903320387005806, 0.15820762515068054, -0.15019947290420532, -0.07027184963226318, -0.10134962201118469, -0.18534806370735168, 0.05824577435851097, 0.2748497426509857, 0.06183844804763794, 0.022882157936692238, -0.14824530482292175, 0.012566330842673779, -0.11209627240896225, 0.059319738298654556, 0.048929549753665924, 0.04070516675710678, -0.11177882552146912, 0.11358261108398438, -0.0032591610215604305, 0.017657432705163956, -0.09843011200428009, -0.04000970721244812, -0.13704092800617218, 0.03510091453790665, -0.11784040927886963, -0.05953672528266907, -0.07796281576156616, -0.054539792239665985, 0.020775049924850464, -0.03633172810077667, -0.013009238988161087, -0.017535321414470673, -0.08262551575899124, 0.06954925507307053, 0.02015267126262188, 0.02957284264266491, -0.06958198547363281, 0.012243649922311306, 0.04368935152888298, -0.06491665542125702, 0.10662896186113358, 0.12622393667697906, -0.0900789424777031, 0.11353446543216705, -0.168279230594635, -0.02676147222518921, 0.09924117475748062, 0.008975216187536716, 0.03215603902935982, -0.021858589723706245, 0.01665073074400425, 0.04284703731536865, 0.030410397797822952, 0.06179531291127205, 0.0947277694940567, -0.05647394806146622, 0.090424545109272, 0.03028886392712593, -0.059073250740766525, -0.09275495260953903, -0.008752304129302502, 0.06665243208408356, 0.019258510321378708, 0.14013345539569855, -0.05714057385921478, 0.041408784687519073, -0.05768198519945145, 0.0632602646946907, 0.02868085727095604, -0.13940614461898804, -0.04279302805662155, -0.10686642676591873, 0.018865441903471947, -0.06251451373100281, 0.12382908910512924, -0.0460805781185627, -0.020345333963632584, 0.012444902211427689, 0.07645802944898605, -0.053407974541187286, 0.040975019335746765, 0.1671261489391327, 0.055532876402139664, -0.02343684993684292, -0.11846846342086792, 0.05144898593425751, 0.03180015832185745, 0.019686823710799217, 0.18077881634235382, -0.007125234231352806, -0.11105179786682129, 0.15338551998138428, 0.0032434279564768076, 0.11419302225112915, -0.04489228501915932, -0.12922309339046478, -0.0037296866066753864, -0.002600351581349969, -0.05380576103925705, 0.005096116103231907, 0.24041587114334106, 0.03372606262564659, 0.004662740044295788, 0.007932222448289394, -0.053245168179273605, -0.09998001903295517, -0.09900783747434616, -0.07419785112142563, -0.031681694090366364, -0.031001633033156395, -0.14222204685211182, -0.024217786267399788, 0.0015480333240702748, 0.10277619957923889, -0.050215646624565125, 0.1684381067752838, 0.06831615418195724, -0.024862069636583328, 0.13661707937717438, -0.012322935275733471, 0.030870385468006134, -0.10586266964673996, 0.031954094767570496, -0.1102369949221611, -0.005975459236651659, -0.03382172808051109, 0.051998838782310486, -0.09734606742858887, -0.03438122570514679, -0.038231782615184784, -0.11276402324438095, -0.03837963938713074, 0.04360991343855858, 0.053977202624082565, 0.11050236970186234, -0.0012400057166814804, -0.052670080214738846, 0.014992836862802505, 0.153320774435997, -0.08320330083370209, -0.23761574923992157, -0.07826130092144012, 0.20986197888851166, -0.002490843180567026, 0.06367587298154831, -0.0004892742144875228, -0.05074427276849747, -0.0669187605381012, 0.2680864930152893, 0.2665422856807709, -0.06138007715344429, 0.03121078759431839, 0.010962327942252159, 0.04370040073990822, 0.04212661460042, 0.040505848824977875, 0.06922426074743271, 0.2543453574180603, -0.09767557680606842, -0.003757954342290759, -0.08901038765907288, -0.045193158090114594, 0.028579197824001312, 0.1069357618689537, 0.1133960485458374, -0.029065918177366257, -0.0767863318324089, 0.10518325865268707, -0.23224171996116638, -0.038946591317653656, -0.13149891793727875, -0.12052930891513824, -0.014764676801860332, 0.0025718517135828733, 0.06131623685359955, -0.028586018830537796, 0.08336449414491653, -0.04574587941169739, -0.06503473222255707, 0.02946355752646923, 0.04201240837574005, -0.15830285847187042, 0.16518184542655945, 0.09398911148309708, -0.12560611963272095, -0.058426737785339355, -0.002819398185238242, 0.10687534511089325, 0.11257357150316238, -0.007484195753931999, -0.06185157969594002, 0.10873045027256012, 0.018028317019343376, -0.021228916943073273, 0.05555618181824684, 0.12432453781366348, 0.02281542867422104, -0.06379246711730957, 0.03663169965147972, -0.25234925746917725, 0.06887371093034744, 0.07105936855077744, -0.03235042095184326, -0.08316905051469803, 0.057837288826704025, -0.00008388731657760218, 0.07480157911777496, 0.12389345467090607, -0.014024480246007442, 0.0004072805168107152, -0.02308136783540249, 0.010072981007397175, 0.005240286234766245, -0.05468859523534775, -0.007570766378194094, -0.10873333364725113, -0.08198985457420349, 0.07805029302835464, -0.0038828758988529444, -0.26926496624946594, -0.0028692581690847874, -0.07452522218227386, -0.01644768752157688, -0.14133213460445404, 0.013350661844015121, 0.17094071209430695, 0.034270837903022766, 0.023059943690896034, 0.0876203179359436, -0.0013150705490261316, 0.10287047922611237, -0.1438225656747818, -0.06798245757818222 ]
null
null
transformers
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
{}
text2text-generation
danny911kr/calm-large
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## CALM This model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense. Checkout our Project website for details!
[ "## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ 48, 39 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ -0.02213875763118267, -0.053692132234573364, -0.0025661347899585962, 0.015831509605050087, 0.09639463573694229, -0.02976060099899769, 0.23268507421016693, 0.07608936727046967, -0.0715661495923996, -0.013080974109470844, 0.1162995994091034, 0.12832635641098022, -0.012100313790142536, 0.05936559662222862, -0.11752409487962723, -0.3118003010749817, 0.0212676003575325, 0.09420181065797806, 0.04369969666004181, 0.153020441532135, 0.13204173743724823, -0.0819140374660492, 0.0455453060567379, 0.015504328534007072, -0.14329181611537933, -0.016385182738304138, -0.00909272488206625, -0.1094965785741806, 0.1173894926905632, -0.005285979714244604, 0.14429645240306854, 0.11828535050153732, 0.004681583493947983, -0.12633675336837769, 0.04294228181242943, -0.018749145790934563, -0.015094189904630184, 0.0716339722275734, 0.04892677441239357, -0.04472779855132103, 0.21594929695129395, 0.004946357570588589, 0.0395478680729866, 0.027348732575774193, -0.13733018934726715, 0.06642737984657288, 0.01898696832358837, 0.16843397915363312, 0.05167870968580246, 0.10676259547472, -0.030619490891695023, 0.17372162640094757, -0.058082737028598785, 0.15195584297180176, 0.12840527296066284, -0.23820210993289948, -0.042767543345689774, 0.017932241782546043, 0.012897558510303497, 0.05269491299986839, -0.03702845051884651, 0.07650173455476761, 0.04189238324761391, 0.028593052178621292, -0.02626916579902172, -0.017777441069483757, -0.11709718406200409, -0.014971928671002388, -0.160088449716568, -0.05685902759432793, 0.264946848154068, -0.05829567834734917, 0.017053816467523575, -0.06256061792373657, -0.1186247393488884, -0.07242804020643234, -0.03505663201212883, -0.10137107223272324, -0.07121593505144119, 0.02690543420612812, -0.03525686264038086, -0.07110963761806488, -0.15772408246994019, -0.011213449761271477, -0.12063959240913391, 0.30448514223098755, 0.006424648221582174, 0.008893989026546478, -0.20986869931221008, 0.11769037693738937, 0.1271514594554901, -0.12634338438510895, 0.06516974419355392, -0.036219920963048935, 0.05740749463438988, -0.03364246338605881, -0.046922557055950165, -0.13769935071468353, 0.002939812373369932, 0.06480640172958374, -0.015123008750379086, -0.0022475773002952337, 0.019668135792016983, 0.05972519516944885, 0.05491073429584503, 0.08883417397737503, -0.01049097254872322, 0.07905121892690659, 0.035565510392189026, -0.0002724541409406811, 0.023388197645545006, -0.03817138448357582, -0.13736321032047272, -0.029986834153532982, 0.09410113096237183, 0.06102295592427254, -0.021877069026231766, 0.1076698750257492, -0.00023742724442854524, -0.05351882800459862, 0.06205885857343674, -0.03260674327611923, -0.04322608560323715, 0.019157562404870987, 0.0014344961382448673, 0.1893707662820816, 0.06991018354892731, 0.000963839702308178, -0.1453278660774231, 0.0380861833691597, -0.03120371513068676, -0.03605009615421295, -0.04310320317745209, -0.061229407787323, 0.02193182334303856, -0.030869528651237488, 0.01874038204550743, -0.1608746498823166, -0.2210007756948471, 0.03260831907391548, 0.0318647064268589, -0.01827841065824032, -0.009213225916028023, -0.08320681750774384, -0.09832381457090378, 0.008558406494557858, -0.016378507018089294, -0.0223667174577713, -0.01793476939201355, 0.10655494034290314, 0.021374087780714035, 0.09125577658414841, -0.12455855309963226, 0.04126850515604019, -0.09531781077384949, -0.03970421105623245, -0.05437513068318367, 0.0687917172908783, 0.059697024524211884, -0.007902228273451328, -0.022269247099757195, -0.053975362330675125, -0.05069192871451378, 0.06274700909852982, 0.006063746754080057, 0.21367749571800232, -0.08543553203344345, -0.07120269536972046, 0.07157740741968155, -0.14241521060466766, -0.197284534573555, 0.13718822598457336, -0.003927021753042936, 0.20684243738651276, 0.11294548213481903, 0.144310861825943, -0.05454261973500252, -0.011518247425556183, -0.0012233714805915952, 0.04698266461491585, -0.1154492124915123, -0.02661997079849243, -0.037486396729946136, 0.14035233855247498, -0.11005157232284546, 0.03206806629896164, 0.014139273203909397, 0.022641276940703392, -0.09517434239387512, -0.040970128029584885, -0.04073343053460121, -0.01655869372189045, 0.09536156058311462, 0.013546488247811794, 0.10514288395643234, -0.04445604234933853, -0.03366793319582939, 0.09258734434843063, 0.028654370456933975, -0.047135163098573685, 0.030454235151410103, -0.06457594037055969, 0.036737121641635895, -0.08682605624198914, 0.025279805064201355, -0.21691074967384338, -0.043462201952934265, -0.05773052200675011, 0.19051501154899597, 0.12074965238571167, 0.12637807428836823, 0.06989112496376038, -0.010427274741232395, -0.05023663863539696, -0.04923082888126373, 0.11174612492322922, 0.0014573324006050825, -0.0899074599146843, -0.16587790846824646, 0.0769534781575203, -0.08418300002813339, 0.06057630106806755, -0.11430615931749344, 0.06504978984594345, 0.06682535260915756, 0.13279230892658234, -0.004007465671747923, 0.08147179335355759, 0.037075091153383255, 0.01296694204211235, -0.060854099690914154, 0.010814069770276546, 0.08812350034713745, -0.017087429761886597, -0.08366617560386658, 0.09927123785018921, -0.1207747608423233, 0.191177099943161, 0.18833282589912415, -0.24446627497673035, -0.056166425347328186, -0.04306641221046448, -0.03887525945901871, 0.005773721728473902, -0.005621087271720171, 0.028667906299233437, 0.24396488070487976, -0.02838079258799553, 0.1277797669172287, -0.07070665806531906, -0.053813301026821136, -0.011936871334910393, -0.08322979509830475, -0.007763223256915808, 0.06647387892007828, 0.05686479061841965, -0.20187711715698242, 0.10842813551425934, 0.133192241191864, -0.03670424222946167, 0.18838216364383698, -0.02052794210612774, 0.001011591055430472, 0.03546314314007759, 0.033614322543144226, -0.011637121438980103, 0.01210803259164095, -0.17794857919216156, -0.04734756797552109, 0.04654732346534729, -0.03613490238785744, 0.11010383814573288, -0.1677226722240448, 0.01327742449939251, 0.023325566202402115, 0.007838121615350246, -0.03165600076317787, 0.0921710953116417, -0.008869682438671589, 0.13731417059898376, -0.06149828061461449, -0.0851721316576004, 0.07415911555290222, 0.030516598373651505, -0.12148895859718323, 0.16661380231380463, -0.020498886704444885, -0.26435133814811707, -0.12267584353685379, 0.02638532780110836, -0.07947207242250443, 0.022162146866321564, 0.06118733063340187, -0.11104977875947952, -0.028784537687897682, -0.051722053438425064, 0.09039226174354553, -0.03153378888964653, 0.06950708478689194, -0.05075317248702049, 0.03302796185016632, -0.10192714631557465, -0.11548737436532974, -0.033472806215286255, -0.03913964703679085, 0.024136977270245552, 0.07699747383594513, -0.12834540009498596, 0.07205580919981003, 0.22683490812778473, -0.044690169394016266, 0.05820087715983391, -0.04178924486041069, 0.15154525637626648, -0.10969559103250504, 0.06067090854048729, 0.17706778645515442, -0.05725940689444542, 0.024582939222455025, 0.10237301886081696, -0.013237337581813335, -0.08532128483057022, 0.073553167283535, -0.06856559962034225, -0.07082600891590118, -0.2298869490623474, -0.07050113379955292, -0.05503133684396744, 0.027494776993989944, 0.003926288336515427, 0.02473466284573078, 0.14955052733421326, 0.10385037213563919, -0.057365722954273224, 0.006204094272106886, -0.0047340611927211285, 0.10997804999351501, 0.19296492636203766, -0.03780190274119377, 0.10694634914398193, -0.08101260662078857, -0.18132440745830536, 0.037267055362463, -0.04404900223016739, 0.042710427194833755, 0.01843162626028061, 0.14118382334709167, 0.013549376279115677, -0.04829089343547821, 0.16285660862922668, 0.22550025582313538, -0.014016357250511646, -0.02469935454428196, -0.019953278824687004, -0.038258541375398636, -0.09838946908712387, 0.027846869081258774, -0.04118996486067772, 0.011934615671634674, -0.0801384225487709, -0.01381471287459135, 0.10672082751989365, 0.0742652416229248, -0.0065581658855080605, -0.23659075796604156, -0.052875958383083344, 0.0541938953101635, -0.025925099849700928, -0.0900956466794014, 0.08567054569721222, 0.010514434427022934, -0.02309110388159752, -0.018976924940943718, -0.032130107283592224, 0.10321521759033203, -0.13697701692581177, 0.06834174692630768, -0.14658159017562866, -0.02718435227870941, -0.020369408652186394, 0.07554518431425095, -0.2101621925830841, 0.18150129914283752, -0.00017994928930420429, 0.027468757703900337, -0.08687372505664825, -0.06448948383331299, -0.0073283519595861435, 0.20557419955730438, 0.030573640018701553, -0.035777900367975235, -0.00970118585973978, -0.000966738210991025, 0.0023627039045095444, 0.0626191571354866, 0.15384474396705627, -0.026911769062280655, 0.06435231864452362, -0.013940917328000069, 0.002293296856805682, 0.06387174874544144, -0.17204231023788452, -0.10272736847400665, -0.10881566256284714, 0.09995514154434204, 0.028177615255117416, 0.11247072368860245, -0.0019187472062185407, -0.09144146740436554, -0.020635288208723068, 0.16116899251937866, -0.011469284072518349, -0.07970837503671646, -0.1414356231689453, -0.020087623968720436, 0.04751023277640343, -0.05080182105302811, -0.007146134972572327, -0.024708237498998642, 0.045727960765361786, -0.09156579524278641, -0.10732904076576233, 0.09778636693954468, -0.10136387497186661, -0.15677320957183838, -0.019665095955133438, 0.11737804859876633, -0.022150786593556404, 0.002031112089753151, 0.013316788710653782, -0.023414921015501022, -0.0775085836648941, -0.09471073746681213, -0.03184086084365845, -0.03982020914554596, -0.02514430694282055, -0.006699584890156984, 0.01431594043970108, -0.03645009547472, -0.05642728880047798, 0.0027186735533177853, 0.20622675120830536, 0.0870080441236496, 0.00516783120110631, 0.030505599454045296, 0.238352432847023, -0.015094328671693802, -0.25314244627952576, -0.057250238955020905, -0.051003433763980865, -0.01649274118244648, -0.15810665488243103, -0.07706109434366226, 0.09528271108865738, -0.1081964448094368, -0.00884206872433424, 0.029298201203346252, -0.2423953413963318, -0.11002448201179504, 0.21705493330955505, 0.10459912568330765, 0.30326083302497864, -0.14430153369903564, -0.02328754961490631, -0.03915722668170929, -0.06326118111610413, 0.16376478970050812, -0.13161545991897583, 0.10707247257232666, -0.01868697814643383, 0.12406831979751587, 0.045381419360637665, -0.028987254947423935, 0.05001193284988403, -0.01920020766556263, 0.041439007967710495, -0.06759390234947205, -0.15419559180736542, 0.0653853490948677, 0.028693100437521935, 0.1369631290435791, -0.020571522414684296, 0.063883937895298, -0.03264327347278595, -0.08574423938989639, -0.06178612634539604, 0.067904032766819, -0.00910107884556055, -0.10068217664957047, -0.012468229047954082, -0.10618802905082703, -0.03295028954744339, -0.034261610358953476, 0.15274599194526672, -0.05004609748721123, -0.0026274004485458136, 0.17143765091896057, 0.23421624302864075, -0.08529983460903168, 0.08941872417926788, -0.013867142610251904, -0.07954148948192596, 0.1136729046702385, -0.12710034847259521, -0.050296276807785034, 0.11080159991979599, 0.02141759730875492, 0.12523509562015533, 0.12511372566223145, -0.011174503713846207, -0.0478411503136158, 0.07432208955287933, -0.24849051237106323, -0.09135950356721878, -0.10595564544200897, 0.07367799431085587, -0.0016918517649173737, 0.15762484073638916, 0.1537594497203827, -0.12486367672681808, 0.012159325182437897, -0.009313134476542473, 0.000010316352017980535, -0.012238902971148491, 0.026923799887299538, 0.07644633203744888, 0.03471684828400612, -0.09692353755235672, 0.011561679653823376, 0.023897524923086166, -0.22975066304206848, 0.007225350942462683, 0.10383493453264236, -0.11177980899810791, -0.13887028396129608, 0.05903320387005806, 0.15820762515068054, -0.15019947290420532, -0.07027184963226318, -0.10134962201118469, -0.18534806370735168, 0.05824577435851097, 0.2748497426509857, 0.06183844804763794, 0.022882157936692238, -0.14824530482292175, 0.012566330842673779, -0.11209627240896225, 0.059319738298654556, 0.048929549753665924, 0.04070516675710678, -0.11177882552146912, 0.11358261108398438, -0.0032591610215604305, 0.017657432705163956, -0.09843011200428009, -0.04000970721244812, -0.13704092800617218, 0.03510091453790665, -0.11784040927886963, -0.05953672528266907, -0.07796281576156616, -0.054539792239665985, 0.020775049924850464, -0.03633172810077667, -0.013009238988161087, -0.017535321414470673, -0.08262551575899124, 0.06954925507307053, 0.02015267126262188, 0.02957284264266491, -0.06958198547363281, 0.012243649922311306, 0.04368935152888298, -0.06491665542125702, 0.10662896186113358, 0.12622393667697906, -0.0900789424777031, 0.11353446543216705, -0.168279230594635, -0.02676147222518921, 0.09924117475748062, 0.008975216187536716, 0.03215603902935982, -0.021858589723706245, 0.01665073074400425, 0.04284703731536865, 0.030410397797822952, 0.06179531291127205, 0.0947277694940567, -0.05647394806146622, 0.090424545109272, 0.03028886392712593, -0.059073250740766525, -0.09275495260953903, -0.008752304129302502, 0.06665243208408356, 0.019258510321378708, 0.14013345539569855, -0.05714057385921478, 0.041408784687519073, -0.05768198519945145, 0.0632602646946907, 0.02868085727095604, -0.13940614461898804, -0.04279302805662155, -0.10686642676591873, 0.018865441903471947, -0.06251451373100281, 0.12382908910512924, -0.0460805781185627, -0.020345333963632584, 0.012444902211427689, 0.07645802944898605, -0.053407974541187286, 0.040975019335746765, 0.1671261489391327, 0.055532876402139664, -0.02343684993684292, -0.11846846342086792, 0.05144898593425751, 0.03180015832185745, 0.019686823710799217, 0.18077881634235382, -0.007125234231352806, -0.11105179786682129, 0.15338551998138428, 0.0032434279564768076, 0.11419302225112915, -0.04489228501915932, -0.12922309339046478, -0.0037296866066753864, -0.002600351581349969, -0.05380576103925705, 0.005096116103231907, 0.24041587114334106, 0.03372606262564659, 0.004662740044295788, 0.007932222448289394, -0.053245168179273605, -0.09998001903295517, -0.09900783747434616, -0.07419785112142563, -0.031681694090366364, -0.031001633033156395, -0.14222204685211182, -0.024217786267399788, 0.0015480333240702748, 0.10277619957923889, -0.050215646624565125, 0.1684381067752838, 0.06831615418195724, -0.024862069636583328, 0.13661707937717438, -0.012322935275733471, 0.030870385468006134, -0.10586266964673996, 0.031954094767570496, -0.1102369949221611, -0.005975459236651659, -0.03382172808051109, 0.051998838782310486, -0.09734606742858887, -0.03438122570514679, -0.038231782615184784, -0.11276402324438095, -0.03837963938713074, 0.04360991343855858, 0.053977202624082565, 0.11050236970186234, -0.0012400057166814804, -0.052670080214738846, 0.014992836862802505, 0.153320774435997, -0.08320330083370209, -0.23761574923992157, -0.07826130092144012, 0.20986197888851166, -0.002490843180567026, 0.06367587298154831, -0.0004892742144875228, -0.05074427276849747, -0.0669187605381012, 0.2680864930152893, 0.2665422856807709, -0.06138007715344429, 0.03121078759431839, 0.010962327942252159, 0.04370040073990822, 0.04212661460042, 0.040505848824977875, 0.06922426074743271, 0.2543453574180603, -0.09767557680606842, -0.003757954342290759, -0.08901038765907288, -0.045193158090114594, 0.028579197824001312, 0.1069357618689537, 0.1133960485458374, -0.029065918177366257, -0.0767863318324089, 0.10518325865268707, -0.23224171996116638, -0.038946591317653656, -0.13149891793727875, -0.12052930891513824, -0.014764676801860332, 0.0025718517135828733, 0.06131623685359955, -0.028586018830537796, 0.08336449414491653, -0.04574587941169739, -0.06503473222255707, 0.02946355752646923, 0.04201240837574005, -0.15830285847187042, 0.16518184542655945, 0.09398911148309708, -0.12560611963272095, -0.058426737785339355, -0.002819398185238242, 0.10687534511089325, 0.11257357150316238, -0.007484195753931999, -0.06185157969594002, 0.10873045027256012, 0.018028317019343376, -0.021228916943073273, 0.05555618181824684, 0.12432453781366348, 0.02281542867422104, -0.06379246711730957, 0.03663169965147972, -0.25234925746917725, 0.06887371093034744, 0.07105936855077744, -0.03235042095184326, -0.08316905051469803, 0.057837288826704025, -0.00008388731657760218, 0.07480157911777496, 0.12389345467090607, -0.014024480246007442, 0.0004072805168107152, -0.02308136783540249, 0.010072981007397175, 0.005240286234766245, -0.05468859523534775, -0.007570766378194094, -0.10873333364725113, -0.08198985457420349, 0.07805029302835464, -0.0038828758988529444, -0.26926496624946594, -0.0028692581690847874, -0.07452522218227386, -0.01644768752157688, -0.14133213460445404, 0.013350661844015121, 0.17094071209430695, 0.034270837903022766, 0.023059943690896034, 0.0876203179359436, -0.0013150705490261316, 0.10287047922611237, -0.1438225656747818, -0.06798245757818222 ]
null
null
transformers
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
{}
text2text-generation
danny911kr/calm-mix-base
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## CALM This model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense. Checkout our Project website for details!
[ "## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ 48, 39 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ -0.02213875763118267, -0.053692132234573364, -0.0025661347899585962, 0.015831509605050087, 0.09639463573694229, -0.02976060099899769, 0.23268507421016693, 0.07608936727046967, -0.0715661495923996, -0.013080974109470844, 0.1162995994091034, 0.12832635641098022, -0.012100313790142536, 0.05936559662222862, -0.11752409487962723, -0.3118003010749817, 0.0212676003575325, 0.09420181065797806, 0.04369969666004181, 0.153020441532135, 0.13204173743724823, -0.0819140374660492, 0.0455453060567379, 0.015504328534007072, -0.14329181611537933, -0.016385182738304138, -0.00909272488206625, -0.1094965785741806, 0.1173894926905632, -0.005285979714244604, 0.14429645240306854, 0.11828535050153732, 0.004681583493947983, -0.12633675336837769, 0.04294228181242943, -0.018749145790934563, -0.015094189904630184, 0.0716339722275734, 0.04892677441239357, -0.04472779855132103, 0.21594929695129395, 0.004946357570588589, 0.0395478680729866, 0.027348732575774193, -0.13733018934726715, 0.06642737984657288, 0.01898696832358837, 0.16843397915363312, 0.05167870968580246, 0.10676259547472, -0.030619490891695023, 0.17372162640094757, -0.058082737028598785, 0.15195584297180176, 0.12840527296066284, -0.23820210993289948, -0.042767543345689774, 0.017932241782546043, 0.012897558510303497, 0.05269491299986839, -0.03702845051884651, 0.07650173455476761, 0.04189238324761391, 0.028593052178621292, -0.02626916579902172, -0.017777441069483757, -0.11709718406200409, -0.014971928671002388, -0.160088449716568, -0.05685902759432793, 0.264946848154068, -0.05829567834734917, 0.017053816467523575, -0.06256061792373657, -0.1186247393488884, -0.07242804020643234, -0.03505663201212883, -0.10137107223272324, -0.07121593505144119, 0.02690543420612812, -0.03525686264038086, -0.07110963761806488, -0.15772408246994019, -0.011213449761271477, -0.12063959240913391, 0.30448514223098755, 0.006424648221582174, 0.008893989026546478, -0.20986869931221008, 0.11769037693738937, 0.1271514594554901, -0.12634338438510895, 0.06516974419355392, -0.036219920963048935, 0.05740749463438988, -0.03364246338605881, -0.046922557055950165, -0.13769935071468353, 0.002939812373369932, 0.06480640172958374, -0.015123008750379086, -0.0022475773002952337, 0.019668135792016983, 0.05972519516944885, 0.05491073429584503, 0.08883417397737503, -0.01049097254872322, 0.07905121892690659, 0.035565510392189026, -0.0002724541409406811, 0.023388197645545006, -0.03817138448357582, -0.13736321032047272, -0.029986834153532982, 0.09410113096237183, 0.06102295592427254, -0.021877069026231766, 0.1076698750257492, -0.00023742724442854524, -0.05351882800459862, 0.06205885857343674, -0.03260674327611923, -0.04322608560323715, 0.019157562404870987, 0.0014344961382448673, 0.1893707662820816, 0.06991018354892731, 0.000963839702308178, -0.1453278660774231, 0.0380861833691597, -0.03120371513068676, -0.03605009615421295, -0.04310320317745209, -0.061229407787323, 0.02193182334303856, -0.030869528651237488, 0.01874038204550743, -0.1608746498823166, -0.2210007756948471, 0.03260831907391548, 0.0318647064268589, -0.01827841065824032, -0.009213225916028023, -0.08320681750774384, -0.09832381457090378, 0.008558406494557858, -0.016378507018089294, -0.0223667174577713, -0.01793476939201355, 0.10655494034290314, 0.021374087780714035, 0.09125577658414841, -0.12455855309963226, 0.04126850515604019, -0.09531781077384949, -0.03970421105623245, -0.05437513068318367, 0.0687917172908783, 0.059697024524211884, -0.007902228273451328, -0.022269247099757195, -0.053975362330675125, -0.05069192871451378, 0.06274700909852982, 0.006063746754080057, 0.21367749571800232, -0.08543553203344345, -0.07120269536972046, 0.07157740741968155, -0.14241521060466766, -0.197284534573555, 0.13718822598457336, -0.003927021753042936, 0.20684243738651276, 0.11294548213481903, 0.144310861825943, -0.05454261973500252, -0.011518247425556183, -0.0012233714805915952, 0.04698266461491585, -0.1154492124915123, -0.02661997079849243, -0.037486396729946136, 0.14035233855247498, -0.11005157232284546, 0.03206806629896164, 0.014139273203909397, 0.022641276940703392, -0.09517434239387512, -0.040970128029584885, -0.04073343053460121, -0.01655869372189045, 0.09536156058311462, 0.013546488247811794, 0.10514288395643234, -0.04445604234933853, -0.03366793319582939, 0.09258734434843063, 0.028654370456933975, -0.047135163098573685, 0.030454235151410103, -0.06457594037055969, 0.036737121641635895, -0.08682605624198914, 0.025279805064201355, -0.21691074967384338, -0.043462201952934265, -0.05773052200675011, 0.19051501154899597, 0.12074965238571167, 0.12637807428836823, 0.06989112496376038, -0.010427274741232395, -0.05023663863539696, -0.04923082888126373, 0.11174612492322922, 0.0014573324006050825, -0.0899074599146843, -0.16587790846824646, 0.0769534781575203, -0.08418300002813339, 0.06057630106806755, -0.11430615931749344, 0.06504978984594345, 0.06682535260915756, 0.13279230892658234, -0.004007465671747923, 0.08147179335355759, 0.037075091153383255, 0.01296694204211235, -0.060854099690914154, 0.010814069770276546, 0.08812350034713745, -0.017087429761886597, -0.08366617560386658, 0.09927123785018921, -0.1207747608423233, 0.191177099943161, 0.18833282589912415, -0.24446627497673035, -0.056166425347328186, -0.04306641221046448, -0.03887525945901871, 0.005773721728473902, -0.005621087271720171, 0.028667906299233437, 0.24396488070487976, -0.02838079258799553, 0.1277797669172287, -0.07070665806531906, -0.053813301026821136, -0.011936871334910393, -0.08322979509830475, -0.007763223256915808, 0.06647387892007828, 0.05686479061841965, -0.20187711715698242, 0.10842813551425934, 0.133192241191864, -0.03670424222946167, 0.18838216364383698, -0.02052794210612774, 0.001011591055430472, 0.03546314314007759, 0.033614322543144226, -0.011637121438980103, 0.01210803259164095, -0.17794857919216156, -0.04734756797552109, 0.04654732346534729, -0.03613490238785744, 0.11010383814573288, -0.1677226722240448, 0.01327742449939251, 0.023325566202402115, 0.007838121615350246, -0.03165600076317787, 0.0921710953116417, -0.008869682438671589, 0.13731417059898376, -0.06149828061461449, -0.0851721316576004, 0.07415911555290222, 0.030516598373651505, -0.12148895859718323, 0.16661380231380463, -0.020498886704444885, -0.26435133814811707, -0.12267584353685379, 0.02638532780110836, -0.07947207242250443, 0.022162146866321564, 0.06118733063340187, -0.11104977875947952, -0.028784537687897682, -0.051722053438425064, 0.09039226174354553, -0.03153378888964653, 0.06950708478689194, -0.05075317248702049, 0.03302796185016632, -0.10192714631557465, -0.11548737436532974, -0.033472806215286255, -0.03913964703679085, 0.024136977270245552, 0.07699747383594513, -0.12834540009498596, 0.07205580919981003, 0.22683490812778473, -0.044690169394016266, 0.05820087715983391, -0.04178924486041069, 0.15154525637626648, -0.10969559103250504, 0.06067090854048729, 0.17706778645515442, -0.05725940689444542, 0.024582939222455025, 0.10237301886081696, -0.013237337581813335, -0.08532128483057022, 0.073553167283535, -0.06856559962034225, -0.07082600891590118, -0.2298869490623474, -0.07050113379955292, -0.05503133684396744, 0.027494776993989944, 0.003926288336515427, 0.02473466284573078, 0.14955052733421326, 0.10385037213563919, -0.057365722954273224, 0.006204094272106886, -0.0047340611927211285, 0.10997804999351501, 0.19296492636203766, -0.03780190274119377, 0.10694634914398193, -0.08101260662078857, -0.18132440745830536, 0.037267055362463, -0.04404900223016739, 0.042710427194833755, 0.01843162626028061, 0.14118382334709167, 0.013549376279115677, -0.04829089343547821, 0.16285660862922668, 0.22550025582313538, -0.014016357250511646, -0.02469935454428196, -0.019953278824687004, -0.038258541375398636, -0.09838946908712387, 0.027846869081258774, -0.04118996486067772, 0.011934615671634674, -0.0801384225487709, -0.01381471287459135, 0.10672082751989365, 0.0742652416229248, -0.0065581658855080605, -0.23659075796604156, -0.052875958383083344, 0.0541938953101635, -0.025925099849700928, -0.0900956466794014, 0.08567054569721222, 0.010514434427022934, -0.02309110388159752, -0.018976924940943718, -0.032130107283592224, 0.10321521759033203, -0.13697701692581177, 0.06834174692630768, -0.14658159017562866, -0.02718435227870941, -0.020369408652186394, 0.07554518431425095, -0.2101621925830841, 0.18150129914283752, -0.00017994928930420429, 0.027468757703900337, -0.08687372505664825, -0.06448948383331299, -0.0073283519595861435, 0.20557419955730438, 0.030573640018701553, -0.035777900367975235, -0.00970118585973978, -0.000966738210991025, 0.0023627039045095444, 0.0626191571354866, 0.15384474396705627, -0.026911769062280655, 0.06435231864452362, -0.013940917328000069, 0.002293296856805682, 0.06387174874544144, -0.17204231023788452, -0.10272736847400665, -0.10881566256284714, 0.09995514154434204, 0.028177615255117416, 0.11247072368860245, -0.0019187472062185407, -0.09144146740436554, -0.020635288208723068, 0.16116899251937866, -0.011469284072518349, -0.07970837503671646, -0.1414356231689453, -0.020087623968720436, 0.04751023277640343, -0.05080182105302811, -0.007146134972572327, -0.024708237498998642, 0.045727960765361786, -0.09156579524278641, -0.10732904076576233, 0.09778636693954468, -0.10136387497186661, -0.15677320957183838, -0.019665095955133438, 0.11737804859876633, -0.022150786593556404, 0.002031112089753151, 0.013316788710653782, -0.023414921015501022, -0.0775085836648941, -0.09471073746681213, -0.03184086084365845, -0.03982020914554596, -0.02514430694282055, -0.006699584890156984, 0.01431594043970108, -0.03645009547472, -0.05642728880047798, 0.0027186735533177853, 0.20622675120830536, 0.0870080441236496, 0.00516783120110631, 0.030505599454045296, 0.238352432847023, -0.015094328671693802, -0.25314244627952576, -0.057250238955020905, -0.051003433763980865, -0.01649274118244648, -0.15810665488243103, -0.07706109434366226, 0.09528271108865738, -0.1081964448094368, -0.00884206872433424, 0.029298201203346252, -0.2423953413963318, -0.11002448201179504, 0.21705493330955505, 0.10459912568330765, 0.30326083302497864, -0.14430153369903564, -0.02328754961490631, -0.03915722668170929, -0.06326118111610413, 0.16376478970050812, -0.13161545991897583, 0.10707247257232666, -0.01868697814643383, 0.12406831979751587, 0.045381419360637665, -0.028987254947423935, 0.05001193284988403, -0.01920020766556263, 0.041439007967710495, -0.06759390234947205, -0.15419559180736542, 0.0653853490948677, 0.028693100437521935, 0.1369631290435791, -0.020571522414684296, 0.063883937895298, -0.03264327347278595, -0.08574423938989639, -0.06178612634539604, 0.067904032766819, -0.00910107884556055, -0.10068217664957047, -0.012468229047954082, -0.10618802905082703, -0.03295028954744339, -0.034261610358953476, 0.15274599194526672, -0.05004609748721123, -0.0026274004485458136, 0.17143765091896057, 0.23421624302864075, -0.08529983460903168, 0.08941872417926788, -0.013867142610251904, -0.07954148948192596, 0.1136729046702385, -0.12710034847259521, -0.050296276807785034, 0.11080159991979599, 0.02141759730875492, 0.12523509562015533, 0.12511372566223145, -0.011174503713846207, -0.0478411503136158, 0.07432208955287933, -0.24849051237106323, -0.09135950356721878, -0.10595564544200897, 0.07367799431085587, -0.0016918517649173737, 0.15762484073638916, 0.1537594497203827, -0.12486367672681808, 0.012159325182437897, -0.009313134476542473, 0.000010316352017980535, -0.012238902971148491, 0.026923799887299538, 0.07644633203744888, 0.03471684828400612, -0.09692353755235672, 0.011561679653823376, 0.023897524923086166, -0.22975066304206848, 0.007225350942462683, 0.10383493453264236, -0.11177980899810791, -0.13887028396129608, 0.05903320387005806, 0.15820762515068054, -0.15019947290420532, -0.07027184963226318, -0.10134962201118469, -0.18534806370735168, 0.05824577435851097, 0.2748497426509857, 0.06183844804763794, 0.022882157936692238, -0.14824530482292175, 0.012566330842673779, -0.11209627240896225, 0.059319738298654556, 0.048929549753665924, 0.04070516675710678, -0.11177882552146912, 0.11358261108398438, -0.0032591610215604305, 0.017657432705163956, -0.09843011200428009, -0.04000970721244812, -0.13704092800617218, 0.03510091453790665, -0.11784040927886963, -0.05953672528266907, -0.07796281576156616, -0.054539792239665985, 0.020775049924850464, -0.03633172810077667, -0.013009238988161087, -0.017535321414470673, -0.08262551575899124, 0.06954925507307053, 0.02015267126262188, 0.02957284264266491, -0.06958198547363281, 0.012243649922311306, 0.04368935152888298, -0.06491665542125702, 0.10662896186113358, 0.12622393667697906, -0.0900789424777031, 0.11353446543216705, -0.168279230594635, -0.02676147222518921, 0.09924117475748062, 0.008975216187536716, 0.03215603902935982, -0.021858589723706245, 0.01665073074400425, 0.04284703731536865, 0.030410397797822952, 0.06179531291127205, 0.0947277694940567, -0.05647394806146622, 0.090424545109272, 0.03028886392712593, -0.059073250740766525, -0.09275495260953903, -0.008752304129302502, 0.06665243208408356, 0.019258510321378708, 0.14013345539569855, -0.05714057385921478, 0.041408784687519073, -0.05768198519945145, 0.0632602646946907, 0.02868085727095604, -0.13940614461898804, -0.04279302805662155, -0.10686642676591873, 0.018865441903471947, -0.06251451373100281, 0.12382908910512924, -0.0460805781185627, -0.020345333963632584, 0.012444902211427689, 0.07645802944898605, -0.053407974541187286, 0.040975019335746765, 0.1671261489391327, 0.055532876402139664, -0.02343684993684292, -0.11846846342086792, 0.05144898593425751, 0.03180015832185745, 0.019686823710799217, 0.18077881634235382, -0.007125234231352806, -0.11105179786682129, 0.15338551998138428, 0.0032434279564768076, 0.11419302225112915, -0.04489228501915932, -0.12922309339046478, -0.0037296866066753864, -0.002600351581349969, -0.05380576103925705, 0.005096116103231907, 0.24041587114334106, 0.03372606262564659, 0.004662740044295788, 0.007932222448289394, -0.053245168179273605, -0.09998001903295517, -0.09900783747434616, -0.07419785112142563, -0.031681694090366364, -0.031001633033156395, -0.14222204685211182, -0.024217786267399788, 0.0015480333240702748, 0.10277619957923889, -0.050215646624565125, 0.1684381067752838, 0.06831615418195724, -0.024862069636583328, 0.13661707937717438, -0.012322935275733471, 0.030870385468006134, -0.10586266964673996, 0.031954094767570496, -0.1102369949221611, -0.005975459236651659, -0.03382172808051109, 0.051998838782310486, -0.09734606742858887, -0.03438122570514679, -0.038231782615184784, -0.11276402324438095, -0.03837963938713074, 0.04360991343855858, 0.053977202624082565, 0.11050236970186234, -0.0012400057166814804, -0.052670080214738846, 0.014992836862802505, 0.153320774435997, -0.08320330083370209, -0.23761574923992157, -0.07826130092144012, 0.20986197888851166, -0.002490843180567026, 0.06367587298154831, -0.0004892742144875228, -0.05074427276849747, -0.0669187605381012, 0.2680864930152893, 0.2665422856807709, -0.06138007715344429, 0.03121078759431839, 0.010962327942252159, 0.04370040073990822, 0.04212661460042, 0.040505848824977875, 0.06922426074743271, 0.2543453574180603, -0.09767557680606842, -0.003757954342290759, -0.08901038765907288, -0.045193158090114594, 0.028579197824001312, 0.1069357618689537, 0.1133960485458374, -0.029065918177366257, -0.0767863318324089, 0.10518325865268707, -0.23224171996116638, -0.038946591317653656, -0.13149891793727875, -0.12052930891513824, -0.014764676801860332, 0.0025718517135828733, 0.06131623685359955, -0.028586018830537796, 0.08336449414491653, -0.04574587941169739, -0.06503473222255707, 0.02946355752646923, 0.04201240837574005, -0.15830285847187042, 0.16518184542655945, 0.09398911148309708, -0.12560611963272095, -0.058426737785339355, -0.002819398185238242, 0.10687534511089325, 0.11257357150316238, -0.007484195753931999, -0.06185157969594002, 0.10873045027256012, 0.018028317019343376, -0.021228916943073273, 0.05555618181824684, 0.12432453781366348, 0.02281542867422104, -0.06379246711730957, 0.03663169965147972, -0.25234925746917725, 0.06887371093034744, 0.07105936855077744, -0.03235042095184326, -0.08316905051469803, 0.057837288826704025, -0.00008388731657760218, 0.07480157911777496, 0.12389345467090607, -0.014024480246007442, 0.0004072805168107152, -0.02308136783540249, 0.010072981007397175, 0.005240286234766245, -0.05468859523534775, -0.007570766378194094, -0.10873333364725113, -0.08198985457420349, 0.07805029302835464, -0.0038828758988529444, -0.26926496624946594, -0.0028692581690847874, -0.07452522218227386, -0.01644768752157688, -0.14133213460445404, 0.013350661844015121, 0.17094071209430695, 0.034270837903022766, 0.023059943690896034, 0.0876203179359436, -0.0013150705490261316, 0.10287047922611237, -0.1438225656747818, -0.06798245757818222 ]
null
null
transformers
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
{}
text2text-generation
danny911kr/calm-mix-large
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## CALM This model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense. Checkout our Project website for details!
[ "## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ 48, 39 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## CALM\n\nThis model is for ICLR2021 paper: Pre-training Text-to-Text Transformers for Concept-centric Common Sense.\nCheckout our Project website for details!" ]
[ -0.02213875763118267, -0.053692132234573364, -0.0025661347899585962, 0.015831509605050087, 0.09639463573694229, -0.02976060099899769, 0.23268507421016693, 0.07608936727046967, -0.0715661495923996, -0.013080974109470844, 0.1162995994091034, 0.12832635641098022, -0.012100313790142536, 0.05936559662222862, -0.11752409487962723, -0.3118003010749817, 0.0212676003575325, 0.09420181065797806, 0.04369969666004181, 0.153020441532135, 0.13204173743724823, -0.0819140374660492, 0.0455453060567379, 0.015504328534007072, -0.14329181611537933, -0.016385182738304138, -0.00909272488206625, -0.1094965785741806, 0.1173894926905632, -0.005285979714244604, 0.14429645240306854, 0.11828535050153732, 0.004681583493947983, -0.12633675336837769, 0.04294228181242943, -0.018749145790934563, -0.015094189904630184, 0.0716339722275734, 0.04892677441239357, -0.04472779855132103, 0.21594929695129395, 0.004946357570588589, 0.0395478680729866, 0.027348732575774193, -0.13733018934726715, 0.06642737984657288, 0.01898696832358837, 0.16843397915363312, 0.05167870968580246, 0.10676259547472, -0.030619490891695023, 0.17372162640094757, -0.058082737028598785, 0.15195584297180176, 0.12840527296066284, -0.23820210993289948, -0.042767543345689774, 0.017932241782546043, 0.012897558510303497, 0.05269491299986839, -0.03702845051884651, 0.07650173455476761, 0.04189238324761391, 0.028593052178621292, -0.02626916579902172, -0.017777441069483757, -0.11709718406200409, -0.014971928671002388, -0.160088449716568, -0.05685902759432793, 0.264946848154068, -0.05829567834734917, 0.017053816467523575, -0.06256061792373657, -0.1186247393488884, -0.07242804020643234, -0.03505663201212883, -0.10137107223272324, -0.07121593505144119, 0.02690543420612812, -0.03525686264038086, -0.07110963761806488, -0.15772408246994019, -0.011213449761271477, -0.12063959240913391, 0.30448514223098755, 0.006424648221582174, 0.008893989026546478, -0.20986869931221008, 0.11769037693738937, 0.1271514594554901, -0.12634338438510895, 0.06516974419355392, -0.036219920963048935, 0.05740749463438988, -0.03364246338605881, -0.046922557055950165, -0.13769935071468353, 0.002939812373369932, 0.06480640172958374, -0.015123008750379086, -0.0022475773002952337, 0.019668135792016983, 0.05972519516944885, 0.05491073429584503, 0.08883417397737503, -0.01049097254872322, 0.07905121892690659, 0.035565510392189026, -0.0002724541409406811, 0.023388197645545006, -0.03817138448357582, -0.13736321032047272, -0.029986834153532982, 0.09410113096237183, 0.06102295592427254, -0.021877069026231766, 0.1076698750257492, -0.00023742724442854524, -0.05351882800459862, 0.06205885857343674, -0.03260674327611923, -0.04322608560323715, 0.019157562404870987, 0.0014344961382448673, 0.1893707662820816, 0.06991018354892731, 0.000963839702308178, -0.1453278660774231, 0.0380861833691597, -0.03120371513068676, -0.03605009615421295, -0.04310320317745209, -0.061229407787323, 0.02193182334303856, -0.030869528651237488, 0.01874038204550743, -0.1608746498823166, -0.2210007756948471, 0.03260831907391548, 0.0318647064268589, -0.01827841065824032, -0.009213225916028023, -0.08320681750774384, -0.09832381457090378, 0.008558406494557858, -0.016378507018089294, -0.0223667174577713, -0.01793476939201355, 0.10655494034290314, 0.021374087780714035, 0.09125577658414841, -0.12455855309963226, 0.04126850515604019, -0.09531781077384949, -0.03970421105623245, -0.05437513068318367, 0.0687917172908783, 0.059697024524211884, -0.007902228273451328, -0.022269247099757195, -0.053975362330675125, -0.05069192871451378, 0.06274700909852982, 0.006063746754080057, 0.21367749571800232, -0.08543553203344345, -0.07120269536972046, 0.07157740741968155, -0.14241521060466766, -0.197284534573555, 0.13718822598457336, -0.003927021753042936, 0.20684243738651276, 0.11294548213481903, 0.144310861825943, -0.05454261973500252, -0.011518247425556183, -0.0012233714805915952, 0.04698266461491585, -0.1154492124915123, -0.02661997079849243, -0.037486396729946136, 0.14035233855247498, -0.11005157232284546, 0.03206806629896164, 0.014139273203909397, 0.022641276940703392, -0.09517434239387512, -0.040970128029584885, -0.04073343053460121, -0.01655869372189045, 0.09536156058311462, 0.013546488247811794, 0.10514288395643234, -0.04445604234933853, -0.03366793319582939, 0.09258734434843063, 0.028654370456933975, -0.047135163098573685, 0.030454235151410103, -0.06457594037055969, 0.036737121641635895, -0.08682605624198914, 0.025279805064201355, -0.21691074967384338, -0.043462201952934265, -0.05773052200675011, 0.19051501154899597, 0.12074965238571167, 0.12637807428836823, 0.06989112496376038, -0.010427274741232395, -0.05023663863539696, -0.04923082888126373, 0.11174612492322922, 0.0014573324006050825, -0.0899074599146843, -0.16587790846824646, 0.0769534781575203, -0.08418300002813339, 0.06057630106806755, -0.11430615931749344, 0.06504978984594345, 0.06682535260915756, 0.13279230892658234, -0.004007465671747923, 0.08147179335355759, 0.037075091153383255, 0.01296694204211235, -0.060854099690914154, 0.010814069770276546, 0.08812350034713745, -0.017087429761886597, -0.08366617560386658, 0.09927123785018921, -0.1207747608423233, 0.191177099943161, 0.18833282589912415, -0.24446627497673035, -0.056166425347328186, -0.04306641221046448, -0.03887525945901871, 0.005773721728473902, -0.005621087271720171, 0.028667906299233437, 0.24396488070487976, -0.02838079258799553, 0.1277797669172287, -0.07070665806531906, -0.053813301026821136, -0.011936871334910393, -0.08322979509830475, -0.007763223256915808, 0.06647387892007828, 0.05686479061841965, -0.20187711715698242, 0.10842813551425934, 0.133192241191864, -0.03670424222946167, 0.18838216364383698, -0.02052794210612774, 0.001011591055430472, 0.03546314314007759, 0.033614322543144226, -0.011637121438980103, 0.01210803259164095, -0.17794857919216156, -0.04734756797552109, 0.04654732346534729, -0.03613490238785744, 0.11010383814573288, -0.1677226722240448, 0.01327742449939251, 0.023325566202402115, 0.007838121615350246, -0.03165600076317787, 0.0921710953116417, -0.008869682438671589, 0.13731417059898376, -0.06149828061461449, -0.0851721316576004, 0.07415911555290222, 0.030516598373651505, -0.12148895859718323, 0.16661380231380463, -0.020498886704444885, -0.26435133814811707, -0.12267584353685379, 0.02638532780110836, -0.07947207242250443, 0.022162146866321564, 0.06118733063340187, -0.11104977875947952, -0.028784537687897682, -0.051722053438425064, 0.09039226174354553, -0.03153378888964653, 0.06950708478689194, -0.05075317248702049, 0.03302796185016632, -0.10192714631557465, -0.11548737436532974, -0.033472806215286255, -0.03913964703679085, 0.024136977270245552, 0.07699747383594513, -0.12834540009498596, 0.07205580919981003, 0.22683490812778473, -0.044690169394016266, 0.05820087715983391, -0.04178924486041069, 0.15154525637626648, -0.10969559103250504, 0.06067090854048729, 0.17706778645515442, -0.05725940689444542, 0.024582939222455025, 0.10237301886081696, -0.013237337581813335, -0.08532128483057022, 0.073553167283535, -0.06856559962034225, -0.07082600891590118, -0.2298869490623474, -0.07050113379955292, -0.05503133684396744, 0.027494776993989944, 0.003926288336515427, 0.02473466284573078, 0.14955052733421326, 0.10385037213563919, -0.057365722954273224, 0.006204094272106886, -0.0047340611927211285, 0.10997804999351501, 0.19296492636203766, -0.03780190274119377, 0.10694634914398193, -0.08101260662078857, -0.18132440745830536, 0.037267055362463, -0.04404900223016739, 0.042710427194833755, 0.01843162626028061, 0.14118382334709167, 0.013549376279115677, -0.04829089343547821, 0.16285660862922668, 0.22550025582313538, -0.014016357250511646, -0.02469935454428196, -0.019953278824687004, -0.038258541375398636, -0.09838946908712387, 0.027846869081258774, -0.04118996486067772, 0.011934615671634674, -0.0801384225487709, -0.01381471287459135, 0.10672082751989365, 0.0742652416229248, -0.0065581658855080605, -0.23659075796604156, -0.052875958383083344, 0.0541938953101635, -0.025925099849700928, -0.0900956466794014, 0.08567054569721222, 0.010514434427022934, -0.02309110388159752, -0.018976924940943718, -0.032130107283592224, 0.10321521759033203, -0.13697701692581177, 0.06834174692630768, -0.14658159017562866, -0.02718435227870941, -0.020369408652186394, 0.07554518431425095, -0.2101621925830841, 0.18150129914283752, -0.00017994928930420429, 0.027468757703900337, -0.08687372505664825, -0.06448948383331299, -0.0073283519595861435, 0.20557419955730438, 0.030573640018701553, -0.035777900367975235, -0.00970118585973978, -0.000966738210991025, 0.0023627039045095444, 0.0626191571354866, 0.15384474396705627, -0.026911769062280655, 0.06435231864452362, -0.013940917328000069, 0.002293296856805682, 0.06387174874544144, -0.17204231023788452, -0.10272736847400665, -0.10881566256284714, 0.09995514154434204, 0.028177615255117416, 0.11247072368860245, -0.0019187472062185407, -0.09144146740436554, -0.020635288208723068, 0.16116899251937866, -0.011469284072518349, -0.07970837503671646, -0.1414356231689453, -0.020087623968720436, 0.04751023277640343, -0.05080182105302811, -0.007146134972572327, -0.024708237498998642, 0.045727960765361786, -0.09156579524278641, -0.10732904076576233, 0.09778636693954468, -0.10136387497186661, -0.15677320957183838, -0.019665095955133438, 0.11737804859876633, -0.022150786593556404, 0.002031112089753151, 0.013316788710653782, -0.023414921015501022, -0.0775085836648941, -0.09471073746681213, -0.03184086084365845, -0.03982020914554596, -0.02514430694282055, -0.006699584890156984, 0.01431594043970108, -0.03645009547472, -0.05642728880047798, 0.0027186735533177853, 0.20622675120830536, 0.0870080441236496, 0.00516783120110631, 0.030505599454045296, 0.238352432847023, -0.015094328671693802, -0.25314244627952576, -0.057250238955020905, -0.051003433763980865, -0.01649274118244648, -0.15810665488243103, -0.07706109434366226, 0.09528271108865738, -0.1081964448094368, -0.00884206872433424, 0.029298201203346252, -0.2423953413963318, -0.11002448201179504, 0.21705493330955505, 0.10459912568330765, 0.30326083302497864, -0.14430153369903564, -0.02328754961490631, -0.03915722668170929, -0.06326118111610413, 0.16376478970050812, -0.13161545991897583, 0.10707247257232666, -0.01868697814643383, 0.12406831979751587, 0.045381419360637665, -0.028987254947423935, 0.05001193284988403, -0.01920020766556263, 0.041439007967710495, -0.06759390234947205, -0.15419559180736542, 0.0653853490948677, 0.028693100437521935, 0.1369631290435791, -0.020571522414684296, 0.063883937895298, -0.03264327347278595, -0.08574423938989639, -0.06178612634539604, 0.067904032766819, -0.00910107884556055, -0.10068217664957047, -0.012468229047954082, -0.10618802905082703, -0.03295028954744339, -0.034261610358953476, 0.15274599194526672, -0.05004609748721123, -0.0026274004485458136, 0.17143765091896057, 0.23421624302864075, -0.08529983460903168, 0.08941872417926788, -0.013867142610251904, -0.07954148948192596, 0.1136729046702385, -0.12710034847259521, -0.050296276807785034, 0.11080159991979599, 0.02141759730875492, 0.12523509562015533, 0.12511372566223145, -0.011174503713846207, -0.0478411503136158, 0.07432208955287933, -0.24849051237106323, -0.09135950356721878, -0.10595564544200897, 0.07367799431085587, -0.0016918517649173737, 0.15762484073638916, 0.1537594497203827, -0.12486367672681808, 0.012159325182437897, -0.009313134476542473, 0.000010316352017980535, -0.012238902971148491, 0.026923799887299538, 0.07644633203744888, 0.03471684828400612, -0.09692353755235672, 0.011561679653823376, 0.023897524923086166, -0.22975066304206848, 0.007225350942462683, 0.10383493453264236, -0.11177980899810791, -0.13887028396129608, 0.05903320387005806, 0.15820762515068054, -0.15019947290420532, -0.07027184963226318, -0.10134962201118469, -0.18534806370735168, 0.05824577435851097, 0.2748497426509857, 0.06183844804763794, 0.022882157936692238, -0.14824530482292175, 0.012566330842673779, -0.11209627240896225, 0.059319738298654556, 0.048929549753665924, 0.04070516675710678, -0.11177882552146912, 0.11358261108398438, -0.0032591610215604305, 0.017657432705163956, -0.09843011200428009, -0.04000970721244812, -0.13704092800617218, 0.03510091453790665, -0.11784040927886963, -0.05953672528266907, -0.07796281576156616, -0.054539792239665985, 0.020775049924850464, -0.03633172810077667, -0.013009238988161087, -0.017535321414470673, -0.08262551575899124, 0.06954925507307053, 0.02015267126262188, 0.02957284264266491, -0.06958198547363281, 0.012243649922311306, 0.04368935152888298, -0.06491665542125702, 0.10662896186113358, 0.12622393667697906, -0.0900789424777031, 0.11353446543216705, -0.168279230594635, -0.02676147222518921, 0.09924117475748062, 0.008975216187536716, 0.03215603902935982, -0.021858589723706245, 0.01665073074400425, 0.04284703731536865, 0.030410397797822952, 0.06179531291127205, 0.0947277694940567, -0.05647394806146622, 0.090424545109272, 0.03028886392712593, -0.059073250740766525, -0.09275495260953903, -0.008752304129302502, 0.06665243208408356, 0.019258510321378708, 0.14013345539569855, -0.05714057385921478, 0.041408784687519073, -0.05768198519945145, 0.0632602646946907, 0.02868085727095604, -0.13940614461898804, -0.04279302805662155, -0.10686642676591873, 0.018865441903471947, -0.06251451373100281, 0.12382908910512924, -0.0460805781185627, -0.020345333963632584, 0.012444902211427689, 0.07645802944898605, -0.053407974541187286, 0.040975019335746765, 0.1671261489391327, 0.055532876402139664, -0.02343684993684292, -0.11846846342086792, 0.05144898593425751, 0.03180015832185745, 0.019686823710799217, 0.18077881634235382, -0.007125234231352806, -0.11105179786682129, 0.15338551998138428, 0.0032434279564768076, 0.11419302225112915, -0.04489228501915932, -0.12922309339046478, -0.0037296866066753864, -0.002600351581349969, -0.05380576103925705, 0.005096116103231907, 0.24041587114334106, 0.03372606262564659, 0.004662740044295788, 0.007932222448289394, -0.053245168179273605, -0.09998001903295517, -0.09900783747434616, -0.07419785112142563, -0.031681694090366364, -0.031001633033156395, -0.14222204685211182, -0.024217786267399788, 0.0015480333240702748, 0.10277619957923889, -0.050215646624565125, 0.1684381067752838, 0.06831615418195724, -0.024862069636583328, 0.13661707937717438, -0.012322935275733471, 0.030870385468006134, -0.10586266964673996, 0.031954094767570496, -0.1102369949221611, -0.005975459236651659, -0.03382172808051109, 0.051998838782310486, -0.09734606742858887, -0.03438122570514679, -0.038231782615184784, -0.11276402324438095, -0.03837963938713074, 0.04360991343855858, 0.053977202624082565, 0.11050236970186234, -0.0012400057166814804, -0.052670080214738846, 0.014992836862802505, 0.153320774435997, -0.08320330083370209, -0.23761574923992157, -0.07826130092144012, 0.20986197888851166, -0.002490843180567026, 0.06367587298154831, -0.0004892742144875228, -0.05074427276849747, -0.0669187605381012, 0.2680864930152893, 0.2665422856807709, -0.06138007715344429, 0.03121078759431839, 0.010962327942252159, 0.04370040073990822, 0.04212661460042, 0.040505848824977875, 0.06922426074743271, 0.2543453574180603, -0.09767557680606842, -0.003757954342290759, -0.08901038765907288, -0.045193158090114594, 0.028579197824001312, 0.1069357618689537, 0.1133960485458374, -0.029065918177366257, -0.0767863318324089, 0.10518325865268707, -0.23224171996116638, -0.038946591317653656, -0.13149891793727875, -0.12052930891513824, -0.014764676801860332, 0.0025718517135828733, 0.06131623685359955, -0.028586018830537796, 0.08336449414491653, -0.04574587941169739, -0.06503473222255707, 0.02946355752646923, 0.04201240837574005, -0.15830285847187042, 0.16518184542655945, 0.09398911148309708, -0.12560611963272095, -0.058426737785339355, -0.002819398185238242, 0.10687534511089325, 0.11257357150316238, -0.007484195753931999, -0.06185157969594002, 0.10873045027256012, 0.018028317019343376, -0.021228916943073273, 0.05555618181824684, 0.12432453781366348, 0.02281542867422104, -0.06379246711730957, 0.03663169965147972, -0.25234925746917725, 0.06887371093034744, 0.07105936855077744, -0.03235042095184326, -0.08316905051469803, 0.057837288826704025, -0.00008388731657760218, 0.07480157911777496, 0.12389345467090607, -0.014024480246007442, 0.0004072805168107152, -0.02308136783540249, 0.010072981007397175, 0.005240286234766245, -0.05468859523534775, -0.007570766378194094, -0.10873333364725113, -0.08198985457420349, 0.07805029302835464, -0.0038828758988529444, -0.26926496624946594, -0.0028692581690847874, -0.07452522218227386, -0.01644768752157688, -0.14133213460445404, 0.013350661844015121, 0.17094071209430695, 0.034270837903022766, 0.023059943690896034, 0.0876203179359436, -0.0013150705490261316, 0.10287047922611237, -0.1438225656747818, -0.06798245757818222 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-or Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on odia using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\β€œ]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 54.6 % ## Training The Common Voice `train`, `validation`, and test datasets were used for training as well as prediction and testing The script used for training can be found [https://github.com/rahul-art/wav2vec2_or]
{"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "odia XLSR Wav2Vec2 Large 2000", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 54.6, "name": "Test WER"}]}]}]}
automatic-speech-recognition
danurahul/wav2vec2-large-xlsr-or
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "or", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "or" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-or Fine-tuned facebook/wav2vec2-large-xlsr-53 on odia using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the odia test data of Common Voice. Test Result: 54.6 % ## Training The Common Voice 'train', 'validation', and test datasets were used for training as well as prediction and testing The script used for training can be found [URL
[ "# Wav2Vec2-Large-XLSR-53-or \nFine-tuned facebook/wav2vec2-large-xlsr-53 on odia using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the odia test data of Common Voice. \n\n\n\nTest Result: 54.6 %", "## Training\n\nThe Common Voice 'train', 'validation', and test datasets were used for training as well as prediction and testing \n\nThe script used for training can be found [URL" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-or \nFine-tuned facebook/wav2vec2-large-xlsr-53 on odia using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the odia test data of Common Voice. \n\n\n\nTest Result: 54.6 %", "## Training\n\nThe Common Voice 'train', 'validation', and test datasets were used for training as well as prediction and testing \n\nThe script used for training can be found [URL" ]
[ 80, 61, 20, 28, 42 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-or \nFine-tuned facebook/wav2vec2-large-xlsr-53 on odia using the Common Voice\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the odia test data of Common Voice. \n\n\n\nTest Result: 54.6 %## Training\n\nThe Common Voice 'train', 'validation', and test datasets were used for training as well as prediction and testing \n\nThe script used for training can be found [URL" ]
[ -0.14956606924533844, 0.010196153074502945, -0.0024513662792742252, -0.006969436537474394, 0.08672173321247101, -0.02273184061050415, 0.16447648406028748, 0.10758186876773834, 0.06858183443546295, -0.020997390151023865, 0.048398200422525406, -0.003143549431115389, 0.02444583550095558, 0.06450206786394119, 0.007907899096608162, -0.14676737785339355, -0.03445340692996979, 0.01277224626392126, 0.04858866706490517, 0.15478365123271942, 0.08745191246271133, -0.0724998489022255, -0.005077844485640526, 0.10293421894311905, -0.13838310539722443, 0.04700326547026634, 0.023978732526302338, -0.12593510746955872, 0.12680737674236298, 0.04794755205512047, 0.09918969124555588, 0.04390285536646843, 0.1035996600985527, -0.1862843781709671, 0.02276897430419922, 0.030419934540987015, 0.05437919870018959, 0.02687850594520569, 0.06723146140575409, -0.043273407965898514, 0.04945209249854088, 0.15320231020450592, 0.029511811211705208, 0.06582777202129364, -0.037664853036403656, -0.18089012801647186, 0.014980913139879704, -0.03033706173300743, 0.07054641097784042, 0.17095690965652466, -0.0571831576526165, 0.1447615772485733, -0.17156602442264557, 0.08534085750579834, 0.1336091160774231, -0.1500733196735382, -0.004927497357130051, 0.09907083958387375, 0.09515286237001419, 0.04916899651288986, -0.03845249488949776, -0.008155478164553642, 0.03001929447054863, 0.03738788142800331, 0.013449334539473057, -0.022593824192881584, -0.15831412374973297, -0.026855451986193657, -0.13717812299728394, -0.04208478331565857, 0.24054864048957825, -0.02097589708864689, -0.09324339032173157, -0.12404172122478485, 0.023191755637526512, 0.010315535590052605, 0.006398700177669525, -0.06272949278354645, -0.008805018849670887, 0.0028523080982267857, -0.018365902826189995, -0.023768294602632523, -0.1042739674448967, -0.1927461177110672, 0.03276456519961357, 0.12744218111038208, 0.03585432842373848, 0.012800083495676517, -0.1596582978963852, 0.12794235348701477, -0.024964336305856705, -0.08566036075353622, -0.04042212665081024, 0.017139915376901627, -0.07323229312896729, -0.01811210811138153, -0.0948047786951065, -0.17938902974128723, 0.029217926785349846, 0.019554948434233665, 0.11428723484277725, 0.05830695852637291, -0.04446754232048988, 0.06926897168159485, 0.03944472596049309, 0.127344012260437, -0.010960523039102554, 0.009632769972085953, 0.04093603044748306, 0.09093408286571503, -0.08317487686872482, -0.0014383556554093957, -0.054219990968704224, -0.04472431167960167, 0.02690356969833374, 0.07070770114660263, -0.020014388486742973, -0.009119096212089062, -0.07022108137607574, -0.03798303380608559, -0.011011442169547081, -0.12627699971199036, -0.04242144152522087, 0.10593322664499283, -0.05533267930150032, 0.03667929023504257, 0.07626111805438995, 0.021152280271053314, -0.06688282638788223, -0.03564334288239479, 0.02075650542974472, 0.0675639659166336, -0.06094907224178314, -0.06260226666927338, -0.002393179340288043, 0.09310553222894669, -0.016766071319580078, -0.10841745138168335, -0.1375875622034073, -0.10512492060661316, -0.0066872104071080685, 0.030844373628497124, 0.008589288219809532, -0.09142890572547913, -0.0003735916980076581, -0.05828619748353958, -0.06030125543475151, 0.08303645253181458, -0.04299090430140495, 0.0858640968799591, 0.09299872070550919, 0.0346895307302475, 0.1376008242368698, 0.06194527447223663, -0.11696052551269531, -0.06577783077955246, 0.03904251381754875, 0.1421044021844864, -0.05278336629271507, -0.04997565597295761, -0.07234974205493927, -0.0953368991613388, -0.0791005939245224, 0.09009290486574173, 0.05751565471291542, 0.11890475451946259, -0.22115036845207214, -0.06874994933605194, 0.25214090943336487, -0.10266873985528946, -0.088782899081707, 0.19946947693824768, -0.03508106246590614, 0.12832581996917725, 0.10927356034517288, 0.17562884092330933, 0.15710844099521637, -0.19721227884292603, 0.09885787963867188, 0.025389414280653, 0.013140046037733555, -0.008657511323690414, 0.0902564525604248, -0.02526826038956642, -0.07073134928941727, 0.02960681915283203, -0.11773501336574554, 0.06894256174564362, -0.02521069161593914, -0.06340048462152481, -0.029481232166290283, -0.07390210777521133, 0.03099079057574272, 0.0520295612514019, 0.013636138290166855, -0.032700568437576294, -0.08801991492509842, 0.01378822885453701, 0.1401309221982956, -0.13844770193099976, 0.024923324584960938, -0.1348848044872284, 0.05783491209149361, -0.04753458872437477, -0.022256677970290184, -0.1832178831100464, 0.12663495540618896, 0.004400018602609634, 0.011126215569674969, 0.048942942172288895, 0.1621149778366089, 0.017357835546135902, 0.006731994915753603, 0.0017592593794688582, -0.032782673835754395, -0.020656930282711983, -0.04977530613541603, -0.030728520825505257, -0.05807046964764595, -0.027603013440966606, -0.07467992603778839, 0.05145420506596565, -0.19172993302345276, 0.006019155960530043, -0.017442958429455757, -0.03412941098213196, -0.002139838645234704, -0.018281375989317894, 0.07644790410995483, 0.09434980154037476, -0.003822136903181672, 0.004880931694060564, 0.03307271748781204, 0.014033135958015919, -0.08600888401269913, 0.07605969905853271, -0.11144009977579117, 0.03012600541114807, 0.08554995059967041, -0.0670209750533104, -0.039880964905023575, 0.04228908568620682, -0.03404909372329712, 0.0028173313476145267, -0.10809393227100372, -0.01287058088928461, 0.32382267713546753, 0.0031064634677022696, 0.10897327214479446, -0.1219458132982254, 0.0005460591637529433, 0.0015245851827785373, -0.09575678408145905, 0.08674649149179459, 0.06307636201381683, 0.0053345817141234875, 0.051434457302093506, -0.009993561543524265, -0.04520969092845917, -0.140894815325737, 0.2002713829278946, -0.030492261052131653, -0.09395764023065567, 0.03386636823415756, 0.0007963483803905547, -0.028664328157901764, 0.019774483516812325, -0.16932256519794464, -0.0425354540348053, 0.030280334874987602, 0.06007610633969307, 0.05991797149181366, -0.168146014213562, 0.009666592814028263, 0.03180398419499397, -0.10240684449672699, -0.166673481464386, 0.05709018185734749, -0.044403016567230225, 0.03785902261734009, -0.0951448604464531, -0.06505244225263596, 0.0015763627598062158, -0.05917752906680107, -0.18154196441173553, 0.16544122993946075, -0.027881667017936707, -0.2100220024585724, -0.12321661412715912, 0.07086513936519623, 0.059972185641527176, 0.0058915503323078156, 0.08792828023433685, -0.08332870900630951, 0.004840342793613672, -0.06069154664874077, 0.04205920919775963, -0.0014103661524131894, -0.06251101940870285, -0.036451175808906555, 0.03320835530757904, 0.07650535553693771, -0.14423051476478577, 0.007385801058262587, -0.0301319919526577, -0.07668206095695496, 0.0053707631304860115, -0.00641843443736434, 0.0008181989542208612, 0.16073937714099884, 0.02611115388572216, 0.02405831590294838, -0.019946755841374397, 0.15525519847869873, -0.10046189278364182, -0.07497239857912064, 0.22539299726486206, -0.020431390032172203, -0.024762796238064766, 0.020400917157530785, 0.0297324750572443, -0.09151247888803482, 0.02918083593249321, -0.03687410429120064, -0.07800842821598053, -0.252674400806427, -0.0908888652920723, -0.03772245720028877, -0.07311404496431351, 0.0033928961493074894, -0.008660683408379555, 0.025051862001419067, 0.026182668283581734, 0.016149289906024933, -0.1284126192331314, 0.04581935331225395, 0.0006354143260978162, 0.07500829547643661, 0.005499560851603746, 0.10022490471601486, -0.020686879754066467, -0.024528853595256805, -0.019705384969711304, 0.03170078247785568, 0.15444335341453552, 0.0252371933311224, 0.0671025812625885, 0.11223499476909637, 0.08758570998907089, 0.09495075792074203, 0.0320904478430748, -0.04353271797299385, -0.00782405212521553, 0.01866091974079609, -0.05397477373480797, -0.05826897919178009, 0.017339054495096207, 0.09300953149795532, -0.02301962301135063, -0.03514977544546127, -0.06263701617717743, -0.002353724790737033, 0.15624992549419403, 0.03779115155339241, -0.2421707808971405, -0.061896875500679016, -0.05454867705702782, -0.08713413029909134, 0.005951086990535259, 0.0776551216840744, 0.10343626886606216, -0.16039420664310455, -0.006034619640558958, -0.012077282182872295, 0.1017860621213913, 0.01616237498819828, 0.012094084173440933, -0.06044987961649895, 0.035841844975948334, 0.0033487591426819563, 0.12714405357837677, -0.31701070070266724, 0.18675446510314941, -0.01701032556593418, 0.13511663675308228, -0.04762100428342819, 0.00046683911932632327, 0.036672014743089676, 0.04220336303114891, 0.12449973076581955, -0.027102556079626083, 0.07195203751325607, -0.1029844582080841, -0.056744080036878586, 0.08661874383687973, -0.028410015627741814, -0.0039004392456263304, 0.05961381271481514, 0.008324112743139267, 0.023700768128037453, 0.006937663536518812, -0.1200232058763504, -0.17263880372047424, -0.020384760573506355, -0.004893534351140261, 0.08864295482635498, 0.09753452986478806, -0.041610896587371826, -0.09214308112859726, -0.07722197473049164, 0.008974498137831688, -0.08357025682926178, -0.03882279992103577, -0.04396796599030495, -0.00003899859439115971, 0.08243924379348755, -0.05552447587251663, -0.032372187823057175, 0.10638738423585892, 0.11793702095746994, -0.0012341112596914172, -0.03805888816714287, 0.022271480411291122, -0.13522803783416748, -0.1362389624118805, -0.028242211788892746, 0.16960744559764862, 0.1253083199262619, 0.06793002784252167, 0.06524764746427536, -0.005621204152703285, -0.030794953927397728, -0.0421459786593914, -0.021025849506258965, 0.09610123932361603, -0.08091176301240921, 0.023484788835048676, 0.011764376424252987, -0.1160769909620285, -0.11413192749023438, -0.026908325031399727, 0.14731921255588531, 0.03403154015541077, -0.018529077991843224, 0.12787176668643951, 0.18966224789619446, -0.10434421896934509, -0.1851276010274887, 0.0066530113108456135, 0.15378016233444214, 0.13314826786518097, 0.039168693125247955, -0.2070031613111496, 0.09460334479808807, 0.0024179164320230484, -0.03956042602658272, -0.008058070205152035, -0.31654372811317444, -0.1280161291360855, 0.16943657398223877, 0.007707121782004833, 0.08803123980760574, -0.014154196716845036, 0.0020383496303111315, 0.00816703774034977, -0.024201640859246254, 0.0148406270891428, -0.06322000920772552, 0.1173020675778389, -0.0008282774942927063, 0.08045455068349838, 0.0487147681415081, -0.04486236721277237, 0.07289702445268631, 0.059361543506383896, 0.009475280530750751, 0.015734650194644928, 0.10390482097864151, 0.00649431673809886, 0.006100732367485762, 0.14511674642562866, -0.09791892021894455, 0.06660094112157822, -0.1056002601981163, -0.12100344896316528, -0.07429182529449463, 0.08471501618623734, 0.02625424973666668, -0.011346962302923203, 0.0228255707770586, -0.03503226116299629, -0.006941464729607105, 0.006539220921695232, -0.07368407398462296, -0.15135294198989868, 0.03388774022459984, 0.11544463038444519, 0.24640299379825592, 0.0003384652372915298, -0.1585211604833603, -0.00416450435295701, -0.013315828517079353, 0.1435522884130478, -0.11732451617717743, 0.030480243265628815, 0.07589099556207657, 0.06685948371887207, 0.11134494841098785, 0.03302982822060585, -0.11446455121040344, 0.08036816120147705, 0.020620301365852356, -0.029635904356837273, -0.08398664742708206, -0.044686391949653625, -0.028700770810246468, -0.07144821435213089, -0.002280868822708726, 0.0700506642460823, -0.08652348816394806, -0.03409812971949577, -0.009888512082397938, -0.007853684015572071, -0.11624078452587128, 0.2380671501159668, 0.024268530309200287, 0.08253903687000275, -0.08598197251558304, 0.0030732383020222187, -0.04284146800637245, -0.023245060816407204, 0.04390132054686546, -0.022494981065392494, -0.07632926106452942, -0.07981063425540924, -0.03405781462788582, 0.13540038466453552, 0.08190130442380905, -0.11686503142118454, -0.09418713301420212, -0.05628592148423195, -0.007766419090330601, 0.07396997511386871, 0.08306542038917542, 0.0012265017721801996, -0.09995640814304352, -0.037029992789030075, -0.09310001134872437, 0.08308480679988861, 0.11087669432163239, -0.01614285819232464, -0.11430402100086212, 0.16828404366970062, 0.09660223871469498, 0.031955551356077194, -0.03872326388955116, -0.0851755365729332, -0.024799922481179237, 0.13099908828735352, -0.0894622653722763, 0.007670059334486723, -0.02334345132112503, 0.02420562505722046, 0.01990644820034504, -0.0545201413333416, 0.011823398061096668, 0.09376949071884155, -0.10276369750499725, 0.04920950531959534, 0.013078110292553902, 0.07711292058229446, -0.07638818770647049, 0.028577610850334167, 0.04068990796804428, -0.07690554857254028, 0.0496673509478569, 0.11056098341941833, -0.11555960774421692, 0.11083328723907471, -0.209294393658638, -0.01990942656993866, 0.0603579580783844, 0.0877041444182396, -0.05791349336504936, -0.10831442475318909, 0.07096336036920547, 0.08337436616420746, 0.060945648699998856, -0.004803352057933807, 0.08569621294736862, -0.08767806738615036, 0.005029961001127958, -0.016576219350099564, -0.0034953118301928043, -0.03775351122021675, 0.03494812175631523, 0.03968280553817749, 0.16365204751491547, 0.1713789403438568, -0.09595973044633865, 0.11745966225862503, -0.15029916167259216, 0.0018306659767404199, -0.023487282916903496, 0.025421546772122383, -0.13173478841781616, -0.06925796717405319, 0.08830500394105911, -0.05991817265748978, 0.12469174712896347, 0.03549640625715256, 0.06207461282610893, -0.02814524993300438, -0.08800145983695984, 0.08441127091646194, -0.012615024112164974, 0.18439967930316925, 0.03048945963382721, 0.02860470488667488, -0.0015698244096711278, -0.024368610233068466, -0.0010448263492435217, 0.024682974442839622, -0.01660224050283432, 0.16948197782039642, -0.03516583889722824, 0.05681334063410759, 0.08823113143444061, -0.041082657873630524, -0.038491375744342804, -0.06166040524840355, -0.1028711348772049, 0.049833230674266815, -0.04546027258038521, 0.17306141555309296, 0.11455231159925461, -0.03665754199028015, 0.087306909263134, 0.0015645603416487575, -0.08732040971517563, -0.15448138117790222, -0.10267863422632217, -0.06517387181520462, -0.13760867714881897, 0.042283765971660614, -0.06689602881669998, -0.011330032721161842, 0.058783262968063354, 0.03578408434987068, -0.05635032430291176, 0.19304783642292023, 0.06886860728263855, -0.10809718817472458, 0.06900948286056519, -0.10458289086818695, -0.010162261314690113, -0.08305683732032776, 0.02244371734559536, 0.1736249476671219, -0.0006599353509955108, 0.06766637414693832, -0.008482576347887516, -0.0923016294836998, 0.017264777794480324, -0.0823880136013031, -0.0584169439971447, -0.005777478218078613, -0.01455678977072239, 0.07926800101995468, 0.09254536032676697, 0.10348647087812424, -0.048014797270298004, 0.010080267675220966, 0.14875590801239014, -0.03339238092303276, -0.12763364613056183, -0.16175217926502228, 0.1869203746318817, 0.02971380390226841, -0.017030220478773117, -0.005678475368767977, -0.008835324086248875, 0.00016672408673912287, 0.2441522479057312, 0.17565663158893585, 0.03637184947729111, 0.008751212619245052, 0.007768035400658846, -0.013009004294872284, -0.03457885980606079, 0.08184339106082916, 0.06807728111743927, 0.19661368429660797, -0.012061999179422855, 0.017183279618620872, -0.056411050260066986, -0.06811483949422836, 0.028147274628281593, 0.010770328342914581, -0.04531821608543396, -0.07508213818073273, -0.024987883865833282, 0.12144128233194351, -0.038366518914699554, -0.11609945446252823, -0.06673479825258255, -0.02109440043568611, -0.08938489109277725, -0.02710227482020855, 0.0163503997027874, 0.06705153733491898, 0.027727197855710983, -0.07246093451976776, 0.008444664068520069, 0.11153034120798111, -0.03583556041121483, -0.017578301951289177, -0.06938949227333069, 0.04081891477108002, -0.10794081538915634, 0.05394855886697769, -0.005545655265450478, 0.23431408405303955, 0.01310786698013544, 0.07418105006217957, -0.01598644070327282, 0.14491988718509674, -0.005538850091397762, -0.03017299994826317, 0.042248524725437164, 0.11063007265329361, -0.009242621250450611, 0.11086279898881912, 0.018638625741004944, -0.1286381185054779, 0.0348166897892952, -0.18479371070861816, -0.01635104790329933, -0.15716347098350525, 0.06282635778188705, -0.01869436912238598, 0.07214364409446716, 0.10064627230167389, -0.07736518234014511, -0.04274493828415871, -0.04769200459122658, 0.08958149701356888, 0.03308532387018204, -0.03525989502668381, -0.04702905938029289, -0.23532888293266296, -0.01006203144788742, -0.08371943980455399, -0.045354850590229034, -0.2397756427526474, -0.009854711592197418, 0.03756781294941902, -0.10021400451660156, 0.06084081903100014, 0.020394187420606613, 0.08278325945138931, 0.04772583395242691, 0.005932740867137909, -0.025856345891952515, 0.052724845707416534, 0.12941017746925354, -0.19707199931144714, -0.10972633212804794 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\β€œ\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\β€˜\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\οΏ½]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 100 % ## Training The Common Voice `train`, `validation` was used for training as well as validation and testing # The script used for training can be found https://github.com/rahul-art/huggingface_wav2vec2_punjabi/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Punjabi_ASR_with_%F0%9F%A4%97_Transformers.ipynb
{"language": "pa-IN", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "danurahul/wav2vec2-large-xlsr-pa-IN", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pa-IN", "type": "common_voice", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 54.86, "name": "Test WER"}]}]}]}
automatic-speech-recognition
danurahul/wav2vec2-large-xlsr-pa-IN
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "pa-IN" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. Test Result: 100 % ## Training The Common Voice 'train', 'validation' was used for training as well as validation and testing # The script used for training can be found URL
[ "# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Punjabi test data of Common Voice. \n\n\n\n\nTest Result: 100 %", "## Training\n\nThe Common Voice 'train', 'validation' was used for training as well as validation and testing #\n\nThe script used for training can be found URL" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Punjabi test data of Common Voice. \n\n\n\n\nTest Result: 100 %", "## Training\n\nThe Common Voice 'train', 'validation' was used for training as well as validation and testing #\n\nThe script used for training can be found URL" ]
[ 78, 62, 20, 26, 36 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Punjabi test data of Common Voice. \n\n\n\n\nTest Result: 100 %## Training\n\nThe Common Voice 'train', 'validation' was used for training as well as validation and testing #\n\nThe script used for training can be found URL" ]
[ -0.15284062922000885, 0.011862454935908318, -0.000197313551325351, 0.003943963907659054, 0.08048006147146225, -0.04566400498151779, 0.13513749837875366, 0.13537068665027618, 0.05690285563468933, 0.00009804427099879831, 0.055731114000082016, 0.046438101679086685, 0.027534930035471916, 0.06483705341815948, 0.038231026381254196, -0.14385764300823212, -0.019438371062278748, 0.037520211189985275, 0.08384689688682556, 0.16331800818443298, 0.09733208268880844, -0.05887676775455475, -0.02700268290936947, 0.07842514663934708, -0.17560946941375732, 0.07142341881990433, 0.01901976205408573, -0.11090817302465439, 0.12345658242702484, 0.024325089529156685, 0.09158920496702194, 0.05359242111444473, 0.09429536759853363, -0.19850698113441467, 0.03409991413354874, 0.024086592718958855, 0.04350258409976959, 0.008213402703404427, 0.04310372471809387, -0.015179314650595188, 0.08902782946825027, 0.1494346559047699, -0.00907199177891016, 0.06899413466453552, -0.003782892832532525, -0.14956632256507874, 0.020665358752012253, 0.06596535444259644, 0.053766828030347824, 0.15801729261875153, -0.04437870904803276, 0.12655781209468842, -0.16102200746536255, 0.10979287326335907, 0.08712788671255112, -0.16740682721138, 0.010615114122629166, 0.10431253165006638, 0.12626907229423523, 0.09333198517560959, -0.07268628478050232, -0.0004499743226915598, 0.05157487094402313, 0.01495511643588543, -0.009570025838911533, -0.04673141986131668, -0.200517475605011, -0.01937691681087017, -0.1008852943778038, -0.019207339733839035, 0.17856495082378387, -0.038758836686611176, -0.10081784427165985, -0.06941679865121841, -0.007294146344065666, 0.027834564447402954, 0.0005128231132403016, -0.04961036518216133, 0.0048278807662427425, 0.03973710909485817, -0.02430606447160244, -0.03884893283247948, -0.09239767491817474, -0.18196222186088562, 0.06304261833429337, 0.10789438337087631, 0.05792280286550522, 0.005028851795941591, -0.1548144817352295, 0.08732914179563522, -0.003535750089213252, -0.06311976909637451, -0.06421858072280884, 0.05074963718652725, -0.019105931743979454, 0.005607927683740854, -0.08869197219610214, -0.1867803931236267, 0.03922254592180252, 0.017980504781007767, 0.07571199536323547, 0.06576891988515854, -0.0622544139623642, 0.0831267461180687, -0.003383353818207979, 0.1476670205593109, 0.013241845183074474, 0.033810414373874664, 0.07298356294631958, 0.09097698330879211, -0.032585036009550095, 0.00943664275109768, -0.03334278613328934, -0.05830841511487961, 0.042081303894519806, 0.07703514397144318, -0.05518530681729317, 0.007040886674076319, -0.03833068162202835, 0.0071835704147815704, 0.03328610956668854, -0.14229437708854675, -0.027000360190868378, 0.07405172288417816, -0.02131648175418377, 0.07990957796573639, 0.08590398728847504, -0.010954049415886402, -0.09307493269443512, -0.09183035790920258, -0.00039477640530094504, 0.100820392370224, -0.05888284742832184, -0.056616101413965225, 0.011454500257968903, 0.06968503445386887, -0.04247147589921951, -0.1325283944606781, -0.14333753287792206, -0.06820517778396606, -0.016111066564917564, 0.04245707392692566, 0.0364547036588192, -0.1026143953204155, 0.0160878524184227, -0.05077754333615303, -0.05529499426484108, 0.028148146346211433, -0.043052349239587784, 0.11173868179321289, 0.0748547688126564, 0.056204792112112045, 0.10632853209972382, 0.07051119208335876, -0.10457251965999603, -0.05671357363462448, 0.03214925155043602, 0.12296679615974426, -0.06327860057353973, -0.038500942289829254, -0.08347565680742264, -0.07724685966968536, -0.03604131564497948, 0.08402179181575775, 0.051634758710861206, 0.11790721863508224, -0.1671120971441269, -0.06483407318592072, 0.2696697413921356, -0.13318544626235962, -0.07809294760227203, 0.19618836045265198, -0.00758237624540925, 0.1488732546567917, 0.10369718074798584, 0.1934758871793747, 0.13799931108951569, -0.19745171070098877, 0.06983932852745056, 0.060248829424381256, -0.00317327375523746, -0.056255701929330826, 0.07792672514915466, -0.05328135937452316, -0.0540551021695137, 0.023570194840431213, -0.12354326248168945, 0.059766944497823715, -0.0275801420211792, -0.04408997669816017, -0.04783986136317253, -0.08033393323421478, 0.023611964657902718, 0.0359349325299263, 0.03707299008965492, -0.030161503702402115, -0.07825424522161484, 0.04592771828174591, 0.1449778527021408, -0.14870835840702057, 0.07697413116693497, -0.12906639277935028, 0.08932770043611526, -0.09257620573043823, -0.00726674310863018, -0.16449472308158875, 0.177137553691864, 0.018238702788949013, 0.008868006989359856, 0.03905992582440376, 0.09086005389690399, 0.0063792867586016655, -0.0032829095143824816, -0.009978735819458961, -0.03098895400762558, 0.005503736902028322, -0.04384877160191536, -0.05570375174283981, -0.03628527373075485, -0.03262963518500328, -0.07013794779777527, 0.03230387344956398, -0.18607023358345032, 0.013140512630343437, -0.039898648858070374, -0.02411864884197712, -0.03473058342933655, -0.010033449158072472, 0.0887182429432869, 0.08730120956897736, -0.004680424928665161, 0.0006959770689718425, 0.04940163716673851, 0.02860456146299839, -0.08612289279699326, 0.11029895395040512, -0.0639411062002182, 0.009632378816604614, 0.06647682934999466, -0.14849580824375153, -0.03985710069537163, 0.05869021639227867, -0.018794849514961243, -0.006209465209394693, -0.06359511613845825, -0.03631941229104996, 0.25342482328414917, -0.01841719262301922, 0.16123472154140472, -0.11963383108377457, -0.00056984752882272, -0.018600869923830032, -0.11777523905038834, 0.07482052594423294, 0.05529462546110153, -0.005322000943124294, 0.047389157116413116, 0.01022964995354414, -0.047122180461883545, -0.14771981537342072, 0.18216148018836975, -0.030816787853837013, -0.0947006568312645, 0.0563591793179512, 0.05838413164019585, -0.04071815311908722, -0.008546356111764908, -0.15453070402145386, -0.08501055836677551, 0.011087372899055481, 0.040400389581918716, 0.05041653290390968, -0.17164763808250427, 0.017379682511091232, 0.024081740528345108, -0.1205981969833374, -0.2022792100906372, 0.07856834679841995, -0.07519624382257462, 0.03295131027698517, -0.09661821275949478, -0.018780816346406937, 0.019682861864566803, -0.02865416556596756, -0.2012658566236496, 0.17805218696594238, -0.06746802479028702, -0.1938299983739853, -0.15746253728866577, 0.058931875973939896, 0.09964025020599365, -0.0011345533421263099, 0.0992060974240303, -0.15068434178829193, 0.004875958431512117, -0.06031527370214462, 0.034218572080135345, 0.008573485538363457, -0.059967849403619766, -0.0609276257455349, 0.007168554235249758, 0.0696449801325798, -0.16180361807346344, 0.0016591898165643215, 0.0009955100249499083, -0.08776861429214478, 0.018365219235420227, -0.035763464868068695, 0.006465098820626736, 0.1413733959197998, -0.0191317331045866, 0.01235671155154705, -0.013337232172489166, 0.09036839008331299, -0.07620778679847717, -0.010064727626740932, 0.23255133628845215, -0.0071621062234044075, -0.011347816325724125, 0.018003802746534348, 0.004513902589678764, -0.06812813878059387, 0.02116513065993786, -0.05849650874733925, -0.06715776771306992, -0.2658608853816986, -0.051601435989141464, -0.03416770324110985, -0.08805479109287262, -0.019428089261054993, 0.025186868384480476, 0.00949086993932724, 0.04398765042424202, 0.010851012542843819, -0.09952337294816971, 0.012460314668715, 0.022488141432404518, 0.07565119117498398, 0.0024346306454390287, 0.09477503597736359, -0.0728805884718895, 0.023195849731564522, -0.039641860872507095, 0.0547921359539032, 0.14677299559116364, 0.04140067100524902, 0.07802916318178177, 0.1223142147064209, 0.1317114382982254, 0.10821771621704102, 0.02738441526889801, -0.04564713314175606, -0.017024779692292213, 0.05028098449110985, -0.04525894671678543, -0.07768493890762329, 0.020396867766976357, 0.06444606930017471, -0.012187534943223, -0.026684595271945, -0.06133111193776131, 0.016870323568582535, 0.1353851705789566, 0.017989177256822586, -0.21321354806423187, -0.09261923283338547, -0.05830603837966919, -0.10415230691432953, 0.011012962087988853, 0.06251852214336395, 0.09201140701770782, -0.13370291888713837, -0.022445272654294968, -0.00767027260735631, 0.10913178324699402, 0.022077832370996475, 0.009929333813488483, -0.06728371232748032, -0.00714003574103117, 0.005377769935876131, 0.09660171717405319, -0.3121642768383026, 0.2024901956319809, 0.000358077377313748, 0.14011751115322113, -0.009612629190087318, -0.0003400518908165395, 0.03473515808582306, 0.07519827783107758, 0.10590878874063492, -0.011455521918833256, 0.08133609592914581, -0.1360216587781906, -0.012715993449091911, 0.08589951694011688, 0.013806759379804134, 0.08035899698734283, 0.06941065937280655, -0.007423747796565294, 0.02558397315442562, -0.012578320689499378, -0.09069059789180756, -0.17899508774280548, -0.0022156364284455776, -0.017776191234588623, 0.08982409536838531, 0.09678256511688232, -0.04802146553993225, -0.08947894722223282, -0.10053329169750214, 0.06441240757703781, -0.12409796565771103, -0.07454627007246017, -0.02879532054066658, -0.005123344715684652, 0.03255021572113037, -0.08321789652109146, -0.00991077721118927, 0.06452086567878723, 0.050467632710933685, -0.0012167528038844466, -0.036225248128175735, -0.000845019705593586, -0.10096722096204758, -0.09343958646059036, -0.006284979172050953, 0.16431283950805664, 0.07121957838535309, 0.04344138503074646, 0.06711117923259735, -0.007337226532399654, -0.021965129300951958, -0.0386631153523922, -0.03903519734740257, 0.07090147584676743, -0.11670617014169693, 0.018610356375575066, -0.05671878159046173, -0.08434667438268661, -0.08470674604177475, -0.063178651034832, 0.14450964331626892, 0.0605534203350544, -0.005807381123304367, 0.11411228775978088, 0.25995755195617676, -0.12541227042675018, -0.2050522416830063, -0.005526118446141481, 0.07537239044904709, 0.10741577297449112, -0.026063531637191772, -0.1807844638824463, 0.09266863018274307, 0.005736475810408592, -0.029747802764177322, -0.023782877251505852, -0.2888506352901459, -0.1347809135913849, 0.13451147079467773, 0.036519553512334824, 0.10470173507928848, -0.06477200239896774, -0.03030525892972946, -0.003503806423395872, -0.06113028898835182, -0.07935961335897446, -0.06648529320955276, 0.12083017826080322, -0.020148608833551407, 0.08781764656305313, 0.03001757152378559, -0.0470641665160656, 0.05340845137834549, 0.045408736914396286, -0.019528744742274284, -0.01696186326444149, 0.0917380079627037, 0.05327412113547325, 0.029540324583649635, 0.17883610725402832, -0.14622092247009277, 0.055542025715112686, -0.10439801961183548, -0.09363885968923569, -0.07426415383815765, 0.057175878435373306, 0.012033659033477306, -0.012685173191130161, 0.004476931411772966, -0.038411695510149, 0.009409596212208271, 0.013181379996240139, -0.065888412296772, -0.14810052514076233, 0.11305808275938034, 0.11512135714292526, 0.1974434107542038, -0.016500739380717278, -0.1183229386806488, -0.024028241634368896, -0.03794896975159645, 0.14680254459381104, -0.18578451871871948, 0.0012203706428408623, 0.06281689554452896, 0.07770631462335587, 0.12557265162467957, 0.0149454390630126, -0.0686032846570015, 0.10871856659650803, 0.04304374009370804, 0.03277388960123062, -0.08929671347141266, 0.017022745683789253, -0.07254338264465332, -0.051124367862939835, 0.01724664866924286, 0.07397617399692535, -0.11876191198825836, -0.032686084508895874, -0.02357078529894352, -0.007951818406581879, -0.14895330369472504, 0.2139463871717453, 0.060408975929021835, 0.08052867650985718, -0.0700468122959137, 0.03554743900895119, -0.039125703275203705, -0.03343195840716362, 0.031246911734342575, 0.0230393186211586, -0.0949205681681633, -0.09135843813419342, -0.02303742803633213, 0.0937703400850296, 0.027195049449801445, -0.10093441605567932, -0.11145059019327164, -0.035979632288217545, -0.0015468416968360543, 0.061989687383174896, 0.045986030250787735, 0.016899721696972847, -0.10866007953882217, -0.018846100196242332, -0.0853196382522583, 0.06024504452943802, 0.07702267169952393, -0.00736510893329978, -0.09226899594068527, 0.18869216740131378, 0.09631886333227158, 0.06421570479869843, -0.044598326086997986, -0.07612543553113937, -0.02913052961230278, 0.11724162846803665, -0.1265370398759842, 0.014614415355026722, -0.03942904248833656, -0.00023649480135645717, 0.005811614915728569, -0.05068633332848549, 0.015514411963522434, 0.10761825740337372, -0.08367264270782471, 0.02699628286063671, 0.023007575422525406, 0.08002889156341553, -0.09933137148618698, 0.03855593129992485, 0.04751834273338318, -0.042958423495292664, 0.0427825041115284, 0.08950062841176987, -0.15699170529842377, 0.1319853812456131, -0.22313368320465088, -0.00746522843837738, 0.04214946925640106, 0.05858286842703819, -0.0507623665034771, -0.03229653090238571, 0.08262655884027481, 0.09269192069768906, 0.05575226619839668, 0.015380063094198704, 0.14370331168174744, -0.06356967240571976, 0.012383587658405304, -0.10523016005754471, 0.02021281234920025, -0.06403359770774841, 0.08043025434017181, 0.03001476638019085, 0.1479433923959732, 0.14665256440639496, -0.14120477437973022, 0.06845235824584961, -0.1290234625339508, -0.0077718584798276424, -0.014175535179674625, 0.007719031535089016, -0.1669599711894989, -0.08030103147029877, 0.06484916806221008, -0.07132674008607864, 0.09549841284751892, -0.0374050997197628, 0.04416505992412567, -0.005708000157028437, -0.07098835706710815, 0.054384324699640274, -0.042599186301231384, 0.2410522848367691, 0.03696896880865097, 0.025918977335095406, -0.021841546520590782, -0.0349813774228096, -0.012145663611590862, -0.026392774656414986, -0.04937400296330452, 0.21153171360492706, -0.028687410056591034, 0.0984107181429863, 0.05444728955626488, -0.023328011855483055, -0.07451482117176056, -0.10900753736495972, -0.10605847835540771, 0.05093667656183243, -0.03289840742945671, 0.1960752159357071, 0.19091087579727173, -0.030629778280854225, 0.0891093984246254, 0.02689862810075283, -0.08766283094882965, -0.13093054294586182, -0.1066603884100914, -0.0644155740737915, -0.1388976126909256, 0.05610739439725876, -0.0370241180062294, 0.003087728749960661, 0.049983929842710495, 0.0328255221247673, -0.05468975007534027, 0.22401344776153564, 0.07685765624046326, -0.12129494547843933, 0.054636016488075256, -0.11375559866428375, 0.01632905937731266, -0.06863681972026825, 0.007807627320289612, 0.17948541045188904, -0.024618512019515038, 0.07305289059877396, 0.027732092887163162, -0.06146016716957092, 0.02623695507645607, -0.1280142068862915, -0.03946949914097786, 0.010017265565693378, 0.025615017861127853, 0.07109757512807846, 0.14357034862041473, 0.0958959311246872, -0.06731709837913513, 0.0040429942309856415, 0.11971656233072281, -0.011973010376095772, -0.12376762181520462, -0.12277314811944962, 0.23729749023914337, 0.05067038536071777, -0.01463882252573967, -0.015364459715783596, -0.0035953656770288944, -0.012956224381923676, 0.2444576472043991, 0.1609565019607544, 0.0312152411788702, 0.030202478170394897, -0.008373665623366833, -0.014888672158122063, -0.0424639955163002, 0.12102770060300827, 0.08782612532377243, 0.1321226954460144, -0.012078824453055859, -0.0007473449222743511, -0.08538854122161865, -0.08102947473526001, -0.045567452907562256, -0.0007689230842515826, -0.0782533809542656, -0.06442424654960632, -0.03347019851207733, 0.11227889358997345, -0.03157808259129524, -0.0853494182229042, -0.07159081846475601, -0.016633205115795135, -0.07084094732999802, -0.026944154873490334, -0.024670908227562904, 0.0697217509150505, -0.01442132517695427, -0.04596724361181259, 0.04740747809410095, 0.095821812748909, -0.022261057049036026, 0.006147553212940693, -0.07942412048578262, 0.04467504844069481, -0.12252582609653473, 0.018940508365631104, 0.009769603610038757, 0.21560122072696686, 0.024631105363368988, 0.09927859902381897, -0.0063362400978803635, 0.20015451312065125, 0.012446830049157143, -0.043282076716423035, 0.0322716161608696, 0.09582757949829102, 0.005630562547594309, 0.09690606594085693, 0.0172912385314703, -0.045959699898958206, 0.03581894934177399, -0.176799476146698, -0.003261144971475005, -0.18300671875476837, 0.04669991880655289, -0.028198430314660072, 0.07639982551336288, 0.10993022471666336, -0.07005893439054489, -0.048515819013118744, -0.07400424778461456, 0.0562998466193676, 0.033528540283441544, -0.10503674298524857, -0.06237722560763359, -0.23866021633148193, 0.003076025051996112, -0.10347944498062134, -0.024459445849061012, -0.22571562230587006, -0.025280239060521126, 0.00002679632234503515, -0.07380371540784836, 0.03490676358342171, 0.05553899705410004, 0.08628950268030167, 0.06242108345031738, 0.030086778104305267, -0.14380094408988953, 0.07201901823282242, 0.13504958152770996, -0.20055200159549713, -0.1097952127456665 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9302 - Mae: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1253 | 1.0 | 235 | 0.9756 | 0.5488 | | 0.9465 | 2.0 | 470 | 0.9302 | 0.5 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
text-classification
danwilbury/xlm-roberta-base-finetuned-marc-en
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-marc-en ================================== This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset. It achieves the following results on the evaluation set: * Loss: 0.9302 * Mae: 0.5 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.09092789888381958, 0.08008227497339249, -0.0020140453707426786, 0.11630697548389435, 0.18312716484069824, 0.042973749339580536, 0.15040470659732819, 0.11954569816589355, -0.09022784978151321, -0.0003494977136142552, 0.11352355778217316, 0.17042438685894012, 0.007949714548885822, 0.1317906379699707, -0.06562875211238861, -0.25790008902549744, -0.012251557782292366, 0.05035068839788437, -0.04488401114940643, 0.1443592607975006, 0.10154645889997482, -0.1380293369293213, 0.09442190825939178, -0.0014341471251100302, -0.19770415127277374, -0.006765956524759531, 0.029228247702121735, -0.06890206784009933, 0.13384534418582916, 0.03764583170413971, 0.13645893335342407, 0.008102459833025932, 0.07276447862386703, -0.19063866138458252, 0.020796533674001694, 0.040146905928850174, 0.00358709879219532, 0.0915832370519638, 0.030548246577382088, -0.01468250248581171, 0.1342829167842865, -0.060973599553108215, 0.07154899835586548, 0.018368558958172798, -0.11795462667942047, -0.2320529818534851, -0.08308214694261551, 0.035912688821554184, 0.056772612035274506, 0.09991798549890518, -0.010324102826416492, 0.15634198486804962, -0.07674280554056168, 0.10339420288801193, 0.23605166375637054, -0.2893300950527191, -0.07612571865320206, 0.032290682196617126, 0.043305903673172, 0.08403892815113068, -0.10349797457456589, -0.023395158350467682, 0.05919168144464493, 0.05649252235889435, 0.12055753171443939, -0.0452197901904583, -0.0962030366063118, 0.01583736389875412, -0.1441667675971985, -0.02332693338394165, 0.2023565173149109, 0.03447432816028595, -0.0476268008351326, -0.051082272082567215, -0.032434288412332535, -0.15748977661132812, -0.03979404643177986, -0.0009673985186964273, 0.050246383994817734, -0.06319781392812729, -0.08705104142427444, -0.013781961984932423, -0.11613631248474121, -0.05173107236623764, -0.06630995124578476, 0.1457367241382599, 0.04109196364879608, 0.01682303659617901, -0.03500403091311455, 0.10437536239624023, 0.021311579272150993, -0.10318823158740997, 0.012504742480814457, 0.007507571950554848, -0.010289235971868038, -0.047606464475393295, -0.05751515179872513, -0.07956288009881973, 0.002544892020523548, 0.11920338124036789, -0.04774501919746399, 0.03242870792746544, 0.03772571310400963, 0.057246528565883636, -0.07498431205749512, 0.19655898213386536, -0.028955459594726562, -0.005452427081763744, -0.004732458386570215, 0.04949004575610161, 0.015602247789502144, -0.010551849380135536, -0.12953022122383118, 0.007022026460617781, 0.08074092119932175, 0.013663754798471928, -0.07587581127882004, 0.06431995332241058, -0.06985332071781158, -0.04672382026910782, -0.007498918566852808, -0.07484535127878189, 0.031198130920529366, -0.008710284717381, -0.06582239270210266, -0.02350885048508644, 0.023388126865029335, 0.017721518874168396, -0.011746599338948727, 0.13322429358959198, -0.08970562368631363, 0.0364038459956646, -0.09379757940769196, -0.10690733790397644, 0.021213319152593613, -0.07686057686805725, 0.0376054085791111, -0.10856878012418747, -0.16822496056556702, -0.03304174169898033, 0.0522976890206337, -0.018100610002875328, -0.060430899262428284, -0.03577180206775665, -0.06308238208293915, 0.01012183167040348, -0.014289181679487228, 0.1470746546983719, -0.07050348073244095, 0.11098764836788177, 0.03432513028383255, 0.05846457928419113, -0.04605408012866974, 0.04961748793721199, -0.09303298592567444, -0.008509560488164425, -0.15352317690849304, 0.03393903747200966, -0.04447499290108681, 0.058807726949453354, -0.07169647514820099, -0.11825202405452728, 0.013603618368506432, 0.019700555130839348, 0.04256633669137955, 0.07442475855350494, -0.1713005006313324, -0.07580258697271347, 0.14970633387565613, -0.06509901583194733, -0.12265316396951675, 0.11653491109609604, -0.08050192892551422, 0.06815876066684723, 0.07918455451726913, 0.16007547080516815, 0.07368943095207214, -0.07665113359689713, 0.02364281751215458, -0.009748673066496849, 0.030511032789945602, -0.06656751781702042, 0.07645123451948166, 0.023808009922504425, -0.011088239029049873, 0.031931594014167786, -0.03572938218712807, 0.036782167851924896, -0.09431610256433487, -0.08854455500841141, -0.03681464493274689, -0.09542662650346756, 0.05960068479180336, 0.07206001877784729, 0.07265763729810715, -0.11765731126070023, -0.07257198542356491, 0.07150136679410934, 0.0861012265086174, -0.055003076791763306, 0.018849531188607216, -0.05219917744398117, 0.06374433636665344, -0.034731317311525345, -0.022515803575515747, -0.17951369285583496, -0.029770378023386, 0.014603286981582642, 0.005661679431796074, 0.032073505222797394, 0.040834296494722366, 0.05372710898518562, 0.04150041192770004, -0.07131427526473999, -0.011015200987458229, -0.050375696271657944, -0.00942130945622921, -0.1230582743883133, -0.19584792852401733, -0.018969720229506493, -0.023339437320828438, 0.11454646289348602, -0.224257692694664, 0.03413281589746475, -0.04092243313789368, 0.05761338770389557, 0.041867028921842575, -0.010956901125609875, -0.02053735964000225, 0.0860079899430275, -0.03713130205869675, -0.0327489897608757, 0.07592474669218063, 0.012195399962365627, -0.10368473827838898, -0.007822113111615181, -0.09257585555315018, 0.19031088054180145, 0.1289455145597458, -0.09699749946594238, -0.0888260006904602, 0.010719056241214275, -0.054551877081394196, -0.03350850194692612, -0.08110085129737854, 0.03831710293889046, 0.1832561194896698, -0.00408615218475461, 0.1422782838344574, -0.08589011430740356, -0.04746617004275322, 0.027460463345050812, -0.04416185989975929, 0.026127975434064865, 0.14056192338466644, 0.12522448599338531, -0.0920635238289833, 0.1394202560186386, 0.14817063510417938, -0.07915978133678436, 0.1658279448747635, -0.03801234811544418, -0.059139613062143326, -0.024806562811136246, -0.03590410575270653, -0.011826027184724808, 0.1085469201207161, -0.12760300934314728, 0.00472189811989665, 0.03235438093543053, 0.009446932934224606, 0.01708807982504368, -0.23087909817695618, -0.04802200570702553, 0.035222526639699936, -0.040130965411663055, -0.011457022279500961, 0.006225543096661568, 0.01636500284075737, 0.11100597679615021, -0.00038215177482925355, -0.061102356761693954, 0.04150799661874771, 0.007206903304904699, -0.09109006822109222, 0.21807080507278442, -0.0752849280834198, -0.18252205848693848, -0.13199250400066376, -0.0493457093834877, -0.04442271217703819, -0.00279906764626503, 0.06433742493391037, -0.07138606905937195, -0.02895044907927513, -0.06548784673213959, 0.00514746131375432, -0.006640486419200897, 0.016602864488959312, -0.018567554652690887, 0.023830769583582878, 0.03936237096786499, -0.10331819206476212, -0.012889090925455093, -0.061911795288324356, -0.040967509150505066, 0.053883109241724014, 0.04405555874109268, 0.10898144543170929, 0.14961715042591095, -0.025291262194514275, -0.003893762594088912, -0.03315175324678421, 0.21485087275505066, -0.08689753711223602, -0.04712153226137161, 0.13125620782375336, -0.009326517581939697, 0.03263324499130249, 0.1212800070643425, 0.0720895454287529, -0.09237991273403168, 0.017520809546113014, 0.02917098067700863, -0.03997639939188957, -0.27003076672554016, -0.03821174427866936, -0.053288307040929794, 0.0005041555850766599, 0.07316083461046219, 0.026278546079993248, 0.005705300718545914, 0.06592023372650146, 0.04250522330403328, 0.0648341029882431, -0.02982121892273426, 0.06391338258981705, 0.1108853667974472, 0.03844940662384033, 0.13148561120033264, -0.05558411031961441, -0.06147214397788048, 0.05758168175816536, -0.00863972119987011, 0.24782785773277283, 0.011279144324362278, 0.1309511810541153, 0.07623305916786194, 0.12350870668888092, 0.017918558791279793, 0.05768585205078125, 0.018591217696666718, -0.03858204931020737, -0.019616344943642616, -0.025811797007918358, -0.029816756024956703, 0.0286216102540493, -0.04727308079600334, 0.048704832792282104, -0.13749583065509796, -0.01498402375727892, 0.06358642131090164, 0.23906491696834564, 0.016769928857684135, -0.30908310413360596, -0.10424860566854477, 0.010606772266328335, -0.05240930989384651, -0.009383879601955414, 0.026137301698327065, 0.10281414538621902, -0.12598705291748047, 0.03643062710762024, -0.08053163439035416, 0.09221653640270233, -0.0863085463643074, 0.04050378501415253, 0.0738224908709526, 0.0681130588054657, -0.003933573141694069, 0.07893651723861694, -0.307219922542572, 0.2819614112377167, -0.005618869327008724, 0.060745105147361755, -0.06372545659542084, -0.025851668789982796, 0.023402828723192215, 0.05463678762316704, 0.06036457046866417, -0.005185297690331936, -0.05821243301033974, -0.17296744883060455, -0.029245417565107346, 0.025523608550429344, 0.07566779851913452, -0.01468990370631218, 0.08854345232248306, -0.0285579115152359, 0.004089497961103916, 0.05787508934736252, -0.027434229850769043, -0.05153360217809677, -0.09460210800170898, -0.004334294702857733, 0.020693570375442505, -0.05909181386232376, -0.06367843598127365, -0.13336031138896942, -0.08024092018604279, 0.13815522193908691, -0.014427115209400654, -0.04591428115963936, -0.09696020931005478, 0.07496039569377899, 0.06935662031173706, -0.0799306333065033, 0.03762155771255493, 0.014699560590088367, 0.0846717432141304, 0.024481261149048805, -0.047440964728593826, 0.09554848819971085, -0.05173030123114586, -0.1872195154428482, -0.0632166862487793, 0.11352117359638214, 0.028094131499528885, 0.06719598174095154, -0.023858340457081795, 0.0004107730055693537, -0.04823746904730797, -0.08825484663248062, 0.02258949913084507, 0.007237046025693417, 0.08538832515478134, 0.04420587047934532, -0.06016400828957558, 0.003088439116254449, -0.0743371769785881, -0.05789945647120476, 0.20305874943733215, 0.20633313059806824, -0.09303376823663712, 0.032080233097076416, 0.01414012722671032, -0.08177021145820618, -0.17220793664455414, 0.03629900887608528, 0.07108122855424881, 0.012489903718233109, 0.05826587229967117, -0.15110467374324799, 0.11386826634407043, 0.09753286093473434, -0.008590045385062695, 0.13361698389053345, -0.323248952627182, -0.13557180762290955, 0.09210297465324402, 0.15564033389091492, 0.12722596526145935, -0.13530485332012177, -0.012024758383631706, -0.029694128781557083, -0.12655147910118103, 0.13825254142284393, -0.08200353384017944, 0.14067378640174866, -0.03298668563365936, 0.10618506371974945, 0.0052995807491242886, -0.05460384488105774, 0.11506109684705734, 0.01607188954949379, 0.10979824513196945, -0.05073171481490135, -0.046968698501586914, 0.018168210983276367, -0.03173650801181793, 0.017488637939095497, -0.07388205081224442, 0.019537346437573433, -0.09553373605012894, -0.037904515862464905, -0.07616972178220749, 0.03510139882564545, -0.04053482040762901, -0.05432239547371864, -0.04073890298604965, 0.035612355917692184, 0.02205091342329979, -0.017490994185209274, 0.14471615850925446, 0.005916844122111797, 0.14710642397403717, 0.06948163360357285, 0.09639938920736313, -0.05343913659453392, -0.09279846400022507, -0.03582580387592316, -0.021688245236873627, 0.049793485552072525, -0.15473158657550812, 0.02326696179807186, 0.14285890758037567, 0.012413830496370792, 0.15901656448841095, 0.07501823455095291, -0.028941627591848373, 0.015591477043926716, 0.06824849545955658, -0.15109407901763916, -0.0993746891617775, -0.015658222138881683, -0.09098188579082489, -0.11272766441106796, 0.04547811672091484, 0.11424396187067032, -0.06779132783412933, -0.027168378233909607, -0.013252581469714642, 0.009434499777853489, -0.04961276799440384, 0.19228704273700714, 0.0712907612323761, 0.049355633556842804, -0.10086462646722794, 0.08726470172405243, 0.05299781262874603, -0.07277260720729828, 0.009131514467298985, 0.07398980855941772, -0.0851946696639061, -0.06054844334721565, 0.06302937865257263, 0.1840636432170868, -0.06436847895383835, -0.05052271485328674, -0.14428043365478516, -0.12239868193864822, 0.08020304143428802, 0.15456198155879974, 0.1154261901974678, 0.01174027007073164, -0.04472504183650017, -0.009678967297077179, -0.10332822054624557, 0.10373563319444656, 0.06035935878753662, 0.06799294799566269, -0.15564770996570587, 0.11893093585968018, 0.0298626646399498, 0.0544048435986042, -0.021874960511922836, 0.03503105044364929, -0.11320466548204422, 0.016281502321362495, -0.11635188013315201, -0.004599275998771191, -0.01955498568713665, 0.0156586654484272, 0.00008569054625695571, -0.056630246341228485, -0.06948243826627731, 0.011811119504272938, -0.12271115183830261, -0.015396937727928162, 0.041357602924108505, 0.07619098573923111, -0.08720040321350098, -0.03770965710282326, 0.024497678503394127, -0.04467649757862091, 0.07077261805534363, 0.04765259474515915, 0.00999519880861044, 0.0638277679681778, -0.1326751559972763, 0.03493008390069008, 0.05847730115056038, 0.016229216009378433, 0.048695411533117294, -0.1218823567032814, 0.00844301376491785, 0.004147431813180447, 0.07234194129705429, 0.02527628093957901, 0.06878162175416946, -0.1595860719680786, -0.003925286699086428, -0.011753080412745476, -0.08088759332895279, -0.0604778528213501, 0.02060185931622982, 0.06034849211573601, 0.033461686223745346, 0.21250495314598083, -0.08307280391454697, 0.04318675398826599, -0.19975832104682922, 0.00521842809394002, -0.01949070766568184, -0.1242818534374237, -0.12428144365549088, -0.0736192986369133, 0.05655497685074806, -0.0671464130282402, 0.1680191457271576, 0.04778936877846718, 0.05581874027848244, 0.02484714426100254, -0.020287757739424706, -0.0074821035377681255, 0.016732243821024895, 0.17049984633922577, 0.007073113229125738, -0.04048845171928406, 0.0606084018945694, 0.047959793359041214, 0.1063975840806961, 0.10674457252025604, 0.20010076463222504, 0.1684790700674057, 0.009575174190104008, 0.08692093193531036, 0.03743763640522957, -0.03279959410429001, -0.13300663232803345, 0.03713468834757805, -0.025708554312586784, 0.11290872097015381, -0.026694100350141525, 0.20042958855628967, 0.07072245329618454, -0.16473351418972015, 0.04714856669306755, -0.05892984941601753, -0.08779802173376083, -0.11389470845460892, -0.055804088711738586, -0.09887007623910904, -0.1443217545747757, 0.005623009521514177, -0.130331888794899, -0.001939242472872138, 0.09170602262020111, 0.007379705086350441, -0.04041507467627525, 0.11972035467624664, 0.02042819932103157, 0.011828257702291012, 0.08732693642377853, 0.013573730364441872, -0.03270769864320755, -0.10997237265110016, -0.04921284690499306, -0.03101533092558384, -0.025611599907279015, 0.023357538506388664, -0.05341451242566109, -0.06802772730588913, 0.024218278005719185, -0.026913153007626534, -0.10152031481266022, 0.014489524997770786, 0.02225584164261818, 0.07951844483613968, 0.03816826641559601, 0.015252734534442425, 0.008539740927517414, -0.0018916655099019408, 0.2537987232208252, -0.06090321019291878, -0.059095606207847595, -0.12073633074760437, 0.23759934306144714, 0.04082411155104637, -0.027152735739946365, 0.0369359627366066, -0.0620994009077549, 0.004789397120475769, 0.250545471906662, 0.23370525240898132, -0.07233811914920807, -0.008881565183401108, 0.016480514779686928, -0.005681920796632767, -0.014903892762959003, 0.12409383058547974, 0.11327847838401794, 0.043661732226610184, -0.07554518431425095, -0.03618474677205086, -0.053929403424263, 0.002410672837868333, -0.017594728618860245, 0.06780397146940231, 0.05220600590109825, 0.005234327167272568, -0.041317231953144073, 0.0750744640827179, -0.08238773792982101, -0.11706630140542984, 0.04748406261205673, -0.2140689343214035, -0.17265373468399048, -0.01564285345375538, 0.09141164273023605, -0.0005080309347249568, 0.06623675674200058, -0.025556398555636406, -0.014778113923966885, 0.07295584678649902, -0.016154099255800247, -0.1069135069847107, -0.08071832358837128, 0.09760671108961105, -0.1033845841884613, 0.18947070837020874, -0.05197722837328911, 0.05551624298095703, 0.12156101316213608, 0.06087696552276611, -0.06552910804748535, 0.07936710119247437, 0.036825064569711685, -0.040335942059755325, 0.04746859520673752, 0.10013407468795776, -0.03197331726551056, 0.07261445373296738, 0.05393337458372116, -0.12573927640914917, 0.016867447644472122, -0.0939512848854065, -0.04653635248541832, -0.056750234216451645, -0.011542480438947678, -0.07443743944168091, 0.12872548401355743, 0.23667973279953003, -0.03721931204199791, -0.007397593930363655, -0.05932502821087837, 0.02578439563512802, 0.06336025893688202, 0.041056301444768906, -0.047882936894893646, -0.22828209400177002, 0.009885349310934544, 0.07289337366819382, -0.015281859785318375, -0.26788604259490967, -0.070579893887043, 0.0017346341628581285, -0.07060904800891876, -0.07644132524728775, 0.08083239942789078, 0.07705751806497574, 0.044927142560482025, -0.06221795082092285, -0.06259375810623169, -0.06772700697183609, 0.1547669768333435, -0.15244202315807343, -0.0954475924372673 ]
null
null
transformers
Sample usage: ```python tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_answering_squad2") input_ids = tokenizer.encode("There are two apples on the counter. Q: How many apples? A:", return_tensors="pt") outputs = model.generate(input_ids) print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Which should produce this: ``` Generated: There are two apples on the counter. Q: How many apples? A: two ```
{}
text-generation
danyaljj/gpt2_question_answering_squad2
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Sample usage: Which should produce this:
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 47 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.027653997763991356, 0.02414041943848133, -0.0068230400793254375, 0.010564634576439857, 0.18164798617362976, 0.033704131841659546, 0.08821956068277359, 0.13570955395698547, -0.0068973456509411335, -0.013526750728487968, 0.1547490805387497, 0.20799952745437622, -0.0026462990790605545, 0.0791444480419159, -0.0664469450712204, -0.2753458023071289, 0.05913490429520607, 0.0680282786488533, -0.007687992881983519, 0.12075648456811905, 0.07187031954526901, -0.0549883171916008, 0.0886516347527504, -0.02030559629201889, -0.17324471473693848, 0.01953965798020363, 0.04816993698477745, -0.12518654763698578, 0.1176358312368393, 0.05111858248710632, 0.09795232862234116, 0.008365745656192303, -0.06405694782733917, -0.13635118305683136, 0.022147029638290405, 0.03033585101366043, -0.058860234916210175, 0.0636059120297432, 0.1087222546339035, -0.09939044713973999, 0.09311723709106445, 0.08541663736104965, -0.0255570225417614, 0.05364618077874184, -0.15825888514518738, -0.06378549337387085, -0.02499648556113243, 0.007804732769727707, 0.06256697326898575, 0.10073644667863846, -0.017566369846463203, 0.10258800536394119, -0.0975269079208374, 0.10333853214979172, 0.1500675231218338, -0.3112771809101105, 0.009987793862819672, 0.09499151259660721, 0.04119991883635521, 0.03931105509400368, -0.02533094584941864, 0.05045793950557709, 0.025268254801630974, 0.027277586981654167, 0.007437177933752537, -0.0750175341963768, -0.1137726753950119, 0.049895867705345154, -0.09199702739715576, -0.07458660751581192, 0.22324641048908234, -0.07399588078260422, 0.060080595314502716, -0.025852523744106293, -0.11121725291013718, -0.05274823680520058, -0.013890148140490055, 0.018784796819090843, -0.06587869673967361, 0.08765926212072372, 0.024050135165452957, -0.06755640357732773, -0.1323474794626236, -0.04128742218017578, -0.18628640472888947, 0.17943057417869568, 0.015332846902310848, 0.05883103236556053, -0.1924149990081787, 0.11635245382785797, -0.004000017885118723, -0.08559784293174744, 0.024640021845698357, -0.09488005936145782, 0.03717249631881714, -0.005796557758003473, -0.06343648582696915, -0.07624655961990356, 0.078512042760849, 0.13449318706989288, -0.0038929670117795467, 0.031459223479032516, -0.03913462534546852, 0.08946967869997025, 0.023094916716217995, 0.11019261926412582, -0.01329297386109829, -0.00601809611544013, 0.043852973729372025, -0.14449132978916168, -0.008341594599187374, -0.06913956254720688, -0.1527271568775177, -0.05108632892370224, 0.05306483805179596, 0.08953460305929184, 0.008545879274606705, 0.09067165106534958, -0.04840036481618881, -0.026439275592565536, 0.06191498041152954, -0.07166212797164917, -0.0057375445030629635, 0.0005479406099766493, 0.020326290279626846, 0.12346802651882172, -0.006863993126899004, 0.01816580630838871, -0.1344953328371048, 0.07597071677446365, -0.0810447409749031, 0.0016609809827059507, -0.037295255810022354, -0.051307324320077896, 0.016753138974308968, -0.09774310886859894, 0.014272624626755714, -0.15190516412258148, -0.18175770342350006, 0.015764877200126648, 0.0044948384165763855, -0.03198384866118431, -0.035312067717313766, -0.03263629972934723, -0.023609675467014313, 0.04306609928607941, -0.06790579855442047, 0.009302832186222076, -0.05678845942020416, 0.10395034402608871, -0.032171644270420074, 0.06649759411811829, -0.10738259553909302, 0.0829162523150444, -0.12368609756231308, -0.004673504736274481, -0.09571383893489838, 0.07571588456630707, -0.0049130916595458984, 0.11728651076555252, -0.028541911393404007, -0.03454771637916565, -0.07556727528572083, 0.04999465495347977, -0.02550712786614895, 0.18951213359832764, -0.060080599039793015, -0.12557648122310638, 0.2583121061325073, -0.07503679394721985, -0.1294521689414978, 0.09354755282402039, 0.013357079587876797, 0.03000263124704361, 0.08708256483078003, 0.17770351469516754, 0.03385210409760475, 0.011724604293704033, 0.08526027947664261, 0.1101398766040802, -0.11245359480381012, -0.0934135690331459, 0.01582467369735241, -0.04410967230796814, -0.14348545670509338, 0.0551721565425396, 0.06396481394767761, 0.08126390725374222, -0.04889657348394394, -0.02648499235510826, -0.04211905598640442, 0.005280596204102039, 0.08378548920154572, 0.011136471293866634, 0.12981148064136505, -0.04937934875488281, -0.03142275661230087, -0.018193937838077545, -0.012411710806190968, -0.03191297501325607, 0.03591127321124077, -0.019667068496346474, 0.13700194656848907, -0.048340748995542526, 0.053371917456388474, -0.18971459567546844, -0.07922437787055969, 0.0010099048959091306, 0.123023621737957, -0.014106693677604198, 0.08013445883989334, 0.05753817409276962, -0.018720267340540886, -0.004700321704149246, -0.01032867468893528, 0.1544346958398819, -0.021616755053400993, -0.06661882251501083, -0.04162381589412689, 0.0662311464548111, -0.05831345543265343, -0.0033040468115359545, -0.05776660889387131, 0.013589667156338692, 0.05048443749547005, 0.10443682968616486, -0.0023575187660753727, 0.03253777325153351, -0.02123248018324375, 0.018250472843647003, -0.07885172218084335, -0.0028943256475031376, 0.09839999675750732, -0.003195167751982808, -0.06114937365055084, 0.191707044839859, -0.16508106887340546, 0.2123199850320816, 0.18989497423171997, -0.2840019166469574, 0.008855658583343029, -0.07930868119001389, -0.03107025846838951, 0.019292673096060753, 0.04051336646080017, -0.035391807556152344, 0.12321244925260544, 0.0030509934294968843, 0.1893225461244583, -0.05120055004954338, -0.054668959230184555, -0.0003608512051869184, -0.05736381933093071, 0.0013126746052876115, 0.06707432866096497, 0.11558198183774948, -0.12564630806446075, 0.1973772495985031, 0.17830142378807068, 0.02446782775223255, 0.16028088331222534, 0.003589105326682329, -0.02908729389309883, 0.07800903916358948, 0.001039333757944405, -0.03403163328766823, -0.08341804146766663, -0.19453173875808716, -0.01920945756137371, 0.08615871518850327, 0.05208343267440796, 0.11178864538669586, -0.1340440809726715, -0.039688125252723694, -0.016580121591687202, -0.013963420875370502, 0.004052120726555586, 0.08927994221448898, 0.05621529743075371, 0.11766386777162552, -0.008479462936520576, 0.004914911463856697, 0.11690844595432281, 0.024292193353176117, -0.0974007099866867, 0.20369629561901093, -0.12859489023685455, -0.35919657349586487, -0.17192909121513367, -0.16941924393177032, -0.046767693012952805, 0.06603047996759415, 0.10566895455121994, -0.11921820044517517, -0.03283723443746567, 0.01984371617436409, 0.10511579364538193, -0.0874844342470169, 0.025252653285861015, -0.07854585349559784, 0.039858005940914154, -0.08228866755962372, -0.07852846384048462, -0.058627899736166, -0.02397638000547886, -0.06844961643218994, 0.15293799340724945, -0.10580270737409592, 0.04606963321566582, 0.19703397154808044, 0.035209350287914276, 0.05708123743534088, -0.03352535888552666, 0.19375872611999512, -0.09711813181638718, -0.014181635342538357, 0.20692157745361328, -0.04432303458452225, 0.08276087045669556, 0.10658510029315948, -0.0009211950236931443, -0.0905555859208107, 0.023672347888350487, -0.03327333554625511, -0.09995128959417343, -0.2413795441389084, -0.12423769384622574, -0.12672755122184753, 0.07157120853662491, 0.06113129481673241, 0.06719478219747543, 0.1604551076889038, 0.09354656934738159, -0.019843624904751778, 0.04505275562405586, -0.0036725422833114862, 0.07906411588191986, 0.20365294814109802, -0.0204415675252676, 0.13615357875823975, -0.050657231360673904, -0.13334059715270996, 0.09257177263498306, 0.06900633871555328, 0.15225820243358612, 0.054498545825481415, 0.05270633473992348, 0.006767008453607559, 0.06716175377368927, 0.1454283893108368, 0.13071000576019287, 0.014545821584761143, -0.016409022733569145, -0.021825823932886124, -0.011036834679543972, -0.05876464396715164, 0.04085689038038254, 0.02777833305299282, -0.1610528975725174, -0.05520197004079819, -0.12001585215330124, 0.08774644136428833, 0.09219257533550262, 0.06569026410579681, -0.2342914491891861, 0.007060535252094269, 0.08197256177663803, -0.028898365795612335, -0.1258426308631897, 0.08190665394067764, -0.021697908639907837, -0.14926569163799286, 0.0494246669113636, -0.061497997492551804, 0.12161173671483994, -0.07084709405899048, 0.08109014481306076, -0.03937468305230141, -0.062106676399707794, 0.020281726494431496, 0.1271398812532425, -0.29730626940727234, 0.20356124639511108, -0.001819691271521151, -0.05869410187005997, -0.11437822878360748, 0.01959572173655033, 0.01367559190839529, 0.11016108095645905, 0.10386832803487778, 0.005328167695552111, -0.0475030355155468, -0.12364684045314789, -0.022924374788999557, 0.024910306558012962, 0.12441114336252213, -0.05739542469382286, -0.008891535922884941, -0.044362228363752365, -0.0058176638558506966, -0.028876133263111115, -0.053936153650283813, 0.025268638506531715, -0.16888569295406342, 0.08389513194561005, 0.017658868804574013, 0.09978678822517395, 0.01261826977133751, -0.013697084039449692, -0.09944134950637817, 0.23519866168498993, -0.07718266546726227, -0.11035529524087906, -0.1205357164144516, -0.04611735790967941, 0.0686027929186821, -0.0741099938750267, 0.0634869635105133, -0.08208895474672318, 0.024847982451319695, -0.047674816101789474, -0.21411024034023285, 0.1248590424656868, -0.09078147262334824, -0.047217957675457, -0.038028888404369354, 0.1873915195465088, -0.07860055565834045, 0.003835690440610051, 0.01727161929011345, 0.03052649088203907, -0.11501652747392654, -0.10535892844200134, 0.02131424844264984, -0.005508285015821457, 0.06073078140616417, 0.04357268661260605, -0.06716573983430862, 0.01641303487122059, -0.022389056161046028, -0.006917606573551893, 0.32454678416252136, 0.14079391956329346, -0.04770330339670181, 0.17363035678863525, 0.11376409232616425, -0.08209476619958878, -0.31482723355293274, -0.08535979688167572, -0.09984239190816879, -0.03735451400279999, -0.06232178583741188, -0.21656104922294617, 0.09480288624763489, 0.04200942441821098, -0.015409117564558983, 0.1568077802658081, -0.24411429464817047, -0.0795927420258522, 0.15950311720371246, -0.007333407178521156, 0.3560895025730133, -0.12491796165704727, -0.11301901936531067, -0.05532994866371155, -0.1397564709186554, 0.15002089738845825, -0.009417316876351833, 0.11106741428375244, -0.03287123143672943, 0.10856477171182632, 0.048215944319963455, -0.05544896051287651, 0.09160676598548889, 0.026295991614460945, -0.003711326979100704, -0.10597866773605347, -0.01747799478471279, 0.043585844337940216, 0.006319248117506504, 0.031217962503433228, -0.03127649053931236, 0.033463045954704285, -0.12691029906272888, -0.04727448150515556, -0.08006873726844788, 0.05846472829580307, 0.052333541214466095, -0.0737200528383255, -0.0010956452460959554, -0.06611854583024979, -0.016030769795179367, 0.003143493551760912, 0.19045160710811615, -0.03460016846656799, 0.14779594540596008, 0.0818052664399147, 0.09073434770107269, -0.1361592561006546, -0.0061243316158652306, -0.06888517737388611, -0.057741593569517136, 0.08706554025411606, -0.10988334566354752, 0.06429524719715118, 0.11854783445596695, -0.04650293290615082, 0.07134203612804413, 0.11840200424194336, 0.015247469767928123, -0.0033181030303239822, 0.13015136122703552, -0.2568117082118988, 0.019211336970329285, -0.0754370167851448, -0.03775216266512871, 0.08088402450084686, 0.07995659112930298, 0.16486960649490356, 0.036187540739774704, -0.042049095034599304, -0.003924929536879063, 0.009187355637550354, -0.039663419127464294, 0.08243577927350998, 0.012240500189363956, 0.023174172267317772, -0.15248477458953857, 0.071900375187397, 0.015580810606479645, -0.12336304783821106, 0.011253113858401775, 0.1477922946214676, -0.13801799714565277, -0.11707340180873871, -0.03374985232949257, 0.08742405474185944, -0.14541642367839813, -0.0241269338876009, -0.04783749580383301, -0.12825986742973328, 0.09339214116334915, 0.11613135039806366, 0.07497538626194, 0.10595441609621048, -0.0529337078332901, -0.02668607421219349, -0.03682107478380203, -0.022537073120474815, -0.0017330512637272477, 0.032638516277074814, -0.08304216712713242, 0.0579586885869503, -0.020800847560167313, 0.14298540353775024, -0.08964299410581589, -0.07169508188962936, -0.1581236720085144, 0.03564200550317764, -0.12593989074230194, -0.07035141438245773, -0.08840593695640564, -0.05227470397949219, -0.007837125100195408, -0.01494099572300911, -0.0388214997947216, -0.04472146928310394, -0.12364204227924347, 0.01879296824336052, -0.05806630104780197, 0.02100815810263157, -0.07383234053850174, 0.00039667764212936163, 0.08932872861623764, -0.0410015694797039, 0.13851116597652435, 0.13557660579681396, -0.08107975125312805, 0.11907198280096054, -0.13537484407424927, -0.0908876284956932, 0.1157127171754837, 0.013428857550024986, 0.03907458856701851, 0.06849293410778046, 0.037317484617233276, 0.06514574587345123, 0.016511039808392525, 0.05237346887588501, 0.006972990930080414, -0.1299850195646286, 0.03433857858181, -0.042786743491888046, -0.1481933295726776, -0.05744143947958946, -0.05092177540063858, 0.039562974125146866, 0.02438235841691494, 0.10801149904727936, -0.03665049374103546, 0.11085481196641922, -0.058541763573884964, 0.01499281544238329, 0.004919432103633881, -0.18287403881549835, -0.044654008001089096, -0.07792776077985764, 0.02775009535253048, 0.022204352542757988, 0.2720205783843994, 0.0410233810544014, 0.020275471732020378, 0.017097288742661476, 0.11327627301216125, 0.057128578424453735, 0.015525308437645435, 0.214890718460083, 0.11996994912624359, -0.06049320101737976, -0.10806480050086975, 0.0858595222234726, 0.02164783701300621, 0.007426374591886997, 0.14070266485214233, 0.008503482677042484, -0.015597577206790447, 0.0887407436966896, -0.03357330709695816, 0.0031263602431863546, -0.11658911406993866, -0.13779941201210022, -0.028487415984272957, 0.0629650130867958, -0.0040870243683457375, 0.0956285297870636, 0.13609373569488525, -0.026881180703639984, 0.03953414782881737, -0.007877747528254986, -0.054916199296712875, -0.1785028725862503, -0.15742821991443634, -0.0790708139538765, -0.13561099767684937, 0.014744875021278858, -0.10368648171424866, 0.04369770362973213, 0.09560346603393555, 0.055915698409080505, -0.05440305173397064, 0.10839936882257462, 0.060064028948545456, -0.1045473963022232, 0.056569941341876984, -0.032912541180849075, 0.06427399069070816, -0.001812951872125268, -0.02503552846610546, -0.09098561853170395, 0.0020124134607613087, 0.0017788249533623457, 0.0514003150165081, -0.05152478814125061, 0.024474015459418297, -0.15132632851600647, -0.09570280462503433, -0.04949872940778732, 0.07316448539495468, -0.06007300689816475, 0.1162300780415535, -0.001420395914465189, -0.017011309042572975, 0.03990921378135681, 0.2064858227968216, -0.07188161462545395, -0.04990030825138092, -0.047407180070877075, 0.22449158132076263, 0.04847963526844978, 0.10619479417800903, -0.013415440917015076, -0.00436578830704093, -0.07670432329177856, 0.36612021923065186, 0.2802904546260834, -0.06149837002158165, 0.012722660787403584, 0.03524370491504669, 0.030115660279989243, 0.13885097205638885, 0.1454230099916458, 0.09396251291036606, 0.27579233050346375, -0.08266803622245789, -0.052018675953149796, -0.015770163387060165, -0.020211221650242805, -0.09714096784591675, 0.11003416776657104, 0.04697350785136223, -0.06982195377349854, -0.044631510972976685, 0.09750646352767944, -0.24107815325260162, 0.1615772694349289, -0.07760030031204224, -0.15214353799819946, -0.06177033111453056, 0.012448563240468502, 0.10150322318077087, 0.00011545186134753749, 0.08784360438585281, -0.009687529876828194, -0.10291683673858643, 0.05749227851629257, 0.02730483002960682, -0.23568211495876312, -0.007146455347537994, 0.053680915385484695, -0.04540037736296654, 0.013332240283489227, -0.01917567476630211, 0.04910791665315628, 0.06717875599861145, 0.055140718817710876, -0.0426395982503891, 0.03817736729979515, -0.010196289978921413, -0.05020907521247864, 0.029649224132299423, 0.044778332114219666, 0.017814766615629196, -0.13065220415592194, 0.05277646332979202, -0.13968263566493988, 0.041911475360393524, -0.029653942212462425, -0.027413733303546906, -0.004670299123972654, -0.019546283408999443, -0.06313455104827881, 0.057941507548093796, 0.08424945920705795, 0.001472705160267651, -0.007915833964943886, -0.08050897717475891, -0.011023934930562973, -0.012819311581552029, -0.08308050036430359, -0.10086389631032944, -0.1384236365556717, -0.10634621232748032, 0.12701933085918427, -0.017066750675439835, -0.19125573337078094, 0.01284839678555727, -0.09708964824676514, 0.060041818767786026, -0.1797112077474594, 0.0843181237578392, 0.06071038171648979, 0.01623542606830597, -0.004114143084734678, -0.029135411605238914, 0.039420004934072495, 0.08210206776857376, -0.10779064148664474, -0.09044761955738068 ]
null
null
transformers
Sample usage: ```python tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_generation_given_paragraph") input_ids = tokenizer.encode("There are two apples on the counter. Q:", return_tensors="pt") outputs = model.generate(input_ids) print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Which should produce this: ``` Generated: There are two apples on the counter. Q: What is the name of the counter that is on ```
{}
text-generation
danyaljj/gpt2_question_generation_given_paragraph
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Sample usage: Which should produce this:
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 47 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.027653997763991356, 0.02414041943848133, -0.0068230400793254375, 0.010564634576439857, 0.18164798617362976, 0.033704131841659546, 0.08821956068277359, 0.13570955395698547, -0.0068973456509411335, -0.013526750728487968, 0.1547490805387497, 0.20799952745437622, -0.0026462990790605545, 0.0791444480419159, -0.0664469450712204, -0.2753458023071289, 0.05913490429520607, 0.0680282786488533, -0.007687992881983519, 0.12075648456811905, 0.07187031954526901, -0.0549883171916008, 0.0886516347527504, -0.02030559629201889, -0.17324471473693848, 0.01953965798020363, 0.04816993698477745, -0.12518654763698578, 0.1176358312368393, 0.05111858248710632, 0.09795232862234116, 0.008365745656192303, -0.06405694782733917, -0.13635118305683136, 0.022147029638290405, 0.03033585101366043, -0.058860234916210175, 0.0636059120297432, 0.1087222546339035, -0.09939044713973999, 0.09311723709106445, 0.08541663736104965, -0.0255570225417614, 0.05364618077874184, -0.15825888514518738, -0.06378549337387085, -0.02499648556113243, 0.007804732769727707, 0.06256697326898575, 0.10073644667863846, -0.017566369846463203, 0.10258800536394119, -0.0975269079208374, 0.10333853214979172, 0.1500675231218338, -0.3112771809101105, 0.009987793862819672, 0.09499151259660721, 0.04119991883635521, 0.03931105509400368, -0.02533094584941864, 0.05045793950557709, 0.025268254801630974, 0.027277586981654167, 0.007437177933752537, -0.0750175341963768, -0.1137726753950119, 0.049895867705345154, -0.09199702739715576, -0.07458660751581192, 0.22324641048908234, -0.07399588078260422, 0.060080595314502716, -0.025852523744106293, -0.11121725291013718, -0.05274823680520058, -0.013890148140490055, 0.018784796819090843, -0.06587869673967361, 0.08765926212072372, 0.024050135165452957, -0.06755640357732773, -0.1323474794626236, -0.04128742218017578, -0.18628640472888947, 0.17943057417869568, 0.015332846902310848, 0.05883103236556053, -0.1924149990081787, 0.11635245382785797, -0.004000017885118723, -0.08559784293174744, 0.024640021845698357, -0.09488005936145782, 0.03717249631881714, -0.005796557758003473, -0.06343648582696915, -0.07624655961990356, 0.078512042760849, 0.13449318706989288, -0.0038929670117795467, 0.031459223479032516, -0.03913462534546852, 0.08946967869997025, 0.023094916716217995, 0.11019261926412582, -0.01329297386109829, -0.00601809611544013, 0.043852973729372025, -0.14449132978916168, -0.008341594599187374, -0.06913956254720688, -0.1527271568775177, -0.05108632892370224, 0.05306483805179596, 0.08953460305929184, 0.008545879274606705, 0.09067165106534958, -0.04840036481618881, -0.026439275592565536, 0.06191498041152954, -0.07166212797164917, -0.0057375445030629635, 0.0005479406099766493, 0.020326290279626846, 0.12346802651882172, -0.006863993126899004, 0.01816580630838871, -0.1344953328371048, 0.07597071677446365, -0.0810447409749031, 0.0016609809827059507, -0.037295255810022354, -0.051307324320077896, 0.016753138974308968, -0.09774310886859894, 0.014272624626755714, -0.15190516412258148, -0.18175770342350006, 0.015764877200126648, 0.0044948384165763855, -0.03198384866118431, -0.035312067717313766, -0.03263629972934723, -0.023609675467014313, 0.04306609928607941, -0.06790579855442047, 0.009302832186222076, -0.05678845942020416, 0.10395034402608871, -0.032171644270420074, 0.06649759411811829, -0.10738259553909302, 0.0829162523150444, -0.12368609756231308, -0.004673504736274481, -0.09571383893489838, 0.07571588456630707, -0.0049130916595458984, 0.11728651076555252, -0.028541911393404007, -0.03454771637916565, -0.07556727528572083, 0.04999465495347977, -0.02550712786614895, 0.18951213359832764, -0.060080599039793015, -0.12557648122310638, 0.2583121061325073, -0.07503679394721985, -0.1294521689414978, 0.09354755282402039, 0.013357079587876797, 0.03000263124704361, 0.08708256483078003, 0.17770351469516754, 0.03385210409760475, 0.011724604293704033, 0.08526027947664261, 0.1101398766040802, -0.11245359480381012, -0.0934135690331459, 0.01582467369735241, -0.04410967230796814, -0.14348545670509338, 0.0551721565425396, 0.06396481394767761, 0.08126390725374222, -0.04889657348394394, -0.02648499235510826, -0.04211905598640442, 0.005280596204102039, 0.08378548920154572, 0.011136471293866634, 0.12981148064136505, -0.04937934875488281, -0.03142275661230087, -0.018193937838077545, -0.012411710806190968, -0.03191297501325607, 0.03591127321124077, -0.019667068496346474, 0.13700194656848907, -0.048340748995542526, 0.053371917456388474, -0.18971459567546844, -0.07922437787055969, 0.0010099048959091306, 0.123023621737957, -0.014106693677604198, 0.08013445883989334, 0.05753817409276962, -0.018720267340540886, -0.004700321704149246, -0.01032867468893528, 0.1544346958398819, -0.021616755053400993, -0.06661882251501083, -0.04162381589412689, 0.0662311464548111, -0.05831345543265343, -0.0033040468115359545, -0.05776660889387131, 0.013589667156338692, 0.05048443749547005, 0.10443682968616486, -0.0023575187660753727, 0.03253777325153351, -0.02123248018324375, 0.018250472843647003, -0.07885172218084335, -0.0028943256475031376, 0.09839999675750732, -0.003195167751982808, -0.06114937365055084, 0.191707044839859, -0.16508106887340546, 0.2123199850320816, 0.18989497423171997, -0.2840019166469574, 0.008855658583343029, -0.07930868119001389, -0.03107025846838951, 0.019292673096060753, 0.04051336646080017, -0.035391807556152344, 0.12321244925260544, 0.0030509934294968843, 0.1893225461244583, -0.05120055004954338, -0.054668959230184555, -0.0003608512051869184, -0.05736381933093071, 0.0013126746052876115, 0.06707432866096497, 0.11558198183774948, -0.12564630806446075, 0.1973772495985031, 0.17830142378807068, 0.02446782775223255, 0.16028088331222534, 0.003589105326682329, -0.02908729389309883, 0.07800903916358948, 0.001039333757944405, -0.03403163328766823, -0.08341804146766663, -0.19453173875808716, -0.01920945756137371, 0.08615871518850327, 0.05208343267440796, 0.11178864538669586, -0.1340440809726715, -0.039688125252723694, -0.016580121591687202, -0.013963420875370502, 0.004052120726555586, 0.08927994221448898, 0.05621529743075371, 0.11766386777162552, -0.008479462936520576, 0.004914911463856697, 0.11690844595432281, 0.024292193353176117, -0.0974007099866867, 0.20369629561901093, -0.12859489023685455, -0.35919657349586487, -0.17192909121513367, -0.16941924393177032, -0.046767693012952805, 0.06603047996759415, 0.10566895455121994, -0.11921820044517517, -0.03283723443746567, 0.01984371617436409, 0.10511579364538193, -0.0874844342470169, 0.025252653285861015, -0.07854585349559784, 0.039858005940914154, -0.08228866755962372, -0.07852846384048462, -0.058627899736166, -0.02397638000547886, -0.06844961643218994, 0.15293799340724945, -0.10580270737409592, 0.04606963321566582, 0.19703397154808044, 0.035209350287914276, 0.05708123743534088, -0.03352535888552666, 0.19375872611999512, -0.09711813181638718, -0.014181635342538357, 0.20692157745361328, -0.04432303458452225, 0.08276087045669556, 0.10658510029315948, -0.0009211950236931443, -0.0905555859208107, 0.023672347888350487, -0.03327333554625511, -0.09995128959417343, -0.2413795441389084, -0.12423769384622574, -0.12672755122184753, 0.07157120853662491, 0.06113129481673241, 0.06719478219747543, 0.1604551076889038, 0.09354656934738159, -0.019843624904751778, 0.04505275562405586, -0.0036725422833114862, 0.07906411588191986, 0.20365294814109802, -0.0204415675252676, 0.13615357875823975, -0.050657231360673904, -0.13334059715270996, 0.09257177263498306, 0.06900633871555328, 0.15225820243358612, 0.054498545825481415, 0.05270633473992348, 0.006767008453607559, 0.06716175377368927, 0.1454283893108368, 0.13071000576019287, 0.014545821584761143, -0.016409022733569145, -0.021825823932886124, -0.011036834679543972, -0.05876464396715164, 0.04085689038038254, 0.02777833305299282, -0.1610528975725174, -0.05520197004079819, -0.12001585215330124, 0.08774644136428833, 0.09219257533550262, 0.06569026410579681, -0.2342914491891861, 0.007060535252094269, 0.08197256177663803, -0.028898365795612335, -0.1258426308631897, 0.08190665394067764, -0.021697908639907837, -0.14926569163799286, 0.0494246669113636, -0.061497997492551804, 0.12161173671483994, -0.07084709405899048, 0.08109014481306076, -0.03937468305230141, -0.062106676399707794, 0.020281726494431496, 0.1271398812532425, -0.29730626940727234, 0.20356124639511108, -0.001819691271521151, -0.05869410187005997, -0.11437822878360748, 0.01959572173655033, 0.01367559190839529, 0.11016108095645905, 0.10386832803487778, 0.005328167695552111, -0.0475030355155468, -0.12364684045314789, -0.022924374788999557, 0.024910306558012962, 0.12441114336252213, -0.05739542469382286, -0.008891535922884941, -0.044362228363752365, -0.0058176638558506966, -0.028876133263111115, -0.053936153650283813, 0.025268638506531715, -0.16888569295406342, 0.08389513194561005, 0.017658868804574013, 0.09978678822517395, 0.01261826977133751, -0.013697084039449692, -0.09944134950637817, 0.23519866168498993, -0.07718266546726227, -0.11035529524087906, -0.1205357164144516, -0.04611735790967941, 0.0686027929186821, -0.0741099938750267, 0.0634869635105133, -0.08208895474672318, 0.024847982451319695, -0.047674816101789474, -0.21411024034023285, 0.1248590424656868, -0.09078147262334824, -0.047217957675457, -0.038028888404369354, 0.1873915195465088, -0.07860055565834045, 0.003835690440610051, 0.01727161929011345, 0.03052649088203907, -0.11501652747392654, -0.10535892844200134, 0.02131424844264984, -0.005508285015821457, 0.06073078140616417, 0.04357268661260605, -0.06716573983430862, 0.01641303487122059, -0.022389056161046028, -0.006917606573551893, 0.32454678416252136, 0.14079391956329346, -0.04770330339670181, 0.17363035678863525, 0.11376409232616425, -0.08209476619958878, -0.31482723355293274, -0.08535979688167572, -0.09984239190816879, -0.03735451400279999, -0.06232178583741188, -0.21656104922294617, 0.09480288624763489, 0.04200942441821098, -0.015409117564558983, 0.1568077802658081, -0.24411429464817047, -0.0795927420258522, 0.15950311720371246, -0.007333407178521156, 0.3560895025730133, -0.12491796165704727, -0.11301901936531067, -0.05532994866371155, -0.1397564709186554, 0.15002089738845825, -0.009417316876351833, 0.11106741428375244, -0.03287123143672943, 0.10856477171182632, 0.048215944319963455, -0.05544896051287651, 0.09160676598548889, 0.026295991614460945, -0.003711326979100704, -0.10597866773605347, -0.01747799478471279, 0.043585844337940216, 0.006319248117506504, 0.031217962503433228, -0.03127649053931236, 0.033463045954704285, -0.12691029906272888, -0.04727448150515556, -0.08006873726844788, 0.05846472829580307, 0.052333541214466095, -0.0737200528383255, -0.0010956452460959554, -0.06611854583024979, -0.016030769795179367, 0.003143493551760912, 0.19045160710811615, -0.03460016846656799, 0.14779594540596008, 0.0818052664399147, 0.09073434770107269, -0.1361592561006546, -0.0061243316158652306, -0.06888517737388611, -0.057741593569517136, 0.08706554025411606, -0.10988334566354752, 0.06429524719715118, 0.11854783445596695, -0.04650293290615082, 0.07134203612804413, 0.11840200424194336, 0.015247469767928123, -0.0033181030303239822, 0.13015136122703552, -0.2568117082118988, 0.019211336970329285, -0.0754370167851448, -0.03775216266512871, 0.08088402450084686, 0.07995659112930298, 0.16486960649490356, 0.036187540739774704, -0.042049095034599304, -0.003924929536879063, 0.009187355637550354, -0.039663419127464294, 0.08243577927350998, 0.012240500189363956, 0.023174172267317772, -0.15248477458953857, 0.071900375187397, 0.015580810606479645, -0.12336304783821106, 0.011253113858401775, 0.1477922946214676, -0.13801799714565277, -0.11707340180873871, -0.03374985232949257, 0.08742405474185944, -0.14541642367839813, -0.0241269338876009, -0.04783749580383301, -0.12825986742973328, 0.09339214116334915, 0.11613135039806366, 0.07497538626194, 0.10595441609621048, -0.0529337078332901, -0.02668607421219349, -0.03682107478380203, -0.022537073120474815, -0.0017330512637272477, 0.032638516277074814, -0.08304216712713242, 0.0579586885869503, -0.020800847560167313, 0.14298540353775024, -0.08964299410581589, -0.07169508188962936, -0.1581236720085144, 0.03564200550317764, -0.12593989074230194, -0.07035141438245773, -0.08840593695640564, -0.05227470397949219, -0.007837125100195408, -0.01494099572300911, -0.0388214997947216, -0.04472146928310394, -0.12364204227924347, 0.01879296824336052, -0.05806630104780197, 0.02100815810263157, -0.07383234053850174, 0.00039667764212936163, 0.08932872861623764, -0.0410015694797039, 0.13851116597652435, 0.13557660579681396, -0.08107975125312805, 0.11907198280096054, -0.13537484407424927, -0.0908876284956932, 0.1157127171754837, 0.013428857550024986, 0.03907458856701851, 0.06849293410778046, 0.037317484617233276, 0.06514574587345123, 0.016511039808392525, 0.05237346887588501, 0.006972990930080414, -0.1299850195646286, 0.03433857858181, -0.042786743491888046, -0.1481933295726776, -0.05744143947958946, -0.05092177540063858, 0.039562974125146866, 0.02438235841691494, 0.10801149904727936, -0.03665049374103546, 0.11085481196641922, -0.058541763573884964, 0.01499281544238329, 0.004919432103633881, -0.18287403881549835, -0.044654008001089096, -0.07792776077985764, 0.02775009535253048, 0.022204352542757988, 0.2720205783843994, 0.0410233810544014, 0.020275471732020378, 0.017097288742661476, 0.11327627301216125, 0.057128578424453735, 0.015525308437645435, 0.214890718460083, 0.11996994912624359, -0.06049320101737976, -0.10806480050086975, 0.0858595222234726, 0.02164783701300621, 0.007426374591886997, 0.14070266485214233, 0.008503482677042484, -0.015597577206790447, 0.0887407436966896, -0.03357330709695816, 0.0031263602431863546, -0.11658911406993866, -0.13779941201210022, -0.028487415984272957, 0.0629650130867958, -0.0040870243683457375, 0.0956285297870636, 0.13609373569488525, -0.026881180703639984, 0.03953414782881737, -0.007877747528254986, -0.054916199296712875, -0.1785028725862503, -0.15742821991443634, -0.0790708139538765, -0.13561099767684937, 0.014744875021278858, -0.10368648171424866, 0.04369770362973213, 0.09560346603393555, 0.055915698409080505, -0.05440305173397064, 0.10839936882257462, 0.060064028948545456, -0.1045473963022232, 0.056569941341876984, -0.032912541180849075, 0.06427399069070816, -0.001812951872125268, -0.02503552846610546, -0.09098561853170395, 0.0020124134607613087, 0.0017788249533623457, 0.0514003150165081, -0.05152478814125061, 0.024474015459418297, -0.15132632851600647, -0.09570280462503433, -0.04949872940778732, 0.07316448539495468, -0.06007300689816475, 0.1162300780415535, -0.001420395914465189, -0.017011309042572975, 0.03990921378135681, 0.2064858227968216, -0.07188161462545395, -0.04990030825138092, -0.047407180070877075, 0.22449158132076263, 0.04847963526844978, 0.10619479417800903, -0.013415440917015076, -0.00436578830704093, -0.07670432329177856, 0.36612021923065186, 0.2802904546260834, -0.06149837002158165, 0.012722660787403584, 0.03524370491504669, 0.030115660279989243, 0.13885097205638885, 0.1454230099916458, 0.09396251291036606, 0.27579233050346375, -0.08266803622245789, -0.052018675953149796, -0.015770163387060165, -0.020211221650242805, -0.09714096784591675, 0.11003416776657104, 0.04697350785136223, -0.06982195377349854, -0.044631510972976685, 0.09750646352767944, -0.24107815325260162, 0.1615772694349289, -0.07760030031204224, -0.15214353799819946, -0.06177033111453056, 0.012448563240468502, 0.10150322318077087, 0.00011545186134753749, 0.08784360438585281, -0.009687529876828194, -0.10291683673858643, 0.05749227851629257, 0.02730483002960682, -0.23568211495876312, -0.007146455347537994, 0.053680915385484695, -0.04540037736296654, 0.013332240283489227, -0.01917567476630211, 0.04910791665315628, 0.06717875599861145, 0.055140718817710876, -0.0426395982503891, 0.03817736729979515, -0.010196289978921413, -0.05020907521247864, 0.029649224132299423, 0.044778332114219666, 0.017814766615629196, -0.13065220415592194, 0.05277646332979202, -0.13968263566493988, 0.041911475360393524, -0.029653942212462425, -0.027413733303546906, -0.004670299123972654, -0.019546283408999443, -0.06313455104827881, 0.057941507548093796, 0.08424945920705795, 0.001472705160267651, -0.007915833964943886, -0.08050897717475891, -0.011023934930562973, -0.012819311581552029, -0.08308050036430359, -0.10086389631032944, -0.1384236365556717, -0.10634621232748032, 0.12701933085918427, -0.017066750675439835, -0.19125573337078094, 0.01284839678555727, -0.09708964824676514, 0.060041818767786026, -0.1797112077474594, 0.0843181237578392, 0.06071038171648979, 0.01623542606830597, -0.004114143084734678, -0.029135411605238914, 0.039420004934072495, 0.08210206776857376, -0.10779064148664474, -0.09044761955738068 ]
null
null
transformers
Sample usage: ```python tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_generation_given_paragraph_answer") input_ids = tokenizer.encode("There are two apples on the counter. A: apples Q:", return_tensors="pt") outputs = model.generate(input_ids) print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Which should produce this: ``` Generated: There are two apples on the counter. A: apples Q: What is the name of the counter ```
{}
text-generation
danyaljj/gpt2_question_generation_given_paragraph_answer
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Sample usage: Which should produce this:
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 47 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.027653997763991356, 0.02414041943848133, -0.0068230400793254375, 0.010564634576439857, 0.18164798617362976, 0.033704131841659546, 0.08821956068277359, 0.13570955395698547, -0.0068973456509411335, -0.013526750728487968, 0.1547490805387497, 0.20799952745437622, -0.0026462990790605545, 0.0791444480419159, -0.0664469450712204, -0.2753458023071289, 0.05913490429520607, 0.0680282786488533, -0.007687992881983519, 0.12075648456811905, 0.07187031954526901, -0.0549883171916008, 0.0886516347527504, -0.02030559629201889, -0.17324471473693848, 0.01953965798020363, 0.04816993698477745, -0.12518654763698578, 0.1176358312368393, 0.05111858248710632, 0.09795232862234116, 0.008365745656192303, -0.06405694782733917, -0.13635118305683136, 0.022147029638290405, 0.03033585101366043, -0.058860234916210175, 0.0636059120297432, 0.1087222546339035, -0.09939044713973999, 0.09311723709106445, 0.08541663736104965, -0.0255570225417614, 0.05364618077874184, -0.15825888514518738, -0.06378549337387085, -0.02499648556113243, 0.007804732769727707, 0.06256697326898575, 0.10073644667863846, -0.017566369846463203, 0.10258800536394119, -0.0975269079208374, 0.10333853214979172, 0.1500675231218338, -0.3112771809101105, 0.009987793862819672, 0.09499151259660721, 0.04119991883635521, 0.03931105509400368, -0.02533094584941864, 0.05045793950557709, 0.025268254801630974, 0.027277586981654167, 0.007437177933752537, -0.0750175341963768, -0.1137726753950119, 0.049895867705345154, -0.09199702739715576, -0.07458660751581192, 0.22324641048908234, -0.07399588078260422, 0.060080595314502716, -0.025852523744106293, -0.11121725291013718, -0.05274823680520058, -0.013890148140490055, 0.018784796819090843, -0.06587869673967361, 0.08765926212072372, 0.024050135165452957, -0.06755640357732773, -0.1323474794626236, -0.04128742218017578, -0.18628640472888947, 0.17943057417869568, 0.015332846902310848, 0.05883103236556053, -0.1924149990081787, 0.11635245382785797, -0.004000017885118723, -0.08559784293174744, 0.024640021845698357, -0.09488005936145782, 0.03717249631881714, -0.005796557758003473, -0.06343648582696915, -0.07624655961990356, 0.078512042760849, 0.13449318706989288, -0.0038929670117795467, 0.031459223479032516, -0.03913462534546852, 0.08946967869997025, 0.023094916716217995, 0.11019261926412582, -0.01329297386109829, -0.00601809611544013, 0.043852973729372025, -0.14449132978916168, -0.008341594599187374, -0.06913956254720688, -0.1527271568775177, -0.05108632892370224, 0.05306483805179596, 0.08953460305929184, 0.008545879274606705, 0.09067165106534958, -0.04840036481618881, -0.026439275592565536, 0.06191498041152954, -0.07166212797164917, -0.0057375445030629635, 0.0005479406099766493, 0.020326290279626846, 0.12346802651882172, -0.006863993126899004, 0.01816580630838871, -0.1344953328371048, 0.07597071677446365, -0.0810447409749031, 0.0016609809827059507, -0.037295255810022354, -0.051307324320077896, 0.016753138974308968, -0.09774310886859894, 0.014272624626755714, -0.15190516412258148, -0.18175770342350006, 0.015764877200126648, 0.0044948384165763855, -0.03198384866118431, -0.035312067717313766, -0.03263629972934723, -0.023609675467014313, 0.04306609928607941, -0.06790579855442047, 0.009302832186222076, -0.05678845942020416, 0.10395034402608871, -0.032171644270420074, 0.06649759411811829, -0.10738259553909302, 0.0829162523150444, -0.12368609756231308, -0.004673504736274481, -0.09571383893489838, 0.07571588456630707, -0.0049130916595458984, 0.11728651076555252, -0.028541911393404007, -0.03454771637916565, -0.07556727528572083, 0.04999465495347977, -0.02550712786614895, 0.18951213359832764, -0.060080599039793015, -0.12557648122310638, 0.2583121061325073, -0.07503679394721985, -0.1294521689414978, 0.09354755282402039, 0.013357079587876797, 0.03000263124704361, 0.08708256483078003, 0.17770351469516754, 0.03385210409760475, 0.011724604293704033, 0.08526027947664261, 0.1101398766040802, -0.11245359480381012, -0.0934135690331459, 0.01582467369735241, -0.04410967230796814, -0.14348545670509338, 0.0551721565425396, 0.06396481394767761, 0.08126390725374222, -0.04889657348394394, -0.02648499235510826, -0.04211905598640442, 0.005280596204102039, 0.08378548920154572, 0.011136471293866634, 0.12981148064136505, -0.04937934875488281, -0.03142275661230087, -0.018193937838077545, -0.012411710806190968, -0.03191297501325607, 0.03591127321124077, -0.019667068496346474, 0.13700194656848907, -0.048340748995542526, 0.053371917456388474, -0.18971459567546844, -0.07922437787055969, 0.0010099048959091306, 0.123023621737957, -0.014106693677604198, 0.08013445883989334, 0.05753817409276962, -0.018720267340540886, -0.004700321704149246, -0.01032867468893528, 0.1544346958398819, -0.021616755053400993, -0.06661882251501083, -0.04162381589412689, 0.0662311464548111, -0.05831345543265343, -0.0033040468115359545, -0.05776660889387131, 0.013589667156338692, 0.05048443749547005, 0.10443682968616486, -0.0023575187660753727, 0.03253777325153351, -0.02123248018324375, 0.018250472843647003, -0.07885172218084335, -0.0028943256475031376, 0.09839999675750732, -0.003195167751982808, -0.06114937365055084, 0.191707044839859, -0.16508106887340546, 0.2123199850320816, 0.18989497423171997, -0.2840019166469574, 0.008855658583343029, -0.07930868119001389, -0.03107025846838951, 0.019292673096060753, 0.04051336646080017, -0.035391807556152344, 0.12321244925260544, 0.0030509934294968843, 0.1893225461244583, -0.05120055004954338, -0.054668959230184555, -0.0003608512051869184, -0.05736381933093071, 0.0013126746052876115, 0.06707432866096497, 0.11558198183774948, -0.12564630806446075, 0.1973772495985031, 0.17830142378807068, 0.02446782775223255, 0.16028088331222534, 0.003589105326682329, -0.02908729389309883, 0.07800903916358948, 0.001039333757944405, -0.03403163328766823, -0.08341804146766663, -0.19453173875808716, -0.01920945756137371, 0.08615871518850327, 0.05208343267440796, 0.11178864538669586, -0.1340440809726715, -0.039688125252723694, -0.016580121591687202, -0.013963420875370502, 0.004052120726555586, 0.08927994221448898, 0.05621529743075371, 0.11766386777162552, -0.008479462936520576, 0.004914911463856697, 0.11690844595432281, 0.024292193353176117, -0.0974007099866867, 0.20369629561901093, -0.12859489023685455, -0.35919657349586487, -0.17192909121513367, -0.16941924393177032, -0.046767693012952805, 0.06603047996759415, 0.10566895455121994, -0.11921820044517517, -0.03283723443746567, 0.01984371617436409, 0.10511579364538193, -0.0874844342470169, 0.025252653285861015, -0.07854585349559784, 0.039858005940914154, -0.08228866755962372, -0.07852846384048462, -0.058627899736166, -0.02397638000547886, -0.06844961643218994, 0.15293799340724945, -0.10580270737409592, 0.04606963321566582, 0.19703397154808044, 0.035209350287914276, 0.05708123743534088, -0.03352535888552666, 0.19375872611999512, -0.09711813181638718, -0.014181635342538357, 0.20692157745361328, -0.04432303458452225, 0.08276087045669556, 0.10658510029315948, -0.0009211950236931443, -0.0905555859208107, 0.023672347888350487, -0.03327333554625511, -0.09995128959417343, -0.2413795441389084, -0.12423769384622574, -0.12672755122184753, 0.07157120853662491, 0.06113129481673241, 0.06719478219747543, 0.1604551076889038, 0.09354656934738159, -0.019843624904751778, 0.04505275562405586, -0.0036725422833114862, 0.07906411588191986, 0.20365294814109802, -0.0204415675252676, 0.13615357875823975, -0.050657231360673904, -0.13334059715270996, 0.09257177263498306, 0.06900633871555328, 0.15225820243358612, 0.054498545825481415, 0.05270633473992348, 0.006767008453607559, 0.06716175377368927, 0.1454283893108368, 0.13071000576019287, 0.014545821584761143, -0.016409022733569145, -0.021825823932886124, -0.011036834679543972, -0.05876464396715164, 0.04085689038038254, 0.02777833305299282, -0.1610528975725174, -0.05520197004079819, -0.12001585215330124, 0.08774644136428833, 0.09219257533550262, 0.06569026410579681, -0.2342914491891861, 0.007060535252094269, 0.08197256177663803, -0.028898365795612335, -0.1258426308631897, 0.08190665394067764, -0.021697908639907837, -0.14926569163799286, 0.0494246669113636, -0.061497997492551804, 0.12161173671483994, -0.07084709405899048, 0.08109014481306076, -0.03937468305230141, -0.062106676399707794, 0.020281726494431496, 0.1271398812532425, -0.29730626940727234, 0.20356124639511108, -0.001819691271521151, -0.05869410187005997, -0.11437822878360748, 0.01959572173655033, 0.01367559190839529, 0.11016108095645905, 0.10386832803487778, 0.005328167695552111, -0.0475030355155468, -0.12364684045314789, -0.022924374788999557, 0.024910306558012962, 0.12441114336252213, -0.05739542469382286, -0.008891535922884941, -0.044362228363752365, -0.0058176638558506966, -0.028876133263111115, -0.053936153650283813, 0.025268638506531715, -0.16888569295406342, 0.08389513194561005, 0.017658868804574013, 0.09978678822517395, 0.01261826977133751, -0.013697084039449692, -0.09944134950637817, 0.23519866168498993, -0.07718266546726227, -0.11035529524087906, -0.1205357164144516, -0.04611735790967941, 0.0686027929186821, -0.0741099938750267, 0.0634869635105133, -0.08208895474672318, 0.024847982451319695, -0.047674816101789474, -0.21411024034023285, 0.1248590424656868, -0.09078147262334824, -0.047217957675457, -0.038028888404369354, 0.1873915195465088, -0.07860055565834045, 0.003835690440610051, 0.01727161929011345, 0.03052649088203907, -0.11501652747392654, -0.10535892844200134, 0.02131424844264984, -0.005508285015821457, 0.06073078140616417, 0.04357268661260605, -0.06716573983430862, 0.01641303487122059, -0.022389056161046028, -0.006917606573551893, 0.32454678416252136, 0.14079391956329346, -0.04770330339670181, 0.17363035678863525, 0.11376409232616425, -0.08209476619958878, -0.31482723355293274, -0.08535979688167572, -0.09984239190816879, -0.03735451400279999, -0.06232178583741188, -0.21656104922294617, 0.09480288624763489, 0.04200942441821098, -0.015409117564558983, 0.1568077802658081, -0.24411429464817047, -0.0795927420258522, 0.15950311720371246, -0.007333407178521156, 0.3560895025730133, -0.12491796165704727, -0.11301901936531067, -0.05532994866371155, -0.1397564709186554, 0.15002089738845825, -0.009417316876351833, 0.11106741428375244, -0.03287123143672943, 0.10856477171182632, 0.048215944319963455, -0.05544896051287651, 0.09160676598548889, 0.026295991614460945, -0.003711326979100704, -0.10597866773605347, -0.01747799478471279, 0.043585844337940216, 0.006319248117506504, 0.031217962503433228, -0.03127649053931236, 0.033463045954704285, -0.12691029906272888, -0.04727448150515556, -0.08006873726844788, 0.05846472829580307, 0.052333541214466095, -0.0737200528383255, -0.0010956452460959554, -0.06611854583024979, -0.016030769795179367, 0.003143493551760912, 0.19045160710811615, -0.03460016846656799, 0.14779594540596008, 0.0818052664399147, 0.09073434770107269, -0.1361592561006546, -0.0061243316158652306, -0.06888517737388611, -0.057741593569517136, 0.08706554025411606, -0.10988334566354752, 0.06429524719715118, 0.11854783445596695, -0.04650293290615082, 0.07134203612804413, 0.11840200424194336, 0.015247469767928123, -0.0033181030303239822, 0.13015136122703552, -0.2568117082118988, 0.019211336970329285, -0.0754370167851448, -0.03775216266512871, 0.08088402450084686, 0.07995659112930298, 0.16486960649490356, 0.036187540739774704, -0.042049095034599304, -0.003924929536879063, 0.009187355637550354, -0.039663419127464294, 0.08243577927350998, 0.012240500189363956, 0.023174172267317772, -0.15248477458953857, 0.071900375187397, 0.015580810606479645, -0.12336304783821106, 0.011253113858401775, 0.1477922946214676, -0.13801799714565277, -0.11707340180873871, -0.03374985232949257, 0.08742405474185944, -0.14541642367839813, -0.0241269338876009, -0.04783749580383301, -0.12825986742973328, 0.09339214116334915, 0.11613135039806366, 0.07497538626194, 0.10595441609621048, -0.0529337078332901, -0.02668607421219349, -0.03682107478380203, -0.022537073120474815, -0.0017330512637272477, 0.032638516277074814, -0.08304216712713242, 0.0579586885869503, -0.020800847560167313, 0.14298540353775024, -0.08964299410581589, -0.07169508188962936, -0.1581236720085144, 0.03564200550317764, -0.12593989074230194, -0.07035141438245773, -0.08840593695640564, -0.05227470397949219, -0.007837125100195408, -0.01494099572300911, -0.0388214997947216, -0.04472146928310394, -0.12364204227924347, 0.01879296824336052, -0.05806630104780197, 0.02100815810263157, -0.07383234053850174, 0.00039667764212936163, 0.08932872861623764, -0.0410015694797039, 0.13851116597652435, 0.13557660579681396, -0.08107975125312805, 0.11907198280096054, -0.13537484407424927, -0.0908876284956932, 0.1157127171754837, 0.013428857550024986, 0.03907458856701851, 0.06849293410778046, 0.037317484617233276, 0.06514574587345123, 0.016511039808392525, 0.05237346887588501, 0.006972990930080414, -0.1299850195646286, 0.03433857858181, -0.042786743491888046, -0.1481933295726776, -0.05744143947958946, -0.05092177540063858, 0.039562974125146866, 0.02438235841691494, 0.10801149904727936, -0.03665049374103546, 0.11085481196641922, -0.058541763573884964, 0.01499281544238329, 0.004919432103633881, -0.18287403881549835, -0.044654008001089096, -0.07792776077985764, 0.02775009535253048, 0.022204352542757988, 0.2720205783843994, 0.0410233810544014, 0.020275471732020378, 0.017097288742661476, 0.11327627301216125, 0.057128578424453735, 0.015525308437645435, 0.214890718460083, 0.11996994912624359, -0.06049320101737976, -0.10806480050086975, 0.0858595222234726, 0.02164783701300621, 0.007426374591886997, 0.14070266485214233, 0.008503482677042484, -0.015597577206790447, 0.0887407436966896, -0.03357330709695816, 0.0031263602431863546, -0.11658911406993866, -0.13779941201210022, -0.028487415984272957, 0.0629650130867958, -0.0040870243683457375, 0.0956285297870636, 0.13609373569488525, -0.026881180703639984, 0.03953414782881737, -0.007877747528254986, -0.054916199296712875, -0.1785028725862503, -0.15742821991443634, -0.0790708139538765, -0.13561099767684937, 0.014744875021278858, -0.10368648171424866, 0.04369770362973213, 0.09560346603393555, 0.055915698409080505, -0.05440305173397064, 0.10839936882257462, 0.060064028948545456, -0.1045473963022232, 0.056569941341876984, -0.032912541180849075, 0.06427399069070816, -0.001812951872125268, -0.02503552846610546, -0.09098561853170395, 0.0020124134607613087, 0.0017788249533623457, 0.0514003150165081, -0.05152478814125061, 0.024474015459418297, -0.15132632851600647, -0.09570280462503433, -0.04949872940778732, 0.07316448539495468, -0.06007300689816475, 0.1162300780415535, -0.001420395914465189, -0.017011309042572975, 0.03990921378135681, 0.2064858227968216, -0.07188161462545395, -0.04990030825138092, -0.047407180070877075, 0.22449158132076263, 0.04847963526844978, 0.10619479417800903, -0.013415440917015076, -0.00436578830704093, -0.07670432329177856, 0.36612021923065186, 0.2802904546260834, -0.06149837002158165, 0.012722660787403584, 0.03524370491504669, 0.030115660279989243, 0.13885097205638885, 0.1454230099916458, 0.09396251291036606, 0.27579233050346375, -0.08266803622245789, -0.052018675953149796, -0.015770163387060165, -0.020211221650242805, -0.09714096784591675, 0.11003416776657104, 0.04697350785136223, -0.06982195377349854, -0.044631510972976685, 0.09750646352767944, -0.24107815325260162, 0.1615772694349289, -0.07760030031204224, -0.15214353799819946, -0.06177033111453056, 0.012448563240468502, 0.10150322318077087, 0.00011545186134753749, 0.08784360438585281, -0.009687529876828194, -0.10291683673858643, 0.05749227851629257, 0.02730483002960682, -0.23568211495876312, -0.007146455347537994, 0.053680915385484695, -0.04540037736296654, 0.013332240283489227, -0.01917567476630211, 0.04910791665315628, 0.06717875599861145, 0.055140718817710876, -0.0426395982503891, 0.03817736729979515, -0.010196289978921413, -0.05020907521247864, 0.029649224132299423, 0.044778332114219666, 0.017814766615629196, -0.13065220415592194, 0.05277646332979202, -0.13968263566493988, 0.041911475360393524, -0.029653942212462425, -0.027413733303546906, -0.004670299123972654, -0.019546283408999443, -0.06313455104827881, 0.057941507548093796, 0.08424945920705795, 0.001472705160267651, -0.007915833964943886, -0.08050897717475891, -0.011023934930562973, -0.012819311581552029, -0.08308050036430359, -0.10086389631032944, -0.1384236365556717, -0.10634621232748032, 0.12701933085918427, -0.017066750675439835, -0.19125573337078094, 0.01284839678555727, -0.09708964824676514, 0.060041818767786026, -0.1797112077474594, 0.0843181237578392, 0.06071038171648979, 0.01623542606830597, -0.004114143084734678, -0.029135411605238914, 0.039420004934072495, 0.08210206776857376, -0.10779064148664474, -0.09044761955738068 ]
null
null
transformers
West et al.'s model from their "reflective decoding" paper. Sample usage: ```python import torch from modeling_opengpt2 import OpenGPT2LMHeadModel from padded_encoder import Encoder path_to_backward = 'danyaljj/opengpt2_pytorch_backward' encoder = Encoder() model_backward = OpenGPT2LMHeadModel.from_pretrained(path_to_backward) input = "until she finally won." input_ids = encoder.encode(input) input_ids = torch.tensor([input_ids[::-1] ], dtype=torch.int) print(input_ids) output = model_backward.generate(input_ids) output_text = encoder.decode(output.tolist()[0][::-1]) print(output_text) ``` Download the additional files from here: https://github.com/peterwestuw/GPT2ForwardBackward
{}
null
danyaljj/opengpt2_pytorch_backward
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #endpoints_compatible #region-us
West et al.'s model from their "reflective decoding" paper. Sample usage: Download the additional files from here: URL
[]
[ "TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n" ]
[ 21 ]
[ "passage: TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n" ]
[ -0.0602605901658535, -0.005646900739520788, -0.009762155823409557, -0.03966370224952698, 0.15944775938987732, 0.03070714697241783, 0.012395896948873997, 0.07867952436208725, 0.09419925510883331, -0.019594743847846985, 0.09831016510725021, 0.2332964390516281, -0.03786272928118706, 0.022073544561862946, -0.06232732906937599, -0.24905818700790405, 0.09407828003168106, 0.11313164979219437, -0.06465978920459747, 0.09549489617347717, 0.039143070578575134, -0.08911364525556564, 0.04947805404663086, -0.032982707023620605, -0.13527381420135498, 0.0467669740319252, 0.0237716156989336, -0.078513965010643, 0.11869441717863083, 0.0077665625140070915, 0.19578197598457336, 0.01207544095814228, -0.1299089938402176, -0.18088726699352264, 0.02007104456424713, 0.022213434800505638, -0.05996024236083031, 0.02314351126551628, 0.07312147319316864, -0.10279249399900436, 0.02970288321375847, 0.03654928505420685, 0.002923935651779175, 0.03274611383676529, -0.15513424575328827, -0.1849449872970581, -0.04425787553191185, 0.012871243990957737, 0.026669111102819443, 0.10506244748830795, 0.030372466892004013, 0.178822323679924, -0.15745419263839722, 0.0945795327425003, 0.177890345454216, -0.28603804111480713, 0.029024237766861916, 0.11024846136569977, 0.04829736799001694, 0.028134070336818695, 0.00996005441993475, 0.0189230814576149, -0.009570286609232426, 0.03048190288245678, -0.027967484667897224, -0.07447972893714905, -0.06405609101057053, 0.0814741775393486, -0.09437224268913269, -0.1216578483581543, 0.19255080819129944, -0.05330982804298401, 0.0588051900267601, 0.03463263809680939, -0.11766522377729416, -0.05456177890300751, 0.0013563521206378937, 0.030292518436908722, -0.017828812822699547, 0.07086412608623505, 0.031105060130357742, -0.02373676560819149, -0.12168543040752411, 0.028789518401026726, -0.24090629816055298, 0.28345873951911926, 0.02996366284787655, 0.11018568277359009, -0.2384001910686493, 0.07198631763458252, -0.04607108235359192, -0.06767431646585464, 0.023487936705350876, -0.09875187277793884, 0.021371465176343918, 0.007170209661126137, -0.0868486687541008, 0.025816135108470917, 0.0673765018582344, 0.11560594290494919, -0.02462717518210411, 0.021296672523021698, 0.01767325960099697, 0.1089232936501503, 0.01622004434466362, 0.11334555596113205, 0.002745070494711399, 0.034500978887081146, 0.029799794778227806, -0.18719491362571716, -0.0026790881529450417, -0.03489845618605614, -0.08398842811584473, -0.0881200060248375, 0.028418414294719696, 0.12114420533180237, 0.02183910645544529, 0.022260701283812523, -0.07126972824335098, -0.008312570862472057, 0.04512425512075424, -0.06700387597084045, -0.022145040333271027, 0.007661914918571711, 0.016494954004883766, 0.22294339537620544, -0.02295338362455368, -0.026225684210658073, -0.07023988664150238, 0.11260082572698593, -0.0656941682100296, 0.016149358823895454, -0.0530007965862751, -0.02928324043750763, 0.056476715952157974, -0.15177644789218903, 0.06500709801912308, -0.1516612023115158, -0.09112907201051712, 0.028223685920238495, 0.03696250542998314, 0.028484180569648743, 0.02479529194533825, 0.015830792486667633, -0.00879291258752346, -0.03011348284780979, -0.07923634350299835, -0.08192402124404907, -0.06342831254005432, 0.09921494126319885, -0.0005941772251389921, 0.05436241999268532, -0.11821827292442322, 0.07408127188682556, -0.1076948270201683, 0.030249644070863724, -0.13414455950260162, -0.0221982691437006, -0.02404189109802246, 0.1851358413696289, 0.0006879806751385331, -0.0817047506570816, -0.10663671791553497, 0.038237277418375015, -0.04168618097901344, 0.13458840548992157, -0.014303965494036674, -0.11019430309534073, 0.26959696412086487, -0.10667987167835236, -0.1671270877122879, 0.05378620699048042, 0.009700759314000607, -0.016868380829691887, 0.0561099536716938, 0.16616025567054749, 0.06831997632980347, -0.07049598544836044, 0.09140615165233612, 0.1379895955324173, -0.1851922571659088, -0.20243999361991882, 0.01763749308884144, -0.05203584209084511, -0.11545780301094055, 0.04540516808629036, -0.0058397711254656315, 0.09395778924226761, -0.08503725379705429, -0.007578795775771141, -0.032015107572078705, -0.016012731939554214, 0.07450172305107117, 0.06282669305801392, 0.09098648279905319, -0.05122196301817894, 0.031217509880661964, 0.026435445994138718, 0.00463126040995121, 0.0063572051003575325, 0.05537392571568489, -0.03592291474342346, 0.1321462094783783, -0.06449703127145767, 0.00637860456481576, -0.2316930741071701, -0.11218059808015823, -0.012119117192924023, 0.04616983234882355, -0.05828554928302765, 0.16098164021968842, 0.09591125696897507, -0.0814671590924263, 0.027995459735393524, -0.03218327462673187, 0.10552480816841125, 0.02011469565331936, -0.012835591100156307, -0.0011234998237341642, 0.016821393743157387, -0.0699923112988472, -0.08323190361261368, 0.006836527958512306, -0.0009020745637826622, 0.08346128463745117, 0.12389257550239563, -0.0018713462632149458, 0.04892571270465851, -0.025174804031848907, 0.07054726779460907, -0.016440844163298607, 0.014167504385113716, 0.10722272843122482, -0.011425090953707695, -0.05193426087498665, 0.1583033800125122, -0.11112764477729797, 0.3326278030872345, 0.20375320315361023, -0.323421835899353, 0.04571422189474106, -0.025362668558955193, -0.017437715083360672, 0.021043121814727783, 0.09183337539434433, 0.005831574089825153, 0.08254498243331909, 0.05105554684996605, 0.13220374286174774, -0.025855854153633118, -0.015603546984493732, -0.000933936215005815, -0.06394030898809433, -0.03657902777194977, 0.07155993580818176, 0.06678375601768494, -0.12739983201026917, 0.17137302458286285, 0.2332899272441864, 0.034409500658512115, 0.08888798952102661, -0.074738509953022, -0.02466125227510929, 0.05307190865278244, 0.030478334054350853, -0.05014907941222191, -0.003522941842675209, -0.24837985634803772, -0.033807482570409775, 0.0835256576538086, 0.041713811457157135, 0.11864139884710312, -0.15303030610084534, -0.0535346120595932, 0.036216262727975845, 0.003446921007707715, -0.07469423115253448, 0.0990411564707756, 0.07169649004936218, 0.06572583317756653, 0.006040885578840971, -0.030352378264069557, 0.11742591857910156, 0.000851878838147968, -0.05391429737210274, 0.17059999704360962, -0.13313265144824982, -0.29761773347854614, -0.14319129288196564, -0.1334514170885086, 0.010339286178350449, 0.017076298594474792, 0.08161275088787079, -0.08419821411371231, -0.034329503774642944, 0.09296482056379318, 0.05038211867213249, -0.12507256865501404, 0.025089209899306297, -0.04892471432685852, 0.06829681247472763, -0.08489015698432922, -0.07859387248754501, -0.06656183302402496, -0.05509684979915619, -0.04375450685620308, 0.11071989685297012, -0.12806063890457153, 0.08490876853466034, 0.13819533586502075, 0.031051602214574814, 0.07859103381633759, 0.001322271185927093, 0.13857795298099518, -0.061774931848049164, -0.08148285746574402, 0.23385483026504517, -0.009697506204247475, 0.10181795805692673, 0.10921594500541687, 0.02137605845928192, -0.06395251303911209, -0.022054238244891167, -0.07990756630897522, -0.12127618491649628, -0.2081342488527298, -0.13152581453323364, -0.147438645362854, 0.0003129298856947571, 0.0026985483709722757, 0.04901242256164551, 0.08136387914419174, 0.07752165198326111, 0.05862151086330414, -0.08998161554336548, -0.05513061210513115, 0.057605329900979996, 0.2182815968990326, -0.01885073445737362, 0.07730096578598022, -0.08762159198522568, -0.0858968198299408, 0.07550632208585739, 0.0809127613902092, 0.22168903052806854, 0.0703313797712326, 0.03154223784804344, 0.06092943996191025, 0.1844511479139328, 0.15529003739356995, 0.17153839766979218, 0.015418988652527332, -0.025812845677137375, 0.006589105818420649, 0.013138419017195702, -0.09150379151105881, -0.0042123449966311455, 0.1292845457792282, -0.14540119469165802, -0.07880084216594696, -0.22943291068077087, 0.08157958835363388, 0.07344048470258713, 0.026414161548018456, -0.17556782066822052, -0.0015733868349343538, 0.05357646942138672, 0.006558762397617102, -0.045512180775403976, 0.08496551215648651, -0.022116927430033684, -0.13344039022922516, 0.04287152364850044, -0.058599162846803665, 0.10456542670726776, -0.038338202983140945, 0.07373929768800735, -0.024396726861596107, -0.10900583118200302, 0.07474620640277863, 0.08851087838411331, -0.23624686896800995, 0.27773332595825195, -0.028285326436161995, -0.07041611522436142, -0.06830666214227676, -0.024676870554685593, -0.0017557048704475164, 0.17030403017997742, 0.08692118525505066, 0.03860539570450783, -0.06731099635362625, -0.1669522523880005, 0.04732859507203102, 0.02085104025900364, 0.12389091402292252, -0.008113703690469265, -0.030854588374495506, -0.01338487584143877, -0.019302181899547577, -0.041759077459573746, -0.003546249819919467, 0.10703662782907486, -0.13412658870220184, 0.034535422921180725, 0.005309549160301685, 0.04036608338356018, -0.0035966450814157724, 0.005690612830221653, -0.05699379742145538, 0.13448239862918854, -0.04070858657360077, -0.07688865810632706, -0.08865337073802948, -0.17243140935897827, 0.13381044566631317, -0.10238062590360641, 0.09249105304479599, -0.09976985305547714, -0.06192123889923096, -0.0650167390704155, -0.21104402840137482, 0.10917928814888, -0.10513100028038025, 0.0401403047144413, -0.016867417842149734, 0.202356219291687, -0.08008989691734314, -0.0209506843239069, -0.0013599899830296636, 0.004461138043552637, -0.12345174700021744, -0.10132946074008942, -0.01779748499393463, 0.029711758717894554, 0.08279082924127579, 0.10770376026630402, -0.018299801275134087, 0.04191994294524193, 0.013882452622056007, 0.03635424003005028, 0.24111443758010864, 0.13711073994636536, -0.04645780101418495, 0.11812267452478409, 0.16186927258968353, -0.031571563333272934, -0.2709476351737976, -0.0868004634976387, -0.16869930922985077, -0.04678983986377716, -0.037189606577157974, -0.12448763102293015, 0.12788352370262146, 0.04586293175816536, -0.011544082313776016, 0.1266224980354309, -0.26594868302345276, -0.03401912376284599, 0.1643364280462265, 0.027830148115754128, 0.48583653569221497, -0.09991659969091415, -0.0845755785703659, 0.018966181203722954, -0.2915274500846863, 0.10791198909282684, 0.01369303185492754, 0.06487411260604858, -0.034079212695360184, 0.10230494290590286, 0.044344354420900345, -0.10719364136457443, 0.11951436847448349, 0.035276297479867935, 0.03043992444872856, -0.08126169443130493, -0.08180311322212219, 0.043867211788892746, -0.020314449444413185, 0.016103362664580345, 0.09817174077033997, 0.036888349801301956, -0.1322462111711502, -0.022591179236769676, -0.13765397667884827, 0.049294743686914444, 0.0620623379945755, -0.0240910816937685, -0.013253096491098404, -0.036911722272634506, -0.004203932359814644, 0.019186172634363174, 0.25098612904548645, -0.012744947336614132, 0.1315464824438095, 0.042376402765512466, 0.046371813863515854, -0.20250053703784943, -0.14301706850528717, -0.07346653193235397, -0.04091315343976021, 0.0825582891702652, -0.04023446887731552, 0.0523495189845562, 0.1589740812778473, -0.02755962871015072, -0.008571553975343704, 0.1279488205909729, 0.014891285449266434, -0.03108718805015087, 0.12318851798772812, -0.21083922684192657, -0.042206212878227234, -0.018448445945978165, -0.05149201303720474, 0.1258767545223236, 0.12660184502601624, 0.08982381969690323, 0.07138726115226746, -0.016965264454483986, -0.03962934389710426, -0.023878682404756546, -0.0698867067694664, 0.014531198889017105, 0.041909199208021164, 0.03934765234589577, -0.13099561631679535, 0.07754374295473099, -0.018086964264512062, -0.27273428440093994, -0.06408093869686127, 0.09851112216711044, -0.15818077325820923, -0.10192093253135681, -0.06077379360795021, 0.03578856587409973, -0.1768866330385208, -0.0624033585190773, -0.0316467322409153, -0.10826759040355682, 0.06394574791193008, 0.20973356068134308, 0.10992377996444702, 0.12001070380210876, -0.023827049881219864, -0.02570408768951893, -0.00579385831952095, -0.10135087370872498, -0.012352810241281986, 0.013960975222289562, -0.09324274212121964, 0.018809983506798744, -0.009077025577425957, 0.17904941737651825, -0.0752621665596962, -0.08742223680019379, -0.1552542746067047, 0.09289714694023132, -0.1066979393362999, -0.092626191675663, -0.14189116656780243, -0.06335672736167908, 0.023829210549592972, -0.06568517535924911, -0.01769612915813923, -0.013204174116253853, -0.14357970654964447, 0.06973201036453247, 0.01112452708184719, -0.011419128626585007, -0.057545971125364304, -0.02905389852821827, 0.12901906669139862, -0.0439501516520977, 0.08620632439851761, 0.19515031576156616, -0.09635450690984726, 0.12672042846679688, -0.10680265724658966, -0.16728007793426514, 0.109873466193676, 0.011463385075330734, 0.08858676254749298, 0.05595776438713074, 0.033014263957738876, 0.0949346125125885, 0.01360013522207737, 0.040659237653017044, -0.0074751065112650394, -0.13721472024917603, 0.0005411148304119706, 0.014451061375439167, -0.14818744361400604, -0.051526814699172974, -0.10024616122245789, 0.15037848055362701, 0.046998120844364166, 0.10320950299501419, 0.02188979648053646, 0.13145636022090912, -0.006807954981923103, -0.01749216392636299, -0.007913168519735336, -0.18110167980194092, 0.058051977306604385, -0.04888135939836502, 0.00664436025545001, 0.004136093892157078, 0.29094672203063965, -0.05342133343219757, 0.06421013921499252, 0.012430429458618164, 0.05440686270594597, 0.025291895493865013, 0.019776156172156334, 0.23332199454307556, 0.0909920483827591, -0.040104810148477554, -0.07203774154186249, 0.09381944686174393, -0.027183765545487404, -0.051167625933885574, 0.14428386092185974, 0.12433760613203049, 0.046564988791942596, 0.10233303159475327, -0.010628857649862766, 0.0502619631588459, -0.11714580655097961, -0.29435333609580994, -0.0017536553787067533, 0.02923153154551983, 0.013082349672913551, 0.09705042093992233, 0.12465932965278625, -0.014661809429526329, 0.09902279824018478, -0.0014873039908707142, -0.026829617097973824, -0.13841837644577026, -0.08308025449514389, -0.037351641803979874, -0.1296062022447586, 0.01537085510790348, -0.06261784583330154, -0.0013676333473995328, 0.20482417941093445, 0.040537029504776, -0.03484100475907326, 0.11699468642473221, 0.0698540061712265, -0.06982901692390442, 0.02712978608906269, -0.00757982861250639, 0.035655613988637924, 0.06632175296545029, -0.023149633780121803, -0.14352689683437347, -0.08878929167985916, -0.04016351327300072, 0.04570772126317024, -0.0825280100107193, 0.007398216053843498, -0.1344616711139679, -0.09811436384916306, -0.05467144027352333, 0.09024309366941452, -0.076502226293087, 0.12816135585308075, -0.010830878280103207, 0.010613616555929184, 0.01268461812287569, 0.18772324919700623, -0.075274258852005, -0.060353536158800125, 0.002831645542755723, 0.23638813197612762, 0.08521586656570435, 0.08294188231229782, 0.00997002050280571, 0.024029415100812912, -0.09174544364213943, 0.3311961889266968, 0.24609249830245972, -0.010904072783887386, 0.04334266111254692, 0.04531332477927208, 0.04185611754655838, 0.12315969169139862, 0.13169057667255402, 0.11807206273078918, 0.344115674495697, -0.08338891714811325, -0.031944580376148224, -0.030247550457715988, 0.006968794856220484, -0.13217425346374512, 0.026531271636486053, 0.01758533902466297, -0.08070562034845352, -0.07679492235183716, 0.11993145197629929, -0.20403271913528442, 0.15280351042747498, 0.08174222707748413, -0.19685740768909454, -0.03396262973546982, -0.05789715424180031, 0.18384911119937897, -0.014278654009103775, 0.11859142035245895, -0.04448321461677551, -0.13445675373077393, 0.08106808364391327, 0.048652783036231995, -0.2895694077014923, -0.08014793694019318, 0.0981469452381134, 0.042115915566682816, -0.0287695974111557, -0.015584125183522701, 0.03546717017889023, 0.059928759932518005, 0.08986898511648178, -0.03891289234161377, 0.04509701579809189, 0.020416583865880966, -0.10908327251672745, -0.08358649909496307, -0.02032429538667202, -0.00014163613377604634, -0.1349317878484726, 0.016364745795726776, -0.20526979863643646, 0.04226694256067276, -0.010092525742948055, 0.01465508621186018, -0.004206623882055283, -0.03162108361721039, -0.051075391471385956, 0.023095570504665375, 0.052028998732566833, 0.009046600200235844, -0.017174653708934784, -0.043978288769721985, -0.01736217923462391, 0.04129228740930557, -0.09392837435007095, -0.15831652283668518, -0.016197707504034042, -0.08371548354625702, 0.10397595167160034, -0.03304345905780792, -0.046627145260572433, -0.017865123227238655, -0.02954019047319889, 0.04380740970373154, -0.10989689826965332, 0.035784848034381866, 0.01109471544623375, 0.05120820179581642, 0.011953367851674557, -0.01127829309552908, 0.039223846048116684, 0.07814694195985794, -0.12265297025442123, -0.1024811714887619 ]
null
null
transformers
West et al.'s model from their "reflective decoding" paper. Sample usage: ```python import torch from modeling_opengpt2 import OpenGPT2LMHeadModel from padded_encoder import Encoder path_to_forward = 'danyaljj/opengpt2_pytorch_forward' encoder = Encoder() model_backward = OpenGPT2LMHeadModel.from_pretrained(path_to_forward) input = "She tried to win but" input_ids = encoder.encode(input) input_ids = torch.tensor([input_ids ], dtype=torch.int) print(input_ids) output = model_backward.generate(input_ids) output_text = encoder.decode(output.tolist()[0]) print(output_text) ``` Download the additional files from here: https://github.com/peterwestuw/GPT2ForwardBackward
{}
null
danyaljj/opengpt2_pytorch_forward
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #endpoints_compatible #region-us
West et al.'s model from their "reflective decoding" paper. Sample usage: Download the additional files from here: URL
[]
[ "TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n" ]
[ 21 ]
[ "passage: TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n" ]
[ -0.0602605901658535, -0.005646900739520788, -0.009762155823409557, -0.03966370224952698, 0.15944775938987732, 0.03070714697241783, 0.012395896948873997, 0.07867952436208725, 0.09419925510883331, -0.019594743847846985, 0.09831016510725021, 0.2332964390516281, -0.03786272928118706, 0.022073544561862946, -0.06232732906937599, -0.24905818700790405, 0.09407828003168106, 0.11313164979219437, -0.06465978920459747, 0.09549489617347717, 0.039143070578575134, -0.08911364525556564, 0.04947805404663086, -0.032982707023620605, -0.13527381420135498, 0.0467669740319252, 0.0237716156989336, -0.078513965010643, 0.11869441717863083, 0.0077665625140070915, 0.19578197598457336, 0.01207544095814228, -0.1299089938402176, -0.18088726699352264, 0.02007104456424713, 0.022213434800505638, -0.05996024236083031, 0.02314351126551628, 0.07312147319316864, -0.10279249399900436, 0.02970288321375847, 0.03654928505420685, 0.002923935651779175, 0.03274611383676529, -0.15513424575328827, -0.1849449872970581, -0.04425787553191185, 0.012871243990957737, 0.026669111102819443, 0.10506244748830795, 0.030372466892004013, 0.178822323679924, -0.15745419263839722, 0.0945795327425003, 0.177890345454216, -0.28603804111480713, 0.029024237766861916, 0.11024846136569977, 0.04829736799001694, 0.028134070336818695, 0.00996005441993475, 0.0189230814576149, -0.009570286609232426, 0.03048190288245678, -0.027967484667897224, -0.07447972893714905, -0.06405609101057053, 0.0814741775393486, -0.09437224268913269, -0.1216578483581543, 0.19255080819129944, -0.05330982804298401, 0.0588051900267601, 0.03463263809680939, -0.11766522377729416, -0.05456177890300751, 0.0013563521206378937, 0.030292518436908722, -0.017828812822699547, 0.07086412608623505, 0.031105060130357742, -0.02373676560819149, -0.12168543040752411, 0.028789518401026726, -0.24090629816055298, 0.28345873951911926, 0.02996366284787655, 0.11018568277359009, -0.2384001910686493, 0.07198631763458252, -0.04607108235359192, -0.06767431646585464, 0.023487936705350876, -0.09875187277793884, 0.021371465176343918, 0.007170209661126137, -0.0868486687541008, 0.025816135108470917, 0.0673765018582344, 0.11560594290494919, -0.02462717518210411, 0.021296672523021698, 0.01767325960099697, 0.1089232936501503, 0.01622004434466362, 0.11334555596113205, 0.002745070494711399, 0.034500978887081146, 0.029799794778227806, -0.18719491362571716, -0.0026790881529450417, -0.03489845618605614, -0.08398842811584473, -0.0881200060248375, 0.028418414294719696, 0.12114420533180237, 0.02183910645544529, 0.022260701283812523, -0.07126972824335098, -0.008312570862472057, 0.04512425512075424, -0.06700387597084045, -0.022145040333271027, 0.007661914918571711, 0.016494954004883766, 0.22294339537620544, -0.02295338362455368, -0.026225684210658073, -0.07023988664150238, 0.11260082572698593, -0.0656941682100296, 0.016149358823895454, -0.0530007965862751, -0.02928324043750763, 0.056476715952157974, -0.15177644789218903, 0.06500709801912308, -0.1516612023115158, -0.09112907201051712, 0.028223685920238495, 0.03696250542998314, 0.028484180569648743, 0.02479529194533825, 0.015830792486667633, -0.00879291258752346, -0.03011348284780979, -0.07923634350299835, -0.08192402124404907, -0.06342831254005432, 0.09921494126319885, -0.0005941772251389921, 0.05436241999268532, -0.11821827292442322, 0.07408127188682556, -0.1076948270201683, 0.030249644070863724, -0.13414455950260162, -0.0221982691437006, -0.02404189109802246, 0.1851358413696289, 0.0006879806751385331, -0.0817047506570816, -0.10663671791553497, 0.038237277418375015, -0.04168618097901344, 0.13458840548992157, -0.014303965494036674, -0.11019430309534073, 0.26959696412086487, -0.10667987167835236, -0.1671270877122879, 0.05378620699048042, 0.009700759314000607, -0.016868380829691887, 0.0561099536716938, 0.16616025567054749, 0.06831997632980347, -0.07049598544836044, 0.09140615165233612, 0.1379895955324173, -0.1851922571659088, -0.20243999361991882, 0.01763749308884144, -0.05203584209084511, -0.11545780301094055, 0.04540516808629036, -0.0058397711254656315, 0.09395778924226761, -0.08503725379705429, -0.007578795775771141, -0.032015107572078705, -0.016012731939554214, 0.07450172305107117, 0.06282669305801392, 0.09098648279905319, -0.05122196301817894, 0.031217509880661964, 0.026435445994138718, 0.00463126040995121, 0.0063572051003575325, 0.05537392571568489, -0.03592291474342346, 0.1321462094783783, -0.06449703127145767, 0.00637860456481576, -0.2316930741071701, -0.11218059808015823, -0.012119117192924023, 0.04616983234882355, -0.05828554928302765, 0.16098164021968842, 0.09591125696897507, -0.0814671590924263, 0.027995459735393524, -0.03218327462673187, 0.10552480816841125, 0.02011469565331936, -0.012835591100156307, -0.0011234998237341642, 0.016821393743157387, -0.0699923112988472, -0.08323190361261368, 0.006836527958512306, -0.0009020745637826622, 0.08346128463745117, 0.12389257550239563, -0.0018713462632149458, 0.04892571270465851, -0.025174804031848907, 0.07054726779460907, -0.016440844163298607, 0.014167504385113716, 0.10722272843122482, -0.011425090953707695, -0.05193426087498665, 0.1583033800125122, -0.11112764477729797, 0.3326278030872345, 0.20375320315361023, -0.323421835899353, 0.04571422189474106, -0.025362668558955193, -0.017437715083360672, 0.021043121814727783, 0.09183337539434433, 0.005831574089825153, 0.08254498243331909, 0.05105554684996605, 0.13220374286174774, -0.025855854153633118, -0.015603546984493732, -0.000933936215005815, -0.06394030898809433, -0.03657902777194977, 0.07155993580818176, 0.06678375601768494, -0.12739983201026917, 0.17137302458286285, 0.2332899272441864, 0.034409500658512115, 0.08888798952102661, -0.074738509953022, -0.02466125227510929, 0.05307190865278244, 0.030478334054350853, -0.05014907941222191, -0.003522941842675209, -0.24837985634803772, -0.033807482570409775, 0.0835256576538086, 0.041713811457157135, 0.11864139884710312, -0.15303030610084534, -0.0535346120595932, 0.036216262727975845, 0.003446921007707715, -0.07469423115253448, 0.0990411564707756, 0.07169649004936218, 0.06572583317756653, 0.006040885578840971, -0.030352378264069557, 0.11742591857910156, 0.000851878838147968, -0.05391429737210274, 0.17059999704360962, -0.13313265144824982, -0.29761773347854614, -0.14319129288196564, -0.1334514170885086, 0.010339286178350449, 0.017076298594474792, 0.08161275088787079, -0.08419821411371231, -0.034329503774642944, 0.09296482056379318, 0.05038211867213249, -0.12507256865501404, 0.025089209899306297, -0.04892471432685852, 0.06829681247472763, -0.08489015698432922, -0.07859387248754501, -0.06656183302402496, -0.05509684979915619, -0.04375450685620308, 0.11071989685297012, -0.12806063890457153, 0.08490876853466034, 0.13819533586502075, 0.031051602214574814, 0.07859103381633759, 0.001322271185927093, 0.13857795298099518, -0.061774931848049164, -0.08148285746574402, 0.23385483026504517, -0.009697506204247475, 0.10181795805692673, 0.10921594500541687, 0.02137605845928192, -0.06395251303911209, -0.022054238244891167, -0.07990756630897522, -0.12127618491649628, -0.2081342488527298, -0.13152581453323364, -0.147438645362854, 0.0003129298856947571, 0.0026985483709722757, 0.04901242256164551, 0.08136387914419174, 0.07752165198326111, 0.05862151086330414, -0.08998161554336548, -0.05513061210513115, 0.057605329900979996, 0.2182815968990326, -0.01885073445737362, 0.07730096578598022, -0.08762159198522568, -0.0858968198299408, 0.07550632208585739, 0.0809127613902092, 0.22168903052806854, 0.0703313797712326, 0.03154223784804344, 0.06092943996191025, 0.1844511479139328, 0.15529003739356995, 0.17153839766979218, 0.015418988652527332, -0.025812845677137375, 0.006589105818420649, 0.013138419017195702, -0.09150379151105881, -0.0042123449966311455, 0.1292845457792282, -0.14540119469165802, -0.07880084216594696, -0.22943291068077087, 0.08157958835363388, 0.07344048470258713, 0.026414161548018456, -0.17556782066822052, -0.0015733868349343538, 0.05357646942138672, 0.006558762397617102, -0.045512180775403976, 0.08496551215648651, -0.022116927430033684, -0.13344039022922516, 0.04287152364850044, -0.058599162846803665, 0.10456542670726776, -0.038338202983140945, 0.07373929768800735, -0.024396726861596107, -0.10900583118200302, 0.07474620640277863, 0.08851087838411331, -0.23624686896800995, 0.27773332595825195, -0.028285326436161995, -0.07041611522436142, -0.06830666214227676, -0.024676870554685593, -0.0017557048704475164, 0.17030403017997742, 0.08692118525505066, 0.03860539570450783, -0.06731099635362625, -0.1669522523880005, 0.04732859507203102, 0.02085104025900364, 0.12389091402292252, -0.008113703690469265, -0.030854588374495506, -0.01338487584143877, -0.019302181899547577, -0.041759077459573746, -0.003546249819919467, 0.10703662782907486, -0.13412658870220184, 0.034535422921180725, 0.005309549160301685, 0.04036608338356018, -0.0035966450814157724, 0.005690612830221653, -0.05699379742145538, 0.13448239862918854, -0.04070858657360077, -0.07688865810632706, -0.08865337073802948, -0.17243140935897827, 0.13381044566631317, -0.10238062590360641, 0.09249105304479599, -0.09976985305547714, -0.06192123889923096, -0.0650167390704155, -0.21104402840137482, 0.10917928814888, -0.10513100028038025, 0.0401403047144413, -0.016867417842149734, 0.202356219291687, -0.08008989691734314, -0.0209506843239069, -0.0013599899830296636, 0.004461138043552637, -0.12345174700021744, -0.10132946074008942, -0.01779748499393463, 0.029711758717894554, 0.08279082924127579, 0.10770376026630402, -0.018299801275134087, 0.04191994294524193, 0.013882452622056007, 0.03635424003005028, 0.24111443758010864, 0.13711073994636536, -0.04645780101418495, 0.11812267452478409, 0.16186927258968353, -0.031571563333272934, -0.2709476351737976, -0.0868004634976387, -0.16869930922985077, -0.04678983986377716, -0.037189606577157974, -0.12448763102293015, 0.12788352370262146, 0.04586293175816536, -0.011544082313776016, 0.1266224980354309, -0.26594868302345276, -0.03401912376284599, 0.1643364280462265, 0.027830148115754128, 0.48583653569221497, -0.09991659969091415, -0.0845755785703659, 0.018966181203722954, -0.2915274500846863, 0.10791198909282684, 0.01369303185492754, 0.06487411260604858, -0.034079212695360184, 0.10230494290590286, 0.044344354420900345, -0.10719364136457443, 0.11951436847448349, 0.035276297479867935, 0.03043992444872856, -0.08126169443130493, -0.08180311322212219, 0.043867211788892746, -0.020314449444413185, 0.016103362664580345, 0.09817174077033997, 0.036888349801301956, -0.1322462111711502, -0.022591179236769676, -0.13765397667884827, 0.049294743686914444, 0.0620623379945755, -0.0240910816937685, -0.013253096491098404, -0.036911722272634506, -0.004203932359814644, 0.019186172634363174, 0.25098612904548645, -0.012744947336614132, 0.1315464824438095, 0.042376402765512466, 0.046371813863515854, -0.20250053703784943, -0.14301706850528717, -0.07346653193235397, -0.04091315343976021, 0.0825582891702652, -0.04023446887731552, 0.0523495189845562, 0.1589740812778473, -0.02755962871015072, -0.008571553975343704, 0.1279488205909729, 0.014891285449266434, -0.03108718805015087, 0.12318851798772812, -0.21083922684192657, -0.042206212878227234, -0.018448445945978165, -0.05149201303720474, 0.1258767545223236, 0.12660184502601624, 0.08982381969690323, 0.07138726115226746, -0.016965264454483986, -0.03962934389710426, -0.023878682404756546, -0.0698867067694664, 0.014531198889017105, 0.041909199208021164, 0.03934765234589577, -0.13099561631679535, 0.07754374295473099, -0.018086964264512062, -0.27273428440093994, -0.06408093869686127, 0.09851112216711044, -0.15818077325820923, -0.10192093253135681, -0.06077379360795021, 0.03578856587409973, -0.1768866330385208, -0.0624033585190773, -0.0316467322409153, -0.10826759040355682, 0.06394574791193008, 0.20973356068134308, 0.10992377996444702, 0.12001070380210876, -0.023827049881219864, -0.02570408768951893, -0.00579385831952095, -0.10135087370872498, -0.012352810241281986, 0.013960975222289562, -0.09324274212121964, 0.018809983506798744, -0.009077025577425957, 0.17904941737651825, -0.0752621665596962, -0.08742223680019379, -0.1552542746067047, 0.09289714694023132, -0.1066979393362999, -0.092626191675663, -0.14189116656780243, -0.06335672736167908, 0.023829210549592972, -0.06568517535924911, -0.01769612915813923, -0.013204174116253853, -0.14357970654964447, 0.06973201036453247, 0.01112452708184719, -0.011419128626585007, -0.057545971125364304, -0.02905389852821827, 0.12901906669139862, -0.0439501516520977, 0.08620632439851761, 0.19515031576156616, -0.09635450690984726, 0.12672042846679688, -0.10680265724658966, -0.16728007793426514, 0.109873466193676, 0.011463385075330734, 0.08858676254749298, 0.05595776438713074, 0.033014263957738876, 0.0949346125125885, 0.01360013522207737, 0.040659237653017044, -0.0074751065112650394, -0.13721472024917603, 0.0005411148304119706, 0.014451061375439167, -0.14818744361400604, -0.051526814699172974, -0.10024616122245789, 0.15037848055362701, 0.046998120844364166, 0.10320950299501419, 0.02188979648053646, 0.13145636022090912, -0.006807954981923103, -0.01749216392636299, -0.007913168519735336, -0.18110167980194092, 0.058051977306604385, -0.04888135939836502, 0.00664436025545001, 0.004136093892157078, 0.29094672203063965, -0.05342133343219757, 0.06421013921499252, 0.012430429458618164, 0.05440686270594597, 0.025291895493865013, 0.019776156172156334, 0.23332199454307556, 0.0909920483827591, -0.040104810148477554, -0.07203774154186249, 0.09381944686174393, -0.027183765545487404, -0.051167625933885574, 0.14428386092185974, 0.12433760613203049, 0.046564988791942596, 0.10233303159475327, -0.010628857649862766, 0.0502619631588459, -0.11714580655097961, -0.29435333609580994, -0.0017536553787067533, 0.02923153154551983, 0.013082349672913551, 0.09705042093992233, 0.12465932965278625, -0.014661809429526329, 0.09902279824018478, -0.0014873039908707142, -0.026829617097973824, -0.13841837644577026, -0.08308025449514389, -0.037351641803979874, -0.1296062022447586, 0.01537085510790348, -0.06261784583330154, -0.0013676333473995328, 0.20482417941093445, 0.040537029504776, -0.03484100475907326, 0.11699468642473221, 0.0698540061712265, -0.06982901692390442, 0.02712978608906269, -0.00757982861250639, 0.035655613988637924, 0.06632175296545029, -0.023149633780121803, -0.14352689683437347, -0.08878929167985916, -0.04016351327300072, 0.04570772126317024, -0.0825280100107193, 0.007398216053843498, -0.1344616711139679, -0.09811436384916306, -0.05467144027352333, 0.09024309366941452, -0.076502226293087, 0.12816135585308075, -0.010830878280103207, 0.010613616555929184, 0.01268461812287569, 0.18772324919700623, -0.075274258852005, -0.060353536158800125, 0.002831645542755723, 0.23638813197612762, 0.08521586656570435, 0.08294188231229782, 0.00997002050280571, 0.024029415100812912, -0.09174544364213943, 0.3311961889266968, 0.24609249830245972, -0.010904072783887386, 0.04334266111254692, 0.04531332477927208, 0.04185611754655838, 0.12315969169139862, 0.13169057667255402, 0.11807206273078918, 0.344115674495697, -0.08338891714811325, -0.031944580376148224, -0.030247550457715988, 0.006968794856220484, -0.13217425346374512, 0.026531271636486053, 0.01758533902466297, -0.08070562034845352, -0.07679492235183716, 0.11993145197629929, -0.20403271913528442, 0.15280351042747498, 0.08174222707748413, -0.19685740768909454, -0.03396262973546982, -0.05789715424180031, 0.18384911119937897, -0.014278654009103775, 0.11859142035245895, -0.04448321461677551, -0.13445675373077393, 0.08106808364391327, 0.048652783036231995, -0.2895694077014923, -0.08014793694019318, 0.0981469452381134, 0.042115915566682816, -0.0287695974111557, -0.015584125183522701, 0.03546717017889023, 0.059928759932518005, 0.08986898511648178, -0.03891289234161377, 0.04509701579809189, 0.020416583865880966, -0.10908327251672745, -0.08358649909496307, -0.02032429538667202, -0.00014163613377604634, -0.1349317878484726, 0.016364745795726776, -0.20526979863643646, 0.04226694256067276, -0.010092525742948055, 0.01465508621186018, -0.004206623882055283, -0.03162108361721039, -0.051075391471385956, 0.023095570504665375, 0.052028998732566833, 0.009046600200235844, -0.017174653708934784, -0.043978288769721985, -0.01736217923462391, 0.04129228740930557, -0.09392837435007095, -0.15831652283668518, -0.016197707504034042, -0.08371548354625702, 0.10397595167160034, -0.03304345905780792, -0.046627145260572433, -0.017865123227238655, -0.02954019047319889, 0.04380740970373154, -0.10989689826965332, 0.035784848034381866, 0.01109471544623375, 0.05120820179581642, 0.011953367851674557, -0.01127829309552908, 0.039223846048116684, 0.07814694195985794, -0.12265297025442123, -0.1024811714887619 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilgpt2-finetuned-wikitext2", "results": []}]}
text-generation
daqiao202/distilgpt2-finetuned-wikitext2
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of distilgpt2 on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# distilgpt2-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# distilgpt2-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ 66, 35, 6, 12, 8, 3, 90, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# distilgpt2-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ -0.05767754465341568, 0.053413260728120804, -0.002334789140149951, 0.07378275692462921, 0.1810668259859085, 0.032286517322063446, 0.12898963689804077, 0.09076167643070221, -0.1368378847837448, 0.036579426378011703, 0.056055549532175064, 0.11083249747753143, 0.030632730573415756, 0.10504499822854996, -0.04491505026817322, -0.25494056940078735, 0.010764596052467823, 0.015048669651150703, -0.10199642181396484, 0.10552936792373657, 0.09953317791223526, -0.10667816549539566, 0.07019686698913574, 0.011118890717625618, -0.23233255743980408, 0.02804907225072384, -0.0007057092152535915, -0.0483708530664444, 0.10827407240867615, 0.018321281298995018, 0.1193327009677887, 0.0036068602930754423, 0.127136692404747, -0.2034541219472885, 0.002707522362470627, 0.10190647840499878, 0.04021085798740387, 0.07180726528167725, 0.046084918081760406, 0.017646104097366333, 0.14962707459926605, -0.12276116013526917, 0.08183614909648895, 0.02974190190434456, -0.07069001346826553, -0.15156395733356476, -0.07826098054647446, 0.04639028012752533, 0.08656024932861328, 0.10794466733932495, 0.010218373499810696, 0.1352284699678421, -0.08402922749519348, 0.07722895592451096, 0.1919832080602646, -0.26665228605270386, -0.08787283301353455, 0.0896202027797699, 0.03563418611884117, 0.07816018909215927, -0.08412430435419083, 0.006278043147176504, 0.045417170971632004, 0.056796636432409286, 0.11968739330768585, -0.03157319501042366, -0.112131267786026, -0.021211115643382072, -0.14359121024608612, 0.022653944790363312, 0.15215890109539032, 0.0199494156986475, -0.03206092491745949, -0.05147579312324524, -0.07688435167074203, -0.050778117030858994, -0.02912718430161476, -0.07075468450784683, 0.05633154511451721, -0.025379955768585205, -0.049326688051223755, -0.07976895570755005, -0.07634970545768738, -0.049766406416893005, -0.04376554489135742, 0.13446734845638275, 0.04241614043712616, 0.01715930551290512, -0.052588362246751785, 0.08798306435346603, -0.012418140657246113, -0.10275404900312424, 0.012278757058084011, -0.003936092834919691, -0.03283750265836716, -0.06900903582572937, -0.0668279230594635, -0.04880896210670471, 0.014248421415686607, 0.1287081241607666, -0.10420770943164825, 0.0704837292432785, 0.013848318718373775, 0.011187339201569557, -0.04298834875226021, 0.13331715762615204, -0.03894724324345589, -0.045126885175704956, 0.017804861068725586, 0.056814756244421005, 0.02825220674276352, -0.010187709704041481, -0.10326605290174484, -0.0054772584699094296, 0.08169329911470413, 0.03305819630622864, -0.05347798764705658, 0.04865778610110283, -0.013061595149338245, -0.04410504922270775, -0.021204115822911263, -0.11829760670661926, 0.043868329375982285, -0.025253886356949806, -0.06517808884382248, 0.053428441286087036, 0.013757350854575634, 0.019423624500632286, -0.04256159067153931, 0.11576525121927261, -0.09155897051095963, 0.03667760267853737, -0.11601683497428894, -0.08926450461149216, 0.005346681922674179, -0.06784147769212723, -0.012091102078557014, -0.0858645960688591, -0.18717920780181885, -0.030575279146432877, 0.06517425924539566, -0.03663892671465874, -0.04258891940116882, -0.04045504704117775, -0.07890652865171432, 0.003016829025000334, -0.011964157223701477, 0.13419374823570251, -0.048392824828624725, 0.05444825440645218, 0.015743140131235123, 0.03349856287240982, -0.050108131021261215, 0.03557464852929115, -0.08025742322206497, 0.009189138188958168, -0.16048018634319305, 0.06695043295621872, -0.06269834190607071, 0.03852119296789169, -0.09153317660093307, -0.10941469669342041, -0.013337284326553345, -0.0037254076451063156, 0.05723835527896881, 0.08022302389144897, -0.18393398821353912, -0.048689160495996475, 0.14210592210292816, -0.082310251891613, -0.07833685725927353, 0.08682865649461746, -0.03684619441628456, 0.050583209842443466, 0.07737404853105545, 0.15116345882415771, 0.0744820162653923, -0.1229468509554863, -0.008696970529854298, 0.005568881519138813, 0.05029625818133354, -0.011446810327470303, 0.0298068318516016, 0.0034475899301469326, 0.03870666027069092, 0.02124469168484211, -0.060966700315475464, 0.0033405229914933443, -0.08404478430747986, -0.07825024425983429, -0.06366012990474701, -0.08952363580465317, 0.012046286836266518, 0.042530570179224014, 0.06274653971195221, -0.07372340559959412, -0.09527371823787689, 0.18360383808612823, 0.10982873290777206, -0.07345408946275711, 0.03651434928178787, -0.06852898746728897, 0.03487026318907738, -0.019560115411877632, -0.007675783708691597, -0.21173135936260223, -0.11500455439090729, 0.007955167442560196, -0.03336804732680321, 0.057195425033569336, 0.032795149832963943, 0.054094258695840836, 0.06940743327140808, -0.05171540006995201, 0.020130423828959465, -0.06765025109052658, 0.0043139467015862465, -0.10975556075572968, -0.20628225803375244, -0.03248646482825279, -0.006430448964238167, 0.15128089487552643, -0.2156551480293274, 0.03233397379517555, -0.04411657899618149, 0.11905186623334885, 0.0006927832728251815, -0.0333588682115078, -0.05689268931746483, 0.07756383717060089, -0.026184553280472755, -0.08276759088039398, 0.06410492956638336, 0.005089208483695984, -0.049397051334381104, -0.08831890672445297, -0.1449011117219925, 0.0828702300786972, 0.11618181318044662, -0.06611070036888123, -0.06839822977781296, 0.0193305816501379, -0.05775695666670799, -0.03388508781790733, -0.07200586050748825, 0.021383099257946014, 0.1785057932138443, -0.015358449891209602, 0.1327325999736786, -0.05494854599237442, -0.0504022017121315, -0.001739226863719523, -0.01777344010770321, 0.012617147527635098, 0.04604243487119675, 0.13282212615013123, -0.07119978964328766, 0.10805197060108185, 0.12000244855880737, -0.10099125653505325, 0.124616838991642, -0.024991516023874283, -0.05659851059317589, -0.004917562007904053, -0.03366400673985481, -0.020409300923347473, 0.08285675942897797, -0.1186831071972847, 0.004910286050289869, 0.010336379520595074, 0.036341648548841476, 0.061717014759778976, -0.19788993895053864, 0.007176593877375126, 0.009911683388054371, -0.02988797053694725, 0.009662570431828499, -0.027074327692389488, 0.021796291694045067, 0.09633798897266388, 0.017901472747325897, -0.014929073862731457, 0.016372988000512123, 0.005426006857305765, -0.0832442045211792, 0.18603652715682983, -0.12676675617694855, -0.15088647603988647, -0.08887012302875519, -0.00967378355562687, -0.07811629772186279, -0.016983000561594963, 0.025470083579421043, -0.1053810864686966, -0.058135297149419785, -0.06779108196496964, 0.020137296989560127, -0.030033782124519348, -0.0015873864758759737, 0.07842406630516052, 0.012788374908268452, 0.07698872685432434, -0.13012197613716125, -0.0068702902644872665, -0.03704121336340904, -0.11535826325416565, 0.0021333140321075916, 0.06418386846780777, 0.09711286425590515, 0.16063529253005981, -0.024324502795934677, 0.012276756577193737, -0.023076673969626427, 0.23553749918937683, -0.05660231411457062, 0.0012687323614954948, 0.15111632645130157, 0.019267819821834564, 0.04693151265382767, 0.0983615294098854, 0.05625520646572113, -0.11246972531080246, 0.028505416586995125, 0.07870728522539139, -0.02619023434817791, -0.2232828140258789, -0.06366678327322006, -0.04400619864463806, -0.0932234525680542, 0.06851519644260406, 0.03515832498669624, 0.03141601011157036, 0.05436769872903824, 0.01182377990335226, 0.09910521656274796, -0.008909706957638264, 0.07594896852970123, 0.15707993507385254, 0.04783846065402031, 0.1274324208498001, -0.038923654705286026, -0.03025132045149803, 0.0627095103263855, -0.01696183905005455, 0.2603047490119934, -0.0037540721241384745, 0.035455115139484406, 0.06653149425983429, 0.11013244837522507, -0.02224636822938919, 0.0318230576813221, 0.008711377158761024, -0.020870625972747803, 0.0036958095151931047, -0.05801577493548393, -0.026796020567417145, 0.006346090696752071, -0.07114790380001068, 0.037180058658123016, -0.0808580219745636, 0.054017502814531326, 0.05708295479416847, 0.23501606285572052, 0.0036096395924687386, -0.2895831763744354, -0.08155738562345505, 0.013507161289453506, -0.021065331995487213, -0.03640640154480934, 0.012247049249708652, 0.09802411496639252, -0.10848736763000488, 0.06812483817338943, -0.06082170084118843, 0.10016481578350067, -0.012684380635619164, 0.03544541448354721, 0.0840161144733429, 0.18840688467025757, 0.015694759786128998, 0.06865428388118744, -0.26596924662590027, 0.1850351095199585, 0.018380241468548775, 0.1382373571395874, -0.05615254119038582, 0.029612869024276733, 0.02402709424495697, 0.10967158526182175, 0.0401948019862175, 0.0019807966891676188, -0.03540237993001938, -0.1337309032678604, -0.029814133420586586, 0.052381519228219986, 0.12993690371513367, 0.009413267485797405, 0.08179088681936264, -0.06174466386437416, 0.015011229552328587, 0.06536705791950226, -0.06695733964443207, -0.17819450795650482, -0.12384943664073944, 0.008023335598409176, 0.024178029969334602, -0.06726738065481186, -0.0613245889544487, -0.1007741391658783, -0.07648610323667526, 0.21299660205841064, 0.019100451841950417, -0.03830304369330406, -0.12857407331466675, 0.09834828972816467, 0.08706679195165634, -0.05881860479712486, 0.02410755306482315, 0.010699045844376087, 0.10236116498708725, 0.03587150573730469, -0.12037678062915802, 0.06183914467692375, -0.08653926849365234, -0.13562507927417755, -0.034759532660245895, 0.08664534240961075, 0.0448588952422142, 0.04217009246349335, -0.0004607218725141138, 0.020579343661665916, 0.009308691136538982, -0.10745059698820114, -0.017787542194128036, 0.09132566303014755, 0.07569809257984161, 0.04490217939019203, -0.09779974818229675, -0.014818132854998112, -0.038906730711460114, -0.014038968831300735, 0.12776876986026764, 0.1799343228340149, -0.07619326561689377, 0.03872121497988701, 0.05860660597681999, -0.10627678781747818, -0.19180411100387573, 0.10343639552593231, 0.09256555885076523, -0.016801364719867706, 0.033471643924713135, -0.2000279575586319, 0.18093013763427734, 0.13975182175636292, -0.010127359069883823, 0.08805318176746368, -0.3362581431865692, -0.13862642645835876, 0.05736896023154259, 0.13403423130512238, 0.08547883480787277, -0.14972250163555145, -0.018586989492177963, -0.05783310532569885, -0.15566004812717438, 0.14759992063045502, -0.13686880469322205, 0.10238413512706757, -0.0005402402603067458, 0.08289699256420135, 0.004808095283806324, -0.03582271188497543, 0.12877458333969116, 0.024138478562235832, 0.08573851734399796, -0.061959367245435715, 0.04723741114139557, 0.08746840804815292, -0.045670077204704285, 0.018145348876714706, -0.027586305513978004, 0.049210596829652786, -0.060338813811540604, -0.023794889450073242, -0.07122977077960968, 0.061962150037288666, -0.04408062994480133, -0.07405503839254379, -0.04774267598986626, 0.03059552051126957, 0.0560876689851284, -0.028257936239242554, 0.08110648393630981, 0.018847409635782242, 0.14622808992862701, 0.055970851331949234, 0.10090450942516327, -0.09370483458042145, -0.06143173947930336, -0.0007693292573094368, -0.014130319468677044, 0.058980848640203476, -0.12377795577049255, 0.02550514042377472, 0.13103105127811432, 0.027549609541893005, 0.1175200343132019, 0.07342929393053055, -0.024235092103481293, 0.0051788748241961, 0.05178297311067581, -0.1307544857263565, -0.14170396327972412, 0.004479826427996159, -0.06976640224456787, -0.09591247141361237, 0.06270216405391693, 0.11826718598604202, -0.06572353839874268, -0.0029353343416005373, -0.008914453908801079, 0.014400442130863667, -0.049106717109680176, 0.18399293720722198, 0.02161223255097866, 0.04031187295913696, -0.09202195703983307, 0.11233872175216675, 0.05154760181903839, -0.06632886081933975, 0.03309198096394539, 0.09457163512706757, -0.10109816491603851, -0.023811371996998787, 0.07989383488893509, 0.13855807483196259, -0.08205714821815491, -0.04834241420030594, -0.09622492641210556, -0.11644627898931503, 0.041196104139089584, 0.13457126915454865, 0.07244309037923813, -0.027516890317201614, -0.05711383372545242, 0.05540637671947479, -0.16064681112766266, 0.057081881910562515, 0.014897852204740047, 0.08182696253061295, -0.15821555256843567, 0.15208201110363007, 0.03849170356988907, 0.03466178476810455, -0.02885943464934826, 0.027369022369384766, -0.10272644460201263, -0.01681000553071499, -0.15089061856269836, -0.045845963060855865, -0.03572507202625275, -0.0020447997376322746, -0.004090005997568369, -0.037206295877695084, -0.07203835994005203, 0.05200713500380516, -0.0720919594168663, -0.05236607789993286, 0.011938773095607758, 0.029786337167024612, -0.13509228825569153, 0.018024252727627754, 0.0044046384282410145, -0.08015621453523636, 0.0556068941950798, 0.058685243129730225, 0.014126027934253216, 0.07448405027389526, -0.1560802459716797, -0.030827077105641365, 0.062310781329870224, 0.03952426090836525, 0.08322962373495102, -0.057500019669532776, -0.011905805207788944, 0.013175446540117264, 0.10317951440811157, 0.022966913878917694, 0.08917557448148727, -0.10872798413038254, 0.009506745263934135, -0.07755962759256363, -0.06771667301654816, -0.05212441831827164, 0.030158396810293198, 0.11403802037239075, 0.03597964346408844, 0.18940362334251404, -0.09031691402196884, 0.02191111259162426, -0.1935565173625946, -0.02352864481508732, -0.0052644433453679085, -0.04960686340928078, -0.05851159989833832, -0.045608945190906525, 0.07100988179445267, -0.06221650540828705, 0.13250017166137695, 0.011969860643148422, 0.09756214916706085, 0.05038849636912346, -0.02978973090648651, -0.059141844511032104, 0.010250442661345005, 0.19079746305942535, 0.07201534509658813, -0.008720296435058117, 0.07308909296989441, 0.028079241514205933, 0.08696923404932022, 0.04097725450992584, 0.24289776384830475, 0.13474681973457336, -0.07541375607252121, 0.07912043482065201, 0.04801107943058014, -0.08411016315221786, -0.16836370527744293, 0.1104256734251976, -0.06084757670760155, 0.11435922235250473, -0.05719204246997833, 0.1635637879371643, 0.10541386902332306, -0.15691381692886353, 0.03584953397512436, -0.06988215446472168, -0.10134408622980118, -0.14184100925922394, -0.023779060691595078, -0.08271610736846924, -0.14420688152313232, 0.010483460500836372, -0.13583290576934814, 0.03779406100511551, 0.11198308318853378, 0.013973867520689964, 0.005029826890677214, 0.15259981155395508, -0.03389550372958183, 0.0031620271038264036, 0.03146946802735329, -0.0021237207110971212, -0.019745824858546257, -0.06912337243556976, -0.06273312121629715, 0.0024248016998171806, 0.02054138481616974, 0.08119893074035645, -0.042370669543743134, -0.039602961391210556, 0.032560646533966064, -0.03559871390461922, -0.052706263959407806, 0.030306093394756317, 0.029980631545186043, 0.023854296654462814, 0.03166117146611214, 0.02737130969762802, -0.027875808998942375, -0.02898954413831234, 0.2729865312576294, -0.080532006919384, -0.13724157214164734, -0.12031212449073792, 0.2555483281612396, 0.041319187730550766, -0.01354887429624796, 0.05252625048160553, -0.08676505833864212, -0.03224460780620575, 0.20813508331775665, 0.189604714512825, -0.09816279262304306, -0.02753286063671112, -0.007631762884557247, -0.016702810302376747, -0.06603317707777023, 0.16167686879634857, 0.13533145189285278, 0.0694461464881897, -0.05231596529483795, -0.02693142555654049, -0.02199392579495907, -0.014695735648274422, -0.09898453205823898, 0.03294362127780914, 0.02640276774764061, 0.005593993701040745, -0.008731188252568245, 0.06892841309309006, -0.026329349726438522, -0.14027714729309082, 0.03383972495794296, -0.1536150872707367, -0.16570945084095, -0.011771593242883682, 0.09990358352661133, -0.05655710771679878, 0.056541379541158676, -0.019859323278069496, -0.01483618002384901, 0.1197090744972229, -0.026971887797117233, -0.052497610449790955, -0.08701876550912857, 0.09380345791578293, -0.0972750335931778, 0.19673700630664825, -0.02356594242155552, 0.07266554236412048, 0.11512617766857147, 0.04058253765106201, -0.1009167730808258, 0.05759561061859131, 0.03292481228709221, -0.08942651003599167, 0.02726159617304802, 0.1113857701420784, -0.05537507310509682, 0.060326457023620605, 0.0537211149930954, -0.13492900133132935, -0.008359739556908607, -0.027929134666919708, -0.03771990165114403, -0.04535830020904541, -0.0289812833070755, -0.0962851271033287, 0.1311664581298828, 0.20719413459300995, -0.007497219368815422, 0.026998745277523994, -0.09295520186424255, 0.030178183689713478, 0.04118269681930542, 0.11656463891267776, -0.06313980370759964, -0.24716126918792725, 0.014278440736234188, 0.014392460696399212, -0.004432914778590202, -0.21523207426071167, -0.07866694778203964, 0.028956377878785133, -0.04587678983807564, -0.08914976567029953, 0.1033162847161293, 0.09176323562860489, 0.03946145996451378, -0.049853917211294174, -0.1348673552274704, -0.06651085615158081, 0.16671395301818848, -0.15985910594463348, -0.06218515336513519 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
automatic-speech-recognition
dark-knight/wav2vec2-base-timit-demo-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-base-timit-demo-colab This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
[ "# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 2\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 2\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ 56, 39, 6, 12, 8, 3, 117, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 2\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ -0.09822136908769608, 0.10031651705503464, -0.0026886339765042067, 0.04869111627340317, 0.11540121585130692, 0.010075119324028492, 0.09506874531507492, 0.11104600876569748, -0.04898194968700409, 0.08360990881919861, 0.08201102912425995, 0.03290941193699837, 0.07248392701148987, 0.1691625565290451, -0.03142571076750755, -0.21632321178913116, 0.02383321151137352, -0.03942233324050903, -0.07351218163967133, 0.09049592912197113, 0.07746371626853943, -0.0995897650718689, 0.06436187028884888, 0.011982266791164875, -0.1485293209552765, 0.01870468258857727, -0.031696368008852005, -0.07292451709508896, 0.1069280356168747, 0.017034681513905525, 0.062477465718984604, 0.0327269583940506, 0.13654473423957825, -0.23204191029071808, 0.002700889715924859, 0.09739761054515839, 0.02475934848189354, 0.0709611251950264, 0.07499252259731293, 0.0008436324424110353, 0.1274024099111557, -0.15606744587421417, 0.1044204831123352, 0.0492577888071537, -0.08590315282344818, -0.19359301030635834, -0.08394429087638855, 0.07382650673389435, 0.1067831888794899, 0.09667292982339859, -0.009762126952409744, 0.08022068440914154, -0.08617869019508362, 0.06845884025096893, 0.20464220643043518, -0.2361132949590683, -0.061775460839271545, 0.005400059744715691, 0.05077572911977768, 0.026445860043168068, -0.09951234608888626, 0.01707056537270546, 0.027651797980070114, 0.04418998211622238, 0.09451857954263687, -0.011457045562565327, -0.06190948560833931, -0.019579220563173294, -0.12389674782752991, -0.0011641810415312648, 0.07924670726060867, 0.06532852351665497, -0.047099143266677856, -0.10532339662313461, -0.04860866069793701, -0.053679902106523514, -0.02982310950756073, -0.05898696556687355, 0.028312111273407936, -0.03225298970937729, -0.06963469833135605, -0.042741261422634125, -0.05858681723475456, -0.05938218906521797, 0.01152423582971096, 0.10616740584373474, 0.020006433129310608, 0.02235669456422329, -0.03467487171292305, 0.07623502612113953, 0.03915131837129593, -0.10991568118333817, 0.012202080339193344, -0.009963100776076317, -0.11873573064804077, -0.028797009959816933, -0.03709086403250694, 0.009886185638606548, 0.0190399419516325, 0.11909637600183487, -0.04805002734065056, 0.11245502531528473, -0.005921510048210621, -0.007243943400681019, -0.02078690007328987, 0.11510112881660461, -0.04139607399702072, -0.0697672888636589, -0.01946125738322735, 0.07229708880186081, -0.006273468490689993, -0.026991067454218864, -0.058163873851299286, -0.0070131332613527775, 0.06326840817928314, 0.05404510349035263, -0.04081312566995621, 0.005009683780372143, -0.04769463837146759, -0.020183566957712173, -0.0017046041321009398, -0.11409901082515717, 0.053806181997060776, 0.026316579431295395, -0.05295644327998161, 0.02711986005306244, 0.01866368018090725, 0.009520445950329304, -0.04120416194200516, 0.09137341380119324, -0.049791913479566574, -0.016453556716442108, -0.049243129789829254, -0.053964294493198395, 0.021616699174046516, -0.08175189048051834, -0.025739867240190506, -0.0766306146979332, -0.1482309103012085, -0.04794716462492943, 0.06736858189105988, -0.06564580649137497, -0.021822772920131683, -0.039189912378787994, -0.046149104833602905, 0.040579915046691895, -0.02522807940840721, 0.170011967420578, -0.05731501802802086, 0.04562753066420555, -0.03967157006263733, 0.057252902537584305, 0.03468082845211029, 0.0466722808778286, -0.0322311706840992, 0.03087524324655533, -0.12335339933633804, 0.09097233414649963, -0.09720088541507721, 0.007161931600421667, -0.13756708800792694, -0.08081597089767456, 0.008340618573129177, -0.006121991202235222, 0.07988131046295166, 0.11850832402706146, -0.23297660052776337, -0.05336250737309456, 0.12414859980344772, -0.08424724638462067, -0.04758552834391594, 0.09182775020599365, -0.03140738606452942, 0.005582988727837801, 0.055384561419487, 0.18087616562843323, 0.05819730833172798, -0.1530810296535492, -0.0005071160849183798, -0.003525273874402046, 0.04462101683020592, 0.02532336674630642, 0.0301860012114048, -0.032825224101543427, 0.02993590384721756, -0.001679842360317707, -0.01392425037920475, -0.009235205128788948, -0.07544253766536713, -0.0717267170548439, -0.035539411008358, -0.08239813148975372, 0.013470390811562538, -0.003960026428103447, -0.0017672714311629534, -0.07533589005470276, -0.10312307626008987, 0.05521975830197334, 0.10635070502758026, -0.0641513392329216, 0.03242538869380951, -0.06839725375175476, 0.0036828890442848206, 0.037272099405527115, -0.013570060953497887, -0.17717869579792023, -0.05983258783817291, 0.02415424771606922, -0.10003339499235153, 0.023289430886507034, 0.026034772396087646, 0.050161611288785934, 0.04526452347636223, -0.03606612607836723, -0.01599663868546486, -0.09820333123207092, 0.023347606882452965, -0.0769529715180397, -0.21496112644672394, -0.05310135707259178, -0.034566160291433334, 0.13169683516025543, -0.20073966681957245, -0.011233762837946415, 0.032816082239151, 0.1420471966266632, 0.03228545933961868, -0.056993063539266586, -0.011859849095344543, 0.047849807888269424, 0.03219752758741379, -0.0962645411491394, 0.04576939716935158, 0.003276279428973794, -0.07968458533287048, -0.030282091349363327, -0.12437830865383148, 0.010227963328361511, 0.09094203263521194, 0.05710923671722412, -0.09047120064496994, -0.003198579652234912, -0.07118864357471466, -0.0346372090280056, -0.07600616663694382, 0.014399249106645584, 0.21318835020065308, 0.03716344013810158, 0.09260588884353638, -0.05901993811130524, -0.06577268987894058, 0.028873343020677567, 0.015655258670449257, -0.021484769880771637, 0.09122425317764282, 0.09906816482543945, -0.08166446536779404, 0.05569739639759064, 0.11397963762283325, 0.002351167378947139, 0.1289294958114624, -0.03408857807517052, -0.07067286968231201, -0.01991141028702259, -0.02733449824154377, -0.018394919112324715, 0.12864921987056732, -0.10225965082645416, 0.01159925851970911, 0.017011407762765884, 0.040411319583654404, 0.040834516286849976, -0.15945041179656982, 0.015464622527360916, 0.00891919806599617, -0.059362251311540604, -0.024264540523290634, -0.008080950006842613, 0.0269508995115757, 0.0831603929400444, 0.032386355102062225, -0.012888866476714611, 0.00437599141150713, -0.0229042898863554, -0.0975509062409401, 0.1628226637840271, -0.13145089149475098, -0.18556436896324158, -0.06746169179677963, 0.02551409788429737, -0.04520226642489433, -0.03614863008260727, 0.029790567234158516, -0.11978790909051895, -0.06811358034610748, -0.08279606699943542, 0.02224750444293022, -0.031023520976305008, 0.023362159729003906, 0.09588081389665604, 0.015280447900295258, 0.0765894278883934, -0.11599595099687576, -0.00790401455014944, -0.04396669566631317, -0.04402893781661987, -0.01249193400144577, 0.08304499834775925, 0.05568902939558029, 0.10388395935297012, 0.012311676517128944, 0.0320957712829113, -0.027783846482634544, 0.23719091713428497, -0.07461174577474594, 0.04186456277966499, 0.13331465423107147, -0.004235606640577316, 0.042962171137332916, 0.10556352138519287, 0.029766108840703964, -0.1214379146695137, 0.03393588215112686, 0.07700977474451065, -0.018706578761339188, -0.23282620310783386, -0.05695449560880661, -0.03076130710542202, -0.061121221631765366, 0.1031009703874588, 0.03499177470803261, -0.055696845054626465, 0.01753094792366028, 0.01665269210934639, 0.004136728122830391, 0.005706354975700378, 0.050901446491479874, 0.08315332978963852, 0.040814608335494995, 0.09087428450584412, -0.02155410870909691, 0.0068749841302633286, 0.08468039333820343, -0.0237272996455431, 0.24382814764976501, 0.011901390738785267, 0.026533644646406174, 0.06433955579996109, 0.10978764295578003, -0.01470277551561594, 0.041326578706502914, 0.02190753072500229, -0.018678657710552216, -0.002523388247936964, -0.05771046504378319, -0.01901262439787388, 0.02697214111685753, 0.015356127172708511, -0.013114101253449917, -0.10147380083799362, 0.03826991468667984, 0.02536952495574951, 0.2938023507595062, 0.055447548627853394, -0.2405926138162613, -0.05835244804620743, -0.005123781971633434, -0.06721394509077072, -0.06282110512256622, 0.02398882433772087, 0.12383129447698593, -0.12927113473415375, 0.10389399528503418, -0.04461393877863884, 0.08518045395612717, -0.028180982917547226, 0.02107875421643257, 0.052566926926374435, 0.12555080652236938, -0.003337328787893057, 0.04449088126420975, -0.21947915852069855, 0.22655893862247467, 0.014945420436561108, 0.1189904734492302, -0.07006847858428955, 0.031154707074165344, 0.012877280823886395, 0.002680006669834256, 0.10319987684488297, 0.008288756012916565, -0.11002355068922043, -0.11091630160808563, -0.07607074826955795, 0.0508323609828949, 0.1306571364402771, -0.026512060314416885, 0.06221667677164078, -0.026862237602472305, 0.0011341618373990059, 0.039492763578891754, -0.01983671635389328, -0.2029762864112854, -0.125960573554039, 0.003051097271963954, 0.030549751594662666, -0.010576593689620495, -0.07572924345731735, -0.08949828147888184, -0.03630950674414635, 0.1399174928665161, -0.006584739778190851, -0.02290009893476963, -0.15945017337799072, 0.05120998993515968, 0.13564454019069672, -0.044369034469127655, 0.03598145395517349, 0.03045986220240593, 0.12792646884918213, 0.012541328556835651, -0.09891251474618912, 0.06838274747133255, -0.10281477868556976, -0.1949223279953003, -0.049256790429353714, 0.14016322791576385, 0.09628766030073166, 0.03168439865112305, 0.01433984562754631, 0.025936875492334366, 0.012620747089385986, -0.1029796302318573, 0.07091005891561508, 0.09459003061056137, 0.039150670170784, 0.02432049624621868, -0.0407414436340332, -0.019861804321408272, -0.02999381721019745, -0.029118431732058525, 0.10945145040750504, 0.2341136485338211, -0.08019962906837463, 0.1349755823612213, 0.11979645490646362, -0.06845554709434509, -0.1681833565235138, 0.06937072426080704, 0.11953451484441757, 0.01647830195724964, 0.038121312856674194, -0.20105770230293274, 0.1232510507106781, 0.0995081439614296, -0.008596292696893215, 0.02303393930196762, -0.276645302772522, -0.14000453054904938, 0.08687260746955872, 0.08640260249376297, 0.04022964835166931, -0.07956040650606155, -0.02416086755692959, -0.06473786383867264, -0.09876181930303574, 0.1451219916343689, -0.12709662318229675, 0.09573256224393845, 0.011050279252231121, 0.07140462845563889, 0.0030769051518291235, -0.025574706494808197, 0.12988808751106262, 0.0421256460249424, 0.07197012007236481, -0.031485773622989655, 0.0735345110297203, 0.002351385774090886, -0.055576931685209274, 0.019337845966219902, -0.05114155262708664, 0.05617530643939972, -0.1011941060423851, -0.02338780276477337, -0.08795051276683807, 0.06775130331516266, -0.05599813163280487, -0.05433350428938866, -0.031054072082042694, 0.049596793949604034, 0.0761168971657753, -0.0413966104388237, -0.03364689275622368, -0.01136021502315998, 0.08390020579099655, 0.10032602399587631, 0.10220123082399368, -0.056393373757600784, -0.06359633803367615, 0.005285021383315325, -0.03273138031363487, 0.05156053230166435, -0.07229377329349518, 0.030807435512542725, 0.11219735443592072, 0.02807730622589588, 0.12478308379650116, 0.037785448133945465, -0.0777670219540596, -0.011179354973137379, 0.034065280109643936, -0.11598067730665207, -0.12027881294488907, 0.01575176604092121, -0.017183998599648476, -0.08892185240983963, 0.008589740842580795, 0.13740018010139465, -0.038180477917194366, -0.004468736704438925, -0.01444199588149786, 0.03395629674196243, -0.03696875646710396, 0.17958690226078033, 0.025144027546048164, 0.0692799836397171, -0.10012829303741455, 0.13885675370693207, 0.03408821299672127, -0.10437273979187012, 0.09087605774402618, 0.09061688184738159, -0.09067001193761826, -0.014114908874034882, 0.0652497261762619, 0.16031131148338318, 0.012123444117605686, -0.0563996359705925, -0.0596541166305542, -0.14278869330883026, 0.08401091396808624, 0.1525184065103531, 0.01618862897157669, -0.019332636147737503, -0.05087056756019592, 0.024368733167648315, -0.11153512448072433, 0.05704215168952942, 0.050766535103321075, 0.02850606106221676, -0.11544248461723328, 0.10819324851036072, 0.023228514939546585, 0.022524936124682426, -0.01742381975054741, 0.01713494583964348, -0.11409138143062592, -0.00964105874300003, -0.14491549134254456, -0.021572478115558624, -0.0355575866997242, 0.0064300778321921825, -0.012400368228554726, -0.04295984283089638, -0.04913508892059326, 0.03295288607478142, -0.07408600300550461, -0.05139947682619095, -0.0014766528038308024, 0.04166518896818161, -0.14348620176315308, 0.010412323288619518, 0.018849747255444527, -0.10154347866773605, 0.08705652505159378, 0.04607600346207619, 0.004003607667982578, 0.03592054918408394, -0.12625941634178162, -0.03352633863687515, 0.025249287486076355, 0.016713637858629227, 0.06894844770431519, -0.12467393279075623, -0.022248636931180954, -0.020826326683163643, 0.04275868833065033, 0.022441605105996132, 0.09535302221775055, -0.09026515483856201, -0.013971519656479359, -0.06784263998270035, -0.06142374128103256, -0.049867067486047745, 0.03538975119590759, 0.11849523335695267, 0.04944770410656929, 0.1476268172264099, -0.09288802742958069, 0.05092686414718628, -0.18175122141838074, -0.034217264503240585, -0.008655952289700508, -0.003527014749124646, -0.017079833894968033, -0.035378966480493546, 0.10635527223348618, -0.050542816519737244, 0.12132331728935242, -0.013407708145678043, 0.07952001690864563, 0.0424182191491127, -0.1137983500957489, -0.10704958438873291, 0.023726463317871094, 0.15198352932929993, 0.050791021436452866, -0.0009338112431578338, 0.07704338431358337, -0.022728273645043373, 0.06264743953943253, 0.07107214629650116, 0.2378619760274887, 0.1737879514694214, 0.011111236177384853, 0.07081406563520432, 0.07121659070253372, -0.13364776968955994, -0.12340626120567322, 0.1425618827342987, -0.0890885666012764, 0.13182416558265686, -0.0662093237042427, 0.14215995371341705, 0.04664696007966995, -0.18634817004203796, 0.048455722630023956, -0.04060123860836029, -0.09313292056322098, -0.12648774683475494, -0.033975835889577866, -0.06838914006948471, -0.13818301260471344, 0.024219080805778503, -0.1024828553199768, 0.0526055172085762, 0.046099837869405746, 0.02947738766670227, 0.0285511277616024, 0.12071073800325394, -0.043562497943639755, -0.011424595490098, 0.09994730353355408, 0.03192519396543503, -0.033641379326581955, -0.04608900099992752, -0.07280096411705017, 0.024450311437249184, 0.03612520918250084, 0.060514893382787704, -0.02777894400060177, -0.0625533014535904, 0.04369787126779556, 0.004536020569503307, -0.06316788494586945, 0.03541624918580055, -0.018644731491804123, 0.04077686369419098, 0.06473543494939804, 0.06504664570093155, -0.018947327509522438, -0.02947838418185711, 0.2463853508234024, -0.08693532645702362, -0.0846601352095604, -0.14074502885341644, 0.16594216227531433, 0.009925712831318378, -0.0011673979461193085, 0.0384908951818943, -0.08624200522899628, -0.053192317485809326, 0.17869527637958527, 0.13761354982852936, -0.08130504190921783, -0.006879032589495182, -0.022966792806982994, -0.01151210255920887, -0.04400048404932022, 0.15757407248020172, 0.11187181621789932, 0.05133672431111336, -0.04617568105459213, -0.013581929728388786, -0.020712455734610558, -0.07328742742538452, -0.06972701102495193, 0.10511774569749832, 0.010815433226525784, -0.011811387725174427, -0.02915598824620247, 0.09760849177837372, -0.01443600282073021, -0.220427006483078, 0.026369092985987663, -0.15650130808353424, -0.17470401525497437, -0.01241168100386858, 0.05808364972472191, -0.0035841623321175575, 0.04916897043585777, 0.0018046514596790075, -0.00474971579387784, 0.13976019620895386, -0.007502707187086344, -0.017132755368947983, -0.10902900993824005, 0.08140187710523605, -0.08523951470851898, 0.18561366200447083, -0.007250939030200243, 0.036997366696596146, 0.09325192123651505, 0.058304715901613235, -0.12155425548553467, 0.037413500249385834, 0.05201146751642227, -0.07922051101922989, 0.017334917560219765, 0.1514091193675995, -0.05434528738260269, 0.07629355043172836, 0.059039875864982605, -0.1332836151123047, -0.015637701377272606, -0.040696945041418076, -0.027395354583859444, -0.053305987268686295, 0.006770340725779533, -0.07342703640460968, 0.14813032746315002, 0.17492744326591492, -0.0429493673145771, 0.014749230816960335, -0.07170068472623825, 0.04543095454573631, 0.006512448191642761, 0.0721341148018837, -0.03209974244236946, -0.22570498287677765, 0.030929679051041603, 0.01600499078631401, 0.020604930818080902, -0.18761752545833588, -0.09571290761232376, 0.031386781483888626, -0.04300810024142265, -0.057728830724954605, 0.11238758265972137, 0.016415126621723175, 0.02139434777200222, -0.03570900484919548, -0.09418381005525589, -0.016033323481678963, 0.16115497052669525, -0.15028181672096252, -0.027642399072647095 ]
null
null
transformers
# Chicken Bot's Jon Snow DialoGPT Model
{"tags": ["conversational"]}
text-generation
darkzek/chickenbot-jon-snow
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Chicken Bot's Jon Snow DialoGPT Model
[ "# Chicken Bot's Jon Snow DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Chicken Bot's Jon Snow DialoGPT Model" ]
[ 51, 12 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Chicken Bot's Jon Snow DialoGPT Model" ]
[ -0.012164096347987652, 0.12548579275608063, -0.0020508691668510437, 0.021131398156285286, 0.09048929810523987, 0.010746951214969158, 0.1307479441165924, 0.11749953776597977, -0.005824715364724398, -0.09567778557538986, 0.1415189653635025, 0.18618382513523102, 0.033763203769922256, 0.11262229084968567, -0.03624000772833824, -0.2431916743516922, 0.04176326468586922, 0.03241255134344101, -0.03028245083987713, 0.12735149264335632, 0.03212449699640274, -0.030447226017713547, 0.06565528362989426, 0.032379209995269775, -0.1233232393860817, -0.016945581883192062, 0.028968393802642822, -0.06268159300088882, 0.16159552335739136, 0.032165806740522385, -0.0068315984681248665, 0.004310564137995243, -0.03345116972923279, -0.1080164760351181, 0.0439772792160511, -0.017567748203873634, -0.038353484123945236, 0.05129820853471756, -0.02789352275431156, -0.02581489086151123, 0.17851631343364716, 0.07035084813833237, 0.002383433748036623, 0.09649290144443512, -0.09294383227825165, -0.01109675969928503, 0.07393097877502441, 0.030318686738610268, 0.06430987268686295, 0.14434964954853058, -0.03556519001722336, 0.111546590924263, -0.06708794832229614, 0.15287794172763824, 0.0386025495827198, -0.3269940912723541, -0.0334930419921875, 0.1012423038482666, -0.0032132526393979788, 0.01862667314708233, -0.047017429023981094, 0.1001005619764328, 0.051107145845890045, -0.009713702835142612, -0.13851237297058105, -0.033262286335229874, -0.055394381284713745, -0.012651769444346428, -0.09092438220977783, 0.008856973610818386, 0.18084800243377686, -0.03358267992734909, 0.03468974307179451, -0.05910864099860191, -0.09114353358745575, -0.054594736546278, -0.024312250316143036, -0.061997946351766586, -0.08477906882762909, 0.07610940933227539, -0.09131032973527908, -0.13359007239341736, -0.09703008085489273, -0.01882074400782585, -0.13332174718379974, 0.17227427661418915, 0.007504707667976618, 0.04598762094974518, -0.2506268620491028, 0.09760323911905289, 0.0877981036901474, -0.08706258982419968, -0.0018826669547706842, -0.04628155753016472, -0.007453437894582748, 0.011083136312663555, -0.03250012919306755, -0.08419723808765411, 0.0913911759853363, 0.14943043887615204, 0.045144520699977875, 0.03032722696661949, -0.055593252182006836, -0.02942822128534317, 0.02073490619659424, 0.05561637505888939, 0.03838324919342995, -0.12177480012178421, -0.009871875867247581, -0.06376052647829056, 0.022853415459394455, -0.07592914253473282, -0.16423864662647247, -0.02722340077161789, 0.07879450917243958, 0.026891613379120827, 0.11256354302167892, 0.0911201685667038, -0.021562719717621803, -0.018395205959677696, 0.03793129324913025, 0.004814582411199808, -0.027405554428696632, 0.0541960746049881, 0.013271667063236237, 0.06771984696388245, -0.04067695140838623, 0.10997278988361359, -0.060530874878168106, -0.038256365805864334, -0.043119437992572784, -0.028706392273306847, 0.0387447215616703, -0.018803367391228676, -0.025837810710072517, -0.07641495764255524, 0.02183043211698532, -0.13699576258659363, -0.09597167372703552, 0.0197745431214571, -0.049077536910772324, -0.032449036836624146, -0.171873077750206, -0.14594514667987823, -0.029008474200963974, 0.05322113260626793, -0.009145185351371765, 0.03536825627088547, -0.05683739483356476, 0.025478361174464226, -0.07311812788248062, 0.09978663921356201, -0.07477938383817673, 0.022806648164987564, -0.10579785704612732, -0.06946434080600739, 0.030843563377857208, 0.13947159051895142, -0.015816709026694298, 0.10666388273239136, -0.009656514972448349, 0.0156465545296669, -0.08357633650302887, -0.01906743086874485, -0.06820252537727356, 0.3014201521873474, -0.13552072644233704, -0.10693137347698212, 0.18428188562393188, -0.0573662705719471, -0.08782728761434555, 0.15148994326591492, 0.021703945472836494, 0.06074215844273567, 0.20406866073608398, 0.2111181616783142, -0.03557932376861572, -0.021635044366121292, 0.09059508144855499, 0.1774815022945404, -0.11437193304300308, 0.033840328454971313, 0.018519507721066475, -0.00930134579539299, -0.14667965471744537, 0.0027825268916785717, 0.1462477296590805, 0.1009313091635704, -0.018184516578912735, -0.06198330596089363, 0.022422509267926216, -0.03318457305431366, 0.09392420947551727, -0.006023176945745945, 0.09304866194725037, -0.04839024692773819, -0.040602974593639374, -0.15913358330726624, -0.0060797822661697865, 0.0046395184472203255, 0.06354790180921555, -0.02805260382592678, 0.05372099205851555, 0.03485345095396042, 0.033767033368349075, -0.09388186782598495, -0.07667533308267593, -0.0837867259979248, 0.10534117370843887, 0.11105193942785263, 0.15529631078243256, 0.07563339918851852, -0.03277018666267395, 0.026602158322930336, 0.021569324657320976, 0.15919160842895508, 0.02606608346104622, -0.14561201632022858, -0.15415875613689423, 0.08408371359109879, -0.059621360152959824, 0.25260254740715027, -0.019263887777924538, 0.029301226139068604, 0.0511603057384491, 0.13904176652431488, 0.004825287032872438, -0.01599174551665783, 0.061634618788957596, -0.06365083903074265, -0.05818353593349457, 0.021456124261021614, 0.09151242673397064, -0.01255393773317337, -0.2137448936700821, 0.18054307997226715, -0.034405168145895004, 0.06909008324146271, 0.17206135392189026, -0.12711133062839508, 0.007256857585161924, -0.0408734492957592, -0.02440508082509041, -0.001246448140591383, 0.09608449041843414, 0.006533573381602764, 0.322070837020874, 0.0018391533521935344, 0.0975298061966896, 0.01485730241984129, -0.02111157961189747, -0.043725255876779556, -0.02678791992366314, -0.016772057861089706, 0.10263597965240479, 0.08155051618814468, -0.17670127749443054, 0.10819874703884125, 0.061289895325899124, 0.1491304337978363, 0.23848901689052582, 0.06878961622714996, 0.05242249369621277, 0.06529273092746735, -0.056838005781173706, -0.06213683634996414, -0.04608263075351715, -0.2811989188194275, 0.013760428875684738, 0.04621272161602974, -0.020045610144734383, 0.09908440709114075, -0.1288001835346222, -0.039598576724529266, 0.029130904003977776, -0.026722287759184837, 0.02434968389570713, 0.0470750592648983, -0.014159969054162502, 0.09782546013593674, 0.008207018487155437, -0.14913587272167206, 0.07700346410274506, 0.008806053549051285, -0.08233097195625305, 0.16177886724472046, -0.14686065912246704, -0.3422957956790924, -0.08484727889299393, -0.12025532871484756, -0.09933030605316162, 0.027142804116010666, 0.11196781694889069, -0.1775386929512024, -0.0027111682575196028, 0.004396998323500156, 0.07990195602178574, -0.08731863647699356, 0.05743345990777016, -0.03643861413002014, -0.02909412793815136, -0.11352888494729996, -0.10672685503959656, -0.028493231162428856, -0.08318709582090378, -0.07074194401502609, 0.07241540402173996, -0.08339249342679977, 0.037413340061903, 0.1617845892906189, 0.07437241822481155, 0.04246963933110237, -0.038445036858320236, 0.2395605444908142, -0.09736920893192291, 0.021724795922636986, 0.09510771930217743, -0.0003962745831813663, 0.03833746165037155, 0.14819888770580292, -0.020086081698536873, -0.041618578135967255, 0.011941714212298393, -0.044525276869535446, -0.06184013560414314, -0.1768461912870407, -0.08007978647947311, -0.09146057814359665, 0.18499426543712616, 0.06283710151910782, 0.040007393807172775, 0.13132059574127197, 0.08725902438163757, -0.04043008014559746, -0.07332862913608551, 0.07152529805898666, 0.05903288349509239, 0.21734540164470673, -0.05555964261293411, 0.15206113457679749, 0.009339723736047745, -0.13634797930717468, 0.0779295414686203, -0.00572678679600358, -0.02899722382426262, 0.1143125668168068, 0.07108744233846664, -0.039154358208179474, 0.03767760843038559, 0.1169910654425621, 0.09054309129714966, 0.04539394751191139, -0.026798268780112267, -0.01626068353652954, -0.02236616238951683, -0.08914459496736526, 0.08493921160697937, 0.1202552542090416, -0.12207084149122238, 0.028422825038433075, 0.12678217887878418, 0.01836947351694107, 0.08690749108791351, 0.12839746475219727, -0.14350242912769318, -0.03321612626314163, 0.03405222296714783, -0.0639946460723877, -0.07590939104557037, 0.11430580914020538, -0.01488711591809988, -0.14998796582221985, 0.0752556100487709, -0.03544526919722557, 0.09198285639286041, -0.01060796994715929, 0.09729953855276108, -0.09645497798919678, -0.12158170342445374, -0.01489232573658228, 0.10412383079528809, -0.2457808554172516, 0.1032402515411377, -0.026034045964479446, -0.06796392798423767, -0.11818923056125641, -0.02446865104138851, 0.01823519356548786, 0.1153501644730568, 0.08772174268960953, -0.015048904344439507, 0.0345517061650753, 0.0006246306584216654, -0.1557631939649582, 0.0521913506090641, 0.04237792268395424, -0.07979170233011246, -0.008215492591261864, -0.027616465464234352, 0.015923840925097466, -0.0006552894483320415, -0.06739947944879532, -0.023906100541353226, -0.1920497566461563, 0.04683125019073486, 0.05445088818669319, 0.11008048802614212, 0.024708379060029984, -0.10794714838266373, -0.043120939284563065, 0.22701364755630493, -0.03430880233645439, -0.11693490296602249, -0.09707516431808472, 0.01659192331135273, -0.056251414120197296, -0.07157979905605316, -0.003795270575210452, -0.06408284604549408, 0.018832525238394737, -0.0819651409983635, -0.1957363337278366, 0.12419744580984116, -0.07322777062654495, -0.0984896868467331, 0.024834536015987396, 0.1585044264793396, 0.012832144275307655, 0.09169121086597443, 0.051981568336486816, 0.04077991843223572, -0.15009352564811707, -0.0636371523141861, -0.06108740344643593, -0.05273117125034332, -0.061861466616392136, 0.06190301477909088, 0.061917539685964584, -0.15689173340797424, -0.1196402907371521, 0.049082834273576736, 0.3650315999984741, 0.1495646834373474, -0.06086205691099167, 0.23604455590248108, 0.07043375074863434, -0.010557807050645351, -0.24617373943328857, -0.131824791431427, -0.10223404318094254, -0.024883460253477097, -0.0718667283654213, -0.1876521110534668, 0.2087678611278534, -0.07068894803524017, -0.015132087282836437, 0.1300935000181198, -0.2483213096857071, -0.11746861785650253, 0.16336895525455475, -0.024991633370518684, 0.41389358043670654, 0.0009759673266671598, -0.02489663101732731, -0.010838037356734276, -0.09869208186864853, 0.11294931173324585, -0.07061309367418289, 0.11472739279270172, -0.01236242987215519, 0.15566736459732056, 0.05181077867746353, -0.005517043173313141, 0.05292794108390808, 0.08909977972507477, -0.07834836840629578, -0.06598001718521118, -0.05660717189311981, -0.05098378658294678, 0.06670030951499939, -0.017954731360077858, -0.1550585776567459, 0.021965837106108665, -0.17138203978538513, -0.06296910345554352, -0.06330808252096176, 0.08820457011461258, -0.0024032993242144585, -0.07255660742521286, -0.020442891865968704, -0.04675060510635376, 0.048737820237874985, 0.02693062089383602, 0.20969118177890778, -0.08963637799024582, 0.189652219414711, 0.16650457680225372, 0.13617055118083954, -0.18490271270275116, 0.02476896531879902, -0.06969893723726273, -0.06326599419116974, 0.019760500639677048, 0.023900814354419708, -0.0016951272264122963, 0.10456236451864243, 0.039881493896245956, 0.04998822137713432, 0.08898443728685379, 0.010156582109630108, 0.008421063423156738, 0.05606003478169441, -0.2716611325740814, -0.09567508101463318, -0.07925926893949509, -0.159230574965477, 0.045708540827035904, 0.07585708051919937, 0.25377219915390015, 0.004885740578174591, -0.0388658232986927, -0.024315783753991127, 0.0730767473578453, -0.018911639228463173, 0.059189748018980026, 0.005426758900284767, 0.00739113986492157, -0.16378726065158844, -0.015388257801532745, -0.03082873485982418, -0.0602671280503273, 0.05948534980416298, 0.09152401238679886, -0.13378842175006866, -0.1055217757821083, -0.09450025111436844, 0.15921106934547424, -0.11348069459199905, 0.043636925518512726, -0.055824894458055496, -0.15622207522392273, 0.06364655494689941, -0.03782006725668907, 0.0753883495926857, 0.04439588263630867, -0.1508467197418213, -0.06326491385698318, 0.007379166781902313, 0.07503834366798401, 0.03474334999918938, -0.034078795462846756, -0.03433520346879959, 0.10347652435302734, -0.01546633243560791, 0.08019144088029861, -0.09228607267141342, -0.08734218031167984, -0.10385701060295105, -0.005758598912507296, -0.09060969948768616, -0.0670238807797432, -0.07986032962799072, 0.01791759394109249, -0.008094212971627712, -0.05879972130060196, -0.053360823541879654, -0.022516565397381783, -0.09924262762069702, 0.02337510883808136, -0.03417181223630905, -0.020039577037096024, -0.09973722696304321, 0.05941230058670044, 0.012627475894987583, -0.00724438764154911, 0.09949097782373428, 0.12422061711549759, -0.07972383499145508, 0.07621976733207703, 0.004025404807180166, -0.05687684565782547, 0.06693398207426071, 0.015364077873528004, 0.03991705924272537, 0.08841409534215927, -0.02544178068637848, 0.037260349839925766, 0.0637725293636322, 0.07539885491132736, 0.10050484538078308, -0.039296653121709824, 0.03719566762447357, -0.015650257468223572, -0.11455611139535904, -0.05404418706893921, -0.06396503001451492, 0.0018652958096936345, 0.019532935693860054, 0.22055771946907043, -0.04894762486219406, 0.08806604892015457, -0.03454744070768356, 0.02571798674762249, -0.011467876844108105, -0.13272759318351746, -0.03556382656097412, -0.10520217567682266, 0.04914604499936104, 0.003191536758095026, 0.10880530625581741, 0.039696965366601944, 0.005336576607078314, 0.03419046476483345, 0.0468481220304966, 0.0862487331032753, -0.04670391231775284, 0.15801222622394562, 0.13078580796718597, -0.022824684157967567, 0.02940969541668892, 0.0681992918252945, 0.05876223370432854, 0.05104072019457817, 0.19185778498649597, -0.07266447693109512, -0.04085691273212433, 0.08945732563734055, -0.002808414865285158, 0.06406854093074799, -0.14068520069122314, -0.09079476445913315, -0.1016421690583229, 0.07466599345207214, 0.02795659564435482, 0.13393957912921906, 0.13783130049705505, -0.03940950706601143, -0.04587196931242943, 0.03686249256134033, -0.0395546555519104, -0.18656839430332184, -0.15546351671218872, -0.07173315435647964, -0.13234640657901764, 0.009628056548535824, -0.10359546542167664, -0.017679065465927124, 0.00439432030543685, 0.0969473272562027, -0.008820275776088238, 0.11694801598787308, 0.02863486111164093, -0.06356777995824814, 0.05859841778874397, -0.015472237952053547, 0.0014895262429490685, -0.04093926399946213, -0.06544984132051468, -0.05027763918042183, 0.06875071674585342, -0.01800224743783474, -0.029781917110085487, -0.04538523778319359, 0.014899632893502712, -0.08346480876207352, -0.0982089638710022, -0.055141936987638474, 0.04307599738240242, 0.02321569062769413, 0.1476002335548401, 0.07079098373651505, -0.01350889727473259, 0.003330608131363988, 0.17563167214393616, -0.058284420520067215, -0.11943212151527405, -0.0739721953868866, 0.265888512134552, -0.05156164988875389, 0.07309505343437195, -0.013256204314529896, -0.016122035682201385, -0.07320299744606018, 0.26329556107521057, 0.3545360863208771, -0.14140231907367706, 0.011256842873990536, -0.05897970497608185, 0.03569934144616127, 0.13289721310138702, 0.06431697309017181, 0.11129371076822281, 0.13577763736248016, -0.04500172659754753, -0.004131354857236147, -0.02937912754714489, -0.07434343546628952, -0.11931066960096359, -0.0389455109834671, 0.06889479607343674, -0.07099851220846176, -0.021449578925967216, 0.12013233453035355, -0.2071537971496582, 0.036911215633153915, -0.17365403473377228, -0.1262623518705368, -0.07975210249423981, -0.01612996496260166, 0.1239045113325119, 0.06015041843056679, 0.10836473107337952, 0.030531633645296097, -0.037582650780677795, 0.04124576225876808, 0.010024365969002247, -0.27358782291412354, 0.037665437906980515, 0.09038304537534714, -0.26869845390319824, -0.00845066737383604, -0.0321170911192894, -0.006055166013538837, 0.09146832674741745, 0.03349748253822327, -0.02512204460799694, 0.002917013131082058, 0.01621468923985958, -0.051758550107479095, 0.004317141603678465, 0.03563590720295906, 0.03357045352458954, -0.04094523563981056, 0.10609152913093567, -0.14629484713077545, 0.007644366938620806, 0.02556874044239521, 0.0030951444059610367, 0.009755413047969341, 0.04228788986802101, -0.05240515246987343, 0.10589157044887543, 0.14268068969249725, -0.032192911952733994, -0.007133410312235355, 0.015899689868092537, -0.08083735406398773, -0.06933867931365967, -0.1525680273771286, -0.12010471522808075, -0.16587139666080475, -0.15259283781051636, -0.05532167851924896, -0.005424403585493565, -0.13354000449180603, -0.03243360295891762, -0.1927139163017273, 0.04237637296319008, -0.09492653608322144, 0.10178664326667786, 0.060954056680202484, -0.05265752598643303, 0.032608143985271454, 0.013113054446876049, 0.05129196494817734, 0.11414995789527893, -0.1375149041414261, -0.10899119079113007 ]
null
null
transformers
# Pickle Rick DialoGPT Model
{"tags": ["conversational"]}
text-generation
darthboii/DialoGPT-small-PickleRick
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Pickle Rick DialoGPT Model
[ "# Pickle Rick DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Pickle Rick DialoGPT Model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Pickle Rick DialoGPT Model" ]
[ 0.0058993385173380375, 0.1619562804698944, -0.004587709438055754, 0.0385812371969223, 0.11588868498802185, -0.017457257956266403, 0.09316802024841309, 0.15668858587741852, 0.07545545697212219, -0.02798120118677616, 0.14093835651874542, 0.29368025064468384, -0.027022473514080048, 0.1396280825138092, -0.060662053525447845, -0.32904529571533203, 0.06321495771408081, 0.07671381533145905, -0.034521400928497314, 0.12581796944141388, 0.10196451097726822, -0.03163152188062668, 0.07773653417825699, -0.008280466310679913, -0.1559668481349945, -0.0022210367023944855, 0.011594783514738083, -0.08917389810085297, 0.09171605110168457, 0.04315163195133209, 0.02517375908792019, 0.027167772874236107, -0.060092661529779434, -0.13026316463947296, 0.03929268568754196, 0.007671361789107323, -0.04417162016034126, 0.06867704540491104, 0.008285324089229107, -0.07503512501716614, 0.08596473932266235, 0.08800012618303299, 0.009898614138364792, 0.035116441547870636, -0.12044626474380493, 0.01564759388566017, -0.023345310240983963, 0.08170449733734131, 0.05755900219082832, 0.057269178330898285, -0.020680608227849007, 0.1298748254776001, -0.053844012320041656, 0.14535315334796906, 0.13121692836284637, -0.25281015038490295, -0.025971509516239166, 0.14663000404834747, 0.03530444949865341, 0.04637977108359337, -0.03171122819185257, 0.08393704891204834, 0.01036533061414957, -0.023528506979346275, -0.081522136926651, -0.0698234885931015, -0.17471787333488464, 0.032362502068281174, -0.08752668648958206, -0.000162934185937047, 0.2652263045310974, -0.03375345095992088, 0.04847963899374008, -0.08833389729261398, -0.08924433588981628, -0.045371778309345245, -0.05029955133795738, -0.05710778385400772, -0.0649331584572792, 0.059287551790475845, -0.0261569581925869, -0.08958372473716736, -0.07659363746643066, -0.04077419638633728, -0.12047025561332703, 0.20310577750205994, 0.025158246979117393, 0.01060959231108427, -0.1561371088027954, 0.0420084185898304, 0.008616884239017963, -0.07542465627193451, -0.007505746558308601, -0.04265642538666725, -0.0039015640504658222, -0.032300788909196854, -0.018529970198869705, -0.04037284106016159, 0.09366095811128616, 0.09250497817993164, 0.015315008349716663, 0.049070652574300766, -0.06864721328020096, 0.01959678903222084, 0.08221181482076645, 0.025242449715733528, -0.010700326412916183, 0.050066132098436356, -0.0015752939507365227, -0.10591909289360046, -0.018500572070479393, -0.06274815648794174, -0.1668626070022583, 0.005927858874201775, 0.059458907693624496, 0.04085804149508476, 0.046590130776166916, 0.13134393095970154, -0.005633298773318529, -0.07168418914079666, 0.07265260815620422, -0.02112627401947975, -0.03240225091576576, 0.010393179021775723, -0.002702479250729084, 0.12603437900543213, -0.021428145468235016, 0.06602418422698975, -0.0939527228474617, -0.005564493127167225, -0.08638820797204971, -0.009777053259313107, -0.0009475352708250284, -0.052499521523714066, -0.002583494409918785, -0.047065723687410355, 0.00014845095574855804, -0.12080570310354233, -0.20949827134609222, -0.00951287243515253, -0.00690437713637948, -0.056546151638031006, -0.1618029773235321, -0.09912993758916855, -0.007960542105138302, 0.022523632273077965, -0.01786457560956478, -0.06371623277664185, -0.04386352375149727, 0.10283196717500687, -0.08579278737306595, 0.06802897155284882, -0.039671964943408966, 0.07774323225021362, -0.06753021478652954, -0.03952382877469063, -0.1539383828639984, 0.13204719126224518, -0.01215711236000061, 0.08754615485668182, -0.06633497029542923, -0.024492532014846802, -0.09110807627439499, 0.05348900705575943, -0.08458034694194794, 0.23766568303108215, -0.14590497314929962, -0.0984019860625267, 0.23342201113700867, -0.038761675357818604, -0.09964418411254883, 0.1271894872188568, -0.02193457819521427, 0.09766336530447006, 0.12920738756656647, 0.26638728380203247, 0.10445629060268402, 0.022684678435325623, 0.09291891753673553, 0.1438002586364746, -0.09099967777729034, -0.037171900272369385, 0.011973484419286251, -0.03724273666739464, -0.14921912550926208, 0.020951315760612488, 0.05760779231786728, 0.04827747493982315, -0.02330176904797554, -0.006240669637918472, 0.002549842931330204, -0.007153150625526905, 0.07376614958047867, -0.019311092793941498, 0.11387014389038086, -0.020048078149557114, -0.03365037962794304, -0.04371778666973114, 0.04054033383727074, -0.05036790668964386, 0.02289513498544693, -0.07071653008460999, 0.05727434530854225, -0.012974729761481285, 0.042299479246139526, -0.13735051453113556, -0.09735013544559479, -0.009532429277896881, 0.13487239181995392, 0.04192778095602989, 0.0798909068107605, 0.03146982565522194, -0.06744115054607391, 0.05010773986577988, 0.03282007575035095, 0.2262941598892212, -0.010226873680949211, -0.08935389667749405, -0.09492555260658264, 0.08711972087621689, -0.060863591730594635, 0.009226953610777855, -0.05720803141593933, -0.007304414175450802, 0.03557156026363373, 0.1004762127995491, -0.04019083082675934, -0.009387343190610409, 0.025655347853899002, -0.04025714471936226, -0.04147520661354065, -0.01095036044716835, 0.11008654534816742, 0.011473038233816624, -0.04689908027648926, 0.22168554365634918, -0.12869799137115479, 0.10685773938894272, 0.1274925023317337, -0.17383867502212524, -0.01994903013110161, -0.14320646226406097, -0.012550918385386467, 0.006810900755226612, 0.02129124477505684, -0.0222553089261055, 0.2051335573196411, -0.009014936164021492, 0.16195262968540192, -0.04107201471924782, -0.0639914721250534, -0.02925150841474533, -0.03398604691028595, -0.017234163358807564, 0.09069791436195374, 0.08243148028850555, -0.19299864768981934, 0.17240338027477264, -0.01174830086529255, 0.08686590939760208, 0.1845824271440506, 0.025994503870606422, 0.06304411590099335, 0.05657156556844711, 0.06536659598350525, -0.05513831973075867, -0.11848551034927368, -0.21264445781707764, 0.005392975173890591, 0.06092318892478943, 0.03239551931619644, 0.08168546855449677, -0.054205723106861115, -0.03595162183046341, -0.0005732590798288584, -0.030750777572393417, 0.009462516754865646, 0.13684925436973572, 0.008318529464304447, 0.10168953239917755, -0.02004571631550789, -0.058178193867206573, 0.0727427676320076, 0.009895402006804943, -0.06887516379356384, 0.20407508313655853, -0.1265125274658203, -0.3043576776981354, -0.08042750507593155, -0.24734801054000854, -0.02911240980029106, 0.05415266007184982, 0.0861324816942215, -0.15681427717208862, -0.027865415439009666, 0.008793490007519722, 0.011923201382160187, -0.11198054254055023, -0.004918746650218964, -0.029646430164575577, -0.03246663883328438, -0.12929315865039825, -0.1003405898809433, -0.04409944266080856, -0.03464546799659729, -0.04040668532252312, 0.09967022389173508, -0.14567501842975616, -0.01291603222489357, 0.20842044055461884, 0.08145846426486969, 0.07038916647434235, -0.037487320601940155, 0.20477619767189026, -0.07316339015960693, 0.008328374475240707, 0.1635517179965973, -0.03778360038995743, 0.06047655642032623, 0.1257275640964508, -0.005820502992719412, -0.06825295835733414, 0.040019456297159195, -0.015698760747909546, -0.0412236750125885, -0.20728349685668945, -0.12248402833938599, -0.1120738834142685, 0.09471553564071655, 0.07910062372684479, 0.06573032587766647, 0.21120136976242065, 0.08776689320802689, -0.04514183849096298, 0.06485791504383087, 0.04894191771745682, 0.0644625797867775, 0.2707473635673523, -0.07259046286344528, 0.11253365874290466, 0.011623559519648552, -0.15343467891216278, 0.051020510494709015, 0.055223263800144196, 0.07561230659484863, 0.07580104470252991, 0.21182438731193542, -0.014472958631813526, 0.0367954820394516, 0.11827964335680008, 0.07789640128612518, 0.01991073042154312, -0.019446661695837975, -0.04347381740808487, -0.0254607442766428, -0.027989089488983154, 0.012957124039530754, 0.0960448682308197, -0.18107828497886658, 0.012583152391016483, 0.021501202136278152, 0.02593543939292431, 0.09298407286405563, 0.020524082705378532, -0.179819256067276, 0.027830950915813446, 0.05755043402314186, -0.025499291718006134, -0.10845643281936646, 0.08593711256980896, -0.02538434788584709, -0.13137543201446533, 0.018785113468766212, -0.039150170981884, 0.09809329360723495, -0.08765986561775208, 0.058995287865400314, -0.07800676673650742, -0.04816050827503204, -0.01638617552816868, 0.13252319395542145, -0.24168215692043304, 0.17275425791740417, -0.021619943901896477, -0.05688641220331192, -0.08997846394777298, -0.014482101425528526, 0.010080749168992043, 0.03957030177116394, 0.15056663751602173, -0.0066594574600458145, -0.009325491264462471, 0.016450408846139908, -0.07363742589950562, 0.013033195398747921, 0.08612717688083649, -0.07664351910352707, -0.0133766308426857, -0.08208399266004562, 0.002608823124319315, 0.0022308044135570526, -0.09696725010871887, 0.02786606177687645, -0.1663709580898285, 0.09006643295288086, 0.054728638380765915, 0.11423870921134949, 0.03192771226167679, -0.02258547581732273, -0.07055886834859848, 0.2314566969871521, 0.004537861794233322, -0.10297058522701263, -0.12628237903118134, 0.006670661270618439, 0.05771397054195404, -0.07913409173488617, 0.009720549918711185, -0.07962032407522202, 0.05253149941563606, -0.039929237216711044, -0.1687983125448227, 0.10029898583889008, -0.09381435811519623, -0.04212415963411331, -0.023407001048326492, 0.17770633101463318, -0.025441061705350876, -0.002652012510225177, 0.04270473122596741, 0.037245213985443115, -0.08491729944944382, -0.08970969915390015, -0.03011610358953476, -0.06464488804340363, -0.02935124933719635, 0.07574480772018433, -0.04295804724097252, 0.04973316937685013, -0.0787377879023552, -0.0022486187517642975, 0.32607707381248474, 0.14009398221969604, -0.02963980659842491, 0.22657468914985657, 0.08023352921009064, -0.06348711252212524, -0.26392894983291626, -0.140398308634758, -0.03353816270828247, -0.08984290063381195, -0.0459207184612751, -0.23548126220703125, 0.1530275046825409, -0.04426930844783783, -0.02157759480178356, 0.0631156712770462, -0.24130022525787354, -0.08349213004112244, 0.19260439276695251, -0.025778144598007202, 0.43061363697052, -0.07461101561784744, -0.08166572451591492, -0.02757728286087513, -0.12861183285713196, 0.19246847927570343, 0.05775083601474762, 0.09571715444326401, -0.022816278040409088, 0.16579654812812805, 0.06837824732065201, 0.005156153813004494, 0.03685687854886055, 0.04982184246182442, -0.04203634709119797, -0.08357532322406769, -0.12165859341621399, -0.15737086534500122, 0.03258458897471428, 0.01868266426026821, -0.065349280834198, 0.0626922994852066, -0.1271257996559143, -0.04898378252983093, -0.09884925186634064, 0.046945977956056595, 0.03406780585646629, -0.04725346341729164, 0.004668579436838627, -0.04215443506836891, 0.02147863060235977, 0.022945566102862358, 0.2296273112297058, -0.054780326783657074, 0.17888858914375305, 0.01791154220700264, 0.13198918104171753, -0.0757002905011177, -0.11493861675262451, -0.06003217771649361, -0.04145459830760956, 0.04801218956708908, -0.06175670027732849, 0.02200544998049736, 0.07842299342155457, 0.008202793076634407, 0.087114118039608, 0.11483781039714813, 0.0074542127549648285, -0.017749516293406487, 0.05507413670420647, -0.2256474792957306, -0.07865089923143387, -0.0661136656999588, 0.005370344966650009, 0.022652268409729004, 0.013082947582006454, 0.19910287857055664, 0.012391654774546623, -0.04069948196411133, 0.010455277748405933, 0.038765933364629745, 0.02340429276227951, 0.06539138406515121, 0.039739858359098434, 0.036004744470119476, -0.15136489272117615, 0.031361162662506104, 0.021910127252340317, -0.02660786174237728, 0.04703580588102341, 0.12731283903121948, -0.11494383215904236, -0.11393268406391144, -0.014524124562740326, 0.10545110702514648, -0.09152242541313171, 0.028855694457888603, -0.039560992270708084, -0.10328534990549088, 0.07031446695327759, 0.14485794305801392, 0.06466004997491837, 0.07046198844909668, -0.10159176588058472, -0.043476857244968414, -0.057221077382564545, 0.03597358241677284, 0.021519895642995834, -0.018700070679187775, -0.0789683610200882, 0.02850303426384926, -0.06092703342437744, 0.1397363841533661, -0.07559560984373093, -0.09968070685863495, -0.1794380396604538, -0.0069864606484770775, 0.0194862000644207, -0.05742911249399185, -0.0933806449174881, -0.026015382260084152, 0.001588418148458004, -0.02874007076025009, -0.00093829445540905, -0.024410223588347435, -0.11236245930194855, 0.02535727620124817, -0.03653137385845184, 0.03345096483826637, -0.0819447934627533, 0.01867326907813549, 0.07993806153535843, -0.020878633484244347, 0.11647039651870728, 0.10705878585577011, -0.08709436655044556, 0.09975379705429077, -0.16777752339839935, -0.06759338080883026, 0.08623769879341125, 0.020343896001577377, 0.025853294879198074, 0.0008502770215272903, 0.008564434945583344, 0.026506302878260612, 0.06669393181800842, 0.03105955943465233, 0.05682208389043808, -0.09290866553783417, 0.024626566097140312, -0.08708344399929047, -0.09172607213258743, -0.08246500045061111, -0.026453781872987747, 0.004742349497973919, 0.06040501594543457, 0.12181392312049866, -0.04216815531253815, 0.07811149209737778, -0.04875222221016884, 0.025668252259492874, 0.00814452487975359, -0.17905527353286743, -0.0252552293241024, -0.048963941633701324, 0.040451161563396454, 0.01221546158194542, 0.1346043348312378, 0.059246309101581573, -0.10409330576658249, 0.03695043921470642, 0.08198054134845734, 0.03934842348098755, -0.023521751165390015, 0.20487447082996368, 0.10252969712018967, -0.03863285109400749, -0.05631063133478165, 0.07866846024990082, 0.03741810470819473, -0.004008843097835779, 0.09066407382488251, -0.009370210580527782, -0.12897494435310364, 0.03742879629135132, -0.026176609098911285, -0.029477084055542946, -0.06433921307325363, -0.06758162379264832, -0.04266534373164177, 0.03844607621431351, -0.002260200446471572, 0.12513467669487, 0.10643286257982254, -0.02939715050160885, 0.029996713623404503, 0.026119908317923546, -0.0626700147986412, -0.21140682697296143, -0.19872358441352844, -0.09302785992622375, -0.1489015519618988, 0.015862541273236275, -0.1426301896572113, 0.08218356966972351, 0.05705731362104416, 0.06612300872802734, -0.004392270464450121, 0.03720344975590706, 0.0012386804446578026, -0.09755164384841919, 0.05834505334496498, -0.06159573793411255, 0.04834617301821709, -0.048831358551979065, -0.0010317061096429825, -0.0868586003780365, 0.03777875378727913, 0.010687778703868389, 0.017999708652496338, -0.015305832959711552, 0.028873784467577934, -0.12865042686462402, -0.11963684856891632, -0.05817703902721405, 0.033665187656879425, -0.024925190955400467, 0.1345517784357071, 0.025420941412448883, -0.02768510766327381, 0.024296915158629417, 0.23714593052864075, -0.039117731153964996, -0.058524440973997116, -0.05845203250646591, 0.1638999879360199, 0.03384474292397499, 0.0646592527627945, -0.014833472669124603, 0.02441597543656826, -0.05725857987999916, 0.32993292808532715, 0.23477110266685486, -0.05748286843299866, 0.02130132168531418, -0.017397046089172363, 0.0353742390871048, 0.18674492835998535, 0.11825889348983765, 0.09040585905313492, 0.2579461634159088, -0.07512740045785904, -0.009630825370550156, -0.006932802964001894, -0.04944128915667534, -0.11401350796222687, -0.020312508568167686, 0.07770278304815292, -0.0692402720451355, 0.001985257025808096, 0.13597141206264496, -0.26467692852020264, 0.09494927525520325, -0.15388475358486176, -0.11968517303466797, -0.052025988698005676, -0.04701850563287735, 0.0756668746471405, 0.014131045900285244, 0.08472657948732376, -0.02845834195613861, -0.08107288181781769, 0.09847420454025269, 0.016823993995785713, -0.25171440839767456, 0.022406768053770065, 0.07454883307218552, -0.03846339136362076, -0.03355355188250542, -0.020877519622445107, 0.08412244915962219, 0.057069726288318634, 0.007685428950935602, -0.020370488986372948, 0.003955297637730837, -0.02796817198395729, -0.06616200506687164, 0.0536954328417778, 0.046934980899095535, 0.01222646702080965, -0.06546832621097565, 0.05421752110123634, -0.16331255435943604, 0.02677500620484352, 0.029947074130177498, -0.013463260605931282, -0.022783612832427025, 0.033932872116565704, -0.07838812470436096, 0.0838930681347847, 0.1018618643283844, -0.019496571272611618, -0.015890222042798996, -0.026159219443798065, -0.036621324717998505, -0.0044233547523617744, -0.07234358787536621, -0.09454478323459625, -0.1775694489479065, -0.14917884767055511, 0.022916661575436592, -0.015957890078425407, -0.15450972318649292, 0.015395762398838997, -0.1583821326494217, 0.026083122938871384, -0.11309610307216644, 0.1017133817076683, 0.08734823763370514, 0.018606944009661674, -0.0008142292499542236, 0.1328551173210144, 0.011255539953708649, 0.07267436385154724, -0.12730030715465546, -0.08182208985090256 ]
null
null
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
text-generation
darthboii/DialoGPT-small-Rick
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick DialoGPT Model
[ "# Rick DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick DialoGPT Model" ]
[ 51, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick DialoGPT Model" ]
[ -0.027243174612522125, 0.09208611398935318, -0.005486058536916971, 0.01197603065520525, 0.13312271237373352, -0.0006643096567131579, 0.14875547587871552, 0.13561291992664337, -0.012389403767883778, -0.048079900443553925, 0.13848258554935455, 0.20838283002376556, -0.007769247982650995, 0.06212212145328522, -0.07722679525613785, -0.3253750503063202, 0.05440690368413925, 0.05986349284648895, -0.02559526450932026, 0.11941008269786835, 0.10155656188726425, -0.034638021141290665, 0.07502283155918121, 0.008745936676859856, -0.1460564285516739, 0.011253442615270615, 0.020986590534448624, -0.11265120655298233, 0.11301227658987045, 0.0699501633644104, 0.03311868757009506, 0.044131726026535034, -0.04560676962137222, -0.12763948738574982, 0.04502782225608826, 0.00030866602901369333, -0.04332113638520241, 0.05997459217905998, 0.016281595453619957, -0.09000954777002335, 0.11693226546049118, 0.12603440880775452, -0.01263172086328268, 0.041781701147556305, -0.1548357903957367, -0.004369331523776054, -0.01233562733978033, 0.06789606809616089, 0.06087101250886917, 0.10755407065153122, -0.04065045714378357, 0.11729123443365097, -0.06241777911782265, 0.11526333540678024, 0.1129850223660469, -0.291816771030426, -0.016308816149830818, 0.14326390624046326, 0.043570004403591156, 0.04201141744852066, -0.04241296648979187, 0.09895236790180206, 0.01734745316207409, -0.009189855307340622, -0.04667704179883003, -0.07920589298009872, -0.0809992179274559, 0.022899743169546127, -0.08393258601427078, -0.009693359956145287, 0.24909301102161407, -0.033697742968797684, 0.07867740839719772, -0.07909003645181656, -0.08747624605894089, -0.011933685280382633, -0.03604159876704216, -0.03430533409118652, -0.10349667817354202, 0.07883962988853455, -0.03785189241170883, -0.09532928466796875, -0.11454451829195023, -0.029063701629638672, -0.16551746428012848, 0.1769428551197052, 0.028738701716065407, 0.03337583318352699, -0.22648879885673523, 0.09508261829614639, -0.012410550378262997, -0.09879330545663834, 0.018604513257741928, -0.08811058849096298, 0.012304049916565418, 0.017966609448194504, -0.025972042232751846, -0.002111254259943962, 0.08367783576250076, 0.11593183130025864, 0.01627914048731327, 0.018418017774820328, -0.01303142961114645, 0.05024925619363785, 0.039101485162973404, 0.07016518712043762, -0.018131986260414124, -0.026958800852298737, 0.025394905358552933, -0.09519384801387787, -0.01311302836984396, -0.06533002108335495, -0.19878731667995453, -0.008748088963329792, 0.05362382158637047, 0.059645626693964005, 0.040223345160484314, 0.1349429488182068, 0.005914759822189808, -0.04811347648501396, 0.041568055748939514, -0.017372997477650642, -0.016568226739764214, 0.013325352221727371, 0.004558354616165161, 0.14832930266857147, 0.012210249900817871, 0.05107790604233742, -0.11448643356561661, 0.0074756252579391, -0.04443434625864029, -0.019875049591064453, -0.033431850373744965, -0.05190093815326691, -0.010580608621239662, -0.024629589170217514, 0.015543424524366856, -0.1382266879081726, -0.1671048104763031, -0.0113193579018116, -0.006982414051890373, -0.04376089945435524, -0.11932645738124847, -0.1048901304602623, -0.03145192563533783, 0.04379252344369888, -0.060927584767341614, -0.0003760824038181454, -0.04660411551594734, 0.09378229826688766, -0.03543102741241455, 0.07682112604379654, -0.10023638606071472, 0.0828537717461586, -0.07001189142465591, -0.04422231763601303, -0.0734889879822731, 0.13164658844470978, 0.014363138936460018, 0.05487450957298279, -0.031934577971696854, -0.01827416382730007, -0.10224048048257828, 0.07911752909421921, -0.04339373856782913, 0.23623128235340118, -0.09449771791696548, -0.10362883657217026, 0.26979705691337585, -0.053989510983228683, -0.1375254988670349, 0.10795111209154129, -0.015854641795158386, 0.11475867033004761, 0.12686948478221893, 0.18240338563919067, 0.06434911489486694, 0.007867260836064816, 0.07431085407733917, 0.11333738267421722, -0.0774611383676529, -0.018117602914571762, 0.014873803593218327, -0.020292608067393303, -0.07848027348518372, 0.023533256724476814, 0.07671299576759338, 0.05307117849588394, -0.05429181456565857, -0.015286878682672977, 0.00432937266305089, 0.004517627414315939, 0.05698307976126671, -0.02530503273010254, 0.12313884496688843, -0.029461434110999107, -0.07295558601617813, -0.029503753408789635, 0.027530280873179436, -0.05828499048948288, 0.03278997913002968, -0.08230485767126083, 0.03637091815471649, -0.014406797476112843, 0.07024850696325302, -0.16572508215904236, -0.09323301911354065, -0.05250932276248932, 0.1899155229330063, 0.06807822734117508, 0.11413464695215225, 0.05567482113838196, -0.06841246038675308, -0.0038719952572137117, 0.018287649378180504, 0.1991138458251953, -0.01677977479994297, -0.07748494297266006, -0.09769339859485626, 0.10122697055339813, -0.07130109518766403, 0.06141059845685959, -0.050490207970142365, 0.017946461215615273, 0.020556224510073662, 0.1050461083650589, -0.03456922993063927, 0.039413414895534515, 0.011159577406942844, -0.034563858062028885, -0.06218598783016205, -0.004433273337781429, 0.09716981649398804, 0.0021626276429742575, -0.10631977766752243, 0.24286337196826935, -0.19168923795223236, 0.12176351994276047, 0.17641966044902802, -0.19923987984657288, -0.0002552573860157281, -0.11963175982236862, -0.026344671845436096, 0.011637656949460506, 0.037626978009939194, -0.042151857167482376, 0.24314165115356445, -0.00910688005387783, 0.16631373763084412, -0.03389734402298927, -0.04332707077264786, -0.041059546172618866, -0.046011339873075485, 0.010055569931864738, 0.11430004984140396, 0.1047205775976181, -0.17159950733184814, 0.17967921495437622, 0.05867021903395653, 0.05177219957113266, 0.16841758787631989, 0.018001655116677284, 0.021052619442343712, 0.06948674470186234, -0.003431870136409998, -0.03584783151745796, -0.07413756102323532, -0.2106374204158783, -0.023212855681777, 0.0793403834104538, 0.048357341438531876, 0.1068209707736969, -0.1037900522351265, -0.03368109092116356, -0.010547412559390068, -0.021230356767773628, 0.03035620041191578, 0.14086326956748962, 0.013085569255053997, 0.1286563277244568, -0.024180158972740173, -0.06866493821144104, 0.06965550780296326, 0.014881031587719917, -0.08571527898311615, 0.19352088868618011, -0.10702410340309143, -0.34334462881088257, -0.10363983362913132, -0.18596062064170837, -0.056601256132125854, 0.04553624242544174, 0.11461924016475677, -0.14119702577590942, -0.020731983706355095, 0.006813736632466316, 0.06912991404533386, -0.11165751516819, 0.01017086487263441, -0.03630850836634636, -0.017619650810956955, -0.13406261801719666, -0.1034051924943924, -0.05356309190392494, -0.044913630932569504, -0.05510649085044861, 0.12040390819311142, -0.15435875952243805, 0.020806124433875084, 0.23555229604244232, 0.06075655668973923, 0.07018083333969116, -0.03907359018921852, 0.17685799300670624, -0.1052674949169159, 0.011976814828813076, 0.2128676474094391, -0.03831172361969948, 0.06525631994009018, 0.11611197143793106, -0.01394710224121809, -0.0662488266825676, 0.036592915654182434, -0.009823341853916645, -0.07247381657361984, -0.21345274150371552, -0.1158827692270279, -0.1087421104311943, 0.054685093462467194, 0.04713849350810051, 0.050020426511764526, 0.1613347977399826, 0.07427749037742615, -0.04962149262428284, -0.0022197163198143244, 0.06106492131948471, 0.0832381621003151, 0.2504972517490387, -0.06253999471664429, 0.1427627056837082, -0.025090228766202927, -0.16789253056049347, 0.06259234994649887, 0.0661388710141182, 0.09291604906320572, 0.06118352338671684, 0.10224727541208267, 0.005179570056498051, 0.009344357997179031, 0.12825439870357513, 0.07115643471479416, 0.008030776865780354, -0.03595518320798874, -0.039997417479753494, -0.03642706945538521, -0.013250070624053478, 0.032193150371313095, 0.046790316700935364, -0.16567666828632355, -0.021018991246819496, 0.009807335212826729, 0.05824935808777809, 0.02185324765741825, 0.08615364134311676, -0.18498282134532928, -0.016169089823961258, 0.06576614826917648, -0.011832303367555141, -0.11644340306520462, 0.08480028808116913, 0.0007836486911401153, -0.1121063381433487, 0.03723234683275223, -0.027525627985596657, 0.13150714337825775, -0.08457524329423904, 0.0741792693734169, -0.12022519111633301, -0.0374552421271801, -0.010245736688375473, 0.12193918228149414, -0.29501426219940186, 0.19123348593711853, -0.009575535543262959, -0.04439779743552208, -0.1071409061551094, -0.015645509585738182, 0.02963484264910221, 0.10361164063215256, 0.11110331863164902, -0.020523378625512123, -0.02764100395143032, 0.06007368490099907, -0.07205203175544739, 0.0399978905916214, 0.09906689822673798, -0.06730470806360245, -0.013155711814761162, -0.052545808255672455, 0.00039069546619430184, 0.010376452468335629, -0.10966821759939194, 0.022783124819397926, -0.19194799661636353, 0.08703918755054474, 0.08162695169448853, 0.09630028903484344, 0.037212129682302475, -0.029887177050113678, -0.07769683748483658, 0.2589099109172821, 0.009560960344970226, -0.10013746470212936, -0.10953836888074875, 0.008171502500772476, 0.04785030707716942, -0.07699282467365265, -0.016966527327895164, -0.0694924145936966, 0.04450516775250435, -0.06552471220493317, -0.18611730635166168, 0.11722762882709503, -0.09691806137561798, -0.03250948712229729, -0.036249466240406036, 0.21333028376102448, -0.03155504912137985, 0.017869247123599052, 0.04537748545408249, -0.00578570831567049, -0.11741422116756439, -0.10654788464307785, 0.0012778750387951732, -0.004119161982089281, 0.016931969672441483, 0.023226622492074966, -0.03199922665953636, -0.009455137886106968, -0.06797713041305542, -0.014383019879460335, 0.3228513300418854, 0.12615877389907837, -0.042267147451639175, 0.15242800116539001, 0.09877358376979828, -0.06251336634159088, -0.2941497564315796, -0.11165541410446167, -0.07421603053808212, -0.05438753217458725, -0.09733224660158157, -0.18137554824352264, 0.08739634603261948, -0.05383281409740448, -0.013516134582459927, 0.09413999319076538, -0.25194358825683594, -0.10185287892818451, 0.2005643993616104, -0.03753361105918884, 0.4304826855659485, -0.11250142753124237, -0.07815388590097427, -0.04850279167294502, -0.14005880057811737, 0.19035954773426056, 0.004324326757341623, 0.10461755096912384, -0.0006430890643969178, 0.19764995574951172, 0.05591731518507004, -0.0006032987730577588, 0.07056128233671188, 0.01866593211889267, -0.057801030576229095, -0.09095179289579391, -0.0913778692483902, -0.0337459035217762, 0.010270410217344761, 0.0292131919413805, -0.07448325306177139, 0.04388400912284851, -0.13094636797904968, -0.05198022723197937, -0.08626694977283478, 0.038746368139982224, 0.027130719274282455, -0.06653520464897156, -0.0030553280375897884, -0.04914497584104538, 0.0004573945188894868, 0.007742773275822401, 0.21047258377075195, -0.10902713984251022, 0.1467881053686142, 0.028732312843203545, 0.1500566452741623, -0.09794784337282181, -0.04768699035048485, -0.06421241164207458, -0.05478411167860031, 0.07145597785711288, -0.12202182412147522, 0.03240978345274925, 0.1044924184679985, -0.026888413354754448, 0.08732181787490845, 0.1105954647064209, -0.010995322838425636, 0.005803761538118124, 0.08983830362558365, -0.241703063249588, -0.06713853776454926, -0.08410414308309555, 0.05373041704297066, 0.05893997475504875, 0.10275863856077194, 0.20927143096923828, 0.007167487405240536, -0.031165437772870064, 0.021489497274160385, 0.027375908568501472, -0.017840299755334854, 0.05977841466665268, 0.010519524104893208, 0.030491052195429802, -0.14741286635398865, 0.043485816568136215, -0.013757874257862568, -0.09077676385641098, 0.02600322663784027, 0.14754873514175415, -0.10901660472154617, -0.12182232737541199, -0.03921690955758095, 0.13600249588489532, -0.14775370061397552, -0.009947444312274456, -0.0477454848587513, -0.12692049145698547, 0.06857728958129883, 0.1067143976688385, 0.0457911379635334, 0.04121949151158333, -0.09239879250526428, -0.027268609032034874, -0.0535728819668293, 0.00003198942795279436, 0.028995376080274582, -0.0204177163541317, -0.05248761177062988, 0.040780652314424515, -0.03588524088263512, 0.12051229178905487, -0.08552545309066772, -0.10064204037189484, -0.16698434948921204, 0.03528384119272232, -0.07174701243638992, -0.08977310359477997, -0.0871967226266861, -0.03724304214119911, 0.006766482722014189, -0.0405125692486763, -0.02825779654085636, -0.03461418300867081, -0.1126255914568901, 0.03079685941338539, -0.04579872637987137, 0.003088617930188775, -0.07116411626338959, 0.029772473499178886, 0.0525958277285099, -0.029091687873005867, 0.149556964635849, 0.14025014638900757, -0.11192594468593597, 0.09547203034162521, -0.1507159322500229, -0.07066365331411362, 0.09605675935745239, 0.018403515219688416, 0.04981891065835953, 0.05175008252263069, 0.009065150283277035, 0.051755502820014954, 0.06169715151190758, 0.04307684674859047, 0.0153890922665596, -0.07590135186910629, 0.06697173416614532, -0.06090308725833893, -0.10307016223669052, -0.05066140368580818, -0.003966273739933968, 0.015159476548433304, 0.07283487915992737, 0.10097057372331619, -0.056661296635866165, 0.09506311267614365, -0.05649305135011673, 0.04625694453716278, 0.024318000301718712, -0.17797043919563293, 0.03397766128182411, -0.08718447387218475, 0.05030312016606331, 0.010050542652606964, 0.1727033108472824, 0.02054430916905403, -0.019508427008986473, 0.02473587542772293, 0.0719463899731636, 0.04261681064963341, -0.013226886279881, 0.19012948870658875, 0.10657399147748947, -0.03943915665149689, -0.0805516242980957, 0.09759991616010666, 0.04438556358218193, 0.04173632711172104, 0.14543114602565765, -0.05563090741634369, -0.03441290557384491, 0.081944540143013, -0.0026839920319616795, 0.010976077988743782, -0.09896437078714371, -0.13543705642223358, -0.026787811890244484, 0.036508288234472275, -0.03667739778757095, 0.10571453720331192, 0.15851758420467377, -0.005720720160752535, 0.01726081222295761, -0.01855739764869213, -0.05729815363883972, -0.1993623524904251, -0.19528920948505402, -0.083323635160923, -0.13647840917110443, 0.0050200955010950565, -0.13574683666229248, 0.04266147315502167, 0.026296362280845642, 0.09698255360126495, -0.04634363576769829, 0.050944969058036804, 0.03791060671210289, -0.11099781841039658, 0.058360110968351364, -0.043620482087135315, 0.09173028916120529, -0.03267880156636238, 0.014702340587973595, -0.060175783932209015, 0.035412851721048355, 0.016039982438087463, 0.041373249143362045, -0.02921622060239315, 0.019025372341275215, -0.12458328902721405, -0.08709227293729782, -0.06697598844766617, 0.06596853584051132, 0.006195025984197855, 0.16954803466796875, 0.019531596451997757, -0.027915386483073235, 0.028833186253905296, 0.23899038136005402, -0.07318265736103058, -0.09635625779628754, -0.06982157379388809, 0.21012257039546967, -0.009315763600170612, 0.08784335851669312, -0.03747710958123207, 0.009438461624085903, -0.08562079071998596, 0.3506644368171692, 0.29213622212409973, -0.09391074627637863, 0.010968702845275402, -0.0027621579356491566, 0.04181644320487976, 0.12788556516170502, 0.09239348024129868, 0.10824161767959595, 0.29070642590522766, -0.06708572804927826, -0.03647898510098457, -0.006994254421442747, -0.0254643727093935, -0.055716969072818756, 0.0551714263856411, 0.05315792188048363, -0.06511329114437103, -0.01592782698571682, 0.11738577485084534, -0.2489209920167923, 0.0614120177924633, -0.15840938687324524, -0.16190756857395172, -0.07126864790916443, -0.0001230158086400479, 0.0958227664232254, 0.01604771800339222, 0.09578458964824677, -0.011418631300330162, -0.06834693253040314, 0.04414822906255722, 0.020037546753883362, -0.20774760842323303, 0.009963343851268291, 0.06968449801206589, -0.051950447261333466, -0.05526239052414894, -0.017540784552693367, 0.07181108742952347, 0.0862373560667038, 0.031932324171066284, -0.021655123680830002, 0.04088883846998215, -0.011214682832360268, -0.07533704489469528, 0.03916772082448006, 0.027806051075458527, 0.005651058629155159, -0.08518505096435547, 0.07656224071979523, -0.16369622945785522, 0.03412613272666931, -0.0035786160733550787, -0.048953261226415634, -0.014727948233485222, 0.030175231397151947, -0.061420172452926636, 0.08509553223848343, 0.0839199498295784, -0.0171944722533226, -0.016525855287909508, -0.0222842525690794, -0.012990890070796013, -0.020874707028269768, -0.0818524956703186, -0.09698375314474106, -0.15574125945568085, -0.1261346936225891, 0.08575325459241867, -0.00355695397593081, -0.19997835159301758, 0.028783639892935753, -0.12125882506370544, 0.04249454662203789, -0.12142720073461533, 0.09701541811227798, 0.0825105607509613, 0.02303435280919075, -0.0030652873683720827, 0.006164520047605038, 0.03737448528409004, 0.07968182861804962, -0.13731823861598969, -0.08554888516664505 ]
null
null
transformers
Hi
{}
null
darubramha/hi-LyricsGPT2
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #endpoints_compatible #region-us
Hi
[]
[ "TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n" ]
[ 21 ]
[ "passage: TAGS\n#transformers #pytorch #endpoints_compatible #region-us \n" ]
[ -0.0602605901658535, -0.005646900739520788, -0.009762155823409557, -0.03966370224952698, 0.15944775938987732, 0.03070714697241783, 0.012395896948873997, 0.07867952436208725, 0.09419925510883331, -0.019594743847846985, 0.09831016510725021, 0.2332964390516281, -0.03786272928118706, 0.022073544561862946, -0.06232732906937599, -0.24905818700790405, 0.09407828003168106, 0.11313164979219437, -0.06465978920459747, 0.09549489617347717, 0.039143070578575134, -0.08911364525556564, 0.04947805404663086, -0.032982707023620605, -0.13527381420135498, 0.0467669740319252, 0.0237716156989336, -0.078513965010643, 0.11869441717863083, 0.0077665625140070915, 0.19578197598457336, 0.01207544095814228, -0.1299089938402176, -0.18088726699352264, 0.02007104456424713, 0.022213434800505638, -0.05996024236083031, 0.02314351126551628, 0.07312147319316864, -0.10279249399900436, 0.02970288321375847, 0.03654928505420685, 0.002923935651779175, 0.03274611383676529, -0.15513424575328827, -0.1849449872970581, -0.04425787553191185, 0.012871243990957737, 0.026669111102819443, 0.10506244748830795, 0.030372466892004013, 0.178822323679924, -0.15745419263839722, 0.0945795327425003, 0.177890345454216, -0.28603804111480713, 0.029024237766861916, 0.11024846136569977, 0.04829736799001694, 0.028134070336818695, 0.00996005441993475, 0.0189230814576149, -0.009570286609232426, 0.03048190288245678, -0.027967484667897224, -0.07447972893714905, -0.06405609101057053, 0.0814741775393486, -0.09437224268913269, -0.1216578483581543, 0.19255080819129944, -0.05330982804298401, 0.0588051900267601, 0.03463263809680939, -0.11766522377729416, -0.05456177890300751, 0.0013563521206378937, 0.030292518436908722, -0.017828812822699547, 0.07086412608623505, 0.031105060130357742, -0.02373676560819149, -0.12168543040752411, 0.028789518401026726, -0.24090629816055298, 0.28345873951911926, 0.02996366284787655, 0.11018568277359009, -0.2384001910686493, 0.07198631763458252, -0.04607108235359192, -0.06767431646585464, 0.023487936705350876, -0.09875187277793884, 0.021371465176343918, 0.007170209661126137, -0.0868486687541008, 0.025816135108470917, 0.0673765018582344, 0.11560594290494919, -0.02462717518210411, 0.021296672523021698, 0.01767325960099697, 0.1089232936501503, 0.01622004434466362, 0.11334555596113205, 0.002745070494711399, 0.034500978887081146, 0.029799794778227806, -0.18719491362571716, -0.0026790881529450417, -0.03489845618605614, -0.08398842811584473, -0.0881200060248375, 0.028418414294719696, 0.12114420533180237, 0.02183910645544529, 0.022260701283812523, -0.07126972824335098, -0.008312570862472057, 0.04512425512075424, -0.06700387597084045, -0.022145040333271027, 0.007661914918571711, 0.016494954004883766, 0.22294339537620544, -0.02295338362455368, -0.026225684210658073, -0.07023988664150238, 0.11260082572698593, -0.0656941682100296, 0.016149358823895454, -0.0530007965862751, -0.02928324043750763, 0.056476715952157974, -0.15177644789218903, 0.06500709801912308, -0.1516612023115158, -0.09112907201051712, 0.028223685920238495, 0.03696250542998314, 0.028484180569648743, 0.02479529194533825, 0.015830792486667633, -0.00879291258752346, -0.03011348284780979, -0.07923634350299835, -0.08192402124404907, -0.06342831254005432, 0.09921494126319885, -0.0005941772251389921, 0.05436241999268532, -0.11821827292442322, 0.07408127188682556, -0.1076948270201683, 0.030249644070863724, -0.13414455950260162, -0.0221982691437006, -0.02404189109802246, 0.1851358413696289, 0.0006879806751385331, -0.0817047506570816, -0.10663671791553497, 0.038237277418375015, -0.04168618097901344, 0.13458840548992157, -0.014303965494036674, -0.11019430309534073, 0.26959696412086487, -0.10667987167835236, -0.1671270877122879, 0.05378620699048042, 0.009700759314000607, -0.016868380829691887, 0.0561099536716938, 0.16616025567054749, 0.06831997632980347, -0.07049598544836044, 0.09140615165233612, 0.1379895955324173, -0.1851922571659088, -0.20243999361991882, 0.01763749308884144, -0.05203584209084511, -0.11545780301094055, 0.04540516808629036, -0.0058397711254656315, 0.09395778924226761, -0.08503725379705429, -0.007578795775771141, -0.032015107572078705, -0.016012731939554214, 0.07450172305107117, 0.06282669305801392, 0.09098648279905319, -0.05122196301817894, 0.031217509880661964, 0.026435445994138718, 0.00463126040995121, 0.0063572051003575325, 0.05537392571568489, -0.03592291474342346, 0.1321462094783783, -0.06449703127145767, 0.00637860456481576, -0.2316930741071701, -0.11218059808015823, -0.012119117192924023, 0.04616983234882355, -0.05828554928302765, 0.16098164021968842, 0.09591125696897507, -0.0814671590924263, 0.027995459735393524, -0.03218327462673187, 0.10552480816841125, 0.02011469565331936, -0.012835591100156307, -0.0011234998237341642, 0.016821393743157387, -0.0699923112988472, -0.08323190361261368, 0.006836527958512306, -0.0009020745637826622, 0.08346128463745117, 0.12389257550239563, -0.0018713462632149458, 0.04892571270465851, -0.025174804031848907, 0.07054726779460907, -0.016440844163298607, 0.014167504385113716, 0.10722272843122482, -0.011425090953707695, -0.05193426087498665, 0.1583033800125122, -0.11112764477729797, 0.3326278030872345, 0.20375320315361023, -0.323421835899353, 0.04571422189474106, -0.025362668558955193, -0.017437715083360672, 0.021043121814727783, 0.09183337539434433, 0.005831574089825153, 0.08254498243331909, 0.05105554684996605, 0.13220374286174774, -0.025855854153633118, -0.015603546984493732, -0.000933936215005815, -0.06394030898809433, -0.03657902777194977, 0.07155993580818176, 0.06678375601768494, -0.12739983201026917, 0.17137302458286285, 0.2332899272441864, 0.034409500658512115, 0.08888798952102661, -0.074738509953022, -0.02466125227510929, 0.05307190865278244, 0.030478334054350853, -0.05014907941222191, -0.003522941842675209, -0.24837985634803772, -0.033807482570409775, 0.0835256576538086, 0.041713811457157135, 0.11864139884710312, -0.15303030610084534, -0.0535346120595932, 0.036216262727975845, 0.003446921007707715, -0.07469423115253448, 0.0990411564707756, 0.07169649004936218, 0.06572583317756653, 0.006040885578840971, -0.030352378264069557, 0.11742591857910156, 0.000851878838147968, -0.05391429737210274, 0.17059999704360962, -0.13313265144824982, -0.29761773347854614, -0.14319129288196564, -0.1334514170885086, 0.010339286178350449, 0.017076298594474792, 0.08161275088787079, -0.08419821411371231, -0.034329503774642944, 0.09296482056379318, 0.05038211867213249, -0.12507256865501404, 0.025089209899306297, -0.04892471432685852, 0.06829681247472763, -0.08489015698432922, -0.07859387248754501, -0.06656183302402496, -0.05509684979915619, -0.04375450685620308, 0.11071989685297012, -0.12806063890457153, 0.08490876853466034, 0.13819533586502075, 0.031051602214574814, 0.07859103381633759, 0.001322271185927093, 0.13857795298099518, -0.061774931848049164, -0.08148285746574402, 0.23385483026504517, -0.009697506204247475, 0.10181795805692673, 0.10921594500541687, 0.02137605845928192, -0.06395251303911209, -0.022054238244891167, -0.07990756630897522, -0.12127618491649628, -0.2081342488527298, -0.13152581453323364, -0.147438645362854, 0.0003129298856947571, 0.0026985483709722757, 0.04901242256164551, 0.08136387914419174, 0.07752165198326111, 0.05862151086330414, -0.08998161554336548, -0.05513061210513115, 0.057605329900979996, 0.2182815968990326, -0.01885073445737362, 0.07730096578598022, -0.08762159198522568, -0.0858968198299408, 0.07550632208585739, 0.0809127613902092, 0.22168903052806854, 0.0703313797712326, 0.03154223784804344, 0.06092943996191025, 0.1844511479139328, 0.15529003739356995, 0.17153839766979218, 0.015418988652527332, -0.025812845677137375, 0.006589105818420649, 0.013138419017195702, -0.09150379151105881, -0.0042123449966311455, 0.1292845457792282, -0.14540119469165802, -0.07880084216594696, -0.22943291068077087, 0.08157958835363388, 0.07344048470258713, 0.026414161548018456, -0.17556782066822052, -0.0015733868349343538, 0.05357646942138672, 0.006558762397617102, -0.045512180775403976, 0.08496551215648651, -0.022116927430033684, -0.13344039022922516, 0.04287152364850044, -0.058599162846803665, 0.10456542670726776, -0.038338202983140945, 0.07373929768800735, -0.024396726861596107, -0.10900583118200302, 0.07474620640277863, 0.08851087838411331, -0.23624686896800995, 0.27773332595825195, -0.028285326436161995, -0.07041611522436142, -0.06830666214227676, -0.024676870554685593, -0.0017557048704475164, 0.17030403017997742, 0.08692118525505066, 0.03860539570450783, -0.06731099635362625, -0.1669522523880005, 0.04732859507203102, 0.02085104025900364, 0.12389091402292252, -0.008113703690469265, -0.030854588374495506, -0.01338487584143877, -0.019302181899547577, -0.041759077459573746, -0.003546249819919467, 0.10703662782907486, -0.13412658870220184, 0.034535422921180725, 0.005309549160301685, 0.04036608338356018, -0.0035966450814157724, 0.005690612830221653, -0.05699379742145538, 0.13448239862918854, -0.04070858657360077, -0.07688865810632706, -0.08865337073802948, -0.17243140935897827, 0.13381044566631317, -0.10238062590360641, 0.09249105304479599, -0.09976985305547714, -0.06192123889923096, -0.0650167390704155, -0.21104402840137482, 0.10917928814888, -0.10513100028038025, 0.0401403047144413, -0.016867417842149734, 0.202356219291687, -0.08008989691734314, -0.0209506843239069, -0.0013599899830296636, 0.004461138043552637, -0.12345174700021744, -0.10132946074008942, -0.01779748499393463, 0.029711758717894554, 0.08279082924127579, 0.10770376026630402, -0.018299801275134087, 0.04191994294524193, 0.013882452622056007, 0.03635424003005028, 0.24111443758010864, 0.13711073994636536, -0.04645780101418495, 0.11812267452478409, 0.16186927258968353, -0.031571563333272934, -0.2709476351737976, -0.0868004634976387, -0.16869930922985077, -0.04678983986377716, -0.037189606577157974, -0.12448763102293015, 0.12788352370262146, 0.04586293175816536, -0.011544082313776016, 0.1266224980354309, -0.26594868302345276, -0.03401912376284599, 0.1643364280462265, 0.027830148115754128, 0.48583653569221497, -0.09991659969091415, -0.0845755785703659, 0.018966181203722954, -0.2915274500846863, 0.10791198909282684, 0.01369303185492754, 0.06487411260604858, -0.034079212695360184, 0.10230494290590286, 0.044344354420900345, -0.10719364136457443, 0.11951436847448349, 0.035276297479867935, 0.03043992444872856, -0.08126169443130493, -0.08180311322212219, 0.043867211788892746, -0.020314449444413185, 0.016103362664580345, 0.09817174077033997, 0.036888349801301956, -0.1322462111711502, -0.022591179236769676, -0.13765397667884827, 0.049294743686914444, 0.0620623379945755, -0.0240910816937685, -0.013253096491098404, -0.036911722272634506, -0.004203932359814644, 0.019186172634363174, 0.25098612904548645, -0.012744947336614132, 0.1315464824438095, 0.042376402765512466, 0.046371813863515854, -0.20250053703784943, -0.14301706850528717, -0.07346653193235397, -0.04091315343976021, 0.0825582891702652, -0.04023446887731552, 0.0523495189845562, 0.1589740812778473, -0.02755962871015072, -0.008571553975343704, 0.1279488205909729, 0.014891285449266434, -0.03108718805015087, 0.12318851798772812, -0.21083922684192657, -0.042206212878227234, -0.018448445945978165, -0.05149201303720474, 0.1258767545223236, 0.12660184502601624, 0.08982381969690323, 0.07138726115226746, -0.016965264454483986, -0.03962934389710426, -0.023878682404756546, -0.0698867067694664, 0.014531198889017105, 0.041909199208021164, 0.03934765234589577, -0.13099561631679535, 0.07754374295473099, -0.018086964264512062, -0.27273428440093994, -0.06408093869686127, 0.09851112216711044, -0.15818077325820923, -0.10192093253135681, -0.06077379360795021, 0.03578856587409973, -0.1768866330385208, -0.0624033585190773, -0.0316467322409153, -0.10826759040355682, 0.06394574791193008, 0.20973356068134308, 0.10992377996444702, 0.12001070380210876, -0.023827049881219864, -0.02570408768951893, -0.00579385831952095, -0.10135087370872498, -0.012352810241281986, 0.013960975222289562, -0.09324274212121964, 0.018809983506798744, -0.009077025577425957, 0.17904941737651825, -0.0752621665596962, -0.08742223680019379, -0.1552542746067047, 0.09289714694023132, -0.1066979393362999, -0.092626191675663, -0.14189116656780243, -0.06335672736167908, 0.023829210549592972, -0.06568517535924911, -0.01769612915813923, -0.013204174116253853, -0.14357970654964447, 0.06973201036453247, 0.01112452708184719, -0.011419128626585007, -0.057545971125364304, -0.02905389852821827, 0.12901906669139862, -0.0439501516520977, 0.08620632439851761, 0.19515031576156616, -0.09635450690984726, 0.12672042846679688, -0.10680265724658966, -0.16728007793426514, 0.109873466193676, 0.011463385075330734, 0.08858676254749298, 0.05595776438713074, 0.033014263957738876, 0.0949346125125885, 0.01360013522207737, 0.040659237653017044, -0.0074751065112650394, -0.13721472024917603, 0.0005411148304119706, 0.014451061375439167, -0.14818744361400604, -0.051526814699172974, -0.10024616122245789, 0.15037848055362701, 0.046998120844364166, 0.10320950299501419, 0.02188979648053646, 0.13145636022090912, -0.006807954981923103, -0.01749216392636299, -0.007913168519735336, -0.18110167980194092, 0.058051977306604385, -0.04888135939836502, 0.00664436025545001, 0.004136093892157078, 0.29094672203063965, -0.05342133343219757, 0.06421013921499252, 0.012430429458618164, 0.05440686270594597, 0.025291895493865013, 0.019776156172156334, 0.23332199454307556, 0.0909920483827591, -0.040104810148477554, -0.07203774154186249, 0.09381944686174393, -0.027183765545487404, -0.051167625933885574, 0.14428386092185974, 0.12433760613203049, 0.046564988791942596, 0.10233303159475327, -0.010628857649862766, 0.0502619631588459, -0.11714580655097961, -0.29435333609580994, -0.0017536553787067533, 0.02923153154551983, 0.013082349672913551, 0.09705042093992233, 0.12465932965278625, -0.014661809429526329, 0.09902279824018478, -0.0014873039908707142, -0.026829617097973824, -0.13841837644577026, -0.08308025449514389, -0.037351641803979874, -0.1296062022447586, 0.01537085510790348, -0.06261784583330154, -0.0013676333473995328, 0.20482417941093445, 0.040537029504776, -0.03484100475907326, 0.11699468642473221, 0.0698540061712265, -0.06982901692390442, 0.02712978608906269, -0.00757982861250639, 0.035655613988637924, 0.06632175296545029, -0.023149633780121803, -0.14352689683437347, -0.08878929167985916, -0.04016351327300072, 0.04570772126317024, -0.0825280100107193, 0.007398216053843498, -0.1344616711139679, -0.09811436384916306, -0.05467144027352333, 0.09024309366941452, -0.076502226293087, 0.12816135585308075, -0.010830878280103207, 0.010613616555929184, 0.01268461812287569, 0.18772324919700623, -0.075274258852005, -0.060353536158800125, 0.002831645542755723, 0.23638813197612762, 0.08521586656570435, 0.08294188231229782, 0.00997002050280571, 0.024029415100812912, -0.09174544364213943, 0.3311961889266968, 0.24609249830245972, -0.010904072783887386, 0.04334266111254692, 0.04531332477927208, 0.04185611754655838, 0.12315969169139862, 0.13169057667255402, 0.11807206273078918, 0.344115674495697, -0.08338891714811325, -0.031944580376148224, -0.030247550457715988, 0.006968794856220484, -0.13217425346374512, 0.026531271636486053, 0.01758533902466297, -0.08070562034845352, -0.07679492235183716, 0.11993145197629929, -0.20403271913528442, 0.15280351042747498, 0.08174222707748413, -0.19685740768909454, -0.03396262973546982, -0.05789715424180031, 0.18384911119937897, -0.014278654009103775, 0.11859142035245895, -0.04448321461677551, -0.13445675373077393, 0.08106808364391327, 0.048652783036231995, -0.2895694077014923, -0.08014793694019318, 0.0981469452381134, 0.042115915566682816, -0.0287695974111557, -0.015584125183522701, 0.03546717017889023, 0.059928759932518005, 0.08986898511648178, -0.03891289234161377, 0.04509701579809189, 0.020416583865880966, -0.10908327251672745, -0.08358649909496307, -0.02032429538667202, -0.00014163613377604634, -0.1349317878484726, 0.016364745795726776, -0.20526979863643646, 0.04226694256067276, -0.010092525742948055, 0.01465508621186018, -0.004206623882055283, -0.03162108361721039, -0.051075391471385956, 0.023095570504665375, 0.052028998732566833, 0.009046600200235844, -0.017174653708934784, -0.043978288769721985, -0.01736217923462391, 0.04129228740930557, -0.09392837435007095, -0.15831652283668518, -0.016197707504034042, -0.08371548354625702, 0.10397595167160034, -0.03304345905780792, -0.046627145260572433, -0.017865123227238655, -0.02954019047319889, 0.04380740970373154, -0.10989689826965332, 0.035784848034381866, 0.01109471544623375, 0.05120820179581642, 0.011953367851674557, -0.01127829309552908, 0.039223846048116684, 0.07814694195985794, -0.12265297025442123, -0.1024811714887619 ]
null
null
transformers
https://github.com/monologg/JointBERT
{}
null
databuzzword/JointBERT-atis
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #endpoints_compatible #region-us
URL
[]
[ "TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n" ]
[ 23 ]
[ "passage: TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n" ]
[ -0.05582514405250549, -0.0059938449412584305, -0.0106970788910985, -0.029046038165688515, 0.12276504933834076, 0.03318239748477936, 0.02372138574719429, 0.05814843624830246, 0.1283326894044876, -0.008450702764093876, 0.13131918013095856, 0.20412099361419678, -0.05518573895096779, -0.0014659949811175466, -0.060662250965833664, -0.2503744065761566, 0.07448812574148178, 0.10944642126560211, -0.05779325217008591, 0.09946653246879578, 0.033594902604818344, -0.1090199276804924, 0.06034360080957413, -0.031356219202280045, -0.10178717225790024, 0.05382249876856804, 0.022958533838391304, -0.07516350597143173, 0.12614554166793823, 0.017229093238711357, 0.18774759769439697, 0.02010849304497242, -0.12349475175142288, -0.16799280047416687, 0.028976095840334892, 0.0017078231321647763, -0.06416994333267212, 0.029829638078808784, 0.067641980946064, -0.0958416610956192, 0.011812526732683182, 0.04986337199807167, 0.005196088925004005, 0.029664115980267525, -0.16331109404563904, -0.1660199761390686, -0.040016546845436096, 0.03566199541091919, 0.02647480182349682, 0.07168487459421158, 0.023379387333989143, 0.1733984798192978, -0.15529543161392212, 0.08478239923715591, 0.18858951330184937, -0.3070982098579407, 0.008051520213484764, 0.08039850741624832, 0.06561373919248581, 0.05102481693029404, -0.0034548938274383545, 0.0508800707757473, 0.001212250324897468, 0.02218480594456196, -0.026412250474095345, -0.08552643656730652, -0.013642089441418648, 0.08882433921098709, -0.0965084433555603, -0.09593788534402847, 0.201665997505188, -0.035358089953660965, 0.051234010607004166, 0.048935793340206146, -0.10587480664253235, -0.04507492482662201, -0.00264694239012897, -0.006025178357958794, -0.0201078150421381, 0.06390652805566788, 0.011368521489202976, -0.024782819673419, -0.11910133063793182, 0.039458055049180984, -0.22834016382694244, 0.2708556354045868, 0.02697429433465004, 0.09296334534883499, -0.22665227949619293, 0.06216507405042648, -0.053294818848371506, -0.07662333548069, 0.029203347861766815, -0.09727942198514938, 0.0473918691277504, 0.005940338596701622, -0.0753636509180069, 0.05180890113115311, 0.051905784755945206, 0.13826292753219604, 0.016379985958337784, 0.03267199918627739, 0.0194330383092165, 0.10806956142187119, 0.01739308051764965, 0.10608944296836853, 0.01434782799333334, -0.0010544572724029422, 0.022262273356318474, -0.16448475420475006, -0.004203388001769781, -0.04162668436765671, -0.09218078851699829, -0.0717039629817009, 0.031197229400277138, 0.09885258227586746, 0.010065644048154354, 0.0125453881919384, -0.0785975456237793, -0.002858554245904088, 0.0459388829767704, -0.05210942402482033, -0.005135030020028353, 0.013749269768595695, 0.03504934534430504, 0.21628758311271667, -0.030476583167910576, -0.027280736714601517, -0.03371305391192436, 0.12695543467998505, -0.07887829095125198, -0.008509011007845402, -0.04094306752085686, -0.027221381664276123, 0.05422108992934227, -0.14036667346954346, 0.07319435477256775, -0.14634281396865845, -0.0619744248688221, 0.04048692435026169, 0.04245685040950775, 0.017060942947864532, 0.031087180599570274, 0.014675622805953026, -0.005929364822804928, -0.019680023193359375, -0.07101673632860184, -0.06312412023544312, -0.05892617255449295, 0.10866933315992355, -0.0038128141313791275, 0.04870020970702171, -0.11713949590921402, 0.06124676764011383, -0.08538630604743958, 0.03670010715723038, -0.13224002718925476, -0.038841135799884796, -0.027744892984628677, 0.1672174632549286, 0.006601573899388313, -0.06774948537349701, -0.1257120668888092, 0.047252584248781204, -0.038980625569820404, 0.1608281284570694, -0.026440229266881943, -0.12333235889673233, 0.24205224215984344, -0.09686779230833054, -0.17037728428840637, 0.05819088593125343, 0.007297846022993326, -0.0187822412699461, 0.08241696655750275, 0.17078529298305511, 0.03631723299622536, -0.08738293498754501, 0.08095592260360718, 0.14191113412380219, -0.13318699598312378, -0.16365906596183777, 0.028528474271297455, -0.0334528423845768, -0.11907413601875305, 0.041265517473220825, 0.0034436413552612066, 0.08533528447151184, -0.0921982154250145, -0.004812197759747505, -0.01293246354907751, -0.015628160908818245, 0.0729161873459816, 0.058011963963508606, 0.09166673570871353, -0.0677810087800026, 0.00991390272974968, 0.0398266464471817, -0.011255721561610699, 0.03168392553925514, 0.058278635144233704, -0.043341703712940216, 0.1279294639825821, -0.06011424958705902, 0.0025730268098413944, -0.2085462361574173, -0.08715872466564178, -0.011371874250471592, 0.09177418053150177, -0.0393996424973011, 0.16790297627449036, 0.11040320247411728, -0.0925755500793457, 0.00358761684037745, -0.03143608197569847, 0.11512381583452225, 0.01712878979742527, -0.030011799186468124, -0.03772463649511337, 0.012738056480884552, -0.07095976918935776, -0.09710898995399475, -0.02491631917655468, -0.00627898471429944, 0.12167930603027344, 0.1264781653881073, 0.002507270546630025, 0.03385916352272034, -0.04122108966112137, 0.059168342500925064, -0.012312098406255245, 0.02199527993798256, 0.10435131192207336, -0.017714541405439377, -0.08321622759103775, 0.15026481449604034, -0.08384737372398376, 0.36931121349334717, 0.2024332880973816, -0.32852646708488464, 0.03981154039502144, -0.02746942825615406, -0.01390197966247797, 0.024579064920544624, 0.1122342124581337, -0.02590859867632389, 0.0881802886724472, 0.04394598677754402, 0.11318054795265198, -0.024956289678812027, -0.04454986751079559, 0.0007368221413344145, -0.047743842005729675, -0.049511488527059555, 0.09542335569858551, 0.06248341128230095, -0.13251787424087524, 0.1600245237350464, 0.28373822569847107, 0.04560614377260208, 0.09792512655258179, -0.06133773550391197, -0.022757407277822495, 0.039699189364910126, 0.015039279125630856, -0.04576999694108963, 0.03373005613684654, -0.26591286063194275, -0.047633323818445206, 0.07407993823289871, 0.02055620402097702, 0.09061875939369202, -0.1459200233221054, -0.05993150174617767, 0.030102252960205078, 0.02484927326440811, -0.07744612544775009, 0.09087593108415604, 0.04228215664625168, 0.07148098945617676, 0.012928525917232037, -0.04512014612555504, 0.10244821012020111, 0.005629644729197025, -0.04586281627416611, 0.16416428983211517, -0.11823447793722153, -0.2552604377269745, -0.1193137839436531, -0.15801620483398438, 0.02478799968957901, 0.012210648506879807, 0.074419766664505, -0.09139055013656616, -0.026302505284547806, 0.10130403935909271, 0.061081867665052414, -0.15493257343769073, 0.044168904423713684, -0.04580516368150711, 0.03345111384987831, -0.08739827573299408, -0.07113046199083328, -0.07068533450365067, -0.06981467455625534, -0.04961463436484337, 0.10121359676122665, -0.1246945932507515, 0.08166283369064331, 0.12132786959409714, 0.05094803124666214, 0.07646921277046204, -0.0020916727371513844, 0.17505085468292236, -0.06357396394014359, -0.05962150916457176, 0.18625718355178833, -0.039154816418886185, 0.10033397376537323, 0.09657420217990875, 0.044079359620809555, -0.06951406598091125, -0.033484332263469696, -0.060933757573366165, -0.10718005150556564, -0.20763958990573883, -0.10036817938089371, -0.13023525476455688, 0.004751497879624367, -0.000670114066451788, 0.042121771723032, 0.0700206607580185, 0.06631368398666382, 0.053532831370830536, -0.0864759013056755, -0.050034765154123306, 0.04923805594444275, 0.22149646282196045, -0.035591885447502136, 0.07959269732236862, -0.05890441685914993, -0.08794771879911423, 0.08127860724925995, 0.060010988265275955, 0.1817447543144226, 0.10210268944501877, 0.022593215107917786, 0.06595935672521591, 0.16745993494987488, 0.15201883018016815, 0.1540367156267166, -0.02193843014538288, -0.03577892482280731, -0.01526061724871397, -0.00010030799603555351, -0.06889137625694275, 0.0004913448356091976, 0.11326914280653, -0.13479973375797272, -0.0604836605489254, -0.24327106773853302, 0.07084902375936508, 0.04919629916548729, 0.032679811120033264, -0.15196309983730316, -0.00040421399171464145, 0.07282399386167526, -0.00041144643910229206, -0.044284626841545105, 0.09084761887788773, -0.0016829834785312414, -0.11569281667470932, 0.050119396299123764, -0.04132482036948204, 0.10694653540849686, -0.02481699176132679, 0.08771265298128128, -0.0358782634139061, -0.12598921358585358, 0.0662776455283165, 0.06900722533464432, -0.23785486817359924, 0.28764957189559937, -0.015047562308609486, -0.08228088170289993, -0.048801977187395096, -0.04197835922241211, -0.003781283274292946, 0.1852884590625763, 0.1024385541677475, 0.04168209061026573, -0.03920183330774307, -0.15113374590873718, 0.043328672647476196, 0.033142901957035065, 0.1328010857105255, -0.03353354334831238, -0.04113762453198433, 0.0004659405385609716, -0.012823380529880524, -0.026963958516716957, 0.03337518498301506, 0.0776907280087471, -0.1309017539024353, 0.04395826533436775, -0.0019880991894751787, 0.028880812227725983, -0.0074317543767392635, -0.01322081871330738, -0.06172190606594086, 0.11954687535762787, -0.06683460623025894, -0.05747222900390625, -0.0848630890250206, -0.1599932312965393, 0.1275681108236313, -0.10324639081954956, 0.072115458548069, -0.08794764429330826, -0.06709247827529907, -0.07358412444591522, -0.1814906895160675, 0.12599299848079681, -0.0998830795288086, 0.028712023049592972, -0.036930546164512634, 0.2198343575000763, -0.04788460582494736, 0.00006587969255633652, -0.008528475649654865, 0.013039504177868366, -0.11477264016866684, -0.08884283155202866, 0.01379021629691124, -0.015655362978577614, 0.05710950493812561, 0.041695158928632736, -0.03288666531443596, 0.06880264729261398, 0.015344602055847645, 0.034568872302770615, 0.21396347880363464, 0.186134472489357, -0.033745236694812775, 0.11985735595226288, 0.18027181923389435, -0.033794477581977844, -0.26661917567253113, -0.0846354141831398, -0.17172688245773315, -0.047513436526060104, -0.02810327708721161, -0.14752227067947388, 0.142644464969635, 0.0381203256547451, -0.020230794325470924, 0.12928421795368195, -0.2486487627029419, -0.049123749136924744, 0.1653672605752945, 0.0083856750279665, 0.5381866097450256, -0.10660535097122192, -0.09454790502786636, 0.02489558421075344, -0.25975850224494934, 0.10427799820899963, 0.02520833909511566, 0.051780153065919876, -0.021174505352973938, 0.09585968405008316, 0.036323096603155136, -0.08304581791162491, 0.11906874924898148, 0.028275268152356148, 0.02357698790729046, -0.06498955935239792, -0.13870584964752197, 0.037250224500894547, -0.013110331259667873, -0.03493497520685196, 0.06826557219028473, 0.017235321924090385, -0.14760255813598633, -0.02404404617846012, -0.13333261013031006, 0.05567457154393196, 0.036672841757535934, -0.031218502670526505, 0.005919408518821001, -0.03673669323325157, -0.025360016152262688, 0.013563361018896103, 0.2656884491443634, -0.02885071188211441, 0.13380834460258484, 0.004754696507006884, 0.06820327788591385, -0.2138592153787613, -0.11385384202003479, -0.07559774816036224, -0.052582528442144394, 0.08766578137874603, -0.04031619429588318, 0.04227626696228981, 0.15855242311954498, -0.016625750809907913, -0.009202802553772926, 0.1196829304099083, 0.0072800288908183575, -0.03377111256122589, 0.11844226717948914, -0.22603391110897064, -0.05008016526699066, -0.02580120787024498, -0.03263162076473236, 0.12460703402757645, 0.12217804044485092, 0.09506645798683167, 0.0754433125257492, -0.022474301978945732, -0.024322625249624252, -0.03513093665242195, -0.07823941111564636, 0.013863112777471542, 0.04773413762450218, 0.034937534481287, -0.11898844689130783, 0.047177523374557495, -0.02152738906443119, -0.266872763633728, -0.056712910532951355, 0.10026243329048157, -0.13707385957241058, -0.0934320017695427, -0.07949313521385193, 0.07076770067214966, -0.15040098130702972, -0.04215400665998459, -0.01284860447049141, -0.11120935529470444, 0.07076677680015564, 0.250417560338974, 0.1062779352068901, 0.10727981477975845, -0.032035890966653824, -0.005367985460907221, 0.042143698781728745, -0.07543303072452545, -0.013991466723382473, 0.0121172945946455, -0.08700574934482574, -0.010479255579411983, -0.013696597889065742, 0.15301570296287537, -0.08327650278806686, -0.07890510559082031, -0.171699658036232, 0.08268199115991592, -0.10711699724197388, -0.10958558320999146, -0.11338668316602707, -0.06782516837120056, 0.011405235156416893, -0.09893908351659775, -0.03024802915751934, -0.0328654907643795, -0.13816463947296143, 0.07684630155563354, 0.03262607753276825, 0.005515735596418381, -0.06403716653585434, -0.035874143242836, 0.1498086303472519, -0.05030526593327522, 0.09152921289205551, 0.18889226019382477, -0.08515924215316772, 0.13183313608169556, -0.10378775745630264, -0.14850100874900818, 0.10374602675437927, 0.012674182653427124, 0.08053745329380035, 0.08146080374717712, 0.015140734612941742, 0.07422392815351486, 0.028560757637023926, 0.05162277817726135, 0.003286920255050063, -0.1188889890909195, 0.016973691061139107, 0.04206009581685066, -0.17900550365447998, -0.02852419763803482, -0.09733768552541733, 0.15730208158493042, 0.03292210027575493, 0.08486420661211014, 0.020920267328619957, 0.1054333969950676, -0.023887382820248604, 0.009118972346186638, 0.011180376634001732, -0.19744594395160675, 0.027193883433938026, -0.05555891990661621, 0.006399804726243019, 0.0009134450228884816, 0.2835138142108917, -0.07805345952510834, 0.031515587121248245, 0.03223814070224762, 0.053333036601543427, -0.0018267212435603142, 0.019711701199412346, 0.23368167877197266, 0.1001359298825264, -0.04224341735243797, -0.09082697331905365, 0.08135782182216644, -0.009332779794931412, -0.035943757742643356, 0.1321525275707245, 0.12974345684051514, 0.06283511221408844, 0.0970291718840599, -0.0061447578482329845, 0.06124432384967804, -0.11149083077907562, -0.2839953899383545, 0.005014513153582811, 0.04187164828181267, 0.007620683405548334, 0.13637039065361023, 0.11712085455656052, -0.013480436988174915, 0.07515306025743484, -0.01791444607079029, -0.010756190866231918, -0.1442539393901825, -0.0785292312502861, -0.036694128066301346, -0.10411686450242996, 0.016604600474238396, -0.05977771431207657, -0.006930612958967686, 0.16422225534915924, 0.04799465835094452, -0.02543029561638832, 0.11942467838525772, 0.060724616050720215, -0.05485526844859123, 0.032888129353523254, -0.004953940864652395, 0.02457866445183754, 0.03158317878842354, -0.021798279136419296, -0.1477023959159851, -0.07525672018527985, -0.06770733743906021, 0.031246397644281387, -0.09311450272798538, -0.024162618443369865, -0.1108081042766571, -0.10779142379760742, -0.06457403302192688, 0.07176531851291656, -0.06568951159715652, 0.1171649917960167, -0.032683372497558594, 0.016234206035733223, 0.007168353535234928, 0.172343447804451, -0.07198196649551392, -0.024842115119099617, 0.017614079639315605, 0.2056950181722641, 0.049104735255241394, 0.1042415201663971, 0.0006923355394974351, 0.03809111937880516, -0.08218837529420853, 0.3366861045360565, 0.24629603326320648, -0.03666435182094574, 0.042452335357666016, 0.064607635140419, 0.050530221313238144, 0.11894407868385315, 0.10735389590263367, 0.10173739492893219, 0.3289482593536377, -0.09050356596708298, -0.03519318625330925, -0.025250563398003578, 0.009432761929929256, -0.09690305590629578, 0.0489007793366909, 0.039478812366724014, -0.06709855049848557, -0.08793099969625473, 0.10046962648630142, -0.17121359705924988, 0.10175119340419769, 0.06997337937355042, -0.2198277860879898, -0.03783851116895676, -0.060111887753009796, 0.181540384888649, -0.012015782296657562, 0.129024475812912, -0.03838730603456497, -0.1459164023399353, 0.06123366579413414, 0.050386372953653336, -0.27638113498687744, -0.08839067071676254, 0.1257728487253189, 0.042554836720228195, -0.00688927061855793, -0.016768725588917732, 0.013223016634583473, 0.060327593237161636, 0.07101310789585114, -0.025480445474386215, -0.0019402769394218922, 0.04185595363378525, -0.10931044816970825, -0.12752482295036316, -0.0229122806340456, 0.011525065638124943, -0.09778720140457153, 0.027700234204530716, -0.1871083378791809, 0.03940398618578911, 0.00809240061789751, -0.03241167217493057, -0.0014000540832057595, 0.0010574592743068933, -0.057058386504650116, 0.013885253109037876, 0.04856681451201439, 0.014625655487179756, -0.04175407066941261, -0.04523738846182823, -0.017677124589681625, 0.06060760095715523, -0.08221389353275299, -0.15152835845947266, -0.019660353660583496, -0.08916762471199036, 0.11470503360033035, -0.03491480275988579, -0.06863245368003845, -0.022439386695623398, -0.02936902828514576, 0.07283741235733032, -0.12221226841211319, 0.023255428299307823, 0.016710588708519936, 0.04700179398059845, 0.0185729768127203, -0.03645060583949089, 0.05477501451969147, 0.05671923607587814, -0.11537165194749832, -0.07711852341890335 ]
null
null
transformers
https://github.com/monologg/JointBERT
{}
null
databuzzword/JointBERT-snips
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #endpoints_compatible #region-us
URL
[]
[ "TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n" ]
[ 23 ]
[ "passage: TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n" ]
[ -0.05582514405250549, -0.0059938449412584305, -0.0106970788910985, -0.029046038165688515, 0.12276504933834076, 0.03318239748477936, 0.02372138574719429, 0.05814843624830246, 0.1283326894044876, -0.008450702764093876, 0.13131918013095856, 0.20412099361419678, -0.05518573895096779, -0.0014659949811175466, -0.060662250965833664, -0.2503744065761566, 0.07448812574148178, 0.10944642126560211, -0.05779325217008591, 0.09946653246879578, 0.033594902604818344, -0.1090199276804924, 0.06034360080957413, -0.031356219202280045, -0.10178717225790024, 0.05382249876856804, 0.022958533838391304, -0.07516350597143173, 0.12614554166793823, 0.017229093238711357, 0.18774759769439697, 0.02010849304497242, -0.12349475175142288, -0.16799280047416687, 0.028976095840334892, 0.0017078231321647763, -0.06416994333267212, 0.029829638078808784, 0.067641980946064, -0.0958416610956192, 0.011812526732683182, 0.04986337199807167, 0.005196088925004005, 0.029664115980267525, -0.16331109404563904, -0.1660199761390686, -0.040016546845436096, 0.03566199541091919, 0.02647480182349682, 0.07168487459421158, 0.023379387333989143, 0.1733984798192978, -0.15529543161392212, 0.08478239923715591, 0.18858951330184937, -0.3070982098579407, 0.008051520213484764, 0.08039850741624832, 0.06561373919248581, 0.05102481693029404, -0.0034548938274383545, 0.0508800707757473, 0.001212250324897468, 0.02218480594456196, -0.026412250474095345, -0.08552643656730652, -0.013642089441418648, 0.08882433921098709, -0.0965084433555603, -0.09593788534402847, 0.201665997505188, -0.035358089953660965, 0.051234010607004166, 0.048935793340206146, -0.10587480664253235, -0.04507492482662201, -0.00264694239012897, -0.006025178357958794, -0.0201078150421381, 0.06390652805566788, 0.011368521489202976, -0.024782819673419, -0.11910133063793182, 0.039458055049180984, -0.22834016382694244, 0.2708556354045868, 0.02697429433465004, 0.09296334534883499, -0.22665227949619293, 0.06216507405042648, -0.053294818848371506, -0.07662333548069, 0.029203347861766815, -0.09727942198514938, 0.0473918691277504, 0.005940338596701622, -0.0753636509180069, 0.05180890113115311, 0.051905784755945206, 0.13826292753219604, 0.016379985958337784, 0.03267199918627739, 0.0194330383092165, 0.10806956142187119, 0.01739308051764965, 0.10608944296836853, 0.01434782799333334, -0.0010544572724029422, 0.022262273356318474, -0.16448475420475006, -0.004203388001769781, -0.04162668436765671, -0.09218078851699829, -0.0717039629817009, 0.031197229400277138, 0.09885258227586746, 0.010065644048154354, 0.0125453881919384, -0.0785975456237793, -0.002858554245904088, 0.0459388829767704, -0.05210942402482033, -0.005135030020028353, 0.013749269768595695, 0.03504934534430504, 0.21628758311271667, -0.030476583167910576, -0.027280736714601517, -0.03371305391192436, 0.12695543467998505, -0.07887829095125198, -0.008509011007845402, -0.04094306752085686, -0.027221381664276123, 0.05422108992934227, -0.14036667346954346, 0.07319435477256775, -0.14634281396865845, -0.0619744248688221, 0.04048692435026169, 0.04245685040950775, 0.017060942947864532, 0.031087180599570274, 0.014675622805953026, -0.005929364822804928, -0.019680023193359375, -0.07101673632860184, -0.06312412023544312, -0.05892617255449295, 0.10866933315992355, -0.0038128141313791275, 0.04870020970702171, -0.11713949590921402, 0.06124676764011383, -0.08538630604743958, 0.03670010715723038, -0.13224002718925476, -0.038841135799884796, -0.027744892984628677, 0.1672174632549286, 0.006601573899388313, -0.06774948537349701, -0.1257120668888092, 0.047252584248781204, -0.038980625569820404, 0.1608281284570694, -0.026440229266881943, -0.12333235889673233, 0.24205224215984344, -0.09686779230833054, -0.17037728428840637, 0.05819088593125343, 0.007297846022993326, -0.0187822412699461, 0.08241696655750275, 0.17078529298305511, 0.03631723299622536, -0.08738293498754501, 0.08095592260360718, 0.14191113412380219, -0.13318699598312378, -0.16365906596183777, 0.028528474271297455, -0.0334528423845768, -0.11907413601875305, 0.041265517473220825, 0.0034436413552612066, 0.08533528447151184, -0.0921982154250145, -0.004812197759747505, -0.01293246354907751, -0.015628160908818245, 0.0729161873459816, 0.058011963963508606, 0.09166673570871353, -0.0677810087800026, 0.00991390272974968, 0.0398266464471817, -0.011255721561610699, 0.03168392553925514, 0.058278635144233704, -0.043341703712940216, 0.1279294639825821, -0.06011424958705902, 0.0025730268098413944, -0.2085462361574173, -0.08715872466564178, -0.011371874250471592, 0.09177418053150177, -0.0393996424973011, 0.16790297627449036, 0.11040320247411728, -0.0925755500793457, 0.00358761684037745, -0.03143608197569847, 0.11512381583452225, 0.01712878979742527, -0.030011799186468124, -0.03772463649511337, 0.012738056480884552, -0.07095976918935776, -0.09710898995399475, -0.02491631917655468, -0.00627898471429944, 0.12167930603027344, 0.1264781653881073, 0.002507270546630025, 0.03385916352272034, -0.04122108966112137, 0.059168342500925064, -0.012312098406255245, 0.02199527993798256, 0.10435131192207336, -0.017714541405439377, -0.08321622759103775, 0.15026481449604034, -0.08384737372398376, 0.36931121349334717, 0.2024332880973816, -0.32852646708488464, 0.03981154039502144, -0.02746942825615406, -0.01390197966247797, 0.024579064920544624, 0.1122342124581337, -0.02590859867632389, 0.0881802886724472, 0.04394598677754402, 0.11318054795265198, -0.024956289678812027, -0.04454986751079559, 0.0007368221413344145, -0.047743842005729675, -0.049511488527059555, 0.09542335569858551, 0.06248341128230095, -0.13251787424087524, 0.1600245237350464, 0.28373822569847107, 0.04560614377260208, 0.09792512655258179, -0.06133773550391197, -0.022757407277822495, 0.039699189364910126, 0.015039279125630856, -0.04576999694108963, 0.03373005613684654, -0.26591286063194275, -0.047633323818445206, 0.07407993823289871, 0.02055620402097702, 0.09061875939369202, -0.1459200233221054, -0.05993150174617767, 0.030102252960205078, 0.02484927326440811, -0.07744612544775009, 0.09087593108415604, 0.04228215664625168, 0.07148098945617676, 0.012928525917232037, -0.04512014612555504, 0.10244821012020111, 0.005629644729197025, -0.04586281627416611, 0.16416428983211517, -0.11823447793722153, -0.2552604377269745, -0.1193137839436531, -0.15801620483398438, 0.02478799968957901, 0.012210648506879807, 0.074419766664505, -0.09139055013656616, -0.026302505284547806, 0.10130403935909271, 0.061081867665052414, -0.15493257343769073, 0.044168904423713684, -0.04580516368150711, 0.03345111384987831, -0.08739827573299408, -0.07113046199083328, -0.07068533450365067, -0.06981467455625534, -0.04961463436484337, 0.10121359676122665, -0.1246945932507515, 0.08166283369064331, 0.12132786959409714, 0.05094803124666214, 0.07646921277046204, -0.0020916727371513844, 0.17505085468292236, -0.06357396394014359, -0.05962150916457176, 0.18625718355178833, -0.039154816418886185, 0.10033397376537323, 0.09657420217990875, 0.044079359620809555, -0.06951406598091125, -0.033484332263469696, -0.060933757573366165, -0.10718005150556564, -0.20763958990573883, -0.10036817938089371, -0.13023525476455688, 0.004751497879624367, -0.000670114066451788, 0.042121771723032, 0.0700206607580185, 0.06631368398666382, 0.053532831370830536, -0.0864759013056755, -0.050034765154123306, 0.04923805594444275, 0.22149646282196045, -0.035591885447502136, 0.07959269732236862, -0.05890441685914993, -0.08794771879911423, 0.08127860724925995, 0.060010988265275955, 0.1817447543144226, 0.10210268944501877, 0.022593215107917786, 0.06595935672521591, 0.16745993494987488, 0.15201883018016815, 0.1540367156267166, -0.02193843014538288, -0.03577892482280731, -0.01526061724871397, -0.00010030799603555351, -0.06889137625694275, 0.0004913448356091976, 0.11326914280653, -0.13479973375797272, -0.0604836605489254, -0.24327106773853302, 0.07084902375936508, 0.04919629916548729, 0.032679811120033264, -0.15196309983730316, -0.00040421399171464145, 0.07282399386167526, -0.00041144643910229206, -0.044284626841545105, 0.09084761887788773, -0.0016829834785312414, -0.11569281667470932, 0.050119396299123764, -0.04132482036948204, 0.10694653540849686, -0.02481699176132679, 0.08771265298128128, -0.0358782634139061, -0.12598921358585358, 0.0662776455283165, 0.06900722533464432, -0.23785486817359924, 0.28764957189559937, -0.015047562308609486, -0.08228088170289993, -0.048801977187395096, -0.04197835922241211, -0.003781283274292946, 0.1852884590625763, 0.1024385541677475, 0.04168209061026573, -0.03920183330774307, -0.15113374590873718, 0.043328672647476196, 0.033142901957035065, 0.1328010857105255, -0.03353354334831238, -0.04113762453198433, 0.0004659405385609716, -0.012823380529880524, -0.026963958516716957, 0.03337518498301506, 0.0776907280087471, -0.1309017539024353, 0.04395826533436775, -0.0019880991894751787, 0.028880812227725983, -0.0074317543767392635, -0.01322081871330738, -0.06172190606594086, 0.11954687535762787, -0.06683460623025894, -0.05747222900390625, -0.0848630890250206, -0.1599932312965393, 0.1275681108236313, -0.10324639081954956, 0.072115458548069, -0.08794764429330826, -0.06709247827529907, -0.07358412444591522, -0.1814906895160675, 0.12599299848079681, -0.0998830795288086, 0.028712023049592972, -0.036930546164512634, 0.2198343575000763, -0.04788460582494736, 0.00006587969255633652, -0.008528475649654865, 0.013039504177868366, -0.11477264016866684, -0.08884283155202866, 0.01379021629691124, -0.015655362978577614, 0.05710950493812561, 0.041695158928632736, -0.03288666531443596, 0.06880264729261398, 0.015344602055847645, 0.034568872302770615, 0.21396347880363464, 0.186134472489357, -0.033745236694812775, 0.11985735595226288, 0.18027181923389435, -0.033794477581977844, -0.26661917567253113, -0.0846354141831398, -0.17172688245773315, -0.047513436526060104, -0.02810327708721161, -0.14752227067947388, 0.142644464969635, 0.0381203256547451, -0.020230794325470924, 0.12928421795368195, -0.2486487627029419, -0.049123749136924744, 0.1653672605752945, 0.0083856750279665, 0.5381866097450256, -0.10660535097122192, -0.09454790502786636, 0.02489558421075344, -0.25975850224494934, 0.10427799820899963, 0.02520833909511566, 0.051780153065919876, -0.021174505352973938, 0.09585968405008316, 0.036323096603155136, -0.08304581791162491, 0.11906874924898148, 0.028275268152356148, 0.02357698790729046, -0.06498955935239792, -0.13870584964752197, 0.037250224500894547, -0.013110331259667873, -0.03493497520685196, 0.06826557219028473, 0.017235321924090385, -0.14760255813598633, -0.02404404617846012, -0.13333261013031006, 0.05567457154393196, 0.036672841757535934, -0.031218502670526505, 0.005919408518821001, -0.03673669323325157, -0.025360016152262688, 0.013563361018896103, 0.2656884491443634, -0.02885071188211441, 0.13380834460258484, 0.004754696507006884, 0.06820327788591385, -0.2138592153787613, -0.11385384202003479, -0.07559774816036224, -0.052582528442144394, 0.08766578137874603, -0.04031619429588318, 0.04227626696228981, 0.15855242311954498, -0.016625750809907913, -0.009202802553772926, 0.1196829304099083, 0.0072800288908183575, -0.03377111256122589, 0.11844226717948914, -0.22603391110897064, -0.05008016526699066, -0.02580120787024498, -0.03263162076473236, 0.12460703402757645, 0.12217804044485092, 0.09506645798683167, 0.0754433125257492, -0.022474301978945732, -0.024322625249624252, -0.03513093665242195, -0.07823941111564636, 0.013863112777471542, 0.04773413762450218, 0.034937534481287, -0.11898844689130783, 0.047177523374557495, -0.02152738906443119, -0.266872763633728, -0.056712910532951355, 0.10026243329048157, -0.13707385957241058, -0.0934320017695427, -0.07949313521385193, 0.07076770067214966, -0.15040098130702972, -0.04215400665998459, -0.01284860447049141, -0.11120935529470444, 0.07076677680015564, 0.250417560338974, 0.1062779352068901, 0.10727981477975845, -0.032035890966653824, -0.005367985460907221, 0.042143698781728745, -0.07543303072452545, -0.013991466723382473, 0.0121172945946455, -0.08700574934482574, -0.010479255579411983, -0.013696597889065742, 0.15301570296287537, -0.08327650278806686, -0.07890510559082031, -0.171699658036232, 0.08268199115991592, -0.10711699724197388, -0.10958558320999146, -0.11338668316602707, -0.06782516837120056, 0.011405235156416893, -0.09893908351659775, -0.03024802915751934, -0.0328654907643795, -0.13816463947296143, 0.07684630155563354, 0.03262607753276825, 0.005515735596418381, -0.06403716653585434, -0.035874143242836, 0.1498086303472519, -0.05030526593327522, 0.09152921289205551, 0.18889226019382477, -0.08515924215316772, 0.13183313608169556, -0.10378775745630264, -0.14850100874900818, 0.10374602675437927, 0.012674182653427124, 0.08053745329380035, 0.08146080374717712, 0.015140734612941742, 0.07422392815351486, 0.028560757637023926, 0.05162277817726135, 0.003286920255050063, -0.1188889890909195, 0.016973691061139107, 0.04206009581685066, -0.17900550365447998, -0.02852419763803482, -0.09733768552541733, 0.15730208158493042, 0.03292210027575493, 0.08486420661211014, 0.020920267328619957, 0.1054333969950676, -0.023887382820248604, 0.009118972346186638, 0.011180376634001732, -0.19744594395160675, 0.027193883433938026, -0.05555891990661621, 0.006399804726243019, 0.0009134450228884816, 0.2835138142108917, -0.07805345952510834, 0.031515587121248245, 0.03223814070224762, 0.053333036601543427, -0.0018267212435603142, 0.019711701199412346, 0.23368167877197266, 0.1001359298825264, -0.04224341735243797, -0.09082697331905365, 0.08135782182216644, -0.009332779794931412, -0.035943757742643356, 0.1321525275707245, 0.12974345684051514, 0.06283511221408844, 0.0970291718840599, -0.0061447578482329845, 0.06124432384967804, -0.11149083077907562, -0.2839953899383545, 0.005014513153582811, 0.04187164828181267, 0.007620683405548334, 0.13637039065361023, 0.11712085455656052, -0.013480436988174915, 0.07515306025743484, -0.01791444607079029, -0.010756190866231918, -0.1442539393901825, -0.0785292312502861, -0.036694128066301346, -0.10411686450242996, 0.016604600474238396, -0.05977771431207657, -0.006930612958967686, 0.16422225534915924, 0.04799465835094452, -0.02543029561638832, 0.11942467838525772, 0.060724616050720215, -0.05485526844859123, 0.032888129353523254, -0.004953940864652395, 0.02457866445183754, 0.03158317878842354, -0.021798279136419296, -0.1477023959159851, -0.07525672018527985, -0.06770733743906021, 0.031246397644281387, -0.09311450272798538, -0.024162618443369865, -0.1108081042766571, -0.10779142379760742, -0.06457403302192688, 0.07176531851291656, -0.06568951159715652, 0.1171649917960167, -0.032683372497558594, 0.016234206035733223, 0.007168353535234928, 0.172343447804451, -0.07198196649551392, -0.024842115119099617, 0.017614079639315605, 0.2056950181722641, 0.049104735255241394, 0.1042415201663971, 0.0006923355394974351, 0.03809111937880516, -0.08218837529420853, 0.3366861045360565, 0.24629603326320648, -0.03666435182094574, 0.042452335357666016, 0.064607635140419, 0.050530221313238144, 0.11894407868385315, 0.10735389590263367, 0.10173739492893219, 0.3289482593536377, -0.09050356596708298, -0.03519318625330925, -0.025250563398003578, 0.009432761929929256, -0.09690305590629578, 0.0489007793366909, 0.039478812366724014, -0.06709855049848557, -0.08793099969625473, 0.10046962648630142, -0.17121359705924988, 0.10175119340419769, 0.06997337937355042, -0.2198277860879898, -0.03783851116895676, -0.060111887753009796, 0.181540384888649, -0.012015782296657562, 0.129024475812912, -0.03838730603456497, -0.1459164023399353, 0.06123366579413414, 0.050386372953653336, -0.27638113498687744, -0.08839067071676254, 0.1257728487253189, 0.042554836720228195, -0.00688927061855793, -0.016768725588917732, 0.013223016634583473, 0.060327593237161636, 0.07101310789585114, -0.025480445474386215, -0.0019402769394218922, 0.04185595363378525, -0.10931044816970825, -0.12752482295036316, -0.0229122806340456, 0.011525065638124943, -0.09778720140457153, 0.027700234204530716, -0.1871083378791809, 0.03940398618578911, 0.00809240061789751, -0.03241167217493057, -0.0014000540832057595, 0.0010574592743068933, -0.057058386504650116, 0.013885253109037876, 0.04856681451201439, 0.014625655487179756, -0.04175407066941261, -0.04523738846182823, -0.017677124589681625, 0.06060760095715523, -0.08221389353275299, -0.15152835845947266, -0.019660353660583496, -0.08916762471199036, 0.11470503360033035, -0.03491480275988579, -0.06863245368003845, -0.022439386695623398, -0.02936902828514576, 0.07283741235733032, -0.12221226841211319, 0.023255428299307823, 0.016710588708519936, 0.04700179398059845, 0.0185729768127203, -0.03645060583949089, 0.05477501451969147, 0.05671923607587814, -0.11537165194749832, -0.07711852341890335 ]
null
null
tensorflowtts
# Tacotron 2 with Guided Attention trained on Synpaflex (Fr) This repository provides a pretrained [Tacotron2](https://arxiv.org/abs/1712.05884) trained with [Guided Attention](https://arxiv.org/abs/1710.08969) on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS). ## Install TensorFlowTTS First of all, please install TensorFlowTTS with the following command: ``` pip install TensorFlowTTS ``` ### Converting your Text to Mel Spectrogram ```python import numpy as np import soundfile as sf import yaml import tensorflow as tf from tensorflow_tts.inference import AutoProcessor from tensorflow_tts.inference import TFAutoModel processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") text = "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous Γ©tions amis" input_ids = processor.text_to_sequence(text) decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32), speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), ) ``` #### Referencing Tacotron 2 ``` @article{DBLP:journals/corr/abs-1712-05884, author = {Jonathan Shen and Ruoming Pang and Ron J. Weiss and Mike Schuster and Navdeep Jaitly and Zongheng Yang and Zhifeng Chen and Yu Zhang and Yuxuan Wang and R. J. Skerry{-}Ryan and Rif A. Saurous and Yannis Agiomyrgiannakis and Yonghui Wu}, title = {Natural {TTS} Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions}, journal = {CoRR}, volume = {abs/1712.05884}, year = {2017}, url = {http://arxiv.org/abs/1712.05884}, archivePrefix = {arXiv}, eprint = {1712.05884}, timestamp = {Thu, 28 Nov 2019 08:59:52 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1712-05884.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` #### Referencing TensorFlowTTS ``` @misc{TFTTS, author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata, Trinh Le and Yunchao He}, title = {TensorflowTTS}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}}, } ```
{"language": "fr", "license": "apache-2.0", "tags": ["tensorflowtts", "audio", "text-to-speech", "text-to-mel"], "datasets": ["synpaflex"], "widget": [{"text": "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous \u00e9tions amis"}]}
text-to-speech
dathudeptrai/tts-tacotron2-synpaflex-fr
[ "tensorflowtts", "audio", "text-to-speech", "text-to-mel", "fr", "dataset:synpaflex", "arxiv:1712.05884", "arxiv:1710.08969", "license:apache-2.0", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1712.05884", "1710.08969" ]
[ "fr" ]
TAGS #tensorflowtts #audio #text-to-speech #text-to-mel #fr #dataset-synpaflex #arxiv-1712.05884 #arxiv-1710.08969 #license-apache-2.0 #has_space #region-us
# Tacotron 2 with Guided Attention trained on Synpaflex (Fr) This repository provides a pretrained Tacotron2 trained with Guided Attention on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about TensorFlowTTS. ## Install TensorFlowTTS First of all, please install TensorFlowTTS with the following command: ### Converting your Text to Mel Spectrogram #### Referencing Tacotron 2 #### Referencing TensorFlowTTS
[ "# Tacotron 2 with Guided Attention trained on Synpaflex (Fr)\nThis repository provides a pretrained Tacotron2 trained with Guided Attention on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about\nTensorFlowTTS.", "## Install TensorFlowTTS\nFirst of all, please install TensorFlowTTS with the following command:", "### Converting your Text to Mel Spectrogram", "#### Referencing Tacotron 2", "#### Referencing TensorFlowTTS" ]
[ "TAGS\n#tensorflowtts #audio #text-to-speech #text-to-mel #fr #dataset-synpaflex #arxiv-1712.05884 #arxiv-1710.08969 #license-apache-2.0 #has_space #region-us \n", "# Tacotron 2 with Guided Attention trained on Synpaflex (Fr)\nThis repository provides a pretrained Tacotron2 trained with Guided Attention on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about\nTensorFlowTTS.", "## Install TensorFlowTTS\nFirst of all, please install TensorFlowTTS with the following command:", "### Converting your Text to Mel Spectrogram", "#### Referencing Tacotron 2", "#### Referencing TensorFlowTTS" ]
[ 67, 67, 25, 12, 9, 11 ]
[ "passage: TAGS\n#tensorflowtts #audio #text-to-speech #text-to-mel #fr #dataset-synpaflex #arxiv-1712.05884 #arxiv-1710.08969 #license-apache-2.0 #has_space #region-us \n# Tacotron 2 with Guided Attention trained on Synpaflex (Fr)\nThis repository provides a pretrained Tacotron2 trained with Guided Attention on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about\nTensorFlowTTS.## Install TensorFlowTTS\nFirst of all, please install TensorFlowTTS with the following command:### Converting your Text to Mel Spectrogram#### Referencing Tacotron 2#### Referencing TensorFlowTTS" ]
[ -0.09008412808179855, 0.0258724857121706, -0.00243806722573936, 0.07238461077213287, 0.05397295206785202, -0.012534987181425095, 0.05476726219058037, 0.10792107880115509, 0.013941964134573936, 0.07414314895868301, 0.06717416644096375, 0.005190798547118902, 0.07242222130298615, 0.07651147246360779, -0.0053358436562120914, -0.22178888320922852, -0.06040631979703903, -0.020393209531903267, -0.027312178164720535, 0.06872083991765976, 0.07355931401252747, -0.03623049333691597, 0.08305780589580536, 0.0061441753059625626, -0.1246105507016182, 0.024767860770225525, 0.05419231951236725, -0.0766570121049881, 0.08187184482812881, 0.041648004204034805, 0.027250008657574654, 0.05253071337938309, 0.059554532170295715, -0.04076261818408966, 0.04045866057276726, 0.05934331193566322, 0.003942868206650019, 0.10201907157897949, 0.15523993968963623, -0.02615879662334919, 0.07293012738227844, -0.046090707182884216, -0.006258465815335512, 0.06697013229131699, -0.0946209728717804, -0.0342579185962677, -0.14668415486812592, 0.05519486591219902, 0.10478043556213379, 0.09572160243988037, -0.0379018671810627, 0.10777004063129425, 0.07629947364330292, 0.054924819618463516, 0.16017240285873413, -0.3758101165294647, -0.07633166015148163, 0.009898591786623001, 0.04605954885482788, 0.01258257869631052, -0.06555785983800888, 0.07083936035633087, 0.06381966173648834, 0.07328610867261887, 0.14129622280597687, -0.1056506335735321, -0.1280529499053955, -0.07985042035579681, -0.14696644246578217, 0.061200544238090515, 0.2532370686531067, -0.026210568845272064, -0.06640530377626419, -0.009043024852871895, -0.09702219814062119, -0.09921107441186905, -0.00235819723457098, -0.0723644495010376, 0.029854893684387207, 0.03852424398064613, 0.09009020775556564, -0.22235332429409027, -0.1605713963508606, -0.028383880853652954, -0.16690219938755035, 0.06588409096002579, 0.009932443499565125, -0.0005550715140998363, -0.009906496852636337, 0.047480471432209015, -0.16631841659545898, -0.09113605320453644, 0.02226068638265133, -0.04060335084795952, -0.11424914747476578, -0.017233408987522125, -0.05431685224175453, -0.3449349105358124, -0.011941464617848396, 0.04825473204255104, -0.06259171664714813, 0.03942359611392021, -0.10102459788322449, 0.10806121677160263, -0.016258999705314636, 0.045655857771635056, -0.06569290906190872, 0.016818741336464882, 0.03972400352358818, -0.04957302659749985, 0.0642920434474945, -0.01849251240491867, -0.08126666396856308, -0.02217266336083412, -0.07429829984903336, 0.006046387366950512, 0.07265672832727432, -0.018315808847546577, -0.07003851979970932, -0.032983582466840744, -0.004705683793872595, -0.09398651868104935, 0.046275511384010315, -0.00894644483923912, -0.04624718427658081, 0.0476623959839344, 0.14336024224758148, 0.062506303191185, -0.046103786677122116, 0.014687972143292427, -0.06671212613582611, -0.0027986657805740833, -0.042166005820035934, -0.054897043853998184, 0.07018686085939407, -0.11628362536430359, -0.04496694728732109, -0.1941966563463211, -0.12202644348144531, -0.033483635634183884, 0.07140901684761047, -0.06305191665887833, -0.008545617572963238, 0.027958065271377563, -0.04650108516216278, 0.06798520684242249, -0.025512127205729485, 0.13369420170783997, -0.003958724904805422, 0.015164331533014774, -0.06867142021656036, 0.11148887127637863, -0.1257804036140442, 0.034213364124298096, -0.06811798363924026, 0.05838242173194885, -0.08674945682287216, 0.07606770843267441, -0.07209911197423935, -0.007652015425264835, -0.17324002087116241, 0.01565503515303135, -0.20160917937755585, -0.0007921258802525699, 0.06291542202234268, 0.15397323668003082, -0.23291543126106262, 0.020507263019680977, 0.14730526506900787, -0.10598445683717728, -0.02703160047531128, 0.15237125754356384, 0.06518369913101196, 0.12199648469686508, 0.04341433569788933, 0.276107519865036, 0.11053197830915451, -0.23378747701644897, -0.03777599707245827, 0.051895976066589355, -0.08659948408603668, 0.015380618162453175, 0.051094651222229004, -0.01684313639998436, 0.01188942976295948, -0.03016238659620285, -0.017635000869631767, 0.050571147352457047, -0.014152158983051777, -0.052687983959913254, -0.058415137231349945, -0.09245716780424118, 0.09072820842266083, -0.02679799683392048, 0.05798833817243576, -0.008684666827321053, -0.04165276885032654, -0.03255171701312065, 0.04020119830965996, 0.012672248296439648, 0.07357656210660934, -0.066359743475914, 0.02277117222547531, -0.020149853080511093, -0.0005512456991709769, -0.14122460782527924, -0.030601734295487404, 0.02150372788310051, 0.04847516864538193, 0.1287660449743271, 0.04119480401277542, 0.06861819326877594, 0.019276119768619537, -0.05295456945896149, 0.017695384100079536, 0.05332427844405174, -0.014912210404872894, -0.050668515264987946, -0.16705353558063507, 0.03377378359436989, -0.07544521242380142, 0.09944043308496475, -0.11492328345775604, 0.048131633549928665, 0.07403199374675751, 0.039438650012016296, 0.05006485432386398, -0.020135637372732162, 0.08031793683767319, 0.008948151022195816, -0.0023693693801760674, -0.05264002084732056, 0.021016955375671387, 0.049149248749017715, -0.03139352425932884, 0.1445310413837433, -0.07549741119146347, -0.023180438205599785, 0.10358358174562454, 0.07911613583564758, -0.12385541200637817, 0.0296043548732996, -0.02530725859105587, -0.05994398146867752, -0.07286973297595978, -0.07717977464199066, 0.21296446025371552, 0.015464996919035912, 0.08200133591890335, -0.021839002147316933, 0.007362842094153166, 0.05608144775032997, -0.10740998387336731, -0.07086698710918427, 0.05027301609516144, 0.04018033668398857, -0.1838521659374237, 0.057029034942388535, 0.12197534739971161, -0.07443815469741821, 0.06963052600622177, -0.010442584753036499, -0.08808699995279312, -0.06543263792991638, 0.058382391929626465, 0.04825923964381218, 0.09594380110502243, -0.0017802042420953512, 0.011071485467255116, 0.01626066491007805, -0.020839713513851166, 0.03685353696346283, -0.12135552614927292, 0.008677276782691479, 0.00036636204458773136, -0.02902366779744625, 0.09137337654829025, 0.05302518606185913, -0.08670731633901596, 0.07559265941381454, -0.019145682454109192, 0.0036230601835995913, -0.020552977919578552, 0.008297359570860863, -0.1188637837767601, 0.0914262980222702, -0.15000885725021362, -0.2109031081199646, -0.1322592794895172, -0.01957518234848976, 0.008346457965672016, 0.04458354040980339, 0.07069014012813568, -0.04183898866176605, -0.04050645977258682, -0.07168770581483841, 0.04550431668758392, -0.0235726460814476, 0.020801503211259842, -0.02431465871632099, -0.01641257107257843, 0.04561276733875275, -0.05193394422531128, 0.01641659438610077, 0.025638625025749207, -0.014825730584561825, 0.046007174998521805, 0.026925330981612206, 0.0971587523818016, 0.1585828810930252, 0.025199275463819504, -0.007526871282607317, -0.04225330799818039, 0.09227772057056427, -0.10429404675960541, 0.14804726839065552, 0.11981794238090515, -0.03849177807569504, 0.03173191100358963, 0.0941169410943985, 0.030909912660717964, -0.03881999850273132, 0.047255635261535645, 0.014323865063488483, -0.06843294948339462, -0.32623475790023804, -0.06002183258533478, -0.07319160550832748, 0.04990546405315399, 0.10439659655094147, 0.05914658308029175, 0.024802103638648987, 0.06575077772140503, 0.03916429728269577, 0.0412142351269722, -0.010282307863235474, 0.024744953960180283, 0.09926486760377884, -0.03780047222971916, 0.041425012052059174, -0.07440806925296783, 0.034990016371011734, 0.14571471512317657, 0.06577534973621368, 0.18964122235774994, 0.029826276004314423, 0.12471040338277817, 0.09513024240732193, 0.12501823902130127, 0.0001336997956968844, 0.021141882985830307, -0.0039352779276669025, 0.02739778347313404, -0.008726261556148529, -0.08494003862142563, 0.046347927302122116, 0.07213536649942398, 0.07997824251651764, -0.018443863838911057, 0.007993323728442192, 0.01726035587489605, 0.01239314116537571, 0.2365749478340149, 0.024501264095306396, -0.20622462034225464, -0.045944202691316605, 0.01685239002108574, -0.02565889060497284, -0.030825380235910416, 0.024940840899944305, 0.20165108144283295, -0.033755891025066376, 0.09148725122213364, -0.05507848039269447, 0.07336487621068954, -0.012304109521210194, -0.04642944410443306, 0.026654750108718872, 0.06105012074112892, 0.002444553654640913, -0.0026029194705188274, -0.16774901747703552, 0.17415133118629456, 0.043583113700151443, 0.043044183403253555, 0.025554897263646126, 0.023983009159564972, 0.06894330680370331, 0.08622973412275314, 0.1716889590024948, 0.013849293813109398, -0.04156898707151413, 0.006633217912167311, -0.1577315628528595, -0.05539841204881668, 0.06312982738018036, 0.0007249930058605969, 0.005036025773733854, 0.011738610453903675, -0.05344324931502342, 0.011016065254807472, 0.07243704795837402, -0.1625259667634964, -0.07169058918952942, 0.05389082804322243, 0.08216436952352524, -0.026297641918063164, -0.03359241038560867, -0.08198627829551697, -0.0954812541604042, 0.06868118047714233, -0.050063613802194595, -0.02729552425444126, -0.10636435449123383, 0.02585543692111969, 0.08344674855470657, -0.040996160358190536, 0.05195217579603195, 0.03278706967830658, 0.045886944979429245, -0.09193810820579529, -0.09967807680368423, 0.08124428987503052, -0.07611896842718124, -0.018845384940505028, -0.06559673696756363, 0.19254298508167267, 0.04581845551729202, 0.08011722564697266, 0.033654943108558655, 0.033941518515348434, 0.0292622372508049, -0.06797877699136734, 0.12857817113399506, -0.009005838073790073, -0.025674335658550262, -0.023554809391498566, -0.04775379225611687, -0.19632722437381744, -0.0550331249833107, -0.027026116847991943, 0.1896166354417801, 0.11847418546676636, -0.10829034447669983, 0.127263605594635, 0.029279543086886406, -0.12153609842061996, -0.24062147736549377, 0.07041104882955551, 0.10551903396844864, 0.024604743346571922, 0.07183177024126053, -0.1893896460533142, 0.021441219374537468, 0.05328869819641113, -0.04522626847028732, 0.14884722232818604, -0.3746047914028168, -0.09291861206293106, 0.08035865426063538, 0.015011658892035484, 0.03987474367022514, -0.18512171506881714, -0.12077368050813675, 0.036241669207811356, 0.0776883065700531, 0.14745384454727173, -0.340964674949646, 0.10913529247045517, 0.07387758791446686, 0.01789923943579197, 0.00583108514547348, -0.006348820868879557, 0.10988382250070572, -0.026801202446222305, -0.0296261515468359, -0.031699929386377335, 0.0874210074543953, 0.1190064549446106, -0.012449224479496479, 0.12758471071720123, 0.09813124686479568, -0.010116112418472767, -0.01423422247171402, -0.0044892639853060246, -0.05847941339015961, 0.15097570419311523, -0.007626051548868418, -0.042584262788295746, -0.02175927348434925, 0.009230392053723335, 0.045688413083553314, -0.04428285360336304, -0.03964775800704956, -0.03442840650677681, 0.03546365350484848, 0.2986820936203003, 0.09171147644519806, 0.13143207132816315, -0.1555759459733963, 0.004394426941871643, -0.09467937797307968, 0.04065651074051857, -0.2114468514919281, -0.02217814140021801, 0.05457848310470581, 0.014892218634486198, 0.04059229791164398, -0.01192486472427845, -0.13688924908638, 0.06623361259698868, 0.08985612541437149, -0.11813683062791824, -0.13511164486408234, -0.06018776446580887, -0.000026176028768531978, 0.016285190358757973, -0.01641537807881832, 0.20496124029159546, -0.12898337841033936, 0.01756506785750389, 0.07748396694660187, 0.012478253804147243, -0.11568789184093475, 0.14648368954658508, 0.08134610950946808, -0.021044448018074036, -0.03334876894950867, 0.14768236875534058, 0.07482055574655533, -0.18244776129722595, 0.03770478442311287, 0.1824394017457962, -0.06745292246341705, -0.12011925876140594, -0.1264837384223938, -0.035397641360759735, 0.03907567262649536, -0.05279378220438957, 0.04006461426615715, -0.05631732940673828, -0.021674783900380135, 0.13954779505729675, -0.012467955239117146, -0.011495577171444893, -0.05659421160817146, 0.013827529735863209, -0.0193032193928957, 0.07122977077960968, 0.07573528587818146, 0.06929303705692291, -0.14078934490680695, 0.0926830992102623, -0.0003103545750491321, 0.09888670593500137, -0.070792056620121, -0.016756316646933556, -0.015926485881209373, -0.01426905021071434, 0.01298768911510706, 0.06261792033910751, -0.05211234092712402, -0.05685470625758171, -0.016930602490901947, -0.037192728370428085, -0.062097348272800446, 0.034143757075071335, -0.05005376413464546, -0.009224088862538338, -0.0373673252761364, 0.04358232021331787, -0.07290035486221313, -0.04293296858668327, 0.02974369376897812, -0.010275432839989662, 0.06534881889820099, 0.05443974584341049, -0.06027631834149361, -0.003599521704018116, -0.10962117463350296, -0.02093982882797718, 0.09049016237258911, 0.025881009176373482, 0.007364457473158836, -0.10705256462097168, -0.04833235964179039, -0.056317418813705444, 0.04749288409948349, -0.014755696058273315, 0.15649448335170746, -0.08019373565912247, 0.004142459016293287, -0.02689932845532894, 0.016345929354429245, -0.0607728436589241, 0.025410598143935204, 0.08068861812353134, 0.07849866896867752, 0.07724150270223618, -0.09798002988100052, 0.08062401413917542, -0.09999970346689224, 0.0616464726626873, -0.034416571259498596, -0.04748089611530304, 0.0034872458782047033, -0.04522048309445381, 0.044145070016384125, -0.046454522758722305, 0.014931270852684975, 0.03415413200855255, -0.024566171690821648, 0.02835443615913391, -0.015544394962489605, -0.134846031665802, 0.028616586700081825, 0.12313248217105865, 0.013595891185104847, -0.03564849868416786, -0.06962570548057556, 0.038015954196453094, 0.05266716331243515, 0.05670427158474922, 0.11167660355567932, 0.06282375007867813, 0.07629512250423431, 0.08391226083040237, 0.0148721719160676, -0.07600297033786774, -0.17087534070014954, 0.06658520549535751, -0.09698843955993652, 0.07601569592952728, -0.04672069475054741, 0.07293775677680969, 0.0929790511727333, -0.13708460330963135, 0.042390573769807816, -0.0028550191782414913, -0.07012490183115005, -0.09545042365789413, -0.16772115230560303, -0.04850366711616516, -0.05015453323721886, -0.05502248927950859, -0.07553517818450928, 0.06101090461015701, -0.020192284137010574, 0.036780208349227905, 0.024798957630991936, 0.25187382102012634, -0.14359737932682037, -0.1557026207447052, 0.1391534060239792, 0.040456462651491165, 0.0007666271994821727, -0.11114350706338882, -0.011323151178658009, 0.007255173288285732, 0.038788143545389175, 0.0020712765399366617, 0.06129984185099602, 0.06362927705049515, 0.06898569315671921, -0.04390544816851616, -0.06888466328382492, -0.020200638100504875, 0.0701860785484314, 0.0213635191321373, -0.0019913206342607737, 0.06250576674938202, -0.06417413055896759, 0.010158360004425049, 0.2687273919582367, -0.09434887766838074, -0.015626685693860054, -0.13115613162517548, 0.07187148183584213, -0.05464478209614754, -0.005014824215322733, -0.05208158120512962, -0.10759003460407257, -0.02523312158882618, 0.27133142948150635, 0.2273862361907959, -0.04035913199186325, 0.010653962381184101, 0.011000151745975018, 0.017390891909599304, -0.015167055651545525, 0.10443609952926636, 0.029931696131825447, 0.1977694183588028, -0.10051834583282471, 0.03512844815850258, -0.048367906361818314, 0.0011592752998694777, -0.11890880018472672, 0.08592026680707932, -0.026340575888752937, -0.006841112393885851, -0.00866608414798975, 0.16556130349636078, -0.08162251114845276, -0.24244871735572815, -0.05250338092446327, -0.12280501425266266, -0.08773817121982574, -0.010253558866679668, 0.03756808117032051, 0.06832809746265411, 0.07345600426197052, -0.04109250754117966, 0.016462156549096107, 0.10674536973237991, 0.018618879839777946, -0.10867699980735779, 0.028569160029292107, 0.03044642135500908, -0.1922663152217865, 0.1328621506690979, -0.04772009328007698, 0.04151608422398567, 0.024141279980540276, 0.01551190298050642, -0.1310943365097046, -0.014595536515116692, 0.017975062131881714, -0.08300881832838058, 0.02204934135079384, 0.13170325756072998, -0.022889284417033195, 0.08215796947479248, 0.03188258409500122, -0.09441592544317245, -0.014873892068862915, 0.09848904609680176, 0.02446255087852478, -0.03979111090302467, 0.04467136785387993, -0.12173880636692047, 0.12044638395309448, 0.07806769758462906, -0.015418235212564468, -0.01569535583257675, -0.04000775143504143, -0.03718089684844017, 0.06806529313325882, 0.08350515365600586, 0.016244851052761078, -0.13401378691196442, -0.0131532559171319, -0.026440013200044632, 0.06600864976644516, -0.2627371847629547, -0.054366521537303925, -0.07413005083799362, 0.011037904769182205, -0.08295360207557678, 0.04901047423481941, 0.09126588702201843, -0.039012398570775986, -0.0019267138559371233, -0.12549421191215515, 0.046035248786211014, 0.07414639741182327, -0.12154947221279144, -0.04233516380190849 ]
null
null
transformers
La descripciΓ³n en EspaΓ±ol se encuentra despuΓ©s de la descripciΓ³n en InglΓ©s. # (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...) GPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. It was trained on Spanish Wikipedia using **Transfer Learning and Fine-tuning techniques**. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. It was fine-tuned from the [English pre-trained GPT-2 small](https://huggingface.co/gpt2) using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the [fastai v2](https://dev.fast.ai/) Deep Learning framework. All the fine-tuning fastai v2 techniques were used. The training is purely based on the [GPorTuguese-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese) model developed by Pierre Guillou. The training details are in this article: "[Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787)". This preliminary version is now available on Hugging Face. ## Limitations and bias (Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Authors The model was trained and evaluated by [JosuΓ© Obregon](https://www.linkedin.com/in/josue-obregon/) and [Berny Carrera](https://www.linkedin.com/in/bernycarrera/), founders of [Datificate](https://datificate.com), a space for learning Machine Learning in Spanish. The training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the [IAI Lab](http://iai.khu.ac.kr/) (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence. As stated before, this work is mainly based in the work of [Pierre GUILLOU](https://www.linkedin.com/in/pierreguillou/). # (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...) GPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2. FuΓ© entrenado con la Wikipedia en EspaΓ±ol usando **tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos**. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. Fue afinado del modelo en InglΓ©s [English pre-trained GPT-2 small](https://huggingface.co/gpt2) utilizando las librerΓ­as de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning [fastai v2](https://dev.fast.ai/). Se usaron tΓ©cnicas de afinamiento fino de fastai v2. El entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s [GPorTuguese-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese) desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: "[Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787)". La versiΓ³n preliminar del modelo se encuentra en Hugging Face. ## Limitaciones y sesgos (Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en EspaΓ±ol. Se sabe que contiene bastante contenido no filtrado del internet, lo cual estΓ‘ lejos de ser neutral. Esto es seΓ±alado por el equipo desarrollador de openAI en su propia tarjeta de modelo: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Autores El modelo fue entreando y evaluado por [JosuΓ© Obregon](https://www.linkedin.com/in/josue-obregon/) y [Berny Carrera](https://www.linkedin.com/in/bernycarrera/), fundadores de [Datificate](https://datificate.com), un espacio para aprender Machine Learning en EspaΓ±ol. El entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial [IAI Lab](http://iai.khu.ac.kr/) (Universidad de Kyung Hee) al cual JosuΓ© pertenece como investigador postdoctoral en Inteligencia Artificial Industrial. Como fue mencionado anteriormente, este trabajo estΓ‘ basado en el trabajo de [Pierre GUILLOU](https://www.linkedin.com/in/pierreguillou/).
{"language": "es", "license": "apache-2.0", "datasets": ["wikipedia"], "widget": [{"text": "La inteligencia artificial en lationoam\u00e9rica se ha desarrollado "}]}
text-generation
datificate/gpt2-small-spanish
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "es" ]
TAGS #transformers #pytorch #tf #jax #gpt2 #text-generation #es #dataset-wikipedia #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
La descripciΓ³n en EspaΓ±ol se encuentra despuΓ©s de la descripciΓ³n en InglΓ©s. # (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...) GPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. It was trained on Spanish Wikipedia using Transfer Learning and Fine-tuning techniques. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. It was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used. The training is purely based on the GPorTuguese-2 model developed by Pierre Guillou. The training details are in this article: "Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)". This preliminary version is now available on Hugging Face. ## Limitations and bias (Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Authors The model was trained and evaluated by JosuΓ© Obregon and Berny Carrera, founders of Datificate, a space for learning Machine Learning in Spanish. The training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the IAI Lab (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence. As stated before, this work is mainly based in the work of Pierre GUILLOU. # (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...) GPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2. FuΓ© entrenado con la Wikipedia en EspaΓ±ol usando tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. Fue afinado del modelo en InglΓ©s English pre-trained GPT-2 small utilizando las librerΓ­as de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning fastai v2. Se usaron tΓ©cnicas de afinamiento fino de fastai v2. El entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s GPorTuguese-2 desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: "Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)". La versiΓ³n preliminar del modelo se encuentra en Hugging Face. ## Limitaciones y sesgos (Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en EspaΓ±ol. Se sabe que contiene bastante contenido no filtrado del internet, lo cual estΓ‘ lejos de ser neutral. Esto es seΓ±alado por el equipo desarrollador de openAI en su propia tarjeta de modelo: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Autores El modelo fue entreando y evaluado por JosuΓ© Obregon y Berny Carrera, fundadores de Datificate, un espacio para aprender Machine Learning en EspaΓ±ol. El entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial IAI Lab (Universidad de Kyung Hee) al cual JosuΓ© pertenece como investigador postdoctoral en Inteligencia Artificial Industrial. Como fue mencionado anteriormente, este trabajo estΓ‘ basado en el trabajo de Pierre GUILLOU.
[ "# (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...)\nGPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. \n\nIt was trained on Spanish Wikipedia using Transfer Learning and Fine-tuning techniques. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. \n\nIt was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.\n\nThe training is purely based on the GPorTuguese-2 model developed by Pierre Guillou. The training details are in this article: \"Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nThis preliminary version is now available on Hugging Face.", "## Limitations and bias\n\n(Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.", "## Authors\n\nThe model was trained and evaluated by JosuΓ© Obregon and Berny Carrera, founders of Datificate, a space for learning Machine Learning in Spanish.\nThe training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the IAI Lab (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence.\n\nAs stated before, this work is mainly based in the work of Pierre GUILLOU.", "# (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...)\n\nGPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2. \n\nFuΓ© entrenado con la Wikipedia en EspaΓ±ol usando tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. \n\nFue afinado del modelo en InglΓ©s English pre-trained GPT-2 small utilizando las librerΓ­as de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning fastai v2. Se usaron tΓ©cnicas de afinamiento fino de fastai v2.\n\nEl entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s GPorTuguese-2 desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: \"Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nLa versiΓ³n preliminar del modelo se encuentra en Hugging Face.", "## Limitaciones y sesgos\n\n(Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en EspaΓ±ol. Se sabe que contiene bastante contenido no filtrado del internet, lo cual estΓ‘ lejos de ser neutral. Esto es seΓ±alado por el equipo desarrollador de openAI en su propia tarjeta de modelo:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.", "## Autores\n\nEl modelo fue entreando y evaluado por JosuΓ© Obregon y Berny Carrera, fundadores de Datificate, un espacio para aprender Machine Learning en EspaΓ±ol.\n\nEl entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial IAI Lab (Universidad de Kyung Hee) al cual JosuΓ© pertenece como investigador postdoctoral en Inteligencia Artificial Industrial.\n\nComo fue mencionado anteriormente, este trabajo estΓ‘ basado en el trabajo de Pierre GUILLOU." ]
[ "TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #es #dataset-wikipedia #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...)\nGPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. \n\nIt was trained on Spanish Wikipedia using Transfer Learning and Fine-tuning techniques. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. \n\nIt was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.\n\nThe training is purely based on the GPorTuguese-2 model developed by Pierre Guillou. The training details are in this article: \"Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nThis preliminary version is now available on Hugging Face.", "## Limitations and bias\n\n(Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.", "## Authors\n\nThe model was trained and evaluated by JosuΓ© Obregon and Berny Carrera, founders of Datificate, a space for learning Machine Learning in Spanish.\nThe training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the IAI Lab (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence.\n\nAs stated before, this work is mainly based in the work of Pierre GUILLOU.", "# (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...)\n\nGPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2. \n\nFuΓ© entrenado con la Wikipedia en EspaΓ±ol usando tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. \n\nFue afinado del modelo en InglΓ©s English pre-trained GPT-2 small utilizando las librerΓ­as de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning fastai v2. Se usaron tΓ©cnicas de afinamiento fino de fastai v2.\n\nEl entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s GPorTuguese-2 desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: \"Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nLa versiΓ³n preliminar del modelo se encuentra en Hugging Face.", "## Limitaciones y sesgos\n\n(Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en EspaΓ±ol. Se sabe que contiene bastante contenido no filtrado del internet, lo cual estΓ‘ lejos de ser neutral. Esto es seΓ±alado por el equipo desarrollador de openAI en su propia tarjeta de modelo:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.", "## Autores\n\nEl modelo fue entreando y evaluado por JosuΓ© Obregon y Berny Carrera, fundadores de Datificate, un espacio para aprender Machine Learning en EspaΓ±ol.\n\nEl entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial IAI Lab (Universidad de Kyung Hee) al cual JosuΓ© pertenece como investigador postdoctoral en Inteligencia Artificial Industrial.\n\nComo fue mencionado anteriormente, este trabajo estΓ‘ basado en el trabajo de Pierre GUILLOU." ]
[ 72, 248, 234, 114, 271, 241, 122 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #es #dataset-wikipedia #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...)\nGPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. \n\nIt was trained on Spanish Wikipedia using Transfer Learning and Fine-tuning techniques. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. \n\nIt was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used.\n\nThe training is purely based on the GPorTuguese-2 model developed by Pierre Guillou. The training details are in this article: \"Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nThis preliminary version is now available on Hugging Face.", "passage: ## Limitations and bias\n\n(Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:\n\n> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.## Authors\n\nThe model was trained and evaluated by JosuΓ© Obregon and Berny Carrera, founders of Datificate, a space for learning Machine Learning in Spanish.\nThe training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the IAI Lab (Kyung Hee University) from which JosuΓ© is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence.\n\nAs stated before, this work is mainly based in the work of Pierre GUILLOU.# (EspaΓ±ol) GPT2-small-spanish: un modelo de lenguaje para generaciΓ³n de texto en EspaΓ±ol (y algunas otras tareas de NLP...)\n\nGPT2-small-spanish es un modelo de lenguaje de vanguardia en EspaΓ±ol basado en el modelo pequeΓ±o GPT-2. \n\nFuΓ© entrenado con la Wikipedia en EspaΓ±ol usando tΓ©cnicas de Aprendizaje por Transferencia y afinaciΓ³n de modelos. El entrenamiento del modelo tomΓ³ alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. \n\nFue afinado del modelo en InglΓ©s English pre-trained GPT-2 small utilizando las librerΓ­as de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning fastai v2. Se usaron tΓ©cnicas de afinamiento fino de fastai v2.\n\nEl entrenamiento estΓ‘ enteramente basado en el modelo en PortuguΓ©s GPorTuguese-2 desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: \"Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)\".\n\nLa versiΓ³n preliminar del modelo se encuentra en Hugging Face." ]
[ -0.07866166532039642, 0.08810208737850189, 0.00017388787819072604, 0.12069486081600189, 0.060882873833179474, 0.05673392489552498, 0.09816969186067581, 0.11672138422727585, -0.0010060779750347137, 0.022048506885766983, 0.02290458418428898, -0.06930890679359436, 0.09962494671344757, 0.06334154307842255, 0.10436045378446579, -0.2530663013458252, 0.03810705617070198, -0.04828290268778801, 0.01837059110403061, 0.03637329488992691, 0.0831369012594223, -0.034386880695819855, 0.0785430371761322, 0.01647043786942959, -0.09330710023641586, -0.062194276601076126, 0.0038001653738319874, -0.04944995790719986, 0.12609073519706726, 0.06729593873023987, 0.07157400995492935, -0.0019976478070020676, 0.08036664128303528, -0.13225774466991425, 0.014523370191454887, 0.06896719336509705, 0.010329185053706169, 0.048766955733299255, 0.0711824893951416, 0.1086963340640068, 0.11561858654022217, -0.06988909840583801, 0.05606534332036972, 0.05897393450140953, -0.13410761952400208, -0.14746300876140594, -0.08854764699935913, -0.05473608523607254, 0.022325752303004265, 0.03798259049654007, -0.025021620094776154, 0.05569223314523697, -0.06268687546253204, 0.006181700620800257, 0.1297965943813324, -0.27563929557800293, -0.05380885303020477, 0.051444731652736664, 0.021847402676939964, 0.033367060124874115, -0.0655861496925354, 0.05057298764586449, 0.047765329480171204, 0.00949388649314642, 0.02370268478989601, 0.001715686172246933, 0.019243963062763214, -0.03429992496967316, -0.09213369339704514, -0.016622629016637802, -0.011445991694927216, 0.00953324232250452, -0.07689552754163742, -0.1708984673023224, -0.03953036665916443, -0.02328133024275303, -0.03760752081871033, -0.03921931982040405, 0.01988927274942398, 0.01366095058619976, 0.06745900213718414, -0.0900079756975174, -0.07341179251670837, -0.07335123419761658, -0.024422697722911835, 0.13631853461265564, 0.07429856061935425, 0.039811473339796066, 0.08928500860929489, 0.11668641865253448, -0.02759304642677307, -0.01559019647538662, -0.03905688598752022, -0.06701530516147614, -0.08057983219623566, 0.006807435769587755, -0.020463017746806145, 0.10375450551509857, -0.028594881296157837, 0.033913224935531616, -0.07995454221963882, 0.0176126416772604, 0.08734574168920517, -0.00680096261203289, -0.025725193321704865, 0.09430835396051407, -0.06397717446088791, -0.12084871530532837, 0.07342982292175293, 0.01023381482809782, 0.0006417222321033478, -0.027422096580266953, -0.08413805067539215, -0.11338520050048828, -0.0357624813914299, 0.04876402020454407, -0.010524962097406387, 0.011470095254480839, -0.03225027024745941, -0.04066508635878563, 0.10290251672267914, -0.04091472551226616, 0.028467856347560883, -0.012626013718545437, -0.07147951424121857, -0.015319271013140678, 0.009366625919938087, -0.01805230602622032, -0.05929495766758919, -0.11120708286762238, -0.027189871296286583, -0.024672895669937134, -0.0823434442281723, -0.11052991449832916, 0.014664988964796066, -0.10284307599067688, -0.0345461443066597, -0.10907882452011108, -0.1430615484714508, -0.015795845538377762, 0.024513928219676018, -0.09660086035728455, 0.02127806656062603, -0.046390049159526825, 0.017535578459501266, 0.01191813312470913, 0.03358714282512665, -0.015133656561374664, -0.022188175469636917, 0.030004553496837616, 0.006188440136611462, 0.08970696479082108, -0.014220738783478737, -0.011075860820710659, -0.0553663969039917, -0.007908361032605171, -0.08491300791501999, 0.106646828353405, -0.03804190829396248, -0.06299624592065811, -0.03641226887702942, -0.058010298758745193, -0.09066568315029144, 0.05310962721705437, 0.04739776998758316, 0.11649197340011597, -0.19396434724330902, -0.00688830716535449, 0.18580585718154907, -0.07863947749137878, -0.007875850424170494, 0.20002129673957825, -0.02279244363307953, 0.07710955291986465, 0.08404731750488281, 0.06858966499567032, 0.049966953694820404, -0.08300963044166565, -0.023704107850790024, 0.02922077104449272, -0.016322661191225052, 0.050184670835733414, 0.07201795279979706, 0.019262995570898056, 0.029327193275094032, 0.034217286854982376, -0.010882558301091194, 0.07238094508647919, -0.029075395315885544, -0.04730147495865822, -0.01212406251579523, -0.08187215030193329, 0.020274337381124496, -0.004643099848181009, 0.022944891825318336, -0.04691290482878685, -0.10500183701515198, -0.0990556925535202, 0.10804599523544312, -0.06082044169306755, 0.007063588593155146, -0.08122573792934418, 0.04744930937886238, -0.04337986931204796, -0.029996482655405998, -0.0306519977748394, -0.08404746651649475, 0.06171765923500061, -0.05677613615989685, 0.03710188716650009, 0.06996934115886688, 0.043095435947179794, 0.10454655438661575, -0.04795295000076294, 0.03579330071806908, -0.083211749792099, -0.05029115453362465, -0.03619895130395889, -0.05270662158727646, 0.005953909829258919, -0.033236484974622726, 0.166342094540596, -0.1074889749288559, 0.027031034231185913, 0.01977464184165001, 0.026834897696971893, 0.01342068426311016, -0.04975466802716255, 0.0068759131245315075, -0.02006225474178791, 0.014121972024440765, -0.10947718471288681, 0.05649280920624733, 0.007139108143746853, 0.009387882426381111, 0.09451376646757126, -0.12613555788993835, -0.017500508576631546, 0.08257712423801422, 0.07676898688077927, -0.06427860260009766, -0.02956993505358696, -0.010710669681429863, -0.019598810002207756, -0.061861928552389145, 0.01296382024884224, 0.19330555200576782, 0.005158375948667526, 0.08523474633693695, -0.11986734718084335, -0.002540057525038719, 0.013523584231734276, -0.004911269061267376, 0.0071458034217357635, 0.00860015582293272, 0.044508300721645355, -0.08102158457040787, 0.024109933525323868, -0.06482784450054169, 0.046828802675008774, 0.1784445345401764, 0.04616863280534744, -0.07239829748868942, -0.022671738639473915, -0.015119456686079502, 0.004011946730315685, 0.11042776703834534, -0.023227620869874954, -0.00952538475394249, 0.03631995618343353, 0.02624841034412384, 0.06874673813581467, -0.13974124193191528, 0.009436409920454025, 0.013675760477781296, -0.060742951929569244, 0.039894286543130875, 0.01835714653134346, -0.0591086819767952, 0.07483825087547302, 0.06357048451900482, 0.013656879775226116, -0.022340748459100723, -0.028685294091701508, -0.08019784092903137, 0.10742324590682983, -0.07419906556606293, -0.28955256938934326, -0.0820065587759018, 0.05088737979531288, -0.01465605292469263, 0.053433917462825775, -0.0156593956053257, -0.0870412066578865, -0.01626419834792614, -0.05294955521821976, 0.09464374929666519, 0.032246895134449005, -0.0037834448739886284, -0.03604859113693237, 0.0416247621178627, -0.035356637090444565, -0.13610830903053284, 0.012991838157176971, -0.025309361517429352, -0.13416939973831177, -0.0018457151018083096, -0.06623384356498718, 0.044699881225824356, 0.08428587019443512, -0.009384358301758766, -0.028285060077905655, -0.039214037358760834, 0.21848514676094055, -0.07131727784872055, 0.10604611784219742, 0.15094329416751862, 0.07045062631368637, 0.026946160942316055, 0.018551789224147797, 0.013591626659035683, -0.11810162663459778, 0.019942738115787506, 0.025145936757326126, -0.0466657355427742, -0.1225944459438324, -0.056713297963142395, -0.05292145907878876, 0.013658732175827026, 0.06571637094020844, 0.008684578351676464, -0.04745718836784363, 0.06069384887814522, -0.05711613595485687, 0.09782053530216217, 0.0685756579041481, 0.06332395225763321, 0.026382386684417725, 0.0012617155443876982, 0.03429948538541794, -0.06995855271816254, -0.008684169501066208, 0.11277787387371063, 0.07863692939281464, 0.14737790822982788, -0.06827841699123383, 0.11755163967609406, 0.018732186406850815, 0.09818844497203827, 0.05143380165100098, 0.02809450961649418, -0.0027028624899685383, -0.02332109957933426, -0.06976569443941116, -0.009575442411005497, -0.09374253451824188, 0.05556555837392807, 0.024776941165328026, -0.051594190299510956, -0.03636772930622101, 0.06613253802061081, 0.04314100742340088, 0.1529863029718399, 0.05952967703342438, -0.15476462244987488, -0.09720472991466522, 0.010698739439249039, -0.05342349410057068, -0.12336816638708115, 0.025102538987994194, 0.13915880024433136, -0.09242790192365646, -0.026499751955270767, -0.026740318164229393, 0.046105798333883286, -0.12780605256557465, -0.006158218719065189, -0.0006637685000896454, 0.10952319204807281, 0.0065452829003334045, 0.06511059403419495, -0.1365966796875, 0.06658157706260681, 0.023145832121372223, 0.11646995693445206, -0.04934817925095558, -0.005383784882724285, 0.05337297171354294, 0.011672637425363064, 0.08426841348409653, 0.014660762622952461, 0.019981006160378456, -0.029367389157414436, -0.09302707761526108, 0.024806737899780273, 0.04545235633850098, 0.02433163858950138, 0.04747280105948448, -0.02934148907661438, 0.025979969650506973, -0.00873661134392023, 0.0015297606587409973, -0.10605626553297043, -0.1637762188911438, 0.033977996557950974, -0.070511594414711, -0.03511449694633484, -0.08661442995071411, -0.03353634476661682, -0.10985292494297028, 0.15126559138298035, -0.020225588232278824, -0.03322851285338402, -0.09017769992351532, 0.022742625325918198, 0.09417232871055603, -0.031675785779953, 0.09133143723011017, 0.022105494514107704, 0.13728271424770355, -0.04932965338230133, 0.012011418119072914, 0.0478614866733551, -0.09849253296852112, -0.11936626583337784, -0.03222043812274933, 0.03365583345293999, 0.052092164754867554, 0.07237708568572998, 0.013003517873585224, -0.025910355150699615, -0.011387212201952934, -0.09581974148750305, 0.001998482272028923, 0.1314527839422226, -0.06299370527267456, -0.022933974862098694, -0.034169409424066544, 0.04485855996608734, -0.04759903997182846, -0.028618842363357544, 0.12291727215051651, 0.2015669047832489, -0.07407432049512863, 0.100613072514534, 0.11429666727781296, -0.04887901991605759, -0.20694172382354736, 0.05772922933101654, 0.047812171280384064, 0.0652620941400528, -0.06053653359413147, -0.17656514048576355, -0.012631412595510483, 0.06330506503582001, -0.012810410931706429, 0.024923739954829216, -0.14672991633415222, -0.11189877241849899, 0.022453876212239265, 0.05379960685968399, 0.11973175406455994, 0.0009555043652653694, 0.019229872152209282, -0.03984823822975159, -0.07480333000421524, 0.11612750589847565, -0.04778468608856201, 0.12653711438179016, -0.0027131186798214912, -0.019978608936071396, 0.023120691999793053, -0.025336643680930138, 0.14773324131965637, -0.0937109887599945, 0.08079878985881805, -0.023083781823515892, 0.04434382915496826, 0.02106652408838272, -0.020071936771273613, 0.08022002875804901, 0.08926524221897125, 0.010561184957623482, -0.06215230002999306, -0.08599275350570679, -0.06765111535787582, 0.01614176109433174, -0.020810090005397797, -0.07569731026887894, -0.056592702865600586, 0.11786094307899475, 0.0496082678437233, 0.022520484402775764, -0.1676253229379654, -0.02652764320373535, -0.10942329466342926, -0.039705559611320496, 0.11790201812982559, -0.00845031812787056, 0.06362224370241165, -0.001751151867210865, 0.02066831849515438, 0.05793175846338272, -0.08625292778015137, -0.0033825559075921774, 0.040527570992708206, -0.060970380902290344, 0.06344880163669586, 0.017352208495140076, -0.11308097094297409, 0.003843093290925026, 0.05450152978301048, -0.02330728806555271, -0.11199051141738892, -0.031758103519678116, -0.08011431992053986, -0.03322530537843704, -0.08605362474918365, 0.07182106375694275, -0.041847750544548035, -0.046109892427921295, -0.01679312437772751, 0.03225070238113403, -0.017463957890868187, 0.0829131081700325, 0.04776506870985031, -0.007543571759015322, -0.06689230352640152, 0.15600615739822388, 0.017347825691103935, -0.04715975001454353, 0.023770779371261597, 0.07939609885215759, -0.11071144789457321, -0.05417772755026817, -0.051741816103458405, 0.0380275696516037, -0.02736433781683445, -0.06711811572313309, -0.08764984458684921, -0.04706818237900734, -0.003859197720885277, -0.039791520684957504, 0.014586897566914558, 0.029321834444999695, -0.03590927645564079, 0.034615736454725266, -0.0987078920006752, 0.02958454191684723, 0.007218579761683941, -0.000053655821830034256, -0.03668002039194107, 0.1407555341720581, 0.037339113652706146, -0.008441837504506111, -0.022699004039168358, 0.016536174342036247, -0.07420884817838669, -0.028012773022055626, -0.08228106796741486, -0.0005388427525758743, -0.012401167303323746, 0.014159567654132843, -0.020353667438030243, -0.014000874012708664, -0.02985072322189808, 0.009023078717291355, -0.04991437494754791, -0.014321336522698402, -0.03623667731881142, 0.024383142590522766, 0.023107614368200302, -0.010136594995856285, 0.03490445017814636, -0.06348709762096405, 0.10998063534498215, -0.026363946497440338, 0.00775325670838356, 0.02981283701956272, -0.12245236337184906, 0.044805627316236496, -0.02710714563727379, 0.022546984255313873, -0.01387773733586073, -0.0933157280087471, 0.05313270539045334, -0.016855981200933456, 0.00011448049917817116, -0.013739364221692085, 0.1088266670703888, -0.022804150357842445, 0.046184178441762924, -0.05026997998356819, -0.0005457587540149689, -0.061859965324401855, 0.036650244146585464, 0.07265818864107132, 0.023632854223251343, 0.027447504922747612, -0.04123055934906006, 0.02200228162109852, -0.11909104138612747, -0.028634143993258476, -0.016997812315821648, 0.006138060241937637, 0.005441140383481979, -0.06048363447189331, 0.06099887192249298, 0.03478577733039856, 0.20695894956588745, 0.045712586492300034, -0.06291011720895767, -0.016074948012828827, -0.032833389937877655, -0.040780723094940186, -0.010213926434516907, 0.03280298784375191, 0.026352517306804657, -0.0006803565192967653, -0.025539230555295944, 0.0658290684223175, 0.021906357258558273, 0.09811355173587799, 0.07108239084482193, 0.05077051371335983, 0.10640617460012436, 0.11569377779960632, -0.016969317570328712, -0.08643422275781631, -0.024060843512415886, 0.13135220110416412, -0.03455016016960144, -0.03404298052191734, -0.09775372594594955, 0.02305622771382332, 0.130219966173172, -0.13464149832725525, 0.07589855790138245, 0.01640976220369339, -0.07201040536165237, -0.11639402061700821, -0.09104087948799133, -0.01709051802754402, -0.04944077879190445, 0.036070503294467926, -0.06942449510097504, 0.01493763830512762, -0.0038823895156383514, 0.04578018561005592, -0.024828456342220306, 0.14010855555534363, -0.1088552176952362, -0.05101852864027023, 0.08258774131536484, 0.028910664841532707, 0.0620696023106575, -0.0006745192222297192, -0.05356152355670929, -0.02640097588300705, 0.02927844598889351, 0.08965952694416046, -0.005905497819185257, 0.0035164107102900743, 0.024009298533201218, 0.026979820802807808, -0.029598569497466087, -0.022632665932178497, -0.02657385542988777, 0.052852340042591095, 0.20562250912189484, 0.04639943689107895, -0.05095706880092621, 0.020023921504616737, 0.16576535999774933, -0.029997967183589935, -0.08158347010612488, -0.13009177148342133, 0.026739418506622314, -0.029028477147221565, 0.015685174614191055, -0.017954807728528976, -0.055323608219623566, 0.02935699000954628, 0.18668438494205475, 0.15754541754722595, -0.06592156738042831, -0.027103878557682037, 0.04126129299402237, -0.011199739761650562, -0.04623132944107056, 0.1398666501045227, 0.006833653897047043, 0.18226610124111176, -0.06929127871990204, -0.014353662729263306, 0.013879228383302689, -0.018260985612869263, -0.01723535731434822, 0.15583482384681702, -0.05508313700556755, 0.05650880187749863, -0.08818022906780243, -0.006143770180642605, 0.012491979636251926, -0.19742906093597412, 0.07609175145626068, -0.0548374317586422, -0.07243303954601288, 0.03709312528371811, -0.11952503770589828, -0.004909048788249493, 0.08775858581066132, 0.008251781575381756, 0.042602576315402985, 0.08857042342424393, 0.003937857691198587, -0.09669715166091919, -0.008281723596155643, 0.05239909514784813, 0.030582495033740997, 0.2291249781847, -0.0042578838765621185, 0.09276775270700455, 0.08329793065786362, 0.007195090409368277, -0.11076962947845459, 0.05272384732961655, -0.023160140961408615, -0.0043260036036372185, 0.010956279933452606, 0.08209492266178131, -0.018425285816192627, -0.0038075861521065235, 0.06910544633865356, -0.03153398633003235, 0.07051584869623184, 0.04960893839597702, -0.049254726618528366, -0.09114527702331543, 0.07143691927194595, -0.08019757270812988, 0.17325888574123383, 0.12934526801109314, -0.014735326170921326, -0.02911866456270218, -0.06158263981342316, 0.04031822085380554, 0.034319791942834854, 0.1451982855796814, 0.002157114678993821, -0.15129417181015015, -0.006301525980234146, -0.006268245168030262, 0.016955839470028877, -0.1386461853981018, -0.06786109507083893, -0.011194545775651932, -0.07051632553339005, -0.026890723034739494, 0.11259487271308899, 0.03810206428170204, 0.036239732056856155, -0.028286613523960114, -0.08184400200843811, -0.01218776497989893, 0.05230597406625748, -0.1119251400232315, -0.08755430579185486 ]
null
null
transformers
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam): - Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance. - PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744): @article{phobert, title = {{PhoBERT: Pre-trained language models for Vietnamese}}, author = {Dat Quoc Nguyen and Anh Tuan Nguyen}, journal = {Findings of EMNLP}, year = {2020} } **Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software. For further information or requests, please go to [PhoBERT's homepage](https://github.com/VinAIResearch/PhoBERT)! ### Installation <a name="install2"></a> - Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+) - Install `transformers`: - `git clone https://github.com/huggingface/transformers.git` - `cd transformers` - `pip3 install --upgrade .` ### Pre-trained models <a name="models2"></a> Model | #params | Arch. | Pre-training data ---|---|---|--- `vinai/phobert-base` | 135M | base | 20GB of texts `vinai/phobert-large` | 370M | large | 20GB of texts ### Example usage <a name="usage2"></a> ```python import torch from transformers import AutoModel, AutoTokenizer phobert = AutoModel.from_pretrained("vinai/phobert-base") tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base") # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! line = "TΓ΄i lΓ  sinh_viΓͺn trường Δ‘αΊ‘i_học CΓ΄ng_nghệ ." input_ids = torch.tensor([tokenizer.encode(line)]) with torch.no_grad(): features = phobert(input_ids) # Models outputs are now tuples ## With TensorFlow 2.0+: # from transformers import TFAutoModel # phobert = TFAutoModel.from_pretrained("vinai/phobert-base") ```
{}
fill-mask
datnth1709/Phobert-classifier
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "arxiv:2003.00744", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2003.00744" ]
[]
TAGS #transformers #pytorch #tf #jax #roberta #fill-mask #arxiv-2003.00744 #autotrain_compatible #endpoints_compatible #region-us
PhoBERT: Pre-trained language models for Vietnamese ==================================================== Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese (Pho, i.e. "Phở", is a popular food in Vietnam): * Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on RoBERTa which optimizes the BERT pre-training procedure for more robust performance. * PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings paper: ``` @article{phobert, title = {{PhoBERT: Pre-trained language models for Vietnamese}}, author = {Dat Quoc Nguyen and Anh Tuan Nguyen}, journal = {Findings of EMNLP}, year = {2020} } ``` Please CITE our paper when PhoBERT is used to help produce published results or is incorporated into other software. For further information or requests, please go to PhoBERT's homepage! ### Installation * Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+) * Install 'transformers': - 'git clone URL - 'cd transformers' - 'pip3 install --upgrade .' ### Pre-trained models ### Example usage
[ "### Installation\n\n\n* Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)\n* Install 'transformers':\n- 'git clone URL\n- 'cd transformers'\n- 'pip3 install --upgrade .'", "### Pre-trained models", "### Example usage" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #fill-mask #arxiv-2003.00744 #autotrain_compatible #endpoints_compatible #region-us \n", "### Installation\n\n\n* Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)\n* Install 'transformers':\n- 'git clone URL\n- 'cd transformers'\n- 'pip3 install --upgrade .'", "### Pre-trained models", "### Example usage" ]
[ 50, 55, 7, 5 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #roberta #fill-mask #arxiv-2003.00744 #autotrain_compatible #endpoints_compatible #region-us \n### Installation\n\n\n* Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)\n* Install 'transformers':\n- 'git clone URL\n- 'cd transformers'\n- 'pip3 install --upgrade .'### Pre-trained models### Example usage" ]
[ -0.04414575174450874, 0.08479932695627213, -0.00405694218352437, 0.03885379061102867, 0.15103554725646973, 0.042986027896404266, 0.08616321533918381, 0.09860148280858994, -0.027658332139253616, -0.0037029895465821028, 0.15180182456970215, 0.2376621961593628, 0.04449157789349556, 0.09056056290864944, -0.009159989655017853, -0.2640496492385864, 0.04679857939481735, 0.07202360033988953, -0.09138421714305878, 0.1497434377670288, 0.08933109045028687, -0.03132170811295509, 0.07829931378364563, 0.029568566009402275, -0.16457651555538177, -0.019596142694354057, 0.0869622603058815, -0.12493271380662918, 0.09640876203775406, 0.031173592433333397, 0.1673932820558548, 0.021375220268964767, 0.021774528548121452, -0.05427736043930054, 0.028564557433128357, 0.0826820433139801, -0.008279095403850079, 0.10305490344762802, 0.05609205737709999, -0.027279404923319817, 0.07234635949134827, 0.01863721013069153, 0.05435027554631233, 0.011799154803156853, -0.08987840265035629, -0.2259180247783661, -0.07180905342102051, 0.11045438051223755, 0.03584843873977661, 0.09692544490098953, 0.0258820541203022, 0.2411838322877884, -0.0051299091428518295, 0.08107993751764297, 0.16482770442962646, -0.33026885986328125, -0.03252502158284187, 0.043025046586990356, 0.07917580008506775, 0.007651626598089933, 0.04410989582538605, 0.02256745845079422, -0.005074178334325552, 0.07099206745624542, 0.10623805969953537, -0.040707916021347046, -0.06479412317276001, -0.06923284381628036, -0.14817705750465393, -0.07638663798570633, 0.15456447005271912, -0.04039309546351433, -0.04412548616528511, -0.013244472444057465, -0.11783333867788315, -0.10843899101018906, -0.026501724496483803, -0.022403743118047714, -0.04290897771716118, -0.008510745130479336, -0.059366755187511444, -0.11719034612178802, -0.09501921385526657, -0.03938255086541176, -0.12731894850730896, 0.2657167613506317, 0.07726624608039856, 0.07291220873594284, -0.0647064819931984, 0.11503525078296661, -0.039391420781612396, -0.10996776819229126, 0.0413028821349144, -0.08548536151647568, 0.04181083291769028, 0.02923857606947422, -0.04684855043888092, -0.10894136130809784, 0.01638965681195259, 0.18418234586715698, 0.03680229187011719, -0.0025277570821344852, 0.015435585752129555, 0.09306932985782623, -0.06653094291687012, 0.11048895120620728, -0.14657223224639893, 0.08851312100887299, 0.09607412666082382, -0.03057718090713024, 0.09408164024353027, -0.035660915076732635, -0.10875578969717026, -0.03930245339870453, 0.05849853530526161, 0.03672194853425026, 0.07933143526315689, 0.10818227380514145, -0.0520324781537056, -0.07329444587230682, 0.05881008505821228, -0.06994661688804626, -0.03425099700689316, -0.057110246270895004, -0.03589564934372902, 0.09547162055969238, 0.15896624326705933, 0.006290837656706572, -0.0848042443394661, 0.12792715430259705, -0.061743248254060745, -0.012486763298511505, -0.08006371557712555, -0.12531565129756927, 0.01626652665436268, -0.0997585877776146, 0.03456380218267441, -0.17795707285404205, -0.15424871444702148, 0.0799933671951294, 0.08824366331100464, -0.00484111625701189, -0.1086415946483612, 0.12602800130844116, -0.06171044707298279, -0.0006329542375169694, -0.050458408892154694, 0.05031885951757431, -0.03125527501106262, 0.1446973979473114, 0.03393490985035896, 0.05879812315106392, -0.0888652428984642, 0.047917574644088745, -0.08407169580459595, 0.014158833771944046, -0.2154661864042282, -0.016207555308938026, -0.07673046737909317, 0.004604276269674301, -0.09683819860219955, -0.12750868499279022, -0.010089891031384468, 0.015179441310465336, 0.04432782530784607, 0.10365182161331177, -0.015436475165188313, -0.05618944764137268, 0.16164223849773407, -0.1134154349565506, -0.09635602682828903, 0.11593380570411682, 0.04630395770072937, 0.02604144811630249, 0.03380616381764412, 0.014081056229770184, 0.12726300954818726, -0.22925955057144165, 0.05504908040165901, 0.10097654163837433, -0.10169664770364761, -0.09169822931289673, 0.05872407555580139, 0.025973767042160034, -0.1505139023065567, 0.053433503955602646, -0.11742625385522842, 0.12143799662590027, -0.04339009150862694, -0.04283304512500763, -0.07534492015838623, -0.07705473899841309, 0.09600193798542023, 0.026754597201943398, 0.06212633475661278, 0.00592305650934577, -0.12461017817258835, -0.050858210772275925, 0.07666458189487457, 0.0015079518780112267, 0.022691117599606514, -0.07343702018260956, 0.1389814168214798, -0.06391137093305588, -0.007512453943490982, -0.14978381991386414, -0.07559581845998764, 0.009914495050907135, 0.02293655276298523, 0.020027369260787964, 0.006870395969599485, 0.06925185024738312, 0.025099623948335648, -0.011468136683106422, -0.03183057904243469, 0.027634453028440475, -0.021724915131926537, -0.01371126901358366, -0.059290263801813126, -0.047101691365242004, -0.0135359400883317, 0.08284508436918259, 0.025222355499863625, 0.03563215583562851, -0.1093737855553627, 0.11530938744544983, -0.024868711829185486, 0.0047979773953557014, 0.000699468539096415, 0.005651173647493124, -0.007709757424890995, -0.05703357979655266, 0.08145398646593094, 0.04745521768927574, -0.06868872791528702, 0.07322482019662857, -0.09624803066253662, 0.20283524692058563, 0.1926385462284088, -0.09020739793777466, -0.0816517323255539, 0.11486639827489853, -0.055067501962184906, -0.013854299671947956, 0.004134203307330608, -0.024729425087571144, 0.10025215893983841, 0.014522352255880833, 0.14484062790870667, -0.04723576456308365, -0.007977692410349846, 0.06697656214237213, -0.06788384914398193, -0.025940490886569023, 0.007115205284208059, 0.16094930469989777, -0.04571156948804855, 0.1305895894765854, 0.12559746205806732, -0.162797212600708, 0.04628986865282059, 0.0006664727116003633, -0.04508669674396515, -0.0034118215553462505, 0.01695287972688675, 0.01713993214070797, 0.07575762271881104, -0.04952302202582359, 0.04508860409259796, 0.0996604859828949, -0.08091916888952255, 0.04017706215381622, -0.1638311892747879, -0.03979520499706268, -0.00605264026671648, -0.011969033628702164, -0.04316774383187294, 0.09087444096803665, 0.02465175837278366, 0.09381710737943649, -0.008265651762485504, -0.025915803387761116, 0.0912117063999176, 0.061796970665454865, -0.05627238005399704, 0.1701963096857071, -0.1349296271800995, -0.32619088888168335, -0.162458136677742, -0.14080603420734406, -0.031727567315101624, 0.005881402175873518, 0.024991311132907867, -0.05442792549729347, -0.06271519511938095, 0.03829333931207657, 0.10855185240507126, -0.09403391927480698, 0.013788714073598385, -0.1320030838251114, -0.003180741099640727, 0.08893822133541107, -0.08429229259490967, -0.026667272672057152, -0.0001421155029674992, -0.07048414647579193, 0.11291669309139252, 0.019244832918047905, 0.03792713209986687, 0.12068110704421997, -0.0023592032957822084, 0.0023309465032070875, -0.0000017408062831236748, 0.18769989907741547, -0.05256221815943718, 0.0077308048494160175, 0.2457973212003708, -0.05334726348519325, 0.07096805423498154, 0.12534061074256897, 0.041481390595436096, -0.008301777765154839, 0.006483882199972868, -0.027170494198799133, -0.06308729946613312, -0.21324780583381653, -0.09330584853887558, -0.053970035165548325, 0.012280423194169998, 0.10733915865421295, 0.02037738636136055, 0.0906275063753128, 0.13899274170398712, -0.05208353325724602, 0.05063192918896675, -0.045498162508010864, 0.09099452197551727, 0.15383732318878174, -0.025605499744415283, 0.14069367945194244, -0.006138592027127743, -0.08080301433801651, 0.04352416470646858, 0.03152098134160042, 0.11608043313026428, -0.03875846043229103, -0.021847836673259735, 0.06088601052761078, 0.24852080643177032, 0.08788658678531647, 0.0929141640663147, 0.04080480709671974, -0.018195273354649544, -0.0027580272872000933, -0.02777380682528019, -0.07130872458219528, -0.011251411400735378, 0.023228103294968605, -0.03248956799507141, -0.036773014813661575, -0.021571343764662743, -0.022595994174480438, 0.18368420004844666, -0.010346321389079094, -0.3315461277961731, -0.060537826269865036, -0.022582123056054115, -0.019394084811210632, -0.09090787917375565, 0.002448796294629574, -0.06454715132713318, -0.13057027757167816, 0.06458015739917755, -0.15372104942798615, 0.06109784170985222, 0.005501987878233194, -0.008716944605112076, 0.05306391045451164, 0.14628197252750397, 0.04541506990790367, 0.05431433022022247, -0.25660017132759094, 0.23301421105861664, 0.009781678207218647, 0.021065598353743553, -0.0684749186038971, 0.051514796912670135, 0.026074321940541267, 0.07352263480424881, 0.13383226096630096, -0.012564352713525295, 0.04621337354183197, -0.08958353847265244, -0.08060203492641449, 0.03521162271499634, 0.03831690177321434, 0.005981093272566795, 0.02121785469353199, -0.039927683770656586, -0.015152021311223507, 0.016982166096568108, -0.019906407222151756, -0.08082354813814163, -0.10623360425233841, 0.09511417150497437, -0.027893492951989174, -0.04499560222029686, -0.06438307464122772, -0.09044740349054337, -0.10740919411182404, 0.24000629782676697, -0.033898208290338516, -0.11937049776315689, -0.10015953332185745, 0.08877947181463242, 0.14215654134750366, -0.0961969867348671, 0.09894463419914246, -0.10649832338094711, 0.02079084701836109, -0.034283578395843506, -0.1692507117986679, 0.05762019753456116, -0.12620116770267487, -0.05143974348902702, -0.029676593840122223, 0.14964719116687775, -0.06976395845413208, 0.056034717708826065, -0.036801282316446304, -0.0012755183270201087, -0.04264555498957634, -0.05484934523701668, -0.0046482989564538, 0.009205038659274578, 0.045745138078927994, 0.036300867795944214, -0.10800941288471222, 0.0016236546216532588, -0.06447301059961319, 0.018950235098600388, 0.19598591327667236, 0.10270512849092484, -0.09067484736442566, 0.06697036325931549, 0.03684196248650551, -0.008092126809060574, -0.2725757956504822, -0.0913526639342308, 0.07489234954118729, -0.019145026803016663, -0.008153917267918587, -0.1833561807870865, 0.08913016319274902, 0.05842849239706993, -0.04262806847691536, 0.06499095261096954, -0.27056387066841125, -0.08097264170646667, 0.19111594557762146, 0.08580831438302994, 0.1996447890996933, -0.1221776083111763, -0.033541690558195114, 0.015542782843112946, -0.10408985614776611, 0.1865168958902359, -0.03751874342560768, 0.07945820689201355, -0.00728766480460763, 0.1196252703666687, 0.030244778841733932, -0.07823465764522552, 0.08361469209194183, -0.10712704062461853, -0.04619765654206276, -0.06703776866197586, 0.015887921676039696, 0.013273198157548904, 0.011411425657570362, 0.052409827709198, -0.0005458685918711126, 0.04182221367955208, 0.0009514447301626205, -0.01893541030585766, -0.12027182430028915, 0.1177477315068245, -0.005223815329372883, -0.053452055901288986, -0.021768653765320778, -0.014278455637395382, -0.011333980597555637, -0.04337141662836075, 0.08424604684114456, 0.05301794409751892, 0.11428665369749069, 0.08247069269418716, 0.0004499956557992846, 0.013208441436290741, -0.18477016687393188, -0.021361222490668297, -0.054812487214803696, 0.09396827220916748, -0.0906544178724289, -0.005029649008065462, 0.08561430871486664, 0.007212705910205841, 0.03249979764223099, 0.04723208025097847, -0.059065837413072586, -0.03446762263774872, 0.07521454989910126, -0.21798987686634064, -0.05139733850955963, -0.028260238468647003, -0.017093488946557045, -0.025779038667678833, -0.01807737909257412, 0.1429229974746704, -0.05779099836945534, -0.044948775321245193, 0.044200796633958817, -0.002512510633096099, -0.08195210248231888, 0.138118714094162, 0.05515293776988983, 0.038740601390600204, -0.11932408809661865, 0.05782973766326904, 0.018753869459033012, -0.14707311987876892, -0.028165483847260475, 0.05418052896857262, -0.10167160630226135, -0.09754542261362076, 0.0030631956178694963, -0.08408915251493454, -0.07244172692298889, -0.030607379972934723, -0.04825650528073311, -0.07035932689905167, 0.012759895995259285, 0.07344652712345123, 0.07801904529333115, -0.01098592672497034, -0.04841943830251694, -0.02421583980321884, -0.09121820330619812, 0.05204320326447487, 0.09536030888557434, 0.06857980042695999, -0.18237604200839996, 0.14043356478214264, 0.05666116997599602, 0.13477842509746552, -0.054584961384534836, 0.031671833246946335, -0.07891470193862915, 0.01318338606506586, -0.05122319608926773, -0.01628074236214161, -0.03546946868300438, -0.048792824149131775, 0.009117413312196732, -0.06145193427801132, -0.038771890103816986, 0.02359626814723015, -0.11202060431241989, -0.034593597054481506, 0.031184330582618713, -0.044294361025094986, -0.026892026886343956, -0.04329489544034004, 0.07072402536869049, -0.05421334505081177, 0.06633179634809494, 0.14562730491161346, -0.04767075926065445, 0.07815447449684143, -0.0679725855588913, -0.07533921301364899, 0.08751542866230011, 0.039066072553396225, 0.018515482544898987, -0.05882979556918144, 0.04992919787764549, 0.005617138929665089, 0.03301473334431648, -0.017899001017212868, 0.17631688714027405, -0.14653271436691284, -0.025029923766851425, 0.02722560614347458, -0.03468255326151848, -0.07178835570812225, -0.020898040384054184, 0.06957611441612244, 0.06273820251226425, 0.1685112863779068, -0.07552849501371384, 0.09238986670970917, -0.0940130278468132, 0.05205216258764267, -0.0659991130232811, -0.10930933803319931, -0.011966872029006481, 0.019380604848265648, 0.03771238029003143, -0.014180578291416168, 0.1241423562169075, -0.0006314283236861229, 0.04862367734313011, 0.01824730448424816, 0.08200222253799438, 0.05743555724620819, 0.0010962904198095202, 0.1757693588733673, 0.036835119128227234, 0.016251662746071815, -0.051431506872177124, 0.044476624578237534, 0.0398121252655983, -0.07467468082904816, 0.10703623294830322, 0.08838222920894623, 0.031648360192775726, 0.045799873769283295, 0.035134900361299515, -0.03718452528119087, -0.10949193686246872, -0.11502283811569214, -0.028057552874088287, 0.1117338240146637, 0.007602033205330372, 0.1168658658862114, 0.08850247412919998, -0.020326003432273865, 0.02568340301513672, 0.04996650293469429, -0.06505059450864792, -0.14317646622657776, -0.14431841671466827, -0.06292151659727097, -0.12833543121814728, 0.025872033089399338, -0.045745350420475006, -0.04087125509977341, 0.04500914737582207, 0.027816735208034515, -0.06639687716960907, 0.13044732809066772, 0.009682418778538704, -0.1219620481133461, 0.02704976126551628, 0.048582352697849274, -0.0051014963537454605, 0.013646692037582397, -0.04890976846218109, -0.042150817811489105, 0.05955841392278671, 0.04106643795967102, -0.018070898950099945, -0.02095775119960308, 0.10158484429121017, -0.08050675690174103, -0.09154172986745834, -0.04500780627131462, 0.04762328043580055, 0.020092446357011795, 0.16280943155288696, -0.032306376844644547, 0.030499540269374847, -0.043119292706251144, 0.15001508593559265, -0.06136726588010788, -0.07594867050647736, -0.16234956681728363, 0.3192359209060669, -0.0622054822742939, -0.05035363882780075, 0.06578896939754486, -0.008061273954808712, -0.10947442799806595, 0.38262471556663513, 0.2732886075973511, 0.0035098802763968706, 0.011785544455051422, 0.053880900144577026, -0.0032774300780147314, -0.019520418718457222, 0.13782081007957458, 0.13863138854503632, 0.1848919540643692, -0.09072138369083405, -0.06170383468270302, -0.0682949349284172, 0.002853615442290902, -0.11989426612854004, 0.010397658683359623, 0.02860061638057232, -0.07358848303556442, -0.007239056751132011, 0.07387576252222061, -0.12635469436645508, -0.022458022460341454, -0.0531759150326252, -0.1029239222407341, -0.10188073664903641, -0.022441543638706207, 0.04224837198853493, 0.011806807480752468, 0.09490207582712173, -0.04967266321182251, -0.019382869824767113, 0.12133435159921646, 0.009113959968090057, -0.1599615514278412, -0.0391787514090538, 0.1114245355129242, 0.04509381577372551, 0.15609437227249146, -0.003597731003537774, 0.10027623921632767, 0.08035732805728912, 0.03969135135412216, -0.08475770056247711, 0.01136697642505169, 0.014704874716699123, -0.12668758630752563, 0.016801850870251656, 0.0855712890625, -0.02270049788057804, -0.07821229845285416, -0.008843996562063694, -0.14860501885414124, -0.029396753758192062, -0.12408768385648727, -0.00780191645026207, -0.04063650593161583, 0.05125540867447853, -0.09878332167863846, 0.07706847041845322, 0.1789754182100296, -0.00504289660602808, -0.0460415855050087, -0.1222657784819603, 0.015164786949753761, 0.09823798388242722, -0.02741989679634571, -0.031231936067342758, -0.15291853249073029, -0.05452369898557663, -0.0650763288140297, -0.03193523734807968, -0.15440189838409424, -0.00789854396134615, -0.040728554129600525, -0.03827577084302902, -0.1350342184305191, 0.038973741233348846, 0.005948104429990053, 0.012428983114659786, 0.011767998337745667, 0.0967925414443016, -0.033254168927669525, 0.04076530411839485, -0.1896411031484604, -0.06265117228031158 ]
null
null
transformers
#Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
dats/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Harry Potter DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
# Tony Stark DialoGPT model Invite me to your discord server : https://discord.com/api/oauth2/authorize?client_id=885065886787063848&permissions=137439365184&scope=bot
{"tags": ["conversational"]}
text-generation
dattam/DialoGPT-medium-TonyStarkBot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Tony Stark DialoGPT model Invite me to your discord server : URL
[ "# Tony Stark DialoGPT model\n\nInvite me to your discord server : URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Tony Stark DialoGPT model\n\nInvite me to your discord server : URL" ]
[ 51, 18 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Tony Stark DialoGPT model\n\nInvite me to your discord server : URL" ]
[ -0.04913276433944702, 0.10103454440832138, -0.0034518828615546227, 0.07695557922124863, 0.07991280406713486, 0.001586314756423235, 0.1957370489835739, 0.1159655824303627, 0.12587615847587585, -0.08542253822088242, 0.15123997628688812, 0.16527163982391357, -0.03026377037167549, 0.07023753970861435, -0.021663153544068336, -0.2660570740699768, 0.012563617900013924, 0.058180078864097595, -0.002127561019733548, 0.09680887311697006, 0.08462042361497879, -0.06794270128011703, 0.10147599130868912, -0.008150296285748482, -0.12174602597951889, 0.041629333049058914, 0.04875412955880165, -0.058640964329242706, 0.14447663724422455, 0.07664518058300018, 0.003913188818842173, 0.07709679007530212, -0.037876907736063004, -0.12298284471035004, 0.06565248221158981, -0.0015128487721085548, -0.019759953022003174, 0.07404828816652298, 0.026429546996951103, -0.03592298924922943, 0.12592267990112305, 0.12921451032161713, -0.05155117064714432, 0.09055649489164352, -0.17119887471199036, 0.08716239780187607, -0.03577917441725731, 0.13621927797794342, 0.04816877841949463, 0.13525351881980896, -0.01935773529112339, 0.18370147049427032, -0.043821781873703, 0.1024017184972763, 0.050824932754039764, -0.3311372399330139, -0.04546680301427841, 0.06874173134565353, 0.050864074379205704, 0.047420382499694824, -0.010470811277627945, 0.08165755122900009, 0.028346290811896324, -0.005843936000019312, -0.02979034185409546, -0.07078247517347336, -0.16068978607654572, 0.022466519847512245, -0.05522281304001808, 0.004544821567833424, 0.22814777493476868, 0.06601327657699585, 0.05346232280135155, -0.01748119480907917, -0.10096783936023712, -0.03518268093466759, 0.01993955299258232, -0.0693301260471344, -0.07929957658052444, 0.09233042597770691, -0.06907166540622711, -0.17507801949977875, -0.13568808138370514, -0.06029995158314705, -0.18516911566257477, 0.12688393890857697, 0.015614275820553303, 0.05665186047554016, -0.1917927861213684, 0.09918348491191864, 0.013848569244146347, -0.10582093149423599, 0.01773993857204914, -0.10836223512887955, 0.015289191156625748, -0.0019578859210014343, -0.010954597033560276, -0.03564024344086647, 0.088170126080513, 0.16917283833026886, 0.017351094633340836, -0.01396514754742384, -0.07115478068590164, 0.05725454166531563, 0.02082025445997715, 0.028933772817254066, -0.07144428789615631, -0.026324722915887833, 0.06935520470142365, -0.07047083973884583, 0.04983246326446533, -0.034216802567243576, -0.1953631043434143, -0.023687653243541718, -0.030467398464679718, 0.03500062972307205, 0.11333801597356796, 0.12142512202262878, -0.03795672580599785, -0.05662330240011215, 0.19771388173103333, 0.011363874189555645, -0.014975426718592644, 0.016862882301211357, -0.05438860133290291, 0.05863272026181221, 0.013560158200562, 0.08489186316728592, -0.10396450757980347, -0.04506229981780052, -0.06493380665779114, -0.032778896391391754, -0.029387135058641434, -0.005265084095299244, 0.04458068311214447, 0.0463031530380249, -0.01480488944798708, -0.13120944797992706, -0.14589272439479828, 0.012228225357830524, -0.02182854898273945, -0.017210444435477257, -0.12429826706647873, -0.07527327537536621, 0.02127516083419323, 0.0006400791462510824, -0.0584806427359581, -0.03489622473716736, -0.04944680631160736, 0.038221728056669235, -0.010394636541604996, 0.09887802600860596, -0.1459273248910904, 0.03435346856713295, -0.09162057936191559, -0.05835661292076111, -0.08861783891916275, 0.08334146440029144, -0.014067187905311584, 0.07404490560293198, -0.021585777401924133, -0.003363128285855055, -0.10966597497463226, 0.045390062034130096, -0.05966135486960411, 0.2781132459640503, -0.08290033042430878, -0.057304080575704575, 0.2638724744319916, -0.060928259044885635, -0.1821022480726242, 0.16662298142910004, -0.008946032263338566, -0.005954340565949678, 0.14981356263160706, 0.14346501231193542, -0.04023527726531029, -0.023484209552407265, 0.04877162352204323, 0.08557021617889404, -0.1579575538635254, -0.030614934861660004, 0.03929059952497482, -0.005173931363970041, 0.004317561164498329, -0.01499435305595398, 0.1270931214094162, 0.08814084529876709, -0.03571055829524994, -0.02453755959868431, -0.013124560937285423, -0.048528384417295456, 0.05278847739100456, 0.0008406239212490618, 0.0929894670844078, -0.03809645399451256, -0.0715087428689003, -0.10751519352197647, 0.04492228105664253, 0.006777444388717413, 0.04542054235935211, -0.09737721085548401, -0.018511567264795303, 0.0495808869600296, 0.026284847408533096, -0.12502357363700867, -0.05484996363520622, -0.0713200643658638, 0.2684020400047302, 0.12736864387989044, 0.20710356533527374, 0.05915243178606033, -0.09009262919425964, -0.06113234534859657, 0.008845776319503784, 0.14400777220726013, -0.010292747057974339, -0.03912319988012314, -0.11930812150239944, 0.05187176913022995, -0.046842288225889206, 0.07327449321746826, -0.058993659913539886, 0.021823279559612274, 0.023674096912145615, 0.12715588510036469, -0.010422535240650177, 0.01907137967646122, 0.058512113988399506, -0.02205069735646248, -0.04249472916126251, -0.03742144629359245, 0.08099362254142761, -0.04163198173046112, -0.12935762107372284, 0.1434331238269806, -0.04922012239694595, 0.11412830650806427, 0.19548824429512024, -0.22574472427368164, 0.014990895986557007, -0.03922951966524124, -0.033795833587646484, -0.0014067946467548609, 0.06082368269562721, -0.02204897254705429, 0.1716044843196869, 0.021844305098056793, 0.11729089170694351, -0.001726910239085555, -0.010230908170342445, -0.08177794516086578, -0.0471770353615284, 0.02652778849005699, 0.07139106839895248, 0.09761107712984085, -0.22716030478477478, 0.12031558901071548, 0.05453943461179733, 0.06403737515211105, 0.12817047536373138, 0.05391087010502815, 0.03464166447520256, 0.05387984216213226, -0.05874378979206085, -0.03753972053527832, -0.05153808370232582, -0.21052581071853638, 0.002584606409072876, 0.04934725537896156, -0.00033662395435385406, 0.07387462258338928, -0.11224797368049622, -0.0751492902636528, -0.0063636647537350655, -0.03373555839061737, -0.01363337691873312, 0.09389980137348175, -0.01222799438983202, 0.10605878382921219, 0.0014111868804320693, -0.04464396834373474, 0.0660063698887825, -0.011429071426391602, -0.08537252992391586, 0.1286781281232834, -0.1172538548707962, -0.22397908568382263, -0.06229785457253456, -0.11421699821949005, -0.06647010147571564, 0.06824793666601181, 0.08840318024158478, -0.14961916208267212, 0.019785847514867783, -0.003034045221284032, 0.05372696742415428, -0.08054634183645248, -0.019449753686785698, 0.0350365974009037, -0.002639994490891695, -0.10592810809612274, -0.09900151193141937, -0.056751180440187454, -0.044288139790296555, -0.07771645486354828, 0.12084978073835373, -0.14283069968223572, 0.03760913386940956, 0.17729566991329193, 0.07530874758958817, 0.04516172781586647, -0.049833014607429504, 0.20240408182144165, -0.09384363144636154, 0.07000727206468582, 0.2345801293849945, -0.010248800739645958, 0.06687179952859879, 0.111665740609169, 0.03393840044736862, -0.0523768812417984, 0.05329778790473938, -0.022247837856411934, -0.025916555896401405, -0.22171756625175476, -0.11096640676259995, -0.07224725931882858, 0.09399231523275375, 0.03350551053881645, 0.04721982404589653, 0.15638533234596252, 0.10326822847127914, -0.06073898822069168, -0.07240316271781921, 0.04719820246100426, 0.07593342661857605, 0.2492549568414688, -0.0679607093334198, 0.10678140819072723, -0.04052402079105377, -0.11044079065322876, 0.09888716787099838, 0.05900479108095169, -0.0589987076818943, 0.10587594658136368, 0.06635145843029022, 0.009211200289428234, 0.03249173238873482, 0.07491392642259598, 0.026858558878302574, 0.055578701198101044, -0.058528777211904526, -0.02535959519445896, -0.02328065037727356, -0.06286045908927917, 0.025889163836836815, 0.06519021838903427, -0.1101287305355072, 0.020040133967995644, 0.03306316211819649, 0.0634840577840805, 0.07947691529989243, 0.08421620726585388, -0.1697426587343216, -0.06918442249298096, 0.05470831319689751, -0.05055370554327965, -0.06071828678250313, 0.04242571443319321, 0.005963440518826246, -0.10634467005729675, 0.05918028578162193, 0.0008659144514240324, 0.13367968797683716, -0.07398778945207596, 0.09341342002153397, -0.11291851103305817, -0.06211704760789871, 0.007181418128311634, 0.09183549880981445, -0.2457418590784073, 0.2040177434682846, -0.0029445805121213198, -0.03220691904425621, -0.1145714670419693, -0.04418490082025528, 0.0027442758437246084, 0.16848468780517578, 0.11060875654220581, -0.022867780178785324, 0.10267283022403717, -0.005044218618422747, -0.09139399975538254, 0.04586329683661461, 0.030532389879226685, -0.0688011422753334, -0.033932268619537354, -0.005875489674508572, -0.007586810737848282, -0.003681998234242201, 0.032789602875709534, -0.08351823687553406, -0.14351029694080353, 0.04070905223488808, 0.13304676115512848, 0.14812971651554108, 0.02776067890226841, -0.023786084726452827, -0.0654664933681488, 0.2674393057823181, 0.00845301989465952, -0.07445914298295975, -0.07021625339984894, 0.03536356985569, 0.014671845361590385, -0.0713471919298172, -0.03705105185508728, -0.03576311841607094, 0.021689990535378456, -0.10280688107013702, -0.14491432905197144, 0.12975706160068512, -0.08160701394081116, -0.047105565667152405, -0.04368089884519577, 0.19221442937850952, 0.025409264490008354, 0.037432365119457245, 0.04438107833266258, -0.02585754543542862, -0.12831871211528778, -0.10921284556388855, 0.006845587864518166, -0.05986380949616432, 0.016613507643342018, -0.0001735863770591095, -0.00631907070055604, 0.003351544728502631, -0.07818938791751862, -0.023919906467199326, 0.2936921715736389, 0.13218310475349426, -0.04698365181684494, 0.0955413207411766, 0.0709419846534729, -0.006181638687849045, -0.21282704174518585, -0.11094538867473602, -0.11364971101284027, -0.08803628385066986, -0.03235675394535065, -0.16569656133651733, 0.08365648239850998, -0.03124341554939747, -0.025343218818306923, 0.04897942766547203, -0.1759384423494339, -0.10595384985208511, 0.12774664163589478, -0.048452746123075485, 0.37320995330810547, -0.08759602159261703, -0.058890119194984436, -0.052356887608766556, -0.2106584757566452, 0.14972414076328278, -0.03786823898553848, 0.08095194399356842, -0.00792703777551651, 0.14108529686927795, 0.019305553287267685, -0.008351313881576061, 0.05939493328332901, 0.03659718111157417, -0.044435691088438034, -0.07640649378299713, -0.09126053750514984, 0.009081925265491009, 0.018904702737927437, 0.014534195885062218, -0.02599552646279335, -0.00038076916825957596, -0.1707528978586197, -0.04311259463429451, -0.10553877800703049, 0.04688164219260216, 0.03964347019791603, -0.05850493907928467, 0.010119176469743252, -0.025861086323857307, -0.039849478751420975, 0.015032577328383923, 0.16547006368637085, -0.13543960452079773, 0.16789421439170837, 0.12367893755435944, 0.19723790884017944, -0.17916002869606018, 0.012500514276325703, -0.015787016600370407, -0.07933204621076584, 0.04670977219939232, -0.09279969334602356, 0.011235086247324944, 0.07821851223707199, -0.03619533032178879, 0.028456175699830055, 0.08415334671735764, -0.01058133039623499, 0.04960360750555992, 0.10890974849462509, -0.23826134204864502, -0.11931167542934418, -0.04390743747353554, -0.006223420146852732, 0.05156569927930832, 0.10045663267374039, 0.19017314910888672, -0.0016159386141225696, -0.057254642248153687, 0.04597685486078262, 0.001379661145620048, -0.05520787462592125, 0.008515817113220692, 0.05615720525383949, -0.0034955316223204136, -0.12206467986106873, 0.1060485690832138, -0.00553317554295063, -0.1519179344177246, -0.021584251895546913, 0.1752655804157257, -0.11751887202262878, -0.14945657551288605, -0.11122976243495941, 0.007181407883763313, -0.1467965543270111, -0.007541518658399582, -0.02556113339960575, -0.08098896592855453, 0.047239143401384354, 0.03830200061202049, 0.031078200787305832, 0.05081445723772049, -0.06709616631269455, -0.009026014246046543, 0.018756356090307236, -0.022191045805811882, 0.02605695091187954, -0.023875020444393158, -0.06445637345314026, 0.07829716056585312, -0.04480908066034317, 0.14580999314785004, -0.07229242473840714, -0.0525130070745945, -0.13343089818954468, 0.027072621509432793, -0.07289883494377136, -0.13072149455547333, -0.13731491565704346, -0.04124274477362633, -0.028039462864398956, -0.07809392362833023, -0.025918634608387947, -0.02618008852005005, -0.08203708380460739, 0.014551232568919659, -0.007818926125764847, 0.0005044479621574283, -0.13964393734931946, 0.04176631197333336, 0.06665758043527603, 0.014478787779808044, 0.171739861369133, 0.12282276153564453, -0.12004092335700989, 0.02226387709379196, -0.15898486971855164, -0.06871820241212845, 0.05891735851764679, 0.027368688955903053, 0.042154841125011444, 0.12492060661315918, -0.017921946942806244, 0.03940749168395996, 0.08239352703094482, 0.04491380974650383, 0.061374835669994354, -0.04858120158314705, 0.04212681204080582, 0.05710386857390404, -0.06421846151351929, -0.047834329307079315, -0.03316950425505638, 0.11205755174160004, -0.005837763659656048, 0.06665726751089096, -0.04725039750337601, 0.07704182714223862, -0.14824090898036957, 0.0707743912935257, 0.03342553973197937, -0.12036976963281631, -0.04608243703842163, -0.09426543861627579, 0.06069089472293854, -0.017586925998330116, 0.13915611803531647, -0.04983428493142128, 0.023603711277246475, 0.06716915220022202, 0.06002137437462807, 0.00798580702394247, -0.030277395620942116, 0.17839771509170532, 0.06154261529445648, -0.05679165944457054, -0.055208995938301086, 0.04676146060228348, -0.006191328167915344, 0.041893862187862396, 0.16929243505001068, -0.010810337029397488, 0.013502624817192554, 0.05050421506166458, 0.019582705572247505, 0.08113688230514526, -0.11439234763383865, -0.2538667917251587, -0.040993981063365936, 0.0081348717212677, -0.06566158682107925, 0.04172976315021515, 0.10746479034423828, 0.008536898531019688, -0.025602389127016068, 0.016347257420420647, -0.014645264483988285, -0.16945771872997284, -0.20291396975517273, -0.06497173756361008, -0.1567414104938507, 0.03113565780222416, -0.11967025697231293, 0.057108715176582336, -0.03879450261592865, 0.08461342006921768, -0.07759225368499756, 0.09613309800624847, 0.04715879634022713, -0.07910283654928207, 0.040570855140686035, -0.016940202564001083, 0.055097442120313644, -0.005708822049200535, 0.04172366112470627, -0.039192069321870804, 0.026196792721748352, 0.006248108576983213, 0.05161571130156517, -0.049300700426101685, 0.02637932077050209, -0.1297864466905594, -0.09096317738294601, -0.06622226536273956, 0.08828769624233246, 0.012720560654997826, 0.1939985454082489, -0.00033568008802831173, 0.014312117360532284, 0.04129902273416519, 0.258083701133728, -0.10358802229166031, -0.08888968080282211, -0.07257850468158722, 0.27834224700927734, -0.02641378343105316, 0.05733523890376091, -0.06770775467157364, -0.012814399786293507, -0.07266691327095032, 0.3412794768810272, 0.33238276839256287, -0.15226049721240997, 0.02982320822775364, -0.0273723267018795, 0.04979298263788223, 0.05670030042529106, 0.038789719343185425, 0.05772608146071434, 0.13569901883602142, -0.08881046622991562, 0.015839776024222374, 0.014341788366436958, -0.009600888937711716, -0.0690828189253807, -0.028300132602453232, 0.036617666482925415, -0.046318329870700836, -0.005801520310342312, 0.12276491522789001, -0.22633184492588043, 0.05265573412179947, -0.15451468527317047, -0.14644861221313477, -0.015542524866759777, 0.012081081047654152, 0.08438190817832947, 0.04303101450204849, 0.10617990046739578, 0.025264719501137733, -0.02518988773226738, 0.09714563935995102, 0.01755278743803501, -0.21161498129367828, 0.022421367466449738, 0.11463943868875504, -0.07921139150857925, -0.04541471228003502, -0.026904450729489326, 0.09271667897701263, 0.08462966978549957, 0.03620127588510513, -0.08245555311441422, 0.040143635123968124, -0.00436210073530674, -0.07702565938234329, -0.03954019770026207, -0.028686147183179855, 0.03695978596806526, -0.0690162181854248, 0.0626099556684494, -0.1306414157152176, 0.05318818241357803, 0.05848170071840286, 0.01093846932053566, -0.049211304634809494, 0.08836528658866882, -0.06857098639011383, 0.1118321493268013, 0.06510411947965622, -0.03954044729471207, -0.040829889476299286, 0.010664035566151142, -0.05234770476818085, 0.006099441088736057, -0.017677338793873787, -0.13290134072303772, -0.13083159923553467, -0.07238975912332535, 0.043817032128572464, 0.033727142959833145, -0.16381485760211945, 0.009928726591169834, -0.16593697667121887, 0.0097507881000638, -0.047109466046094894, 0.07061037421226501, 0.1418938934803009, 0.017126360908150673, 0.009580796584486961, -0.05264180153608322, 0.047690942883491516, 0.07571637630462646, -0.1734759658575058, -0.06241032853722572 ]
null
null
transformers
BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus along with selected pubtator annotations from LitCOVID dataset This was fine-tuned in order to use it in a datummd/bionlp system which is available at: https://github.com/datummd/bionlp
{"language": ["en"], "license": "apache-2.0", "tags": ["BioBERT", "Diseases", "NER"], "datasets": ["ncbi_disease", "BC5CDR-diseases", "LitCOVID-pubtator"]}
token-classification
datummd/NCBI_BC5CDR_disease
[ "transformers", "pytorch", "bert", "token-classification", "BioBERT", "Diseases", "NER", "en", "dataset:ncbi_disease", "dataset:BC5CDR-diseases", "dataset:LitCOVID-pubtator", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #token-classification #BioBERT #Diseases #NER #en #dataset-ncbi_disease #dataset-BC5CDR-diseases #dataset-LitCOVID-pubtator #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus along with selected pubtator annotations from LitCOVID dataset This was fine-tuned in order to use it in a datummd/bionlp system which is available at: URL
[]
[ "TAGS\n#transformers #pytorch #bert #token-classification #BioBERT #Diseases #NER #en #dataset-ncbi_disease #dataset-BC5CDR-diseases #dataset-LitCOVID-pubtator #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 93 ]
[ "passage: TAGS\n#transformers #pytorch #bert #token-classification #BioBERT #Diseases #NER #en #dataset-ncbi_disease #dataset-BC5CDR-diseases #dataset-LitCOVID-pubtator #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06481660902500153, 0.22593502700328827, -0.00697000976651907, 0.03854062035679817, 0.047554221004247665, 0.027450697496533394, 0.06969958543777466, 0.11724153161048889, 0.011449051089584827, 0.03196459636092186, 0.1833786517381668, 0.14121347665786743, -0.010730457492172718, 0.12650014460086823, -0.062322478741407394, -0.11717434227466583, 0.08063479512929916, 0.07848140597343445, -0.030620919540524483, 0.08871813118457794, 0.0676104873418808, -0.04639432951807976, 0.05874566361308098, 0.012004975229501724, -0.06662805378437042, 0.013482661917805672, 0.052052587270736694, -0.04035603255033493, 0.10846849530935287, -0.01600230298936367, 0.10329698771238327, 0.03185246139764786, 0.032525788992643356, -0.1475883424282074, 0.024846946820616722, 0.02725968137383461, -0.04942495748400688, 0.11627580970525742, 0.012097381986677647, -0.034088391810655594, 0.020533068105578423, -0.04348805546760559, 0.023462070152163506, 0.029946789145469666, -0.06355514377355576, -0.20724701881408691, -0.05940425023436546, 0.14363925158977509, -0.005783408414572477, 0.028302237391471863, 0.03583166375756264, 0.1973419189453125, -0.08403164893388748, 0.06098627671599388, 0.15938131511211395, -0.2582249343395233, 0.008822806179523468, 0.07344484329223633, 0.0422646664083004, -0.004112840164452791, -0.056796181946992874, 0.02646947093307972, 0.04958225414156914, -0.009677762165665627, 0.03166957572102547, -0.037365008145570755, -0.06161363422870636, 0.03939307853579521, -0.09723585844039917, -0.006415930110961199, 0.18421147763729095, -0.0031177133787423372, 0.06686175614595413, 0.048472095280885696, -0.05852794274687767, -0.028003139421343803, 0.01751401461660862, -0.010824554599821568, -0.010697868652641773, 0.0027881492860615253, 0.03534146025776863, 0.042626675218343735, -0.0608169287443161, -0.03827326372265816, -0.15637965500354767, 0.05496443435549736, 0.0006254983018152416, 0.06512071937322617, -0.10482107847929001, 0.022111423313617706, 0.0511276051402092, -0.07125881314277649, -0.0030743193347007036, -0.05141270533204079, -0.042232103645801544, -0.00961518008261919, -0.010906992480158806, 0.17386822402477264, 0.15722578763961792, 0.2586427330970764, 0.056271880865097046, -0.035402245819568634, -0.04919182509183884, 0.06267542392015457, 0.0125082703307271, -0.07765593379735947, -0.09898219257593155, -0.05423508957028389, 0.11721478402614594, -0.017195846885442734, 0.052717890590429306, 0.0007543053943663836, -0.08927441388368607, -0.03968740627169609, 0.0682661235332489, 0.08011094480752945, 0.027257703244686127, 0.004595928359776735, -0.07609426975250244, -0.011708688922226429, 0.18555080890655518, -0.012674388475716114, 0.0021400651894509792, 0.07194899767637253, 0.018368201330304146, 0.0666709914803505, 0.04937794432044029, -0.0009455844992771745, 0.014534620568156242, 0.10030822455883026, -0.12226440757513046, -0.09227515012025833, 0.010409302078187466, -0.05302255600690842, 0.1099400743842125, -0.09015016257762909, 0.03560139611363411, -0.10456731170415878, -0.15261231362819672, 0.06318598985671997, 0.018079476431012154, -0.011707285419106483, -0.10635796934366226, 0.012037938460707664, -0.017133448272943497, 0.030070018023252487, -0.0681963711977005, 0.0030939197167754173, -0.06870654225349426, 0.030502166599035263, -0.09666455537080765, 0.07482640445232391, -0.18099907040596008, 0.007988686673343182, -0.10109289735555649, 0.0254572294652462, -0.003874225076287985, -0.07910209894180298, -0.1421077400445938, 0.04117080941796303, -0.09736624360084534, -0.008270853199064732, 0.02212923765182495, -0.05880896747112274, 0.03847934678196907, 0.11988036334514618, -0.12044307589530945, -0.08626191318035126, 0.1645316332578659, -0.05692020058631897, -0.15211006999015808, 0.08063197135925293, -0.005260646343231201, -0.013994033448398113, 0.0533289760351181, 0.1522383689880371, -0.007713554427027702, -0.0799984410405159, -0.043252021074295044, 0.04704827070236206, -0.08090481162071228, -0.1589575856924057, 0.05885383114218712, 0.004573647864162922, -0.08549430966377258, 0.024604326114058495, 0.013815105892717838, 0.10306315869092941, -0.07055912911891937, -0.05725608021020889, -0.03803001716732979, -0.09019743651151657, 0.07248842716217041, -0.004993806593120098, 0.024912098422646523, -0.03732065483927727, 0.027957994490861893, 0.05518919974565506, 0.07677178829908371, 0.013029960915446281, 0.04587073624134064, -0.07915782183408737, 0.020002344623208046, -0.04656665027141571, 0.017833581194281578, -0.11476805806159973, -0.10463433712720871, 0.023403022438287735, -0.040916942059993744, -0.011554649099707603, -0.0032504755072295666, 0.03621701896190643, -0.023192550987005234, -0.03273412212729454, 0.023942571133375168, 0.12427706271409988, 0.06670500338077545, -0.04351416975259781, -0.22058121860027313, 0.056485366076231, -0.0770583376288414, 0.06944442540407181, -0.09935174882411957, 0.008459541946649551, -0.0019508620025590062, 0.14397834241390228, -0.017655255272984505, 0.013089530169963837, 0.022568166255950928, -0.02367006056010723, -0.07335805892944336, 0.028798390179872513, 0.0798523873090744, -0.021094270050525665, -0.1400001347064972, 0.10843666642904282, 0.023090042173862457, 0.19521977007389069, 0.11686502397060394, -0.04015224426984787, 0.054087284952402115, -0.023831335827708244, -0.025582505390048027, -0.050221722573041916, 0.04059672728180885, -0.02061634138226509, -0.013137632980942726, 0.04539218544960022, 0.09146985411643982, -0.02638952247798443, -0.04439792037010193, 0.030335059389472008, -0.01741096004843712, -0.0283009335398674, 0.08385463804006577, 0.15811675786972046, -0.23685024678707123, 0.161501944065094, 0.21254587173461914, -0.0735163688659668, 0.06363028287887573, -0.008482709527015686, -0.02609189599752426, -0.01592874899506569, -0.09737088531255722, 0.031056290492415428, 0.113024041056633, -0.08556975424289703, 0.0659104734659195, 0.08820271492004395, -0.00871248822659254, 0.007244706153869629, -0.04312344640493393, -0.051813382655382156, -0.04873604699969292, -0.008753119967877865, -0.08108388632535934, 0.07410386949777603, -0.0008797034388408065, 0.1332666426897049, -0.007489977404475212, -0.14788290858268738, 0.08630318939685822, 0.039639368653297424, -0.09986311942338943, 0.15034927427768707, -0.14288119971752167, -0.22468671202659607, -0.06651517748832703, -0.10903843492269516, -0.05601462721824646, -0.010350481607019901, 0.03325008228421211, -0.06386293470859528, -0.04678824171423912, 0.003761956002563238, -0.1110946387052536, 0.008802611380815506, 0.031408317387104034, 0.033912379294633865, 0.029618971049785614, 0.048356227576732635, -0.08888425678014755, -0.004018520470708609, -0.04935269057750702, 0.016880901530385017, 0.0740707516670227, -0.09326270967721939, 0.09633169323205948, 0.09521620720624924, 0.04862185940146446, -0.015464799478650093, -0.03216853365302086, 0.16510161757469177, 0.010727292858064175, 0.024779872968792915, 0.11007796972990036, -0.09498833119869232, 0.042662523686885834, 0.09224547445774078, 0.051884911954402924, -0.01599743589758873, -0.020498942583799362, -0.005157195031642914, -0.04950624704360962, -0.25670984387397766, -0.11067092418670654, -0.0823713019490242, 0.05306340381503105, 0.043945714831352234, 0.05186227336525917, 0.08111599832773209, 0.016839997842907906, 0.012452959083020687, -0.007540995255112648, -0.03171740472316742, 0.07686049491167068, 0.1318318396806717, -0.020937150344252586, 0.12049179524183273, 0.0057312301360070705, -0.02666465751826763, 0.11663834005594254, 0.0952935591340065, 0.13437825441360474, 0.09827426820993423, 0.17283499240875244, 0.0540277436375618, 0.15832236409187317, 0.10879651457071304, 0.11709034442901611, -0.015194660983979702, -0.016353335231542587, -0.014242124743759632, 0.004233300685882568, -0.023492228239774704, -0.014979805797338486, -0.018215805292129517, -0.03075847215950489, 0.06696106493473053, -0.09222491830587387, 0.07020537555217743, 0.04196647182106972, 0.07327868789434433, -0.19846300780773163, 0.027321236208081245, 0.03550058230757713, 0.021542677655816078, -0.044309549033641815, 0.04575879126787186, -0.01158113218843937, -0.04030725732445717, 0.08395286649465561, -0.030218670144677162, 0.10013780742883682, -0.015314305201172829, 0.04264446720480919, -0.11031156778335571, -0.08039189130067825, -0.018967555835843086, 0.09557932615280151, -0.25104063749313354, 0.14858680963516235, 0.012445599772036076, -0.08477993309497833, -0.04358808323740959, -0.07360075414180756, 0.03740522265434265, 0.22026893496513367, 0.10986747592687607, 0.05172094330191612, 0.02106482908129692, -0.010584247298538685, -0.16320045292377472, 0.03582504019141197, -0.020604170858860016, 0.024722689762711525, -0.03602847456932068, -0.0015068125212565064, -0.01593843474984169, 0.020750990137457848, 0.007935967296361923, -0.10440915822982788, -0.09561740607023239, 0.07509986311197281, 0.08748859912157059, -0.00035453433520160615, -0.0341285765171051, -0.07097117602825165, -0.03953072428703308, 0.20458073914051056, -0.2115442007780075, -0.025077402591705322, -0.10355878621339798, 0.028076354414224625, 0.11203724890947342, -0.07672278583049774, 0.020768944174051285, -0.0580926239490509, 0.010145004838705063, -0.044484566897153854, -0.18660494685173035, 0.1008874773979187, -0.1374010145664215, -0.13040122389793396, -0.11716875433921814, 0.06750496476888657, 0.007487875875085592, 0.07532580196857452, 0.02852092869579792, 0.011291829869151115, -0.06934088468551636, -0.044035762548446655, 0.05938098207116127, 0.052267611026763916, 0.046136513352394104, 0.025609400123357773, -0.1297851949930191, -0.1337568312883377, 0.018419666215777397, -0.009614791721105576, 0.1897510439157486, 0.23233641684055328, -0.065059132874012, 0.1485450714826584, 0.23118221759796143, -0.06290936470031738, -0.28795117139816284, -0.07590857148170471, -0.03389035910367966, -0.08202188462018967, -0.0664534792304039, -0.15874408185482025, 0.19618889689445496, 0.16502195596694946, -0.07428470253944397, 0.1064487174153328, -0.09285593777894974, -0.08720077574253082, 0.16329121589660645, -0.03460399806499481, 0.33903664350509644, -0.08062344044446945, -0.035564158111810684, -0.05324558541178703, -0.08921252936124802, 0.24408403038978577, -0.06786511838436127, 0.03327042609453201, -0.05879966914653778, -0.011265347711741924, -0.005581101402640343, -0.061044082045555115, 0.09867093712091446, 0.04552911967039108, 0.0034794353414326906, -0.0029774196445941925, -0.09503167867660522, 0.14128360152244568, -0.020835338160395622, 0.0021912583615630865, -0.07812102884054184, 0.009332417510449886, -0.11577451229095459, 0.0062416670843958855, -0.09355644136667252, 0.09838033467531204, -0.005666960030794144, -0.05161968618631363, -0.05763084813952446, 0.02150850184261799, 0.029361262917518616, 0.011065075173974037, 0.24590687453746796, 0.03786906227469444, 0.005375123582780361, 0.09987898916006088, 0.0671905130147934, -0.08020661026239395, 0.04115384817123413, -0.013386539183557034, -0.10025999695062637, 0.09297303855419159, -0.08349119126796722, 0.044861700385808945, 0.12393859028816223, 0.007392818573862314, 0.029946552589535713, 0.08025883883237839, -0.04775279760360718, -0.057319872081279755, 0.10503354668617249, -0.18926332890987396, 0.12702731788158417, 0.051972925662994385, -0.03356998786330223, -0.03931361436843872, 0.11320499330759048, 0.11356163769960403, 0.006223252043128014, -0.041971299797296524, 0.03558709844946861, 0.07202474772930145, -0.07707919925451279, 0.1406003087759018, 0.0803709551692009, 0.018367107957601547, -0.13206104934215546, 0.03640346601605415, 0.04434667155146599, -0.028540680184960365, -0.015491340309381485, 0.03234503045678139, -0.14122146368026733, -0.06898219883441925, -0.005500816740095615, 0.1521550565958023, -0.1310759335756302, -0.039468977600336075, -0.029172204434871674, -0.0535244382917881, 0.07751235365867615, 0.21953731775283813, 0.06054510176181793, 0.03261116147041321, -0.03232410177588463, -0.08172674477100372, -0.052723512053489685, 0.06875504553318024, -0.08689373731613159, 0.07863683253526688, -0.02673407457768917, -0.058698367327451706, -0.0339314229786396, 0.058308735489845276, -0.06350445747375488, 0.03975067660212517, -0.17884868383407593, 0.008614353835582733, -0.15982285141944885, -0.005191779229789972, -0.0557137131690979, -0.02484864369034767, 0.0015151066472753882, -0.05453050881624222, -0.014707137830555439, 0.005322533659636974, -0.0710504874587059, -0.016698963940143585, 0.04676583781838417, 0.07931056618690491, -0.13304097950458527, -0.06830690801143646, 0.08542405068874359, -0.029470914974808693, 0.15374824404716492, 0.07313136011362076, 0.005451063625514507, 0.043170757591724396, -0.08338894695043564, -0.09314491599798203, 0.0844598039984703, 0.09540214389562607, 0.05777842178940773, -0.03431686758995056, -0.01222451962530613, 0.0797438770532608, -0.04633757844567299, 0.04681464284658432, 0.07836488634347916, -0.04345947504043579, -0.03784642368555069, -0.024520650506019592, -0.08868937194347382, 0.011956575326621532, -0.09660997241735458, 0.10805737972259521, 0.013389822095632553, 0.15996882319450378, 0.031206300482153893, -0.004655016586184502, -0.06650720536708832, 0.0026961476542055607, -0.015447556041181087, -0.17039398849010468, -0.10680839419364929, 0.023860499262809753, 0.0034069479443132877, -0.005993792787194252, 0.24415063858032227, -0.10631097853183746, -0.13611498475074768, 0.03906645253300667, 0.07373037189245224, -0.018498845398426056, 0.010763909667730331, 0.19402487576007843, 0.07785356789827347, -0.0309269018471241, -0.052251651883125305, 0.002786459168419242, 0.022584907710552216, -0.018301410600543022, 0.0907406434416771, 0.05518900975584984, 0.03509090095758438, -0.01310793124139309, 0.04630287364125252, -0.09055570513010025, -0.03392818570137024, -0.07705342769622803, -0.04821449890732765, 0.05174507573246956, 0.11857344210147858, 0.1007058322429657, 0.09914632141590118, -0.045512132346630096, -0.039423588663339615, -0.025179322808980942, -0.044450365006923676, -0.13363507390022278, -0.09594564139842987, -0.07777862250804901, -0.04672873392701149, -0.000307083799270913, -0.10407984256744385, -0.023575861006975174, 0.0719592496752739, 0.053201597183942795, -0.017982084304094315, -0.05678929015994072, 0.032140590250492096, 0.040634915232658386, -0.00628701550886035, 0.025592993944883347, -0.0458594411611557, -0.0243193581700325, -0.02471461519598961, -0.03671018406748772, 0.03968889266252518, -0.007120373193174601, -0.007969062775373459, 0.024470727890729904, 0.03309716284275055, -0.05586917698383331, -0.06336098909378052, -0.03187955543398857, -0.0042437780648469925, -0.061091311275959015, 0.1669093519449234, 0.021811479702591896, 0.06199246272444725, 0.05741093307733536, 0.06138220429420471, -0.008079852908849716, -0.03320922702550888, -0.03996311500668526, 0.16873838007450104, -0.013763931579887867, 0.06430292874574661, -0.009374390356242657, 0.04009908437728882, -0.046054866164922714, 0.237985298037529, 0.21177539229393005, -0.10747162252664566, 0.004017978440970182, -0.0050353314727544785, 0.016322791576385498, 0.07382321357727051, 0.07948468625545502, 0.10658545047044754, 0.13906356692314148, -0.057478033006191254, -0.05955063924193382, -0.0569724403321743, -0.009641792625188828, -0.13728024065494537, 0.008187050931155682, 0.04550858214497566, -0.07422127574682236, -0.08918710798025131, 0.03464231640100479, -0.13399183750152588, 0.06288719177246094, -0.026658132672309875, -0.08630558103322983, -0.10519314557313919, -0.05097358673810959, 0.07408349961042404, -0.058187372982501984, -0.035107407718896866, -0.035577721893787384, -0.010517658665776253, 0.06099081039428711, -0.04175836965441704, -0.19230985641479492, -0.07320605218410492, 0.08247987926006317, -0.05207968130707741, 0.17032788693904877, 0.014231512323021889, 0.09081190824508667, 0.08441118896007538, -0.005978381726890802, -0.1544448584318161, 0.005989044439047575, 0.0011406863341107965, -0.07896462082862854, -0.023698460310697556, -0.030485793948173523, 0.003383590606972575, 0.04102059081196785, 0.05914570018649101, -0.04578572139143944, -0.00524163618683815, 0.07072492688894272, -0.05982811748981476, -0.02668117918074131, 0.07828742265701294, -0.033098556101322174, 0.08492239564657211, 0.027863679453730583, -0.041520703583955765, -0.024448303505778313, -0.06740102916955948, -0.02515348419547081, 0.048622991889715195, -0.04443923756480217, -0.058057475835084915, -0.11456911265850067, 0.021318376064300537, -0.03158264234662056, 0.027466189116239548, -0.14090310037136078, -0.01805325597524643, -0.1530042290687561, 0.010040655732154846, -0.10688155144453049, 0.03060445375740528, 0.022544708102941513, -0.0008324562222696841, -0.0035549786407500505, -0.04071991890668869, 0.027734404429793358, 0.007492935750633478, -0.1109582856297493, -0.08876928687095642 ]
null
null
fastai
## Model description This model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'. This model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. This model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was `fiction` or `non-fiction`. The model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently. ## How to use To use this within fastai, first [install](https://docs.fast.ai/#Installing) version 2 of the fastai library. You can load directly from the Hugging Face hub using the [`huggingface_hub`](https://github.com/huggingface/huggingface_hub) library. ```python from fastai import load_learner from huggingface_hub import hf_hub_download learn = load_learner( hf_hub_download('davanstrien/bl-books-genre-fastai', filename="model.pkl") ) learn.predict("Oliver Twist") ``` ## Limitations and bias The model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise. The formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning. ## Training data The training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon. ### Training procedure Model training was carried out using the fastai library version 2.5.2. The notebook using for training the model is available at: https://github.com/Living-with-machines/genre-classification ## Eval result The model was evaluated on a held out test set: ``` precision recall f1-score support Fiction 0.91 0.88 0.90 296 Non-fiction 0.94 0.95 0.95 554 accuracy 0.93 850 macro avg 0.93 0.92 0.92 850 weighted avg 0.93 0.93 0.93 850 ```
{"library_name": "fastai", "tags": ["text-classification", "fastai"], "datasets": ["blbooksgenre"], "widget": [{"text": "Poems on various subjects. Whereto is prefixed a short essay on the structure of English verse"}, {"text": "Two Centuries of Soho: its institutions, firms, and amusements. By the Clergy of St. Anne's, Soho, J. H. Cardwell ... H. B. Freeman ... G. C. Wilton ... assisted by other contributors, etc"}, {"text": "The Adventures of Oliver Twist. [With plates.]"}]}
text-classification
TheBritishLibrary/bl-books-genre-fastai
[ "fastai", "text-classification", "dataset:blbooksgenre", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #fastai #text-classification #dataset-blbooksgenre #region-us
## Model description This model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'. This model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. This model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was 'fiction' or 'non-fiction'. The model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently. ## How to use To use this within fastai, first install version 2 of the fastai library. You can load directly from the Hugging Face hub using the 'huggingface_hub' library. ## Limitations and bias The model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise. The formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning. ## Training data The training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon. ### Training procedure Model training was carried out using the fastai library version 2.5.2. The notebook using for training the model is available at: URL ## Eval result The model was evaluated on a held out test set:
[ "## Model description\n\nThis model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'.\n\nThis model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. \n\nThis model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was 'fiction' or 'non-fiction'.\n\nThe model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently.", "## How to use\n\nTo use this within fastai, first install version 2 of the fastai library. You can load directly from the Hugging Face hub using the 'huggingface_hub' library.", "## Limitations and bias\n\nThe model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise.\n\nThe formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning.", "## Training data\n\nThe training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon.", "### Training procedure\n\nModel training was carried out using the fastai library version 2.5.2. \n\nThe notebook using for training the model is available at: URL", "## Eval result\n\nThe model was evaluated on a held out test set:" ]
[ "TAGS\n#fastai #text-classification #dataset-blbooksgenre #region-us \n", "## Model description\n\nThis model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'.\n\nThis model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. \n\nThis model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was 'fiction' or 'non-fiction'.\n\nThe model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently.", "## How to use\n\nTo use this within fastai, first install version 2 of the fastai library. You can load directly from the Hugging Face hub using the 'huggingface_hub' library.", "## Limitations and bias\n\nThe model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise.\n\nThe formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning.", "## Training data\n\nThe training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon.", "### Training procedure\n\nModel training was carried out using the fastai library version 2.5.2. \n\nThe notebook using for training the model is available at: URL", "## Eval result\n\nThe model was evaluated on a held out test set:" ]
[ 22, 286, 44, 142, 48, 31, 16 ]
[ "passage: TAGS\n#fastai #text-classification #dataset-blbooksgenre #region-us \n## Model description\n\nThis model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'.\n\nThis model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. \n\nThis model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was 'fiction' or 'non-fiction'.\n\nThe model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently.## How to use\n\nTo use this within fastai, first install version 2 of the fastai library. You can load directly from the Hugging Face hub using the 'huggingface_hub' library.## Limitations and bias\n\nThe model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise.\n\nThe formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning." ]
[ -0.05530346557497978, 0.10428860783576965, -0.0032289973460137844, 0.09276876598596573, 0.008824756368994713, 0.046988192945718765, 0.08959247171878815, 0.047000184655189514, -0.02927260287106037, 0.034749243408441544, -0.01759941503405571, -0.04893551766872406, 0.05343310534954071, 0.05988457426428795, 0.10788382589817047, -0.2275095283985138, 0.05952881649136543, -0.1022791936993599, 0.09797976166009903, 0.02788526751101017, 0.08953063935041428, -0.07642469555139542, 0.0677604079246521, -0.05563175678253174, -0.0671239048242569, -0.01718859188258648, -0.022871950641274452, -0.0018845427548512816, 0.10702897608280182, 0.13033345341682434, 0.14737991988658905, -0.06557042896747589, 0.0830291286110878, -0.1217636987566948, 0.022411612793803215, 0.08184284716844559, -0.007557017728686333, 0.019881485030055046, 0.02460445836186409, 0.025006763637065887, 0.15205807983875275, 0.03477269038558006, 0.062196459621191025, 0.0032111029140651226, -0.10349343717098236, -0.12098518013954163, -0.0938703864812851, 0.06694664061069489, -0.057591017335653305, 0.013919495046138763, -0.008656218647956848, 0.01694408804178238, -0.0018828975735232234, 0.024569189175963402, 0.0765935480594635, -0.23166199028491974, -0.03703591972589493, 0.12173719704151154, 0.07469335943460464, 0.15850497782230377, -0.10795320570468903, -0.0032925978302955627, -0.005574703216552734, 0.050004612654447556, 0.040823645889759064, 0.008632372133433819, -0.01668812707066536, -0.002917397068813443, -0.10343243181705475, -0.026457948610186577, 0.0778384655714035, -0.05857212841510773, -0.11417578160762787, -0.14564789831638336, -0.04838404804468155, 0.07347409427165985, -0.042801130563020706, -0.014755971729755402, 0.07253745943307877, 0.03957226499915123, 0.13035354018211365, -0.07645510882139206, -0.09211660921573639, 0.0006455756374634802, -0.12481708079576492, 0.12349632382392883, 0.010323657654225826, 0.055642019957304, 0.003909274935722351, 0.06890599429607391, -0.06504884362220764, 0.01977662742137909, -0.05059747397899628, -0.11066413670778275, -0.07466139644384384, -0.012744625099003315, -0.07402408123016357, 0.024827567860484123, -0.11612351983785629, 0.02589472196996212, -0.09232430160045624, 0.030605843290686607, -0.06886320561170578, 0.04156183451414108, 0.07529440522193909, 0.11208578944206238, -0.02416505478322506, -0.08739534020423889, 0.035304151475429535, 0.038063134998083115, 0.09797017276287079, -0.01595614105463028, -0.03545941784977913, -0.04393739998340607, -0.03862978145480156, -0.010956035926938057, -0.06726426631212234, -0.020801661536097527, -0.03818580508232117, -0.007805220782756805, 0.07594586163759232, -0.08311016857624054, 0.018705623224377632, -0.03654002398252487, -0.051044028252363205, 0.012799701653420925, 0.06023228168487549, -0.0401802659034729, -0.042310506105422974, 0.0285177044570446, -0.06809557974338531, -0.017748916521668434, -0.05127720162272453, -0.126642107963562, 0.023747935891151428, -0.018853789195418358, -0.058013513684272766, -0.05944213271141052, -0.20745554566383362, -0.03787471726536751, 0.044532593339681625, -0.039150018244981766, 0.05016561970114708, 0.006563644390553236, -0.0124358544126153, -0.017183508723974228, 0.048634182661771774, 0.019051289185881615, -0.0509633868932724, 0.031054886057972908, -0.09495468437671661, 0.076865054666996, -0.06602998077869415, 0.000039805887354305014, -0.07099442929029465, -0.015422970056533813, -0.2708436846733093, 0.12094461172819138, -0.08569575846195221, -0.05656450614333153, 0.007527187932282686, 0.007188127376139164, -0.09133369475603104, 0.09829988330602646, -0.030793262645602226, 0.08992945402860641, -0.22898373007774353, -0.02641098015010357, 0.14924240112304688, -0.15480472147464752, 0.017481444403529167, 0.10477384924888611, -0.08015666902065277, 0.14071838557720184, 0.14483511447906494, 0.10042974352836609, 0.05915915593504906, -0.04721234738826752, -0.1164025068283081, 0.0472123809158802, -0.02834438718855381, 0.14790138602256775, 0.005823166109621525, -0.0248407032340765, -0.07129208743572235, 0.02029159478843212, 0.021436192095279694, -0.05991214141249657, 0.02115488424897194, -0.02588566578924656, -0.005529697518795729, 0.002424398437142372, 0.042495813220739365, 0.03928588703274727, -0.02517019584774971, -0.016153069213032722, -0.07410518079996109, 0.04871212691068649, 0.08181274682283401, -0.023253247141838074, 0.05724574252963066, -0.016837837174534798, 0.040100980550050735, -0.026047274470329285, -0.030659347772598267, -0.18247656524181366, -0.08049037307500839, 0.08826903998851776, -0.06887734681367874, 0.10149569064378738, 0.01845274679362774, 0.039141781628131866, 0.10132857412099838, -0.09608274698257446, 0.047541938722133636, -0.03150482475757599, -0.057067643851041794, -0.12724469602108002, -0.13797757029533386, -0.020259208977222443, -0.038785215467214584, 0.17936605215072632, -0.1957773119211197, -0.008785671554505825, -0.061804547905921936, 0.045121535658836365, 0.04918009787797928, -0.04458049684762955, 0.0341339185833931, 0.004402610007673502, -0.012006266973912716, -0.037780631333589554, 0.013959622010588646, 0.005770317744463682, -0.07859339565038681, 0.07387974858283997, -0.14382897317409515, -0.12484180927276611, 0.11048350483179092, 0.08252918720245361, -0.057639144361019135, -0.05785135552287102, -0.018644852563738823, 0.00019145035184919834, -0.0911022275686264, -0.06247967109084129, 0.12791430950164795, -0.004864038433879614, 0.07486367225646973, -0.14978449046611786, -0.051027003675699234, -0.030987152829766273, 0.025533273816108704, -0.0032626984175294638, 0.08552500605583191, -0.0050048911944031715, -0.12295635044574738, 0.018848253414034843, 0.009594361297786236, -0.021692898124456406, 0.19066202640533447, 0.03937868773937225, -0.09318216145038605, 0.0018143042689189315, -0.0537869855761528, 0.0055675203911960125, 0.12042248994112015, -0.0031190109439194202, -0.010987731628119946, 0.02612413465976715, 0.0077360705472528934, 0.02057698741555214, -0.06845483183860779, 0.0463944710791111, 0.018374433740973473, -0.042576294392347336, -0.009763837791979313, -0.019738761708140373, -0.01696140319108963, 0.12667487561702728, 0.004291507415473461, 0.06133222207427025, -0.032902754843235016, -0.053492333739995956, -0.05733724310994148, 0.12323968857526779, -0.1300305873155594, -0.13019156455993652, -0.18113240599632263, -0.012170976959168911, -0.014570600353181362, 0.04947952926158905, -0.037592481821775436, -0.03711698576807976, -0.06134951114654541, -0.17360186576843262, 0.05155246704816818, -0.07921721041202545, -0.07803768664598465, -0.15379445254802704, 0.005673745181411505, -0.051411353051662445, -0.1426018625497818, 0.027828270569443703, -0.019754141569137573, 0.018468530848622322, -0.04048261418938637, -0.05726020783185959, 0.016904106363654137, 0.050176650285720825, -0.010931337252259254, -0.08785535395145416, -0.0311689805239439, 0.17387332022190094, -0.06348162889480591, 0.08577733486890793, 0.014466407708823681, -0.006273814011365175, 0.048827871680259705, 0.08673881739377975, 0.04395546764135361, -0.07291584461927414, 0.0015884460881352425, 0.03714505210518837, -0.045453425496816635, -0.2213798463344574, -0.04322319105267525, -0.03172336891293526, 0.009725506417453289, 0.03027682937681675, 0.04599371924996376, -0.03688105195760727, -0.018680201843380928, -0.06691669672727585, 0.12094852328300476, 0.09324207901954651, 0.04752526804804802, 0.052220869809389114, -0.010274811647832394, 0.06678814440965652, -0.06172389164566994, 0.07058383524417877, 0.14797426760196686, -0.013680268079042435, 0.1665530651807785, -0.08235282450914383, 0.0620541013777256, 0.024537252262234688, 0.016778966411948204, 0.0687805786728859, 0.04403884708881378, 0.010892622172832489, 0.014007188379764557, -0.07747260481119156, -0.03938545286655426, -0.07059608399868011, 0.07636942714452744, -0.006472459062933922, 0.03559865057468414, -0.007323101628571749, -0.03322278708219528, 0.004602552857249975, 0.06991821527481079, -0.02708938531577587, -0.09089048951864243, -0.09780661016702652, 0.08424128592014313, -0.08068553358316422, -0.10983602702617645, 0.017222810536623, 0.12117958068847656, -0.07759340107440948, 0.010726247914135456, 0.03004729002714157, 0.04529794305562973, -0.06221630051732063, -0.03202291578054428, -0.08655329793691635, 0.04991952329874039, -0.03085670806467533, 0.03545675799250603, -0.03499308601021767, 0.06468892097473145, 0.03464535251259804, 0.10808298736810684, -0.026454154402017593, 0.016300026327371597, 0.08226362615823746, 0.06140148639678955, 0.08512826263904572, 0.03113868273794651, -0.042121440172195435, 0.00680210767313838, -0.015509500168263912, 0.013004994951188564, 0.06433834135532379, -0.023261597380042076, 0.08344949036836624, -0.03254527226090431, 0.010395779274404049, -0.0467294380068779, -0.012196970172226429, -0.032591018825769424, -0.19275563955307007, -0.007130600977689028, -0.0747733786702156, -0.016308685764670372, -0.04958673194050789, -0.027677128091454506, 0.02363026887178421, 0.08447018265724182, -0.09452807903289795, -0.07524002343416214, -0.08765240758657455, -0.03057711385190487, 0.16132713854312897, 0.0172103438526392, -0.00045404231059364974, -0.01901964470744133, 0.15958121418952942, -0.03756751865148544, -0.08360057324171066, -0.02810559794306755, -0.028731048107147217, -0.10670138150453568, -0.08031222224235535, 0.12320222705602646, 0.11129383742809296, 0.1021028682589531, -0.035306502133607864, 0.04967576637864113, -0.029746422544121742, -0.05288036912679672, 0.0030657395254820585, 0.24035072326660156, 0.06379885971546173, 0.09283445030450821, -0.15395787358283997, 0.04019319266080856, 0.00010464739898452535, -0.026017948985099792, 0.05187709629535675, 0.10532564669847488, -0.03425395116209984, 0.16692404448986053, 0.24509531259536743, -0.14571212232112885, -0.1957332193851471, -0.011580738238990307, 0.00827229768037796, 0.056631773710250854, -0.05276108160614967, -0.15485084056854248, 0.1378229707479477, 0.12142619490623474, 0.0388023816049099, -0.010106794536113739, -0.20589590072631836, -0.1050795465707779, -0.013065733015537262, 0.049093615263700485, 0.009637310169637203, -0.0740303248167038, -0.013547766022384167, -0.07963890582323074, 0.01735273189842701, 0.09665925800800323, -0.17060109972953796, 0.09317342191934586, -0.009868568740785122, -0.0041824160143733025, -0.00040113640716299415, 0.039308082312345505, 0.15262986719608307, -0.020286839455366135, 0.09235560148954391, -0.021424507722258568, 0.0242767296731472, 0.12231887876987457, -0.06415411084890366, 0.10885748267173767, 0.07079378515481949, 0.032675851136446, -0.14918506145477295, -0.060609154403209686, -0.046813979744911194, -0.006173593457788229, -0.08915093541145325, -0.0009172668214887381, -0.09230796992778778, 0.10598594695329666, 0.03446804732084274, -0.007488979026675224, -0.043673086911439896, -0.09686244279146194, 0.09936089813709259, -0.02349729835987091, 0.2257995903491974, -0.0004644870641641319, -0.004406227730214596, 0.02646843157708645, -0.031806617975234985, 0.06983648985624313, -0.12753477692604065, 0.0057317218743264675, 0.09888762980699539, -0.009909318760037422, 0.09005419909954071, 0.03650399670004845, -0.10737762600183487, -0.013522599823772907, 0.034139811992645264, -0.11698877066373825, -0.18099717795848846, 0.021318938583135605, -0.0033498359844088554, -0.13505330681800842, -0.1195337101817131, 0.10605073720216751, -0.035203102976083755, -0.03249336779117584, 0.021930264309048653, 0.008344555273652077, 0.04521412029862404, 0.09385663270950317, 0.02211177907884121, -0.02064402401447296, -0.06907042860984802, 0.18419745564460754, 0.0760117918252945, -0.03850886970758438, 0.017810989171266556, 0.1482965499162674, -0.08705978095531464, -0.038887184113264084, -0.1044810339808464, 0.1051337718963623, 0.007806620094925165, -0.0313766673207283, 0.07968728989362717, -0.0631478801369667, 0.023070823401212692, 0.21989521384239197, -0.017468227073550224, 0.07587627321481705, -0.07860525697469711, 0.025477344170212746, -0.03865928575396538, 0.061766404658555984, 0.01634238474071026, 0.04428563639521599, -0.012737556360661983, 0.12143206596374512, -0.0234754029661417, -0.0792575255036354, -0.022003334015607834, -0.018657566979527473, -0.08165045082569122, -0.04159170389175415, -0.16123919188976288, 0.0377642959356308, 0.012036185711622238, 0.0017141589196398854, -0.023020293563604355, 0.05494251102209091, 0.013365956023335457, -0.045266129076480865, -0.010891464538872242, -0.0013769553042948246, -0.010848051868379116, 0.06106473505496979, -0.08428638428449631, 0.02772698551416397, 0.054945528507232666, -0.048361942172050476, 0.09375212341547012, 0.07456351071596146, 0.002056209137663245, 0.012750771827995777, -0.023927979171276093, 0.02957269921898842, -0.05743663012981415, -0.0018208622932434082, -0.00954333133995533, -0.05444623529911041, -0.02952887862920761, -0.0503595769405365, -0.04437965154647827, 0.02663329988718033, 0.059983186423778534, -0.01990528404712677, 0.07998157292604446, 0.04939243197441101, 0.0031733170617371798, -0.06502015888690948, 0.06810208410024643, 0.1760430485010147, 0.02415018528699875, 0.062066201120615005, -0.01162862777709961, -0.0711710974574089, -0.1186073049902916, 0.006104462780058384, -0.01314809825271368, -0.026338832452893257, -0.03607366234064102, -0.09781010448932648, 0.008584356866776943, -0.0007154486374929547, 0.18644855916500092, 0.008282101713120937, 0.027140434831380844, 0.02119228057563305, -0.01820627599954605, -0.07433170080184937, 0.0029041387606412172, -0.016396082937717438, 0.04300728440284729, -0.03709050640463829, 0.050445556640625, -0.01218239963054657, 0.004224984906613827, 0.05086390674114227, 0.10551384091377258, 0.060430243611335754, 0.13316506147384644, 0.07983041554689407, -0.009853294119238853, -0.03608204796910286, -0.03293761610984802, 0.09971031546592712, 0.0042758723720908165, -0.01596980169415474, -0.09088469296693802, 0.14556774497032166, 0.06610029190778732, -0.12971533834934235, 0.1347174048423767, -0.02680443786084652, -0.09837813675403595, -0.0696907490491867, -0.06777981668710709, -0.014972585253417492, 0.041689153760671616, -0.028409186750650406, -0.14320623874664307, 0.05595463141798973, 0.07283561676740646, 0.02539142221212387, 0.0009687702404335141, 0.021861709654331207, -0.17844823002815247, -0.09660660475492477, 0.08615124225616455, -0.004763152915984392, 0.04174349084496498, 0.042363911867141724, -0.019048510119318962, 0.018184319138526917, -0.021686244755983353, 0.008445494808256626, 0.0930672138929367, 0.09104656428098679, 0.011971180327236652, -0.029731033369898796, -0.022104527801275253, 0.01728128083050251, 0.001013431465253234, 0.014702043496072292, 0.1576342135667801, 0.0735965147614479, -0.07579315453767776, 0.006279367953538895, 0.2245892882347107, -0.02870153822004795, -0.014420711435377598, -0.11653947085142136, 0.18398858606815338, -0.03607434406876564, -0.0023617257829755545, -0.025850921869277954, -0.08589823544025421, 0.04657910391688347, 0.13006320595741272, 0.08675787597894669, -0.10121748596429825, -0.0351422019302845, 0.09396711736917496, -0.01708233170211315, -0.025293007493019104, 0.09802236407995224, -0.00284475926309824, 0.2561749815940857, -0.08787814527750015, 0.09140442311763763, -0.032973963767290115, -0.0037087281234562397, -0.02176426723599434, 0.1962253451347351, -0.09791009873151779, -0.030686065554618835, -0.08715144544839859, -0.012769672088325024, -0.0887095108628273, -0.3276788294315338, 0.006223634816706181, -0.07675465941429138, -0.0784621611237526, -0.014882735908031464, -0.10908352583646774, -0.026506835594773293, 0.025516455993056297, -0.005071963183581829, -0.005787895992398262, 0.15894357860088348, -0.032288435846567154, -0.09000109881162643, -0.07650589197874069, 0.08252792060375214, -0.008797397837042809, 0.17982891201972961, 0.01251485850661993, -0.005239554680883884, 0.04028604179620743, 0.0016881886404007673, -0.053480952978134155, -0.003327841404825449, 0.0107148177921772, -0.021337421610951424, -0.044847406446933746, 0.1886681765317917, 0.029636049643158913, 0.11064168065786362, 0.10092474520206451, 0.09249217808246613, 0.0795280709862709, 0.04426801949739456, -0.1120908185839653, -0.05512726679444313, 0.05523829534649849, -0.11088503152132034, 0.17215996980667114, 0.17925570905208588, 0.046214621514081955, -0.00486569432541728, -0.04499541595578194, -0.03431187570095062, 0.023474998772144318, 0.08444593846797943, 0.036247413605451584, -0.07543888688087463, 0.009091844782233238, -0.004809034522622824, 0.022826265543699265, -0.22788335382938385, -0.060425568372011185, 0.07961589843034744, 0.01893724501132965, 0.0178673192858696, 0.08186289668083191, 0.05168218910694122, 0.03362167254090309, -0.030698979273438454, 0.00704134302213788, 0.016947032883763313, 0.06598338484764099, -0.0631387010216713, -0.02775704488158226 ]
null
null
adapter-transformers
# Adapter `davanstrien/book-genre-classification` for bert-base-cased An [adapter](https://adapterhub.ml) for the `bert-base-cased` model that was trained on the [text-classification](https://adapterhub.ml/explore/text-classification/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-cased") adapter_name = model.load_adapter("davanstrien/book-genre-classification", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["bert", "adapterhub:text-classification", "adapter-transformers"]}
null
davanstrien/book-genre-classification
[ "adapter-transformers", "bert", "adapterhub:text-classification", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #adapter-transformers #bert #adapterhub-text-classification #region-us
# Adapter 'davanstrien/book-genre-classification' for bert-base-cased An adapter for the 'bert-base-cased' model that was trained on the text-classification dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'davanstrien/book-genre-classification' for bert-base-cased\n\nAn adapter for the 'bert-base-cased' model that was trained on the text-classification dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #bert #adapterhub-text-classification #region-us \n", "# Adapter 'davanstrien/book-genre-classification' for bert-base-cased\n\nAn adapter for the 'bert-base-cased' model that was trained on the text-classification dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 21, 75, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #bert #adapterhub-text-classification #region-us \n# Adapter 'davanstrien/book-genre-classification' for bert-base-cased\n\nAn adapter for the 'bert-base-cased' model that was trained on the text-classification dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ -0.0389140248298645, -0.15224704146385193, -0.0038119733799248934, 0.03365617245435715, 0.18100284039974213, 0.07102112472057343, 0.22241167724132538, -0.014930198900401592, 0.19987982511520386, -0.06560464948415756, 0.036128848791122437, 0.0925634354352951, 0.01922871172428131, 0.0851491242647171, -0.019259095191955566, -0.11711716651916504, 0.05292031913995743, 0.08819692581892014, -0.1540534496307373, 0.08766935765743256, 0.10035888105630875, -0.051352281123399734, 0.12647882103919983, 0.01621500588953495, -0.06712479889392853, 0.08297640830278397, 0.056396421045064926, -0.11151117086410522, 0.10444523394107819, 0.07161937654018402, 0.235942542552948, 0.06491076201200485, 0.051586613059043884, -0.1113366112112999, 0.014722264371812344, 0.07581618428230286, 0.014767449349164963, 0.06702643632888794, -0.07308255881071091, 0.03098588064312935, -0.028477245941758156, 0.02295285277068615, 0.11159079521894455, 0.0571029931306839, -0.07441551238298416, -0.20008131861686707, 0.04686867818236351, 0.07364652305841446, 0.042607374489307404, 0.012799450196325779, 0.0438852421939373, -0.042035166174173355, 0.05929083004593849, 0.04276449605822563, 0.15392720699310303, -0.21389438211917877, -0.01703474298119545, 0.07127342373132706, 0.08078740537166595, 0.11125200986862183, 0.002175005618482828, 0.04117671027779579, -0.0015613972209393978, 0.02152355946600437, 0.17360182106494904, -0.05568802356719971, 0.10249116271734238, 0.021383119747042656, -0.15216341614723206, -0.011872926726937294, 0.2294987142086029, -0.08836480230093002, -0.10237980633974075, -0.04088892042636871, -0.04955122619867325, 0.08513208478689194, -0.002246031304821372, -0.12756982445716858, -0.0034531743731349707, 0.08941329270601273, 0.05485738441348076, -0.1572006791830063, -0.05241243913769722, -0.1470433622598648, -0.13217896223068237, 0.35300350189208984, -0.046099357306957245, 0.003788186004385352, -0.03448697552084923, 0.08447671681642532, 0.024739453569054604, -0.06976219266653061, -0.012354215607047081, -0.10037381201982498, -0.034947771579027176, -0.03147077187895775, -0.06816383451223373, -0.25996795296669006, 0.021484624594449997, 0.108670175075531, 0.17997556924819946, 0.07585486024618149, -0.1217295378446579, 0.05679395794868469, -0.010180848650634289, 0.19510449469089508, -0.038006823509931564, -0.007798022124916315, -0.017520751804113388, 0.029085127636790276, -0.04089007154107094, -0.11188040673732758, -0.14561912417411804, -0.0701247975230217, 0.014423104003071785, -0.01316930539906025, -0.0330837182700634, 0.1583622246980667, -0.032238129526376724, -0.0771821066737175, 0.05162263289093971, -0.10540254414081573, -0.03471393138170242, -0.009092356078326702, -0.007895488291978836, 0.05714920908212662, 0.13128629326820374, -0.07101649791002274, 0.027074506506323814, 0.09416181594133377, -0.033296991139650345, -0.09550051391124725, -0.046172134578228, -0.1698337197303772, -0.03797638416290283, -0.0829906314611435, -0.005092232953757048, -0.14576874673366547, -0.08274149894714355, 0.052322033792734146, 0.10429173707962036, 0.0037131330464035273, 0.10848418623209, 0.01108185201883316, 0.04205753281712532, 0.06899499893188477, -0.07164621353149414, -0.1036832258105278, -0.023589758202433586, 0.05334741249680519, 0.05052409693598747, 0.06611383706331253, -0.1436629295349121, 0.07125908136367798, -0.027555575594305992, 0.04679107293486595, -0.2860814929008484, 0.10710345953702927, -0.12994949519634247, -0.005217833444476128, -0.11014929413795471, 0.023820659145712852, -0.008561963215470314, 0.1235319972038269, 0.06924421340227127, 0.08644231408834457, -0.11252475529909134, -0.07985089719295502, 0.018112871795892715, -0.18933361768722534, -0.16817332804203033, 0.019367385655641556, -0.06203082576394081, 0.14712730050086975, 0.06155415251851082, 0.1077699288725853, 0.16928023099899292, -0.033005692064762115, -0.008954724296927452, 0.08350375294685364, -0.0716024711728096, -0.03412983939051628, 0.018804453313350677, 0.08147043734788895, -0.2866104543209076, 0.012861811555922031, -0.1385836899280548, 0.07343017309904099, 0.025688566267490387, -0.006118520628660917, -0.02502512000501156, -0.03996121510863304, 0.19385318458080292, -0.030832894146442413, -0.028052939102053642, 0.03147825598716736, -0.08616408705711365, 0.2628120183944702, 0.022367071360349655, -0.08391476422548294, 0.017269695177674294, -0.14707429707050323, 0.018017783761024475, -0.08602343499660492, 0.044513918459415436, -0.18766473233699799, -0.01114063523709774, -0.012501566670835018, 0.06048034504055977, 0.09102920442819595, 0.04854356870055199, 0.1014237031340599, -0.040200915187597275, -0.02232474461197853, -0.0036024856381118298, 0.017384784296154976, 0.06233086809515953, -0.013944903388619423, -0.10640646517276764, -0.05173487961292267, -0.07023556530475616, -0.08061552047729492, -0.1323656439781189, 0.08205728232860565, 0.07964830845594406, 0.0043998537585139275, 0.03632481396198273, 0.03491045907139778, -0.06849449127912521, 0.005670115817338228, -0.04570809379220009, -0.013663135468959808, 0.05275030434131622, -0.042805615812540054, -0.09948372840881348, 0.0842103585600853, -0.11660423874855042, 0.09025571495294571, 0.11872606724500656, -0.0605480931699276, -0.033476125448942184, -0.05767571181058884, 0.08766905218362808, -0.01507636345922947, 0.10383016616106033, -0.11056288331747055, 0.2695545554161072, 0.0530305951833725, 0.09410294145345688, -0.014864562079310417, 0.05578712001442909, 0.022484665736556053, -0.004020192660391331, -0.0016835908172652125, -0.0477900430560112, -0.0018656288739293814, -0.1298692375421524, 0.0326949842274189, 0.2650938928127289, -0.04805561527609825, 0.0628087967634201, -0.0055496105924248695, -0.02298874408006668, 0.012859636917710304, -0.10600519180297852, 0.05323589965701103, 0.051519349217414856, -0.15855656564235687, -0.0568288154900074, 0.016101043671369553, -0.008788016624748707, -0.0004890533164143562, -0.02428821660578251, 0.07801596820354462, 0.0871405079960823, -0.027868367731571198, -0.0029699071310460567, -0.007030302193015814, 0.004552242811769247, 0.040816083550453186, 0.04891597107052803, -0.009623870253562927, 0.06988926976919174, -0.02582213468849659, -0.045569248497486115, 0.1577719897031784, -0.08169679343700409, -0.21146757900714874, -0.24344007670879364, -0.2766038775444031, -0.03328054025769234, 0.10511260479688644, 0.03705103322863579, -0.08306089043617249, -0.04689393937587738, -0.05126255005598068, 0.22192522883415222, 0.005198521539568901, 0.057164039462804794, 0.00927363894879818, -0.05371864512562752, 0.0906916931271553, -0.14620229601860046, 0.010416274890303612, 0.04480477795004845, -0.09958356618881226, -0.006440721917897463, -0.04023947939276695, -0.0018790949834510684, 0.14133939146995544, -0.03616909682750702, 0.01018107682466507, -0.025088414549827576, 0.035892508924007416, -0.03194034472107887, 0.010580218397080898, 0.13676771521568298, -0.17877745628356934, 0.0027448011096566916, 0.10821371525526047, 0.02373417094349861, -0.06289580464363098, 0.04895411804318428, -0.032097797840833664, -0.11425893008708954, -0.18823525309562683, -0.042953986674547195, 0.001910442835651338, 0.05386414751410484, 0.2015143781900406, 0.012912649661302567, 0.0272358488291502, 0.12215401977300644, 0.07961447536945343, 0.05543358996510506, 0.03209662809967995, 0.03589421510696411, 0.29989397525787354, -0.013338535092771053, 0.12121672183275223, -0.07330445200204849, -0.00037495800643227994, 0.07941745221614838, 0.014568986371159554, 0.0884600430727005, 0.03566870838403702, 0.07388050854206085, 0.013737727887928486, -0.13756145536899567, 0.0565122626721859, 0.22823399305343628, -0.03757719323039055, -0.0017599359853193164, -0.012881210073828697, -0.005667286459356546, -0.12124258279800415, 0.01903470978140831, -0.06250327825546265, -0.05806916207075119, -0.04730870574712753, -0.03643294796347618, 0.014261533506214619, 0.08131956309080124, -0.03776978701353073, -0.24466316401958466, -0.08451911062002182, 0.0016775187104940414, -0.007633674889802933, -0.10312999039888382, 0.042230695486068726, 0.08114489167928696, -0.002971528097987175, 0.0253507848829031, -0.019426526501774788, 0.08875887095928192, -0.1379207819700241, 0.01524324994534254, 0.0429818257689476, 0.12072422355413437, -0.011613649316132069, 0.04233035072684288, -0.2659952938556671, 0.07200711965560913, 0.018861303105950356, -0.02238827385008335, -0.04679226502776146, 0.02880592830479145, 0.07976461201906204, 0.2042456418275833, -0.005363451316952705, -0.012240779586136341, -0.016553090885281563, -0.19786563515663147, -0.0657544806599617, 0.029997777193784714, 0.06147979944944382, -0.13134387135505676, 0.045105572789907455, -0.0691724494099617, 0.04692487046122551, 0.07694514840841293, 0.033585820347070694, -0.0477251261472702, -0.19015656411647797, -0.00015808244643267244, 0.08583137392997742, 0.1261267215013504, -0.07211197167634964, -0.0563492625951767, 0.049606192857027054, 0.12609905004501343, -0.09036748856306076, -0.04095858335494995, -0.12514279782772064, -0.07482524961233139, 0.05351179838180542, -0.0377085879445076, 0.0747450515627861, 0.02850177511572838, 0.06189091131091118, 0.0046774097718298435, -0.19184252619743347, 0.165681391954422, -0.055984266102313995, 0.04338543489575386, -0.05809525027871132, -0.026667620986700058, 0.06721584498882294, 0.01127366442233324, 0.029128827154636383, -0.044663283973932266, 0.07709125429391861, -0.04220954701304436, -0.07092055678367615, 0.004201347474008799, -0.07226701825857162, 0.04229931905865669, -0.07243655622005463, 0.024967912584543228, -0.03342266380786896, 0.09213672578334808, 0.12361061573028564, -0.010781914927065372, -0.027372613549232483, 0.0833638459444046, 0.1471031755208969, -0.08953925222158432, -0.3186998665332794, -0.033046480268239975, 0.03285057842731476, 0.004027707502245903, 0.005155529361218214, -0.314859539270401, 0.19743674993515015, 0.004887252114713192, -0.00019883351342286915, 0.038543451577425, 0.024774683639407158, -0.0869988277554512, 0.2967211604118347, 0.07642722129821777, 0.223354771733284, -0.10849262028932571, -0.07147204875946045, -0.07838492840528488, -0.13386382162570953, 0.1635163277387619, -0.07230314612388611, 0.057929664850234985, -0.0027683242224156857, 0.010703676380217075, 0.021923718973994255, 0.026224082335829735, 0.07977000623941422, -0.03942936658859253, 0.04318862035870552, -0.11123422533273697, -0.00481803622096777, 0.09726519882678986, -0.05593818053603172, 0.03920423984527588, -0.14193741977214813, 0.02556714415550232, -0.09012126922607422, -0.10274317115545273, 0.04472289979457855, 0.056435685604810715, 0.03619081899523735, -0.09832818806171417, -0.02712000347673893, -0.03124249540269375, -0.06158012896776199, -0.03369494900107384, 0.10874412208795547, -0.08595883846282959, 0.052354421466588974, 0.15218588709831238, 0.18573451042175293, -0.030220650136470795, -0.012702012434601784, 0.042494554072618484, -0.03568291291594505, 0.15738235414028168, -0.1974170207977295, 0.1142488643527031, 0.04013476148247719, -0.05485949292778969, 0.09963969141244888, 0.09671728312969208, -0.0019168182043358684, -0.01817028783261776, 0.09181857109069824, -0.0552506148815155, -0.00863120798021555, 0.009094662964344025, 0.10417964309453964, -0.12936371564865112, 0.08186709135770798, 0.1996499001979828, -0.017649218440055847, 0.019690843299031258, 0.024917257949709892, -0.06756836920976639, -0.08135370165109634, 0.077396921813488, 0.07041104882955551, 0.07118326425552368, -0.03173672407865524, 0.05771506577730179, 0.020887041464447975, -0.019697796553373337, 0.0555257685482502, -0.09126602113246918, -0.11848048120737076, -0.03665513917803764, -0.05719420313835144, 0.1259031444787979, -0.041418056935071945, -0.07967559248209, 0.01051134429872036, -0.1496751457452774, 0.0032572837080806494, 0.2603003680706024, 0.08285147696733475, 0.01835845783352852, -0.09993520379066467, 0.020783595740795135, -0.028415026143193245, 0.0026770702097564936, -0.0890556201338768, 0.10843437165021896, -0.12219934910535812, -0.06245652213692665, -0.017261333763599396, -0.00779768219217658, -0.10727106034755707, -0.04231300577521324, -0.12960486114025116, -0.005550122819840908, -0.27449831366539, -0.00696451123803854, 0.0024512240197509527, 0.02227039821445942, 0.08462563157081604, -0.07656905800104141, -0.029428010806441307, -0.009515807032585144, -0.06850589066743851, 0.035040292888879776, 0.05766066163778305, 0.09007418155670166, -0.09966393560171127, -0.02925136126577854, 0.0628453716635704, -0.0796925500035286, 0.06798046827316284, 0.0663420781493187, -0.07749057561159134, 0.07066111266613007, -0.10959789901971817, -0.014121360145509243, 0.007300907280296087, 0.06391496956348419, -0.009790858253836632, -0.037395890802145004, 0.03512270748615265, -0.008149078115820885, 0.017477402463555336, 0.016385238617658615, 0.2634553611278534, 0.0008466386352665722, 0.08585253357887268, -0.06722693145275116, 0.04364653304219246, 0.005914975889027119, 0.037176743149757385, 0.18831630051136017, 0.1643649935722351, 0.1588563472032547, -0.07444572448730469, -0.012009787373244762, -0.058160450309515, 0.04432499408721924, 0.024169808253645897, -0.09221033751964569, 0.1731756031513214, -0.18182773888111115, -0.03036797232925892, -0.018765943124890327, 0.2643345594406128, -0.07297533750534058, -0.019861893728375435, 0.03560424968600273, -0.03938160464167595, 0.0015761090908199549, -0.012170257046818733, 0.30274102091789246, 0.08533896505832672, 0.0028557078912854195, 0.008160516619682312, 0.07572712004184723, 0.06554821133613586, 0.11377646028995514, 0.004241460002958775, 0.08876916021108627, -0.1829203963279724, 0.06137034669518471, 0.05828026309609413, 0.055409859865903854, -0.027145592495799065, -0.042314544320106506, -0.05415669456124306, 0.041583750396966934, 0.011763341724872589, 0.2622571885585785, 0.03596128523349762, 0.040122512727975845, 0.07946726679801941, 0.024638241156935692, -0.06000198423862457, -0.09848728030920029, -0.047293469309806824, -0.04291275516152382, -0.22790861129760742, -0.05628012493252754, -0.047016121447086334, -0.10358642041683197, 0.15995265543460846, 0.01225415337830782, 0.039439357817173004, 0.24124206602573395, -0.08546819537878036, -0.0013416139408946037, 0.06498735398054123, -0.07608246803283691, -0.09429432451725006, -0.09748394787311554, -0.05264408141374588, -0.0020307162776589394, 0.10964678972959518, -0.0015724520199000835, 0.04007507860660553, -0.014777608215808868, 0.04165368527173996, -0.021101519465446472, -0.11303311586380005, -0.05864802375435829, 0.016532789915800095, -0.11963794380426407, 0.14017437398433685, -0.038889627903699875, -0.07595036178827286, -0.015853988006711006, 0.11231863498687744, -0.08466152101755142, -0.09120450913906097, -0.1122698113322258, 0.11554388701915741, -0.02128576673567295, 0.07076776027679443, -0.08749714493751526, -0.02038043737411499, -0.08213523775339127, 0.17145997285842896, 0.11614128947257996, -0.05344625189900398, 0.047292113304138184, 0.019684074446558952, 0.025273215025663376, 0.00943773239850998, 0.1514199674129486, 0.009655026718974113, -0.05178435891866684, 0.05761687830090523, -0.09446747601032257, -0.0069816866889595985, -0.0010574142215773463, 0.08635853230953217, 0.05602622032165527, 0.009702172130346298, -0.058239780366420746, -0.08974357694387436, 0.047156352549791336, -0.06539832055568695, -0.19424176216125488, 0.005231045186519623, 0.009274204261600971, -0.020317526534199715, -0.11019391566514969, 0.04970148578286171, -0.06686834990978241, -0.0022761132568120956, 0.00991625152528286, -0.01613098382949829, 0.004001661203801632, 0.03188183158636093, -0.10896215587854385, 0.009548892267048359, 0.06639843434095383, -0.06091581657528877, 0.18040882050991058, -0.00861424207687378, -0.015114393085241318, 0.02056615799665451, 0.06488309800624847, -0.05642867833375931, 0.005039578303694725, -0.028056373819708824, -0.07718659192323685, -0.03656503185629845, -0.019955642521381378, -0.07553914189338684, 0.10194435715675354, 0.015907427296042442, -0.15068913996219635, 0.014478384517133236, -0.08473089337348938, -0.14705999195575714, -0.030371835455298424, -0.09776823222637177, -0.08116515725851059, 0.10243137925863266, 0.08383306115865707, 0.04071775823831558, -0.06968460977077484, -0.06645925343036652, 0.022342056035995483, 0.007132029160857201, 0.008601341396570206, -0.0560678094625473, -0.07178286463022232, -0.10096107423305511, 0.030730603262782097, -0.007742737885564566, -0.3432721793651581, -0.014966596849262714, -0.007612929679453373, 0.03152526915073395, -0.018886512145400047, 0.06901002675294876, 0.12740232050418854, 0.08269630372524261, -0.0460098497569561, -0.06875006854534149, 0.0202131737023592, 0.1539781540632248, -0.21908167004585266, -0.07140707224607468 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext_flyswot This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1441 - F1: 0.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 52 | 0.6833 | 0.7484 | | No log | 2.0 | 104 | 0.3666 | 0.8750 | | No log | 3.0 | 156 | 0.2090 | 0.9321 | | No log | 4.0 | 208 | 0.1478 | 0.9449 | | No log | 5.0 | 260 | 0.1002 | 0.9518 | | No log | 6.0 | 312 | 0.1053 | 0.9506 | | No log | 7.0 | 364 | 0.1182 | 0.9616 | | No log | 8.0 | 416 | 0.1102 | 0.9592 | | No log | 9.0 | 468 | 0.1262 | 0.9616 | | 0.203 | 10.0 | 520 | 0.1286 | 0.9616 | | 0.203 | 11.0 | 572 | 0.1355 | 0.9592 | | 0.203 | 12.0 | 624 | 0.1299 | 0.9592 | | 0.203 | 13.0 | 676 | 0.1154 | 0.9592 | | 0.203 | 14.0 | 728 | 0.1385 | 0.9580 | | 0.203 | 15.0 | 780 | 0.1330 | 0.9592 | | 0.203 | 16.0 | 832 | 0.1390 | 0.9592 | | 0.203 | 17.0 | 884 | 0.1386 | 0.9592 | | 0.203 | 18.0 | 936 | 0.1390 | 0.9592 | | 0.203 | 19.0 | 988 | 0.1409 | 0.9592 | | 0.0006 | 20.0 | 1040 | 0.1411 | 0.9592 | | 0.0006 | 21.0 | 1092 | 0.1413 | 0.9592 | | 0.0006 | 22.0 | 1144 | 0.1415 | 0.9592 | | 0.0006 | 23.0 | 1196 | 0.1426 | 0.9592 | | 0.0006 | 24.0 | 1248 | 0.1435 | 0.9592 | | 0.0006 | 25.0 | 1300 | 0.1438 | 0.9592 | | 0.0006 | 26.0 | 1352 | 0.1434 | 0.9592 | | 0.0006 | 27.0 | 1404 | 0.1437 | 0.9592 | | 0.0006 | 28.0 | 1456 | 0.1441 | 0.9592 | | 0.0002 | 29.0 | 1508 | 0.1440 | 0.9592 | | 0.0002 | 30.0 | 1560 | 0.1441 | 0.9592 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["image_folder"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "convnext_flyswot", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "image_folder", "type": "image_folder", "args": "default"}, "metrics": [{"type": "f1", "value": 0.959245529738118, "name": "F1"}]}]}]}
image-classification
davanstrien/convnext_flyswot
[ "transformers", "pytorch", "safetensors", "convnext", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:facebook/convnext-base-224-22k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
convnext\_flyswot ================= This model is a fine-tuned version of facebook/convnext-base-224-22k on the image\_folder dataset. It achieves the following results on the evaluation set: * Loss: 0.1441 * F1: 0.9592 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 666 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ 86, 114, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ -0.16472987830638885, 0.16442184150218964, -0.002424968406558037, 0.10736969858407974, 0.14293810725212097, 0.01897015981376171, 0.11054158955812454, 0.11462388932704926, -0.06584444642066956, 0.07399841398000717, 0.13488799333572388, 0.10002654790878296, 0.057403579354286194, 0.19902506470680237, -0.05351968854665756, -0.20502528548240662, 0.035486675798892975, 0.03183940798044205, -0.057055700570344925, 0.13252484798431396, 0.083376444876194, -0.12681904435157776, 0.07984551787376404, 0.01007276214659214, -0.16569779813289642, -0.020973050966858864, -0.0005189132643863559, -0.06663311272859573, 0.11996885389089584, 0.033746249973773956, 0.11835890263319016, 0.03275327757000923, 0.08921506255865097, -0.13624735176563263, 0.012134288437664509, 0.07543960213661194, -0.005494536831974983, 0.09247466921806335, 0.0976685956120491, 0.012401780113577843, 0.057409822940826416, -0.08310917764902115, 0.045334357768297195, 0.007764596492052078, -0.11283200234174728, -0.2504095733165741, -0.09570366889238358, 0.09562647342681885, 0.09035743027925491, 0.09658963233232498, -0.005666651763021946, 0.11447872966527939, -0.048780038952827454, 0.0855225920677185, 0.18826445937156677, -0.24303202331066132, -0.061764590442180634, -0.012759566307067871, -0.005215916316956282, 0.02489437907934189, -0.08993052691221237, -0.051900219172239304, 0.03843627870082855, 0.03746981918811798, 0.1349189728498459, 0.005234718322753906, -0.05812380090355873, -0.05324268341064453, -0.13960331678390503, -0.08692767471075058, 0.14952215552330017, 0.08950375765562057, -0.04923229292035103, -0.0492100827395916, -0.0771530345082283, -0.14511831104755402, -0.02566578984260559, 0.01686229184269905, 0.01811402663588524, -0.03735189884901047, -0.06739363074302673, 0.005790275987237692, -0.10013450682163239, -0.0630568340420723, -0.01578659936785698, 0.11215149611234665, 0.06464999914169312, 0.029002312570810318, 0.002902041422203183, 0.11441948264837265, 0.034332454204559326, -0.16045819222927094, 0.014508686028420925, 0.0013331479858607054, -0.015476253814995289, -0.0018103769980370998, -0.021346542984247208, -0.013900366611778736, 0.011099777184426785, 0.12637215852737427, -0.08400106430053711, 0.037482693791389465, 0.023855146020650864, 0.04140589013695717, -0.09418163448572159, 0.14951719343662262, -0.08775031566619873, -0.0032258538994938135, 0.042469024658203125, 0.12222707271575928, 0.03844993934035301, -0.0030512588564306498, -0.06972185522317886, -0.014378168620169163, 0.14524182677268982, 0.019767148420214653, -0.021533388644456863, 0.05273977294564247, -0.06585424393415451, -0.032059770077466965, 0.11994737386703491, -0.09013069421052933, 0.004191119689494371, 0.014715082943439484, -0.07810342311859131, -0.028417330235242844, 0.06323088705539703, -0.010112268850207329, -0.022589080035686493, 0.0669134333729744, -0.07979733496904373, -0.022216621786355972, -0.07386677712202072, -0.09764640033245087, 0.01915413700044155, -0.053582463413476944, 0.005868491251021624, -0.1252296417951584, -0.1752261221408844, -0.03741700202226639, 0.030390530824661255, -0.0189286507666111, -0.07409051805734634, -0.024952681735157967, -0.0799778550863266, 0.0279980581253767, -0.02792433835566044, 0.09121809154748917, -0.060757700353860855, 0.11430400609970093, 0.015049677342176437, 0.053875185549259186, -0.0183060672134161, 0.052471455186605453, -0.09727698564529419, 0.052404116839170456, -0.1516750007867813, 0.04576851800084114, -0.05620549991726875, 0.046218689531087875, -0.10427818447351456, -0.111827552318573, 0.004248036537319422, -0.031075306236743927, 0.10572794824838638, 0.11693066358566284, -0.1370702087879181, -0.049899715930223465, 0.17558756470680237, -0.10438727587461472, -0.12837421894073486, 0.11344557255506516, -0.026234084740281105, -0.03900866582989693, 0.042182400822639465, 0.1140969917178154, 0.09852392971515656, -0.06767474114894867, -0.03415456414222717, -0.029053114354610443, 0.055284809321165085, -0.0723448097705841, 0.09685210883617401, 0.010575352236628532, -0.03452243655920029, 0.016817545518279076, -0.07944665104150772, 0.08831614255905151, -0.09799905866384506, -0.07744872570037842, -0.05088271200656891, -0.09742312878370285, 0.0435296893119812, 0.061151113361120224, 0.02558741718530655, -0.07953175902366638, -0.1064755767583847, -0.007765752729028463, 0.1294354647397995, -0.08774228394031525, -0.002304281108081341, -0.05470748990774155, 0.11133728921413422, -0.07859692722558975, -0.020911619067192078, -0.17216140031814575, -0.08300065994262695, 0.02797364816069603, -0.032599370926618576, -0.030096594244241714, -0.04652542993426323, 0.053059957921504974, 0.08940503001213074, -0.038121894001960754, -0.09726777672767639, -0.0708598718047142, -0.010939436964690685, -0.08650673925876617, -0.1798628717660904, -0.07032497227191925, -0.02180493250489235, 0.17700739204883575, -0.20565596222877502, 0.020353784784674644, -0.011508842930197716, 0.12356781214475632, 0.01630977913737297, -0.02515251748263836, -0.0019864137284457684, 0.04949130117893219, -0.025472430512309074, -0.0849175900220871, 0.06123208627104759, 0.030824648216366768, -0.06708639115095139, 0.0028916927985846996, -0.09891066700220108, 0.13557249307632446, 0.11682544648647308, 0.00012120665633119643, -0.0813952162861824, -0.01915251649916172, -0.0688730925321579, -0.04405580461025238, -0.036154404282569885, 0.003706281306222081, 0.11114419996738434, 0.016205113381147385, 0.14492978155612946, -0.08844074606895447, -0.02619902417063713, 0.03599678725004196, -0.008878055028617382, -0.008641594089567661, 0.11390354484319687, 0.09121256321668625, -0.13189266622066498, 0.15075647830963135, 0.14427290856838226, -0.06836384534835815, 0.10319264978170395, -0.05359490215778351, -0.09268423914909363, -0.015424723736941814, 0.020758505910634995, 0.015126924961805344, 0.12556874752044678, -0.05726384371519089, 0.018837962299585342, 0.045591700822114944, -0.003574691480025649, 0.009273630566895008, -0.2024492621421814, -0.016558077186346054, 0.02444303035736084, -0.04490213468670845, 0.00878122728317976, -0.006265303120017052, 0.021073756739497185, 0.10637680441141129, -0.00733270775526762, -0.09177970886230469, 0.03257201239466667, 0.00013912988652009517, -0.07748889923095703, 0.21808350086212158, -0.0834025889635086, -0.20932939648628235, -0.12100996822118759, 0.01770154759287834, -0.04890620335936546, -0.004814550746232271, 0.043409623205661774, -0.06597801297903061, -0.05428370460867882, -0.07425691932439804, -0.0269095990806818, 0.03205166384577751, 0.021854057908058167, 0.018847284838557243, -0.010635166428983212, 0.1074179857969284, -0.09382293373346329, -0.007494198624044657, -0.015258176252245903, -0.04096115753054619, 0.0568951815366745, 0.029097629711031914, 0.09812827408313751, 0.11820507794618607, -0.017441296949982643, 0.010864902287721634, -0.012434259988367558, 0.22905223071575165, -0.05784932151436806, -0.01852879300713539, 0.16755495965480804, -0.009471827186644077, 0.07420316338539124, 0.11813437938690186, 0.030242089182138443, -0.07817021012306213, 0.017215220257639885, 0.012242559343576431, -0.024799782782793045, -0.19872033596038818, -0.05831572413444519, -0.0374671146273613, -0.018373874947428703, 0.13895536959171295, 0.030802570283412933, 0.010885185562074184, 0.08779682219028473, -0.030900055542588234, 0.043456561863422394, -0.026488756760954857, 0.06903571635484695, 0.07253466546535492, 0.05759993568062782, 0.12052775174379349, -0.028096046298742294, -0.0223894901573658, 0.04799404367804527, -0.010020939633250237, 0.23308250308036804, -0.05764037370681763, 0.0977121964097023, 0.05034000799059868, 0.22442011535167694, 0.012792722322046757, 0.07808785885572433, -0.013620971702039242, 0.001608138089068234, -0.0010542566888034344, -0.04543381929397583, -0.06158825382590294, 0.0031038527376949787, -0.04037575423717499, 0.06569305062294006, -0.13630573451519012, 0.02077367901802063, 0.019653206691145897, 0.27469444274902344, 0.06790895015001297, -0.39618685841560364, -0.09826662391424179, -0.021170828491449356, -0.005910640582442284, -0.06995079666376114, -0.000912701478227973, 0.11856415867805481, -0.09752000123262405, 0.045679740607738495, -0.0796632468700409, 0.08195139467716217, -0.06674909591674805, -0.0001891234569484368, 0.0769890621304512, 0.09223292022943497, 0.014659330248832703, 0.06328655034303665, -0.20015983283519745, 0.26685631275177, -0.00926243420690298, 0.05094418302178383, -0.05379955843091011, 0.012194667011499405, 0.045176662504673004, 0.0462501123547554, 0.0830601304769516, -0.0033717267215251923, -0.026651374995708466, -0.20966888964176178, -0.1409008800983429, 0.021814165636897087, 0.043740514665842056, -0.03602776676416397, 0.09887000918388367, -0.021949607878923416, -0.011377722956240177, 0.03966116905212402, 0.004033822100609541, -0.10050249099731445, -0.09045909345149994, 0.001417859923094511, 0.0393216572701931, 0.03584672883152962, -0.10312827676534653, -0.11825953423976898, -0.06299015879631042, 0.13715365529060364, -0.01729668490588665, -0.06523384898900986, -0.12640783190727234, 0.10872841626405716, 0.12272996455430984, -0.0986969992518425, 0.07710147649049759, -0.017519989982247353, 0.1206008642911911, 0.028366565704345703, -0.07602883130311966, 0.07664179056882858, -0.08657439053058624, -0.20500192046165466, -0.04277938976883888, 0.12897400557994843, 0.02760406583547592, 0.03495891019701958, 0.00325908325612545, 0.01954144798219204, -0.023891685530543327, -0.07382327318191528, 0.025630993768572807, 0.01044429000467062, 0.10239764302968979, 0.041763581335544586, -0.020593930035829544, -0.04132792353630066, -0.04850384220480919, -0.025849727913737297, 0.1354648768901825, 0.24265481531620026, -0.08743678033351898, -0.017167044803500175, 0.06510462611913681, -0.031728167086839676, -0.18040642142295837, -0.00021744250261690468, 0.11096180230379105, 0.02384580858051777, 0.01244783028960228, -0.15654437243938446, 0.06930357217788696, 0.12411564588546753, -0.03356845676898956, 0.07457650452852249, -0.2900463342666626, -0.1179569661617279, 0.12705618143081665, 0.15347006916999817, 0.08177076280117035, -0.14189869165420532, -0.040534935891628265, -0.02287435159087181, -0.126988023519516, 0.1331826001405716, -0.05598977208137512, 0.09435056895017624, -0.03579504415392876, 0.02807450108230114, 0.011544222943484783, -0.06258480250835419, 0.13748697936534882, -0.01901213638484478, 0.086508609354496, -0.04835815355181694, 0.030170641839504242, 0.04460900276899338, -0.07236688584089279, 0.0593605637550354, -0.05327979847788811, 0.08206676691770554, -0.09713920950889587, -0.012750697322189808, -0.10741414874792099, 0.033888526260852814, -0.027067627757787704, -0.02498609386384487, -0.02225602976977825, 0.04629415646195412, 0.051542092114686966, -0.008146303705871105, 0.09687913209199905, 0.05209389701485634, 0.11269032955169678, 0.10330606997013092, 0.0439014658331871, -0.0068694292567670345, -0.09997323155403137, -0.045379649847745895, -0.029422666877508163, 0.0691007450222969, -0.10166850686073303, 0.031451012939214706, 0.1262713521718979, 0.01744179055094719, 0.123769611120224, 0.04864322021603584, -0.04811297729611397, 0.006357365753501654, 0.07282557338476181, -0.15236642956733704, -0.0821840688586235, -0.016273118555545807, 0.03508371114730835, -0.12488944828510284, 0.03264180198311806, 0.10562744736671448, -0.0789811909198761, -0.020627018064260483, -0.013905774801969528, 0.019241105765104294, -0.005189449060708284, 0.19344040751457214, 0.08521275222301483, 0.05388418212532997, -0.09848639369010925, 0.09537835419178009, 0.06713523715734482, -0.09412076324224472, 0.010516317561268806, 0.04550936445593834, -0.10266847908496857, -0.03463270142674446, 0.05936919152736664, 0.11036725342273712, -0.04568076506257057, -0.07495579868555069, -0.11034788191318512, -0.10242430865764618, 0.07390715926885605, 0.10710690170526505, 0.07495424896478653, 0.03159484639763832, 0.004835996311157942, -0.020574890077114105, -0.10991529375314713, 0.10859327763319016, 0.08226360380649567, 0.08045268803834915, -0.16293704509735107, 0.11216248571872711, 0.020425066351890564, 0.04670703783631325, -0.0095415273681283, 0.029564745724201202, -0.08613157272338867, -0.008118954487144947, -0.11344287544488907, 0.02751750871539116, -0.040764786303043365, -0.005713993217796087, -0.01638077013194561, -0.05484016612172127, -0.039392732083797455, 0.041451286524534225, -0.08711721748113632, -0.0490993894636631, 0.015084602870047092, 0.042819295078516006, -0.12525083124637604, -0.049762062728405, 0.026362095028162003, -0.0936727449297905, 0.08844078332185745, 0.04182456433773041, 0.03696892037987709, 0.016836438328027725, -0.08043990284204483, -0.015669740736484528, 0.06557966023683548, 0.018304096534848213, 0.038331132382154465, -0.12723791599273682, 0.01874435506761074, 0.00283995782956481, -0.019826561212539673, -0.011259915307164192, 0.09221715480089188, -0.13239692151546478, -0.025557249784469604, -0.003603284480050206, -0.018489351496100426, -0.06281416118144989, 0.04299042373895645, 0.08056984096765518, 0.03412096947431564, 0.18494199216365814, -0.0826314315199852, 0.02970191277563572, -0.2299116849899292, -0.011413944885134697, -0.03393489122390747, -0.10641069710254669, -0.10173279792070389, -0.01072241272777319, 0.0817386656999588, -0.041882019490003586, 0.06447785347700119, -0.019315533339977264, 0.06390450149774551, 0.009953252971172333, -0.00826324988156557, 0.021674111485481262, 0.032161153852939606, 0.16595546901226044, 0.01086871325969696, -0.022991325706243515, 0.06782881915569305, 0.015963729470968246, 0.08828068524599075, 0.07179180532693863, 0.15087421238422394, 0.13981232047080994, 0.03456530719995499, 0.07148131728172302, 0.0576070100069046, -0.0736343041062355, -0.14130598306655884, -0.006433121394366026, -0.06323788315057755, 0.11391627043485641, 0.0004649201291613281, 0.19611556828022003, 0.07426707446575165, -0.1595330834388733, 0.03260108456015587, -0.022426286712288857, -0.0742962583899498, -0.06914522498846054, -0.08915163576602936, -0.08374153822660446, -0.12842844426631927, 0.005872334353625774, -0.11163746565580368, -0.006607540417462587, 0.11570903658866882, 0.0059967245906591415, -0.02762654609978199, 0.1483321338891983, 0.07617447525262833, -0.012250403873622417, 0.06834486126899719, 0.023390688002109528, -0.02218262106180191, -0.05217583104968071, -0.09231732040643692, 0.03485484421253204, 0.01279666367918253, 0.0569758266210556, -0.04988895729184151, -0.039799269288778305, 0.06756473332643509, 0.03166820481419563, -0.10526500642299652, 0.012610473670065403, -0.004785924684256315, 0.056392207741737366, 0.06692559272050858, 0.017602073028683662, 0.048390112817287445, -0.015034533105790615, 0.189871683716774, -0.053047604858875275, -0.03975960239768028, -0.11485249549150467, 0.17981669306755066, 0.010157661512494087, -0.04775509983301163, 0.06321544200181961, -0.08922495692968369, 0.012258047237992287, 0.1639348864555359, 0.1286328285932541, -0.061539176851511, -0.0021814992651343346, -0.006020417436957359, -0.020614752545952797, -0.040696170181035995, 0.12091394513845444, 0.13145478069782257, 0.052639782428741455, -0.08539003878831863, -0.026438184082508087, -0.06379278004169464, -0.005652487277984619, -0.028031274676322937, 0.038913361728191376, -0.00466186786070466, 0.002312206430360675, -0.055163368582725525, 0.05104885995388031, -0.0018009550403803587, -0.09772074222564697, 0.04698066785931587, -0.17063790559768677, -0.186897873878479, -0.0360395684838295, 0.051634397357702255, 0.029096560552716255, 0.043798793107271194, -0.02857745625078678, 0.023083947598934174, 0.10283826291561127, -0.025888565927743912, -0.060450199991464615, -0.11382368952035904, 0.06537321209907532, -0.056792255491018295, 0.2435154765844345, -0.02408749982714653, 0.06093820929527283, 0.10887505114078522, 0.04191483557224274, -0.1399724930524826, 0.04381675273180008, 0.05117395892739296, -0.03308836370706558, 0.043426763266325, 0.10484617203474045, -0.028045373037457466, 0.07336174696683884, 0.027980031445622444, -0.12309881299734116, -0.022915847599506378, -0.03767881542444229, -0.02160697989165783, -0.05135665088891983, -0.010545723140239716, -0.04586029797792435, 0.1432226002216339, 0.17882989346981049, -0.05969216302037239, -0.032441068440675735, -0.06374738365411758, 0.026507394388318062, 0.06326621025800705, 0.055376045405864716, -0.0034206905402243137, -0.2132975310087204, 0.026814065873622894, 0.0004491195431910455, 0.01990838162600994, -0.21126627922058105, -0.0853189155459404, -0.014894298277795315, -0.08530008792877197, -0.09813977777957916, 0.09765294939279556, 0.030241956934332848, 0.05058317631483078, -0.049378808587789536, 0.04028253257274628, -0.09083337336778641, 0.14251847565174103, -0.143324077129364, -0.08641945570707321 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext_manuscript_iiif This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the davanstrien/iiif_manuscripts_label_ge_50 dataset. It achieves the following results on the evaluation set: - Loss: 5.5856 - F1: 0.0037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.5753 | 1.0 | 2038 | 6.4121 | 0.0016 | | 5.9865 | 2.0 | 4076 | 5.9466 | 0.0021 | | 5.6521 | 3.0 | 6114 | 5.7645 | 0.0029 | | 5.3123 | 4.0 | 8152 | 5.6890 | 0.0033 | | 5.0337 | 5.0 | 10190 | 5.6692 | 0.0034 | | 4.743 | 6.0 | 12228 | 5.5856 | 0.0037 | | 4.4387 | 7.0 | 14266 | 5.5969 | 0.0042 | | 4.1422 | 8.0 | 16304 | 5.6711 | 0.0043 | | 3.8372 | 9.0 | 18342 | 5.6761 | 0.0044 | | 3.5244 | 10.0 | 20380 | 5.8469 | 0.0042 | | 3.2321 | 11.0 | 22418 | 5.8774 | 0.0045 | | 2.9004 | 12.0 | 24456 | 6.1186 | 0.0047 | | 2.5937 | 13.0 | 26494 | 6.2398 | 0.0046 | | 2.2983 | 14.0 | 28532 | 6.3732 | 0.0049 | | 2.0611 | 15.0 | 30570 | 6.5024 | 0.0045 | | 1.8153 | 16.0 | 32608 | 6.6585 | 0.0047 | | 1.6075 | 17.0 | 34646 | 6.8333 | 0.0043 | | 1.4342 | 18.0 | 36684 | 6.9529 | 0.0044 | | 1.2614 | 19.0 | 38722 | 7.1129 | 0.0046 | | 1.1463 | 20.0 | 40760 | 7.1977 | 0.0039 | | 1.0387 | 21.0 | 42798 | 7.2700 | 0.0044 | | 0.9635 | 22.0 | 44836 | 7.3375 | 0.0040 | | 0.8872 | 23.0 | 46874 | 7.4003 | 0.0039 | | 0.8156 | 24.0 | 48912 | 7.4884 | 0.0039 | | 0.7544 | 25.0 | 50950 | 7.4764 | 0.0039 | | 0.6893 | 26.0 | 52988 | 7.5153 | 0.0042 | | 0.6767 | 27.0 | 55026 | 7.5427 | 0.0043 | | 0.6098 | 28.0 | 57064 | 7.5547 | 0.0042 | | 0.5871 | 29.0 | 59102 | 7.5533 | 0.0041 | | 0.5696 | 30.0 | 61140 | 7.5595 | 0.0041 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "convnext_manuscript_iiif", "results": []}]}
image-classification
davanstrien/convnext_manuscript_iiif
[ "transformers", "pytorch", "safetensors", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-base-224-22k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
convnext\_manuscript\_iiif ========================== This model is a fine-tuned version of facebook/convnext-base-224-22k on the davanstrien/iiif\_manuscripts\_label\_ge\_50 dataset. It achieves the following results on the evaluation set: * Loss: 5.5856 * F1: 0.0037 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 1337 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 30.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.18.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.18.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.18.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ 74, 114, 4, 40 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.18.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ -0.1387721449136734, 0.15367236733436584, -0.0022079278714954853, 0.11530741304159164, 0.12921752035617828, 0.01038313563913107, 0.14209647476673126, 0.13589626550674438, -0.09769273549318314, 0.06723199784755707, 0.13425885140895844, 0.09811341762542725, 0.049238383769989014, 0.2177160233259201, -0.07131438702344894, -0.23165376484394073, 0.0504634715616703, 0.020168276503682137, -0.0042043100111186504, 0.11143944412469864, 0.08705012500286102, -0.13512872159481049, 0.10334187000989914, 0.002218236681073904, -0.18564929068088531, -0.020429160445928574, 0.004895318299531937, -0.08241886645555496, 0.10866902023553848, 0.01848532259464264, 0.1124175637960434, 0.03996247798204422, 0.1014893427491188, -0.14190660417079926, 0.005165372509509325, 0.06456325948238373, -0.015095114707946777, 0.0874069407582283, 0.07929474860429764, -0.00926227867603302, 0.05553916469216347, -0.08832521736621857, 0.06916192919015884, 0.008399452082812786, -0.11928486824035645, -0.24818989634513855, -0.10483157634735107, 0.06230492144823074, 0.10800861567258835, 0.07465209066867828, 0.0030763030517846346, 0.14090368151664734, -0.029276788234710693, 0.1021222174167633, 0.20776641368865967, -0.2825908958911896, -0.06559044867753983, 0.021240726113319397, 0.004342953208833933, 0.047344859689474106, -0.09533178806304932, -0.023364700376987457, 0.04525965079665184, 0.04678961634635925, 0.14584021270275116, -0.008352924138307571, -0.06734944880008698, -0.04126320406794548, -0.1309090554714203, -0.06558749824762344, 0.1568317413330078, 0.06627596169710159, -0.06024565175175667, -0.04856790602207184, -0.0622028112411499, -0.15322628617286682, -0.053610894829034805, 0.012115174904465675, 0.040040090680122375, -0.03836005926132202, -0.10803018510341644, 0.0017564656445756555, -0.0882355198264122, -0.05694287270307541, -0.04702482745051384, 0.10816377401351929, 0.05164322629570961, 0.04488902911543846, -0.010939129628241062, 0.08875176310539246, -0.023931119590997696, -0.16596189141273499, -0.012412340380251408, -0.006897196173667908, -0.000907464767806232, -0.03662719577550888, -0.021470554172992706, -0.041673704981803894, 0.01616355963051319, 0.1438734084367752, -0.10876116901636124, 0.05704297870397568, -0.03895247355103493, 0.031028762459754944, -0.07927662134170532, 0.14524239301681519, -0.04945160821080208, -0.0018110076198354363, 0.04077279195189476, 0.09016525745391846, 0.061205942183732986, -0.00970389973372221, -0.09504086524248123, 0.028603442013263702, 0.13703809678554535, 0.02547757513821125, -0.047007814049720764, 0.0553617961704731, -0.04625755548477173, -0.017953090369701385, 0.10727280378341675, -0.09177297353744507, 0.0324135422706604, -0.006514831446111202, -0.07346007972955704, -0.04987010732293129, 0.044912371784448624, 0.008681527338922024, -0.006311011500656605, 0.0920504480600357, -0.07624366879463196, 0.01004171371459961, -0.07211863994598389, -0.11356712132692337, 0.03335230052471161, -0.07918647676706314, 0.002383711514994502, -0.13296203315258026, -0.1950114369392395, -0.008939377032220364, 0.05521024391055107, -0.044205181300640106, -0.026103533804416656, -0.031376536935567856, -0.0880991667509079, 0.033578407019376755, -0.026383349671959877, 0.04684054106473923, -0.08017268031835556, 0.09813471138477325, 0.02518407441675663, 0.07914351671934128, -0.052056703716516495, 0.04191889613866806, -0.10472416877746582, 0.039165571331977844, -0.20359566807746887, 0.04313226044178009, -0.06689296662807465, 0.0710156187415123, -0.09424233436584473, -0.10334757715463638, 0.018303323537111282, -0.03114168904721737, 0.09245143085718155, 0.10338395833969116, -0.16238528490066528, -0.0371377170085907, 0.1756473183631897, -0.12320062518119812, -0.15472638607025146, 0.11435962468385696, -0.04133172705769539, -0.018504632636904716, 0.05890024080872536, 0.16659963130950928, 0.05962254852056503, -0.11653048545122147, -0.04202904552221298, -0.0536867156624794, 0.048346128314733505, -0.08097684383392334, 0.07871029525995255, 0.02788914553821087, 0.018309876322746277, 0.018402179703116417, -0.03313933312892914, 0.0509030856192112, -0.09574344754219055, -0.08638621121644974, -0.04994757100939751, -0.09120604395866394, 0.02080760896205902, 0.05551699176430702, 0.04468236491084099, -0.12101170420646667, -0.0905255377292633, 0.02506299316883087, 0.09131423383951187, -0.07448459416627884, 0.013572629541158676, -0.08134972304105759, 0.11171729117631912, -0.09169892221689224, -0.024279868230223656, -0.16466949880123138, -0.07647334039211273, 0.03464686870574951, -0.010892597027122974, -0.02075750008225441, -0.07411247491836548, 0.06476305425167084, 0.0953173041343689, -0.05339948087930679, -0.05874811112880707, -0.03325489163398743, 0.009764005430042744, -0.10268477350473404, -0.18743175268173218, -0.04291971027851105, -0.04368329420685768, 0.12268263101577759, -0.18494746088981628, 0.027748897671699524, 0.029400669038295746, 0.12730960547924042, 0.051025547087192535, -0.02320200391113758, -0.007634809240698814, 0.05461243540048599, -0.03982192650437355, -0.08659108728170395, 0.0552731454372406, 0.03542786464095116, -0.04235424846410751, -0.010698924772441387, -0.1272379755973816, 0.17247098684310913, 0.13901874423027039, -0.023293890058994293, -0.08068637549877167, -0.012846214696764946, -0.058732062578201294, -0.027252452448010445, -0.0678570419549942, 0.01655462011694908, 0.07626362890005112, 0.005632023327052593, 0.1513020098209381, -0.0920877754688263, -0.019371027126908302, 0.05627978965640068, -0.027252197265625, -0.021429648622870445, 0.07521793991327286, 0.06670137494802475, -0.11962780356407166, 0.15104784071445465, 0.15225660800933838, -0.06496446579694748, 0.10682963579893112, -0.05150636285543442, -0.07196355611085892, -0.02109009586274624, -0.00024593964917585254, 0.01919388398528099, 0.14604206383228302, -0.05515056103467941, -0.004566350020468235, 0.03544091805815697, 0.01987593062222004, -0.005241636652499437, -0.1957942098379135, -0.008311831392347813, 0.015277884900569916, -0.05961274728178978, -0.002131191547960043, -0.020901411771774292, 0.01625581458210945, 0.10791638493537903, 0.0003962949849665165, -0.1084398478269577, 0.042287684977054596, 0.006404009182006121, -0.07451333105564117, 0.19015289843082428, -0.09475357830524445, -0.19074545800685883, -0.10730785876512527, -0.052814338356256485, -0.07031939923763275, 0.011954405345022678, 0.07281046360731125, -0.05785427615046501, -0.0643882155418396, -0.11215855181217194, -0.07019011676311493, 0.04070255160331726, 0.03467550501227379, 0.03902602940797806, -0.002154181245714426, 0.08327959477901459, -0.0878511443734169, -0.02600000984966755, -0.024690428748726845, -0.030178187415003777, 0.07007840275764465, 0.016786430031061172, 0.11135784536600113, 0.10168614238500595, -0.04155122488737106, 0.037258345633745193, -0.03559993952512741, 0.2316797822713852, -0.055755309760570526, -0.007750051096081734, 0.1332509070634842, 0.006485156714916229, 0.07203298062086105, 0.14563894271850586, 0.039219800382852554, -0.10374832898378372, 0.01786772906780243, 0.008490355685353279, -0.04387212172150612, -0.18026110529899597, -0.04951009899377823, -0.03260304033756256, 0.00799762737005949, 0.12989448010921478, 0.043302878737449646, 0.039694976061582565, 0.08204766362905502, 0.002970475470647216, 0.05443699657917023, -0.009460936300456524, 0.10566829890012741, 0.08340967446565628, 0.07313121855258942, 0.1408754289150238, -0.047226980328559875, -0.024236327037215233, 0.05930163338780403, -0.009564290754497051, 0.2369934767484665, -0.016319362446665764, 0.0797608271241188, 0.043266646564006805, 0.19373652338981628, 0.0231384988874197, 0.07443685084581375, -0.01070879865437746, -0.009463420137763023, -0.011788379400968552, -0.05917121097445488, -0.030881857499480247, 0.027720140293240547, -0.07797298580408096, 0.04029864817857742, -0.12097200751304626, 0.022248797118663788, 0.047908417880535126, 0.2859695851802826, 0.06970540434122086, -0.4102894067764282, -0.08224211633205414, 0.005754371173679829, -0.005435552913695574, -0.052886608988046646, 0.011058858595788479, 0.10670430958271027, -0.06832607090473175, 0.09133214503526688, -0.09119869023561478, 0.0828748270869255, -0.046003878116607666, 0.010552874766290188, 0.07482132315635681, 0.07126905024051666, -0.003193608717992902, 0.04146899655461311, -0.24570812284946442, 0.2758527398109436, 0.01573404110968113, 0.08172077685594559, -0.057872410863637924, 0.006523746531456709, 0.043879881501197815, 0.08031705021858215, 0.08907555043697357, -0.017709052190184593, -0.13008849322795868, -0.20313498377799988, -0.11927749216556549, 0.021949997171759605, 0.06261035799980164, 0.009492412209510803, 0.1032349243760109, -0.00892652478069067, -0.015954921022057533, 0.0416061207652092, -0.021459706127643585, -0.10512280464172363, -0.08170466870069504, -0.00016812725516501814, 0.06214030832052231, 0.020140303298830986, -0.07971566915512085, -0.11311455070972443, -0.07384984940290451, 0.14030322432518005, 0.018314303830266, -0.06400322169065475, -0.12808379530906677, 0.07479646801948547, 0.08788636326789856, -0.08197642862796783, 0.06423503160476685, -0.014668875373899937, 0.12225612252950668, 0.028018543496727943, -0.08409639447927475, 0.10098353773355484, -0.08052834123373032, -0.1915580928325653, -0.05354732275009155, 0.09701887518167496, 0.009106028825044632, 0.039801545441150665, 0.018287653103470802, 0.04782671481370926, -0.005832018796354532, -0.07024657726287842, 0.04386865720152855, 0.00396133866161108, 0.10680045932531357, 0.011409195140004158, -0.02597907930612564, -0.04347683861851692, -0.04242600500583649, -0.01966642588376999, 0.12837441265583038, 0.26049238443374634, -0.09589853137731552, 0.015142492018640041, 0.07783445715904236, -0.03923808038234711, -0.1855407953262329, 0.02735893614590168, 0.05681629851460457, -0.0012113852426409721, 0.017416518181562424, -0.13987883925437927, 0.07135207951068878, 0.1303667277097702, -0.04460206627845764, 0.08139341324567795, -0.264053612947464, -0.12039972096681595, 0.10306785255670547, 0.15700893104076385, 0.09421779215335846, -0.16828642785549164, -0.03219949081540108, -0.03509249538183212, -0.13050971925258636, 0.13912849128246307, -0.1007067859172821, 0.09866072237491608, -0.024044815450906754, 0.043944161385297775, 0.0022095420863479376, -0.05965298041701317, 0.12695787847042084, -0.010092640295624733, 0.11285912245512009, -0.0722939744591713, 0.033532824367284775, 0.07171466946601868, -0.0904707983136177, 0.07994365692138672, -0.05370686575770378, 0.05993180349469185, -0.0790250226855278, -0.007995223626494408, -0.06997640430927277, 0.020462071523070335, -0.01609676517546177, -0.03877745568752289, -0.044017545878887177, 0.04033104330301285, 0.05609242618083954, -0.020258910953998566, 0.16831107437610626, 0.049200333654880524, 0.12650951743125916, 0.1359757035970688, 0.05899842455983162, -0.08768575638532639, -0.0346914678812027, -0.02193325012922287, -0.05148734524846077, 0.056193482130765915, -0.14040519297122955, 0.04963162541389465, 0.12629945576190948, 0.0020823830273002386, 0.13253380358219147, 0.0589417926967144, -0.035215798765420914, 0.028440289199352264, 0.08088899403810501, -0.16519708931446075, -0.06346447020769119, 0.01252311747521162, 0.04282938316464424, -0.10133003443479538, 0.0632118508219719, 0.124659463763237, -0.08332130312919617, -0.007136145606637001, -0.01391570083796978, 0.03480888530611992, 0.0018864574376493692, 0.1869126409292221, 0.06427021324634552, 0.03838271275162697, -0.10269288718700409, 0.10339333117008209, 0.06456591933965683, -0.09445358067750931, 0.03209793195128441, 0.06991808861494064, -0.10721813142299652, -0.036957357078790665, 0.04736212641000748, 0.16228295862674713, -0.05886285752058029, -0.07705837488174438, -0.13414043188095093, -0.10622122138738632, 0.06846268475055695, 0.16368918120861053, 0.0767378956079483, 0.012669759802520275, 0.00798884592950344, -0.008220742456614971, -0.12297625094652176, 0.11208675801753998, 0.05389939248561859, 0.09652296453714371, -0.1633146107196808, 0.0995892658829689, 0.00469030998647213, 0.03648030385375023, -0.02721364237368107, 0.0299494881182909, -0.10069430619478226, -0.0002258537133457139, -0.13819454610347748, 0.036256078630685806, -0.06933926045894623, -0.005859993398189545, -0.011136619374155998, -0.05648110434412956, -0.062342919409275055, 0.025622528046369553, -0.09580180048942566, -0.0295123104006052, 0.022296935319900513, 0.030977031216025352, -0.13508915901184082, -0.05340084433555603, -0.002478300593793392, -0.08057353645563126, 0.07784753292798996, 0.03128361701965332, 0.009781189262866974, 0.01158168911933899, -0.09064999967813492, -0.012003450654447079, 0.07709144055843353, -0.006087688263505697, 0.06742043048143387, -0.1085294634103775, -0.0034066529478877783, 0.02783856727182865, 0.009428686462342739, 0.022405099123716354, 0.11717433482408524, -0.1241808831691742, 0.0031160786747932434, -0.023504380136728287, -0.045702748000621796, -0.04942347854375839, 0.054510727524757385, 0.11431184411048889, 0.019511807709932327, 0.19846321642398834, -0.10307787358760834, 0.009822633117437363, -0.20666855573654175, -0.012433069758117199, -0.01898270472884178, -0.12406739592552185, -0.10856971889734268, -0.014653908088803291, 0.07262085378170013, -0.0539972223341465, 0.11144039779901505, 0.030705824494361877, 0.05580960214138031, 0.03868643939495087, -0.032201237976551056, 0.0027235185261815786, 0.024271707981824875, 0.16060815751552582, 0.0203535258769989, -0.03848055750131607, 0.07666908204555511, 0.026997625827789307, 0.10299726575613022, 0.05950460955500603, 0.16769705712795258, 0.13920573890209198, 0.02922063320875168, 0.09419184178113937, 0.06433692574501038, -0.05530412122607231, -0.1440768837928772, 0.0029073276091367006, -0.04835439473390579, 0.13292263448238373, -0.005879690404981375, 0.15694108605384827, 0.09600207954645157, -0.15637335181236267, 0.02234077826142311, -0.03583693876862526, -0.0768999308347702, -0.09141707420349121, -0.07278615236282349, -0.10969208925962448, -0.14631138741970062, 0.0013247046153992414, -0.11474441736936569, 0.018551267683506012, 0.1176694855093956, 0.010129645466804504, -0.00772353308275342, 0.12687507271766663, 0.02319120615720749, 0.030842766165733337, 0.06765618175268173, 0.011917171068489552, -0.02964659593999386, -0.027129456400871277, -0.09294518828392029, 0.01392856240272522, 0.010950651951134205, 0.04527604207396507, -0.02383841760456562, -0.0095882723107934, 0.05436183139681816, 0.007097611203789711, -0.1155359297990799, 0.011736624874174595, 0.01877085492014885, 0.052216872572898865, 0.04649461433291435, 0.02744375728070736, 0.027780966833233833, 0.006926452275365591, 0.1907292902469635, -0.06834859400987625, -0.04298285394906998, -0.13121016323566437, 0.18845239281654358, 0.011864435859024525, -0.02995993196964264, 0.039833202958106995, -0.09455930441617966, 0.005194381810724735, 0.16304923593997955, 0.15432420372962952, -0.049290966242551804, -0.00595991313457489, -0.03625734895467758, -0.020076796412467957, -0.036995068192481995, 0.1124468520283699, 0.11255006492137909, 0.03736346960067749, -0.07553404569625854, -0.038362227380275726, -0.06091081351041794, -0.007847901433706284, -0.05979704484343529, 0.02113453485071659, -0.005719600711017847, 0.008805104531347752, -0.05837024003267288, 0.06225590780377388, -0.004149627406150103, -0.06660290062427521, 0.06094364449381828, -0.18216249346733093, -0.1711307317018509, 0.006022729445248842, 0.06284996122121811, 0.017528431490063667, 0.03192145749926567, -0.02814686857163906, 0.015233688987791538, 0.08464355766773224, -0.03379210829734802, -0.06366854906082153, -0.10967084765434265, 0.07268806546926498, -0.09694577753543854, 0.2585825026035309, -0.023478040471673012, 0.052058618515729904, 0.11813867092132568, 0.033815111964941025, -0.1299436241388321, 0.05926826223731041, 0.04453502967953682, -0.0407232828438282, 0.03203534334897995, 0.11282510310411453, -0.04381243884563446, 0.0927264466881752, 0.04878914728760719, -0.11679692566394806, -0.02867439016699791, -0.049869682639837265, -0.03866856172680855, -0.04743188992142677, -0.027874071151018143, -0.0398249477148056, 0.13141170144081116, 0.16090452671051025, -0.047355033457279205, -0.005920625291764736, -0.05582083761692047, 0.03613289073109627, 0.06122034788131714, -0.0004482849908526987, -0.025678616017103195, -0.24004293978214264, 0.025473110377788544, 0.0706208273768425, 0.009444157592952251, -0.2320079356431961, -0.08830077201128006, -0.008485476486384869, -0.05945335328578949, -0.10198653489351273, 0.09979701787233353, 0.07187510281801224, 0.04467172548174858, -0.06614070385694504, -0.0015594259602949023, -0.071863554418087, 0.15015101432800293, -0.13686153292655945, -0.08900303393602371 ]
null
null
transformers
# detr_beyond_words (WIP) [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) fine tuned on [Beyond Words](https://github.com/LibraryOfCongress/newspaper-navigator/tree/master/beyond_words_data).
{"license": "mit", "tags": ["object-detection"], "widget": [{"src": "https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/19.jpg", "example_title": "page"}, {"src": "https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/65.jpg", "example_title": "page2"}]}
object-detection
davanstrien/detr_beyond_words
[ "transformers", "pytorch", "tensorboard", "safetensors", "detr", "object-detection", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #safetensors #detr #object-detection #license-mit #endpoints_compatible #region-us
# detr_beyond_words (WIP) facebook/detr-resnet-50 fine tuned on Beyond Words.
[ "# detr_beyond_words (WIP) \n\nfacebook/detr-resnet-50 fine tuned on Beyond Words." ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #detr #object-detection #license-mit #endpoints_compatible #region-us \n", "# detr_beyond_words (WIP) \n\nfacebook/detr-resnet-50 fine tuned on Beyond Words." ]
[ 43, 30 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #detr #object-detection #license-mit #endpoints_compatible #region-us \n# detr_beyond_words (WIP) \n\nfacebook/detr-resnet-50 fine tuned on Beyond Words." ]
[ -0.06770168989896774, 0.09592385590076447, -0.006893973797559738, 0.049094051122665405, 0.07376394420862198, -0.07788718491792679, 0.0959085002541542, 0.07786114513874054, 0.09224028140306473, 0.021394608542323112, 0.08846970647573471, 0.1400718092918396, -0.014290574006736279, 0.05178318917751312, -0.05457688495516777, -0.12202369421720505, 0.083591029047966, -0.019358709454536438, 0.011168540455400944, 0.11621885001659393, 0.04104756936430931, -0.08734358102083206, 0.05115716531872749, -0.01063060574233532, -0.1335822492837906, 0.05487032234668732, 0.02405274100601673, -0.09513212740421295, 0.11527951061725616, 0.0029169227927923203, 0.11501768231391907, 0.08933721482753754, -0.02888316847383976, -0.11867184191942215, 0.05684139207005501, 0.06502839177846909, -0.12263958156108856, 0.025689570233225822, 0.02949470281600952, -0.13684654235839844, 0.034229837357997894, -0.014519228599965572, -0.00505230575799942, 0.0507727675139904, -0.06635095179080963, -0.1474509984254837, -0.024492669850587845, 0.17100068926811218, 0.017537957057356834, 0.11971043050289154, -0.02655562199652195, 0.20573443174362183, -0.023439614102244377, 0.1068752333521843, 0.17008930444717407, -0.3507031202316284, 0.0032844706438481808, 0.11228819191455841, 0.046032339334487915, 0.043141718953847885, -0.08070997893810272, 0.02687133103609085, 0.003126984927803278, 0.036838825792074203, 0.005979589652270079, -0.01372298039495945, 0.08008041977882385, -0.005993208382278681, -0.1427326500415802, 0.04207311198115349, 0.07035373896360397, -0.00581607548519969, 0.03491523116827011, -0.06861155480146408, -0.14917810261249542, -0.0005999753484502435, 0.013668789528310299, -0.05504914000630379, -0.03848109021782875, 0.0520934984087944, -0.08218293637037277, -0.04375838115811348, -0.105338454246521, -0.0004644463479053229, -0.20686687529087067, 0.11352144181728363, 0.04503312334418297, 0.02351244166493416, -0.14902056753635406, 0.06563033163547516, 0.10871604830026627, -0.1149769052863121, 0.004786500241607428, -0.11032175272703171, 0.0632251650094986, -0.0015017100377008319, -0.08846056461334229, -0.10445410013198853, 0.12891508638858795, 0.08199156075716019, 0.021069567650556564, 0.03336438164114952, -0.10441069304943085, 0.09978222101926804, 0.03429124504327774, -0.05665574222803116, -0.053914956748485565, 0.04508677497506142, 0.04790754243731499, -0.007205743342638016, 0.026434767991304398, -0.053064849227666855, -0.0662633404135704, 0.038349803537130356, 0.0489053912460804, 0.04469478875398636, 0.04866030439734459, 0.04996027424931526, -0.009134176187217236, -0.01115504838526249, 0.11460724472999573, -0.10610659420490265, -0.04225696623325348, 0.034497711807489395, 0.01537057664245367, 0.08504612743854523, 0.01274083461612463, -0.0030751382000744343, -0.01426797267049551, 0.022689606994390488, -0.07327982783317566, -0.021588413044810295, -0.0025058926548808813, -0.07838188856840134, 0.09716564416885376, 0.027432776987552643, -0.010709821246564388, -0.22321727871894836, -0.03832578659057617, -0.012596693821251392, 0.008106504566967487, 0.03723621368408203, 0.05994409695267677, -0.011346425861120224, -0.06153419241309166, 0.003223450155928731, -0.034947626292705536, -0.17769047617912292, -0.03399503603577614, 0.09613876789808273, -0.03973807394504547, 0.13159939646720886, -0.1394844353199005, 0.011545908637344837, -0.11535369604825974, -0.01501581072807312, -0.07395108044147491, 0.009159591048955917, -0.13782206177711487, 0.10281676054000854, -0.04555768147110939, 0.010508464649319649, -0.1189003512263298, 0.02145376056432724, -0.03088483214378357, 0.14792658388614655, -0.25412461161613464, -0.07196138799190521, 0.27428939938545227, -0.149575337767601, -0.09897013008594513, 0.0803728848695755, -0.0171035286039114, -0.04113442450761795, 0.11673478037118912, 0.31112077832221985, 0.03507877141237259, -0.12007021903991699, -0.1009463369846344, 0.08139684796333313, -0.1595657765865326, -0.09201912581920624, -0.0384678989648819, 0.013011893257498741, 0.059736672788858414, 0.012812233529984951, 0.018624091520905495, 0.10051937401294708, -0.02313060685992241, -0.07718842476606369, -0.05289953947067261, -0.011580955237150192, 0.09037808328866959, -0.02121851034462452, 0.015310324728488922, -0.05746324360370636, -0.021339230239391327, 0.10679460316896439, -0.006481541786342859, 0.021057354286313057, 0.0376700758934021, -0.14775650203227997, 0.0792836844921112, 0.05901027098298073, 0.033785030245780945, -0.1824479103088379, -0.12061543017625809, -0.0827297493815422, -0.06756420433521271, 0.06812023371458054, 0.1454448401927948, 0.09045922756195068, -0.038087017834186554, 0.020675672218203545, -0.0003301525430288166, 0.0479879230260849, 0.036662403494119644, -0.013740841299295425, -0.12423195689916611, 0.06816986948251724, -0.06070082634687424, -0.03627100959420204, -0.08098089694976807, 0.07777474075555801, 0.24484241008758545, 0.13470442593097687, -0.018413538113236427, -0.0009564323700033128, -0.019089601933956146, 0.01810019090771675, -0.020899398252367973, -0.026260675862431526, 0.05408257246017456, 0.013598215766251087, -0.09773503243923187, 0.10863763839006424, -0.10843686759471893, 0.24284380674362183, 0.22201067209243774, -0.14512555301189423, 0.031914450228214264, 0.045869406312704086, -0.024784378707408905, 0.005632814951241016, 0.03457207232713699, -0.015887614339590073, 0.11470559239387512, 0.047527868300676346, 0.07991276681423187, -0.012773831374943256, 0.003565073013305664, 0.03427216783165932, -0.040060363709926605, -0.06779298931360245, 0.025256147608160973, 0.04605845734477043, -0.22030285000801086, 0.12910839915275574, 0.2319347858428955, 0.03497820347547531, 0.13508079946041107, -0.03367966040968895, 0.014735252596437931, 0.04903542622923851, 0.07413458824157715, -0.05896085128188133, 0.04705501347780228, -0.09407472610473633, -0.047615956515073776, 0.0021455143578350544, -0.009756152518093586, 0.07319429516792297, -0.08076120167970657, -0.04867391288280487, -0.014444032683968544, 0.0035674923565238714, -0.10387223213911057, 0.09060186892747879, 0.008311823010444641, 0.06929702311754227, -0.041980642825365067, -0.14622266590595245, 0.04333287104964256, -0.03935360908508301, -0.036984268575906754, 0.14318867027759552, -0.08063071966171265, -0.3803805112838745, -0.03548675402998924, -0.08081299811601639, -0.06999238580465317, -0.02223273739218712, 0.08677946031093597, -0.16738514602184296, 0.017941826954483986, -0.029986020177602768, 0.026390530169010162, 0.030010154470801353, 0.033929064869880676, -0.00034682394471019506, 0.03088708035647869, 0.02113243006169796, -0.12920022010803223, -0.008371083065867424, -0.08649256825447083, -0.08782894164323807, 0.06331467628479004, 0.028441552072763443, 0.07267901301383972, 0.13928747177124023, 0.023667359724640846, 0.026519905775785446, -0.024556953459978104, 0.1942664235830307, -0.06392016261816025, -0.025665441527962685, 0.12402720004320145, -0.02875511907041073, 0.08284827321767807, 0.11319958418607712, 0.028185628354549408, -0.09759131073951721, 0.031306192278862, 0.08094064891338348, -0.07410457730293274, -0.14341960847377777, -0.08622543513774872, -0.02946365997195244, 0.043129630386829376, 0.02414799854159355, 0.08405453711748123, 0.06457002460956573, 0.041086532175540924, 0.023017382249236107, -0.1374914050102234, -0.0023987977765500546, 0.06348677724599838, 0.18924866616725922, -0.04642920196056366, 0.13591144979000092, -0.05624229088425636, -0.0869339257478714, 0.07268797606229782, 0.0649419054389, 0.1276143491268158, 0.04724569618701935, -0.04857531934976578, 0.11644290387630463, 0.19245971739292145, 0.11643039435148239, 0.03272378072142601, -0.0036961156874895096, -0.059390291571617126, 0.02608306333422661, -0.03616389259696007, 0.004429126624017954, -0.018018122762441635, -0.027071645483374596, -0.11151581257581711, 0.013348789885640144, -0.01908578723669052, 0.09579550474882126, 0.06235193461179733, -0.026866650208830833, -0.15163873136043549, 0.030460994690656662, 0.01481869351118803, -0.03798788785934448, 0.006697094067931175, 0.11410393565893173, 0.10571859776973724, -0.006869060453027487, 0.04530850425362587, -0.07148002088069916, 0.040069617331027985, -0.034951724112033844, 0.06900259852409363, -0.07025466114282608, -0.0981208011507988, 0.031039658933877945, 0.009491415694355965, -0.18077412247657776, 0.1299082338809967, 0.0011763458605855703, 0.00117409264203161, -0.027008093893527985, -0.052943624556064606, 0.018526384606957436, 0.0743725448846817, 0.116755910217762, 0.008527074940502644, -0.004733119625598192, -0.007217247970402241, -0.08888524025678635, 0.04494781047105789, 0.10829924046993256, 0.02058594860136509, -0.00812361016869545, 0.03843587264418602, -0.018478678539395332, 0.016606517136096954, 0.09265182912349701, -0.09662218391895294, -0.11071120947599411, 0.01792137324810028, 0.09375862777233124, -0.046440817415714264, -0.03858574852347374, -0.07827167958021164, -0.15557585656642914, 0.16131913661956787, -0.17270027101039886, -0.02238248847424984, -0.0637848973274231, -0.05211123451590538, 0.004264465533196926, -0.06654703617095947, 0.05418860539793968, -0.019443141296505928, 0.006963419262319803, -0.13294973969459534, -0.22702789306640625, 0.158879816532135, -0.07032810896635056, -0.02126723900437355, -0.014451850205659866, 0.15902863442897797, 0.0585615299642086, -0.013334441930055618, 0.04106428101658821, -0.02057597227394581, -0.04733804613351822, -0.10227179527282715, 0.03088126890361309, -0.02974880486726761, -0.07970916479825974, -0.09661296755075455, -0.017402632161974907, -0.12446936964988708, -0.02879384532570839, 0.05399152263998985, 0.20153546333312988, 0.15899913012981415, -0.05101393535733223, 0.1337178647518158, 0.15532827377319336, 0.015722958371043205, -0.2948785126209259, -0.010370499454438686, -0.11784650385379791, -0.04818626493215561, 0.041963182389736176, -0.12970709800720215, 0.09640184044837952, 0.08239615708589554, -0.031033484265208244, 0.1851855218410492, -0.24239607155323029, -0.09054704755544662, 0.18492844700813293, -0.0012088031508028507, 0.36032819747924805, -0.10421136021614075, -0.06961527466773987, -0.027816327288746834, -0.11558013409376144, 0.1071121022105217, -0.3014387786388397, 0.05727890506386757, 0.07059744000434875, 0.0850222110748291, 0.007021129131317139, -0.06614510715007782, 0.0371074415743351, 0.0962255522608757, 0.08109927177429199, -0.08417148888111115, -0.046094466000795364, 0.049172256141901016, 0.022271646186709404, -0.004958365578204393, -0.08939184993505478, 0.016820697113871574, 0.08905414491891861, -0.057301390916109085, -0.11946949362754822, 0.10783544927835464, 0.02734353579580784, -0.06237693876028061, -0.006719772703945637, 0.0320722758769989, 0.007932746782898903, 0.0089346282184124, 0.19824784994125366, -0.0971471518278122, 0.11522835493087769, 0.16363199055194855, 0.02524675615131855, -0.09309471398591995, -0.0346137210726738, -0.021604817360639572, -0.09623755514621735, 0.10540563613176346, -0.13886886835098267, 0.028255747631192207, 0.08606834709644318, 0.005383130628615618, -0.003732946002855897, 0.07764113694429398, -0.044857777655124664, -0.008416148833930492, 0.1262202113866806, -0.168940007686615, -0.19380557537078857, 0.0013024663785472512, 0.03390231356024742, 0.09129470586776733, 0.22818508744239807, 0.17523087561130524, -0.03424958512187004, -0.0013618995435535908, 0.014236459508538246, -0.004157374147325754, -0.0396345853805542, 0.020056765526533127, 0.07746266573667526, 0.026594053953886032, -0.14181622862815857, 0.08317526429891586, -0.01275497768074274, -0.15412171185016632, 0.041315995156764984, 0.042691972106695175, -0.13713018596172333, -0.13333845138549805, -0.14410844445228577, 0.042806971818208694, -0.07508527487516403, -0.03463083878159523, -0.037959951907396317, -0.08900002390146255, -0.009954147972166538, 0.3136039972305298, 0.10385096073150635, 0.10520770400762558, -0.000960878562182188, -0.038843557238578796, -0.006787450984120369, 0.0011388094862923026, -0.06585399061441422, 0.02091185934841633, -0.14274725317955017, 0.05418117344379425, 0.015157456509768963, 0.032984741032123566, -0.08505702018737793, -0.02054905891418457, -0.08245275914669037, 0.00700415950268507, -0.1257362961769104, -0.07553993910551071, -0.0979355052113533, -0.027484431862831116, 0.020758438855409622, -0.017619961872696877, -0.017697742208838463, 0.01833842694759369, -0.07459992170333862, -0.01703607849776745, 0.04479539021849632, -0.039848264306783676, -0.18784260749816895, 0.013762430287897587, 0.015026434324681759, 0.009890494868159294, 0.0800192728638649, 0.09123092144727707, -0.10872459411621094, 0.13510628044605255, -0.1703546792268753, -0.06554336100816727, 0.1300538331270218, 0.014798982068896294, 0.04332466796040535, 0.17991439998149872, 0.016934586688876152, 0.021911252290010452, 0.03278810903429985, 0.05131129175424576, 0.06888576596975327, -0.10829846560955048, 0.024542074650526047, -0.0162070132791996, -0.04563530907034874, -0.030297012999653816, -0.07407167553901672, 0.12935824692249298, 0.07497204095125198, 0.15475359559059143, -0.06735015660524368, 0.0013108227867633104, -0.05518505722284317, -0.000758036389015615, 0.031032970175147057, -0.09404921531677246, 0.079806387424469, -0.022838685661554337, 0.015301001258194447, -0.07895864546298981, 0.23776552081108093, -0.06678168475627899, -0.2093467265367508, 0.06884720176458359, -0.029885530471801758, -0.06789128482341766, -0.003602756420150399, 0.2067943960428238, 0.0948697105050087, -0.053241290152072906, -0.03631437569856644, -0.020804964005947113, 0.01765390671789646, -0.050158705562353134, 0.12545008957386017, 0.2280917912721634, -0.024099964648485184, 0.05181067809462547, 0.15891431272029877, 0.028660699725151062, -0.021611806005239487, -0.0814330205321312, -0.09286485612392426, 0.05640151724219322, -0.06085774302482605, -0.05567184090614319, 0.17293615639209747, 0.07640756666660309, 0.0008734259754419327, -0.024065664038062096, -0.020491674542427063, -0.11294058710336685, -0.11924184113740921, -0.07138577103614807, -0.05958936735987663, 0.056938160210847855, -0.014441071078181267, -0.05011181905865669, 0.03967749699950218, 0.06893423944711685, -0.04719846695661545, 0.18829266726970673, 0.048487599939107895, -0.09182257205247879, 0.0652269721031189, -0.002224951284006238, -0.07814958691596985, 0.03183002769947052, -0.018165746703743935, -0.02510770782828331, 0.027101442217826843, -0.04201853647828102, 0.0010903889779001474, -0.016058241948485374, 0.05161456763744354, -0.15440215170383453, -0.09397853165864944, -0.06594546884298325, 0.07319355010986328, -0.06379520148038864, 0.09357722103595734, 0.07658538967370987, -0.03419861942529678, -0.008923505432903767, 0.1757669299840927, -0.038166776299476624, -0.10536792129278183, -0.01940401829779148, 0.07576605677604675, 0.0895417258143425, 0.12264726310968399, -0.09365402162075043, -0.0684976577758789, -0.043264877051115036, 0.12087339907884598, 0.2963302731513977, -0.10513041913509369, 0.0700622946023941, 0.013728506863117218, 0.055717431008815765, 0.010535906068980694, 0.08264917135238647, 0.15866003930568695, 0.28440147638320923, -0.057448554784059525, -0.10630583763122559, -0.03548238053917885, -0.0070442440919578075, -0.12023460119962692, 0.033717118203639984, 0.03936450555920601, 0.0048105763271451, -0.09967397898435593, 0.07864489406347275, -0.16707205772399902, 0.05094832181930542, -0.03621530160307884, -0.11496715992689133, -0.08970627933740616, -0.04471404105424881, 0.10047268867492676, 0.03540206700563431, 0.0908450186252594, 0.0025658514350652695, -0.03664369136095047, 0.04779600724577904, 0.01717391051352024, -0.1781226098537445, 0.0062316241674125195, 0.04250079765915871, 0.047420017421245575, 0.027313200756907463, -0.03667595610022545, 0.012945067137479782, 0.06873723119497299, 0.06582450866699219, -0.005231049377471209, 0.12253858894109726, 0.0012871258659288287, -0.10049942135810852, -0.10231690853834152, -0.027853120118379593, 0.03196491673588753, 0.04747874289751053, 0.07063943892717361, -0.05937293916940689, 0.01692606322467327, 0.0016746707260608673, -0.015068558976054192, -0.09251381456851959, 0.07422490417957306, -0.04868663102388382, 0.03701236471533775, 0.029325708746910095, -0.029284071177244186, 0.012823699042201042, -0.03917982801795006, -0.0445973239839077, 0.032744210213422775, -0.09497971832752228, -0.07441305369138718, -0.11364936828613281, -0.03072931244969368, -0.0012827825266867876, 0.0015685558319091797, -0.1836635321378708, -0.049703240394592285, -0.00597127340734005, 0.05143432691693306, -0.108563631772995, -0.007833675481379032, 0.046532806009054184, 0.06275424361228943, -0.0049087367951869965, 0.0370873287320137, 0.05351172387599945, 0.058086030185222626, -0.10419721901416779, -0.08634674549102783 ]
null
null
null
# flyswot ## Model description In progress model for detecting 'fake' flysheets ## Intended uses & limitations Not currently intended for public consumption... #### Limitations and bias Not currently intended for public consumption... ## Training data TODO ## Eval results
{}
null
davanstrien/flyswot-test
[ "onnx", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #onnx #region-us
# flyswot ## Model description In progress model for detecting 'fake' flysheets ## Intended uses & limitations Not currently intended for public consumption... #### Limitations and bias Not currently intended for public consumption... ## Training data TODO ## Eval results
[ "# flyswot", "## Model description\n\nIn progress model for detecting 'fake' flysheets", "## Intended uses & limitations\n\nNot currently intended for public consumption...", "#### Limitations and bias\n\nNot currently intended for public consumption...", "## Training data\n\nTODO", "## Eval results" ]
[ "TAGS\n#onnx #region-us \n", "# flyswot", "## Model description\n\nIn progress model for detecting 'fake' flysheets", "## Intended uses & limitations\n\nNot currently intended for public consumption...", "#### Limitations and bias\n\nNot currently intended for public consumption...", "## Training data\n\nTODO", "## Eval results" ]
[ 10, 5, 16, 18, 16, 5, 4 ]
[ "passage: TAGS\n#onnx #region-us \n# flyswot## Model description\n\nIn progress model for detecting 'fake' flysheets## Intended uses & limitations\n\nNot currently intended for public consumption...#### Limitations and bias\n\nNot currently intended for public consumption...## Training data\n\nTODO## Eval results" ]
[ -0.036790866404771805, 0.04550186172127724, -0.0015678845811635256, 0.12077319622039795, -0.0067501249723136425, -0.032519061118364334, 0.19994017481803894, 0.06438527256250381, 0.02924547903239727, 0.00474882684648037, 0.23932385444641113, -0.02560751885175705, 0.06986729055643082, 0.17840948700904846, -0.09550980478525162, -0.06065836921334267, 0.03398697078227997, -0.055012259632349014, 0.10297278314828873, 0.11694537103176117, 0.07741096615791321, -0.008361552841961384, 0.07438149303197861, 0.06977903842926025, -0.027197442948818207, -0.06808899343013763, 0.05206514522433281, -0.14521890878677368, 0.0804961621761322, 0.09497877210378647, 0.15553148090839386, -0.01645616441965103, 0.05727997049689293, -0.19057099521160126, 0.04412619769573212, 0.012070763856172562, -0.052827171981334686, 0.04115813598036766, 0.003702053101733327, 0.002115203533321619, 0.2171376794576645, 0.07888305187225342, -0.0143059641122818, 0.04848259687423706, -0.13676337897777557, 0.06657997518777847, -0.08830533921718597, -0.11738060414791107, -0.04925142228603363, 0.10032694786787033, -0.02037876285612583, 0.279211163520813, -0.019124755635857582, 0.07308308780193329, 0.12555363774299622, -0.10474053025245667, 0.012960325926542282, 0.08564160019159317, -0.050877895206213, -0.074111707508564, -0.06218871846795082, 0.05316779762506485, 0.04511408880352974, 0.043025799095630646, -0.005621979013085365, -0.026953816413879395, -0.04692690074443817, -0.008468112908303738, -0.05675743147730827, -0.10767456144094467, 0.1496196985244751, 0.12339711934328079, -0.010015959851443768, -0.20399270951747894, -0.053765587508678436, 0.06090119853615761, 0.07299147546291351, 0.007690079975873232, -0.06304574757814407, 0.029643407091498375, 0.006676702760159969, -0.09970341622829437, -0.08094409853219986, -0.0004226069722790271, 0.009931894950568676, 0.005651038605719805, -0.03994879871606827, 0.09236299991607666, -0.16246549785137177, 0.018573028966784477, 0.06476345658302307, -0.12087815999984741, 0.008116069249808788, -0.16200126707553864, 0.10863014310598373, 0.024085603654384613, 0.04022969678044319, 0.03629259765148163, 0.13287372887134552, 0.06810401380062103, 0.06615301221609116, -0.013473196886479855, -0.05843067169189453, 0.06324168294668198, 0.09462344646453857, 0.009392122738063335, -0.039981354027986526, 0.03819262608885765, 0.0592506006360054, 0.04316972941160202, 0.02604242041707039, -0.056640107184648514, -0.05591852590441704, 0.05663939192891121, -0.033718645572662354, 0.06000600755214691, -0.04189232364296913, -0.06457461416721344, -0.11270052939653397, 0.019459698349237442, 0.12495896965265274, -0.02416248619556427, -0.09176327288150787, -0.02240527607500553, -0.0457654744386673, -0.046414077281951904, 0.12704665958881378, 0.04040247201919556, 0.0565732903778553, 0.013968323357403278, -0.070097416639328, 0.021899839863181114, -0.013309738598763943, -0.04109528660774231, -0.025809474289417267, -0.03489375114440918, 0.1028747707605362, -0.11700756102800369, -0.20457690954208374, -0.07484518736600876, -0.04369775950908661, -0.05447987839579582, 0.0021360807586461306, -0.0336930975317955, -0.09429676085710526, -0.06985410302877426, -0.010860821232199669, -0.015380172990262508, -0.13626371324062347, 0.06675907224416733, -0.108784981071949, 0.016178905963897705, 0.013840262778103352, -0.009831254370510578, -0.18370552361011505, -0.014837547205388546, -0.012213506735861301, 0.05684192106127739, -0.12650153040885925, 0.11127639561891556, -0.07184289395809174, -0.135915145277977, -0.0393381267786026, -0.008355094119906425, 0.05031152442097664, 0.26721155643463135, -0.2083950787782669, 0.03583693876862526, 0.044584304094314575, -0.10221151262521744, -0.13515529036521912, 0.03817664086818695, -0.10046873986721039, 0.25119829177856445, -0.003980047535151243, 0.20323529839515686, -0.06882178783416748, -0.12894980609416962, 0.07535494118928909, 0.07675806432962418, -0.13911697268486023, 0.09854649007320404, 0.05302399396896362, -0.0950702652335167, -0.13800081610679626, -0.0648682713508606, 0.06821347773075104, 0.050303082913160324, -0.05285901576280594, -0.12355918437242508, -0.03882061317563057, -0.0930432453751564, 0.036538541316986084, -0.017665257677435875, 0.04449697211384773, -0.027376683428883553, -0.018668649718165398, -0.1691509336233139, -0.013686327263712883, 0.07980073243379593, -0.012539210729300976, -0.12605994939804077, 0.008425315842032433, 0.03686445951461792, -0.05328063294291496, -0.07449408620595932, -0.09901651740074158, -0.05610622465610504, -0.1314547061920166, 0.07539064437150955, 0.07246319949626923, 0.027166331186890602, 0.019111238420009613, -0.011951016262173653, 0.035540271550416946, -0.11382991820573807, 0.040660228580236435, -0.01515207625925541, -0.09899213910102844, 0.05483472719788551, -0.04656785726547241, -0.07757189869880676, -0.27737799286842346, 0.0035623060539364815, 0.02786819450557232, 0.01003662683069706, 0.04727024957537651, 0.005242365878075361, 0.14726528525352478, -0.025955593213438988, 0.014118839055299759, -0.1228484958410263, 0.030256498605012894, 0.009492780081927776, -0.20594201982021332, -0.06670861691236496, -0.023877836763858795, 0.23824812471866608, 0.11305353045463562, -0.12901313602924347, -0.08220034092664719, 0.08857495337724686, -0.02592618204653263, 0.02394077181816101, -0.161110982298851, 0.14380377531051636, 0.06892059743404388, -0.010706654749810696, 0.05953097343444824, -0.1199973002076149, -0.004253558814525604, 0.08118835091590881, -0.046310435980558395, -0.09565195441246033, 0.023275261744856834, 0.06963659077882767, -0.14215917885303497, 0.03648809343576431, 0.14475420117378235, 0.10609564930200577, 0.07765543460845947, 0.02512497641146183, -0.047552574425935745, -0.02679528295993805, -0.03291311860084534, -0.03433186188340187, 0.13843733072280884, -0.05052270367741585, 0.10799811780452728, 0.08265197277069092, 0.04170798137784004, 0.05069032683968544, -0.15736350417137146, -0.14654462039470673, -0.014371303841471672, -0.06662052869796753, -0.16053621470928192, 0.10488858819007874, -0.027995364740490913, 0.06316082179546356, -0.0667777955532074, -0.0626281201839447, 0.09682245552539825, -0.00861996877938509, -0.10637874156236649, 0.11138385534286499, -0.007167996373027563, -0.16607342660427094, -0.17327195405960083, 0.012069270014762878, -0.12304996699094772, 0.05789291486144066, 0.08701622486114502, -0.050754621624946594, -0.05225280299782753, -0.08785746246576309, -0.022698603570461273, 0.006098359823226929, 0.03281354531645775, 0.013815205544233322, 0.05287875607609749, 0.04707995802164078, -0.1163129210472107, -0.008366312831640244, 0.012564895674586296, 0.03474720939993858, 0.05817246437072754, 0.004458610434085131, 0.08674532175064087, 0.024441491812467575, 0.045097317546606064, -0.02070220559835434, -0.08937034010887146, 0.3404330015182495, -0.07182269543409348, -0.08057574927806854, 0.13894210755825043, -0.09605957567691803, 0.023451410233974457, 0.04278652369976044, 0.07530007511377335, -0.18865804374217987, 0.033397238701581955, -0.004076696000993252, -0.1254463493824005, -0.22881504893302917, -0.06833785772323608, 0.05157417804002762, -0.013982897624373436, 0.057026367634534836, 0.0780530571937561, 0.15798422694206238, 0.13098937273025513, 0.08218234032392502, -0.008702460676431656, 0.03295183554291725, 0.0157285388559103, -0.0018843448488041759, 0.0157324206084013, 0.027349594980478287, -0.08145439624786377, 0.03784038871526718, 0.10460932552814484, -0.08091911673545837, 0.21784605085849762, 0.07092894613742828, -0.09059218317270279, 0.15895512700080872, 0.06811975687742233, 0.08323247730731964, 0.09173350036144257, 0.0966511145234108, -0.018089743331074715, -0.03930741921067238, -0.029723821207880974, -0.0464261919260025, 0.054516442120075226, -0.04328952729701996, -0.029039869084954262, 0.03308170288801193, -0.036001041531562805, 0.06734263896942139, -0.05945170298218727, 0.11412034183740616, -0.1290477067232132, -0.03987453877925873, 0.013429359532892704, -0.031719692051410675, -0.04498462378978729, 0.1468987762928009, 0.054328080266714096, -0.2090124934911728, 0.08368682116270065, -0.0412149615585804, 0.10719099640846252, -0.0575895830988884, 0.0575878843665123, 0.0013707565376535058, -0.1983633041381836, -0.07566726207733154, 0.06824340671300888, -0.23059546947479248, 0.3565737009048462, 0.00308148842304945, 0.07460282742977142, -0.13616180419921875, -0.04165087640285492, 0.03943241015076637, -0.07424416393041611, 0.29789841175079346, -0.014285631477832794, -0.02349822409451008, -0.04350915178656578, -0.07553539425134659, 0.010078721679747105, -0.02475547417998314, 0.10055398941040039, -0.018896933645009995, 0.05651417002081871, 0.07505632191896439, -0.01191707979887724, -0.0940895527601242, -0.24417096376419067, -0.021808138117194176, 0.018977312371134758, 0.002778735477477312, -0.0220075324177742, 0.013869404792785645, -0.03573349118232727, -0.2204684466123581, 0.011192386038601398, -0.09776992350816727, -0.04720306396484375, -0.056776076555252075, 0.09767302125692368, 0.08614281564950943, -0.00613384647294879, 0.009358770214021206, -0.008281267248094082, -0.07179653644561768, -0.04008407145738602, -0.0301374364644289, 0.06569679826498032, -0.07407277077436447, -0.19367070496082306, 0.019438501447439194, 0.001007632352411747, 0.10342419147491455, 0.027054542675614357, -0.0676458552479744, 0.003875326132401824, -0.07009822875261307, -0.2166845053434372, 0.10878188163042068, 0.020712176337838173, -0.0666067898273468, 0.11228743940591812, 0.16871756315231323, -0.044032637029886246, -0.08713337779045105, -0.026764201000332832, 0.017297880724072456, 0.389205664396286, -0.042983539402484894, 0.11037372797727585, 0.08441469818353653, -0.06619492918252945, -0.11948610097169876, 0.007270855829119682, -0.1470399647951126, 0.017690420150756836, 0.0822860449552536, -0.0628233328461647, 0.051569484174251556, 0.11814136058092117, 0.004643735941499472, 0.096938855946064, -0.24613817036151886, -0.15218737721443176, 0.1465795636177063, -0.02661418542265892, 0.27968719601631165, -0.03603406250476837, -0.04761018976569176, -0.020039329305291176, -0.026221510022878647, 0.02543550357222557, -0.11868816614151001, 0.015801817178726196, 0.06550817936658859, 0.052840448915958405, -0.009615317918360233, -0.002003711648285389, 0.25399842858314514, 0.02725788950920105, 0.17347264289855957, -0.058134112507104874, -0.13130183517932892, 0.18256068229675293, 0.01276630163192749, 0.02781803160905838, 0.13756044209003448, 0.06953319907188416, -0.12318366020917892, -0.019862281158566475, -0.039492443203926086, 0.1501494199037552, 0.028578706085681915, -0.04282550513744354, -0.12570185959339142, -0.012571154162287712, 0.013752926141023636, 0.03746950998902321, 0.2373650074005127, -0.08205553889274597, -0.009244829416275024, 0.0340927354991436, 0.11628054082393646, 0.0337974838912487, 0.08139796555042267, 0.0008434515330009162, -0.06356193125247955, 0.045259393751621246, -0.08771177381277084, -0.059490982443094254, 0.062325600534677505, 0.045082587748765945, -0.0003131789853796363, 0.06147734075784683, -0.01307695358991623, 0.16540534794330597, 0.051769472658634186, -0.09869115054607391, -0.07033349573612213, -0.02195422537624836, -0.01982760988175869, -0.015822758898139, -0.028825702145695686, 0.08737753331661224, -0.015695741400122643, 0.015548177994787693, -0.06206967309117317, 0.03586366027593613, -0.07519552111625671, 0.02340005338191986, 0.023369302973151207, -0.03976701945066452, -0.12258212268352509, 0.1303892880678177, 0.024445995688438416, -0.009248695336282253, -0.005539838690310717, -0.10050893574953079, -0.09167131781578064, -0.04571809247136116, -0.08519530296325684, 0.15861043334007263, -0.09527953714132309, -0.046670570969581604, -0.04168694093823433, 0.007584405597299337, -0.04172544553875923, 0.20105093717575073, 0.12870468199253082, 0.02682691626250744, -0.0604168102145195, -0.046128448098897934, -0.023494619876146317, -0.004305696114897728, 0.07872793078422546, -0.061827193945646286, -0.17102360725402832, -0.06378147751092911, 0.07073090970516205, 0.1068892851471901, -0.06211681663990021, 0.013178511522710323, -0.12121909111738205, 0.013572863303124905, -0.025639841333031654, 0.07899457961320877, -0.08485749363899231, 0.04632919654250145, 0.012979975901544094, -0.05617501586675644, -0.07770228385925293, 0.0006995106814429164, -0.05151370167732239, 0.04027894511818886, 0.05418000742793083, 0.09497150778770447, -0.0452866367995739, -0.006911521311849356, 0.06724195927381516, -0.03581773117184639, 0.08475048840045929, 0.05219874903559685, -0.0973944440484047, -0.01574704423546791, -0.07070232927799225, 0.016184255480766296, 0.05787913501262665, -0.02629394270479679, -0.005694257561117411, -0.06766817718744278, -0.023138761520385742, -0.018631627783179283, -0.019915930926799774, 0.06474394351243973, 0.05024055764079094, -0.0770210549235344, -0.02258734405040741, 0.19629280269145966, -0.021005064249038696, 0.02027820609509945, -0.05130958557128906, 0.12929290533065796, -0.021381286904215813, 0.18692080676555634, 0.027932746335864067, 0.07426335662603378, -0.034566499292850494, -0.008424622938036919, -0.053875166922807693, -0.04563261941075325, -0.008680015802383423, 0.006790556479245424, 0.034744665026664734, -0.03699827939271927, 0.37241965532302856, 0.04571007564663887, 0.06914153695106506, 0.04118124768137932, 0.08942773193120956, -0.08057402074337006, -0.012054163962602615, 0.22847524285316467, 0.01692848466336727, 0.012273396365344524, -0.030244795605540276, 0.002982121892273426, -0.0063023814000189304, -0.1445600539445877, 0.21969367563724518, 0.0706275925040245, -0.03696226701140404, 0.09151903539896011, -0.09128667414188385, -0.05841664969921112, -0.03455342724919319, 0.015898913145065308, 0.10684121400117874, 0.030337976291775703, -0.0027703994419425726, -0.1699824184179306, 0.09941233694553375, -0.05294236168265343, 0.03430577740073204, 0.009266087785363197, -0.05298615247011185, -0.14744368195533752, -0.1049131527543068, -0.07557635754346848, -0.05458478257060051, 0.07360947877168655, -0.010901687666773796, 0.003169543808326125, 0.20210237801074982, -0.03805889934301376, -0.06525658071041107, 0.10829460620880127, -0.18138635158538818, 0.013155711814761162, 0.001934086438268423, -0.02635207772254944, -0.022041961550712585, -0.15945549309253693, -0.044534776359796524, -0.04090932384133339, 0.01464739628136158, -0.024479279294610023, -0.024297237396240234, 0.010249732062220573, -0.02853323705494404, -0.13537968695163727, -0.03989619016647339, -0.05741863697767258, 0.05360771343111992, -0.02869255654513836, 0.12662214040756226, 0.07431473582983017, 0.01113817561417818, 0.031302012503147125, 0.18251903355121613, -0.041267506778240204, -0.12528173625469208, -0.18212328851222992, 0.151865616440773, -0.03597107157111168, 0.05323730409145355, -0.06340376287698746, -0.07210351526737213, 0.07184503972530365, 0.1505989283323288, 0.16805768013000488, -0.10699498653411865, 0.0017626580083742738, 0.003155138110741973, 0.018760770559310913, 0.023767009377479553, -0.0031658117659389973, 0.00304530025459826, 0.08326762169599533, -0.0882238894701004, -0.11244966089725494, -0.04929383844137192, -0.03691467270255089, -0.03331170976161957, 0.0007944688550196588, 0.05891762301325798, -0.04512425512075424, -0.08228740841150284, 0.1780703067779541, -0.1843111515045166, 0.003168888855725527, 0.059759721159935, -0.029925942420959473, -0.06047780439257622, 0.062282994389534, -0.11778070032596588, 0.042329732328653336, 0.04083089902997017, -0.05865485593676567, -0.019350722432136536, 0.003300597658380866, 0.03402601554989815, -0.09725457429885864, -0.00024090961960610002, 0.04541608691215515, -0.02662542462348938, 0.2629522681236267, 0.021275706589221954, 0.13803787529468536, 0.03510177880525589, 0.007924002595245838, -0.11315985769033432, 0.10802105069160461, 0.06054151430726051, 0.05924929678440094, -0.05724502354860306, -0.03799871355295181, 0.01804238185286522, 0.024668605998158455, 0.025034023448824883, -0.16268372535705566, 0.05142806097865105, 0.10263772308826447, -0.04000256210565567, 0.007985695265233517, 0.03133750334382057, -0.09296383708715439, 0.07280305027961731, -0.0039019861724227667, -0.0890689417719841, 0.041534990072250366, 0.06481791287660599, 0.13403970003128052, 0.018214067444205284, 0.016179412603378296, -0.04695526510477066, -0.06302788108587265, 0.0017569373594596982, -0.035472020506858826, 0.021126676350831985, -0.07499781250953674, -0.012937349267303944, 0.035617098212242126, 0.004496204201132059, 0.0006320034735836089, 0.029497431591153145, -0.01809796504676342, -0.05568503215909004, -0.005163508001714945, 0.009033714421093464, 0.0065461620688438416, 0.058301109820604324, -0.07916176319122314, -0.11464788019657135 ]
null
null
null
TODO ## Model description In progress model for detecting 'fake' flysheets ## Intended uses & limitations Not currently intended for public consumption... ## Limitations and bias Not currently intended for public consumption... ## Training data ## Eval results
{}
null
davanstrien/flyswot
[ "onnx", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #onnx #region-us
TODO ## Model description In progress model for detecting 'fake' flysheets ## Intended uses & limitations Not currently intended for public consumption... ## Limitations and bias Not currently intended for public consumption... ## Training data ## Eval results
[ "## Model description\n\nIn progress model for detecting 'fake' flysheets", "## Intended uses & limitations\n\nNot currently intended for public consumption...", "## Limitations and bias\n\nNot currently intended for public consumption...", "## Training data", "## Eval results" ]
[ "TAGS\n#onnx #region-us \n", "## Model description\n\nIn progress model for detecting 'fake' flysheets", "## Intended uses & limitations\n\nNot currently intended for public consumption...", "## Limitations and bias\n\nNot currently intended for public consumption...", "## Training data", "## Eval results" ]
[ 10, 16, 18, 15, 3, 4 ]
[ "passage: TAGS\n#onnx #region-us \n## Model description\n\nIn progress model for detecting 'fake' flysheets## Intended uses & limitations\n\nNot currently intended for public consumption...## Limitations and bias\n\nNot currently intended for public consumption...## Training data## Eval results" ]
[ -0.014925612136721611, 0.03579648211598396, -0.0014823222300037742, 0.11047172546386719, 0.020661216229200363, -0.029126392677426338, 0.21817506849765778, 0.07053367793560028, 0.04330822452902794, 0.01542435772716999, 0.2382180541753769, -0.025774303823709488, 0.05164234712719917, 0.14012707769870758, -0.09578687697649002, -0.0655488446354866, 0.038894157856702805, -0.04377437382936478, 0.11440983414649963, 0.12076389789581299, 0.08415196090936661, -0.011148346588015556, 0.07438734173774719, 0.08418302983045578, -0.044522032141685486, -0.0666598528623581, 0.05277232453227043, -0.135671004652977, 0.07994210720062256, 0.08192245662212372, 0.15105144679546356, -0.01999461092054844, 0.03614569455385208, -0.21642670035362244, 0.04739236831665039, 0.014794488437473774, -0.06999366730451584, 0.042706526815891266, 0.005053631495684385, -0.02331324853003025, 0.21601948142051697, 0.06213655322790146, -0.005188946612179279, 0.05955791473388672, -0.15126962959766388, 0.04096851497888565, -0.06785654276609421, -0.12696771323680878, -0.06418454647064209, 0.0999038815498352, -0.01867644488811493, 0.2736780345439911, -0.05073404684662819, 0.05333796888589859, 0.09414630383253098, -0.10852377116680145, 0.030591139569878578, 0.06514213234186172, -0.049559541046619415, -0.03613899275660515, -0.041334010660648346, 0.05469893291592598, 0.03189540654420853, 0.036392319947481155, 0.014231792651116848, -0.023925138637423515, -0.05375644937157631, -0.0030634081922471523, -0.05924258381128311, -0.100916787981987, 0.16621187329292297, 0.14042247831821442, 0.008022706024348736, -0.21063141524791718, -0.04635709524154663, 0.06739556789398193, 0.07911482453346252, 0.016250507906079292, -0.07489311695098877, 0.02292613498866558, -0.0032210401259362698, -0.11176637560129166, -0.0791330635547638, -0.006755730602890253, 0.030365820974111557, 0.01049746572971344, -0.03288058564066887, 0.09293510764837265, -0.16628852486610413, 0.005757222883403301, 0.011450272984802723, -0.11034628003835678, 0.011842695064842701, -0.16314797103405, 0.09772360324859619, 0.014004098251461983, 0.021162113174796104, 0.022242389619350433, 0.13395211100578308, 0.079398013651371, 0.0502055399119854, -0.006223698612302542, -0.05101493373513222, 0.07107914239168167, 0.1115572527050972, 0.012683555483818054, -0.057609833776950836, 0.09323500841856003, 0.04156563803553581, 0.059831537306308746, 0.008117270655930042, -0.04818490147590637, -0.07366478443145752, 0.05554599314928055, -0.04427146911621094, 0.07561256736516953, -0.06540539860725403, -0.04796399548649788, -0.11135164648294449, 0.012980654835700989, 0.1129676103591919, -0.01682155206799507, -0.08531098067760468, -0.0084952088072896, -0.049493372440338135, -0.038137491792440414, 0.10918401926755905, 0.045207470655441284, 0.056603290140628815, 0.009665058925747871, -0.07384717464447021, 0.02452525869011879, -0.039681848138570786, -0.03723275288939476, -0.0032756850123405457, -0.06517230719327927, 0.11470206826925278, -0.11908956617116928, -0.2071080058813095, -0.0628340020775795, -0.03572461009025574, -0.05510089918971062, 0.03537074849009514, -0.032311733812093735, -0.07874356955289841, -0.08427316695451736, -0.0020150900818407536, -0.021944792941212654, -0.13861246407032013, 0.060915470123291016, -0.10017867386341095, 0.01602448709309101, 0.01812431588768959, 0.004170121159404516, -0.16360792517662048, -0.01650894805788994, -0.0015120760072022676, 0.061293479055166245, -0.11740852147340775, 0.11944090574979782, -0.07514891028404236, -0.12406331300735474, -0.0547674298286438, -0.013066479004919529, 0.03260643035173416, 0.26042020320892334, -0.18307967483997345, 0.02397647686302662, 0.061435043811798096, -0.08735378086566925, -0.1456345021724701, 0.04317984730005264, -0.1107167974114418, 0.2496298998594284, 0.01367973629385233, 0.19266493618488312, -0.06425483524799347, -0.1476694941520691, 0.0639982596039772, 0.07259298115968704, -0.1546386182308197, 0.0845886766910553, 0.06254761666059494, -0.10961707681417465, -0.12009231746196747, -0.06156099960207939, 0.07235231250524521, 0.0401102676987648, -0.06393758952617645, -0.11849046498537064, -0.0447600856423378, -0.09841223061084747, 0.04548086225986481, -0.019902128726243973, 0.047452524304389954, -0.007073822896927595, -0.0444595105946064, -0.15602250397205353, -0.025755643844604492, 0.0711972713470459, -0.0060722134076058865, -0.14893873035907745, 0.0254148431122303, 0.039340246468782425, -0.0366673618555069, -0.08775493502616882, -0.10249464213848114, -0.045581407845020294, -0.16431760787963867, 0.07367342710494995, 0.03322512283921242, 0.03193368390202522, 0.016275864094495773, -0.025651777163147926, 0.0374608114361763, -0.1468343287706375, 0.04345496743917465, -0.004778142087161541, -0.09911684691905975, 0.05838364362716675, -0.05083919316530228, -0.08537666499614716, -0.2403045892715454, 0.004499976523220539, 0.05845179408788681, 0.004516037181019783, 0.05386502668261528, 0.015640515834093094, 0.13126492500305176, -0.024849783629179, 0.023362699896097183, -0.10841011255979538, 0.046886980533599854, -0.0014148845802992582, -0.19672349095344543, -0.07032544910907745, -0.03768205642700195, 0.21093006432056427, 0.10712238401174545, -0.15609344840049744, -0.07088366150856018, 0.07177643477916718, -0.02998216822743416, 0.042651914060115814, -0.1595957726240158, 0.12794294953346252, 0.08704914152622223, -0.028746917843818665, 0.06704281270503998, -0.13263612985610962, -0.002238941378891468, 0.09398148208856583, -0.03801136091351509, -0.09539874643087387, 0.02385588549077511, 0.10981561243534088, -0.12302251905202866, 0.026082035154104233, 0.12991872429847717, 0.08538864552974701, 0.07158567756414413, 0.02451537922024727, -0.06828014552593231, -0.0363592728972435, -0.02863178960978985, -0.01574854366481304, 0.1251489222049713, -0.07764063030481339, 0.10959561914205551, 0.08189455419778824, 0.047950223088264465, 0.0644630417227745, -0.15350574254989624, -0.14061351120471954, -0.024590156972408295, -0.06701669096946716, -0.1657395213842392, 0.10347039997577667, -0.01690596528351307, 0.060077279806137085, -0.047764845192432404, -0.030862051993608475, 0.11897003650665283, -0.01119662169367075, -0.11868149787187576, 0.11259287595748901, -0.02997651696205139, -0.17980313301086426, -0.17894068360328674, 0.0007542000967077911, -0.09061472117900848, 0.06605791300535202, 0.08028912544250488, -0.0812387689948082, -0.05046277493238449, -0.08645026385784149, -0.021412834525108337, -0.007589655928313732, 0.028186339884996414, 0.012466785497963428, 0.08584361523389816, 0.05137176066637039, -0.09455247968435287, -0.005853817332535982, 0.010166957974433899, 0.026517892256379128, 0.03588560223579407, -0.006862738635390997, 0.0839097797870636, 0.0417606346309185, 0.05572174862027168, -0.009595009498298168, -0.07783132046461105, 0.3203533887863159, -0.0720653086900711, -0.09722106903791428, 0.1254367232322693, -0.10780017077922821, 0.02222580276429653, 0.04357123002409935, 0.08259336650371552, -0.1757744550704956, 0.03448663651943207, 0.015957841649651527, -0.1297469288110733, -0.2513277530670166, -0.07568635046482086, 0.04684839025139809, -0.02927412837743759, 0.056391965597867966, 0.09154027700424194, 0.20325817167758942, 0.12435776740312576, 0.09358002990484238, -0.037874091416597366, 0.05775386095046997, 0.02146339789032936, 0.013812495395541191, 0.013410990126430988, 0.011196332052350044, -0.08335492759943008, 0.04507993906736374, 0.09247884154319763, -0.07253410667181015, 0.25475558638572693, 0.0986010804772377, -0.042386893182992935, 0.18044708669185638, 0.04615125060081482, 0.10454528033733368, 0.04876726493239403, 0.09855011850595474, -0.026644883677363396, -0.024487171322107315, -0.0370904766023159, -0.010206639766693115, 0.05799909681081772, -0.03944990783929825, -0.04764491319656372, 0.017029505223035812, -0.057919181883335114, 0.07738731056451797, -0.047051768749952316, 0.11265861988067627, -0.1391601413488388, -0.03228648379445076, 0.005882578436285257, -0.02747119404375553, -0.03638877719640732, 0.14744244515895844, 0.028018638491630554, -0.21833443641662598, 0.07290632277727127, -0.043980251997709274, 0.1173420175909996, -0.07188774645328522, 0.050446074455976486, 0.030518576502799988, -0.20482607185840607, -0.07695043087005615, 0.061408158391714096, -0.22024448215961456, 0.37255656719207764, 0.03063533455133438, 0.08728444576263428, -0.14222745597362518, -0.04470439627766609, 0.013084801845252514, -0.06497137993574142, 0.2904675602912903, -0.020824991166591644, -0.015226982533931732, -0.061765156686306, -0.05628744885325432, 0.0018965787021443248, 0.002093737246468663, 0.10828173160552979, -0.02532976120710373, 0.053020965307950974, 0.06901346892118454, -0.008528642356395721, -0.10215850919485092, -0.25035756826400757, -0.051168400794267654, 0.011389682069420815, 0.0439373254776001, -0.028958100825548172, 0.02341991849243641, -0.025352591648697853, -0.22927652299404144, 0.008325613103806973, -0.0926237404346466, -0.047956205904483795, -0.05766786262392998, 0.08209825307130814, 0.08496277034282684, 0.0024697501212358475, 0.012956080958247185, -0.032802969217300415, -0.05636095255613327, -0.03824509680271149, -0.036210812628269196, 0.0500263012945652, -0.07365231961011887, -0.169921875, 0.006330954842269421, 0.02904391847550869, 0.12582449615001678, 0.020492572337388992, -0.0722000002861023, 0.018701115623116493, -0.062170613557100296, -0.20991845428943634, 0.12077762931585312, 0.03285660222172737, -0.031106524169445038, 0.12760458886623383, 0.11566386371850967, -0.015400934964418411, -0.07382369041442871, -0.023613903671503067, 0.011209778487682343, 0.38699275255203247, -0.03796284645795822, 0.10803509503602982, 0.1166234239935875, -0.06472259014844894, -0.10239957273006439, 0.017802830785512924, -0.13336774706840515, 0.01270732469856739, 0.10284901410341263, -0.09208859503269196, 0.01988171599805355, 0.12253694236278534, 0.015325082466006279, 0.09529528766870499, -0.2618395984172821, -0.1449950486421585, 0.12229093164205551, -0.04088456928730011, 0.2654567360877991, -0.03906645253300667, -0.05554860830307007, -0.005882118828594685, -0.020389754325151443, 0.04582720622420311, -0.129938542842865, 0.0212809257209301, 0.0693986788392067, 0.040404561907052994, -0.003372768871486187, -0.00626307213678956, 0.2666301131248474, 0.036265213042497635, 0.16114108264446259, -0.05706126615405083, -0.1525324285030365, 0.19680172204971313, 0.01746710017323494, 0.003638516878709197, 0.1395532190799713, 0.06303229928016663, -0.12453215569257736, -0.03890347480773926, -0.03619357943534851, 0.13733568787574768, 0.034968387335538864, -0.041291892528533936, -0.1418980211019516, 0.0008709488902240992, 0.02247772179543972, 0.0519375242292881, 0.24162498116493225, -0.10056446492671967, 0.02853516675531864, 0.05752528831362724, 0.10452726483345032, 0.036407142877578735, 0.0725458636879921, 0.0010893071303144097, -0.07390351593494415, 0.05071818083524704, -0.07395126670598984, -0.05090897157788277, 0.06704659759998322, 0.03169303759932518, 0.021607831120491028, 0.056819360703229904, -0.026833007112145424, 0.16541419923305511, 0.05047979578375816, -0.09347183257341385, -0.0804210975766182, -0.027312075719237328, -0.028704984113574028, -0.021460114046931267, -0.036065202206373215, 0.07407712191343307, 0.0026191570796072483, 0.015449084341526031, -0.0548032745718956, 0.03797728568315506, -0.07050052285194397, -0.0028621682431548834, 0.02567465603351593, -0.04061943292617798, -0.11809395253658295, 0.13333839178085327, 0.045258376747369766, -0.02568701095879078, -0.0029020491056144238, -0.11289087682962418, -0.11204603314399719, -0.03925437852740288, -0.09624474495649338, 0.13182100653648376, -0.07899237424135208, -0.07197098433971405, -0.051837287843227386, 0.0069849989376962185, -0.03141862154006958, 0.2076798528432846, 0.12104304134845734, 0.03258534520864487, -0.04803018271923065, -0.035683728754520416, -0.04686592519283295, 0.003861665027216077, 0.034278012812137604, -0.09276022762060165, -0.15952168405056, -0.08929548412561417, 0.08906252682209015, 0.10679209977388382, -0.06070851534605026, -0.00008636894199298695, -0.1228921115398407, 0.013125617988407612, -0.0625922903418541, 0.06810875982046127, -0.07465973496437073, 0.03714963048696518, 0.006223653443157673, -0.04299137368798256, -0.09304030239582062, -0.003282067598775029, -0.04501698538661003, 0.042934153228998184, 0.06567221134901047, 0.08961652964353561, -0.04336503893136978, -0.0024807697627693415, 0.073045514523983, -0.029560862109065056, 0.09884829074144363, 0.060967542231082916, -0.10036436468362808, -0.002365677384659648, -0.08551283925771713, 0.02607773244380951, 0.053475648164749146, -0.026921674609184265, -0.014500088058412075, -0.07701252400875092, -0.0021158193703740835, -0.022234538570046425, -0.01974937878549099, 0.07136166840791702, 0.007303393445909023, -0.07767947018146515, 0.008657308295369148, 0.19091273844242096, -0.012773234397172928, 0.0008799927309155464, -0.044025957584381104, 0.10395926982164383, -0.021956998854875565, 0.1750534474849701, 0.024670671671628952, 0.07154710590839386, -0.015631692484021187, -0.0037505533546209335, -0.05441335588693619, -0.018692398443818092, -0.018960854038596153, 0.014146482571959496, 0.024384459480643272, -0.03557053953409195, 0.4253113269805908, 0.029940618202090263, 0.07166369259357452, 0.059933848679065704, 0.0812191292643547, -0.0949840322136879, -0.016310743987560272, 0.23411764204502106, 0.01965811476111412, 0.010907519608736038, -0.024675512686371803, 0.0032032006420195103, -0.025643985718488693, -0.1837429404258728, 0.2248663306236267, 0.07764339447021484, -0.04110325500369072, 0.07266415655612946, -0.0717000663280487, -0.06211020424962044, -0.0006753679481334984, 0.050191137939691544, 0.09979851543903351, 0.022504352033138275, -0.024977389723062515, -0.1343136429786682, 0.12026774138212204, -0.03910861164331436, 0.04566740244626999, 0.02036225236952305, -0.05779491364955902, -0.15856815874576569, -0.10320794582366943, -0.08863220363855362, -0.06944036483764648, 0.08004048466682434, -0.011272907257080078, 0.0022441197652369738, 0.1862052083015442, -0.04459758102893829, -0.07644950598478317, 0.12252263724803925, -0.1668989658355713, 0.019927771762013435, -0.006853262893855572, -0.02524520270526409, -0.002320295199751854, -0.1525488644838333, -0.05054363235831261, -0.01508311927318573, -0.008984864689409733, -0.03424118831753731, -0.012502718716859818, 0.009096956811845303, -0.043583255261182785, -0.15142588317394257, -0.03489202633500099, -0.049618326127529144, 0.06599253416061401, -0.026784144341945648, 0.11797680705785751, 0.07180170714855194, -0.016025133430957794, 0.022850489243865013, 0.1949375569820404, -0.017704851925373077, -0.07638348639011383, -0.17881125211715698, 0.12802264094352722, -0.029868846759200096, 0.05201202258467674, -0.046935636550188065, -0.07621701061725616, 0.045856352895498276, 0.14641448855400085, 0.16858436167240143, -0.09772505611181259, -0.008008535951375961, 0.00997323077172041, 0.025710538029670715, 0.04694514721632004, -0.004848547279834747, -0.019693074747920036, 0.08740599453449249, -0.08491561561822891, -0.11498963832855225, -0.03198903799057007, -0.007202457636594772, -0.03756139799952507, -0.01728155091404915, 0.0632011666893959, -0.04857300594449043, -0.08809331804513931, 0.18736544251441956, -0.194889634847641, 0.022108588367700577, 0.07241018861532211, -0.035433072596788406, -0.05620603263378143, 0.050583939999341965, -0.1299254149198532, 0.02308930829167366, 0.056683383882045746, -0.06337844580411911, -0.04677732661366463, -0.020693937316536903, 0.03765498846769333, -0.09324443340301514, -0.028558460995554924, 0.058612409979104996, 0.027271850034594536, 0.25804081559181213, 0.01014278270304203, 0.15400537848472595, 0.050974927842617035, -0.007540076971054077, -0.10973408073186874, 0.11067833751440048, 0.059093642979860306, 0.03722352162003517, -0.06109379976987839, -0.041011322289705276, 0.014807241968810558, 0.022969374433159828, 0.023955386132001877, -0.15151822566986084, 0.06140157952904701, 0.0528232604265213, -0.0548035204410553, -0.0002611835370771587, 0.02789687179028988, -0.0934198871254921, 0.06422346830368042, -0.0023343032225966454, -0.09246738255023956, 0.029896683990955353, 0.0658247247338295, 0.15356123447418213, 0.041673045605421066, 0.004399215802550316, -0.04937044903635979, -0.08837062120437622, 0.018661657348275185, -0.010458323173224926, 0.016572050750255585, -0.10645250976085663, -0.011693552136421204, 0.04913155362010002, 0.009308070875704288, -0.009711423888802528, 0.026935065165162086, -0.01505828183144331, -0.040485214442014694, -0.013820224441587925, -0.012067296542227268, 0.0032418991904705763, 0.048545777797698975, -0.10492805391550064, -0.10749161243438721 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flyswot_iiif This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1280 - F1: 0.0034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 8.5184 | 0.26 | 500 | 7.9280 | 0.0005 | | 7.7409 | 0.52 | 1000 | 7.5824 | 0.0007 | | 7.4649 | 0.78 | 1500 | 7.3841 | 0.0010 | | 7.3285 | 1.04 | 2000 | 7.2652 | 0.0012 | | 7.1404 | 1.3 | 2500 | 7.1559 | 0.0014 | | 7.0322 | 1.56 | 3000 | 7.0551 | 0.0016 | | 6.9197 | 1.82 | 3500 | 6.9449 | 0.0019 | | 6.7822 | 2.09 | 4000 | 6.8773 | 0.0018 | | 6.6506 | 2.35 | 4500 | 6.7980 | 0.0020 | | 6.5811 | 2.61 | 5000 | 6.7382 | 0.0022 | | 6.538 | 2.87 | 5500 | 6.6582 | 0.0022 | | 6.4136 | 3.13 | 6000 | 6.6013 | 0.0024 | | 6.3325 | 3.39 | 6500 | 6.5369 | 0.0024 | | 6.2566 | 3.65 | 7000 | 6.4875 | 0.0025 | | 6.2285 | 3.91 | 7500 | 6.4342 | 0.0027 | | 6.1281 | 4.17 | 8000 | 6.4066 | 0.0027 | | 6.0762 | 4.43 | 8500 | 6.3674 | 0.0027 | | 6.0309 | 4.69 | 9000 | 6.3336 | 0.0027 | | 6.0123 | 4.95 | 9500 | 6.2932 | 0.0030 | | 5.9089 | 5.21 | 10000 | 6.2835 | 0.0029 | | 5.8901 | 5.47 | 10500 | 6.2481 | 0.0030 | | 5.86 | 5.74 | 11000 | 6.2295 | 0.0030 | | 5.8586 | 6.0 | 11500 | 6.2068 | 0.0033 | | 5.7768 | 6.26 | 12000 | 6.1937 | 0.0031 | | 5.7591 | 6.52 | 12500 | 6.1916 | 0.0032 | | 5.7443 | 6.78 | 13000 | 6.1579 | 0.0033 | | 5.7125 | 7.04 | 13500 | 6.1478 | 0.0033 | | 5.6751 | 7.3 | 14000 | 6.1379 | 0.0035 | | 5.6648 | 7.56 | 14500 | 6.1304 | 0.0035 | | 5.6644 | 7.82 | 15000 | 6.1280 | 0.0034 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "flyswot_iiif", "results": []}]}
image-classification
davanstrien/flyswot_iiif
[ "transformers", "pytorch", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-base-224-22k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
flyswot\_iiif ============= This model is a fine-tuned version of facebook/convnext-base-224-22k on the None dataset. It achieves the following results on the evaluation set: * Loss: 6.1280 * F1: 0.0034 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 666 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 8 * mixed\_precision\_training: Native AMP * label\_smoothing\_factor: 0.1 ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ 69, 126, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ -0.14215026795864105, 0.15182648599147797, -0.00252900249324739, 0.11424611508846283, 0.14684666693210602, 0.044486191123723984, 0.11303313076496124, 0.14999325573444366, -0.07840926945209503, 0.06369078159332275, 0.11465484648942947, 0.11465658247470856, 0.05881327763199806, 0.1748097538948059, -0.047350309789180756, -0.2579699158668518, 0.017842400819063187, 0.030251942574977875, -0.04494164511561394, 0.12526275217533112, 0.0818880945444107, -0.1276693046092987, 0.09044778347015381, -0.003597128437831998, -0.20169155299663544, -0.01824396662414074, -0.010769891552627087, -0.04759589955210686, 0.11932782083749771, 0.028684403747320175, 0.10539846867322922, 0.020603686571121216, 0.09634862840175629, -0.17492030560970306, 0.007589109241962433, 0.05867839977145195, -0.009820438921451569, 0.0908869281411171, 0.07726627588272095, -0.0028741646092385054, 0.12726332247257233, -0.08179814368486404, 0.04333342984318733, 0.01206563413143158, -0.12439446151256561, -0.248060941696167, -0.09589087963104248, 0.09398289024829865, 0.0893847718834877, 0.08454199135303497, -0.003202937776222825, 0.0771012008190155, -0.07573984563350677, 0.0887858048081398, 0.2222977578639984, -0.23966558277606964, -0.06530138105154037, 0.023782258853316307, -0.016324082389473915, 0.028633402660489082, -0.09609886258840561, -0.03693290054798126, 0.034394387155771255, 0.0472981333732605, 0.10349658131599426, -0.006042012479156256, -0.08296532183885574, -0.022617202252149582, -0.12919077277183533, -0.07782445102930069, 0.1457761824131012, 0.07201124727725983, -0.03259854391217232, -0.042370498180389404, -0.05606633052229881, -0.17597486078739166, -0.046214181929826736, 0.029849635437130928, 0.03425593301653862, -0.037292156368494034, -0.06681796163320541, 0.012830101884901524, -0.08588332682847977, -0.060237813740968704, -0.03462422639131546, 0.09535501897335052, 0.04852926731109619, 0.03744788467884064, 0.000673199538141489, 0.11584782600402832, -0.0055063823238015175, -0.15827220678329468, 0.0009550422546453774, 0.009556961245834827, -0.009761370718479156, -0.01829930953681469, -0.03917646035552025, 0.026410944759845734, 0.014359560795128345, 0.13523148000240326, -0.09596428275108337, 0.052810631692409515, 0.014310115948319435, 0.04530204460024834, -0.08428987115621567, 0.14366894960403442, -0.05770202726125717, -0.008919060230255127, 0.01404448039829731, 0.09740816801786423, 0.020599348470568657, -0.010647168383002281, -0.10315906256437302, -0.0091292979195714, 0.12694446742534637, 0.007379830349236727, -0.04127781093120575, 0.05013183876872063, -0.05943389981985092, -0.04025827348232269, 0.07861604541540146, -0.09594472497701645, 0.029070934280753136, 0.019216476008296013, -0.10351664572954178, -0.027266131713986397, 0.03948201611638069, -0.007874549366533756, -0.023066876456141472, 0.08886245638132095, -0.07508203387260437, 0.019652439281344414, -0.09026278555393219, -0.10303253680467606, 0.032229233533144, -0.08997906744480133, 0.0068311248905956745, -0.09233506768941879, -0.18045036494731903, -0.03510895371437073, 0.05889005959033966, -0.04411228001117706, -0.06404145061969757, -0.04496782645583153, -0.0873948335647583, 0.028139440342783928, -0.013228463008999825, 0.10950204730033875, -0.07097111642360687, 0.10607260465621948, 0.015570834279060364, 0.07232581079006195, -0.0332501158118248, 0.06243902072310448, -0.08004949241876602, 0.03643963858485222, -0.18700803816318512, 0.06792447715997696, -0.06348786503076553, 0.04874604567885399, -0.0860842689871788, -0.12279384583234787, 0.010870790109038353, -0.024814778938889503, 0.09153476357460022, 0.11317093670368195, -0.16169747710227966, -0.07145581394433975, 0.14809276163578033, -0.1015007421374321, -0.11852914094924927, 0.1033208891749382, -0.049933332949876785, -0.03426061198115349, 0.03607594594359398, 0.1552218645811081, 0.09620431810617447, -0.07629398256540298, -0.021281464025378227, -0.008939369581639767, 0.06715381890535355, -0.06298009306192398, 0.07992652803659439, 0.0224316343665123, 0.026164138689637184, 0.031180329620838165, -0.05149879679083824, 0.06289225816726685, -0.10742904990911484, -0.09580282866954803, -0.04323643445968628, -0.07756028324365616, 0.021241607144474983, 0.08890403807163239, 0.04143587872385979, -0.08207610249519348, -0.08764471858739853, 0.030395295470952988, 0.11231599748134613, -0.07780739665031433, 0.009275185875594616, -0.048190727829933167, 0.12165549397468567, -0.04052616283297539, -0.02316971682012081, -0.18813908100128174, -0.0518752783536911, 0.02284788154065609, -0.023248739540576935, -0.001596181420609355, -0.02694402076303959, 0.04888712614774704, 0.08265574276447296, -0.04729006066918373, -0.05182323604822159, -0.07947167754173279, -0.01164818461984396, -0.0917469784617424, -0.20637530088424683, -0.07999398559331894, -0.02035248838365078, 0.17168289422988892, -0.209553524851799, 0.02581988088786602, 0.013391735032200813, 0.10567332804203033, 0.013935336843132973, -0.026517197489738464, -0.022590432316064835, 0.07189920544624329, -0.035902831703424454, -0.07155769318342209, 0.07896588742733002, 0.01697523705661297, -0.056042131036520004, -0.035496070981025696, -0.0737638920545578, 0.13455690443515778, 0.1303805112838745, -0.07348610460758209, -0.09040592610836029, -0.03639868274331093, -0.07583398371934891, -0.03280505910515785, -0.041951391845941544, 0.032589320093393326, 0.13229814171791077, 0.0016407815273851156, 0.13982446491718292, -0.08255373686552048, -0.028285754844546318, 0.04215800017118454, -0.009092637337744236, 0.003661927068606019, 0.12276842445135117, 0.12456668168306351, -0.08611279726028442, 0.15586407482624054, 0.11910300701856613, -0.06044195592403412, 0.11902035772800446, -0.05631737783551216, -0.08818862587213516, -0.024020565673708916, -0.008786478079855442, -0.006722341291606426, 0.13830794394016266, -0.11692584306001663, -0.010378530248999596, 0.04043472930788994, 0.010974141769111156, 0.021479515358805656, -0.2205491065979004, -0.02389325201511383, 0.02018330618739128, -0.06335142999887466, -0.0085057457908988, -0.023130930960178375, 0.029222700744867325, 0.12091155350208282, 0.010538854636251926, -0.0931352972984314, 0.01912788115441799, -0.009679715149104595, -0.0827663317322731, 0.20935030281543732, -0.08997262269258499, -0.1880282759666443, -0.11023421585559845, -0.021824326366186142, -0.0647469311952591, -0.0038333742413669825, 0.04200838506221771, -0.06800083816051483, -0.026957044377923012, -0.07242511957883835, -0.01729939877986908, -0.0020683419425040483, 0.021446216851472855, 0.007305443752557039, 0.01344803161919117, 0.06318535655736923, -0.08625884354114532, -0.020421763882040977, -0.04596259817481041, -0.05200784280896187, 0.060207873582839966, 0.015408161096274853, 0.09777600318193436, 0.1347728967666626, -0.025811022147536278, 0.03653142228722572, -0.026319595053792, 0.23249535262584686, -0.062022268772125244, -0.009802401065826416, 0.1406490057706833, 0.006105327047407627, 0.07019731402397156, 0.13706840574741364, 0.0561823733150959, -0.08605767786502838, -0.00614294083788991, 0.020091552287340164, -0.03536783158779144, -0.19185832142829895, -0.060260094702243805, -0.057571690529584885, -0.010295253247022629, 0.13301517069339752, 0.029003366827964783, 0.014379327185451984, 0.07763484865427017, -0.0018731170566752553, 0.04383720085024834, -0.02246970124542713, 0.06998081505298615, 0.09929781407117844, 0.054979357868433, 0.12956427037715912, -0.03676699474453926, -0.018866147845983505, 0.05769280344247818, -0.004250928293913603, 0.26608559489250183, -0.036417197436094284, 0.07494674623012543, 0.06344183534383774, 0.20032671093940735, 0.01169966347515583, 0.059321943670511246, -0.016226785257458687, -0.00881640613079071, -0.01254260167479515, -0.05139104276895523, -0.051280103623867035, 0.016473544761538506, -0.047381218522787094, 0.05183021351695061, -0.1474037766456604, -0.009701835922896862, 0.03453985974192619, 0.2788054049015045, 0.07341612875461578, -0.36430588364601135, -0.09592821449041367, -0.014172649011015892, -0.003193463198840618, -0.04110832139849663, 0.003546107793226838, 0.09923261404037476, -0.08973652124404907, 0.06697040796279907, -0.06648950278759003, 0.09740480035543442, -0.06460295617580414, 0.010698863305151463, 0.09945151209831238, 0.06671074777841568, 0.021049534901976585, 0.07405712455511093, -0.24841240048408508, 0.2876911163330078, 0.0026194974780082703, 0.05097147822380066, -0.0682063102722168, 0.01576332002878189, 0.04842513054609299, 0.06119031459093094, 0.07819196581840515, -0.0004874634905718267, -0.07611119002103806, -0.2113301008939743, -0.08632434904575348, 0.020033884793519974, 0.07094284892082214, -0.034529924392700195, 0.09655430167913437, -0.010036652907729149, -0.00735965883359313, 0.04028400406241417, 0.006756022572517395, -0.07960488647222519, -0.09713783860206604, 0.0030939027201384306, 0.004225949756801128, -0.016661016270518303, -0.07183991372585297, -0.1121865063905716, -0.06939713656902313, 0.14587217569351196, -0.01905948482453823, -0.054633624851703644, -0.12315337359905243, 0.11681592464447021, 0.10031230747699738, -0.09371331334114075, 0.05759606882929802, -0.01088531780987978, 0.09918805956840515, 0.0298176147043705, -0.0989794135093689, 0.08078403770923615, -0.07046462595462799, -0.1930784434080124, -0.04853217303752899, 0.11608854681253433, 0.036498408764600754, 0.057967547327280045, -0.003885492915287614, 0.032147910445928574, -0.03014993481338024, -0.08841780573129654, 0.03898967429995537, 0.017353178933262825, 0.10352957248687744, 0.05069006606936455, -0.062323834747076035, -0.024359527975320816, -0.04939375817775726, -0.013072815723717213, 0.1413383185863495, 0.24324578046798706, -0.10540412366390228, 0.00957806408405304, 0.04191555455327034, -0.06334669888019562, -0.19137325882911682, 0.03373784199357033, 0.10134021937847137, 0.011759975925087929, -0.0027761764358729124, -0.20227758586406708, 0.0839230865240097, 0.12673833966255188, -0.02418789453804493, 0.11196443438529968, -0.3191477358341217, -0.11281825602054596, 0.09980688244104385, 0.13389894366264343, 0.08773593604564667, -0.15468041598796844, -0.02861676923930645, -0.01101781614124775, -0.1458008885383606, 0.15777860581874847, -0.04280171915888786, 0.11219654977321625, -0.04785947874188423, 0.05815325677394867, 0.011477542109787464, -0.054209448397159576, 0.1347023844718933, 0.02926281839609146, 0.1042562797665596, -0.05690625682473183, -0.01507372222840786, 0.04924895614385605, -0.0638417899608612, 0.036912839859724045, -0.04065760225057602, 0.052358996123075485, -0.1477784365415573, -0.0014440709492191672, -0.10058482736349106, 0.03609707951545715, -0.03481501713395119, -0.03214459866285324, -0.05255613848567009, 0.05633383244276047, 0.05385347083210945, -0.00020770341507159173, 0.12246836721897125, 0.027295667678117752, 0.14861857891082764, 0.11696029454469681, 0.03366883844137192, -0.05662441626191139, -0.0685143992304802, -0.034627676010131836, -0.01773654669523239, 0.05667679384350777, -0.13764983415603638, 0.019531145691871643, 0.15735673904418945, 0.03503195941448212, 0.14200900495052338, 0.07205837219953537, -0.028327424079179764, 0.013113164342939854, 0.07067718356847763, -0.1492164433002472, -0.05355873331427574, -0.012210697866976261, -0.018265152350068092, -0.10896871984004974, 0.0236969031393528, 0.0857972651720047, -0.07407752424478531, -0.013228965923190117, -0.011381600052118301, 0.02734002284705639, -0.0324464812874794, 0.1893637627363205, 0.0774180218577385, 0.05285990238189697, -0.11051871627569199, 0.09383206069469452, 0.05666066333651543, -0.09874793887138367, 0.00810756254941225, 0.08176443725824356, -0.09212509542703629, -0.04356849566102028, 0.04187930375337601, 0.15240134298801422, -0.06369251012802124, -0.062223564833402634, -0.12084896117448807, -0.1185159757733345, 0.09686129540205002, 0.1344951093196869, 0.09848643839359283, 0.024028746411204338, -0.009611355140805244, -0.005940135568380356, -0.10924850404262543, 0.09060146659612656, 0.04448578879237175, 0.06766612827777863, -0.1359877735376358, 0.13162460923194885, 0.02100329101085663, 0.05625370517373085, -0.020302437245845795, 0.01563745178282261, -0.10442017763853073, 0.0061852699145674706, -0.10244284570217133, 0.02268814668059349, -0.04853355512022972, 0.002862066961824894, -0.012992773205041885, -0.05247475206851959, -0.05573317036032677, 0.021339507773518562, -0.11027912050485611, -0.03833621367812157, 0.00563633581623435, 0.04694564267992973, -0.1237027496099472, -0.04692833125591278, 0.010076774284243584, -0.08400086313486099, 0.08495486527681351, 0.05274290591478348, 0.02996634878218174, 0.01782318390905857, -0.09315543621778488, -0.017284199595451355, 0.06015565246343613, 0.02076658420264721, 0.052013833075761795, -0.11579541116952896, 0.023115461692214012, -0.0032984870485961437, 0.0009292591130360961, 0.012591047212481499, 0.09344575554132462, -0.13709211349487305, -0.013804351910948753, -0.03067396953701973, -0.05933772772550583, -0.06293538957834244, 0.06945431232452393, 0.10625335574150085, 0.0350203774869442, 0.16339106857776642, -0.07640733569860458, 0.04072956368327141, -0.24606017768383026, -0.018287107348442078, -0.015804599970579147, -0.0983106940984726, -0.10158811509609222, -0.04255252331495285, 0.08496294170618057, -0.05042688176035881, 0.11623173952102661, 0.028979413211345673, 0.04931645467877388, 0.017254620790481567, -0.015302392654120922, -0.009531894698739052, 0.028347566723823547, 0.16730380058288574, 0.034385643899440765, -0.029917342588305473, 0.08637990802526474, 0.03911174461245537, 0.0801941454410553, 0.1016809493303299, 0.19295983016490936, 0.13784153759479523, 0.03503505885601044, 0.07493296265602112, 0.07894233614206314, -0.0770588219165802, -0.13395071029663086, 0.05482166260480881, -0.04219444841146469, 0.12994880974292755, -0.02049848809838295, 0.19360589981079102, 0.06857459247112274, -0.19426746666431427, 0.06569648534059525, -0.0302529726177454, -0.07788211852312088, -0.0941540077328682, -0.07113881409168243, -0.08973000198602676, -0.14682693779468536, 0.008183153346180916, -0.12582845985889435, 0.013712380081415176, 0.13155171275138855, 0.009138454683125019, -0.012096666730940342, 0.09741164743900299, 0.027417287230491638, 0.014637722633779049, 0.08611667901277542, 0.024200711399316788, -0.02333674021065235, -0.08254452794790268, -0.08045633137226105, 0.03275131806731224, -0.0052826981991529465, 0.05097164213657379, -0.047714728862047195, -0.027459491044282913, 0.04439127817749977, 0.002137374132871628, -0.10034617781639099, 0.01815188303589821, -0.008462514728307724, 0.071804478764534, 0.06346561759710312, 0.006970374379307032, 0.035238392651081085, -0.009554270654916763, 0.19819438457489014, -0.060512643307447433, -0.04683813452720642, -0.11051103472709656, 0.22920900583267212, 0.0159484650939703, -0.036471929401159286, 0.056189607828855515, -0.07519493252038956, -0.011362651363015175, 0.17922358214855194, 0.173201784491539, -0.07543697208166122, -0.00839546974748373, 0.019847797229886055, -0.014840700663626194, -0.014357568696141243, 0.11842472106218338, 0.12833793461322784, 0.06424983590841293, -0.08382241427898407, -0.0488169863820076, -0.06484317779541016, -0.011892748065292835, -0.03504464402794838, 0.04395880922675133, 0.023877276107668877, 0.00044258518028073013, -0.049388617277145386, 0.056037452071905136, -0.04348256438970566, -0.08311427384614944, 0.10232681781053543, -0.22523774206638336, -0.19107720255851746, -0.01872910000383854, 0.05222943797707558, 0.029593052342534065, 0.046321917325258255, -0.035535987466573715, 0.006286015268415213, 0.09276173263788223, -0.024837054312229156, -0.0825740396976471, -0.12298799306154251, 0.07913752645254135, -0.08736123144626617, 0.21798935532569885, -0.03956799954175949, 0.06237979605793953, 0.11677412688732147, 0.054643623530864716, -0.10470378398895264, 0.033803701400756836, 0.05261554941534996, -0.04082183912396431, 0.021215688437223434, 0.11549359560012817, -0.036529187113046646, 0.06318320333957672, 0.05089498683810234, -0.11792412400245667, -0.010455886833369732, -0.05964312329888344, -0.04472333937883377, -0.04703311622142792, -0.018392004072666168, -0.04823824390769005, 0.13547585904598236, 0.20721642673015594, -0.037003498524427414, -0.025644874200224876, -0.07843616604804993, 0.015194880776107311, 0.05591287091374397, 0.04134714603424072, -0.04245224967598915, -0.20532137155532837, 0.02383607067167759, 0.030758177861571312, 0.0028150330763310194, -0.19705039262771606, -0.08733277022838593, 0.014810658060014248, -0.07508184760808945, -0.09638763219118118, 0.10550633072853088, 0.03766414150595665, 0.05580054223537445, -0.06195524334907532, -0.02852451801300049, -0.06681538373231888, 0.15365922451019287, -0.14527234435081482, -0.08380516618490219 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flyswot_test This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1518 - eval_f1: 0.9595 - eval_runtime: 5.9337 - eval_samples_per_second: 69.603 - eval_steps_per_second: 2.191 - epoch: 7.0 - step: 364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["image_folder"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "flyswot_test", "results": []}]}
image-classification
davanstrien/flyswot_test
[ "transformers", "pytorch", "convnext", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:facebook/convnext-base-224-22k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# flyswot_test This model is a fine-tuned version of facebook/convnext-base-224-22k on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1518 - eval_f1: 0.9595 - eval_runtime: 5.9337 - eval_samples_per_second: 69.603 - eval_steps_per_second: 2.191 - epoch: 7.0 - step: 364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
[ "# flyswot_test\n\nThis model is a fine-tuned version of facebook/convnext-base-224-22k on the image_folder dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.1518\n- eval_f1: 0.9595\n- eval_runtime: 5.9337\n- eval_samples_per_second: 69.603\n- eval_steps_per_second: 2.191\n- epoch: 7.0\n- step: 364", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 666\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# flyswot_test\n\nThis model is a fine-tuned version of facebook/convnext-base-224-22k on the image_folder dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.1518\n- eval_f1: 0.9595\n- eval_runtime: 5.9337\n- eval_samples_per_second: 69.603\n- eval_steps_per_second: 2.191\n- epoch: 7.0\n- step: 364", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 666\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
[ 77, 117, 6, 12, 8, 3, 104, 38 ]
[ "passage: TAGS\n#transformers #pytorch #convnext #image-classification #generated_from_trainer #dataset-image_folder #base_model-facebook/convnext-base-224-22k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# flyswot_test\n\nThis model is a fine-tuned version of facebook/convnext-base-224-22k on the image_folder dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.1518\n- eval_f1: 0.9595\n- eval_runtime: 5.9337\n- eval_samples_per_second: 69.603\n- eval_steps_per_second: 2.191\n- epoch: 7.0\n- step: 364## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 666\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
[ -0.11030058562755585, 0.21883295476436615, -0.0030337569769471884, 0.09383641928434372, 0.1315799504518509, 0.017462076619267464, 0.017929794266819954, 0.16416193544864655, -0.09050426632165909, 0.08831359446048737, 0.07326329499483109, 0.028235457837581635, 0.08606325834989548, 0.14665000140666962, -0.016538651660084724, -0.1448483169078827, -0.026689020916819572, -0.020545894280076027, -0.014541639015078545, 0.10193818807601929, 0.1009909138083458, -0.08670465648174286, 0.056219425052404404, -0.007635518442839384, -0.1215982735157013, 0.03916577622294426, -0.056371744722127914, -0.050445593893527985, 0.07412344217300415, 0.02582169882953167, 0.04179580137133598, 0.003247374203056097, 0.09738922119140625, -0.22929954528808594, -0.013266564346849918, 0.08715544641017914, 0.026696207001805305, 0.05870076268911362, 0.07725922018289566, 0.019734621047973633, 0.0767979621887207, -0.17284511029720306, 0.08174262195825577, 0.03972474858164787, -0.07539886236190796, -0.2057606428861618, -0.10169082880020142, 0.12406156212091446, 0.08901125192642212, 0.12046483904123306, -0.016272103413939476, 0.14687635004520416, -0.028568822890520096, 0.08177819848060608, 0.1864219754934311, -0.2177920639514923, -0.05833513289690018, 0.005835011135786772, 0.05191974714398384, 0.04380074143409729, -0.07934945821762085, -0.011395803652703762, 0.055968765169382095, 0.021195322275161743, 0.07546161860227585, -0.011716213077306747, -0.11404115706682205, -0.02931399457156658, -0.11258633434772491, -0.08042013645172119, 0.17831388115882874, 0.10669292509555817, -0.06773024052381516, -0.11404529213905334, -0.027354072779417038, -0.12338332831859589, -0.009762746281921864, -0.06147674098610878, 0.03153581544756889, -0.04286929592490196, -0.023746931925415993, -0.06159316003322601, -0.08218177407979965, -0.027937179431319237, 0.07174474745988846, 0.06993360817432404, 0.04108205810189247, 0.0016222636913880706, 0.004712089896202087, 0.10493098944425583, -0.004060553386807442, -0.14629381895065308, -0.04973804950714111, 0.004552318714559078, -0.09267952293157578, -0.053949449211359024, -0.017086829990148544, -0.03841613233089447, -0.00913830753415823, 0.14920476078987122, -0.04338444769382477, 0.08027699589729309, 0.0070808338932693005, -0.004299542400985956, -0.026900550350546837, 0.1477365344762802, -0.020299803465604782, -0.06482461094856262, -0.018183033913373947, 0.10410447418689728, -0.027022914960980415, -0.011623899452388287, -0.04398909583687782, -0.022058919072151184, 0.10014960914850235, 0.06261230260133743, -0.01462416909635067, 0.0019396733259782195, -0.06922293454408646, -0.012245144695043564, 0.0408380962908268, -0.12890414893627167, 0.044902995228767395, -0.011601378209888935, -0.09119737148284912, -0.07779073715209961, 0.07286497205495834, -0.008711705915629864, -0.04012460634112358, 0.005778191145509481, -0.03574550896883011, -0.020789029076695442, -0.04615238681435585, -0.03206872195005417, 0.023697394877672195, -0.06677064299583435, 0.0149847948923707, -0.09540178626775742, -0.18406054377555847, -0.06672228127717972, 0.0174587182700634, -0.06743821501731873, -0.061762671917676926, -0.008434011600911617, -0.05385845527052879, -0.005425598472356796, -0.020635530352592468, 0.1564282923936844, -0.04130940139293671, 0.07474047690629959, 0.01469749677926302, 0.01177985966205597, 0.09529724717140198, 0.05054466798901558, -0.07173975557088852, 0.03915388137102127, -0.08695531636476517, 0.11901911348104477, -0.10893073678016663, 0.0020477406214922667, -0.15324167907238007, -0.09235893189907074, 0.006268233992159367, -0.04220292344689369, 0.08340506255626678, 0.12251387536525726, -0.15732641518115997, -0.013197479769587517, 0.09738392382860184, -0.03511641174554825, -0.09166842699050903, 0.08489386737346649, -0.0293576680123806, 0.03970784321427345, 0.04646464064717293, 0.1255389153957367, 0.14685726165771484, -0.14350220561027527, -0.05156932398676872, 0.03039473108947277, 0.04476052522659302, 0.07021773606538773, 0.06362912058830261, -0.008768998086452484, 0.03585953265428543, 0.01081616710871458, -0.09425001591444016, 0.007497346494346857, -0.07427607476711273, -0.0833134800195694, -0.0584467351436615, -0.093557208776474, 0.028594840317964554, 0.04364378750324249, -0.0004399986064527184, -0.08208580315113068, -0.13630466163158417, 0.03599868714809418, 0.15217338502407074, -0.03871072828769684, -0.004102223087102175, -0.06677770614624023, 0.018048081547021866, -0.005123695824295282, -0.02824248932301998, -0.19068513810634613, -0.0850977972149849, 0.06209860369563103, -0.08566129952669144, -0.004222805146127939, 0.014169926755130291, 0.054534412920475006, 0.054391905665397644, -0.02301599085330963, -0.04229402542114258, -0.1297745555639267, -0.009587651118636131, -0.08156625926494598, -0.13249950110912323, -0.07755814492702484, -0.020916778594255447, 0.24861836433410645, -0.2322973608970642, 0.005913214758038521, 0.015768105164170265, 0.13084538280963898, -0.010095068253576756, -0.08047336339950562, 0.007094948086887598, -0.006627276074141264, 0.014544869773089886, -0.11531507223844528, 0.019474608823657036, 0.028880463913083076, -0.05874133110046387, -0.07198450714349747, -0.0931675061583519, 0.0012855225941166282, 0.05797446891665459, 0.0988999754190445, -0.12884511053562164, 0.01468817051500082, -0.06793741881847382, -0.055512625724077225, -0.07581309229135513, -0.017494788393378258, 0.2479942888021469, 0.030209803953766823, 0.11410689353942871, -0.056334782391786575, -0.08755240589380264, 0.016820454970002174, 0.015415482223033905, -0.01926628313958645, 0.10511907190084457, 0.02759740874171257, -0.13833102583885193, 0.0781048983335495, 0.07215447723865509, 0.03058963641524315, 0.1045798510313034, -0.033426761627197266, -0.10738932341337204, -0.03374103829264641, 0.049499500542879105, -0.008759572170674801, 0.10359479486942291, -0.10443279892206192, 0.017789721488952637, 0.0511779747903347, -0.03344583511352539, 0.012221695855259895, -0.13505776226520538, -0.001683621434494853, 0.07098867744207382, -0.036216773092746735, 0.06418462842702866, -0.038928985595703125, 0.025552909821271896, 0.06650428473949432, 0.015296252444386482, -0.018136372789740562, 0.009191198274493217, -0.01692887768149376, -0.08858541399240494, 0.15384668111801147, -0.08503276109695435, -0.21979272365570068, -0.09913386404514313, 0.07369722425937653, -0.046700701117515564, -0.03749725967645645, 0.025103537365794182, -0.09100468456745148, -0.06151504069566727, -0.09263226389884949, -0.04931987076997757, -0.05724142864346504, -0.04405098780989647, 0.06564751267433167, 0.02887248806655407, 0.13313914835453033, -0.12084000557661057, 0.007418925408273935, 0.020571528002619743, -0.06213720142841339, -0.013601439073681831, 0.06217414513230324, 0.10270176827907562, 0.0673818290233612, -0.030035505071282387, 0.023914385586977005, -0.015087512321770191, 0.2393873929977417, -0.09602580219507217, -0.007468026131391525, 0.1504717767238617, 0.010476954281330109, 0.06343799084424973, 0.06933288276195526, -0.009712744504213333, -0.09253440797328949, 0.04278530552983284, 0.05654711276292801, -0.010063915513455868, -0.23294320702552795, -0.026515554636716843, -0.00423970865085721, -0.07103458791971207, 0.14327268302440643, 0.05379204824566841, 0.02891605533659458, 0.059099357575178146, -0.02907315455377102, 0.051810212433338165, -0.030724262818694115, 0.07280025631189346, 0.04936784878373146, 0.027320077642798424, 0.08056953549385071, -0.021584991365671158, 0.00045670612598769367, 0.06233728304505348, -0.0030826644506305456, 0.20872865617275238, -0.03970899060368538, 0.10369061678647995, 0.019435549154877663, 0.192355215549469, -0.0676344633102417, -0.0038938706275075674, 0.04723912850022316, 0.009154689498245716, 0.018863974139094353, -0.06590154021978378, -0.04937749356031418, 0.039911799132823944, 0.001108427532017231, 0.03560981899499893, -0.0957067459821701, 0.04491134732961655, 0.0013202602276578546, 0.2742486894130707, 0.05696019530296326, -0.2987003028392792, -0.07428260147571564, -0.006104643922299147, -0.015147273428738117, -0.09105682373046875, -0.0397694855928421, 0.11647127568721771, -0.1677360236644745, 0.06348735839128494, -0.025618107989430428, 0.08383204787969589, -0.0631227195262909, 0.0006281210808083415, 0.046260297298431396, 0.04636522755026817, 0.033538706600666046, 0.10073002427816391, -0.15624602138996124, 0.1659010946750641, 0.014151200652122498, 0.09440366178750992, -0.06815836578607559, 0.06877226382493973, 0.004911790136247873, 0.02043703757226467, 0.17326843738555908, -0.0002788844285532832, -0.009654133580625057, -0.21488475799560547, -0.10517934709787369, 0.011328086256980896, 0.08526023477315903, -0.10077507048845291, 0.07444419711828232, -0.024318233132362366, -0.005774321034550667, 0.018401751294732094, -0.024418244138360023, -0.19255629181861877, -0.12483341991901398, 0.02135496772825718, -0.01924709789454937, -0.0038166772574186325, -0.08431693911552429, -0.08807770907878876, -0.08539673686027527, 0.2176615446805954, 0.01866481825709343, -0.05974911153316498, -0.14372508227825165, 0.12355882674455643, 0.11832170933485031, -0.07480480521917343, 0.022737670689821243, 0.026623139157891273, 0.14014549553394318, 0.030744601041078568, -0.05887873098254204, 0.019409077242016792, -0.05807635560631752, -0.15644268691539764, -0.046445440500974655, 0.1358870565891266, 0.06709018349647522, 0.054698459804058075, 0.024596652016043663, 0.006568521726876497, 0.018062850460410118, -0.06318708509206772, 0.030032582581043243, 0.02563917636871338, 0.10276621580123901, 0.04295137897133827, -0.017665578052401543, 0.025693560019135475, -0.07992186397314072, -0.01820850558578968, 0.13454999029636383, 0.23178453743457794, -0.09372151643037796, 0.04049742594361305, 0.027311988174915314, -0.08674681186676025, -0.14649222791194916, 0.05494503304362297, 0.14918316900730133, 0.01409085001796484, 0.08781788498163223, -0.17644599080085754, 0.08478743582963943, 0.1392498016357422, -0.021577807143330574, 0.032918479293584824, -0.30574721097946167, -0.12020865082740784, 0.07254064828157425, 0.09277623146772385, -0.055535510182380676, -0.11852423846721649, -0.05115920305252075, -0.024064140394330025, -0.1553645133972168, 0.03248364105820656, -0.04170844331383705, 0.08316399157047272, -0.001093197730369866, 0.009431871585547924, 0.05037993565201759, -0.025949688628315926, 0.15751372277736664, 0.04498481750488281, 0.07151290029287338, -0.060514453798532486, 0.09153679758310318, 0.09224852919578552, -0.08113574236631393, 0.11789648979902267, -0.020763980224728584, 0.07778624445199966, -0.20457367599010468, -0.010732400231063366, -0.06498296558856964, 0.0767321065068245, -0.058483026921749115, -0.04182341694831848, -0.04012659937143326, 0.04755863919854164, 0.06148035451769829, -0.018458053469657898, -0.0038282787427306175, 0.032420601695775986, 0.06415741890668869, 0.1521008014678955, 0.03413103520870209, 0.04858463630080223, -0.19865629076957703, -0.009824998676776886, -0.004302165005356073, 0.03882918134331703, -0.12338973581790924, 0.021613316610455513, 0.11778364330530167, 0.04714610427618027, 0.14087529480457306, -0.020458942279219627, -0.08744168281555176, 0.00273120473138988, 0.006232384592294693, -0.08664294332265854, -0.1459408849477768, -0.031408969312906265, -0.040600042790174484, -0.12830254435539246, -0.045884765684604645, 0.10957114398479462, -0.06812269240617752, -0.01816541515290737, -0.048128508031368256, 0.012683125212788582, -0.010033420287072659, 0.17537041008472443, 0.03687342256307602, 0.08006761968135834, -0.06786977499723434, 0.12304195016622543, 0.10349036008119583, -0.0775415226817131, 0.08571989089250565, 0.029998501762747765, -0.06505421549081802, -0.03518861159682274, 0.08507762849330902, 0.11009106040000916, 0.034553829580545425, -0.037169937044382095, -0.04514075815677643, -0.05150803551077843, 0.05947303771972656, 0.012514141388237476, 0.03946703299880028, -0.024997208267450333, 0.010976533405482769, -0.013340134173631668, -0.13386373221874237, 0.09660045057535172, 0.06785514205694199, 0.044001054018735886, -0.13348965346813202, 0.08973432332277298, 0.030374575406312943, 0.061409711837768555, 0.00019604465342126787, 0.003752059070393443, -0.03823907673358917, 0.0029773178976029158, -0.11840468645095825, 0.004698915407061577, 0.0050350516103208065, 0.0025018942542374134, -0.026753047481179237, -0.02808540314435959, -0.018255949020385742, 0.07616887986660004, -0.06441830098628998, -0.11814084649085999, 0.025892935693264008, 0.09021991491317749, -0.13474535942077637, -0.041411999613046646, 0.035043567419052124, -0.1125064566731453, 0.07005663961172104, 0.046586621552705765, 0.03635713830590248, -0.017252087593078613, -0.0005339458002708852, -0.011268846690654755, 0.04197836294770241, 0.05608285218477249, 0.04695514962077141, -0.11631536483764648, 0.018665237352252007, -0.034137263894081116, -0.0015617616008967161, 0.012590872123837471, 0.05835679545998573, -0.1250668615102768, -0.0630156472325325, -0.052391331642866135, -0.01977715827524662, -0.0474955253303051, 0.05918029323220253, 0.09896274656057358, 0.053435228765010834, 0.14063061773777008, -0.05452054366469383, 0.05175294727087021, -0.23839406669139862, -0.055225443094968796, -0.01779375784099102, -0.020203612744808197, -0.021596893668174744, -0.032877061516046524, 0.09527026116847992, -0.038039445877075195, 0.06474602222442627, -0.0005510254995897412, 0.18159542977809906, 0.027530482038855553, -0.050251953303813934, -0.0018087857170030475, 0.00219720508903265, 0.11238634586334229, 0.05175132304430008, -0.0016557768685743213, 0.11902156472206116, -0.028894418850541115, 0.09554117172956467, 0.014161058701574802, 0.08939620852470398, 0.17493340373039246, 0.0018594234716147184, 0.05011354386806488, 0.051106829196214676, -0.135865718126297, -0.15358206629753113, 0.0976945012807846, -0.058990925550460815, 0.13449859619140625, -0.05467648804187775, 0.1008044108748436, 0.05457198992371559, -0.1742257922887802, 0.07228618115186691, -0.06354168802499771, -0.09119532257318497, -0.0613718144595623, -0.050914280116558075, -0.08414488285779953, -0.09343919903039932, 0.04105357080698013, -0.08602997660636902, 0.01979479193687439, 0.08799643814563751, -0.009586731903254986, -0.02213309518992901, 0.1347532421350479, -0.02663598209619522, -0.027386007830500603, 0.09542647004127502, -0.0049818409606814384, -0.015861596912145615, -0.0993046686053276, -0.0201449915766716, 0.09128541499376297, 0.061545856297016144, 0.10566408932209015, -0.03962274268269539, 0.009790915064513683, 0.030012983828783035, 0.019544536247849464, -0.09629791229963303, 0.009256811812520027, 0.005749823991209269, 0.021206319332122803, 0.03851502761244774, 0.06336475163698196, 0.05689410865306854, -0.04979151487350464, 0.22871971130371094, -0.0405438095331192, -0.036568332463502884, -0.12739543616771698, 0.10423265397548676, 0.05331990122795105, -0.007933349348604679, 0.08036795258522034, -0.11748598515987396, 0.0036542152520269156, 0.12219487130641937, 0.06413953006267548, -0.03136220574378967, -0.006122928578406572, -0.0054797022603452206, -0.018613718450069427, -0.06591220200061798, 0.09462970495223999, 0.11764515191316605, -0.06369121372699738, -0.05988290533423424, 0.025917813181877136, -0.004627527669072151, -0.06907253712415695, -0.06428653001785278, 0.07474181056022644, -0.011259254068136215, 0.046769894659519196, -0.012021324597299099, 0.07869549095630646, 0.058154575526714325, -0.23698614537715912, 0.06598281115293503, -0.15788397192955017, -0.18947255611419678, 0.001202999148517847, 0.06239406391978264, -0.002967214211821556, 0.039317209273576736, 0.002904925961047411, 0.00443699536845088, 0.1730458289384842, -0.023335512727499008, -0.047860827296972275, -0.12322960793972015, 0.06120826303958893, -0.10414329171180725, 0.2747802436351776, 0.0008903896086849272, 0.06591308116912842, 0.08829382061958313, -0.010323229245841503, -0.17149853706359863, 0.01893969252705574, 0.0917816162109375, -0.0013567607384175062, 0.056891486048698425, 0.1743146777153015, -0.03900189325213432, 0.10066442936658859, 0.06675029546022415, -0.12345275282859802, -0.04434134066104889, -0.04757660999894142, 0.05002289637923241, -0.09565848857164383, 0.010531768202781677, -0.055277708917856216, 0.13928808271884918, 0.18631236255168915, -0.047088947147130966, -0.014906888827681541, -0.09682543575763702, 0.011987537145614624, 0.04464010149240494, 0.1439325213432312, 0.0018358263187110424, -0.15206223726272583, 0.03393321484327316, -0.025540634989738464, 0.059886444360017776, -0.2019822746515274, -0.11016969382762909, 0.0839315876364708, -0.07762669026851654, -0.02043789066374302, 0.10799616575241089, 0.030486395582556725, 0.005996804218739271, -0.03069509007036686, -0.12183228135108948, -0.05304274708032608, 0.1350049376487732, -0.14584535360336304, -0.02861097827553749 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iiif_manuscript_vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5684 - F1: 0.5996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5639 | 1.0 | 2269 | 0.5822 | 0.5516 | | 0.5834 | 2.0 | 4538 | 0.5825 | 0.5346 | | 0.5778 | 3.0 | 6807 | 0.5794 | 0.6034 | | 0.5735 | 4.0 | 9076 | 0.5742 | 0.5713 | | 0.5731 | 5.0 | 11345 | 0.5745 | 0.6008 | | 0.5701 | 6.0 | 13614 | 0.5729 | 0.5499 | | 0.5696 | 7.0 | 15883 | 0.5717 | 0.5952 | | 0.5683 | 8.0 | 18152 | 0.5680 | 0.6005 | | 0.5648 | 9.0 | 20421 | 0.5679 | 0.5967 | | 0.564 | 10.0 | 22690 | 0.5684 | 0.5996 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "iiif_manuscript_vit", "results": []}]}
image-classification
davanstrien/iiif_manuscript_vit
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
iiif\_manuscript\_vit ===================== This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5684 * F1: 0.5996 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP * label\_smoothing\_factor: 0.1 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 70, 125, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP\n* label\\_smoothing\\_factor: 0.1### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.1285712867975235, 0.1267208606004715, -0.002232384867966175, 0.1141359955072403, 0.14831863343715668, 0.050556305795907974, 0.1434696912765503, 0.1393810659646988, -0.0718393325805664, 0.07548408955335617, 0.12993597984313965, 0.1071174368262291, 0.05260947346687317, 0.17899203300476074, -0.04373972862958908, -0.2588028907775879, 0.03004765883088112, 0.019093988463282585, -0.03913520649075508, 0.12572112679481506, 0.0854119285941124, -0.12446123361587524, 0.10533788800239563, 0.0034004857297986746, -0.2064642608165741, -0.031021619215607643, -0.005469752009958029, -0.04747176170349121, 0.12055066227912903, 0.019661281257867813, 0.12031351774930954, 0.023184344172477722, 0.10472872853279114, -0.1684582382440567, 0.006298852618783712, 0.05651532858610153, -0.005084729753434658, 0.09363728016614914, 0.059053871780633926, 0.004046277143061161, 0.07979703694581985, -0.0870194137096405, 0.05416218936443329, 0.018257154151797295, -0.11935195326805115, -0.19545356929302216, -0.10871829092502594, 0.06971675902605057, 0.08464352041482925, 0.07697100192308426, 0.0022393891122192144, 0.09331963956356049, -0.06282515823841095, 0.08442986011505127, 0.23113083839416504, -0.24940498173236847, -0.07427940517663956, 0.03298037871718407, -0.00032525218557566404, 0.048330459743738174, -0.08474363386631012, -0.01936979591846466, 0.036982204765081406, 0.042527396231889725, 0.09750091284513474, 0.00782809965312481, -0.08020146936178207, -0.015123896300792694, -0.13215534389019012, -0.07142000645399094, 0.15592652559280396, 0.06636423617601395, -0.0463278666138649, -0.03312530741095543, -0.0655267983675003, -0.19007648527622223, -0.05418246611952782, 0.03225434198975563, 0.041892100125551224, -0.038456231355667114, -0.07445581257343292, -0.006263327319175005, -0.07939216494560242, -0.07812552899122238, -0.036172471940517426, 0.09899915754795074, 0.04749934375286102, 0.031391389667987823, -0.011512549594044685, 0.10953781753778458, -0.01824803464114666, -0.150218665599823, -0.013544599525630474, 0.007401942741125822, -0.006695886142551899, -0.031107185408473015, -0.031895264983177185, -0.004264780320227146, 0.020259197801351547, 0.13579826056957245, -0.05898575484752655, 0.05332260578870773, -0.0035321610048413277, 0.04189509153366089, -0.09024287760257721, 0.1742226481437683, -0.055675458163022995, -0.004234644118696451, 0.026015065610408783, 0.08898786455392838, 0.036955829709768295, -0.012118727900087833, -0.11201242357492447, -0.005060027819126844, 0.10589208453893661, 0.020738346502184868, -0.030648548156023026, 0.05769118294119835, -0.059668537229299545, -0.03158974274992943, 0.07433582097291946, -0.09481684863567352, 0.03605104982852936, 0.009666886180639267, -0.08114736527204514, -0.010281728580594063, 0.04067984223365784, -0.002763967728242278, -0.015066659078001976, 0.08603689074516296, -0.08823997527360916, 0.029050320386886597, -0.08903268724679947, -0.11426631361246109, 0.03949318826198578, -0.12304899096488953, -0.000685408478602767, -0.10329483449459076, -0.1840570569038391, -0.02077486924827099, 0.05694064497947693, -0.051402345299720764, -0.05671319738030434, -0.05893455445766449, -0.09187892079353333, 0.03743366152048111, -0.004988980479538441, 0.08848539739847183, -0.07153283804655075, 0.09301912784576416, 0.015457241795957088, 0.08093709498643875, -0.045833785086870193, 0.054481860250234604, -0.06705418229103088, 0.05084824189543724, -0.18678002059459686, 0.07401266694068909, -0.07073592394590378, 0.06723951548337936, -0.09972595423460007, -0.11069590598344803, 0.019516393542289734, -0.034252770245075226, 0.0965849980711937, 0.122459776699543, -0.17910365760326385, -0.0563790462911129, 0.14364449679851532, -0.09708286821842194, -0.13124576210975647, 0.11389154195785522, -0.04367827624082565, -0.01740805245935917, 0.04005309194326401, 0.1544826179742813, 0.07510754466056824, -0.11817676573991776, -0.025343427434563637, -0.022369641810655594, 0.061942581087350845, -0.059816401451826096, 0.08186883479356766, 0.02315254509449005, 0.010347433388233185, 0.024053389206528664, -0.07002012431621552, 0.06910388171672821, -0.11071857810020447, -0.09923660010099411, -0.05615973100066185, -0.07850862294435501, 0.027143139392137527, 0.0571025013923645, 0.046078529208898544, -0.08661221712827682, -0.09105602651834488, 0.03506165370345116, 0.1013086587190628, -0.07827146351337433, 0.018984027206897736, -0.06383278965950012, 0.12373721599578857, -0.06479834020137787, -0.014961066655814648, -0.16688212752342224, -0.08198550343513489, 0.033196043223142624, -0.019657613709568977, 0.008939185179769993, -0.061972394585609436, 0.05006776750087738, 0.07876338809728622, -0.0414823554456234, -0.04400632902979851, -0.07654669880867004, -0.006738812196999788, -0.0965333804488182, -0.20624606311321259, -0.0801401436328888, -0.021517446264624596, 0.1503734588623047, -0.1924159675836563, 0.025189775973558426, 0.019011832773685455, 0.10460614413022995, 0.021837538108229637, -0.02925979718565941, -0.019943179562687874, 0.06270034611225128, -0.04965837299823761, -0.08601976931095123, 0.06150375306606293, 0.013067944906651974, -0.0572202205657959, -0.02668890729546547, -0.060702916234731674, 0.11585173010826111, 0.1348162144422531, -0.05865493044257164, -0.08296331018209457, -0.011896143667399883, -0.06817470490932465, -0.032301515340805054, -0.05551200360059738, 0.02635202556848526, 0.10540688037872314, 0.007266049738973379, 0.13365232944488525, -0.08110068738460541, -0.017711255699396133, 0.04771294817328453, -0.01215684786438942, -0.01348341815173626, 0.0983377993106842, 0.1291741132736206, -0.088580422103405, 0.14447231590747833, 0.12489629536867142, -0.07497947663068771, 0.10711116343736649, -0.04721556603908539, -0.0849088579416275, -0.02598525956273079, -0.010061240755021572, 0.010763979516923428, 0.14001761376857758, -0.13398058712482452, -0.017905186861753464, 0.03569607064127922, 0.016760556027293205, 0.0094253309071064, -0.21143876016139984, -0.019344251602888107, 0.019310487434267998, -0.0703258141875267, -0.03781196475028992, -0.0251217819750309, 0.015168456360697746, 0.10819635540246964, 0.02289138175547123, -0.07275086641311646, 0.026546640321612358, 0.001690314500592649, -0.08092129975557327, 0.19494862854480743, -0.0963595062494278, -0.1638828068971634, -0.12463630735874176, -0.05102838948369026, -0.06305330246686935, 0.0016735137905925512, 0.04320058226585388, -0.07909290492534637, -0.048367198556661606, -0.07984611392021179, 0.0008307034731842577, 0.011550989001989365, 0.03390033543109894, 0.024848461151123047, 0.008335854858160019, 0.06883296370506287, -0.08524131029844284, -0.014289554208517075, -0.029812894761562347, -0.03904750570654869, 0.054728344082832336, 0.01243857853114605, 0.113303542137146, 0.12211865931749344, -0.029489804059267044, 0.03887099772691727, -0.022140268236398697, 0.2522920072078705, -0.06094017252326012, -0.0075966790318489075, 0.12610891461372375, 0.008818800561130047, 0.06839490681886673, 0.14360390603542328, 0.05459640920162201, -0.09697599709033966, -0.0013472756836563349, 0.01271092053502798, -0.04188639298081398, -0.21141566336154938, -0.052366845309734344, -0.05527552217245102, -0.008518998511135578, 0.13570554554462433, 0.03535979241132736, 0.009476399049162865, 0.08396308869123459, 0.00004916808757116087, 0.08221712708473206, -0.030859284102916718, 0.08457781374454498, 0.11402677744626999, 0.06072823703289032, 0.11691094189882278, -0.038861051201820374, -0.014688396826386452, 0.04935864359140396, 0.006148010026663542, 0.2648696303367615, -0.018347233533859253, 0.13148289918899536, 0.05133495107293129, 0.1991395652294159, 0.025688007473945618, 0.07513948529958725, -0.005132160149514675, -0.005896282382309437, -0.006137931253761053, -0.05556098744273186, -0.04160226881504059, 0.02562929131090641, -0.040691737085580826, 0.0407387837767601, -0.1157185435295105, 0.027706891298294067, 0.03869183734059334, 0.28368082642555237, 0.07216502726078033, -0.3881022036075592, -0.09588335454463959, -0.006569971796125174, -0.005532161332666874, -0.05196306109428406, 0.0023400336503982544, 0.09877782315015793, -0.07908441871404648, 0.06511808186769485, -0.07531706988811493, 0.0996876135468483, -0.058654967695474625, 0.005610064137727022, 0.10543688386678696, 0.07987524569034576, 0.016171669587492943, 0.0561307929456234, -0.23156584799289703, 0.2814977467060089, 0.0055067939683794975, 0.05990275740623474, -0.0579523891210556, 0.013411511667072773, 0.043214309960603714, 0.06589217483997345, 0.08234316110610962, 0.00012791839253623039, -0.054131750017404556, -0.19717468321323395, -0.11350157856941223, 0.020404798910021782, 0.08230362087488174, -0.027611302211880684, 0.11018684506416321, -0.01691744290292263, -0.021412057802081108, 0.04383773356676102, -0.006964575964957476, -0.100117988884449, -0.09821666032075882, 0.004580826032906771, 0.017814436927437782, 0.012195567600429058, -0.07111828774213791, -0.11451595276594162, -0.0713881105184555, 0.1414015144109726, -0.015449975617229939, -0.05111567676067352, -0.12973028421401978, 0.10942947864532471, 0.1133512407541275, -0.08656862378120422, 0.07048432528972626, -0.016683228313922882, 0.11543884873390198, 0.030840860679745674, -0.09050480276346207, 0.08608346432447433, -0.07087258994579315, -0.18751810491085052, -0.05359077826142311, 0.10173428803682327, 0.019071832299232483, 0.055413227528333664, -0.00392267806455493, 0.03546447679400444, -0.02176874317228794, -0.08362352102994919, 0.03364125266671181, 0.031273528933525085, 0.07349807024002075, 0.03898799791932106, -0.047494228929281235, 0.0035995810758322477, -0.05045333132147789, -0.021027591079473495, 0.1476464718580246, 0.23048929870128632, -0.10445166379213333, 0.019018027931451797, 0.021718047559261322, -0.05969557166099548, -0.19768087565898895, 0.03522440791130066, 0.09734087437391281, 0.015516858547925949, -0.020629800856113434, -0.19617359340190887, 0.07903191447257996, 0.10970999300479889, -0.02455916255712509, 0.11733158677816391, -0.29955947399139404, -0.12037336081266403, 0.07985846698284149, 0.1389923095703125, 0.07500370591878891, -0.1424701064825058, -0.0430520735681057, -0.0164884515106678, -0.15591977536678314, 0.14329543709754944, -0.03097544237971306, 0.11822526901960373, -0.03918522596359253, 0.07422329485416412, 0.005944450385868549, -0.05818928778171539, 0.14435522258281708, 0.026185782626271248, 0.08947260677814484, -0.052094489336013794, -0.030500313267111778, 0.060724783688783646, -0.07587699592113495, 0.05387250334024429, -0.02713608369231224, 0.054935988038778305, -0.09417597949504852, -0.009541458450257778, -0.07979917526245117, 0.02536541037261486, -0.02731018140912056, -0.025679104030132294, -0.04879707098007202, 0.032778266817331314, 0.04960603266954422, -0.007410319056361914, 0.15840213000774384, 0.045535311102867126, 0.10419189929962158, 0.08608517050743103, 0.04514332860708237, -0.07431577146053314, -0.058353327214717865, -0.019534673541784286, -0.029913607984781265, 0.06276249140501022, -0.15982456505298615, 0.022628232836723328, 0.14279049634933472, 0.03669875115156174, 0.13443909585475922, 0.07512690871953964, -0.024837465956807137, 0.0275349710136652, 0.06857309490442276, -0.14531439542770386, -0.08631838113069534, -0.008886653929948807, -0.021090470254421234, -0.1185932457447052, 0.03374870494008064, 0.10801444947719574, -0.08510152995586395, -0.01054977998137474, -0.012223407626152039, 0.025246592238545418, -0.030330035835504532, 0.17908847332000732, 0.07240300625562668, 0.04954276978969574, -0.11762113869190216, 0.09009236842393875, 0.05904790014028549, -0.10213812440633774, 0.016167115420103073, 0.07433139532804489, -0.10479085892438889, -0.033750951290130615, 0.04110592231154442, 0.14951092004776, -0.0713469609618187, -0.04806651547551155, -0.12174100428819656, -0.11926890909671783, 0.09370206296443939, 0.14650586247444153, 0.08842650800943375, 0.040880654007196426, -0.01853962056338787, 0.004330990370362997, -0.10983622819185257, 0.09064887464046478, 0.042759887874126434, 0.09008811414241791, -0.16576063632965088, 0.09908231347799301, 0.008815431967377663, 0.061965592205524445, -0.02144591696560383, 0.022905420511960983, -0.10299611836671829, 0.000538461550604552, -0.11586666107177734, 0.03695749118924141, -0.052720893174409866, 0.004563113674521446, -0.0015359699027612805, -0.06190190836787224, -0.06475596874952316, 0.025154853239655495, -0.10565242916345596, -0.054188866168260574, 0.002404597355052829, 0.04922518506646156, -0.11752240359783173, -0.0313817597925663, 0.01910063810646534, -0.09805987775325775, 0.09171374887228012, 0.06330163776874542, 0.022186022251844406, 0.021207867190241814, -0.09811769425868988, -0.01900884136557579, 0.06306903809309006, 0.017354590818285942, 0.06806425005197525, -0.11260952055454254, 0.01262104231864214, -0.010050911456346512, 0.011162854731082916, 0.010909969918429852, 0.09988214075565338, -0.13181789219379425, -0.01149294339120388, -0.03110763058066368, -0.05099419131875038, -0.058141544461250305, 0.06742977350950241, 0.11322636157274246, 0.026096787303686142, 0.16144326329231262, -0.07538096606731415, 0.034164413809776306, -0.2274799346923828, -0.01050026249140501, -0.020677832886576653, -0.09951120615005493, -0.11953236907720566, -0.047039031982421875, 0.07863105088472366, -0.05652299150824547, 0.11070138216018677, 0.019184404984116554, 0.03969142213463783, 0.02323489636182785, 0.012527582235634327, -0.02158755250275135, 0.035688795149326324, 0.17164954543113708, 0.035512011498212814, -0.027571842074394226, 0.0771220251917839, 0.024889223277568817, 0.09479685872793198, 0.08906397223472595, 0.17422683537006378, 0.11992213875055313, 0.030140863731503487, 0.10171917080879211, 0.07927589118480682, -0.06655453890562057, -0.15108095109462738, 0.06991414725780487, -0.05819888040423393, 0.13140766322612762, -0.016475684940814972, 0.1775558441877365, 0.06877341866493225, -0.1812785416841507, 0.03693416342139244, -0.03510279953479767, -0.08628229051828384, -0.09405937045812607, -0.07595069706439972, -0.1022372767329216, -0.16363535821437836, 0.014889628626406193, -0.12106350064277649, 0.01848512515425682, 0.11940819025039673, 0.011983816511929035, 0.0026003015227615833, 0.1259527951478958, 0.04241831973195076, 0.019282476976513863, 0.0814024806022644, 0.020539330318570137, -0.034621771425008774, -0.06875111907720566, -0.08701819181442261, 0.028323475271463394, -0.010453056544065475, 0.04820231720805168, -0.030792230740189552, -0.018423937261104584, 0.05407918244600296, 0.005674630403518677, -0.11021683365106583, 0.018411090597510338, -0.0006241542287170887, 0.046901993453502655, 0.04291146248579025, 0.006367947440594435, 0.02922380156815052, -0.00438362592831254, 0.18573154509067535, -0.05951108783483505, -0.05126819387078285, -0.12832064926624298, 0.18223518133163452, 0.0027685482054948807, -0.033610887825489044, 0.04742763936519623, -0.06908152252435684, -0.014324568212032318, 0.18676145374774933, 0.17398695647716522, -0.06208096817135811, -0.020960696041584015, 0.019185664132237434, -0.018428759649395943, -0.02859768643975258, 0.11157647520303726, 0.11493688076734543, 0.03758436068892479, -0.0857231467962265, -0.05708084627985954, -0.06500155478715897, -0.015820840373635292, -0.032493237406015396, 0.026796668767929077, 0.011887271888554096, 0.00172501674387604, -0.05896497517824173, 0.06132422015070915, -0.05170916020870209, -0.06650077551603317, 0.10821827501058578, -0.2138483226299286, -0.18190836906433105, -0.018413886427879333, 0.07405500113964081, 0.016959354281425476, 0.04396725445985794, -0.03606891632080078, -0.005673255771398544, 0.11453629285097122, -0.03173451870679855, -0.09161746501922607, -0.10136546939611435, 0.0785282775759697, -0.08358690142631531, 0.22978575527668, -0.03625661879777908, 0.04935280978679657, 0.1172630712389946, 0.0578795000910759, -0.12350312620401382, 0.028240785002708435, 0.05333767831325531, -0.046372879296541214, 0.021186919882893562, 0.11544565111398697, -0.0445515476167202, 0.07422557473182678, 0.040012095123529434, -0.10622995346784592, -0.01254824735224247, -0.025014562532305717, -0.03676861524581909, -0.05034741014242172, -0.0328345000743866, -0.0543312132358551, 0.13680098950862885, 0.19346383213996887, -0.04500598832964897, -0.02342086471617222, -0.06526514142751694, 0.022788075730204582, 0.06314779818058014, 0.0398479625582695, -0.03887413442134857, -0.22436605393886566, 0.011160135269165039, 0.03223646804690361, 0.0015474450774490833, -0.19503778219223022, -0.09381628036499023, 0.011434948071837425, -0.05477936565876007, -0.09719938039779663, 0.11102218925952911, 0.07554546743631363, 0.050589609891176224, -0.057344913482666016, -0.0353735089302063, -0.06136489287018776, 0.1614164412021637, -0.14398051798343658, -0.09233783930540085 ]
null
null
generic
# TODO - - - -
{"library_name": "generic", "tags": ["chemistry"]}
null
davanstrien/test
[ "generic", "chemistry", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #generic #chemistry #region-us
# TODO - - - -
[ "# TODO\n-\n-\n-\n-" ]
[ "TAGS\n#generic #chemistry #region-us \n", "# TODO\n-\n-\n-\n-" ]
[ 13, 7 ]
[ "passage: TAGS\n#generic #chemistry #region-us \n# TODO\n-\n-\n-\n-" ]
[ 0.07863036543130875, -0.03624163568019867, -0.0094517907127738, -0.0996529832482338, 0.046814192086458206, 0.04770484194159508, -0.0031610268633812666, 0.09824767708778381, 0.30291804671287537, 0.0014053179183974862, 0.07430136948823929, -0.027348846197128296, -0.11584118753671646, 0.029731737449765205, 0.036490339785814285, -0.2755817472934723, 0.03636447712779045, -0.02046116814017296, -0.10192558914422989, 0.0548379123210907, -0.009093244560062885, -0.11029266566038132, 0.04275313392281532, -0.1308634877204895, 0.03397827222943306, 0.0737660750746727, 0.039848875254392624, -0.10198575258255005, 0.1645284742116928, 0.003111454425379634, 0.15340466797351837, 0.09348296374082565, -0.13192598521709442, -0.29963645339012146, 0.050712067633867264, -0.08016207069158554, -0.07357378304004669, 0.10136497765779495, 0.08255759626626968, -0.14388065040111542, 0.13126160204410553, 0.044551607221364975, -0.02957962267100811, 0.0841360092163086, -0.2145329713821411, -0.057586316019296646, 0.06308098882436752, -0.10040390491485596, -0.14585117995738983, -0.06656847149133682, 0.000949653796851635, 0.10374986380338669, -0.20169390738010406, -0.013508784584701061, 0.31516745686531067, -0.22505998611450195, 0.043873339891433716, 0.180752232670784, 0.1475846916437149, 0.09838292747735977, -0.04789206385612488, 0.07961118966341019, -0.05575774237513542, -0.02090507559478283, -0.10738522559404373, -0.10215717554092407, -0.14120864868164062, 0.09814564138650894, -0.02746920846402645, 0.03270864859223366, 0.2619537115097046, -0.05424143001437187, 0.011531342752277851, 0.1874237060546875, -0.13220162689685822, -0.059876929968595505, -0.0006561623886227608, -0.07906892895698547, 0.014929351396858692, 0.060880210250616074, 0.1595073938369751, 0.06094213202595711, -0.11001980304718018, 0.06207820400595665, -0.10603516548871994, 0.30887648463249207, -0.054771024733781815, 0.08795931190252304, -0.020814063027501106, 0.012287507764995098, -0.18941330909729004, 0.01825498789548874, 0.07315963506698608, -0.11255142837762833, 0.07172919064760208, -0.043434128165245056, 0.02915530651807785, 0.03341838717460632, 0.1658467799425125, 0.0857883095741272, -0.010370192117989063, 0.10983848571777344, 0.026236021891236305, 0.11544346809387207, 0.10272586345672607, -0.06391876190900803, 0.14294351637363434, -0.008992958813905716, 0.030682533979415894, -0.09609822183847427, -0.08283821493387222, -0.02660803496837616, -0.08458930253982544, 0.011135880835354328, 0.07648300379514694, 0.018589965999126434, 0.03484978899359703, -0.14532847702503204, -0.1101675033569336, 0.026141293346881866, 0.10151144862174988, -0.00003793959695030935, -0.004786325618624687, 0.00969961378723383, 0.03922966867685318, 0.12103084474802017, -0.12480080127716064, 0.009438412263989449, 0.09221833199262619, 0.08214050531387329, -0.1280425488948822, -0.010815143585205078, -0.12939243018627167, 0.0665641576051712, 0.009253946132957935, 0.10342631489038467, 0.06611031293869019, -0.11453297734260559, 0.08717707544565201, 0.08040456473827362, 0.1329491287469864, -0.08262693136930466, 0.04692845419049263, 0.1544114649295807, 0.07690059393644333, 0.009063889272511005, -0.028701873496174812, -0.07755899429321289, -0.1300075501203537, 0.0838572308421135, 0.016872432082891464, 0.021245082840323448, -0.04491716995835304, -0.02911367267370224, -0.10784921795129776, 0.14020182192325592, -0.1272321492433548, -0.12037757784128189, -0.08216051012277603, 0.09215458482503891, -0.016103288158774376, -0.044939201325178146, -0.09007041901350021, -0.034639567136764526, -0.03039124608039856, 0.15639550983905792, -0.05955129861831665, -0.11855041980743408, 0.08759316802024841, -0.05036761239171028, -0.04776770994067192, -0.006036342587321997, 0.044216740876436234, 0.0033468082547187805, 0.04595406726002693, 0.2218988537788391, -0.038531865924596786, -0.07136525958776474, 0.038174208253622055, 0.10619563609361649, 0.0979321226477623, -0.01435097400099039, 0.11187771707773209, 0.054169606417417526, -0.17724530398845673, 0.040636006742715836, 0.18158018589019775, 0.04013008251786232, -0.10650530457496643, -0.038378845900297165, 0.011470570228993893, 0.13110552728176117, 0.14825241267681122, 0.0060796793550252914, 0.12573689222335815, -0.15541718900203705, -0.03627423942089081, 0.039841052144765854, -0.012502871453762054, 0.13018232583999634, -0.019392110407352448, -0.02246128022670746, 0.21202261745929718, 0.09309159964323044, -0.007749455515295267, -0.15759707987308502, -0.12310409545898438, 0.08402236551046371, -0.026387711986899376, 0.051451776176691055, 0.027083948254585266, 0.03558184951543808, 0.0235598087310791, -0.008890461176633835, 0.026616578921675682, -0.062048301100730896, 0.030487829819321632, 0.034189820289611816, -0.11378126591444016, 0.04130445793271065, -0.024234861135482788, -0.15837544202804565, -0.043350208550691605, -0.032468680292367935, 0.11546134948730469, 0.030397778376936913, 0.06611201912164688, 0.00877507496625185, -0.0678977370262146, 0.06250330805778503, 0.05322689190506935, 0.08292368799448013, 0.03172973915934563, -0.1218014732003212, -0.11347606033086777, -0.1025841236114502, 0.04874921217560768, 0.304409921169281, 0.13148067891597748, -0.2032427042722702, 0.0820336863398552, -0.25185495615005493, -0.06362292170524597, 0.057131458073854446, 0.1565525233745575, 0.016772832721471786, -0.04978841915726662, 0.006415346637368202, -0.054668623954057693, -0.005644679069519043, 0.08977463096380234, -0.011958342045545578, -0.08773235231637955, -0.047162532806396484, 0.025843815878033638, 0.12319167703390121, -0.07734634727239609, 0.09755322337150574, 0.2561311721801758, 0.13180230557918549, 0.13255029916763306, 0.03080771304666996, -0.03699883446097374, -0.014538553543388844, -0.14120130240917206, -0.061957959085702896, 0.1797265261411667, -0.14027979969978333, 0.05259362980723381, 0.028838494792580605, -0.03134334459900856, 0.0910210832953453, -0.1114065870642662, -0.040123891085386276, -0.07053060084581375, 0.06895556300878525, 0.014844834804534912, -0.025146493688225746, -0.06298457831144333, 0.10436981916427612, 0.0744345635175705, -0.041324470192193985, -0.01647111587226391, 0.07609671354293823, -0.02433440089225769, 0.17055284976959229, -0.1109670102596283, -0.10552889108657837, -0.03273312374949455, -0.02538515068590641, 0.03297664225101471, 0.0478515587747097, -0.0012831048807129264, -0.06462305039167404, -0.09416577219963074, 0.08492490649223328, 0.10281000286340714, -0.07154295593500137, 0.028251295909285545, -0.14578060805797577, 0.12729525566101074, -0.12440351396799088, 0.02514309622347355, -0.063876673579216, -0.03669394180178642, 0.05867127701640129, 0.22793717682361603, -0.11519881337881088, 0.05063679814338684, 0.16381055116653442, 0.04191643372178078, 0.0011026569409295917, -0.010405301116406918, 0.12624315917491913, -0.0884355828166008, -0.07653623819351196, 0.09031176567077637, -0.0209305789321661, 0.05762661620974541, 0.08209580183029175, 0.1242472231388092, -0.07287513464689255, 0.019709475338459015, -0.021417587995529175, -0.10198703408241272, -0.19894234836101532, -0.1107921227812767, -0.06281685084104538, 0.12194544076919556, -0.12898527085781097, 0.07970156520605087, 0.15913386642932892, 0.0016348790377378464, 0.033654842525720596, -0.2393295019865036, -0.050163593143224716, -0.017841024324297905, 0.10060068219900131, -0.08597263693809509, -0.014065059833228588, -0.0036749113351106644, -0.059379786252975464, 0.10601536184549332, 0.157805934548378, 0.12905949354171753, 0.32912471890449524, 0.13820885121822357, -0.02008967287838459, 0.023894401267170906, 0.15979839861392975, 0.02996375598013401, 0.06887819617986679, -0.0133596770465374, -0.050017159432172775, -0.033430065959692, 0.04242436960339546, 0.1157313883304596, -0.04046199098229408, -0.1743367463350296, 0.08638828992843628, -0.11540178209543228, 0.1720525026321411, 0.033291470259428024, -0.08622556924819946, -0.007867489941418171, -0.012495632283389568, 0.15277427434921265, 0.05768806114792824, -0.03661893680691719, 0.061548057943582535, -0.0815073624253273, -0.050408925861120224, -0.0435815155506134, -0.027590973302721977, 0.014652186073362827, 0.13031785190105438, 0.09590029716491699, 0.036370303481817245, -0.14576385915279388, -0.004695602227002382, 0.10273110866546631, -0.17436492443084717, 0.24037514626979828, 0.025409698486328125, -0.18146173655986786, -0.01853155344724655, -0.05653705820441246, -0.08985399454832077, 0.1515590399503708, 0.05573160573840141, 0.060168687254190445, -0.12663085758686066, -0.10463570803403854, -0.10126161575317383, 0.040068019181489944, 0.1321064978837967, -0.020343124866485596, -0.026999086141586304, -0.03250361979007721, 0.011668303050100803, -0.03334721922874451, 0.04609129950404167, -0.028003200888633728, 0.03861124813556671, 0.10454076528549194, -0.21080172061920166, 0.07087933272123337, -0.05166331306099892, -0.020999783650040627, 0.11787397414445877, 0.16037777066230774, -0.12544317543506622, -0.011961950920522213, -0.059567227959632874, -0.10334881395101547, 0.16870540380477905, -0.036860812455415726, -0.01548577006906271, -0.0213796216994524, -0.09909942001104355, -0.08677783608436584, -0.215326189994812, 0.2559182345867157, -0.02957165241241455, -0.02694711647927761, -0.06839119642972946, 0.17677627503871918, -0.03464168310165405, 0.10561803728342056, -0.09726566076278687, 0.06977609544992447, -0.14224202930927277, -0.04686140641570091, 0.11002210527658463, -0.1534537523984909, 0.029305433854460716, 0.003509805304929614, -0.14716902375221252, 0.03720485046505928, 0.035996779799461365, -0.0875127837061882, 0.13127779960632324, 0.3021056354045868, 0.006451393011957407, 0.10834773629903793, 0.15209592878818512, -0.028722308576107025, -0.15519000589847565, 0.0009002487058751285, -0.14467652142047882, -0.010058456100523472, 0.018148770555853844, -0.305246502161026, 0.1270415484905243, 0.09915054589509964, -0.033409181982278824, 0.28476712107658386, -0.23404256999492645, -0.09413003921508789, 0.08889713883399963, -0.06567874550819397, 0.4441095292568207, -0.15286403894424438, -0.02458484284579754, -0.08785887807607651, -0.0043374644592404366, 0.18388736248016357, -0.009238573722541332, 0.02290634624660015, -0.06128901243209839, -0.011642313562333584, 0.04603542014956474, -0.08216550201177597, 0.19373612105846405, -0.08938602358102798, 0.040457576513290405, -0.002905037021264434, -0.27610763907432556, 0.04502885416150093, 0.1026373878121376, -0.1729324460029602, 0.13711370527744293, -0.09147226810455322, -0.014228182844817638, -0.010500377975404263, -0.09045287221670151, 0.18210560083389282, 0.01343428436666727, -0.1396447718143463, -0.04652880132198334, 0.06698035448789597, -0.1880561113357544, -0.025435522198677063, 0.3115558326244354, -0.08896832913160324, 0.18983960151672363, 0.14181768894195557, 0.047905921936035156, -0.24998979270458221, -0.0009949380764737725, 0.15022456645965576, 0.012735828757286072, 0.06596554815769196, -0.0911460742354393, -0.035016972571611404, 0.19799081981182098, -0.04225011542439461, 0.08198940753936768, 0.06596089154481888, -0.00041173523641191423, 0.005655409302562475, 0.1744430512189865, -0.2710057199001312, -0.08982915431261063, -0.09886324405670166, 0.04880043491721153, 0.0515577606856823, -0.06775268167257309, 0.021829575300216675, 0.028991952538490295, -0.08052963018417358, 0.010592062026262283, -0.004600915592163801, -0.15511135756969452, -0.013359316624701023, 0.024514086544513702, 0.005606260150671005, 0.001033009379170835, -0.0224597305059433, 0.15524281561374664, -0.10016391426324844, -0.19612149894237518, 0.15586704015731812, -0.009965711273252964, -0.05366538092494011, -0.08078966289758682, 0.0463639535009861, -0.1210763230919838, 0.05329480767250061, -0.06082303449511528, -0.11006645113229752, -0.018117042258381844, 0.11815985292196274, 0.0545463003218174, 0.02847905457019806, -0.014510699547827244, 0.06480738520622253, 0.21863937377929688, -0.03495657071471214, -0.15498574078083038, 0.004609344061464071, 0.00896403193473816, -0.058233100920915604, -0.02797362394630909, 0.09262851625680923, -0.10890119522809982, -0.10526067763566971, -0.1909462958574295, 0.028909094631671906, -0.07605963200330734, -0.11143656820058823, -0.1379736214876175, -0.10957614332437515, -0.034986987709999084, -0.038443151861429214, -0.015044468455016613, -0.10147327929735184, -0.06789617985486984, 0.04740354046225548, -0.02290026843547821, 0.10881469398736954, 0.012633302249014378, -0.053196340799331665, 0.2111007571220398, -0.030939387157559395, 0.07369446009397507, 0.16386324167251587, 0.07817376405000687, 0.09395543485879898, -0.051843512803316116, 0.07849221676588058, 0.14718803763389587, 0.10036372393369675, -0.008598807267844677, 0.010353848338127136, -0.041398338973522186, -0.041736286133527756, -0.02565647102892399, 0.0030415430665016174, -0.07793822884559631, -0.10528120398521423, -0.10122960805892944, -0.05185320973396301, -0.2988645136356354, 0.05447825416922569, -0.1542757898569107, 0.1290760040283203, -0.02513149380683899, -0.08959847688674927, 0.034177523106336594, 0.010458583943545818, -0.0952690914273262, 0.055701445788145065, -0.02354205958545208, -0.09356772899627686, -0.1589350700378418, -0.07549870014190674, -0.006162560079246759, -0.01285293698310852, 0.3174888789653778, 0.05200772359967232, 0.06331739574670792, 0.052807748317718506, 0.031071670353412628, 0.10385457426309586, 0.11019816249608994, 0.06748849898576736, 0.14316238462924957, -0.0029791498091071844, -0.019295843318104744, 0.03683928772807121, -0.054789941757917404, -0.048367395997047424, 0.16855989396572113, 0.1395357996225357, 0.02526024915277958, -0.06723035126924515, 0.011015278287231922, -0.05405597761273384, 0.07037752121686935, -0.0006711483001708984, 0.04341992363333702, -0.01408138033002615, -0.0382254533469677, 0.12009787559509277, 0.12633292376995087, -0.12299823760986328, 0.09455946087837219, -0.09496146440505981, -0.012916755862534046, -0.06215180456638336, 0.05694175139069557, -0.04223572090268135, -0.16894374787807465, 0.0043757339008152485, -0.0930069088935852, -0.09189323335886002, 0.05245941877365112, -0.05816537141799927, -0.03194500878453255, 0.1584644764661789, 0.0801921859383583, -0.07257900387048721, -0.011222307570278645, 0.012288399040699005, -0.028924914076924324, -0.14154362678527832, -0.11247392743825912, -0.17026464641094208, -0.06970825791358948, -0.11752564460039139, 0.0447922982275486, -0.09771252423524857, -0.0532074011862278, -0.14634345471858978, -0.04565044865012169, -0.056908536702394485, -0.006380386650562286, -0.09957519918680191, -0.0016945675015449524, -0.06530752032995224, -0.02484217844903469, 0.03435462713241577, 0.24492700397968292, 0.017850639298558235, 0.07744207978248596, 0.08270380645990372, 0.16405203938484192, 0.017442213371396065, 0.14910541474819183, 0.015467513352632523, -0.012213191948831081, -0.04774036630988121, -0.0022224083077162504, 0.2488497495651245, -0.06064501777291298, -0.009610027074813843, -0.016499726101756096, 0.06766016036272049, 0.12589482963085175, 0.05031687021255493, 0.0731407031416893, 0.21911732852458954, -0.17025963962078094, -0.004043647553771734, -0.06985356658697128, 0.05881685018539429, -0.10741347819566727, 0.06416185200214386, 0.20844383537769318, -0.01125671248883009, -0.11356216669082642, 0.07321659475564957, -0.15025168657302856, 0.21040207147598267, 0.08556673675775528, -0.3291020095348358, -0.051589835435152054, -0.051503986120224, 0.015077187679708004, -0.09425219148397446, 0.0820755735039711, -0.12905912101268768, -0.16389773786067963, -0.17395614087581635, 0.11280105262994766, -0.2842351496219635, -0.10055994987487793, 0.21136677265167236, 0.044153567403554916, 0.010613180696964264, -0.012217982672154903, 0.13877923786640167, -0.021886540576815605, 0.04460294917225838, 0.038988590240478516, -0.041982829570770264, 0.08597727864980698, -0.12770190834999084, -0.1845032423734665, -0.0922575369477272, 0.06843595951795578, -0.054539281874895096, 0.08200270682573318, -0.0038670841604471207, -0.040275249630212784, 0.10840790718793869, -0.08307618647813797, 0.056609924882650375, 0.02133486419916153, -0.17983245849609375, 0.019015798345208168, 0.04907761886715889, -0.04159228131175041, -0.007612865883857012, -0.11559095233678818, 0.03426053747534752, 0.011336158961057663, -0.07209784537553787, -0.15442301332950592, -0.05687735602259636, -0.0677267536520958, 0.12277168035507202, -0.005670197773724794, -0.039509858936071396, -0.05242554843425751, 0.04605904221534729, 0.23270563781261444, -0.12891823053359985, 0.028287628665566444, 0.01194281131029129, -0.04645552113652229, -0.034503836184740067, -0.236583411693573, 0.07493454962968826, 0.04594925418496132, -0.08225462585687637, -0.04712865874171257 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-manuscripts This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the davanstrien/manuscript_iiif_test dataset. It achieves the following results on the evaluation set: - Loss: 0.5177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5303 | 1.0 | 34 | 0.5134 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["masked-auto-encoding", "generated_from_trainer"], "base_model": "facebook/vit-mae-base", "model-index": [{"name": "vit-manuscripts", "results": []}]}
null
davanstrien/vit-manuscripts
[ "transformers", "pytorch", "tensorboard", "vit_mae", "pretraining", "masked-auto-encoding", "generated_from_trainer", "base_model:facebook/vit-mae-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit_mae #pretraining #masked-auto-encoding #generated_from_trainer #base_model-facebook/vit-mae-base #license-apache-2.0 #endpoints_compatible #region-us
vit-manuscripts =============== This model is a fine-tuned version of facebook/vit-mae-base on the davanstrien/manuscript\_iiif\_test dataset. It achieves the following results on the evaluation set: * Loss: 0.5177 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 128 * eval\_batch\_size: 128 * seed: 1337 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.05 * num\_epochs: 1.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.0+cu111 * Datasets 1.18.2 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit_mae #pretraining #masked-auto-encoding #generated_from_trainer #base_model-facebook/vit-mae-base #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ 69, 134, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #vit_mae #pretraining #masked-auto-encoding #generated_from_trainer #base_model-facebook/vit-mae-base #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 1337\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ -0.1375609189271927, 0.0659545361995697, -0.004060021601617336, 0.09045957028865814, 0.12710288166999817, 0.0409250445663929, 0.10177206248044968, 0.13236601650714874, -0.08671674132347107, 0.08089610189199448, 0.11251464486122131, 0.0776534304022789, 0.06712643802165985, 0.1455521434545517, -0.02526017837226391, -0.23977214097976685, 0.023498697206377983, 0.019904686138033867, -0.08265233039855957, 0.11945659667253494, 0.08857069164514542, -0.12001966685056686, 0.08088703453540802, 0.01749427057802677, -0.1392497718334198, -0.021116727963089943, -0.016404183581471443, -0.06354573369026184, 0.11317406594753265, 0.0047115725465118885, 0.13166247308254242, 0.016629839316010475, 0.10138272494077682, -0.1795981377363205, 0.008601057343184948, 0.09808273613452911, 0.006756959017366171, 0.08586055040359497, 0.08117910474538803, 0.03382942080497742, 0.1158367395401001, -0.0855964943766594, 0.07099980115890503, 0.025205273181200027, -0.13219007849693298, -0.24774229526519775, -0.10021524876356125, 0.051071833819150925, 0.08131241053342819, 0.10671219229698181, -0.003318735398352146, 0.10368027538061142, -0.05740233510732651, 0.07174809277057648, 0.22044312953948975, -0.2514708936214447, -0.08155030012130737, -0.012677407823503017, 0.04402083903551102, 0.03799290210008621, -0.08458622545003891, -0.03454853221774101, 0.02942068688571453, 0.05397954210639, 0.10401720553636551, 0.005141495261341333, -0.05404539406299591, -0.03269714489579201, -0.14416450262069702, -0.07428385317325592, 0.12256070226430893, 0.043182600289583206, -0.03778694197535515, -0.016906149685382843, -0.06398217380046844, -0.18799825012683868, -0.04374430701136589, 0.005531156901270151, 0.023996733129024506, -0.03758291155099869, -0.04641566425561905, 0.003323540324345231, -0.08988941460847855, -0.08368583768606186, -0.004931427072733641, 0.13548681139945984, 0.06376799941062927, 0.007695946842432022, -0.0446586012840271, 0.11491910368204117, 0.0026856756303459406, -0.1750725358724594, -0.01027411688119173, 0.01442501600831747, -0.019012296572327614, -0.02602476067841053, -0.03706004470586777, -0.04342716932296753, 0.021610429510474205, 0.13703030347824097, -0.10914810746908188, 0.07065030187368393, -0.00324806896969676, 0.036780305206775665, -0.10802742093801498, 0.15957118570804596, -0.05318140611052513, 0.01365629117935896, 0.01295215543359518, 0.0973246842622757, 0.018363533541560173, -0.014443762600421906, -0.07538206875324249, -0.009066678583621979, 0.09001678973436356, 0.031825628131628036, -0.024092989042401314, 0.036801084876060486, -0.05565506964921951, -0.02322707138955593, 0.07458899170160294, -0.09056570380926132, 0.02669128216803074, 0.02310864068567753, -0.073537677526474, -0.04243874549865723, 0.036140576004981995, -0.006585087161511183, -0.04018845409154892, 0.11101791262626648, -0.08034708350896835, -0.00035590073093771935, -0.09639119356870651, -0.11011971533298492, 0.03621704876422882, -0.10495348274707794, 0.0016859321622177958, -0.09796490520238876, -0.13092546164989471, -0.03635571151971817, 0.04145872965455055, -0.035796232521533966, -0.04322749376296997, -0.033895526081323624, -0.10525369644165039, 0.04527580365538597, -0.008735200390219688, 0.14922547340393066, -0.06431879103183746, 0.09798450767993927, 0.02137044630944729, 0.0492837093770504, 0.0025078754406422377, 0.05392850190401077, -0.0712352991104126, 0.04476672038435936, -0.16259154677391052, 0.033008988946676254, -0.06556220352649689, 0.03492758795619011, -0.09847341477870941, -0.1156516820192337, -0.013937918469309807, -0.028243741020560265, 0.1290133148431778, 0.10753946006298065, -0.15219339728355408, -0.058884818106889725, 0.15945544838905334, -0.0990496501326561, -0.10798878222703934, 0.10823775827884674, -0.021740177646279335, -0.04793180525302887, 0.012774061411619186, 0.12114240974187851, 0.1023973673582077, -0.13289353251457214, 0.0074658384546637535, -0.008893570862710476, 0.0663490816950798, -0.012624219059944153, 0.0772261768579483, 0.0005763963563367724, 0.0022089979611337185, 0.007814093492925167, -0.046896349638700485, 0.051438458263874054, -0.098617322742939, -0.08801063895225525, -0.0582709014415741, -0.07283325493335724, 0.018707692623138428, 0.0698406770825386, 0.025903498753905296, -0.09228421002626419, -0.11361915618181229, -0.02435605227947235, 0.11760101467370987, -0.06494777649641037, 0.034528471529483795, -0.0764140859246254, 0.08101724833250046, -0.03156070411205292, -0.014902092516422272, -0.18379901349544525, -0.050615161657333374, 0.03245982155203819, -0.04695736616849899, -0.0053353747352957726, -0.03892169147729874, 0.06941507756710052, 0.08461256325244904, -0.035635657608509064, -0.057391539216041565, -0.11605877429246902, -0.013613461516797543, -0.10121164470911026, -0.23464903235435486, -0.08248443156480789, -0.02890756167471409, 0.11915460973978043, -0.16418665647506714, 0.0226842500269413, 0.006167659070342779, 0.12210793793201447, 0.015727024525403976, -0.0272369384765625, -0.024519482627511024, 0.08743337541818619, -0.020608851686120033, -0.07368176430463791, 0.048063818365335464, 0.016124727204442024, -0.06289801746606827, -0.0192172322422266, -0.10589397698640823, 0.0787341296672821, 0.12294770777225494, -0.046327143907547, -0.0796494334936142, 0.030424198135733604, -0.07088456302881241, -0.040967267006635666, -0.01837938092648983, 0.03727005422115326, 0.1712224781513214, 0.017800793051719666, 0.12560944259166718, -0.08689184486865997, -0.034609779715538025, 0.05260476469993591, 0.002127888845279813, -0.002360098995268345, 0.11126753687858582, 0.12366602569818497, -0.06606020778417587, 0.11667570471763611, 0.1381002813577652, -0.06597168743610382, 0.11036795377731323, -0.05373955890536308, -0.08943738788366318, -0.009414528496563435, 0.0014815261820331216, 0.020531900227069855, 0.1297421157360077, -0.150773823261261, 0.012608328834176064, 0.024793583899736404, 0.01927831396460533, 0.017836853861808777, -0.21069997549057007, -0.01265687495470047, 0.02494054101407528, -0.05615564435720444, -0.044990528374910355, -0.005707964766770601, 0.029014764353632927, 0.09980066120624542, 0.023827191442251205, -0.06197049096226692, 0.004623828921467066, -0.01041013840585947, -0.07050354778766632, 0.20516972243785858, -0.11214148998260498, -0.16564756631851196, -0.11181475222110748, 0.0034703228157013655, -0.029016226530075073, -0.00038234973908402026, 0.050877947360277176, -0.0965915396809578, -0.04057401791214943, -0.060662925243377686, 0.020717857405543327, -0.027814993634819984, 0.03641755133867264, 0.015159429982304573, 0.004564483184367418, 0.09292621165513992, -0.10360366851091385, 0.004225184675306082, -0.026783814653754234, -0.055952731519937515, 0.0260578915476799, 0.054335687309503555, 0.0953986644744873, 0.13281844556331635, -0.0059209405444562435, 0.011509919539093971, -0.017261730507016182, 0.21171928942203522, -0.08415061980485916, -0.024566929787397385, 0.1569502353668213, -0.010547691024839878, 0.06384820491075516, 0.10701459646224976, 0.04821956902742386, -0.08055702596902847, -0.001991608180105686, 0.01844542846083641, -0.034922756254673004, -0.22550280392169952, -0.0493968240916729, -0.05878452584147453, -0.014410872012376785, 0.12910053133964539, 0.029483085498213768, 0.0078066447749733925, 0.062192246317863464, -0.028461487963795662, 0.030339285731315613, -0.030732527375221252, 0.07396354526281357, 0.06978106498718262, 0.054320670664310455, 0.10060626268386841, -0.02370777167379856, -0.012751461006700993, 0.039449047297239304, -0.01396759320050478, 0.20746827125549316, -0.035446349531412125, 0.11406637728214264, 0.059467144310474396, 0.2046469897031784, -0.0005876926588825881, 0.06968453526496887, -0.015627674758434296, -0.015325921587646008, 0.006783131510019302, -0.0481150820851326, -0.04149431362748146, 0.009174511767923832, -0.04166204109787941, 0.04203961417078972, -0.15041862428188324, 0.02137773670256138, 0.01363080833107233, 0.29068419337272644, 0.0634775161743164, -0.3315764367580414, -0.10290413349866867, -0.01892152428627014, -0.018793189898133278, -0.07536585628986359, 0.013997308909893036, 0.11057081073522568, -0.07433129101991653, 0.06280651688575745, -0.06263168156147003, 0.09957746416330338, -0.028696799650788307, 0.016963303089141846, 0.10333269834518433, 0.12952765822410583, 0.018718019127845764, 0.06310892850160599, -0.2531639039516449, 0.2698824107646942, -0.0033066810574382544, 0.09052781760692596, -0.060084789991378784, 0.02640078030526638, 0.018921319395303726, 0.05319670960307121, 0.0673869326710701, -0.007764363661408424, -0.04507284611463547, -0.16329415142536163, -0.09567909687757492, 0.02210095152258873, 0.10194238275289536, -0.021781791001558304, 0.10212645679712296, -0.015697063878178596, -0.008031081408262253, 0.049951937049627304, -0.05346013233065605, -0.10986244678497314, -0.07255517691373825, 0.03002936951816082, 0.02223321795463562, 0.007504239212721586, -0.08976089954376221, -0.09574336558580399, -0.06883816421031952, 0.12521038949489594, -0.07217864692211151, -0.03400908783078194, -0.1276841014623642, 0.09128274768590927, 0.1372900754213333, -0.07862149178981781, 0.055942606180906296, -0.0077073886059224606, 0.11391061544418335, 0.01726393587887287, -0.05876513570547104, 0.08611244708299637, -0.08439630270004272, -0.21467769145965576, -0.05533776432275772, 0.13345225155353546, 0.047842130064964294, 0.0524478554725647, -0.015538753010332584, 0.029092993587255478, -0.026672042906284332, -0.08351292461156845, 0.036817315965890884, 0.0034996734466403723, 0.07516547292470932, 0.011320048943161964, -0.03000609762966633, 0.03261936455965042, -0.04614626616239548, -0.011204756796360016, 0.10651522129774094, 0.24233222007751465, -0.0915265828371048, 0.031025920063257217, 0.049175262451171875, -0.0670381709933281, -0.1893288642168045, 0.01832827925682068, 0.10937150567770004, 0.01833283342421055, -0.04174448922276497, -0.2105673849582672, 0.06857180595397949, 0.08287706971168518, -0.017003193497657776, 0.11041271686553955, -0.30926066637039185, -0.13056610524654388, 0.09669758379459381, 0.11472893506288528, 0.04640325531363487, -0.12794949114322662, -0.03150662034749985, 0.0025507521349936724, -0.13224168121814728, 0.0927613228559494, -0.08637028187513351, 0.11439310014247894, -0.03688567131757736, 0.03603573888540268, 0.01403676439076662, -0.06215636432170868, 0.14391231536865234, -0.005020178854465485, 0.0797181949019432, -0.04438219591975212, 0.03098936937749386, 0.05495326593518257, -0.05852958559989929, 0.018619557842612267, -0.03590049594640732, 0.048733483999967575, -0.1038004606962204, 0.00008521742711309344, -0.10583894699811935, 0.04643751680850983, -0.047062236815690994, -0.019032906740903854, -0.020751014351844788, 0.034395743161439896, 0.04515529051423073, -0.013171003200113773, 0.15916766226291656, 0.020662013441324234, 0.145955890417099, 0.10391964018344879, 0.08922133594751358, -0.04278026521205902, -0.049986958503723145, 0.007710530422627926, -0.017734503373503685, 0.0839766263961792, -0.11383713781833649, 0.017900913953781128, 0.13472065329551697, 0.029379434883594513, 0.09454662352800369, 0.07003505527973175, -0.0616115927696228, 0.004745781887322664, 0.07326611131429672, -0.1438705027103424, -0.06360037624835968, -0.0027938121929764748, 0.01124274916946888, -0.1218763142824173, 0.025499887764453888, 0.12427427619695663, -0.07188480347394943, -0.011024967767298222, -0.004836793523281813, 0.02430824562907219, -0.05286956578493118, 0.20150436460971832, 0.05448301509022713, 0.06068512052297592, -0.10976476967334747, 0.09610337764024734, 0.05021709203720093, -0.12939628958702087, 0.03310719132423401, 0.10981861501932144, -0.0930911973118782, -0.03669501096010208, 0.058766987174749374, 0.1329563707113266, -0.029244892299175262, -0.06923309713602066, -0.12020265311002731, -0.13295365869998932, 0.10312061011791229, 0.16762036085128784, 0.053289562463760376, 0.02693166397511959, -0.019686385989189148, 0.027959365397691727, -0.12702728807926178, 0.08138830959796906, 0.05185404792428017, 0.07911999523639679, -0.13819244503974915, 0.16494610905647278, 0.013996390625834465, 0.051557522267103195, -0.009344336576759815, 0.0329042449593544, -0.09024397283792496, 0.008351263590157032, -0.1382748931646347, 0.003113123821094632, -0.017209548503160477, -0.005144583526998758, -0.008138441480696201, -0.05858124420046806, -0.05216407775878906, 0.039661820977926254, -0.10207490622997284, -0.049446385353803635, -0.015522646717727184, 0.027512909844517708, -0.11428961902856827, -0.021487819030880928, 0.025996355339884758, -0.0997103899717331, 0.08083079755306244, 0.06117716431617737, 0.029159564524888992, 0.03371795266866684, -0.09812967479228973, -0.0019396636635065079, 0.036583464592695236, 0.019689366221427917, 0.04965948313474655, -0.1141168475151062, 0.01123383454978466, -0.03475022315979004, -0.011644099839031696, -0.008766990154981613, 0.10063000023365021, -0.13302215933799744, 0.0031649761367589235, 0.01897917501628399, -0.050715260207653046, -0.05374236777424812, 0.044466760009527206, 0.0902823880314827, 0.025626417249441147, 0.14724873006343842, -0.07352194935083389, 0.05286021903157234, -0.21975918114185333, -0.004356881603598595, -0.013631627894937992, -0.07754717767238617, -0.0674985721707344, -0.03109782189130783, 0.10681325942277908, -0.061285458505153656, 0.061681684106588364, -0.0013315199175849557, 0.07523012161254883, 0.030424345284700394, -0.05031735822558403, -0.021428801119327545, 0.047305744141340256, 0.1547006070613861, 0.027801062911748886, -0.03486077859997749, 0.06393774598836899, 0.00530635192990303, 0.08104890584945679, 0.10067106038331985, 0.20470744371414185, 0.13443081080913544, 0.08796047419309616, 0.09330236911773682, 0.06812740117311478, -0.09830348938703537, -0.148294135928154, 0.04980822280049324, -0.047507453709840775, 0.12787683308124542, -0.011325768195092678, 0.1589067429304123, 0.07137399911880493, -0.16828109323978424, 0.04175031930208206, -0.04417271167039871, -0.07715578377246857, -0.10306917876005173, -0.03509391099214554, -0.07400032877922058, -0.13921910524368286, 0.016688147559762, -0.1184254065155983, 0.03908152133226395, 0.06929785013198853, 0.016551459208130836, 0.006573440507054329, 0.15871545672416687, 0.07898042351007462, 0.012162113562226295, 0.08122117817401886, 0.036651886999607086, 0.003532121190801263, -0.040639955550432205, -0.10145947337150574, 0.027273019775748253, -0.020738473162055016, 0.043755341321229935, -0.04965146258473396, -0.05387251079082489, 0.06471194326877594, 0.03159540146589279, -0.10033208131790161, 0.03485880792140961, -0.006526262499392033, 0.06546543538570404, 0.08211866766214371, 0.006340827792882919, 0.03588809818029404, -0.019131159409880638, 0.19907905161380768, -0.07031350582838058, -0.06608881801366806, -0.1200631856918335, 0.2309156060218811, 0.0227053202688694, -0.03832009434700012, 0.05015835538506508, -0.06431226432323456, -0.024993905797600746, 0.18287166953086853, 0.1484747678041458, -0.05025751143693924, -0.011276386678218842, 0.021228939294815063, -0.01354624517261982, -0.04529275745153427, 0.11577942967414856, 0.1372273862361908, 0.05086013674736023, -0.09407217800617218, -0.0386616475880146, -0.05520285293459892, 0.001567243249155581, -0.04057517275214195, 0.04092245548963547, 0.007859388366341591, -0.012823233380913734, -0.040417615324258804, 0.047813814133405685, -0.03974904865026474, -0.11994528770446777, 0.09137032181024551, -0.1883084625005722, -0.17347721755504608, -0.025253459811210632, 0.07896377891302109, 0.014012360945343971, 0.06028108298778534, -0.009173770435154438, -0.012740008533000946, 0.11439312994480133, -0.018058285117149353, -0.02705911174416542, -0.1332181990146637, 0.08175648748874664, -0.10503654927015305, 0.22528885304927826, -0.03970959782600403, 0.039507728070020676, 0.10942089557647705, 0.05853614956140518, -0.11334504187107086, 0.013421590439975262, 0.06834191828966141, -0.07061927765607834, 0.01493824552744627, 0.14277826249599457, -0.0433669351041317, 0.07572784274816513, 0.034019023180007935, -0.12642723321914673, -0.011883827857673168, -0.053773827850818634, -0.0368879996240139, -0.02969922125339508, -0.013840888626873493, -0.05257011204957962, 0.13798266649246216, 0.2186674177646637, -0.04090306535363197, -0.024441014975309372, -0.06799837201833725, 0.020220575854182243, 0.04476533830165863, 0.08244094252586365, -0.030441444367170334, -0.2282966673374176, 0.022935623303055763, 0.049509577453136444, 0.010105282068252563, -0.19732122123241425, -0.08372242748737335, 0.027333440259099007, -0.07030895352363586, -0.0919124186038971, 0.08154384791851044, 0.024953071027994156, 0.0477738194167614, -0.05514014512300491, -0.017774216830730438, -0.0538029707968235, 0.16670814156532288, -0.1608251929283142, -0.08177827298641205 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_flyswot_test This model is a fine-tuned version of [](https://huggingface.co/) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.4777 - F1: 0.8492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 52 | 1.2007 | 0.3533 | | No log | 2.0 | 104 | 1.0037 | 0.5525 | | No log | 3.0 | 156 | 0.8301 | 0.6318 | | No log | 4.0 | 208 | 0.7224 | 0.6946 | | No log | 5.0 | 260 | 0.7298 | 0.7145 | | No log | 6.0 | 312 | 0.6328 | 0.7729 | | No log | 7.0 | 364 | 0.6010 | 0.7992 | | No log | 8.0 | 416 | 0.5174 | 0.8364 | | No log | 9.0 | 468 | 0.5084 | 0.8479 | | 0.6372 | 10.0 | 520 | 0.4777 | 0.8492 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"tags": ["generated_from_trainer"], "datasets": ["image_folder"], "metrics": ["f1"], "model-index": [{"name": "vit_flyswot_test", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "image_folder", "type": "image_folder", "args": "default"}, "metrics": [{"type": "f1", "value": 0.849172221610369, "name": "F1"}]}]}]}
image-classification
davanstrien/vit_flyswot_test
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:image_folder", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-image_folder #model-index #autotrain_compatible #endpoints_compatible #region-us
vit\_flyswot\_test ================== This model is a fine-tuned version of [](URL on the image\_folder dataset. It achieves the following results on the evaluation set: * Loss: 0.4777 * F1: 0.8492 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 666 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-image_folder #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ 55, 114, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-image_folder #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 666\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ -0.11344770342111588, 0.04751553386449814, -0.0016289878403767943, 0.1202230378985405, 0.20783312618732452, 0.03378768265247345, 0.10124708712100983, 0.11660601943731308, -0.10320287942886353, 0.015595704317092896, 0.11221840232610703, 0.1582256555557251, 0.0275175329297781, 0.149806946516037, -0.04613129049539566, -0.3084040880203247, 0.005048770923167467, 0.04304640367627144, -0.04119814559817314, 0.1322978138923645, 0.08176173269748688, -0.16212259232997894, 0.08856574445962906, 0.011050663888454437, -0.23247002065181732, 0.002558751031756401, 0.023697445169091225, -0.04966849461197853, 0.14602801203727722, 0.029811419546604156, 0.13757583498954773, 0.013933468610048294, 0.1183057427406311, -0.15905986726284027, 0.016115812584757805, 0.070827916264534, 0.013987476006150246, 0.08184057474136353, 0.09064866602420807, 0.008402759209275246, 0.09978646039962769, -0.07696887850761414, 0.06107538938522339, 0.007037632167339325, -0.12261466681957245, -0.23659934103488922, -0.0648551881313324, 0.011852837167680264, 0.086690254509449, 0.09854001551866531, -0.007895048707723618, 0.12832914292812347, -0.10785046219825745, 0.10749280452728271, 0.18491460382938385, -0.22379589080810547, -0.07391917705535889, 0.009536707773804665, -0.0051923030987381935, 0.07175891101360321, -0.11338016390800476, -0.023390673100948334, 0.037630628794431686, 0.048905789852142334, 0.13223595917224884, -0.01403722818940878, -0.11952308565378189, -0.00046452460810542107, -0.14040163159370422, -0.03023812547326088, 0.09467700123786926, 0.05300701782107353, -0.0315958671271801, -0.028556399047374725, -0.061021141707897186, -0.14935855567455292, -0.05433908477425575, 0.0016993569443002343, 0.04059745371341705, -0.05109487846493721, -0.10959309339523315, 0.006779427174478769, -0.1004081517457962, -0.06702207773923874, -0.06327055394649506, 0.1244029849767685, 0.045559994876384735, 0.02180197462439537, -0.033760663121938705, 0.10862058401107788, -0.013050168752670288, -0.1285036951303482, 0.01963077485561371, 0.006874289363622665, -0.04344704747200012, -0.05546574667096138, -0.05557814612984657, -0.0864214077591896, -0.03130807727575302, 0.08390738070011139, -0.04671460762619972, 0.06004145368933678, 0.004701881669461727, 0.039232078939676285, -0.08541442453861237, 0.21399766206741333, -0.06640319526195526, 0.012321019545197487, -0.009002316743135452, 0.05939647927880287, -0.01726446859538555, -0.013991749845445156, -0.1073899045586586, -0.004515608306974173, 0.11220679432153702, -0.016345102339982986, -0.0758146345615387, 0.079976886510849, -0.043605901300907135, -0.041956283152103424, 0.030933693051338196, -0.07168176770210266, 0.04792694002389908, -0.007199903950095177, -0.09106507152318954, 0.011355068534612656, 0.03663582354784012, 0.01753610000014305, -0.01736418344080448, 0.14574380218982697, -0.0941355973482132, 0.05640622228384018, -0.10838842391967773, -0.14068551361560822, 0.003749577095732093, -0.07573368400335312, 0.01786305382847786, -0.10712254792451859, -0.146867573261261, -0.01904747448861599, 0.056579120457172394, -0.03341837227344513, -0.026485389098525047, -0.03949861228466034, -0.05303630977869034, 0.022727886214852333, -0.008116275072097778, 0.14186181128025055, -0.058916881680488586, 0.11371970921754837, 0.026196369901299477, 0.0774153396487236, -0.02868349477648735, 0.0642368495464325, -0.09530521184206009, 0.007679175119847059, -0.21039961278438568, 0.054490696638822556, -0.042902007699012756, 0.0686340183019638, -0.08996232599020004, -0.12851428985595703, 0.016260627657175064, -0.012776456773281097, 0.08592531085014343, 0.09828644245862961, -0.15956300497055054, -0.06907892227172852, 0.15069663524627686, -0.06854590028524399, -0.0805841013789177, 0.12046049535274506, -0.07039246708154678, 0.008945186622440815, 0.06430242955684662, 0.1511065661907196, 0.06315632164478302, -0.08813352137804031, 0.02975093387067318, -0.02838938497006893, 0.0359504297375679, -0.050446800887584686, 0.06022709235548973, 0.038389939814805984, -0.013131777755916119, 0.01967572048306465, -0.028228076174855232, 0.09839832782745361, -0.11783214658498764, -0.08085596561431885, -0.031996823847293854, -0.0875549167394638, 0.06230000779032707, 0.08606220036745071, 0.07132283598184586, -0.09017394483089447, -0.0848441869020462, 0.07430572807788849, 0.08061067014932632, -0.06571094691753387, 0.01770842634141445, -0.06314791738986969, 0.05529792234301567, -0.08138429373502731, -0.031204422935843468, -0.1804618537425995, -0.042373254895210266, 0.007843452505767345, 0.03241043537855148, 0.01133763324469328, -0.008105645887553692, 0.07783077657222748, 0.08288000524044037, -0.060093775391578674, -0.04471568763256073, -0.03411247953772545, 0.0012725223787128925, -0.12661196291446686, -0.18862509727478027, -0.048763807862997055, -0.019149605184793472, 0.13460585474967957, -0.21880945563316345, 0.0034884295891970396, -0.023358112201094627, 0.0872359573841095, 0.03139663487672806, -0.013611063361167908, -0.04179896041750908, 0.08139491826295853, -0.029868265613913536, -0.060542911291122437, 0.07778028398752213, 0.0004666740132961422, -0.0514327809214592, -0.025003507733345032, -0.10169350355863571, 0.1534658819437027, 0.12962490320205688, -0.15137842297554016, -0.09731832146644592, -0.024791333824396133, -0.05289574712514877, -0.038556985557079315, -0.06636027246713638, 0.03487180545926094, 0.15704940259456635, 0.0021518513094633818, 0.1565672755241394, -0.057288385927677155, -0.01984107866883278, 0.03969693183898926, -0.015035287477076054, 0.013587940484285355, 0.1029910296201706, 0.1488601118326187, -0.11198282241821289, 0.1202968880534172, 0.13245819509029388, -0.09250163286924362, 0.1377091407775879, -0.016127754002809525, -0.09555698186159134, -0.0013726750621572137, -0.03866075724363327, -0.005453326739370823, 0.11024159938097, -0.11629793792963028, -0.014467520639300346, 0.025866085663437843, 0.020679090172052383, 0.008209140971302986, -0.22681811451911926, -0.034160006791353226, 0.047308892011642456, -0.019338112324476242, -0.034096989780664444, -0.02362733520567417, 0.024851132184267044, 0.11875765770673752, 0.005387396551668644, -0.08513867855072021, 0.023677386343479156, 0.01021319068968296, -0.06818243116140366, 0.2067205160856247, -0.07984191179275513, -0.17276915907859802, -0.10114390403032303, -0.09503902494907379, -0.03622834011912346, 0.0090341130271554, 0.044152189046144485, -0.12020103633403778, -0.044245023280382156, -0.048319414258003235, 0.024969281628727913, -0.006186063401401043, 0.024981297552585602, -0.02156819775700569, -0.011025707237422466, 0.07327289879322052, -0.08347567915916443, -0.01317588146775961, -0.04567353054881096, -0.053064655512571335, 0.0874120220541954, 0.03333647921681404, 0.1276673823595047, 0.14661374688148499, -0.04571878910064697, 0.026340141892433167, -0.029747119173407555, 0.2523871660232544, -0.08084049820899963, -0.009236549958586693, 0.135786235332489, -0.009838168509304523, 0.059044186025857925, 0.12619078159332275, 0.059681620448827744, -0.084182970225811, 0.0190160870552063, 0.041717737913131714, -0.041054029017686844, -0.1712547391653061, -0.040487196296453476, -0.054244399070739746, -0.04016857594251633, 0.12116876989603043, 0.009934276342391968, 0.026873426511883736, 0.08600495755672455, 0.03365716710686684, 0.07226017862558365, -0.041848208755254745, 0.06451258808374405, 0.10078883171081543, 0.049796342849731445, 0.1429380178451538, -0.030985483899712563, -0.07889655977487564, 0.03838964179158211, -0.014406935311853886, 0.2509295344352722, -0.016547787934541702, 0.0705028548836708, 0.03543715178966522, 0.17222711443901062, 0.02060307189822197, 0.08409959822893143, -0.0007855382282286882, -0.0517834797501564, -0.016849476844072342, -0.02768981270492077, -0.03613969311118126, 0.016225511208176613, -0.01690870337188244, 0.030033811926841736, -0.1397833526134491, 0.0034756427630782127, 0.037347566336393356, 0.24192409217357635, 0.05317365750670433, -0.3754342794418335, -0.08304892480373383, -0.013337500393390656, -0.02316783182322979, -0.0475408211350441, -0.0011337706819176674, 0.10409273952245712, -0.11089541763067245, 0.03225382789969444, -0.09302528947591782, 0.10324802994728088, -0.06409449130296707, 0.035378728061914444, 0.08520540595054626, 0.09529230743646622, -0.002021203748881817, 0.07184474915266037, -0.2734552025794983, 0.28085222840309143, -0.001346356701105833, 0.055100083351135254, -0.07645043730735779, -0.01326349750161171, 0.054490115493535995, 0.08751863986253738, 0.05669350549578667, -0.009576313197612762, -0.040606606751680374, -0.2620588541030884, -0.04691612720489502, 0.025969138368964195, 0.09582436084747314, 0.004666681867092848, 0.1065630093216896, -0.034493155777454376, -0.002366222906857729, 0.0684494823217392, -0.0036082733422517776, -0.07881373912096024, -0.08844352513551712, -0.018692610785365105, 0.00436075683683157, -0.01077625434845686, -0.054872408509254456, -0.12479627877473831, -0.10423801839351654, 0.12968003749847412, 0.057345982640981674, -0.027549399062991142, -0.14332357048988342, 0.1197892501950264, 0.07361261546611786, -0.08870693296194077, 0.04611014947295189, 0.004792770836502314, 0.09670519083738327, 0.03775878995656967, -0.08436036109924316, 0.11971624940633774, -0.06581926345825195, -0.14557866752147675, -0.06662290543317795, 0.05851612985134125, 0.036565184593200684, 0.06066449359059334, -0.010385248810052872, 0.025989076122641563, -0.023022843524813652, -0.07242095470428467, 0.04149473085999489, -0.023628707975149155, 0.06337691098451614, 0.04185657948255539, -0.0400993637740612, 0.027878284454345703, -0.062193986028432846, -0.012117461301386356, 0.17681948840618134, 0.20288392901420593, -0.09854120016098022, -0.007197709754109383, 0.017513277009129524, -0.05429449304938316, -0.20135074853897095, 0.08128783851861954, 0.08804497867822647, 0.015340912155807018, 0.041530635207891464, -0.18644379079341888, 0.11859878897666931, 0.09895984828472137, -0.004812735132873058, 0.09323929250240326, -0.2934466302394867, -0.11773500591516495, 0.11578044295310974, 0.17578072845935822, 0.10184136033058167, -0.1228751689195633, 0.00637246947735548, -0.02391728013753891, -0.1257476508617401, 0.10507898777723312, -0.04896187037229538, 0.12256752699613571, -0.02533697709441185, 0.092974953353405, 0.01992265321314335, -0.05625513568520546, 0.10437095910310745, -0.00579669326543808, 0.11365416646003723, -0.0733536034822464, -0.02071775123476982, 0.021709544584155083, -0.04737399145960808, 0.015867697075009346, -0.024118926376104355, 0.03422417491674423, -0.09460094571113586, -0.021391183137893677, -0.104073666036129, 0.012383882887661457, -0.01340892631560564, -0.062224823981523514, -0.029956022277474403, 0.049026548862457275, 0.05190984159708023, -0.013217947445809841, 0.12211485207080841, 0.0058858199045062065, 0.11988314986228943, 0.075086809694767, 0.06505077332258224, -0.06011068820953369, -0.07102730125188828, -0.03601803630590439, -0.012202728539705276, 0.06692270934581757, -0.12369334697723389, 0.036183785647153854, 0.15151505172252655, 0.013955306261777878, 0.1496351659297943, 0.08407843858003616, -0.007472810801118612, 0.026000162586569786, 0.07046324759721756, -0.13405951857566833, -0.09393279254436493, -0.012078597210347652, -0.04734508693218231, -0.08727948367595673, 0.02148471772670746, 0.09297949075698853, -0.07873984426259995, -0.004629036411643028, -0.016870396211743355, 0.0049346331506967545, -0.04173988476395607, 0.2070849984884262, 0.07194776833057404, 0.03678397461771965, -0.10836689174175262, 0.0634852945804596, 0.06660117208957672, -0.10370023548603058, -0.0020626885816454887, 0.07552763819694519, -0.0817859023809433, -0.035705216228961945, 0.09001678228378296, 0.1735069751739502, -0.0804443508386612, -0.03280892223119736, -0.12763051688671112, -0.11981216073036194, 0.08212112635374069, 0.13208448886871338, 0.09628020226955414, -0.00876174308359623, -0.05642227455973625, 0.013701037503778934, -0.14308905601501465, 0.08419033139944077, 0.054388780146837234, 0.08882055431604385, -0.16272282600402832, 0.17270438373088837, 0.004685278981924057, 0.06842628121376038, -0.030353812500834465, 0.007233804557472467, -0.09888125956058502, 0.023212524130940437, -0.14273406565189362, -0.01779916137456894, -0.02019071951508522, 0.008360869251191616, -0.007440677843987942, -0.059785082936286926, -0.05278729647397995, 0.01188310980796814, -0.1265515387058258, -0.030330289155244827, 0.037533894181251526, 0.03938530012965202, -0.09899906069040298, -0.05136304348707199, 0.022001024335622787, -0.05863253399729729, 0.06413832306861877, 0.03946015611290932, 0.00854690745472908, 0.04406704753637314, -0.12628638744354248, -0.029169710353016853, 0.0742664709687233, 0.002393111353740096, 0.07559482753276825, -0.06651795655488968, 0.014365268871188164, -0.01148963626474142, 0.055119939148426056, 0.004793516360223293, 0.08848821371793747, -0.12912608683109283, -0.01009361632168293, -0.03570519760251045, -0.08456363528966904, -0.06836532056331635, 0.06202670559287071, 0.0533113107085228, 0.02505442500114441, 0.18368400633335114, -0.08725930750370026, 0.046579428017139435, -0.22798676788806915, -0.012269127182662487, -0.01886717416346073, -0.11863598227500916, -0.09072726964950562, -0.06847085058689117, 0.08154958486557007, -0.06109324470162392, 0.09939580410718918, 0.057985492050647736, 0.08742950856685638, 0.023089895024895668, -0.008204714395105839, -0.0022342337761074305, 0.024710923433303833, 0.18318523466587067, 0.027129536494612694, -0.04479558765888214, 0.07935933023691177, 0.06786737591028214, 0.11519663780927658, 0.16747289896011353, 0.18817327916622162, 0.1475892961025238, -0.005639021284878254, 0.07938128709793091, 0.039266590029001236, -0.05778359994292259, -0.16510307788848877, 0.01381028350442648, -0.06637449562549591, 0.1171530932188034, -0.03431385010480881, 0.1876310408115387, 0.06793197989463806, -0.16188350319862366, 0.05367070436477661, -0.05460662022233009, -0.09679723531007767, -0.08887768536806107, -0.062329668551683426, -0.0968482494354248, -0.16156239807605743, 0.016753509640693665, -0.10972262173891068, 0.02824247255921364, 0.11997155100107193, 0.017572659999132156, -0.026115240529179573, 0.17227107286453247, 0.03775053098797798, 0.011780958622694016, 0.07787396758794785, 0.0019875478465110064, -0.015444058924913406, -0.07128068804740906, -0.06846510618925095, 0.015177467837929726, -0.010977072641253471, 0.04365575313568115, -0.0657721608877182, -0.0742611438035965, 0.045046016573905945, -0.0019169410225003958, -0.11183575540781021, 0.018630342558026314, 0.013597634620964527, 0.05289541929960251, 0.04691597819328308, 0.0020666271448135376, 0.03806567192077637, -0.0311986543238163, 0.2155417799949646, -0.07855939865112305, -0.05376629903912544, -0.11343477666378021, 0.26824697852134705, 0.036537207663059235, -0.005771701689809561, 0.03484616428613663, -0.07366572320461273, -0.0007387272198684514, 0.23501788079738617, 0.17018768191337585, -0.11182209849357605, -0.01387819740921259, 0.002050670562312007, -0.015616443008184433, -0.022837741300463676, 0.14751771092414856, 0.11224798113107681, 0.02382148802280426, -0.10335725545883179, -0.03436151146888733, -0.0624723806977272, -0.025769053027033806, -0.014525855891406536, 0.04491165652871132, 0.058190278708934784, 0.01764390617609024, -0.06978333741426468, 0.06311606615781784, -0.03907274827361107, -0.05635925009846687, 0.06366049498319626, -0.18602697551250458, -0.16982172429561615, -0.018077917397022247, 0.07698428630828857, 0.019403409212827682, 0.05903960019350052, -0.04641786590218544, 0.005493395030498505, 0.07572194933891296, -0.014885351993143559, -0.0728282704949379, -0.10168186575174332, 0.08821719139814377, -0.10744790732860565, 0.2035849243402481, -0.03678295016288757, 0.03668226674199104, 0.11204327642917633, 0.06649859249591827, -0.07691898941993713, 0.06311369687318802, 0.027667643502354622, -0.07484594732522964, 0.03329206258058548, 0.14834077656269073, -0.04295859485864639, 0.05681794881820679, 0.02981334738433361, -0.16480346024036407, 0.032864950597286224, -0.10561619699001312, -0.04817989096045494, -0.0280211940407753, -0.03683443367481232, -0.04870804771780968, 0.13191336393356323, 0.24154089391231537, -0.009887555614113808, -0.001070326310582459, -0.0925009697675705, 0.001409785239957273, 0.060859475284814835, 0.043179068714380264, -0.07929105311632156, -0.21116428077220917, 0.0006416668184101582, 0.03196467086672783, -0.015484257601201534, -0.215906023979187, -0.09162161499261856, -0.0069598848931491375, -0.07975675910711288, -0.0824926421046257, 0.11251769214868546, 0.07045629620552063, 0.05412702634930611, -0.05752187967300415, -0.06440252810716629, -0.06391879171133041, 0.1623554676771164, -0.14113685488700867, -0.07763399928808212 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9199 - Mae: 0.4756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1705 | 1.0 | 235 | 0.9985 | 0.5854 | | 0.9721 | 2.0 | 470 | 0.9199 | 0.4756 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
text-classification
daveccampbell/xlm-roberta-base-finetuned-marc-en
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-marc-en ================================== This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset. It achieves the following results on the evaluation set: * Loss: 0.9199 * Mae: 0.4756 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.09092789888381958, 0.08008227497339249, -0.0020140453707426786, 0.11630697548389435, 0.18312716484069824, 0.042973749339580536, 0.15040470659732819, 0.11954569816589355, -0.09022784978151321, -0.0003494977136142552, 0.11352355778217316, 0.17042438685894012, 0.007949714548885822, 0.1317906379699707, -0.06562875211238861, -0.25790008902549744, -0.012251557782292366, 0.05035068839788437, -0.04488401114940643, 0.1443592607975006, 0.10154645889997482, -0.1380293369293213, 0.09442190825939178, -0.0014341471251100302, -0.19770415127277374, -0.006765956524759531, 0.029228247702121735, -0.06890206784009933, 0.13384534418582916, 0.03764583170413971, 0.13645893335342407, 0.008102459833025932, 0.07276447862386703, -0.19063866138458252, 0.020796533674001694, 0.040146905928850174, 0.00358709879219532, 0.0915832370519638, 0.030548246577382088, -0.01468250248581171, 0.1342829167842865, -0.060973599553108215, 0.07154899835586548, 0.018368558958172798, -0.11795462667942047, -0.2320529818534851, -0.08308214694261551, 0.035912688821554184, 0.056772612035274506, 0.09991798549890518, -0.010324102826416492, 0.15634198486804962, -0.07674280554056168, 0.10339420288801193, 0.23605166375637054, -0.2893300950527191, -0.07612571865320206, 0.032290682196617126, 0.043305903673172, 0.08403892815113068, -0.10349797457456589, -0.023395158350467682, 0.05919168144464493, 0.05649252235889435, 0.12055753171443939, -0.0452197901904583, -0.0962030366063118, 0.01583736389875412, -0.1441667675971985, -0.02332693338394165, 0.2023565173149109, 0.03447432816028595, -0.0476268008351326, -0.051082272082567215, -0.032434288412332535, -0.15748977661132812, -0.03979404643177986, -0.0009673985186964273, 0.050246383994817734, -0.06319781392812729, -0.08705104142427444, -0.013781961984932423, -0.11613631248474121, -0.05173107236623764, -0.06630995124578476, 0.1457367241382599, 0.04109196364879608, 0.01682303659617901, -0.03500403091311455, 0.10437536239624023, 0.021311579272150993, -0.10318823158740997, 0.012504742480814457, 0.007507571950554848, -0.010289235971868038, -0.047606464475393295, -0.05751515179872513, -0.07956288009881973, 0.002544892020523548, 0.11920338124036789, -0.04774501919746399, 0.03242870792746544, 0.03772571310400963, 0.057246528565883636, -0.07498431205749512, 0.19655898213386536, -0.028955459594726562, -0.005452427081763744, -0.004732458386570215, 0.04949004575610161, 0.015602247789502144, -0.010551849380135536, -0.12953022122383118, 0.007022026460617781, 0.08074092119932175, 0.013663754798471928, -0.07587581127882004, 0.06431995332241058, -0.06985332071781158, -0.04672382026910782, -0.007498918566852808, -0.07484535127878189, 0.031198130920529366, -0.008710284717381, -0.06582239270210266, -0.02350885048508644, 0.023388126865029335, 0.017721518874168396, -0.011746599338948727, 0.13322429358959198, -0.08970562368631363, 0.0364038459956646, -0.09379757940769196, -0.10690733790397644, 0.021213319152593613, -0.07686057686805725, 0.0376054085791111, -0.10856878012418747, -0.16822496056556702, -0.03304174169898033, 0.0522976890206337, -0.018100610002875328, -0.060430899262428284, -0.03577180206775665, -0.06308238208293915, 0.01012183167040348, -0.014289181679487228, 0.1470746546983719, -0.07050348073244095, 0.11098764836788177, 0.03432513028383255, 0.05846457928419113, -0.04605408012866974, 0.04961748793721199, -0.09303298592567444, -0.008509560488164425, -0.15352317690849304, 0.03393903747200966, -0.04447499290108681, 0.058807726949453354, -0.07169647514820099, -0.11825202405452728, 0.013603618368506432, 0.019700555130839348, 0.04256633669137955, 0.07442475855350494, -0.1713005006313324, -0.07580258697271347, 0.14970633387565613, -0.06509901583194733, -0.12265316396951675, 0.11653491109609604, -0.08050192892551422, 0.06815876066684723, 0.07918455451726913, 0.16007547080516815, 0.07368943095207214, -0.07665113359689713, 0.02364281751215458, -0.009748673066496849, 0.030511032789945602, -0.06656751781702042, 0.07645123451948166, 0.023808009922504425, -0.011088239029049873, 0.031931594014167786, -0.03572938218712807, 0.036782167851924896, -0.09431610256433487, -0.08854455500841141, -0.03681464493274689, -0.09542662650346756, 0.05960068479180336, 0.07206001877784729, 0.07265763729810715, -0.11765731126070023, -0.07257198542356491, 0.07150136679410934, 0.0861012265086174, -0.055003076791763306, 0.018849531188607216, -0.05219917744398117, 0.06374433636665344, -0.034731317311525345, -0.022515803575515747, -0.17951369285583496, -0.029770378023386, 0.014603286981582642, 0.005661679431796074, 0.032073505222797394, 0.040834296494722366, 0.05372710898518562, 0.04150041192770004, -0.07131427526473999, -0.011015200987458229, -0.050375696271657944, -0.00942130945622921, -0.1230582743883133, -0.19584792852401733, -0.018969720229506493, -0.023339437320828438, 0.11454646289348602, -0.224257692694664, 0.03413281589746475, -0.04092243313789368, 0.05761338770389557, 0.041867028921842575, -0.010956901125609875, -0.02053735964000225, 0.0860079899430275, -0.03713130205869675, -0.0327489897608757, 0.07592474669218063, 0.012195399962365627, -0.10368473827838898, -0.007822113111615181, -0.09257585555315018, 0.19031088054180145, 0.1289455145597458, -0.09699749946594238, -0.0888260006904602, 0.010719056241214275, -0.054551877081394196, -0.03350850194692612, -0.08110085129737854, 0.03831710293889046, 0.1832561194896698, -0.00408615218475461, 0.1422782838344574, -0.08589011430740356, -0.04746617004275322, 0.027460463345050812, -0.04416185989975929, 0.026127975434064865, 0.14056192338466644, 0.12522448599338531, -0.0920635238289833, 0.1394202560186386, 0.14817063510417938, -0.07915978133678436, 0.1658279448747635, -0.03801234811544418, -0.059139613062143326, -0.024806562811136246, -0.03590410575270653, -0.011826027184724808, 0.1085469201207161, -0.12760300934314728, 0.00472189811989665, 0.03235438093543053, 0.009446932934224606, 0.01708807982504368, -0.23087909817695618, -0.04802200570702553, 0.035222526639699936, -0.040130965411663055, -0.011457022279500961, 0.006225543096661568, 0.01636500284075737, 0.11100597679615021, -0.00038215177482925355, -0.061102356761693954, 0.04150799661874771, 0.007206903304904699, -0.09109006822109222, 0.21807080507278442, -0.0752849280834198, -0.18252205848693848, -0.13199250400066376, -0.0493457093834877, -0.04442271217703819, -0.00279906764626503, 0.06433742493391037, -0.07138606905937195, -0.02895044907927513, -0.06548784673213959, 0.00514746131375432, -0.006640486419200897, 0.016602864488959312, -0.018567554652690887, 0.023830769583582878, 0.03936237096786499, -0.10331819206476212, -0.012889090925455093, -0.061911795288324356, -0.040967509150505066, 0.053883109241724014, 0.04405555874109268, 0.10898144543170929, 0.14961715042591095, -0.025291262194514275, -0.003893762594088912, -0.03315175324678421, 0.21485087275505066, -0.08689753711223602, -0.04712153226137161, 0.13125620782375336, -0.009326517581939697, 0.03263324499130249, 0.1212800070643425, 0.0720895454287529, -0.09237991273403168, 0.017520809546113014, 0.02917098067700863, -0.03997639939188957, -0.27003076672554016, -0.03821174427866936, -0.053288307040929794, 0.0005041555850766599, 0.07316083461046219, 0.026278546079993248, 0.005705300718545914, 0.06592023372650146, 0.04250522330403328, 0.0648341029882431, -0.02982121892273426, 0.06391338258981705, 0.1108853667974472, 0.03844940662384033, 0.13148561120033264, -0.05558411031961441, -0.06147214397788048, 0.05758168175816536, -0.00863972119987011, 0.24782785773277283, 0.011279144324362278, 0.1309511810541153, 0.07623305916786194, 0.12350870668888092, 0.017918558791279793, 0.05768585205078125, 0.018591217696666718, -0.03858204931020737, -0.019616344943642616, -0.025811797007918358, -0.029816756024956703, 0.0286216102540493, -0.04727308079600334, 0.048704832792282104, -0.13749583065509796, -0.01498402375727892, 0.06358642131090164, 0.23906491696834564, 0.016769928857684135, -0.30908310413360596, -0.10424860566854477, 0.010606772266328335, -0.05240930989384651, -0.009383879601955414, 0.026137301698327065, 0.10281414538621902, -0.12598705291748047, 0.03643062710762024, -0.08053163439035416, 0.09221653640270233, -0.0863085463643074, 0.04050378501415253, 0.0738224908709526, 0.0681130588054657, -0.003933573141694069, 0.07893651723861694, -0.307219922542572, 0.2819614112377167, -0.005618869327008724, 0.060745105147361755, -0.06372545659542084, -0.025851668789982796, 0.023402828723192215, 0.05463678762316704, 0.06036457046866417, -0.005185297690331936, -0.05821243301033974, -0.17296744883060455, -0.029245417565107346, 0.025523608550429344, 0.07566779851913452, -0.01468990370631218, 0.08854345232248306, -0.0285579115152359, 0.004089497961103916, 0.05787508934736252, -0.027434229850769043, -0.05153360217809677, -0.09460210800170898, -0.004334294702857733, 0.020693570375442505, -0.05909181386232376, -0.06367843598127365, -0.13336031138896942, -0.08024092018604279, 0.13815522193908691, -0.014427115209400654, -0.04591428115963936, -0.09696020931005478, 0.07496039569377899, 0.06935662031173706, -0.0799306333065033, 0.03762155771255493, 0.014699560590088367, 0.0846717432141304, 0.024481261149048805, -0.047440964728593826, 0.09554848819971085, -0.05173030123114586, -0.1872195154428482, -0.0632166862487793, 0.11352117359638214, 0.028094131499528885, 0.06719598174095154, -0.023858340457081795, 0.0004107730055693537, -0.04823746904730797, -0.08825484663248062, 0.02258949913084507, 0.007237046025693417, 0.08538832515478134, 0.04420587047934532, -0.06016400828957558, 0.003088439116254449, -0.0743371769785881, -0.05789945647120476, 0.20305874943733215, 0.20633313059806824, -0.09303376823663712, 0.032080233097076416, 0.01414012722671032, -0.08177021145820618, -0.17220793664455414, 0.03629900887608528, 0.07108122855424881, 0.012489903718233109, 0.05826587229967117, -0.15110467374324799, 0.11386826634407043, 0.09753286093473434, -0.008590045385062695, 0.13361698389053345, -0.323248952627182, -0.13557180762290955, 0.09210297465324402, 0.15564033389091492, 0.12722596526145935, -0.13530485332012177, -0.012024758383631706, -0.029694128781557083, -0.12655147910118103, 0.13825254142284393, -0.08200353384017944, 0.14067378640174866, -0.03298668563365936, 0.10618506371974945, 0.0052995807491242886, -0.05460384488105774, 0.11506109684705734, 0.01607188954949379, 0.10979824513196945, -0.05073171481490135, -0.046968698501586914, 0.018168210983276367, -0.03173650801181793, 0.017488637939095497, -0.07388205081224442, 0.019537346437573433, -0.09553373605012894, -0.037904515862464905, -0.07616972178220749, 0.03510139882564545, -0.04053482040762901, -0.05432239547371864, -0.04073890298604965, 0.035612355917692184, 0.02205091342329979, -0.017490994185209274, 0.14471615850925446, 0.005916844122111797, 0.14710642397403717, 0.06948163360357285, 0.09639938920736313, -0.05343913659453392, -0.09279846400022507, -0.03582580387592316, -0.021688245236873627, 0.049793485552072525, -0.15473158657550812, 0.02326696179807186, 0.14285890758037567, 0.012413830496370792, 0.15901656448841095, 0.07501823455095291, -0.028941627591848373, 0.015591477043926716, 0.06824849545955658, -0.15109407901763916, -0.0993746891617775, -0.015658222138881683, -0.09098188579082489, -0.11272766441106796, 0.04547811672091484, 0.11424396187067032, -0.06779132783412933, -0.027168378233909607, -0.013252581469714642, 0.009434499777853489, -0.04961276799440384, 0.19228704273700714, 0.0712907612323761, 0.049355633556842804, -0.10086462646722794, 0.08726470172405243, 0.05299781262874603, -0.07277260720729828, 0.009131514467298985, 0.07398980855941772, -0.0851946696639061, -0.06054844334721565, 0.06302937865257263, 0.1840636432170868, -0.06436847895383835, -0.05052271485328674, -0.14428043365478516, -0.12239868193864822, 0.08020304143428802, 0.15456198155879974, 0.1154261901974678, 0.01174027007073164, -0.04472504183650017, -0.009678967297077179, -0.10332822054624557, 0.10373563319444656, 0.06035935878753662, 0.06799294799566269, -0.15564770996570587, 0.11893093585968018, 0.0298626646399498, 0.0544048435986042, -0.021874960511922836, 0.03503105044364929, -0.11320466548204422, 0.016281502321362495, -0.11635188013315201, -0.004599275998771191, -0.01955498568713665, 0.0156586654484272, 0.00008569054625695571, -0.056630246341228485, -0.06948243826627731, 0.011811119504272938, -0.12271115183830261, -0.015396937727928162, 0.041357602924108505, 0.07619098573923111, -0.08720040321350098, -0.03770965710282326, 0.024497678503394127, -0.04467649757862091, 0.07077261805534363, 0.04765259474515915, 0.00999519880861044, 0.0638277679681778, -0.1326751559972763, 0.03493008390069008, 0.05847730115056038, 0.016229216009378433, 0.048695411533117294, -0.1218823567032814, 0.00844301376491785, 0.004147431813180447, 0.07234194129705429, 0.02527628093957901, 0.06878162175416946, -0.1595860719680786, -0.003925286699086428, -0.011753080412745476, -0.08088759332895279, -0.0604778528213501, 0.02060185931622982, 0.06034849211573601, 0.033461686223745346, 0.21250495314598083, -0.08307280391454697, 0.04318675398826599, -0.19975832104682922, 0.00521842809394002, -0.01949070766568184, -0.1242818534374237, -0.12428144365549088, -0.0736192986369133, 0.05655497685074806, -0.0671464130282402, 0.1680191457271576, 0.04778936877846718, 0.05581874027848244, 0.02484714426100254, -0.020287757739424706, -0.0074821035377681255, 0.016732243821024895, 0.17049984633922577, 0.007073113229125738, -0.04048845171928406, 0.0606084018945694, 0.047959793359041214, 0.1063975840806961, 0.10674457252025604, 0.20010076463222504, 0.1684790700674057, 0.009575174190104008, 0.08692093193531036, 0.03743763640522957, -0.03279959410429001, -0.13300663232803345, 0.03713468834757805, -0.025708554312586784, 0.11290872097015381, -0.026694100350141525, 0.20042958855628967, 0.07072245329618454, -0.16473351418972015, 0.04714856669306755, -0.05892984941601753, -0.08779802173376083, -0.11389470845460892, -0.055804088711738586, -0.09887007623910904, -0.1443217545747757, 0.005623009521514177, -0.130331888794899, -0.001939242472872138, 0.09170602262020111, 0.007379705086350441, -0.04041507467627525, 0.11972035467624664, 0.02042819932103157, 0.011828257702291012, 0.08732693642377853, 0.013573730364441872, -0.03270769864320755, -0.10997237265110016, -0.04921284690499306, -0.03101533092558384, -0.025611599907279015, 0.023357538506388664, -0.05341451242566109, -0.06802772730588913, 0.024218278005719185, -0.026913153007626534, -0.10152031481266022, 0.014489524997770786, 0.02225584164261818, 0.07951844483613968, 0.03816826641559601, 0.015252734534442425, 0.008539740927517414, -0.0018916655099019408, 0.2537987232208252, -0.06090321019291878, -0.059095606207847595, -0.12073633074760437, 0.23759934306144714, 0.04082411155104637, -0.027152735739946365, 0.0369359627366066, -0.0620994009077549, 0.004789397120475769, 0.250545471906662, 0.23370525240898132, -0.07233811914920807, -0.008881565183401108, 0.016480514779686928, -0.005681920796632767, -0.014903892762959003, 0.12409383058547974, 0.11327847838401794, 0.043661732226610184, -0.07554518431425095, -0.03618474677205086, -0.053929403424263, 0.002410672837868333, -0.017594728618860245, 0.06780397146940231, 0.05220600590109825, 0.005234327167272568, -0.041317231953144073, 0.0750744640827179, -0.08238773792982101, -0.11706630140542984, 0.04748406261205673, -0.2140689343214035, -0.17265373468399048, -0.01564285345375538, 0.09141164273023605, -0.0005080309347249568, 0.06623675674200058, -0.025556398555636406, -0.014778113923966885, 0.07295584678649902, -0.016154099255800247, -0.1069135069847107, -0.08071832358837128, 0.09760671108961105, -0.1033845841884613, 0.18947070837020874, -0.05197722837328911, 0.05551624298095703, 0.12156101316213608, 0.06087696552276611, -0.06552910804748535, 0.07936710119247437, 0.036825064569711685, -0.040335942059755325, 0.04746859520673752, 0.10013407468795776, -0.03197331726551056, 0.07261445373296738, 0.05393337458372116, -0.12573927640914917, 0.016867447644472122, -0.0939512848854065, -0.04653635248541832, -0.056750234216451645, -0.011542480438947678, -0.07443743944168091, 0.12872548401355743, 0.23667973279953003, -0.03721931204199791, -0.007397593930363655, -0.05932502821087837, 0.02578439563512802, 0.06336025893688202, 0.041056301444768906, -0.047882936894893646, -0.22828209400177002, 0.009885349310934544, 0.07289337366819382, -0.015281859785318375, -0.26788604259490967, -0.070579893887043, 0.0017346341628581285, -0.07060904800891876, -0.07644132524728775, 0.08083239942789078, 0.07705751806497574, 0.044927142560482025, -0.06221795082092285, -0.06259375810623169, -0.06772700697183609, 0.1547669768333435, -0.15244202315807343, -0.0954475924372673 ]
null
null
transformers
**Note**: This model & model card are based on the [finetuned XLM-T for Sentiment Analysis](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) # twitter-XLM-roBERTa-base for Emotion Analysis This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of [IberLEF 2021 Conference](https://sites.google.com/view/iberlef2021/), where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. - [Our code for EmoEvalEs submission](https://github.com/gsi-upm/emoevales-iberlef2021). - [EmoEvalEs Dataset](https://github.com/pendrag/EmoEvalEs) ## Example Pipeline with a [Tweet from @JaSantaolalla](https://twitter.com/JaSantaolalla/status/1398383243645177860) ```python from transformers import pipeline model_path = "daveni/twitter-xlm-roberta-emotion-es" emotion_analysis = pipeline("text-classification", framework="pt", model=model_path, tokenizer=model_path) emotion_analysis("Einstein dijo: Solo hay dos cosas infinitas, el universo y los pinches anuncios de bitcoin en Twitter. Paren ya carajo aaaaaaghhgggghhh me quiero murir") ``` ``` [{'label': 'anger', 'score': 0.48307016491889954}] ``` ## Full classification example ```python from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) model_path = "daveni/twitter-xlm-roberta-emotion-es" tokenizer = AutoTokenizer.from_pretrained(model_path ) config = AutoConfig.from_pretrained(model_path ) # PT model = AutoModelForSequenceClassification.from_pretrained(model_path ) text = "Se ha quedao bonito dΓ­a para publicar vΓ­deo, ΒΏno? Hoy del tema mΓ‘s diferente que hemos tocado en el canal." text = preprocess(text) print(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` Se ha quedao bonito dΓ­a para publicar vΓ­deo, ΒΏno? Hoy del tema mΓ‘s diferente que hemos tocado en el canal. 1) joy 0.7887 2) others 0.1679 3) surprise 0.0152 4) sadness 0.0145 5) anger 0.0077 6) disgust 0.0033 7) fear 0.0027 ``` #### Limitations and bias - The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class. ## Training data Pretrained weights were left identical to the original model released by [cardiffnlp](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base). We used the [EmoEvalEs Dataset](https://github.com/pendrag/EmoEvalEs) for finetuning. ### BibTeX entry and citation info ```bibtex @inproceedings{vera2021gsi, title={GSI-UPM at IberLEF2021: Emotion Analysis of Spanish Tweets by Fine-tuning the XLM-RoBERTa Language Model}, author={Vera, D and Araque, O and Iglesias, CA}, booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021). CEUR Workshop Proceedings, CEUR-WS, M{\'a}laga, Spain}, year={2021} } ```
{"language": ["es"], "tags": ["Emotion Analysis"]}
text-classification
daveni/twitter-xlm-roberta-emotion-es
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Emotion Analysis", "es", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "es" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #Emotion Analysis #es #autotrain_compatible #endpoints_compatible #has_space #region-us
Note: This model & model card are based on the finetuned XLM-T for Sentiment Analysis # twitter-XLM-roBERTa-base for Emotion Analysis This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of IberLEF 2021 Conference, where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. - Our code for EmoEvalEs submission. - EmoEvalEs Dataset ## Example Pipeline with a Tweet from @JaSantaolalla ## Full classification example Output: #### Limitations and bias - The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class. ## Training data Pretrained weights were left identical to the original model released by cardiffnlp. We used the EmoEvalEs Dataset for finetuning. ### BibTeX entry and citation info
[ "# twitter-XLM-roBERTa-base for Emotion Analysis\nThis is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of IberLEF 2021 Conference, where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. \n- Our code for EmoEvalEs submission.\n- EmoEvalEs Dataset", "## Example Pipeline with a Tweet from @JaSantaolalla", "## Full classification example\n\nOutput:", "#### Limitations and bias\n\n- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class.", "## Training data\n\nPretrained weights were left identical to the original model released by cardiffnlp. We used the EmoEvalEs Dataset for finetuning.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Emotion Analysis #es #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# twitter-XLM-roBERTa-base for Emotion Analysis\nThis is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of IberLEF 2021 Conference, where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. \n- Our code for EmoEvalEs submission.\n- EmoEvalEs Dataset", "## Example Pipeline with a Tweet from @JaSantaolalla", "## Full classification example\n\nOutput:", "#### Limitations and bias\n\n- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class.", "## Training data\n\nPretrained weights were left identical to the original model released by cardiffnlp. We used the EmoEvalEs Dataset for finetuning.", "### BibTeX entry and citation info" ]
[ 51, 161, 15, 8, 47, 37, 11 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #Emotion Analysis #es #autotrain_compatible #endpoints_compatible #has_space #region-us \n# twitter-XLM-roBERTa-base for Emotion Analysis\nThis is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of IberLEF 2021 Conference, where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. \n- Our code for EmoEvalEs submission.\n- EmoEvalEs Dataset## Example Pipeline with a Tweet from @JaSantaolalla## Full classification example\n\nOutput:#### Limitations and bias\n\n- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class.## Training data\n\nPretrained weights were left identical to the original model released by cardiffnlp. We used the EmoEvalEs Dataset for finetuning.### BibTeX entry and citation info" ]
[ -0.004261387977749109, 0.11781100183725357, -0.005278118420392275, 0.09115087240934372, 0.09336929768323898, 0.018169376999139786, 0.057135242968797684, 0.10067008435726166, 0.011131835170090199, 0.09316369891166687, 0.06883177906274796, 0.10797561705112457, 0.005237207282334566, 0.09743326902389526, -0.006773211527615786, -0.23051057755947113, -0.029343144968152046, -0.053326789289712906, 0.04975718632340431, 0.12156127393245697, 0.12466078996658325, -0.06096043065190315, 0.11199377477169037, 0.012675469741225243, 0.008976174518465996, 0.03306655213236809, -0.03928229212760925, -0.026439424604177475, 0.06580603867769241, 0.0654420405626297, 0.1042388528585434, 0.008581101894378662, 0.007268438581377268, -0.22275686264038086, 0.024475708603858948, 0.06996621191501617, -0.0012806521262973547, 0.05371521785855293, 0.06656098365783691, -0.180814728140831, 0.10451197624206543, -0.11999524384737015, 0.11491382867097855, 0.09926410764455795, -0.16169200837612152, -0.13428544998168945, -0.09245454519987106, 0.006357558537274599, 0.11473151296377182, 0.053934335708618164, -0.06299303472042084, 0.17800594866275787, -0.09334646165370941, 0.06469028443098068, 0.18277232348918915, -0.18553540110588074, -0.043094903230667114, -0.04426372051239014, 0.03878045082092285, 0.03640478849411011, -0.05463188514113426, 0.006001397967338562, 0.0857597067952156, 0.048095397651195526, -0.003876585280522704, -0.029916996136307716, 0.006976203061640263, 0.016973862424492836, -0.13665242493152618, -0.04324549064040184, 0.08739914000034332, 0.06735164672136307, -0.07097448408603668, -0.2088427096605301, -0.017226848751306534, -0.09811355918645859, 0.019000669941306114, -0.06386333703994751, 0.013604925014078617, 0.007653042674064636, 0.08874331414699554, 0.08023922145366669, -0.13611476123332977, 0.05315232276916504, -0.043147146701812744, 0.10586760193109512, -0.0073037901893258095, 0.010017802938818932, -0.022762233391404152, 0.08949965238571167, 0.014190302230417728, -0.10063165426254272, -0.00475882925093174, -0.09999500215053558, -0.11067749559879303, -0.027647381648421288, -0.04404151812195778, -0.061979129910469055, 0.01536707766354084, 0.13683950901031494, 0.00786303635686636, 0.02550612762570381, 0.027939530089497566, 0.005448782816529274, 0.19117505848407745, 0.09288932383060455, -0.09190863370895386, -0.0644482895731926, -0.04506008327007294, 0.0018371340120211244, -0.02755925804376602, -0.0128422100096941, -0.029122330248355865, 0.018599743023514748, 0.017259547486901283, 0.07635024935007095, 0.0068587446585297585, 0.06719594448804855, -0.17911846935749054, -0.06964371353387833, 0.13168665766716003, -0.08917325735092163, 0.008682223968207836, 0.016107698902487755, -0.05241771414875984, 0.07085098326206207, 0.05335263907909393, 0.03774062171578407, -0.0010979344369843602, 0.03702431172132492, -0.08709497004747391, -0.030436353757977486, -0.0805666595697403, -0.11755938827991486, 0.03574053570628166, 0.0024196086451411247, -0.013706855475902557, -0.117259681224823, -0.09670441597700119, -0.06694641709327698, 0.039275333285331726, -0.06048668548464775, 0.0023220896255224943, -0.06644076108932495, 0.0044488138519227505, 0.050089962780475616, 0.030616261065006256, 0.008135484531521797, -0.04161420837044716, 0.04825371876358986, -0.05663283169269562, 0.060598134994506836, 0.03430432826280594, 0.0012248625280335546, -0.1389472484588623, 0.011510326527059078, -0.2055726796388626, 0.1540985256433487, -0.08196178823709488, 0.03706814721226692, -0.11289148032665253, -0.06417205184698105, 0.03196258097887039, 0.06424859911203384, -0.03397572413086891, 0.14944133162498474, -0.2702758312225342, -0.0549653135240078, 0.09231637418270111, -0.0709286779165268, -0.044054657220840454, 0.16433675587177277, -0.10050530731678009, 0.06869106739759445, 0.10176751762628555, 0.1436532437801361, 0.003856848692521453, -0.13052281737327576, -0.05378260090947151, -0.049428801983594894, -0.08762854337692261, 0.24772974848747253, 0.07378531992435455, -0.0009365783189423382, 0.04185963049530983, 0.021954210475087166, 0.04672756791114807, 0.017715642228722572, -0.06247275322675705, -0.044790320098400116, 0.04809671267867088, -0.028342587873339653, 0.01618029549717903, 0.0034754041116684675, -0.06474397331476212, -0.07419771701097488, -0.14841458201408386, -0.03283878043293953, 0.10339599847793579, -0.023025648668408394, -0.030870238319039345, -0.09297677129507065, -0.033808741718530655, 0.0307808555662632, -0.05004877224564552, -0.15233471989631653, -0.034098103642463684, 0.021650215610861778, -0.05097346752882004, 0.09929205477237701, 0.1295485943555832, 0.039843566715717316, 0.008056741207838058, 0.003195721423253417, 0.003731072647497058, 0.0018555233255028725, 0.000674342445563525, -0.09987430274486542, -0.2350321263074875, 0.005679116118699312, -0.09055613726377487, 0.13732799887657166, -0.14556558430194855, 0.02062114328145981, 0.061847761273384094, 0.09638532996177673, 0.07355237752199173, -0.0401156060397625, 0.025771375745534897, 0.01958533748984337, -0.04721255227923393, -0.036316923797130585, 0.005278648808598518, -0.023181362077593803, -0.06620540469884872, 0.10522805899381638, -0.19482576847076416, -0.08011382073163986, 0.099845752120018, 0.008610357530415058, -0.15211352705955505, -0.019229287281632423, -0.0918811708688736, 0.01274719275534153, -0.0010651824995875359, 0.014613069593906403, 0.1965872049331665, 0.012198025360703468, 0.09643901139497757, -0.09562652558088303, -0.0739310011267662, 0.005669016391038895, -0.05591345578432083, -0.05863097682595253, 0.16662319004535675, -0.06083157658576965, -0.26523423194885254, 0.09595926851034164, 0.0184010062366724, 0.07410340011119843, 0.1714518666267395, 0.05726415663957596, -0.07605979591608047, -0.08551725000143051, -0.032000355422496796, 0.01393089722841978, 0.028093809261918068, -0.03628000617027283, 0.021970590576529503, 0.04590139910578728, -0.019973929971456528, 0.03576376289129257, -0.033588748425245285, -0.0245797298848629, 0.06830514967441559, 0.00016576924826949835, 0.014496947638690472, 0.04534534737467766, 0.05269063636660576, 0.12039446830749512, -0.03541843220591545, 0.03821409121155739, -0.05548732727766037, -0.03200482949614525, -0.14461128413677216, 0.17382146418094635, -0.13821597397327423, -0.3189008831977844, -0.08418998122215271, 0.03448338434100151, 0.01512621995061636, 0.02609093487262726, 0.08125666528940201, -0.1364298164844513, -0.07614125311374664, -0.05924467369914055, 0.035563770681619644, 0.002567264251410961, 0.029354408383369446, -0.021601339802145958, 0.026081005111336708, 0.013724178075790405, -0.142201766371727, 0.0004813912673853338, -0.01879740320146084, -0.04879097640514374, 0.024776870384812355, -0.013195588253438473, 0.0867958813905716, 0.11370522528886795, 0.030871732160449028, 0.004327767062932253, -0.05022541806101799, 0.28510743379592896, -0.09313472360372543, 0.013504651375114918, 0.07453180849552155, -0.0882764458656311, 0.05657890811562538, 0.07784305512905121, 0.012740661390125751, -0.10160073637962341, 0.0690494179725647, 0.10685525834560394, -0.025255169719457626, -0.23032191395759583, -0.10613834112882614, 0.01692192256450653, 0.014762255363166332, 0.05473562702536583, 0.034763436764478683, 0.053585272282361984, 0.006925696972757578, -0.07675556093454361, -0.04494268819689751, 0.00786871463060379, 0.07092918455600739, -0.058462757617235184, -0.009875711053609848, 0.06497751921415329, -0.0293706227093935, -0.06821078062057495, 0.14546841382980347, -0.06048331409692764, 0.09279815107584, -0.0384150967001915, 0.08974378556013107, 0.12640410661697388, 0.02586846612393856, 0.018802788108587265, -0.010490749962627888, -0.03977784514427185, -0.004611240234225988, -0.10240858048200607, -0.06292318552732468, -0.033751413226127625, 0.08754391223192215, 0.06952477991580963, 0.03256160393357277, -0.07489444315433502, -0.01630398817360401, 0.11775066703557968, 0.22950367629528046, 0.01530572958290577, -0.22000235319137573, -0.03892973065376282, 0.03743169829249382, -0.06716121733188629, -0.031070837751030922, -0.025026164948940277, 0.04392828419804573, -0.10236430168151855, 0.12064922600984573, -0.0020127897150814533, 0.0650971382856369, -0.06318709999322891, 0.046786390244960785, 0.006669923663139343, -0.027023645117878914, -0.014761664904654026, 0.11616644263267517, -0.252189964056015, 0.14868637919425964, 0.03616531565785408, 0.03441447764635086, -0.07776755094528198, -0.010006953962147236, -0.0060297721065580845, -0.06875757873058319, 0.15932707488536835, -0.0036384707782417536, 0.09166735410690308, -0.14212007820606232, -0.06766091287136078, -0.006345672067254782, 0.06581493467092514, -0.12079624831676483, 0.13164708018302917, 0.010862288065254688, 0.0037151838187128305, 0.031891077756881714, 0.00244717113673687, -0.1386987864971161, -0.19219668209552765, 0.027900829911231995, -0.07323950529098511, -0.09286545217037201, -0.027366455644369125, -0.051452234387397766, -0.03407369181513786, 0.1872912347316742, -0.10913608223199844, -0.058717500418424606, -0.1227600947022438, 0.05870475247502327, 0.1250828504562378, -0.07245522737503052, -0.014116647653281689, 0.03881310671567917, 0.08314806967973709, -0.02576807327568531, -0.08697253465652466, 0.08689018338918686, -0.07169879972934723, -0.20003291964530945, -0.08644428849220276, 0.06221162527799606, 0.16237647831439972, 0.05985921993851662, 0.016935771331191063, 0.0012460002908483148, -0.013208318501710892, -0.10816662758588791, 0.020801153033971786, 0.11333029717206955, 0.08088947087526321, 0.07878288626670837, 0.02512250281870365, -0.12617747485637665, -0.12748074531555176, -0.02744142711162567, 0.010456317104399204, 0.3412753939628601, -0.08161339163780212, 0.14258483052253723, 0.11673189699649811, -0.12982262670993805, -0.10702072083950043, -0.07100800424814224, 0.10965891182422638, 0.017096471041440964, 0.1474464386701584, -0.10928847640752792, 0.03972536697983742, 0.09739323705434799, 0.02499985322356224, -0.01620759628713131, -0.2233586311340332, -0.11316317319869995, 0.07378194481134415, -0.027797216549515724, 0.10477787256240845, -0.11331480741500854, -0.03159244358539581, -0.03192639350891113, -0.024426689371466637, 0.2121157944202423, -0.02480645477771759, 0.04937572777271271, 0.021357839927077293, 0.05150206759572029, 0.056995563209056854, -0.02028447948396206, 0.17273357510566711, 0.021073201671242714, 0.11321811378002167, -0.08458815515041351, -0.09837155044078827, 0.010403904132544994, -0.0357370600104332, 0.08109603822231293, 0.0029856665059924126, 0.01696036197245121, -0.2177828848361969, -0.05467088893055916, -0.10251598060131073, 0.06354636698961258, -0.05392509326338768, -0.04798494651913643, -0.11997739225625992, 0.04376307129859924, 0.07981639355421066, -0.03488730266690254, -0.06261835992336273, -0.039034564048051834, 0.03871072083711624, 0.07121159136295319, 0.15440870821475983, 0.0678105279803276, -0.060901790857315063, -0.025452103465795517, -0.012144563719630241, 0.014432687312364578, -0.0740174651145935, 0.03177882358431816, 0.10611137002706528, -0.029162628576159477, 0.15415456891059875, 0.015468912199139595, -0.14944352209568024, 0.042807720601558685, 0.08574973046779633, -0.16756880283355713, -0.04146338626742363, -0.05495787784457207, -0.037399113178253174, -0.07641617208719254, -0.12065894156694412, 0.1405283659696579, 0.022687789052724838, -0.05906066298484802, 0.001952536404132843, 0.07338645309209824, -0.0026893732137978077, 0.06445909291505814, 0.031928081065416336, 0.015424782410264015, -0.07646962255239487, 0.014487890526652336, 0.08013412356376648, -0.16232424974441528, 0.09104279428720474, 0.06984034925699234, -0.06498408317565918, -0.0352223739027977, 0.03396664187312126, 0.21025826036930084, -0.0725841075181961, 0.018703076988458633, -0.06029953435063362, -0.02294103242456913, 0.051126327365636826, 0.1771218180656433, 0.06289007514715195, 0.09646289795637131, 0.0032057904172688723, 0.023843059316277504, -0.009102802723646164, 0.0953807607293129, 0.11536530405282974, -0.013187689706683159, -0.11771510541439056, 0.1214507669210434, -0.01012090127915144, -0.01993011310696602, -0.027814915403723717, -0.012298645451664925, -0.11401209235191345, -0.027823200449347496, -0.04182489216327667, 0.07058499753475189, -0.04334944114089012, 0.019184371456503868, 0.03473775088787079, -0.04344803839921951, -0.003630343358963728, -0.04488230496644974, -0.06670330464839935, 0.018240375444293022, 0.027618814259767532, 0.12091725319623947, -0.15028512477874756, -0.08820405602455139, 0.06130440533161163, -0.059736382216215134, 0.07768021523952484, 0.004174150992184877, -0.03479308634996414, -0.004833329003304243, -0.2059515118598938, 0.014523639343678951, 0.07264989614486694, 0.0034643199760466814, 0.017384929582476616, -0.09262529015541077, 0.015402000397443771, -0.025598417967557907, 0.017009442672133446, 0.018619833514094353, 0.0645439550280571, -0.1285628080368042, -0.017252368852496147, 0.15132862329483032, -0.08631404489278793, -0.10187774896621704, 0.00597167294472456, 0.09712864458560944, 0.05060439929366112, 0.1616050899028778, -0.05558557063341141, 0.03854092210531235, -0.23244363069534302, -0.01742267981171608, 0.0036585256457328796, 0.05940035358071327, -0.025950470939278603, 0.008833087980747223, 0.034422215074300766, -0.03792053088545799, 0.14823098480701447, 0.06346818059682846, 0.039268214255571365, 0.0181588027626276, -0.006415616255253553, -0.018147356808185577, 0.04220040142536163, 0.021831955760717392, -0.035583872348070145, -0.0002767187834251672, -0.05618971213698387, 0.006187861785292625, 0.011871983297169209, -0.06038859486579895, 0.048580653965473175, 0.10853316634893417, 0.14437635242938995, 0.02454223483800888, -0.006306154187768698, -0.03301233798265457, -0.038096316158771515, -0.01792086660861969, -0.05326230823993683, 0.022951265797019005, 0.01404534187167883, 0.0758189782500267, 0.13308869302272797, -0.09087574481964111, 0.1069159060716629, -0.027509817853569984, -0.050133101642131805, -0.08518236875534058, -0.22025921940803528, -0.0513591468334198, 0.023354537785053253, -0.021886786445975304, -0.13558897376060486, 0.11041099578142166, 0.020719138905405998, 0.046566225588321686, -0.0054391673766076565, -0.037545572966337204, -0.05846851319074631, -0.08407214283943176, 0.06155120208859444, 0.016565490514039993, 0.014376203529536724, 0.0027166346553713083, 0.06304730474948883, 0.03421202301979065, 0.10615847259759903, 0.026670251041650772, 0.039863016456365585, 0.0018320516683161259, -0.0072712949477136135, -0.09887094795703888, -0.12951168417930603, 0.015418889001011848, -0.025393817573785782, 0.010319089516997337, 0.12346356362104416, 0.028863850980997086, -0.007240434642881155, 0.00844980962574482, 0.20325492322444916, -0.018701953813433647, -0.02282514050602913, -0.1831771582365036, 0.1562470644712448, 0.0028562957886606455, 0.07277196645736694, -0.015473191626369953, -0.09105566889047623, 0.012007493525743484, 0.13067981600761414, 0.17449882626533508, -0.012712212279438972, 0.005402698181569576, -0.051808565855026245, 0.01995837688446045, 0.033590201288461685, 0.0233918447047472, 0.02888401597738266, 0.2346711903810501, -0.09482152760028839, 0.11074616760015488, -0.03440235182642937, 0.04099429026246071, -0.02219424396753311, 0.09626983106136322, 0.003458659164607525, 0.02285495214164257, -0.051108259707689285, 0.11793370544910431, -0.040976278483867645, -0.16243058443069458, -0.012391798198223114, -0.10407032072544098, -0.13009874522686005, -0.00969156064093113, 0.03582734242081642, 0.06690822541713715, 0.10918435454368591, 0.033918291330337524, -0.06478526443243027, 0.18296566605567932, 0.012270488776266575, -0.13917405903339386, -0.052737731486558914, 0.08525709807872772, -0.045304808765649796, 0.1395159810781479, -0.0014273790875449777, 0.11463814973831177, 0.11808733642101288, -0.04341109097003937, -0.0803290382027626, -0.03929954767227173, 0.003925780300050974, 0.07070370763540268, 0.0651344507932663, 0.14291518926620483, 0.0168572086840868, 0.04254835471510887, 0.050563327968120575, -0.1639321744441986, 0.0549735389649868, -0.04439014941453934, -0.07425388693809509, -0.07890104502439499, 0.12344201654195786, -0.05495760589838028, 0.08153460919857025, 0.11351072043180466, -0.019961731508374214, 0.04985795542597771, -0.049867238849401474, -0.002793438732624054, -0.0006325312424451113, 0.05612467601895332, -0.013078797608613968, -0.14097587764263153, -0.00468969251960516, 0.054238609969615936, 0.06035827845335007, -0.19149957597255707, -0.023599188774824142, 0.001561343320645392, -0.05755457282066345, -0.010436473414301872, 0.09155242890119553, 0.007399634458124638, 0.0699038878083229, -0.03422331437468529, -0.04643051326274872, 0.04542892426252365, 0.12264122068881989, -0.07452476769685745, -0.04515748471021652 ]
null
null
null
Relevance prediction model
{}
null
davinan/relevance_prediction
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
Relevance prediction model
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
A small french language model for french text generation (and possibly more NLP tasks...) **Introduction** This french gpt2 model is based on openai GPT-2 small model. It was trained on a <b>very small (190Mb) dataset </b> from french wikipedia using Transfer Learning and Fine-tuning techniques in just over a day, on one Colab pro with 1GPU 16GB. It was created applying the recept of <b>Pierre Guillou</b> See https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787 It is a proof-of-concept that makes possible to get a language model in any language with low ressources. It was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used. It is now available on Hugging Face. For further information or requests, please go to "Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)". Model migth be improved by using larger dataset under larger powerful training infrastructure. At least this one can be used for small finetuning experimentation (i.e with aitextgen). PS : I've lost the metrics but it speaks french with some minor grammar issues, coherence of text is somehow limited.
{"language": "fr", "tags": ["french", "gpt2", "model"]}
text-generation
dbddv01/gpt2-french-small
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "french", "model", "fr", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #jax #safetensors #gpt2 #text-generation #french #model #fr #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
A small french language model for french text generation (and possibly more NLP tasks...) Introduction This french gpt2 model is based on openai GPT-2 small model. It was trained on a <b>very small (190Mb) dataset </b> from french wikipedia using Transfer Learning and Fine-tuning techniques in just over a day, on one Colab pro with 1GPU 16GB. It was created applying the recept of <b>Pierre Guillou</b> See URL It is a proof-of-concept that makes possible to get a language model in any language with low ressources. It was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used. It is now available on Hugging Face. For further information or requests, please go to "Faster than training from scratch β€” Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)". Model migth be improved by using larger dataset under larger powerful training infrastructure. At least this one can be used for small finetuning experimentation (i.e with aitextgen). PS : I've lost the metrics but it speaks french with some minor grammar issues, coherence of text is somehow limited.
[]
[ "TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #french #model #fr #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 67 ]
[ "passage: TAGS\n#transformers #pytorch #jax #safetensors #gpt2 #text-generation #french #model #fr #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ -0.03262065723538399, 0.03357735276222229, -0.005208836868405342, 0.037844348698854446, 0.09421469271183014, -0.0353335440158844, 0.1142244040966034, 0.096319280564785, -0.013506703078746796, 0.024128254503011703, 0.1847451776266098, 0.12529988586902618, -0.03712964057922363, 0.12829351425170898, -0.04907211288809776, -0.23697082698345184, 0.09995053708553314, 0.010050216689705849, -0.0437389612197876, 0.1028883159160614, 0.1182505264878273, -0.06326410919427872, 0.10170305520296097, -0.00809451099485159, -0.11675496399402618, 0.040662623941898346, 0.024234868586063385, -0.11352579295635223, 0.12431620061397552, 0.05174672231078148, 0.09811675548553467, 0.0598897859454155, -0.0356922373175621, -0.12747785449028015, 0.030884817242622375, 0.030074160546064377, -0.07900655269622803, 0.05898721516132355, 0.09176712483167648, -0.09289830923080444, 0.0980149507522583, 0.013883494772017002, -0.01856960915029049, 0.01894562505185604, -0.13950753211975098, -0.10366766154766083, -0.019266948103904724, 0.03177838772535324, 0.0008254852727986872, 0.10756678879261017, -0.019170289859175682, 0.1203387901186943, -0.12104875594377518, 0.09778903424739838, 0.17042849957942963, -0.319559782743454, -0.0209988784044981, 0.10052157193422318, 0.11847571283578873, 0.058008864521980286, -0.051330387592315674, 0.06740334630012512, 0.043922942131757736, 0.0005239378660917282, 0.07679477334022522, -0.06406328827142715, -0.11191713064908981, 0.025952523574233055, -0.10888904333114624, -0.05217598006129265, 0.231258824467659, -0.048859380185604095, 0.04581138864159584, -0.08398475497961044, -0.10418650507926941, -0.030466200783848763, -0.03995851054787636, -0.023977817967534065, -0.019729645922780037, 0.05347723886370659, 0.05858888849616051, -0.03960279002785683, -0.11810222268104553, -0.01911434717476368, -0.1467788964509964, 0.1513667106628418, 0.007321601267904043, 0.034213513135910034, -0.14530983567237854, 0.08952271193265915, -0.079000324010849, -0.10901478677988052, 0.04224778711795807, -0.10088497400283813, 0.0720105990767479, 0.008009018376469612, -0.04194769263267517, -0.03482050821185112, 0.12018810957670212, 0.13163569569587708, -0.10772480815649033, 0.0022834690753370523, -0.00359097751788795, 0.08147845417261124, 0.025977877900004387, 0.07958798855543137, -0.042677655816078186, -0.042133331298828125, 0.03487377241253853, -0.036444276571273804, -0.011131617240607738, -0.04383128881454468, -0.13552793860435486, -0.035327620804309845, 0.09826721996068954, 0.06388156861066818, 0.027310417965054512, 0.08508604764938354, -0.01873750425875187, 0.0320219025015831, 0.11045124381780624, -0.0729181095957756, 0.029085038229823112, 0.0069383978843688965, 0.03118308074772358, 0.04715459793806076, -0.007700765505433083, 0.02136109583079815, -0.08620654791593552, 0.020314984023571014, -0.07735495269298553, -0.02752530202269554, -0.04387417435646057, -0.11821656674146652, 0.019688347354531288, -0.03397270664572716, 0.01390679832547903, -0.16137465834617615, -0.12142890691757202, -0.006340052001178265, 0.03866669163107872, -0.03589039295911789, -0.04752437025308609, -0.03789457306265831, -0.08717190474271774, 0.08240927010774612, -0.0386584997177124, -0.010215423069894314, -0.07488598674535751, 0.06319619715213776, -0.06387584656476974, 0.08039750158786774, -0.12243598699569702, 0.05598326027393341, -0.09460202604532242, 0.0017401549266651273, -0.12167970836162567, 0.04273594543337822, -0.03804154694080353, 0.07011637836694717, -0.01691761612892151, -0.05514398217201233, -0.08938078582286835, 0.08334425836801529, -0.0017377998447045684, 0.20506419241428375, -0.1034465953707695, -0.09176717698574066, 0.27774712443351746, -0.11478959023952484, -0.13859212398529053, 0.15481850504875183, 0.006436131428927183, 0.010473047383129597, 0.04730341583490372, 0.20023219287395477, 0.04498108848929405, -0.05217474699020386, 0.04618026688694954, 0.13254135847091675, -0.051127683371305466, -0.041078176349401474, 0.042129091918468475, -0.009961353614926338, -0.13098588585853577, 0.037401020526885986, 0.023718807846307755, 0.04995020478963852, -0.06073601916432381, -0.037205152213573456, -0.04765980690717697, -0.003710085293278098, 0.10217609256505966, 0.020761456340551376, 0.10674881935119629, -0.0841112732887268, -0.07378847151994705, -0.037346694618463516, 0.012451373971998692, -0.028718939051032066, -0.0009410364436917007, -0.014816951006650925, 0.17237098515033722, -0.020299728959798813, 0.028649605810642242, -0.15364408493041992, -0.10479859262704849, -0.013535152189433575, 0.0770980566740036, -0.04616214334964752, 0.13812986016273499, 0.09060215204954147, 0.023326030001044273, -0.010878141038119793, -0.020330045372247696, 0.125962033867836, 0.01029802393168211, -0.05595528334379196, -0.1182066947221756, 0.0828305333852768, -0.09174985438585281, 0.05933712050318718, -0.13152794539928436, 0.02949732169508934, 0.05178592726588249, 0.10936212539672852, -0.00256769685074687, 0.056777290999889374, -0.05351667106151581, 0.01434296928346157, -0.0941711813211441, 0.010254165157675743, 0.07331973314285278, -0.014516638591885567, 0.008578951470553875, 0.2097882330417633, -0.17840436100959778, 0.32764875888824463, 0.21892020106315613, -0.20219923555850983, -0.02506863884627819, -0.022929202765226364, -0.028857039287686348, 0.05537888780236244, 0.02382815256714821, -0.035547591745853424, 0.02573833242058754, -0.034738410264253616, 0.18121078610420227, -0.08856895565986633, -0.05275856703519821, 0.0354866199195385, -0.05840744078159332, -0.04744650796055794, 0.10330163687467575, 0.04782422259449959, -0.09391357004642487, 0.20177260041236877, 0.2538488209247589, 0.006077266298234463, 0.1727847307920456, -0.005862882360816002, 0.009527030400931835, 0.056978266686201096, 0.027488693594932556, -0.039724886417388916, 0.00427097687497735, -0.16117139160633087, -0.052188027650117874, 0.06461972743272781, 0.03377337008714676, 0.06565608084201813, -0.12613137066364288, -0.031977370381355286, -0.006926770322024822, -0.014730064198374748, 0.028626825660467148, 0.11318245530128479, 0.02787148393690586, 0.141890287399292, -0.016547538340091705, -0.122762531042099, 0.0648578628897667, 0.009890089742839336, -0.0807100385427475, 0.2127823680639267, -0.1281578242778778, -0.32051151990890503, -0.07836369425058365, -0.06492556631565094, -0.06824322789907455, 0.046930260956287384, 0.10024838894605637, -0.10363958775997162, -0.03402010351419449, -0.07914982736110687, 0.018199212849140167, -0.06335505843162537, 0.041770949959754944, -0.10288432985544205, 0.02472633309662342, -0.05833154171705246, -0.10134770721197128, -0.07361394166946411, -0.018754223361611366, -0.07067723572254181, 0.1122465580701828, -0.06522024422883987, 0.06956498324871063, 0.15437598526477814, -0.021416939795017242, 0.03455939143896103, -0.018819572404026985, 0.23676735162734985, -0.0708872377872467, 0.021392039954662323, 0.18302880227565765, 0.04006463289260864, 0.08518582582473755, 0.15735432505607605, 0.00351694761775434, -0.04866492748260498, 0.02500450797379017, -0.023529719561338425, -0.08164389431476593, -0.14697764813899994, -0.15137892961502075, -0.10481046140193939, 0.05317535623908043, 0.05836598202586174, 0.07371360808610916, 0.13845880329608917, 0.07934733480215073, -0.007333897985517979, -0.014686860144138336, 0.04300273582339287, 0.0702996701002121, 0.16642577946186066, -0.026377325877547264, 0.1559055745601654, -0.05520451068878174, -0.16077914834022522, 0.10066906362771988, 0.013166436925530434, 0.04881780967116356, 0.017556576058268547, -0.03381168097257614, 0.03836318850517273, 0.1247648149728775, 0.11711311340332031, 0.12244050204753876, 0.0019531825091689825, -0.047120191156864166, -0.039483267813920975, -0.054190199822187424, -0.010814528912305832, 0.03926084190607071, -0.010834976099431515, -0.1242813691496849, -0.10502446442842484, -0.10459058731794357, 0.10767345875501633, 0.03486872464418411, 0.0998140424489975, -0.25045397877693176, 0.008403198793530464, 0.08259374648332596, -0.014852100983262062, -0.11780787259340286, 0.08881169557571411, 0.08252187818288803, -0.12699052691459656, 0.02184203267097473, -0.022524215281009674, 0.09569432586431503, 0.017537467181682587, 0.0932680144906044, -0.061132315546274185, -0.054208241403102875, 0.002820981200784445, 0.08477427810430527, -0.2524632215499878, 0.23360101878643036, -0.011788644827902317, -0.06380826979875565, -0.07689166069030762, 0.019301066175103188, 0.03494381159543991, 0.18833789229393005, 0.15569041669368744, 0.01870148256421089, -0.10778389871120453, -0.048479098826646805, -0.000863764900714159, 0.02350272610783577, 0.08753233402967453, -0.03986592963337898, -0.0003477452555671334, -0.05497727170586586, -0.02219202183187008, -0.005618592724204063, 0.024472199380397797, -0.05252160504460335, -0.17890720069408417, 0.062421973794698715, 0.04127051308751106, 0.06369835138320923, -0.030577072873711586, -0.04543488472700119, -0.1844431608915329, 0.2086886614561081, -0.0033132946118712425, -0.05668113753199577, -0.11006174981594086, -0.09321437031030655, 0.06479581445455551, -0.06252921372652054, 0.07607050240039825, -0.08199025690555573, 0.059217143803834915, -0.07966344803571701, -0.1534389853477478, 0.13406281173229218, -0.14476966857910156, -0.03912952542304993, -0.04106997698545456, 0.1416560560464859, -0.0765368714928627, -0.008742326870560646, 0.04729754477739334, 0.0532493032515049, -0.13756832480430603, -0.1292998343706131, -0.024839967489242554, -0.05947932228446007, 0.04366634786128998, 0.013909160159528255, -0.07336463034152985, -0.1071564331650734, 0.04422978684306145, 0.02694554254412651, 0.2507328391075134, 0.2073981910943985, -0.08849659562110901, 0.1324155479669571, 0.1387486755847931, -0.03562377765774727, -0.3683844804763794, -0.09201329946517944, -0.10854101181030273, -0.03573422506451607, -0.024670137092471123, -0.09459970891475677, 0.06347229331731796, -0.012695535086095333, -0.049927305430173874, 0.06493952870368958, -0.2361183911561966, -0.09138226509094238, 0.1546030193567276, 0.003856528317555785, 0.3776718080043793, -0.13785873353481293, -0.0524665005505085, -0.04426494613289833, -0.11232829093933105, 0.1502980887889862, -0.13330446183681488, 0.05289967358112335, -0.00213400786742568, 0.011720138601958752, 0.04418771341443062, -0.06256697326898575, 0.11994630843400955, -0.019237836822867393, 0.03213517367839813, -0.10109632462263107, -0.020350415259599686, 0.08790209889411926, -0.019512126222252846, 0.053045231848955154, -0.10629110038280487, 0.0434812530875206, -0.1246616318821907, -0.02341516874730587, -0.07892654091119766, 0.09060006588697433, -0.010132892057299614, -0.053936488926410675, -0.014067049138247967, -0.02019376866519451, 0.02575753442943096, 0.013196919113397598, 0.14769652485847473, -0.030918899923563004, 0.19537782669067383, 0.16870689392089844, 0.07131405174732208, -0.11044804751873016, 0.036313243210315704, 0.032503996044397354, -0.05121966823935509, 0.07848247140645981, -0.1250230371952057, 0.06342943012714386, 0.08545577526092529, -0.05889895185828209, 0.0666964054107666, 0.10329597443342209, 0.013117553666234016, -0.04349678009748459, 0.14557906985282898, -0.26732370257377625, -0.0582088828086853, -0.06371502578258514, -0.011278624646365643, 0.06856429576873779, 0.0584113709628582, 0.14612531661987305, -0.014708136208355427, -0.027990104630589485, -0.03342663496732712, 0.010915709659457207, -0.05185971409082413, 0.04089167341589928, 0.03169344738125801, 0.04334937408566475, -0.11729484796524048, -0.004902303218841553, 0.008219881914556026, -0.1556093394756317, 0.008016797713935375, 0.14392082393169403, -0.12235014140605927, -0.15363946557044983, 0.026507562026381493, 0.10526449233293533, -0.11078670620918274, -0.04849790409207344, -0.05758456140756607, -0.151015967130661, 0.06220068037509918, 0.13674333691596985, 0.08854209631681442, 0.06209472194314003, 0.03432668000459671, -0.05611607804894447, -0.034878574311733246, 0.04990869015455246, 0.022993195801973343, 0.015535452403128147, -0.07935541123151779, 0.010386277921497822, -0.03310449421405792, 0.11425305902957916, -0.09551879018545151, -0.016236981377005577, -0.1778254508972168, -0.024575624614953995, -0.09558835625648499, -0.06237206608057022, -0.0719602033495903, -0.03776306286454201, -0.01971011608839035, -0.055273812264204025, -0.027653560042381287, -0.04442926123738289, -0.11278559267520905, 0.026342453435063362, -0.023153500631451607, 0.05517876148223877, -0.1010264977812767, -0.002159206895157695, 0.07664158940315247, -0.04860944300889969, 0.12537965178489685, 0.07698317617177963, -0.06408059597015381, 0.09208136051893234, -0.17368347942829132, -0.08182279765605927, 0.0575554259121418, 0.016788166016340256, 0.0390792042016983, 0.04233928024768829, 0.037027761340141296, 0.07100477069616318, 0.04123551398515701, 0.0521182045340538, -0.010720865800976753, -0.08457857370376587, 0.06880422681570053, -0.026219841092824936, -0.14321266114711761, -0.026288272812962532, 0.004887051414698362, 0.04386153444647789, -0.012688789516687393, 0.10943180322647095, -0.07203824818134308, 0.049603171646595, -0.07524800300598145, 0.022986171767115593, -0.011938797309994698, -0.19105026125907898, -0.07888758927583694, -0.06052843853831291, 0.03104800544679165, 0.01650756411254406, 0.2670891582965851, 0.12709690630435944, -0.002261374844238162, 0.036103226244449615, 0.019037630409002304, 0.06437579542398453, 0.046203725039958954, 0.170637309551239, 0.06791998445987701, -0.037575408816337585, -0.13352511823177338, 0.056924302130937576, 0.05185308679938316, 0.01122067216783762, 0.10195311903953552, 0.08511324971914291, -0.012159548699855804, 0.09264218062162399, -0.01873731054365635, -0.007173899095505476, -0.0702114850282669, -0.10580789297819138, -0.028773805126547813, 0.06146521121263504, -0.0721796378493309, 0.04670228436589241, 0.18277056515216827, -0.033024635165929794, 0.044437434524297714, -0.028394071385264397, -0.038193486630916595, -0.19110630452632904, -0.11291321367025375, -0.09091325849294662, -0.1383805274963379, -0.02311996929347515, -0.10676704347133636, 0.050723981112241745, 0.045557573437690735, 0.08089109510183334, -0.023620324209332466, 0.10365884751081467, 0.026540035381913185, -0.055860452353954315, 0.06707678735256195, -0.02541254460811615, 0.07409334927797318, -0.025200551375746727, -0.007048444822430611, -0.10812033712863922, -0.0038561783730983734, -0.030391518026590347, 0.05578610673546791, -0.0495486743748188, 0.029418623074889183, -0.11587520688772202, -0.07998815923929214, -0.04791094362735748, 0.05592993646860123, -0.026273025199770927, 0.1298869550228119, 0.006204407196491957, -0.061594560742378235, 0.04266658052802086, 0.25006529688835144, -0.0696607381105423, -0.10598839074373245, -0.05390012264251709, 0.21062283217906952, 0.03677168861031532, 0.13723713159561157, -0.03885198384523392, 0.005241779610514641, -0.07166053354740143, 0.2909958064556122, 0.36435461044311523, -0.06977807730436325, 0.058910150080919266, 0.016522696241736412, 0.021617760881781578, 0.10179037600755692, 0.06274235993623734, 0.09941162914037704, 0.29977524280548096, -0.09704481810331345, 0.008495905436575413, -0.03367570787668228, 0.005669076927006245, -0.10661749541759491, 0.08548189699649811, 0.03924768418073654, -0.06399394571781158, -0.034038837999105453, 0.07024801522493362, -0.15387441217899323, 0.08941639959812164, -0.056105270981788635, -0.17230744659900665, -0.05823030695319176, 0.012740368954837322, 0.10607808083295822, 0.01743539795279503, 0.08361490815877914, -0.027651114389300346, -0.08621970564126968, 0.018779480829834938, -0.0033369031734764576, -0.1352846473455429, -0.019147096201777458, 0.04531341791152954, -0.022413406521081924, 0.10437516868114471, -0.010961229912936687, 0.0344272144138813, 0.1084696501493454, -0.017750894650816917, -0.055913373827934265, 0.0356617271900177, 0.02353912591934204, -0.02867143601179123, 0.0031946906819939613, -0.00839659571647644, 0.009001574479043484, -0.09085175395011902, 0.04314778000116348, -0.14477130770683289, 0.06336373090744019, -0.07330925762653351, -0.07610223442316055, -0.019730422645807266, 0.04098979011178017, -0.04993104189634323, 0.07486418634653091, 0.08228754252195358, -0.0005875746137462556, 0.00520051084458828, -0.05818420648574829, 0.011634638532996178, -0.025045722723007202, -0.06056588143110275, -0.05849552899599075, -0.131936714053154, -0.0387018546462059, 0.10455957800149918, -0.0025105669628828764, -0.23204658925533295, -0.0029722771141678095, -0.09066365659236908, 0.08978140354156494, -0.14750167727470398, 0.07102079689502716, 0.13627715408802032, -0.0028298567049205303, -0.015516005456447601, -0.02296057529747486, 0.009683186188340187, 0.09076620638370514, -0.0369759276509285, -0.07416266202926636 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-italian-robust This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the Common Voice 7 & Libri Speech datasets. It achieves the following results on the evaluation set: - Loss: 0.2428 - Wer: 0.2960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.07 | 400 | 1.0053 | 0.8058 | | 1.5087 | 0.13 | 800 | 0.9127 | 0.8104 | | 0.9552 | 0.2 | 1200 | 1.0360 | 0.8836 | | 0.9555 | 0.27 | 1600 | 0.9980 | 0.8577 | | 1.0259 | 0.34 | 2000 | 1.0103 | 0.8842 | | 1.0259 | 0.4 | 2400 | 0.9119 | 0.8466 | | 1.0365 | 0.47 | 2800 | 0.9000 | 0.8281 | | 1.0069 | 0.54 | 3200 | 0.7976 | 0.7875 | | 0.9688 | 0.61 | 3600 | 0.8126 | 0.8051 | | 0.9638 | 0.67 | 4000 | 0.7921 | 0.7903 | | 0.9638 | 0.74 | 4400 | 0.7703 | 0.7783 | | 0.9327 | 0.81 | 4800 | 0.7253 | 0.7463 | | 0.8992 | 0.88 | 5200 | 0.6841 | 0.7171 | | 0.8693 | 0.94 | 5600 | 0.6867 | 0.7250 | | 0.8433 | 1.01 | 6000 | 0.7077 | 0.7302 | | 0.8433 | 1.08 | 6400 | 0.6685 | 0.7091 | | 0.8499 | 1.14 | 6800 | 0.6355 | 0.6825 | | 0.8159 | 1.21 | 7200 | 0.6283 | 0.6800 | | 0.8001 | 1.28 | 7600 | 0.6288 | 0.6743 | | 0.7883 | 1.35 | 8000 | 0.5995 | 0.6633 | | 0.7883 | 1.41 | 8400 | 0.6195 | 0.6726 | | 0.7863 | 1.48 | 8800 | 0.6039 | 0.6588 | | 0.7713 | 1.55 | 9200 | 0.5842 | 0.6490 | | 0.7572 | 1.62 | 9600 | 0.5975 | 0.6533 | | 0.7442 | 1.68 | 10000 | 0.5508 | 0.6233 | | 0.7442 | 1.75 | 10400 | 0.5521 | 0.6209 | | 0.7296 | 1.82 | 10800 | 0.5760 | 0.6245 | | 0.7205 | 1.89 | 11200 | 0.5593 | 0.6144 | | 0.7106 | 1.95 | 11600 | 0.5672 | 0.6220 | | 0.7146 | 2.02 | 12000 | 0.5134 | 0.5911 | | 0.7146 | 2.09 | 12400 | 0.5069 | 0.5811 | | 0.6944 | 2.15 | 12800 | 0.5022 | 0.5962 | | 0.6817 | 2.22 | 13200 | 0.4989 | 0.5813 | | 0.6721 | 2.29 | 13600 | 0.4941 | 0.5742 | | 0.6774 | 2.36 | 14000 | 0.4775 | 0.5676 | | 0.6774 | 2.42 | 14400 | 0.4694 | 0.5525 | | 0.6621 | 2.49 | 14800 | 0.4720 | 0.5514 | | 0.6599 | 2.56 | 15200 | 0.4714 | 0.5553 | | 0.6591 | 2.63 | 15600 | 0.4578 | 0.5397 | | 0.645 | 2.69 | 16000 | 0.4619 | 0.5452 | | 0.645 | 2.76 | 16400 | 0.4578 | 0.5343 | | 0.6431 | 2.83 | 16800 | 0.4514 | 0.5328 | | 0.636 | 2.9 | 17200 | 0.4526 | 0.5325 | | 0.6433 | 2.96 | 17600 | 0.4561 | 0.5325 | | 0.6356 | 3.03 | 18000 | 0.4386 | 0.5191 | | 0.6356 | 3.1 | 18400 | 0.4291 | 0.5065 | | 0.6175 | 3.16 | 18800 | 0.4306 | 0.5170 | | 0.6187 | 3.23 | 19200 | 0.4256 | 0.5036 | | 0.607 | 3.3 | 19600 | 0.4198 | 0.5027 | | 0.6004 | 3.37 | 20000 | 0.4149 | 0.4906 | | 0.6004 | 3.43 | 20400 | 0.4114 | 0.4902 | | 0.6002 | 3.5 | 20800 | 0.4116 | 0.4967 | | 0.5926 | 3.57 | 21200 | 0.4066 | 0.4843 | | 0.5836 | 3.64 | 21600 | 0.3956 | 0.4791 | | 0.588 | 3.7 | 22000 | 0.3941 | 0.4729 | | 0.588 | 3.77 | 22400 | 0.3972 | 0.4799 | | 0.5739 | 3.84 | 22800 | 0.4018 | 0.4790 | | 0.5778 | 3.91 | 23200 | 0.3936 | 0.4750 | | 0.5768 | 3.97 | 23600 | 0.3936 | 0.4751 | | 0.5651 | 4.04 | 24000 | 0.3953 | 0.4706 | | 0.5651 | 4.11 | 24400 | 0.3906 | 0.4659 | | 0.5704 | 4.17 | 24800 | 0.3807 | 0.4557 | | 0.5594 | 4.24 | 25200 | 0.3817 | 0.4610 | | 0.5509 | 4.31 | 25600 | 0.3755 | 0.4553 | | 0.5439 | 4.38 | 26000 | 0.3705 | 0.4471 | | 0.5439 | 4.44 | 26400 | 0.3744 | 0.4487 | | 0.5426 | 4.51 | 26800 | 0.3716 | 0.4483 | | 0.5393 | 4.58 | 27200 | 0.3600 | 0.4356 | | 0.5408 | 4.65 | 27600 | 0.3573 | 0.4307 | | 0.5327 | 4.71 | 28000 | 0.3638 | 0.4382 | | 0.5327 | 4.78 | 28400 | 0.3587 | 0.4316 | | 0.5324 | 4.85 | 28800 | 0.3598 | 0.4290 | | 0.5378 | 4.91 | 29200 | 0.3508 | 0.4243 | | 0.5246 | 4.98 | 29600 | 0.3522 | 0.4260 | | 0.5284 | 5.05 | 30000 | 0.3520 | 0.4268 | | 0.5284 | 5.12 | 30400 | 0.3506 | 0.4224 | | 0.5154 | 5.18 | 30800 | 0.3556 | 0.4223 | | 0.5138 | 5.25 | 31200 | 0.3526 | 0.4276 | | 0.51 | 5.32 | 31600 | 0.3440 | 0.4220 | | 0.5065 | 5.39 | 32000 | 0.3367 | 0.4120 | | 0.5065 | 5.45 | 32400 | 0.3406 | 0.4136 | | 0.5087 | 5.52 | 32800 | 0.3370 | 0.4125 | | 0.503 | 5.59 | 33200 | 0.3387 | 0.4134 | | 0.5085 | 5.66 | 33600 | 0.3346 | 0.4068 | | 0.5044 | 5.72 | 34000 | 0.3325 | 0.4057 | | 0.5044 | 5.79 | 34400 | 0.3304 | 0.4026 | | 0.4879 | 5.86 | 34800 | 0.3274 | 0.4002 | | 0.4924 | 5.92 | 35200 | 0.3286 | 0.3980 | | 0.4991 | 5.99 | 35600 | 0.3231 | 0.3952 | | 0.487 | 6.06 | 36000 | 0.3324 | 0.4005 | | 0.487 | 6.13 | 36400 | 0.3264 | 0.3952 | | 0.4754 | 6.19 | 36800 | 0.3234 | 0.3905 | | 0.4683 | 6.26 | 37200 | 0.3149 | 0.3840 | | 0.4653 | 6.33 | 37600 | 0.3122 | 0.3824 | | 0.4667 | 6.4 | 38000 | 0.3151 | 0.3855 | | 0.4667 | 6.46 | 38400 | 0.3217 | 0.3859 | | 0.4628 | 6.53 | 38800 | 0.3085 | 0.3831 | | 0.4644 | 6.6 | 39200 | 0.3121 | 0.3791 | | 0.4612 | 6.67 | 39600 | 0.3093 | 0.3790 | | 0.4552 | 6.73 | 40000 | 0.3087 | 0.3749 | | 0.4552 | 6.8 | 40400 | 0.3027 | 0.3679 | | 0.4544 | 6.87 | 40800 | 0.3048 | 0.3672 | | 0.4507 | 6.93 | 41200 | 0.2963 | 0.3614 | | 0.4489 | 7.0 | 41600 | 0.3086 | 0.3718 | | 0.4367 | 7.07 | 42000 | 0.3100 | 0.3754 | | 0.4367 | 7.14 | 42400 | 0.3057 | 0.3701 | | 0.4376 | 7.2 | 42800 | 0.2930 | 0.3614 | | 0.428 | 7.27 | 43200 | 0.2907 | 0.3516 | | 0.4241 | 7.34 | 43600 | 0.2916 | 0.3590 | | 0.4312 | 7.41 | 44000 | 0.2904 | 0.3523 | | 0.4312 | 7.47 | 44400 | 0.2908 | 0.3476 | | 0.4292 | 7.54 | 44800 | 0.2858 | 0.3467 | | 0.426 | 7.61 | 45200 | 0.2864 | 0.3484 | | 0.4225 | 7.68 | 45600 | 0.2820 | 0.3441 | | 0.422 | 7.74 | 46000 | 0.2834 | 0.3441 | | 0.422 | 7.81 | 46400 | 0.2784 | 0.3420 | | 0.4158 | 7.88 | 46800 | 0.2814 | 0.3390 | | 0.4139 | 7.94 | 47200 | 0.2777 | 0.3384 | | 0.4076 | 8.01 | 47600 | 0.2741 | 0.3381 | | 0.3997 | 8.08 | 48000 | 0.2738 | 0.3320 | | 0.3997 | 8.15 | 48400 | 0.2720 | 0.3303 | | 0.4009 | 8.21 | 48800 | 0.2705 | 0.3357 | | 0.3928 | 8.28 | 49200 | 0.2708 | 0.3265 | | 0.3923 | 8.35 | 49600 | 0.2678 | 0.3283 | | 0.3897 | 8.42 | 50000 | 0.2649 | 0.3241 | | 0.3897 | 8.48 | 50400 | 0.2640 | 0.3218 | | 0.3879 | 8.55 | 50800 | 0.2616 | 0.3197 | | 0.3805 | 8.62 | 51200 | 0.2599 | 0.3170 | | 0.3874 | 8.69 | 51600 | 0.2592 | 0.3168 | | 0.3799 | 8.75 | 52000 | 0.2589 | 0.3157 | | 0.3799 | 8.82 | 52400 | 0.2566 | 0.3137 | | 0.3834 | 8.89 | 52800 | 0.2552 | 0.3141 | | 0.3811 | 8.95 | 53200 | 0.2523 | 0.3108 | | 0.3821 | 9.02 | 53600 | 0.2539 | 0.3112 | | 0.3636 | 9.09 | 54000 | 0.2529 | 0.3070 | | 0.3636 | 9.16 | 54400 | 0.2500 | 0.3078 | | 0.3706 | 9.22 | 54800 | 0.2510 | 0.3067 | | 0.367 | 9.29 | 55200 | 0.2497 | 0.3069 | | 0.3618 | 9.36 | 55600 | 0.2493 | 0.3043 | | 0.3624 | 9.43 | 56000 | 0.2491 | 0.3040 | | 0.3624 | 9.49 | 56400 | 0.2466 | 0.3016 | | 0.3557 | 9.56 | 56800 | 0.2460 | 0.3014 | | 0.3536 | 9.63 | 57200 | 0.2470 | 0.2997 | | 0.3584 | 9.7 | 57600 | 0.2441 | 0.2989 | | 0.3563 | 9.76 | 58000 | 0.2442 | 0.2970 | | 0.3563 | 9.83 | 58400 | 0.2436 | 0.2966 | | 0.3492 | 9.9 | 58800 | 0.2431 | 0.2967 | | 0.3483 | 9.96 | 59200 | 0.2428 | 0.2960 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["it"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "XLS-R-1b - Italian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "it"}, "metrics": [{"type": "wer", "value": 32.74, "name": "Test WER"}, {"type": "cer", "value": 7.83, "name": "Test CER"}, {"type": "wer", "value": 19.55, "name": "Test WER (+LM)"}, {"type": "cer", "value": 5.59, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "it"}, "metrics": [{"type": "wer", "value": 43.23, "name": "Test WER"}, {"type": "cer", "value": 13.37, "name": "Test CER"}, {"type": "wer", "value": 27.51, "name": "Test WER (+LM)"}, {"type": "cer", "value": 10.69, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "it"}, "metrics": [{"type": "wer", "value": 51.12, "name": "Test WER"}]}]}]}
automatic-speech-recognition
dbdmg/wav2vec2-xls-r-1b-italian-robust
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "it", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
wav2vec2-xls-r-1b-italian-robust ================================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the Common Voice 7 & Libri Speech datasets. It achieves the following results on the evaluation set: * Loss: 0.2428 * Wer: 0.2960 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 10.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 104, 132, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.12272118031978607, 0.11886751651763916, -0.004848872311413288, 0.040806639939546585, 0.08245497941970825, 0.006370495073497295, 0.10950670391321182, 0.14687193930149078, -0.06350554525852203, 0.11850614845752716, 0.09447558969259262, 0.08001764118671417, 0.07902785390615463, 0.15786701440811157, -0.03732038661837578, -0.24722595512866974, 0.047483354806900024, -0.017674831673502922, -0.04984758421778679, 0.09686366468667984, 0.08507569879293442, -0.11102721840143204, 0.0315840058028698, 0.01508054044097662, -0.08276671916246414, 0.0022178138606250286, -0.03932376578450203, -0.07154390960931778, 0.09196516126394272, 0.02916870452463627, 0.05387752503156662, 0.03547753393650055, 0.06759130954742432, -0.2585528790950775, 0.01175007689744234, 0.054156385362148285, 0.023270420730113983, 0.05746648833155632, 0.10492195188999176, -0.010320527479052544, 0.08386533707380295, -0.08649271726608276, 0.05169077217578888, 0.05278401076793671, -0.0876258835196495, -0.2882218658924103, -0.08796002715826035, 0.061704982072114944, 0.11027781665325165, 0.07766805589199066, -0.03819233924150467, 0.0906376764178276, -0.06696850061416626, 0.09090523421764374, 0.22376401722431183, -0.23924146592617035, -0.053113363683223724, -0.04999549686908722, 0.03878064826130867, 0.039597611874341965, -0.10161391645669937, -0.020169522613286972, 0.020830975845456123, 0.032284557819366455, 0.09799030423164368, 0.0014736407902091742, -0.009956743568181992, -0.020708637312054634, -0.14962296187877655, -0.05181415379047394, 0.13969296216964722, 0.0743120014667511, -0.027717435732483864, -0.118028424680233, -0.04732133448123932, -0.14496929943561554, -0.05202160403132439, -0.004016652703285217, 0.03200806304812431, -0.03503800183534622, -0.04508179426193237, 0.022514870390295982, -0.06445497274398804, -0.06427039206027985, 0.022735632956027985, 0.17866189777851105, 0.060441188514232635, -0.029791420325636864, -0.003974883817136288, 0.07771206647157669, 0.04284123331308365, -0.153995543718338, -0.028628986328840256, 0.035300418734550476, -0.06827651709318161, -0.007099662907421589, -0.011905478313565254, -0.011377609334886074, 0.06865600496530533, 0.1448933631181717, -0.05536724254488945, 0.09935438632965088, 0.011089080944657326, 0.011847699992358685, -0.07484368234872818, 0.15195289254188538, -0.05079915001988411, -0.042157478630542755, -0.014905080199241638, 0.12208642810583115, 0.03289622813463211, -0.006793788634240627, -0.06605805456638336, 0.025306880474090576, 0.11387994140386581, 0.05808825418353081, -0.012293422594666481, 0.026058819144964218, -0.06340435892343521, -0.012084584683179855, 0.00946485623717308, -0.12754276394844055, 0.041631124913692474, 0.06172557547688484, -0.04865098372101784, 0.0019795014522969723, 0.0051211887039244175, 0.01222413219511509, -0.03801954910159111, 0.08685431629419327, -0.04173940047621727, 0.0008908792515285313, -0.05149863660335541, -0.09684230387210846, 0.03848285600543022, -0.04515329748392105, -0.014372510835528374, -0.09801717847585678, -0.08983036875724792, -0.05031922087073326, 0.021307576447725296, -0.03740816190838814, -0.04820952191948891, -0.08083892613649368, -0.08044014871120453, 0.05517946928739548, -0.026438245549798012, 0.11078981310129166, -0.06678687036037445, 0.08047264069318771, 0.029246721416711807, 0.05649750679731369, 0.050608254969120026, 0.05466948449611664, -0.0338197723031044, 0.050278130918741226, -0.12342792004346848, 0.09728383272886276, -0.10740813612937927, 0.03178545460104942, -0.12669138610363007, -0.08676949143409729, -0.017902841791510582, 0.002101259771734476, 0.10263321548700333, 0.13989725708961487, -0.16472609341144562, -0.0923142209649086, 0.18704845011234283, -0.06982267647981644, -0.0902407094836235, 0.14510990679264069, -0.010152251459658146, -0.051142480224370956, 0.045124080032110214, 0.19944992661476135, 0.08613649755716324, -0.10884058475494385, -0.0318896509706974, -0.05067695677280426, 0.09542436897754669, 0.04469286650419235, 0.08137375861406326, -0.060999516397714615, 0.034550007432699203, 0.00121123599819839, -0.01363768894225359, 0.055356115102767944, -0.07431304454803467, -0.07348239421844482, -0.03565051034092903, -0.07185520231723785, 0.01452868152409792, 0.028345828875899315, 0.018262336030602455, -0.09905926883220673, -0.12761716544628143, -0.003122462658211589, 0.11230411380529404, -0.09386716037988663, 0.03270667791366577, -0.08752714097499847, 0.08164617419242859, -0.013527056202292442, 0.003165776375681162, -0.14877453446388245, -0.004320559091866016, 0.046288568526506424, -0.0723777711391449, 0.015295468270778656, -0.05373607203364372, 0.07434741407632828, 0.055118996649980545, -0.025515535846352577, -0.08099948614835739, -0.03411361202597618, 0.008303061127662659, -0.06652792543172836, -0.21485410630702972, -0.05532236024737358, -0.030364690348505974, 0.16749607026576996, -0.18129593133926392, 0.010974856093525887, 0.05232691019773483, 0.14741425216197968, 0.02276470512151718, -0.040066469460725784, 0.0260405745357275, 0.05972715839743614, -0.016339488327503204, -0.06878280639648438, 0.02053167298436165, -0.0027907767798751593, -0.11651349812746048, 0.027976686134934425, -0.16568538546562195, 0.08300571143627167, 0.11046209931373596, 0.024166442453861237, -0.06048569828271866, -0.020630238577723503, -0.05158796161413193, -0.0465785413980484, -0.02670389972627163, -0.019015364348888397, 0.16591045260429382, 0.012010560370981693, 0.1134849563241005, -0.07534171640872955, -0.043745554983615875, 0.027318991720676422, 0.008950726129114628, -0.025056084617972374, 0.14045514166355133, 0.03381362557411194, -0.05275096371769905, 0.09899865835905075, 0.07684607058763504, -0.05410314351320267, 0.14355632662773132, -0.0703916847705841, -0.07836705446243286, -0.028042014688253403, 0.036908358335494995, 0.019422052428126335, 0.09071245044469833, -0.14477451145648956, -0.01836966536939144, 0.02729754149913788, 0.021799717098474503, 0.019384993240237236, -0.18542662262916565, 0.02025511860847473, 0.03518592193722725, -0.09103810787200928, 0.003960253670811653, 0.01273096539080143, 0.008581663481891155, 0.08468896895647049, -0.00039216066943481565, -0.07448367029428482, -0.014735614880919456, -0.02596798725426197, -0.09111126512289047, 0.16396482288837433, -0.11273332685232162, -0.1513805389404297, -0.1041969433426857, -0.014866280369460583, -0.02524488978087902, -0.014097105711698532, 0.06904231011867523, -0.09949187934398651, -0.0513886995613575, -0.0799136757850647, 0.017960678786039352, -0.027653411030769348, 0.027008522301912308, 0.033376775681972504, -0.027133209630846977, 0.07597294449806213, -0.11364729702472687, -0.003946202341467142, -0.013250714167952538, -0.007714877836406231, 0.010656081140041351, 0.034308116883039474, 0.08394154161214828, 0.13569369912147522, 0.045730967074632645, 0.034761808812618256, -0.03868846222758293, 0.19386599957942963, -0.0991584062576294, -0.013361932709813118, 0.10581234842538834, -0.005502498708665371, 0.05480989068746567, 0.13855032622814178, 0.03780090808868408, -0.07639563083648682, 0.00042226037476211786, 0.022459419444203377, -0.0054617407731711864, -0.22817771136760712, -0.03981667757034302, -0.06299933791160583, -0.02329850010573864, 0.08467304706573486, 0.048376940190792084, -0.008175239898264408, 0.0203067846596241, -0.04123981297016144, -0.015472604893147945, 0.025277769193053246, 0.06304659694433212, 0.09752298891544342, 0.04445905610918999, 0.10489039123058319, -0.02251512184739113, -0.04113395884633064, 0.03923583775758743, -0.02454465441405773, 0.2084898203611374, 0.016352223232388496, 0.16936607658863068, 0.05035574361681938, 0.16085045039653778, 0.005336947739124298, 0.030955396592617035, 0.0207632128149271, 0.009885956533253193, 0.027654502540826797, -0.06890245527029037, -0.0219664815813303, 0.038782503455877304, 0.10332357883453369, 0.03527786210179329, -0.099259153008461, 0.0022068102844059467, 0.04013381898403168, 0.3413439393043518, 0.0653509572148323, -0.2889881730079651, -0.06384208053350449, 0.020940901711583138, -0.07375987619161606, -0.03480517491698265, 0.026688065379858017, 0.11576639115810394, -0.08259285986423492, 0.09427939355373383, -0.04120337963104248, 0.0797714963555336, -0.055708032101392746, 0.004834793042391539, 0.028973422944545746, 0.1131715476512909, 0.003439068328589201, 0.04013650864362717, -0.2514226734638214, 0.25870659947395325, 0.0049138362519443035, 0.08847307413816452, -0.04210767522454262, 0.03973541781306267, 0.05321507528424263, -0.01993284747004509, 0.07135652750730515, -0.013074141927063465, -0.11695297807455063, -0.16684921085834503, -0.11314205080270767, 0.016628345474600792, 0.11877036839723587, -0.03237249329686165, 0.11378365755081177, -0.01790141500532627, -0.039272163063287735, 0.037469346076250076, -0.03385896608233452, -0.14440999925136566, -0.0875728502869606, 0.028439804911613464, 0.09787580370903015, 0.06563684344291687, -0.09031260758638382, -0.10245635360479355, -0.09485647827386856, 0.11727717518806458, -0.11549150198698044, -0.03235025703907013, -0.11814278364181519, 0.020261654630303383, 0.13926035165786743, -0.07490406185388565, 0.04555631801486015, 0.011552024632692337, 0.12376286834478378, 0.010573177598416805, -0.03499314561486244, 0.10835663229227066, -0.08521474152803421, -0.2018132209777832, -0.04056749865412712, 0.18300269544124603, 0.03339304402470589, 0.05893029645085335, -0.012346532195806503, 0.03663771227002144, -0.014995193108916283, -0.06408966332674026, 0.079005666077137, 0.07365769147872925, 0.013006002642214298, 0.07308303564786911, -0.021564653143286705, -0.06950106471776962, -0.07861144095659256, -0.04647677391767502, 0.13398098945617676, 0.28357747197151184, -0.0785508081316948, 0.054172638803720474, 0.050508204847574234, -0.05631742998957634, -0.14583218097686768, -0.029207199811935425, 0.1111212819814682, 0.034105971455574036, -0.014527499675750732, -0.17907315492630005, 0.015781957656145096, 0.07037904113531113, -0.024826934561133385, 0.08932168036699295, -0.30478954315185547, -0.1458926647901535, 0.12656907737255096, 0.0668826475739479, 0.0009529426461085677, -0.16111986339092255, -0.06728086620569229, -0.020732788369059563, -0.08236654102802277, 0.046135302633047104, -0.06238485127687454, 0.12669461965560913, -0.004320202395319939, 0.04274632781744003, 0.01503764744848013, -0.04287968948483467, 0.14959628880023956, 0.0044036745093762875, 0.04180610552430153, -0.022257862612605095, 0.03183796629309654, -0.02051517553627491, -0.07159316539764404, 0.04369168356060982, -0.10127157717943192, 0.022015802562236786, -0.12258875370025635, -0.02115636132657528, -0.07659860700368881, 0.03236200287938118, -0.028562096878886223, -0.005648866295814514, -0.024100862443447113, 0.01655730977654457, 0.07628017663955688, 0.01112405490130186, 0.11620739847421646, -0.04580384120345116, 0.13758079707622528, 0.13108637928962708, 0.10993678122758865, -0.0114795733243227, -0.09591962397098541, -0.013521315529942513, -0.02473043091595173, 0.04641326144337654, -0.08033738285303116, 0.03785346448421478, 0.12419697642326355, 0.031509868800640106, 0.14755749702453613, 0.04370402172207832, -0.10422614961862564, 0.017427071928977966, 0.05115019902586937, -0.10297617316246033, -0.1600712090730667, -0.011870253831148148, 0.03257039189338684, -0.11850950866937637, 0.011790908873081207, 0.12112899869680405, -0.04662535339593887, -0.011756961233913898, 0.001391936675645411, 0.042908962815999985, -0.030049538239836693, 0.21560637652873993, 0.033970534801483154, 0.07556622475385666, -0.10118447989225388, 0.0846409723162651, 0.0450734905898571, -0.09857618808746338, 0.06466906517744064, 0.10183361172676086, -0.051014918833971024, -0.021416524425148964, 0.03166479989886284, 0.11505547910928726, 0.057335712015628815, -0.07640806585550308, -0.11434180289506912, -0.1571289747953415, 0.0894237756729126, 0.11718493700027466, 0.02799992822110653, 0.02328694798052311, -0.014347796328365803, 0.032163143157958984, -0.07711255550384521, 0.10566481947898865, 0.09283474832773209, 0.06486198306083679, -0.12952351570129395, 0.12482289224863052, 0.013667719438672066, -0.002003063214942813, -0.0014046563301235437, -0.010395842604339123, -0.10619813948869705, 0.016114046797156334, -0.13953331112861633, 0.018805067986249924, -0.05818861722946167, -0.0016715280944481492, 0.01141473650932312, -0.05854557454586029, -0.05527777597308159, 0.037226539105176926, -0.1012391448020935, -0.048575226217508316, -0.02086043544113636, 0.06774934381246567, -0.11523465067148209, -0.028820347040891647, 0.01427959930151701, -0.12343885004520416, 0.09277845919132233, 0.07335682213306427, -0.007934138178825378, 0.018471602350473404, -0.11181174218654633, -0.025540791451931, 0.04920105263590813, 0.0043017626740038395, 0.024391626939177513, -0.17458659410476685, -0.017363883554935455, -0.011029025539755821, 0.012574967928230762, -0.008953499607741833, 0.05384017527103424, -0.10405560582876205, -0.02017083950340748, -0.038269832730293274, -0.04070734232664108, -0.04684637486934662, 0.046503011137247086, 0.08268260955810547, 0.010223928838968277, 0.16541622579097748, -0.10033018887042999, 0.05181768536567688, -0.21112817525863647, 0.006140079349279404, -0.026477430015802383, -0.08549066632986069, -0.08051598072052002, -0.013792484998703003, 0.09976689517498016, -0.05636224523186684, 0.08990288525819778, -0.05392764136195183, 0.02637748420238495, 0.031006861478090286, -0.08631505817174911, 0.002712524961680174, 0.04169420525431633, 0.1582356095314026, 0.03697824478149414, -0.03123345412313938, 0.0587507039308548, -0.030225001275539398, 0.07958611845970154, 0.08555429428815842, 0.14292681217193604, 0.16065613925457, 0.05784764140844345, 0.10316845029592514, 0.08617101609706879, -0.10975954681634903, -0.11940041929483414, 0.08838707953691483, -0.06558443605899811, 0.13585205376148224, -0.023954860866069794, 0.20095480978488922, 0.09548147767782211, -0.173706516623497, 0.05540658161044121, -0.03838684782385826, -0.07407884299755096, -0.11488120257854462, -0.06388707458972931, -0.08824603259563446, -0.16290166974067688, 0.008900458924472332, -0.09545828402042389, 0.05824972689151764, 0.04198585823178291, 0.0417761355638504, 0.026360180228948593, 0.12545505166053772, 0.047092895954847336, -0.006161279510706663, 0.11194994300603867, -0.003154696663841605, -0.023773064836859703, -0.05012154579162598, -0.11564448475837708, 0.062299005687236786, -0.02111257053911686, 0.06370647251605988, -0.02333793044090271, -0.08799032121896744, 0.06318389624357224, -0.011780554428696632, -0.10373857617378235, 0.03600534051656723, -0.010817951522767544, 0.062470048666000366, 0.08299148082733154, 0.04922188073396683, -0.023371564224362373, -0.004106602631509304, 0.17558205127716064, -0.08256322145462036, -0.0639844536781311, -0.10981899499893188, 0.17937453091144562, 0.0037107833195477724, -0.005516619421541691, 0.0307480301707983, -0.08056287467479706, -0.01743323914706707, 0.14943528175354004, 0.13216634094715118, -0.010147178545594215, 0.0016567223938181996, -0.009281868115067482, -0.012804429978132248, -0.027333253994584084, 0.06702413409948349, 0.12701503932476044, 0.0503387488424778, -0.033168572932481766, -0.00475101824849844, -0.03176985681056976, -0.05045439675450325, -0.05615795776247978, 0.06838271021842957, -0.005149839911609888, -0.02133185975253582, -0.02017919160425663, 0.08896055817604065, -0.050160884857177734, -0.13200132548809052, 0.004021646920591593, -0.17262013256549835, -0.16796496510505676, -0.027061475440859795, 0.07660949230194092, 0.05956028401851654, 0.036735549569129944, -0.002772877924144268, -0.02866949327290058, 0.11529909074306488, -0.004183503333479166, -0.04763033613562584, -0.09885866194963455, 0.06562379747629166, -0.14099200069904327, 0.18103237450122833, -0.027325613424181938, 0.05673862621188164, 0.11408841609954834, 0.061203207820653915, -0.0881246030330658, 0.05856388807296753, 0.07083644717931747, -0.12081767618656158, 0.04682279750704765, 0.17250466346740723, -0.04280488193035126, 0.12857051193714142, 0.04368741065263748, -0.0926937535405159, 0.010451259091496468, -0.04277796670794487, -0.05703968182206154, -0.05895159766077995, 0.0015770839527249336, -0.049696654081344604, 0.13122358918190002, 0.1718735545873642, -0.06993237137794495, -0.017303016036748886, -0.03835141286253929, 0.014409778639674187, 0.0318729467689991, 0.08611524105072021, -0.036504682153463364, -0.2688251733779907, 0.02925429679453373, -0.002236556261777878, 0.03423256054520607, -0.22574616968631744, -0.09607309103012085, -0.003321840660646558, -0.04391491040587425, -0.07316876947879791, 0.10378778725862503, 0.06971482187509537, 0.04366421326994896, -0.056728024035692215, -0.0958230048418045, -0.02311529777944088, 0.1824297308921814, -0.1625215709209442, -0.053030434995889664 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-italian-robust This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the Italian splits of the following datasets: - Mozilla Foundation Common Voice V7 dataset - [LibriSpeech multilingual](http://www.openslr.org/94) - [TED multilingual](https://www.openslr.org/100/) - [Voxforge](http://www.voxforge.org/it/Downloads) - [M-AILABS Speech Dataset](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/) - [EuroParl-ST](https://www.mllp.upv.es/europarl-st/) - [EMOVO](http://voice.fub.it/activities/corpora/emovo/index.html) - [MSPKA](http://www.mspkacorpus.it/) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.06 | 400 | 0.7508 | 0.7354 | | 2.3127 | 0.11 | 800 | 0.5888 | 0.5882 | | 0.7256 | 0.17 | 1200 | 0.5121 | 0.5247 | | 0.6692 | 0.22 | 1600 | 0.4774 | 0.5028 | | 0.6384 | 0.28 | 2000 | 0.4832 | 0.4885 | | 0.6384 | 0.33 | 2400 | 0.4410 | 0.4581 | | 0.6199 | 0.39 | 2800 | 0.4160 | 0.4331 | | 0.5972 | 0.44 | 3200 | 0.4136 | 0.4275 | | 0.6048 | 0.5 | 3600 | 0.4362 | 0.4538 | | 0.5627 | 0.55 | 4000 | 0.4313 | 0.4469 | | 0.5627 | 0.61 | 4400 | 0.4425 | 0.4579 | | 0.5855 | 0.66 | 4800 | 0.3859 | 0.4133 | | 0.5702 | 0.72 | 5200 | 0.3974 | 0.4097 | | 0.55 | 0.77 | 5600 | 0.3931 | 0.4134 | | 0.5624 | 0.83 | 6000 | 0.3900 | 0.4126 | | 0.5624 | 0.88 | 6400 | 0.3622 | 0.3899 | | 0.5615 | 0.94 | 6800 | 0.3755 | 0.4067 | | 0.5472 | 0.99 | 7200 | 0.3980 | 0.4284 | | 0.5663 | 1.05 | 7600 | 0.3553 | 0.3782 | | 0.5189 | 1.1 | 8000 | 0.3538 | 0.3726 | | 0.5189 | 1.16 | 8400 | 0.3425 | 0.3624 | | 0.518 | 1.21 | 8800 | 0.3431 | 0.3651 | | 0.5399 | 1.27 | 9200 | 0.3442 | 0.3573 | | 0.5303 | 1.32 | 9600 | 0.3241 | 0.3404 | | 0.5043 | 1.38 | 10000 | 0.3175 | 0.3378 | | 0.5043 | 1.43 | 10400 | 0.3265 | 0.3501 | | 0.4968 | 1.49 | 10800 | 0.3539 | 0.3703 | | 0.5102 | 1.54 | 11200 | 0.3323 | 0.3506 | | 0.5008 | 1.6 | 11600 | 0.3188 | 0.3433 | | 0.4996 | 1.65 | 12000 | 0.3162 | 0.3388 | | 0.4996 | 1.71 | 12400 | 0.3353 | 0.3552 | | 0.5007 | 1.76 | 12800 | 0.3152 | 0.3317 | | 0.4956 | 1.82 | 13200 | 0.3207 | 0.3430 | | 0.5205 | 1.87 | 13600 | 0.3239 | 0.3430 | | 0.4829 | 1.93 | 14000 | 0.3134 | 0.3266 | | 0.4829 | 1.98 | 14400 | 0.3039 | 0.3291 | | 0.5251 | 2.04 | 14800 | 0.2944 | 0.3169 | | 0.4872 | 2.09 | 15200 | 0.3061 | 0.3228 | | 0.4805 | 2.15 | 15600 | 0.3034 | 0.3152 | | 0.4949 | 2.2 | 16000 | 0.2896 | 0.3066 | | 0.4949 | 2.26 | 16400 | 0.3059 | 0.3344 | | 0.468 | 2.31 | 16800 | 0.2932 | 0.3111 | | 0.4637 | 2.37 | 17200 | 0.2890 | 0.3074 | | 0.4638 | 2.42 | 17600 | 0.2893 | 0.3112 | | 0.4728 | 2.48 | 18000 | 0.2832 | 0.3013 | | 0.4728 | 2.54 | 18400 | 0.2921 | 0.3065 | | 0.456 | 2.59 | 18800 | 0.2961 | 0.3104 | | 0.4628 | 2.65 | 19200 | 0.2886 | 0.3109 | | 0.4534 | 2.7 | 19600 | 0.2828 | 0.3020 | | 0.4578 | 2.76 | 20000 | 0.2805 | 0.3026 | | 0.4578 | 2.81 | 20400 | 0.2796 | 0.2987 | | 0.4702 | 2.87 | 20800 | 0.2748 | 0.2906 | | 0.4487 | 2.92 | 21200 | 0.2819 | 0.3008 | | 0.4411 | 2.98 | 21600 | 0.2722 | 0.2868 | | 0.4631 | 3.03 | 22000 | 0.2814 | 0.2974 | | 0.4631 | 3.09 | 22400 | 0.2762 | 0.2894 | | 0.4591 | 3.14 | 22800 | 0.2802 | 0.2980 | | 0.4349 | 3.2 | 23200 | 0.2748 | 0.2951 | | 0.4339 | 3.25 | 23600 | 0.2792 | 0.2927 | | 0.4254 | 3.31 | 24000 | 0.2712 | 0.2911 | | 0.4254 | 3.36 | 24400 | 0.2719 | 0.2892 | | 0.4317 | 3.42 | 24800 | 0.2686 | 0.2861 | | 0.4282 | 3.47 | 25200 | 0.2632 | 0.2861 | | 0.4262 | 3.53 | 25600 | 0.2633 | 0.2817 | | 0.4162 | 3.58 | 26000 | 0.2561 | 0.2765 | | 0.4162 | 3.64 | 26400 | 0.2613 | 0.2847 | | 0.414 | 3.69 | 26800 | 0.2679 | 0.2824 | | 0.4132 | 3.75 | 27200 | 0.2569 | 0.2813 | | 0.405 | 3.8 | 27600 | 0.2589 | 0.2785 | | 0.4128 | 3.86 | 28000 | 0.2611 | 0.2714 | | 0.4128 | 3.91 | 28400 | 0.2548 | 0.2731 | | 0.4174 | 3.97 | 28800 | 0.2574 | 0.2716 | | 0.421 | 4.02 | 29200 | 0.2529 | 0.2700 | | 0.4109 | 4.08 | 29600 | 0.2547 | 0.2682 | | 0.4027 | 4.13 | 30000 | 0.2578 | 0.2758 | | 0.4027 | 4.19 | 30400 | 0.2511 | 0.2715 | | 0.4075 | 4.24 | 30800 | 0.2507 | 0.2601 | | 0.3947 | 4.3 | 31200 | 0.2552 | 0.2711 | | 0.4042 | 4.35 | 31600 | 0.2530 | 0.2695 | | 0.3907 | 4.41 | 32000 | 0.2543 | 0.2738 | | 0.3907 | 4.46 | 32400 | 0.2491 | 0.2629 | | 0.3895 | 4.52 | 32800 | 0.2471 | 0.2611 | | 0.3901 | 4.57 | 33200 | 0.2404 | 0.2559 | | 0.3818 | 4.63 | 33600 | 0.2378 | 0.2583 | | 0.3831 | 4.68 | 34000 | 0.2341 | 0.2499 | | 0.3831 | 4.74 | 34400 | 0.2379 | 0.2560 | | 0.3808 | 4.79 | 34800 | 0.2418 | 0.2553 | | 0.4015 | 4.85 | 35200 | 0.2378 | 0.2565 | | 0.407 | 4.9 | 35600 | 0.2375 | 0.2535 | | 0.38 | 4.96 | 36000 | 0.2329 | 0.2451 | | 0.38 | 5.02 | 36400 | 0.2541 | 0.2737 | | 0.3753 | 5.07 | 36800 | 0.2475 | 0.2580 | | 0.3701 | 5.13 | 37200 | 0.2356 | 0.2484 | | 0.3627 | 5.18 | 37600 | 0.2422 | 0.2552 | | 0.3652 | 5.24 | 38000 | 0.2353 | 0.2518 | | 0.3652 | 5.29 | 38400 | 0.2328 | 0.2452 | | 0.3667 | 5.35 | 38800 | 0.2358 | 0.2478 | | 0.3711 | 5.4 | 39200 | 0.2340 | 0.2463 | | 0.361 | 5.46 | 39600 | 0.2375 | 0.2452 | | 0.3655 | 5.51 | 40000 | 0.2292 | 0.2387 | | 0.3655 | 5.57 | 40400 | 0.2330 | 0.2432 | | 0.3637 | 5.62 | 40800 | 0.2242 | 0.2396 | | 0.3516 | 5.68 | 41200 | 0.2284 | 0.2394 | | 0.3498 | 5.73 | 41600 | 0.2254 | 0.2343 | | 0.3626 | 5.79 | 42000 | 0.2191 | 0.2318 | | 0.3626 | 5.84 | 42400 | 0.2261 | 0.2399 | | 0.3719 | 5.9 | 42800 | 0.2261 | 0.2411 | | 0.3563 | 5.95 | 43200 | 0.2259 | 0.2416 | | 0.3574 | 6.01 | 43600 | 0.2148 | 0.2249 | | 0.3339 | 6.06 | 44000 | 0.2173 | 0.2237 | | 0.3339 | 6.12 | 44400 | 0.2133 | 0.2238 | | 0.3303 | 6.17 | 44800 | 0.2193 | 0.2297 | | 0.331 | 6.23 | 45200 | 0.2122 | 0.2205 | | 0.3372 | 6.28 | 45600 | 0.2083 | 0.2215 | | 0.3427 | 6.34 | 46000 | 0.2079 | 0.2163 | | 0.3427 | 6.39 | 46400 | 0.2072 | 0.2154 | | 0.3215 | 6.45 | 46800 | 0.2067 | 0.2170 | | 0.3246 | 6.5 | 47200 | 0.2089 | 0.2183 | | 0.3217 | 6.56 | 47600 | 0.2030 | 0.2130 | | 0.3309 | 6.61 | 48000 | 0.2020 | 0.2123 | | 0.3309 | 6.67 | 48400 | 0.2054 | 0.2133 | | 0.3343 | 6.72 | 48800 | 0.2013 | 0.2128 | | 0.3213 | 6.78 | 49200 | 0.1971 | 0.2064 | | 0.3145 | 6.83 | 49600 | 0.2029 | 0.2107 | | 0.3274 | 6.89 | 50000 | 0.2038 | 0.2136 | | 0.3274 | 6.94 | 50400 | 0.1991 | 0.2064 | | 0.3202 | 7.0 | 50800 | 0.1970 | 0.2083 | | 0.314 | 7.05 | 51200 | 0.1970 | 0.2035 | | 0.3031 | 7.11 | 51600 | 0.1943 | 0.2053 | | 0.3004 | 7.16 | 52000 | 0.1942 | 0.1985 | | 0.3004 | 7.22 | 52400 | 0.1941 | 0.2003 | | 0.3029 | 7.27 | 52800 | 0.1936 | 0.2008 | | 0.2915 | 7.33 | 53200 | 0.1935 | 0.1995 | | 0.3005 | 7.38 | 53600 | 0.1943 | 0.2032 | | 0.2984 | 7.44 | 54000 | 0.1913 | 0.1978 | | 0.2984 | 7.5 | 54400 | 0.1907 | 0.1965 | | 0.2978 | 7.55 | 54800 | 0.1881 | 0.1958 | | 0.2944 | 7.61 | 55200 | 0.1887 | 0.1966 | | 0.3004 | 7.66 | 55600 | 0.1870 | 0.1930 | | 0.3099 | 7.72 | 56000 | 0.1906 | 0.1976 | | 0.3099 | 7.77 | 56400 | 0.1856 | 0.1939 | | 0.2917 | 7.83 | 56800 | 0.1883 | 0.1961 | | 0.2924 | 7.88 | 57200 | 0.1864 | 0.1930 | | 0.3061 | 7.94 | 57600 | 0.1831 | 0.1872 | | 0.2834 | 7.99 | 58000 | 0.1835 | 0.1896 | | 0.2834 | 8.05 | 58400 | 0.1828 | 0.1875 | | 0.2807 | 8.1 | 58800 | 0.1820 | 0.1874 | | 0.2765 | 8.16 | 59200 | 0.1807 | 0.1869 | | 0.2737 | 8.21 | 59600 | 0.1810 | 0.1848 | | 0.2722 | 8.27 | 60000 | 0.1795 | 0.1829 | | 0.2722 | 8.32 | 60400 | 0.1785 | 0.1826 | | 0.272 | 8.38 | 60800 | 0.1802 | 0.1836 | | 0.268 | 8.43 | 61200 | 0.1771 | 0.1813 | | 0.2695 | 8.49 | 61600 | 0.1773 | 0.1821 | | 0.2686 | 8.54 | 62000 | 0.1756 | 0.1814 | | 0.2686 | 8.6 | 62400 | 0.1740 | 0.1770 | | 0.2687 | 8.65 | 62800 | 0.1748 | 0.1769 | | 0.2686 | 8.71 | 63200 | 0.1734 | 0.1766 | | 0.2683 | 8.76 | 63600 | 0.1722 | 0.1759 | | 0.2686 | 8.82 | 64000 | 0.1719 | 0.1760 | | 0.2686 | 8.87 | 64400 | 0.1720 | 0.1743 | | 0.2626 | 8.93 | 64800 | 0.1696 | 0.1742 | | 0.2587 | 8.98 | 65200 | 0.1690 | 0.1718 | | 0.2554 | 9.04 | 65600 | 0.1704 | 0.1722 | | 0.2537 | 9.09 | 66000 | 0.1702 | 0.1721 | | 0.2537 | 9.15 | 66400 | 0.1696 | 0.1717 | | 0.2511 | 9.2 | 66800 | 0.1685 | 0.1701 | | 0.2473 | 9.26 | 67200 | 0.1696 | 0.1704 | | 0.2458 | 9.31 | 67600 | 0.1686 | 0.1698 | | 0.2476 | 9.37 | 68000 | 0.1675 | 0.1687 | | 0.2476 | 9.42 | 68400 | 0.1659 | 0.1673 | | 0.2463 | 9.48 | 68800 | 0.1664 | 0.1674 | | 0.2481 | 9.53 | 69200 | 0.1661 | 0.1670 | | 0.2411 | 9.59 | 69600 | 0.1658 | 0.1663 | | 0.2445 | 9.64 | 70000 | 0.1652 | 0.1660 | | 0.2445 | 9.7 | 70400 | 0.1646 | 0.1654 | | 0.2407 | 9.75 | 70800 | 0.1646 | 0.1641 | | 0.2483 | 9.81 | 71200 | 0.1641 | 0.1641 | | 0.245 | 9.86 | 71600 | 0.1635 | 0.1643 | | 0.2402 | 9.92 | 72000 | 0.1638 | 0.1634 | | 0.2402 | 9.98 | 72400 | 0.1633 | 0.1636 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": "it", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "base_model": "facebook/wav2vec2-xls-r-300m", "model-index": [{"name": "XLS-R-300m - Italian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "it"}, "metrics": [{"type": "wer", "value": 17.17, "name": "Test WER"}, {"type": "cer", "value": 4.27, "name": "Test CER"}, {"type": "wer", "value": 12.07, "name": "Test WER (+LM)"}, {"type": "cer", "value": 3.52, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "it"}, "metrics": [{"type": "wer", "value": 24.29, "name": "Test WER"}, {"type": "cer", "value": 8.1, "name": "Test CER"}, {"type": "wer", "value": 17.36, "name": "Test WER (+LM)"}, {"type": "cer", "value": 7.94, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "it"}, "metrics": [{"type": "wer", "value": 33.66, "name": "Test WER"}]}]}]}
automatic-speech-recognition
dbdmg/wav2vec2-xls-r-300m-italian-robust
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "it", "dataset:mozilla-foundation/common_voice_7_0", "base_model:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
wav2vec2-xls-r-300m-italian-robust ================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Italian splits of the following datasets: * Mozilla Foundation Common Voice V7 dataset * LibriSpeech multilingual * TED multilingual * Voxforge * M-AILABS Speech Dataset * EuroParl-ST * EMOVO * MSPKA Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 10.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 122, 131, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #base_model-facebook/wav2vec2-xls-r-300m #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.14543800055980682, 0.12242511659860611, -0.004257624503225088, 0.054878730326890945, 0.08122985810041428, -0.0029518348164856434, 0.10045348107814789, 0.13618679344654083, -0.03779617324471474, 0.0934678316116333, 0.10380598902702332, 0.02839316986501217, 0.0755639597773552, 0.1735486537218094, -0.03539754077792168, -0.24056562781333923, 0.034001126885414124, -0.03836577758193016, -0.08861494809389114, 0.11362164467573166, 0.06870102137327194, -0.10470785200595856, 0.05035344511270523, 0.020442666485905647, -0.06831631064414978, 0.0035611374769359827, -0.02815104089677334, -0.06730785965919495, 0.107990562915802, 0.012466245330870152, 0.04714209958910942, 0.0501319020986557, 0.09812995791435242, -0.23931249976158142, 0.01631760410964489, 0.08895304054021835, 0.0020787527319043875, 0.06374980509281158, 0.09043007344007492, -0.029065633192658424, 0.11958110332489014, -0.07630573958158493, 0.0650271400809288, 0.05095919966697693, -0.10661928355693817, -0.26135489344596863, -0.0663660541176796, 0.06978990882635117, 0.11049758642911911, 0.0900472104549408, -0.03594250977039337, 0.0379876010119915, -0.09615591913461685, 0.08644996583461761, 0.1981867104768753, -0.21858850121498108, -0.06226080283522606, -0.05054742470383644, 0.01834241673350334, 0.03468620404601097, -0.11242945492267609, -0.029690826311707497, 0.021034130826592445, 0.026511795818805695, 0.10883200168609619, 0.00027703316300176084, 0.006712943781167269, -0.020167391747236252, -0.13839824497699738, -0.051465000957250595, 0.09371175616979599, 0.07392178475856781, -0.024986861273646355, -0.10992351919412613, -0.06028946489095688, -0.126192107796669, -0.04145009070634842, -0.0018345913849771023, 0.007766803726553917, -0.029001973569393158, -0.049682796001434326, 0.030132001265883446, -0.06202951446175575, -0.07754180580377579, 0.0623062402009964, 0.1207556426525116, 0.03635459020733833, -0.005277795717120171, -0.016325296834111214, 0.10374196618795395, 0.0769658088684082, -0.16681024432182312, -0.003896995447576046, 0.0034958934411406517, -0.08885253220796585, 0.012261263094842434, -0.0032368688844144344, 0.030953597277402878, 0.05045643076300621, 0.11103343218564987, -0.062039539217948914, 0.10520174354314804, 0.01677992381155491, 0.0004431474953889847, -0.0696704238653183, 0.1258256584405899, -0.0786137729883194, -0.06374674290418625, -0.021640224382281303, 0.14685781300067902, -0.009595955722033978, -0.013256700709462166, -0.035058390349149704, 0.030630839988589287, 0.10055644810199738, 0.042976014316082, -0.023154688999056816, 0.02987491711974144, -0.05197932943701744, -0.009515020996332169, 0.017945649102330208, -0.12747547030448914, 0.027883898466825485, 0.07982180267572403, -0.06106701120734215, -0.04090100899338722, 0.009536606259644032, -0.0005557523109018803, -0.029844772070646286, 0.09692014008760452, -0.04403400793671608, -0.021044136956334114, -0.058098968118429184, -0.07947105914354324, 0.021942688152194023, -0.06578697264194489, -0.014453579671680927, -0.07332202047109604, -0.12080898135900497, -0.06552397459745407, 0.050364650785923004, -0.04039905220270157, -0.03463645279407501, -0.07188377529382706, -0.08576171100139618, 0.04959500581026077, -0.03228795900940895, 0.13415907323360443, -0.07367277890443802, 0.08142386376857758, -0.01089103240519762, 0.05881617218255997, 0.0880451500415802, 0.05575750395655632, -0.0318821519613266, 0.05669533461332321, -0.11215142905712128, 0.10926668345928192, -0.11226814240217209, 0.01659727655351162, -0.10715167969465256, -0.10186496376991272, -0.028543898835778236, 0.003702332964166999, 0.10041461884975433, 0.1511058807373047, -0.2001124620437622, -0.08980613201856613, 0.18564337491989136, -0.08512471616268158, -0.08017204701900482, 0.1302824765443802, -0.03201447054743767, -0.024613939225673676, 0.032705746591091156, 0.202122762799263, 0.11955960094928741, -0.12465169280767441, -0.008312745951116085, -0.0370631068944931, 0.06810679286718369, 0.04593402147293091, 0.042778413742780685, -0.041167911142110825, 0.026435909792780876, 0.004816083237528801, -0.03297989070415497, 0.04889237880706787, -0.07152990251779556, -0.08332529664039612, -0.02271674945950508, -0.0803709551692009, 0.022060951218008995, 0.04565791040658951, -0.006796905770897865, -0.08086638152599335, -0.11887118220329285, -0.02401086315512657, 0.1003950983285904, -0.10009991377592087, 0.007319159805774689, -0.07774567604064941, 0.04842445254325867, 0.025408998131752014, -0.0012469912180677056, -0.1497841328382492, -0.010613887570798397, 0.021147791296243668, -0.06811819970607758, -0.02273309975862503, -0.013612077571451664, 0.09076570719480515, 0.04575937241315842, -0.03122567944228649, -0.08403193205595016, -0.055743779987096786, 0.014329468831419945, -0.044688496738672256, -0.228587806224823, -0.0582846961915493, -0.03937077149748802, 0.17451965808868408, -0.18107348680496216, 0.012847479432821274, 0.07714976370334625, 0.12702034413814545, 0.029811175540089607, -0.042917851358652115, 0.018137747421860695, 0.051586031913757324, 0.020382113754749298, -0.08380115032196045, 0.02597673237323761, 0.015703588724136353, -0.07945375889539719, 0.026888759806752205, -0.14864413440227509, 0.11214826256036758, 0.08852046728134155, 0.0700826644897461, -0.07085627317428589, -0.006184390280395746, -0.06952199339866638, -0.04921085014939308, -0.025609370321035385, 0.006494430359452963, 0.2019961178302765, 0.035001639276742935, 0.0998031497001648, -0.08229104429483414, -0.04734696447849274, 0.0409073606133461, 0.01875491999089718, 0.0036875989753752947, 0.14640530943870544, 0.031927432864904404, -0.04801923781633377, 0.08816217631101608, 0.05546299368143082, -0.024897312745451927, 0.17916086316108704, -0.07032827287912369, -0.07056410610675812, -0.02617202326655388, 0.016833771020174026, -0.007906480692327023, 0.1471407115459442, -0.140055850148201, -0.0024529078509658575, 0.0045532044023275375, 0.01968252845108509, 0.022578909993171692, -0.18427112698554993, -0.005823651794344187, 0.019839726388454437, -0.10150960087776184, -0.0305992029607296, 0.02115975320339203, 0.02047792822122574, 0.08252272754907608, -0.0138172572478652, -0.0953022688627243, -0.019045984372496605, -0.04349788650870323, -0.10309157520532608, 0.18063610792160034, -0.0940464660525322, -0.18373097479343414, -0.07299961149692535, 0.02630038373172283, -0.0150359021499753, -0.02496672049164772, 0.045137032866477966, -0.11417926102876663, -0.043163422495126724, -0.08280831575393677, -0.0037569734267890453, 0.02175627276301384, 0.008366633206605911, 0.03352830559015274, -0.009367191232740879, 0.09137998521327972, -0.10306192189455032, -0.004269560799002647, -0.040498655289411545, -0.013538021594285965, 0.015006744302809238, 0.05623076856136322, 0.062096573412418365, 0.12395397573709488, 0.0428401418030262, 0.05189528316259384, -0.016020754352211952, 0.2010967880487442, -0.10685610771179199, 0.015278562903404236, 0.10870366543531418, -0.020376240834593773, 0.05186442658305168, 0.14917472004890442, 0.030675750225782394, -0.08253799378871918, 0.006567369680851698, 0.038530733436346054, -0.019518794491887093, -0.20880556106567383, -0.04829467833042145, -0.05102089047431946, -0.011662451550364494, 0.10689587146043777, 0.035878751426935196, -0.0364631712436676, 0.009725104086101055, -0.010526169091463089, -0.06876179575920105, 0.04294769465923309, 0.02241697907447815, 0.05015421658754349, 0.02940252423286438, 0.10064200311899185, -0.00812970008701086, -0.02686457894742489, 0.03848344832658768, -0.04061264917254448, 0.20616014301776886, -0.029972342774271965, 0.06920996308326721, 0.059580303728580475, 0.1809556633234024, 0.0006851766374893486, 0.05965394526720047, 0.0025589538272470236, -0.003600300755351782, 0.025576617568731308, -0.05223385617136955, -0.040434736758470535, 0.03376585990190506, 0.05673309043049812, 0.008231212384998798, -0.10597575455904007, 0.05470182001590729, 0.03552122786641121, 0.3662903606891632, 0.07101766765117645, -0.26948872208595276, -0.07084272056818008, -0.013976396061480045, -0.06013328954577446, -0.05191408470273018, 0.043589066714048386, 0.16096599400043488, -0.09696769714355469, 0.07703467458486557, -0.0650065466761589, 0.0668117105960846, -0.052763331681489944, 0.023458611220121384, 0.06548089534044266, 0.09511229395866394, -0.0023729242384433746, 0.02935655601322651, -0.2412198781967163, 0.27608147263526917, -0.006277832668274641, 0.09020738303661346, -0.046128008514642715, 0.02412276715040207, 0.05059818550944328, -0.03414669260382652, 0.09710211306810379, 0.00131294596940279, -0.11550985276699066, -0.13858678936958313, -0.11584243923425674, 0.03858742490410805, 0.10430386662483215, -0.02557879313826561, 0.09111448377370834, -0.014162429608404636, -0.034373871982097626, 0.04275188967585564, -0.05569203197956085, -0.14040111005306244, -0.09034345299005508, 0.013557587750256062, 0.022786252200603485, 0.07006151229143143, -0.10220812261104584, -0.09518521279096603, -0.05377110093832016, 0.09875380992889404, -0.08418353646993637, -0.03989852964878082, -0.1303372085094452, 0.011142181232571602, 0.14428232610225677, -0.07063820213079453, 0.04718102887272835, 0.03652247041463852, 0.10760369896888733, 0.010313217528164387, -0.04827627167105675, 0.09860417991876602, -0.0993206799030304, -0.21063630282878876, -0.038788989186286926, 0.17710863053798676, 0.0825425311923027, 0.04334567114710808, 0.002168911276385188, 0.019385460764169693, -0.014261911623179913, -0.08503065258264542, 0.08823083341121674, 0.0464949831366539, -0.0009215708705596626, 0.02812131866812706, -0.01152675412595272, -0.030975380912423134, -0.060068219900131226, -0.005941121373325586, 0.09976638853549957, 0.2409946620464325, -0.09003984183073044, 0.08956481516361237, 0.08402104675769806, -0.044549714773893356, -0.17025721073150635, -0.006413091905415058, 0.11637260764837265, 0.03596968203783035, -0.0191008560359478, -0.18859156966209412, 0.025889161974191666, 0.06048256531357765, -0.021241215988993645, 0.06975375860929489, -0.2843483090400696, -0.13162028789520264, 0.13686217367649078, 0.05401679873466492, 0.007219924591481686, -0.10888195037841797, -0.03241173177957535, -0.01029149629175663, -0.0714326724410057, 0.06354570388793945, -0.0858396589756012, 0.09384657442569733, -0.009274020791053772, 0.03808685019612312, 0.01389279030263424, -0.05286090821027756, 0.11448877304792404, 0.014306723140180111, 0.07028532773256302, -0.012492267414927483, 0.04629777744412422, -0.015699099749326706, -0.07413071393966675, 0.03344075381755829, -0.0894712507724762, 0.04366275295615196, -0.1046343520283699, -0.013108660466969013, -0.11665841192007065, 0.028118133544921875, -0.04319433867931366, -0.01762588508427143, -0.000444766046712175, 0.050029780715703964, 0.09090766310691833, 0.005180310923606157, 0.01648104004561901, -0.053401749581098557, 0.13607777655124664, 0.15111839771270752, 0.11260739713907242, -0.033154748380184174, -0.06980396062135696, -0.0031125762034207582, -0.0023111060727387667, 0.05173756554722786, -0.09297746419906616, 0.05784447118639946, 0.1243121474981308, 0.03547171875834465, 0.15006676316261292, 0.03840494155883789, -0.09760687500238419, -0.006932815071195364, 0.05400647968053818, -0.13765095174312592, -0.13000744581222534, -0.01564069278538227, -0.021331066265702248, -0.11873981356620789, -0.007650222163647413, 0.12017456442117691, -0.04712564870715141, 0.004760317038744688, -0.009003883227705956, 0.05976804718375206, -0.02942609041929245, 0.21086083352565765, 0.045132022351026535, 0.08443038910627365, -0.11013549566268921, 0.08645312488079071, 0.004787597339600325, -0.1017005667090416, 0.07047992944717407, 0.08305960893630981, -0.0768432468175888, -0.022339798510074615, 0.02152828313410282, 0.11938869953155518, 0.08457330614328384, -0.06850992143154144, -0.1149509847164154, -0.16869522631168365, 0.08822472393512726, 0.13937298953533173, 0.01336759328842163, 0.03596363216638565, -0.02735699526965618, 0.016132494434714317, -0.07459262758493423, 0.10521389544010162, 0.1106480062007904, 0.029439197853207588, -0.11396736651659012, 0.10805188864469528, 0.015872441232204437, 0.0013452389976009727, -0.006679197307676077, -0.004061881918460131, -0.11103592067956924, 0.019790910184383392, -0.15287567675113678, -0.0023628089111298323, -0.04381042718887329, 0.009969189763069153, -0.0007195902871899307, -0.04309412091970444, -0.05443757772445679, 0.03579264506697655, -0.10364586859941483, -0.028082311153411865, -0.008388658985495567, 0.042523905634880066, -0.13370199501514435, -0.01623743213713169, 0.024833595380187035, -0.12438622862100601, 0.09839098900556564, 0.07157016545534134, -0.018443811684846878, 0.024907153099775314, -0.1041238084435463, -0.023517755791544914, 0.039813630282878876, -0.0035576377995312214, 0.0394020602107048, -0.17369656264781952, 0.0018287295242771506, -0.01814735122025013, -0.010768008418381214, -0.0030291632283478975, 0.05531332269310951, -0.09695953130722046, 0.0454881377518177, -0.01140502281486988, -0.03362656384706497, -0.05175291374325752, 0.045695967972278595, 0.08474534004926682, 0.0340697318315506, 0.161275252699852, -0.10201078653335571, 0.06072571128606796, -0.22627641260623932, -0.019186772406101227, 0.004352611489593983, -0.056550733745098114, -0.03539589047431946, -0.014144225977361202, 0.11586665362119675, -0.054849740117788315, 0.09818153828382492, -0.009461604058742523, 0.017703017219901085, 0.01952349580824375, -0.13551095128059387, -0.02309929020702839, 0.04784366488456726, 0.11270242929458618, 0.007872101850807667, -0.028642795979976654, 0.07725026458501816, -0.035615865141153336, 0.05395694822072983, 0.0947648286819458, 0.18558050692081451, 0.14725200831890106, 0.07662014663219452, 0.07001064717769623, 0.09380093961954117, -0.1274178922176361, -0.0899585634469986, 0.10428975522518158, -0.09932485222816467, 0.12710440158843994, -0.034984927624464035, 0.15588660538196564, 0.08149133622646332, -0.18601930141448975, 0.06978879868984222, -0.030819077044725418, -0.08435100317001343, -0.1199812963604927, -0.05854548141360283, -0.06929321587085724, -0.16637785732746124, 0.029049048200249672, -0.1049560159444809, 0.04717418551445007, 0.04566997289657593, 0.041132520884275436, 0.027817437425255775, 0.13609762489795685, 0.05948450788855553, -0.0023561303969472647, 0.12871398031711578, 0.025551721453666687, -0.027700109407305717, -0.043743640184402466, -0.08410996943712234, 0.03831259161233902, -0.010571698658168316, 0.043978799134492874, -0.03944465517997742, -0.09669512510299683, 0.060344915837049484, 0.012820729985833168, -0.08208165317773819, 0.030200906097888947, -0.024174099788069725, 0.05809364467859268, 0.09657587856054306, 0.06430736929178238, -0.0075416662730276585, -0.008832278661429882, 0.18987464904785156, -0.08401069045066833, -0.052097778767347336, -0.1345226913690567, 0.19294483959674835, -0.008820321410894394, -0.0013852169504389167, 0.03222103789448738, -0.0625171884894371, -0.007433776278048754, 0.15474361181259155, 0.17097952961921692, -0.04882579669356346, 0.013167193159461021, -0.030729707330465317, -0.010699945501983166, -0.02014501579105854, 0.09523747116327286, 0.12445467710494995, 0.0684107318520546, -0.03922659158706665, -0.003948541358113289, -0.030023256316781044, -0.07789892703294754, -0.020576680079102516, 0.09823881834745407, 0.006370159797370434, -0.010230091400444508, -0.0439852774143219, 0.09068533033132553, -0.06988662481307983, -0.17257513105869293, 0.003748226212337613, -0.1753513365983963, -0.16698354482650757, -0.026945410296320915, 0.040609199553728104, 0.05399671941995621, 0.0511399507522583, -0.001125055248849094, -0.027874300256371498, 0.12813898921012878, -0.0020942578557878733, -0.023013854399323463, -0.11494766920804977, 0.06055007874965668, -0.14518457651138306, 0.1879531443119049, -0.028338707983493805, 0.012082116678357124, 0.09642905741930008, 0.0558716244995594, -0.09198907017707825, 0.03841490298509598, 0.06543999910354614, -0.12480799108743668, -0.003758505918085575, 0.16238705813884735, -0.031359560787677765, 0.11002406477928162, 0.043580468744039536, -0.09177503734827042, 0.00549772335216403, -0.07369999587535858, -0.049603819847106934, -0.057853274047374725, 0.00686122290790081, -0.019414233043789864, 0.13736003637313843, 0.19180436432361603, -0.06363186240196228, 0.01306120865046978, -0.05626261606812477, 0.020803403109312057, 0.0006790923071093857, 0.07701517641544342, -0.027857612818479538, -0.2417479008436203, 0.03653613477945328, 0.020942963659763336, 0.006718212738633156, -0.19950149953365326, -0.09274545311927795, 0.02612837590277195, -0.05888385325670242, -0.04949027672410011, 0.1118389219045639, 0.025824598968029022, 0.06678427755832672, -0.03583838790655136, -0.01387548167258501, -0.022742221131920815, 0.1810452938079834, -0.156155064702034, -0.04753277450799942 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-italian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - IT dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.1710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.04 | 100 | inf | 1.0 | | No log | 0.09 | 200 | inf | 0.9983 | | No log | 0.13 | 300 | inf | 0.7672 | | No log | 0.18 | 400 | inf | 0.6919 | | 2.9929 | 0.22 | 500 | inf | 0.6266 | | 2.9929 | 0.26 | 600 | inf | 0.5513 | | 2.9929 | 0.31 | 700 | inf | 0.5081 | | 2.9929 | 0.35 | 800 | inf | 0.4945 | | 2.9929 | 0.39 | 900 | inf | 0.4720 | | 0.5311 | 0.44 | 1000 | inf | 0.4387 | | 0.5311 | 0.48 | 1100 | inf | 0.4411 | | 0.5311 | 0.53 | 1200 | inf | 0.4429 | | 0.5311 | 0.57 | 1300 | inf | 0.4322 | | 0.5311 | 0.61 | 1400 | inf | 0.4532 | | 0.4654 | 0.66 | 1500 | inf | 0.4492 | | 0.4654 | 0.7 | 1600 | inf | 0.3879 | | 0.4654 | 0.75 | 1700 | inf | 0.3836 | | 0.4654 | 0.79 | 1800 | inf | 0.3743 | | 0.4654 | 0.83 | 1900 | inf | 0.3687 | | 0.4254 | 0.88 | 2000 | inf | 0.3793 | | 0.4254 | 0.92 | 2100 | inf | 0.3766 | | 0.4254 | 0.97 | 2200 | inf | 0.3705 | | 0.4254 | 1.01 | 2300 | inf | 0.3272 | | 0.4254 | 1.05 | 2400 | inf | 0.3185 | | 0.3997 | 1.1 | 2500 | inf | 0.3244 | | 0.3997 | 1.14 | 2600 | inf | 0.3082 | | 0.3997 | 1.18 | 2700 | inf | 0.3040 | | 0.3997 | 1.23 | 2800 | inf | 0.3028 | | 0.3997 | 1.27 | 2900 | inf | 0.3112 | | 0.3668 | 1.32 | 3000 | inf | 0.3110 | | 0.3668 | 1.36 | 3100 | inf | 0.3067 | | 0.3668 | 1.4 | 3200 | inf | 0.2961 | | 0.3668 | 1.45 | 3300 | inf | 0.3081 | | 0.3668 | 1.49 | 3400 | inf | 0.2936 | | 0.3645 | 1.54 | 3500 | inf | 0.3037 | | 0.3645 | 1.58 | 3600 | inf | 0.2974 | | 0.3645 | 1.62 | 3700 | inf | 0.3010 | | 0.3645 | 1.67 | 3800 | inf | 0.2985 | | 0.3645 | 1.71 | 3900 | inf | 0.2976 | | 0.3624 | 1.76 | 4000 | inf | 0.2928 | | 0.3624 | 1.8 | 4100 | inf | 0.2860 | | 0.3624 | 1.84 | 4200 | inf | 0.2922 | | 0.3624 | 1.89 | 4300 | inf | 0.2866 | | 0.3624 | 1.93 | 4400 | inf | 0.2776 | | 0.3527 | 1.97 | 4500 | inf | 0.2792 | | 0.3527 | 2.02 | 4600 | inf | 0.2858 | | 0.3527 | 2.06 | 4700 | inf | 0.2767 | | 0.3527 | 2.11 | 4800 | inf | 0.2824 | | 0.3527 | 2.15 | 4900 | inf | 0.2799 | | 0.3162 | 2.19 | 5000 | inf | 0.2673 | | 0.3162 | 2.24 | 5100 | inf | 0.2962 | | 0.3162 | 2.28 | 5200 | inf | 0.2736 | | 0.3162 | 2.33 | 5300 | inf | 0.2652 | | 0.3162 | 2.37 | 5400 | inf | 0.2551 | | 0.3063 | 2.41 | 5500 | inf | 0.2680 | | 0.3063 | 2.46 | 5600 | inf | 0.2558 | | 0.3063 | 2.5 | 5700 | inf | 0.2598 | | 0.3063 | 2.54 | 5800 | inf | 0.2518 | | 0.3063 | 2.59 | 5900 | inf | 0.2541 | | 0.2913 | 2.63 | 6000 | inf | 0.2507 | | 0.2913 | 2.68 | 6100 | inf | 0.2500 | | 0.2913 | 2.72 | 6200 | inf | 0.2435 | | 0.2913 | 2.76 | 6300 | inf | 0.2376 | | 0.2913 | 2.81 | 6400 | inf | 0.2348 | | 0.2797 | 2.85 | 6500 | inf | 0.2512 | | 0.2797 | 2.9 | 6600 | inf | 0.2382 | | 0.2797 | 2.94 | 6700 | inf | 0.2523 | | 0.2797 | 2.98 | 6800 | inf | 0.2522 | | 0.2797 | 3.03 | 6900 | inf | 0.2409 | | 0.2766 | 3.07 | 7000 | inf | 0.2453 | | 0.2766 | 3.12 | 7100 | inf | 0.2326 | | 0.2766 | 3.16 | 7200 | inf | 0.2286 | | 0.2766 | 3.2 | 7300 | inf | 0.2342 | | 0.2766 | 3.25 | 7400 | inf | 0.2305 | | 0.2468 | 3.29 | 7500 | inf | 0.2238 | | 0.2468 | 3.33 | 7600 | inf | 0.2321 | | 0.2468 | 3.38 | 7700 | inf | 0.2305 | | 0.2468 | 3.42 | 7800 | inf | 0.2174 | | 0.2468 | 3.47 | 7900 | inf | 0.2201 | | 0.2439 | 3.51 | 8000 | inf | 0.2133 | | 0.2439 | 3.55 | 8100 | inf | 0.2217 | | 0.2439 | 3.6 | 8200 | inf | 0.2189 | | 0.2439 | 3.64 | 8300 | inf | 0.2105 | | 0.2439 | 3.69 | 8400 | inf | 0.2118 | | 0.2357 | 3.73 | 8500 | inf | 0.2093 | | 0.2357 | 3.77 | 8600 | inf | 0.2103 | | 0.2357 | 3.82 | 8700 | inf | 0.2035 | | 0.2357 | 3.86 | 8800 | inf | 0.2019 | | 0.2357 | 3.91 | 8900 | inf | 0.2032 | | 0.2217 | 3.95 | 9000 | inf | 0.2056 | | 0.2217 | 3.99 | 9100 | inf | 0.2022 | | 0.2217 | 4.04 | 9200 | inf | 0.1932 | | 0.2217 | 4.08 | 9300 | inf | 0.1935 | | 0.2217 | 4.12 | 9400 | inf | 0.1906 | | 0.2025 | 4.17 | 9500 | inf | 0.1879 | | 0.2025 | 4.21 | 9600 | inf | 0.1882 | | 0.2025 | 4.26 | 9700 | inf | 0.1854 | | 0.2025 | 4.3 | 9800 | inf | 0.1865 | | 0.2025 | 4.34 | 9900 | inf | 0.1844 | | 0.1869 | 4.39 | 10000 | inf | 0.1822 | | 0.1869 | 4.43 | 10100 | inf | 0.1815 | | 0.1869 | 4.48 | 10200 | inf | 0.1812 | | 0.1869 | 4.52 | 10300 | inf | 0.1792 | | 0.1869 | 4.56 | 10400 | inf | 0.1797 | | 0.1863 | 4.61 | 10500 | inf | 0.1774 | | 0.1863 | 4.65 | 10600 | inf | 0.1767 | | 0.1863 | 4.7 | 10700 | inf | 0.1765 | | 0.1863 | 4.74 | 10800 | inf | 0.1753 | | 0.1863 | 4.78 | 10900 | inf | 0.1731 | | 0.178 | 4.83 | 11000 | inf | 0.1727 | | 0.178 | 4.87 | 11100 | inf | 0.1724 | | 0.178 | 4.91 | 11200 | inf | 0.1722 | | 0.178 | 4.96 | 11300 | inf | 0.1712 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["it"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "XLS-R-300m - Italian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "it"}, "metrics": [{"type": "wer", "value": 19.44, "name": "Test WER"}, {"type": "cer", "value": 4.47, "name": "Test CER"}, {"type": "wer", "value": 14.08, "name": "Test WER (+LM)"}, {"type": "cer", "value": 3.67, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "it"}, "metrics": [{"type": "wer", "value": 31.01, "name": "Test WER"}, {"type": "cer", "value": 9.27, "name": "Test CER"}, {"type": "wer", "value": 22.09, "name": "Test WER (+LM)"}, {"type": "cer", "value": 7.9, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "it"}, "metrics": [{"type": "wer", "value": 38.07, "name": "Test WER"}]}]}]}
automatic-speech-recognition
dbdmg/wav2vec2-xls-r-300m-italian
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "it", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
wav2vec2-xls-r-300m-italian =========================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - IT dataset. It achieves the following results on the evaluation set: * Loss: inf * Wer: 0.1710 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 64 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 5.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ 120, 130, 4, 41 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #it #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ -0.14021752774715424, 0.13685274124145508, -0.005483981687575579, 0.045658133924007416, 0.10753761231899261, 0.005770248360931873, 0.10430528968572617, 0.14713376760482788, -0.07041602581739426, 0.10263922065496445, 0.0993555411696434, 0.09589210152626038, 0.08261403441429138, 0.1472117304801941, -0.02381049282848835, -0.25884997844696045, 0.03808145970106125, -0.03305631875991821, -0.09845375269651413, 0.10702838003635406, 0.08341716974973679, -0.11244584619998932, 0.04060810059309006, 0.01512449886649847, -0.07956933230161667, -0.010566485114395618, -0.03984108194708824, -0.06781012564897537, 0.09238333255052567, 0.006157717201858759, 0.03242403268814087, 0.04643344134092331, 0.08502829819917679, -0.2322636842727661, 0.01340525783598423, 0.08057910948991776, 0.03266974911093712, 0.0625840425491333, 0.09776616096496582, -0.01339012011885643, 0.08700323104858398, -0.06778308749198914, 0.04790322855114937, 0.050907429307699203, -0.08862373977899551, -0.2593376338481903, -0.07652700692415237, 0.026619262993335724, 0.0984816625714302, 0.08896994590759277, -0.022055715322494507, 0.042848553508520126, -0.0856611430644989, 0.08913931250572205, 0.22971734404563904, -0.20571653544902802, -0.06276775151491165, -0.0533798411488533, 0.027751602232456207, 0.03608759120106697, -0.11112592369318008, -0.01407710462808609, 0.009661287069320679, 0.007098190486431122, 0.12170763313770294, 0.005430632270872593, 0.012357079423964024, -0.017657950520515442, -0.13338688015937805, -0.05229083448648453, 0.1177590861916542, 0.05318354070186615, -0.011428449302911758, -0.11840549111366272, -0.05508305877447128, -0.1409921795129776, -0.04337050020694733, 0.021023085340857506, 0.02012750133872032, -0.041462305933237076, -0.02842092700302601, 0.023277876898646355, -0.047264594584703445, -0.06995324790477753, 0.058106355369091034, 0.1732012778520584, 0.04315561056137085, -0.014363064430654049, -0.00027600376051850617, 0.09393058717250824, 0.11346082389354706, -0.17370916903018951, -0.029763735830783844, 0.02347836084663868, -0.07599684596061707, 0.02100280672311783, -0.0022680526599287987, 0.04974794387817383, 0.06810633093118668, 0.1308397501707077, -0.039225123822689056, 0.08623578399419785, 0.02932518720626831, 0.003087613731622696, -0.07181570678949356, 0.13938529789447784, -0.06491587311029434, -0.05756891146302223, -0.017366735264658928, 0.14145609736442566, 0.014382529072463512, -0.024456867948174477, -0.04582392796874046, 0.04024912416934967, 0.10272406786680222, 0.0592351071536541, 0.0030236300081014633, 0.027180232107639313, -0.05351494252681732, -0.019214440137147903, -0.0016852878034114838, -0.14334000647068024, 0.03742561489343643, 0.07616186141967773, -0.06932608783245087, -0.006610075477510691, -0.030562499538064003, -0.002329137409105897, -0.05236183851957321, 0.09658436477184296, -0.05164579674601555, -0.012221559882164001, -0.07769026607275009, -0.08689193427562714, 0.034021880477666855, -0.09857407957315445, -0.0034086464438587427, -0.06965203583240509, -0.09438545256853104, -0.0627221167087555, 0.049344662576913834, -0.05225924775004387, -0.04673447459936142, -0.07896411418914795, -0.10283584147691727, 0.05648893490433693, -0.03055679053068161, 0.1535511612892151, -0.06814420223236084, 0.08852797746658325, 0.010963082313537598, 0.05432341620326042, 0.09155219048261642, 0.0620342418551445, -0.027737736701965332, 0.046743243932724, -0.08033167570829391, 0.09873132407665253, -0.1189732700586319, 0.024350397288799286, -0.1069282814860344, -0.09462940692901611, -0.021323030814528465, 0.0018191476119682193, 0.10393275320529938, 0.1613033413887024, -0.1464652568101883, -0.08642227947711945, 0.1633751392364502, -0.06432393938302994, -0.07282214611768723, 0.11257238686084747, -0.00683222571387887, -0.04841972514986992, 0.019448934122920036, 0.19803930819034576, 0.11461923271417618, -0.0982445776462555, -0.014329977333545685, -0.038112301379442215, 0.09268749505281448, 0.02819877490401268, 0.07835624366998672, -0.03640928119421005, 0.04723096266388893, 0.014015186578035355, -0.039596058428287506, 0.040343303233385086, -0.07633151113986969, -0.07766461372375488, -0.02138669416308403, -0.06880755722522736, 0.0018835336668416858, 0.04925745725631714, 0.0022416363935917616, -0.0726027637720108, -0.11956340074539185, -0.02641329914331436, 0.10484491288661957, -0.11194362491369247, 0.012591967359185219, -0.08717182278633118, 0.0704440027475357, 0.006417946424335241, 0.009079555049538612, -0.15714670717716217, -0.011437036097049713, 0.03978607803583145, -0.05952906236052513, -0.030126282945275307, -0.05564698576927185, 0.0738590657711029, 0.043122708797454834, -0.01671694964170456, -0.07615521550178528, -0.05230420082807541, 0.00019207278091926128, -0.04136814549565315, -0.23052510619163513, -0.06483888626098633, -0.0288498867303133, 0.16726122796535492, -0.15188612043857574, 0.011380634270608425, 0.0648074522614479, 0.1303737908601761, 0.024708421900868416, -0.054538507014513016, 0.02225545421242714, 0.05527586117386818, -0.007250778377056122, -0.08703388273715973, 0.026455245912075043, 0.012707697227597237, -0.06803128868341446, 0.03904908895492554, -0.14471836388111115, 0.105227030813694, 0.09684207290410995, 0.04976102337241173, -0.03006303869187832, -0.017803972586989403, -0.06320013105869293, -0.043032363057136536, -0.028111977502703667, 0.0033954635728150606, 0.13688308000564575, 0.011438035406172276, 0.10068848729133606, -0.08569107949733734, -0.04331411421298981, 0.0449131615459919, 0.0329112783074379, -0.002233761828392744, 0.1502438634634018, 0.06816224008798599, -0.012838847003877163, 0.09929636120796204, 0.031918056309223175, -0.038719940930604935, 0.16080917418003082, -0.07432786375284195, -0.07588401436805725, -0.020052678883075714, 0.010642297565937042, 0.004913012031465769, 0.1349780112504959, -0.17016904056072235, -0.015282777138054371, 0.029933573678135872, 0.02034872956573963, 0.018620362505316734, -0.18516124784946442, 0.005445333197712898, 0.017925862222909927, -0.09586023539304733, -0.019877368584275246, 0.02566402032971382, -0.002500573405995965, 0.08527985960245132, -0.012422825209796429, -0.08964784443378448, -0.02783329039812088, -0.03368458151817322, -0.08892861753702164, 0.16400085389614105, -0.0997258871793747, -0.16741982102394104, -0.07830051332712173, 0.0055965459905564785, -0.020901674404740334, -0.018704436719417572, 0.04849512130022049, -0.0853496789932251, -0.040058910846710205, -0.08145380020141602, -0.029174191877245903, -0.012471778318285942, 0.01941814087331295, 0.05062813684344292, -0.010278193280100822, 0.04752577096223831, -0.1065240129828453, -0.0014972771750763059, -0.028731008991599083, -0.009557615965604782, 0.01370035856962204, 0.046281781047582626, 0.082892507314682, 0.13478361070156097, 0.052459318190813065, 0.05451412871479988, -0.02296305261552334, 0.1798008680343628, -0.11954657733440399, 0.007437639404088259, 0.12172108143568039, 0.013461104594171047, 0.047971460968256, 0.14375866949558258, 0.0387558750808239, -0.06956865638494492, -0.004821523558348417, 0.025054190307855606, -0.022191431373357773, -0.22404809296131134, -0.027983935549855232, -0.07365244626998901, -0.028555333614349365, 0.09633558243513107, 0.04227007180452347, -0.033103279769420624, 0.018578000366687775, -0.030278410762548447, -0.057669661939144135, 0.052425604313611984, 0.033362701535224915, 0.05892601236701012, 0.0370241142809391, 0.11025692522525787, -0.002176422392949462, -0.022465622052550316, 0.025810636579990387, -0.024301894009113312, 0.2316564917564392, -0.022732367739081383, 0.13770467042922974, 0.0398407056927681, 0.1707731932401657, -0.012378755956888199, 0.06142091751098633, 0.01914123445749283, 0.0155210942029953, 0.02435370162129402, -0.059430401772260666, -0.046306319534778595, 0.019404441118240356, 0.08559037744998932, 0.016680041328072548, -0.09771686047315598, 0.04949430376291275, 0.031775299459695816, 0.37544775009155273, 0.05382537469267845, -0.28133442997932434, -0.060789261013269424, -0.007815180346369743, -0.04722149297595024, -0.04528987780213356, 0.034942883998155594, 0.13784250617027283, -0.07560007274150848, 0.06626971811056137, -0.059377271682024, 0.07712087035179138, -0.06618412584066391, 0.004333800170570612, 0.06615625321865082, 0.11652356386184692, 0.008438113145530224, 0.04019717872142792, -0.2715754508972168, 0.251198410987854, -0.00706047797575593, 0.10591188073158264, -0.06151648983359337, 0.03919592499732971, 0.04590986296534538, -0.022636298090219498, 0.08147480338811874, 0.004328985698521137, -0.11358191817998886, -0.13328278064727783, -0.12968792021274567, 0.023518823087215424, 0.12744803726673126, -0.04557906091213226, 0.09664949774742126, -0.038273781538009644, -0.04485978186130524, 0.026945535093545914, -0.07864660024642944, -0.12569023668766022, -0.09738846123218536, 0.05242277681827545, 0.04866320267319679, 0.06861060857772827, -0.08765629678964615, -0.10432827472686768, -0.03891335427761078, 0.10888395458459854, -0.12622325122356415, -0.043557293713092804, -0.14066317677497864, 0.02002652920782566, 0.14213517308235168, -0.061493877321481705, 0.04085797816514969, 0.01623891107738018, 0.12565045058727264, 0.027844900265336037, -0.033193446695804596, 0.09302634745836258, -0.10074456036090851, -0.20421019196510315, -0.042697709053754807, 0.16986887156963348, 0.032100386917591095, 0.04812384769320488, -0.008920678868889809, 0.026567773893475533, -0.021843863651156425, -0.07929481565952301, 0.088921457529068, 0.08763915300369263, 0.0000972086563706398, 0.04463231936097145, -0.03899873048067093, -0.016179492697119713, -0.07053252309560776, -0.036375097930431366, 0.09356456995010376, 0.2262226939201355, -0.07910752296447754, 0.06938941031694412, 0.056290701031684875, -0.05849862098693848, -0.1785096824169159, -0.022178979590535164, 0.12187256664037704, 0.037472985684871674, -0.03626653179526329, -0.19956143200397491, 0.001604108139872551, 0.05920059606432915, -0.028796909376978874, 0.10389474034309387, -0.32521361112594604, -0.12348128855228424, 0.0843159481883049, 0.06297212094068527, 0.03161182627081871, -0.1477523148059845, -0.04857024922966957, -0.009204408153891563, -0.07269814610481262, 0.060916006565093994, -0.03296136111021042, 0.12035369873046875, -0.006543872877955437, 0.004517432302236557, 0.011174334213137627, -0.05990718677639961, 0.12342408299446106, 0.005086508579552174, 0.03892190009355545, -0.012079921551048756, 0.0258028507232666, 0.000651312991976738, -0.0734754353761673, 0.021983349695801735, -0.08047232031822205, 0.04320751130580902, -0.12076226621866226, -0.020311575382947922, -0.0961286723613739, 0.030724799260497093, -0.03587544709444046, -0.01108208391815424, -0.002589273964986205, 0.03644334897398949, 0.09954383224248886, 0.02206525020301342, 0.08619014918804169, -0.04767835512757301, 0.1054503545165062, 0.14044189453125, 0.1040802076458931, -0.05039975047111511, -0.08781851828098297, -0.01839275285601616, 0.003617146983742714, 0.04955877363681793, -0.08481278270483017, 0.04685064032673836, 0.12923559546470642, 0.04856930300593376, 0.12383199483156204, 0.0547712966799736, -0.08450912684202194, -0.0034145209938287735, 0.05152737721800804, -0.10920635610818863, -0.1424376368522644, -0.015990925952792168, 0.007368566934019327, -0.10943182557821274, 0.01374076958745718, 0.11735396087169647, -0.03986772894859314, 0.002726799575611949, -0.0004530652950052172, 0.05811984837055206, -0.0021158172748982906, 0.21928614377975464, 0.03230256587266922, 0.08749281615018845, -0.1102832555770874, 0.0881224125623703, 0.020015055313706398, -0.08480370044708252, 0.05002230405807495, 0.08992475271224976, -0.07041193544864655, -0.023413440212607384, 0.014824669808149338, 0.05431152135133743, 0.08093786239624023, -0.06579991430044174, -0.12298355251550674, -0.15191741287708282, 0.09126705676317215, 0.07576534897089005, 0.013758557848632336, 0.034783657640218735, -0.019391091540455818, 0.02696162275969982, -0.08620033413171768, 0.09894436597824097, 0.0838908776640892, 0.045253317803144455, -0.1126270592212677, 0.08139736950397491, 0.021119842305779457, 0.0047887288965284824, -0.005473645403981209, -0.016145875677466393, -0.09524998813867569, 0.02089480124413967, -0.08082149922847748, 0.003553430549800396, -0.05590974539518356, -0.00561842555180192, 0.00560205290094018, -0.06187254190444946, -0.06374705582857132, 0.042993124574422836, -0.10173655301332474, -0.038064803928136826, -0.03299388661980629, 0.047626856714487076, -0.1169513612985611, -0.015773046761751175, 0.01699645072221756, -0.13938480615615845, 0.09721055626869202, 0.07367314398288727, -0.019539490342140198, 0.007025856990367174, -0.09189050644636154, -0.03475714102387428, 0.030530286952853203, 0.009241881780326366, 0.03295563906431198, -0.1805257499217987, -0.000519883877132088, -0.003077518893405795, -0.003776743309572339, -0.01973528042435646, 0.038216788321733475, -0.10998108983039856, 0.021264908835291862, -0.025308474898338318, -0.03920210897922516, -0.042727936059236526, 0.06125112995505333, 0.08704102784395218, 0.002917179139330983, 0.164274200797081, -0.06965024024248123, 0.052646953612565994, -0.20998415350914001, 0.003672373713925481, -0.0034554474987089634, -0.08636613190174103, -0.06422736495733261, -0.005445122718811035, 0.11839642375707626, -0.055806126445531845, 0.08816643059253693, -0.004056998994201422, 0.024746336042881012, 0.018107054755091667, -0.11377004534006119, -0.0018558521987870336, 0.05133587867021561, 0.14297622442245483, 0.0446239672601223, -0.02097243256866932, 0.09421859681606293, -0.033502575010061264, 0.0590246357023716, 0.1059165671467781, 0.1617106944322586, 0.14560596644878387, 0.10604225844144821, 0.09472251683473587, 0.08870423585176468, -0.12820711731910706, -0.12957516312599182, 0.1227300763130188, -0.07912782579660416, 0.1467018872499466, -0.028486398980021477, 0.1825461983680725, 0.10879530757665634, -0.17292854189872742, 0.06054865941405296, -0.028081180527806282, -0.07675410062074661, -0.11885076016187668, -0.07648299634456635, -0.0745251476764679, -0.16228677332401276, 0.023975646123290062, -0.10453226417303085, 0.06684812903404236, 0.05418357625603676, 0.04636494442820549, 0.03686179220676422, 0.09836892038583755, 0.09073585271835327, -0.003410947509109974, 0.12298356741666794, 0.010394169017672539, -0.024481743574142456, -0.051148004829883575, -0.12085626274347305, 0.037136565893888474, -0.018316298723220825, 0.07205743342638016, -0.02954328991472721, -0.09898676723241806, 0.06390249729156494, 0.006511947140097618, -0.08677491545677185, 0.03307069092988968, -0.025207052007317543, 0.05379593372344971, 0.08962342143058777, 0.04703052341938019, -0.013200989924371243, 0.0008419037912972271, 0.20622538030147552, -0.07452641427516937, -0.04776548221707344, -0.11564011871814728, 0.17013601958751678, 0.01605769246816635, 0.001250750501640141, 0.03942809998989105, -0.06105872616171837, -0.029966630041599274, 0.17069442570209503, 0.15229208767414093, -0.030661357566714287, -0.01429577823728323, -0.003613400040194392, -0.009030124172568321, -0.026296216994524002, 0.09275075793266296, 0.12493833899497986, 0.05995815247297287, -0.029070179909467697, -0.007020404562354088, -0.028010768815875053, -0.06742622703313828, -0.0519108809530735, 0.07203040271997452, 0.001462537795305252, -0.023957258090376854, -0.030518628656864166, 0.08190952986478806, -0.061528753489255905, -0.15177267789840698, 0.022306136786937714, -0.1649036407470703, -0.17720864713191986, -0.032166797667741776, 0.056101325899362564, 0.04700696840882301, 0.052857279777526855, 0.0047210888005793095, -0.0306589026004076, 0.11488582193851471, 0.006805898156017065, -0.023028962314128876, -0.0972219705581665, 0.061564307659864426, -0.15013745427131653, 0.18579109013080597, -0.0411360003054142, 0.026446474716067314, 0.1056307777762413, 0.061817143112421036, -0.10360424965620041, 0.027729330584406853, 0.0760028213262558, -0.14471378922462463, 0.030413175001740456, 0.16741003096103668, -0.038598399609327316, 0.1007462814450264, 0.031143605709075928, -0.058084454387426376, 0.007967030629515648, -0.0539320632815361, -0.03806176781654358, -0.050249356776475906, -0.0027267085388302803, -0.02700333669781685, 0.1282929629087448, 0.17829737067222595, -0.06323065608739853, -0.008673193864524364, -0.04744143784046173, 0.0187542624771595, -0.0016880609327927232, 0.08368036150932312, -0.03612586483359337, -0.2705576419830322, 0.023140475153923035, 0.007216587662696838, 0.01973508670926094, -0.16052833199501038, -0.07319529354572296, 0.013106259517371655, -0.0645221620798111, -0.06547026336193085, 0.09341015666723251, 0.03588720038533211, 0.04742637649178505, -0.051732491701841354, -0.08709506690502167, -0.019924068823456764, 0.1833999902009964, -0.17433461546897888, -0.04895709455013275 ]
null
null
transformers
# algebra_linear_1d --- language: en datasets: - algebra_linear_1d --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/algebra_linear_1d](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetalgebra_linear_1d_default_config) for solving **algebra 1d equations** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/algebra_linear_1d") model = AutoModelWithLMHead.from_pretrained("dbernsohn/algebra_linear_1d") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "Solve 0 = 1026*x - 2474 + 46592 for x" input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> -41</s> ``` Another examples: + Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. + Answer: -12 Pred: -12 ---- + Solve -119*k + 6*k - 117 - 352 = 322 for k. + Answer: -7 Pred: -7 ---- + Solve -547 = -62*t + 437 - 798 for t. + Answer: 3 Pred: 3 ---- + Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. + Answer: -49 Pred: -49 ---- + Solve 3047*n - 6130*n - 1700 = -3049*n for n. + Answer: -50 Pred: -50 ---- + Solve 121*i + 1690 = 76*i - 128*i + 133 for i. + Answer: -9 Pred: -9 The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
text2text-generation
dbernsohn/algebra_linear_1d
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# algebra_linear_1d --- language: en datasets: - algebra_linear_1d --- This is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to solve algebra 1d equations into numbers. Another examples: + Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. + Answer: -12 Pred: -12 ---- + Solve -119*k + 6*k - 117 - 352 = 322 for k. + Answer: -7 Pred: -7 ---- + Solve -547 = -62*t + 437 - 798 for t. + Answer: 3 Pred: 3 ---- + Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. + Answer: -49 Pred: -49 ---- + Solve 3047*n - 6130*n - 1700 = -3049*n for n. + Answer: -50 Pred: -50 ---- + Solve 121*i + 1690 = 76*i - 128*i + 133 for i. + Answer: -9 Pred: -9 The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# algebra_linear_1d\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. \n+ Answer: -12 Pred: -12\n----\n+ Solve -119*k + 6*k - 117 - 352 = 322 for k. \n+ Answer: -7 Pred: -7\n----\n+ Solve -547 = -62*t + 437 - 798 for t. \n+ Answer: 3 Pred: 3\n----\n+ Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. \n+ Answer: -49 Pred: -49\n----\n+ Solve 3047*n - 6130*n - 1700 = -3049*n for n. \n+ Answer: -50 Pred: -50\n----\n+ Solve 121*i + 1690 = 76*i - 128*i + 133 for i. \n+ Answer: -9 Pred: -9\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# algebra_linear_1d\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. \n+ Answer: -12 Pred: -12\n----\n+ Solve -119*k + 6*k - 117 - 352 = 322 for k. \n+ Answer: -7 Pred: -7\n----\n+ Solve -547 = -62*t + 437 - 798 for t. \n+ Answer: 3 Pred: 3\n----\n+ Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. \n+ Answer: -49 Pred: -49\n----\n+ Solve 3047*n - 6130*n - 1700 = -3049*n for n. \n+ Answer: -50 Pred: -50\n----\n+ Solve 121*i + 1690 = 76*i - 128*i + 133 for i. \n+ Answer: -9 Pred: -9\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ 48, 329 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# algebra_linear_1d\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. \n+ Answer: -12 Pred: -12\n----\n+ Solve -119*k + 6*k - 117 - 352 = 322 for k. \n+ Answer: -7 Pred: -7\n----\n+ Solve -547 = -62*t + 437 - 798 for t. \n+ Answer: 3 Pred: 3\n----\n+ Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. \n+ Answer: -49 Pred: -49\n----\n+ Solve 3047*n - 6130*n - 1700 = -3049*n for n. \n+ Answer: -50 Pred: -50\n----\n+ Solve 121*i + 1690 = 76*i - 128*i + 133 for i. \n+ Answer: -9 Pred: -9\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ -0.08773811906576157, 0.07932937890291214, -0.0036582706961780787, 0.05702889338135719, 0.09569164365530014, 0.0641089603304863, 0.05636328458786011, 0.1588859111070633, -0.005988399963825941, 0.15000666677951813, 0.11003997176885605, 0.17310921847820282, 0.04763687402009964, 0.11226430535316467, -0.024641932919621468, -0.24727925658226013, -0.05161777138710022, -0.004475448280572891, 0.055649034678936005, 0.12357878684997559, 0.07352770864963531, -0.06291817128658295, 0.0017659872537478805, -0.03057609312236309, -0.04001455381512642, -0.0022407008800655603, -0.02569112554192543, -0.06375379115343094, 0.08795884996652603, 0.058302320539951324, 0.049888186156749725, 0.02524661086499691, 0.07173023372888565, -0.220366433262825, -0.015773307532072067, 0.05560623109340668, 0.019817575812339783, 0.06812600791454315, 0.09826939553022385, -0.04018281400203705, 0.023009061813354492, -0.12636925280094147, -0.01629762537777424, 0.0485580675303936, -0.14814910292625427, -0.18240205943584442, -0.1127173975110054, 0.11213396489620209, 0.25971341133117676, 0.09015197306871414, -0.06988866627216339, 0.1093917191028595, -0.014025936834514141, 0.08887239545583725, 0.217474564909935, -0.3344385027885437, -0.07768651843070984, 0.04107781499624252, -0.000490266946144402, -0.025648942217230797, 0.0006064450135454535, -0.008613758720457554, 0.019794877618551254, -0.019235307350754738, -0.026468155905604362, -0.08634636551141739, 0.026400869712233543, -0.012281842529773712, -0.16226226091384888, -0.07908660173416138, 0.003126086201518774, 0.04752751812338829, -0.05117132514715195, -0.04081113636493683, -0.09309665858745575, -0.02040696144104004, -0.026905644685029984, -0.03422093018889427, -0.013792757876217365, -0.0791589617729187, 0.05651275813579559, -0.03336969390511513, -0.06199939176440239, -0.08661521226167679, -0.0207491647452116, 0.1420571357011795, 0.0536067858338356, -0.014234263449907303, 0.03534139692783356, 0.07948122918605804, -0.1884009689092636, -0.1534324437379837, 0.04019014909863472, 0.04807950183749199, -0.18346178531646729, -0.04999062791466713, -0.040235597640275955, -0.12109262496232986, -0.03902272507548332, 0.17716920375823975, -0.0035134945064783096, 0.08378861099481583, 0.08025918155908585, -0.009827826172113419, 0.020709337666630745, 0.1287233680486679, -0.1600857824087143, -0.07312534749507904, -0.040107615292072296, 0.03361627832055092, 0.0173476655036211, -0.022198213264346123, -0.021410200744867325, -0.06500639766454697, 0.05947243794798851, 0.08026091754436493, 0.07326202839612961, 0.0024624678771942854, -0.059635281562805176, -0.06463239341974258, -0.026940127834677696, -0.11437033116817474, 0.03148283064365387, 0.007626842241734266, -0.06380794197320938, -0.02583618089556694, 0.02401181496679783, -0.0010858228197321296, -0.15641999244689941, 0.09478463232517242, -0.03866450861096382, -0.008218643255531788, -0.08760283142328262, -0.15039537847042084, 0.02123423106968403, -0.05474911630153656, -0.03495047986507416, -0.025563832372426987, -0.06271295249462128, -0.09084552526473999, 0.059954144060611725, -0.11182449758052826, -0.059318944811820984, -0.05338657647371292, -0.018923673778772354, 0.0020889390725642443, -0.04226405546069145, 0.09587347507476807, 0.02505730465054512, 0.07252787798643112, 0.09938410669565201, 0.0721803531050682, 0.07746491581201553, 0.043916814029216766, -0.01518892589956522, 0.11256350576877594, -0.13149909675121307, 0.07424525916576385, -0.06581860780715942, -0.04078080505132675, -0.24758344888687134, -0.07245612889528275, 0.13414567708969116, 0.012349016033113003, 0.16769972443580627, 0.07099417597055435, -0.032273855060338974, 0.018872462213039398, 0.11169715225696564, -0.014793895184993744, -0.17816370725631714, 0.09736555069684982, 0.007002388592809439, 0.06102890893816948, -0.010948468931019306, 0.1080804243683815, 0.12697617709636688, -0.015093684196472168, -0.02149106375873089, -0.011434202082455158, 0.05642232671380043, -0.000673765258397907, 0.03888334706425667, -0.03359859809279442, -0.07243430614471436, -0.056609511375427246, -0.15142089128494263, -0.014077594503760338, -0.06195136532187462, -0.061016298830509186, 0.028683610260486603, -0.025877444073557854, -0.0005899850511923432, 0.05682678520679474, 0.05460917204618454, -0.020136499777436256, -0.13271711766719818, 0.07706446200609207, 0.04968423768877983, -0.07486463338136673, 0.0003223009407520294, -0.08183499425649643, 0.035006552934646606, -0.12748731672763824, 0.02953016757965088, -0.19457991421222687, -0.035215362906455994, 0.014844308607280254, -0.03715460002422333, 0.01943887583911419, -0.010262101888656616, 0.05849229544401169, 0.036223284900188446, -0.022290362045168877, -0.05712394043803215, 0.01568952575325966, 0.013927647843956947, -0.10281170159578323, -0.06644754111766815, -0.12827394902706146, 0.010416596196591854, 0.10239209979772568, -0.044861845672130585, 0.006258375011384487, -0.07778768241405487, 0.055061545222997665, -0.09331169724464417, 0.012090703472495079, 0.00673898309469223, 0.06039637327194214, 0.025602320209145546, -0.005850650370121002, 0.07307378202676773, -0.05607737973332405, -0.12568382918834686, -0.042538121342659, -0.17098572850227356, -0.12924619019031525, 0.043899960815906525, -0.08614785224199295, -0.11407112330198288, 0.012723452411592007, -0.01050531305372715, -0.03244433179497719, -0.004182211123406887, -0.040218938142061234, 0.15328575670719147, 0.09207305312156677, 0.05311555787920952, -0.04346780851483345, -0.04134806990623474, 0.023620232939720154, -0.05038375034928322, 0.012078845873475075, 0.2027319222688675, 0.09628523886203766, -0.11113596707582474, 0.034035563468933105, 0.09194330871105194, -0.10103575885295868, -0.008151322603225708, -0.04479562118649483, -0.11550037562847137, -0.09380991011857986, 0.10440889745950699, 0.08186732232570648, 0.006653480231761932, -0.08557344973087311, 0.00941670872271061, 0.030483581125736237, -0.02938242442905903, -0.0013194528874009848, -0.14894096553325653, 0.020109809935092926, 0.04001452401280403, -0.031358860433101654, 0.007558905053883791, 0.017000891268253326, -0.030475078150629997, 0.03862057253718376, 0.03824128210544586, 0.019065039232373238, -0.0016131356824189425, -0.043846581131219864, -0.12863166630268097, 0.22911079227924347, -0.054068487137556076, -0.11914391070604324, -0.09648897498846054, 0.021044699475169182, -0.03759995847940445, -0.04270029440522194, 0.025952652096748352, -0.044701289385557175, -0.05438564345240593, -0.06341788172721863, 0.12416943907737732, -0.058863550424575806, -0.021193597465753555, -0.03233348950743675, -0.07180795818567276, 0.01604706235229969, -0.09390134364366531, 0.008870644494891167, 0.006729536689817905, -0.08026866614818573, 0.07424432039260864, -0.017500514164566994, 0.10286477208137512, 0.1450473815202713, -0.04541533440351486, 0.04899807274341583, -0.014419104903936386, 0.1948722004890442, -0.04996413737535477, 0.08271509408950806, 0.15429630875587463, -0.022993046790361404, 0.07464270293712616, 0.11994581669569016, 0.03557923063635826, -0.050936780869960785, 0.045089662075042725, 0.10606690496206284, 0.003530611749738455, -0.22694846987724304, -0.02135750651359558, -0.04672493413090706, 0.0741477906703949, 0.11607521772384644, -0.030514739453792572, -0.08060657232999802, 0.09383299201726913, 0.005799511447548866, -0.009247793816030025, -0.011550822295248508, 0.09374651312828064, 0.17199906706809998, 0.0345049723982811, 0.0979878306388855, -0.005545285530388355, -0.03277994692325592, -0.002197310095652938, 0.02295357920229435, 0.07508856058120728, -0.02668524719774723, 0.22864946722984314, 0.0638049840927124, 0.07720022648572922, -0.05115605145692825, 0.10734479874372482, -0.08935962617397308, 0.02611682005226612, 0.0027459098491817713, -0.05926341935992241, -0.0664312094449997, 0.03770868107676506, 0.06855691969394684, 0.01682036556303501, -0.08182884752750397, 0.022559747099876404, -0.0007861059275455773, 0.16877757012844086, 0.12123067677021027, -0.2064848244190216, 0.0018653897568583488, 0.03805386647582054, -0.03551406040787697, -0.0400584451854229, -0.004391710739582777, -0.03405798226594925, -0.0741681158542633, 0.07549414783716202, -0.08833778649568558, 0.09513209015130997, -0.04556171968579292, 0.009549729526042938, 0.037298623472452164, 0.05297074466943741, 0.029926855117082596, 0.12924566864967346, -0.19822455942630768, 0.15295414626598358, 0.05575043708086014, 0.014508138410747051, -0.02607983537018299, 0.07156479358673096, -0.07220618426799774, -0.08296826481819153, 0.15736040472984314, -0.01457573939114809, 0.1265479475259781, -0.13125871121883392, -0.008626691065728664, 0.012404168024659157, 0.07748813927173615, -0.10422025620937347, 0.1322246938943863, 0.00919364858418703, -0.03616028279066086, -0.017942404374480247, 0.10535619407892227, -0.0665402039885521, -0.09354907274246216, 0.08775056898593903, -0.10790053755044937, -0.013765599578619003, -0.025774206966161728, -0.058142125606536865, -0.02997366338968277, 0.18339338898658752, 0.005260416306555271, -0.059387288987636566, -0.0888582393527031, 0.09869769215583801, 0.17938551306724548, -0.12317759543657303, 0.00877510104328394, -0.008255714550614357, -0.052139587700366974, -0.056808602064847946, 0.007197624072432518, 0.16114339232444763, -0.021423334255814552, -0.13056392967700958, -0.0382511205971241, 0.14003349840641022, -0.011267056688666344, 0.04775385186076164, -0.012242325581610203, 0.06485527753829956, -0.01699572429060936, -0.1191944107413292, 0.02114422619342804, -0.03855904936790466, 0.013898886740207672, -0.03274662792682648, -0.02082018554210663, 0.0990486666560173, -0.060176748782396317, 0.019901515915989876, 0.15231619775295258, 0.3778603971004486, -0.0837152823805809, -0.06005425006151199, 0.10481350123882294, -0.016713155433535576, -0.20334811508655548, -0.06411296874284744, 0.1028658077120781, 0.04700465872883797, 0.0044461386278271675, -0.11723613739013672, 0.05424291267991066, 0.05488703399896622, -0.008950167335569859, -0.10306400805711746, -0.35179591178894043, -0.10485237091779709, 0.13593164086341858, 0.1736847460269928, -0.03858179226517677, -0.19659559428691864, -0.04719626531004906, -0.004890136420726776, -0.12236600369215012, 0.1559154987335205, -0.037788428366184235, 0.08087914437055588, -0.005053276661783457, 0.002467106329277158, 0.05591851472854614, -0.0658838227391243, 0.12618891894817352, 0.038312967866659164, -0.015895739197731018, -0.023569777607917786, -0.007930971682071686, 0.06626972556114197, -0.06517995148897171, 0.11604025959968567, -0.021467478945851326, 0.0685923844575882, -0.19684845209121704, -0.06444887071847916, -0.06471876055002213, 0.0035099247470498085, -0.11432050168514252, -0.08665820956230164, 0.005604390986263752, 0.004858082160353661, 0.06589210033416748, -0.012419435195624828, 0.0667463093996048, -0.008798136375844479, 0.03998439013957977, 0.22925403714179993, 0.12488636374473572, 0.08112768083810806, -0.1311366707086563, 0.08000728487968445, 0.02298399619758129, 0.055934466421604156, -0.16892462968826294, 0.04374147206544876, 0.16625694930553436, 0.07104253023862839, 0.11272334307432175, 0.02156253159046173, -0.14513233304023743, -0.04315430298447609, -0.011390930972993374, -0.10050107538700104, -0.22473594546318054, 0.0004996610223315656, -0.020030906423926353, -0.11172078549861908, -0.02396448887884617, 0.10295291244983673, -0.0005718435277231038, -0.06138266995549202, 0.07486072927713394, 0.049828946590423584, -0.013958840630948544, 0.22462348639965057, 0.044335391372442245, 0.10108193010091782, -0.03237510100007057, 0.016831133514642715, 0.10347340255975723, -0.12883131206035614, 0.005574277602136135, 0.2240164577960968, -0.02557068131864071, -0.0943719670176506, -0.0011566273169592023, 0.006280485540628433, -0.0689220279455185, 0.03604311868548393, -0.032288700342178345, -0.0917072668671608, 0.018176542595028877, 0.013763758353888988, 0.016703465953469276, -0.02823215164244175, 0.016646545380353928, -0.02200712449848652, -0.11138604581356049, 0.13146832585334778, 0.09852680563926697, 0.06287238001823425, 0.01921752281486988, 0.03335019573569298, -0.017557034268975258, 0.06527706980705261, 0.015088648535311222, 0.0009101852774620056, -0.15191377699375153, 0.039203427731990814, -0.07455050200223923, -0.020553909242153168, -0.11178052425384521, -0.011713885702192783, -0.012631821446120739, 0.023897835984826088, 0.037778180092573166, -0.0031152733135968447, -0.0754772424697876, -0.09624713659286499, -0.048406340181827545, 0.03383031114935875, -0.10722281038761139, -0.04052922502160072, 0.028094815090298653, -0.06615396589040756, 0.10189571976661682, -0.07733273506164551, 0.04160922393202782, -0.002015991136431694, -0.020653557032346725, -0.013064528815448284, -0.016451625153422356, 0.02337687462568283, 0.04714883863925934, -0.1758197396993637, 0.01726273074746132, -0.06881057471036911, 0.010334830731153488, -0.025821560993790627, 0.03001348488032818, -0.14270827174186707, 0.03282304108142853, -0.028716305270791054, -0.09959741681814194, -0.08967412263154984, 0.06808524578809738, 0.0064227222464978695, 0.006624164059758186, 0.08228511363267899, -0.05201219394803047, 0.13108699023723602, -0.15243251621723175, -0.02804851345717907, 0.010794784873723984, 0.049090396612882614, -0.01813914254307747, -0.10677780210971832, 0.07621922343969345, -0.10266613960266113, -0.08657429367303848, -0.00868245679885149, 0.130538210272789, 0.011903049424290657, -0.10507901012897491, 0.1159127727150917, 0.0337170735001564, 0.20045027136802673, -0.02398701198399067, -0.011353466659784317, -0.04933600127696991, 0.05979671701788902, -0.05586618557572365, 0.11889228969812393, 0.0642322227358818, 0.06565869599580765, 0.054378263652324677, 0.046938128769397736, 0.06530502438545227, -0.11293981224298477, -0.05403447523713112, 0.10307085514068604, 0.020921772345900536, 0.07647138088941574, -0.030916957184672356, 0.059776294976472855, 0.07309123873710632, -0.1187446340918541, 0.04985254630446434, -0.046068161725997925, -0.13145750761032104, -0.09201236814260483, -0.10363205522298813, -0.07254663854837418, -0.056194957345724106, 0.02985440194606781, -0.109589584171772, 0.001089713885448873, 0.02707524411380291, 0.05481632798910141, -0.022853976115584373, 0.15691618621349335, 0.08982935547828674, -0.06396155804395676, 0.0062194084748625755, 0.053706973791122437, 0.09173175692558289, 0.03293580934405327, 0.055746328085660934, 0.011402931064367294, -0.017494505271315575, 0.0447208508849144, 0.03989921882748604, -0.03155332803726196, 0.052902236580848694, -0.00421203812584281, -0.09482672810554504, -0.029692284762859344, 0.022024694830179214, 0.10148512572050095, 0.16784615814685822, 0.027077019214630127, -0.028882527723908424, -0.05369960889220238, 0.1139165535569191, -0.07770613580942154, -0.07656560838222504, -0.07129938155412674, 0.3135010004043579, 0.05071765184402466, 0.05614762380719185, 0.014419235289096832, -0.12970146536827087, -0.02809049002826214, 0.10627588629722595, 0.09760240465402603, 0.000266995164565742, -0.02434476651251316, 0.0864647924900055, 0.007338726427406073, 0.016162080690264702, 0.062306080013513565, 0.037674907594919205, 0.17336075007915497, -0.08088739961385727, 0.07147374749183655, -0.02083270251750946, -0.1019294485449791, -0.0009715347550809383, 0.16676224768161774, 0.07440850138664246, 0.020908281207084656, 0.001505135907791555, 0.1343478113412857, -0.03960787504911423, -0.10188395529985428, 0.09475955367088318, -0.14802801609039307, -0.1804935336112976, -0.021287012845277786, 0.07859641313552856, 0.019324999302625656, 0.1349562555551529, -0.030655458569526672, -0.014569112099707127, 0.1547412872314453, 0.0450146347284317, -0.08684050291776657, -0.062375206500291824, 0.038007549941539764, -0.09243012219667435, 0.15434598922729492, 0.008572053164243698, 0.07402745634317398, 0.156559556722641, -0.04032917320728302, -0.1077084094285965, 0.08643841743469238, 0.11313466727733612, -0.0727117732167244, 0.1227089986205101, 0.09448815137147903, 0.007121977396309376, 0.0975368395447731, 0.03899608924984932, -0.22835330665111542, -0.01658119447529316, 0.029233021661639214, 0.018337158486247063, -0.17281901836395264, -0.024124834686517715, -0.08419738709926605, 0.13893473148345947, 0.1900421679019928, -0.05832385644316673, 0.014919553883373737, -0.07878194004297256, -0.009475256316363811, -0.0315069817006588, 0.2018774300813675, -0.04739530012011528, -0.0881907269358635, 0.057495858520269394, -0.06062798574566841, 0.0683274120092392, -0.1637382209300995, -0.017129207029938698, 0.03947009518742561, -0.04707742854952812, -0.05674554407596588, 0.0907927006483078, 0.053124405443668365, 0.031975157558918, -0.04617901146411896, -0.2568216323852539, -0.04692026600241661, 0.12887056171894073, -0.12549808621406555, -0.09771600365638733 ]
null
null
transformers
# algebra_linear_1d_composed --- language: en datasets: - algebra_linear_1d_composed --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/algebra_linear_1d_composed](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetalgebra_linear_1d_composed) for solving **algebra linear 1d composed equations** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/algebra_linear_1d_composed") model = AutoModelWithLMHead.from_pretrained("dbernsohn/algebra_linear_1d_composed") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c." input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> 5</s> ``` Another examples: + Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c. + Answer: 5 Pred: 5 ---- + Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s**2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i. + Answer: 5 Pred: 5 ---- + Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v. + Answer: 0 Pred: 0 ---- + Let a(h) = -34*h**3 - 15 + 3*h + 36*h**3 + 8*h**2 + 5*h**2. Let r be a(-6). Solve 2*z = r*z for z. + Answer: 0 Pred: 0 ---- + Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y. + Answer: 5 Pred: 5 ---- + Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j. + Answer: -2 Pred: -2 ---- + Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p. + Answer: 0 Pred: 0 ---- + Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k. + Answer: -3 Pred: -3 ---- + Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p. + Answer: -2 Pred: -2 The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
text2text-generation
dbernsohn/algebra_linear_1d_composed
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# algebra_linear_1d_composed --- language: en datasets: - algebra_linear_1d_composed --- This is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d_composed for solving algebra linear 1d composed equations mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to solve algebra 1d equations into numbers. Another examples: + Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c. + Answer: 5 Pred: 5 ---- + Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i. + Answer: 5 Pred: 5 ---- + Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v. + Answer: 0 Pred: 0 ---- + Let a(h) = -34*h3 - 15 + 3*h + 36*h3 + 8*h2 + 5*h2. Let r be a(-6). Solve 2*z = r*z for z. + Answer: 0 Pred: 0 ---- + Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y. + Answer: 5 Pred: 5 ---- + Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j. + Answer: -2 Pred: -2 ---- + Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p. + Answer: 0 Pred: 0 ---- + Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k. + Answer: -3 Pred: -3 ---- + Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p. + Answer: -2 Pred: -2 The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# algebra_linear_1d_composed\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d_composed\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d_composed for solving algebra linear 1d composed equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c.\n+ Answer: 5 Pred: 5\n----\n+ Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i.\n+ Answer: 5 Pred: 5\n----\n+ Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v.\n+ Answer: 0 Pred: 0\n----\n+ Let a(h) = -34*h3 - 15 + 3*h + 36*h3 + 8*h2 + 5*h2. Let r be a(-6). Solve 2*z = r*z for z.\n+ Answer: 0 Pred: 0\n----\n+ Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y.\n+ Answer: 5 Pred: 5\n----\n+ Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j.\n+ Answer: -2 Pred: -2\n----\n+ Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p.\n+ Answer: 0 Pred: 0\n----\n+ Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k.\n+ Answer: -3 Pred: -3\n----\n+ Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p.\n+ Answer: -2 Pred: -2\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# algebra_linear_1d_composed\n---\nlanguage: en\ndatasets:\n- algebra_linear_1d_composed\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d_composed for solving algebra linear 1d composed equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c.\n+ Answer: 5 Pred: 5\n----\n+ Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i.\n+ Answer: 5 Pred: 5\n----\n+ Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v.\n+ Answer: 0 Pred: 0\n----\n+ Let a(h) = -34*h3 - 15 + 3*h + 36*h3 + 8*h2 + 5*h2. Let r be a(-6). Solve 2*z = r*z for z.\n+ Answer: 0 Pred: 0\n----\n+ Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y.\n+ Answer: 5 Pred: 5\n----\n+ Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j.\n+ Answer: -2 Pred: -2\n----\n+ Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p.\n+ Answer: 0 Pred: 0\n----\n+ Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k.\n+ Answer: -3 Pred: -3\n----\n+ Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p.\n+ Answer: -2 Pred: -2\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ 48, 623 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.01584368571639061, 0.001455417019315064, -0.00658801756799221, 0.0177968367934227, 0.18000324070453644, 0.01899094320833683, 0.1102970764040947, 0.13923293352127075, -0.029492201283574104, -0.031411342322826385, 0.1258108913898468, 0.215000182390213, -0.002026807749643922, 0.09281328320503235, -0.09747900068759918, -0.26333776116371155, 0.035797640681266785, 0.06643600016832352, 0.01654808409512043, 0.13231700658798218, 0.07867445051670074, -0.06135464087128639, 0.09729219973087311, -0.03548338636755943, -0.1792060285806656, 0.056830670684576035, 0.06633275002241135, -0.14007478952407837, 0.12120860069990158, 0.05082603916525841, 0.11879663914442062, 0.03541290760040283, -0.049473561346530914, -0.12151949107646942, 0.027005361393094063, 0.036254558712244034, -0.0702618658542633, 0.05806567892432213, 0.12953147292137146, -0.09849721938371658, 0.101417675614357, 0.05899258330464363, -0.011092896573245525, 0.06627913564443588, -0.1479889154434204, 0.00348502560518682, -0.010794720612466335, 0.021929796785116196, 0.07188789546489716, 0.09843083471059799, -0.011102980934083462, 0.12869638204574585, -0.09904436022043228, 0.14108110964298248, 0.1505395472049713, -0.3118693232536316, 0.005070185288786888, 0.04695354029536247, 0.043711405247449875, 0.07051856815814972, -0.00885665975511074, 0.03730452060699463, 0.03216231241822243, 0.03300926089286804, 0.03037545457482338, -0.07585509866476059, -0.1657770276069641, 0.04152299836277962, -0.08708652853965759, -0.0615064837038517, 0.23453429341316223, -0.06484062969684601, 0.066205233335495, -0.0072464910335838795, -0.13153931498527527, -0.06954485923051834, 0.0006044790497981012, -0.0053634620271623135, -0.055698949843645096, 0.06370817124843597, 0.016068486496806145, -0.056699495762586594, -0.1428028792142868, -0.010085990652441978, -0.20030196011066437, 0.12700670957565308, 0.0098763108253479, 0.055072084069252014, -0.23676714301109314, 0.09703067690134048, 0.05306711047887802, -0.09924419224262238, 0.062389008700847626, -0.08943060785531998, 0.014000056311488152, -0.02474105730652809, -0.06801413744688034, -0.1568288505077362, 0.06617090106010437, 0.08920741081237793, 0.003721588756889105, 0.020913373678922653, -0.08072061836719513, 0.07540135085582733, 0.015950961038470268, 0.08084282279014587, -0.009468162432312965, -0.02545289881527424, 0.050731536000967026, -0.13451236486434937, -0.00853751040995121, -0.06626977026462555, -0.15002763271331787, -0.07248537242412567, 0.08783774077892303, 0.09340707957744598, 0.024510055780410767, 0.09635060280561447, -0.0332786962389946, -0.04203520715236664, 0.009204940870404243, -0.09221477061510086, -0.024659397080540657, 0.0008180328877642751, 0.006082381121814251, 0.14675909280776978, 0.02296186424791813, 0.007892758585512638, -0.17018215358257294, 0.06483504176139832, -0.0723656713962555, -0.007938898168504238, -0.029325438663363457, -0.07534618675708771, 0.023915085941553116, -0.10881388932466507, 0.008133405819535255, -0.17433200776576996, -0.16765841841697693, 0.01697476953268051, 0.007396905682981014, -0.018866462633013725, -0.043013010174036026, -0.045346371829509735, -0.03770101070404053, 0.04327743873000145, -0.07020818442106247, 0.010033725760877132, -0.04259585589170456, 0.10675564408302307, -0.0398472361266613, 0.06604313105344772, -0.1241411417722702, 0.08126731216907501, -0.12840037047863007, -0.026247713714838028, -0.06916461884975433, 0.0695473924279213, 0.03665204346179962, 0.12047890573740005, -0.03775748983025551, -0.03622163087129593, -0.07566536217927933, 0.04284011945128441, -0.01894138753414154, 0.1950719952583313, -0.0944138839840889, -0.10338135808706284, 0.24115116894245148, -0.07720785588026047, -0.16225671768188477, 0.08871348202228546, 0.01112399436533451, 0.0527188703417778, 0.09158273041248322, 0.17049458622932434, 0.044303521513938904, -0.007278476841747761, 0.0970718041062355, 0.1028069406747818, -0.11937293410301208, -0.10302774608135223, 0.002267509698867798, -0.020705346018075943, -0.11959504336118698, 0.04289879649877548, 0.09645403176546097, 0.07236005365848541, -0.05477796122431755, -0.03351253643631935, -0.04923287779092789, -0.007655630353838205, 0.1011999323964119, 0.004759210627526045, 0.13131408393383026, -0.06056664139032364, -0.016454286873340607, 0.00607975572347641, -0.029107315465807915, -0.03001979924738407, 0.04808073490858078, -0.027159245684742928, 0.11719837784767151, -0.03463059291243553, 0.043614711612463, -0.20667698979377747, -0.08273608982563019, -0.011199901811778545, 0.16215083003044128, -0.00014803845260757953, 0.09622485190629959, 0.05017630010843277, -0.026423487812280655, -0.013082671910524368, -0.020495356991887093, 0.14194169640541077, -0.008744661696255207, -0.07192710041999817, -0.055666014552116394, 0.05686090514063835, -0.056457314640283585, -0.029490424320101738, -0.06336628645658493, 0.016674358397722244, 0.022723432630300522, 0.12466312199831009, 0.024511994794011116, 0.060258712619543076, -0.019767967984080315, 0.026875387877225876, -0.09027257561683655, 0.012787343002855778, 0.10328754037618637, -0.005430325400084257, -0.06139841303229332, 0.2012202888727188, -0.18243330717086792, 0.21768754720687866, 0.1899390071630478, -0.2988763451576233, 0.0007227785536088049, -0.05822010710835457, -0.0336349755525589, 0.0059656258672475815, 0.05502323433756828, -0.03447169065475464, 0.08369144052267075, 0.0008040695101954043, 0.20492856204509735, -0.06399808824062347, -0.05498965084552765, 0.0025857435539364815, -0.05458337441086769, -0.006101091392338276, 0.058100759983062744, 0.0824960395693779, -0.17706909775733948, 0.1713913381099701, 0.20838424563407898, 0.023575296625494957, 0.17638693749904633, -0.007809492759406567, -0.04934080317616463, 0.08402703702449799, 0.006972316186875105, -0.032568447291851044, -0.10796601325273514, -0.1734510064125061, -0.016349755227565765, 0.0808510109782219, 0.0383298397064209, 0.09945333003997803, -0.11086979508399963, -0.022686339914798737, -0.005985935218632221, -0.0060494341887533665, -0.008344912901520729, 0.09246525168418884, 0.08367523550987244, 0.14147034287452698, -0.015902556478977203, -0.008576065301895142, 0.11812435835599899, 0.015694094821810722, -0.12598107755184174, 0.19254222512245178, -0.1325615793466568, -0.3495909571647644, -0.1631333827972412, -0.16477428376674652, -0.043477918952703476, 0.048511527478694916, 0.11342941224575043, -0.10511619597673416, -0.02352173998951912, -0.0007881404599174857, 0.08415862917900085, -0.07211752235889435, 0.03677205741405487, -0.08311079442501068, 0.06613492220640182, -0.06391098350286484, -0.08130958676338196, -0.04755308851599693, -0.013113722205162048, -0.0506163015961647, 0.15241199731826782, -0.13060742616653442, 0.05517926067113876, 0.20086060464382172, -0.008659793995320797, 0.05646828934550285, -0.0447811521589756, 0.1698468029499054, -0.06439661234617233, 0.014364821836352348, 0.22857394814491272, -0.06645470857620239, 0.07465333491563797, 0.13026019930839539, -0.017004651948809624, -0.06887000799179077, 0.04647034779191017, -0.03181997686624527, -0.08305076509714127, -0.27305132150650024, -0.11097732186317444, -0.12417944520711899, 0.08551718294620514, 0.060253627598285675, 0.050218936055898666, 0.1729225218296051, 0.07009439915418625, -0.011698170565068722, 0.04006649926304817, 0.008571630343794823, 0.0824633464217186, 0.19053572416305542, -0.008197087794542313, 0.13242574036121368, -0.06245150417089462, -0.11769289523363113, 0.08968717604875565, 0.05989821255207062, 0.12555105984210968, 0.04239042103290558, 0.046467121690511703, 0.009043761529028416, 0.07225343585014343, 0.13442648947238922, 0.1651877760887146, 0.034123022109270096, -0.0027062329463660717, -0.01349344477057457, -0.028245382010936737, -0.040193621069192886, 0.037729669362306595, 0.013470759615302086, -0.12968936562538147, -0.09492611140012741, -0.07551674544811249, 0.07577058672904968, 0.12997229397296906, 0.0744793638586998, -0.240804523229599, 0.012753864750266075, 0.06319929659366608, -0.046554870903491974, -0.11563625931739807, 0.08299679309129715, -0.003961589653044939, -0.13062408566474915, 0.06372487545013428, -0.05805215612053871, 0.12147562950849533, -0.028284739702939987, 0.09374229609966278, -0.03364879637956619, -0.07243189960718155, 0.018441040068864822, 0.1096850335597992, -0.33529332280158997, 0.20487374067306519, 0.0006690678419545293, -0.06490825116634369, -0.11783778667449951, -0.0044849165715277195, -0.0012578379828482866, 0.11027327179908752, 0.09952930361032486, -0.003345120931044221, -0.03474462404847145, -0.09134820103645325, -0.0031049586832523346, 0.016545293852686882, 0.14250630140304565, -0.025273242965340614, 0.0148016894236207, -0.059562280774116516, -0.021893899887800217, -0.013236827217042446, -0.013637681491672993, -0.002603176049888134, -0.1513184756040573, 0.0671682059764862, 0.020377542823553085, 0.06982939690351486, 0.01960124634206295, -0.02438407950103283, -0.06273293495178223, 0.21248282492160797, -0.06458115577697754, -0.10695376992225647, -0.12842507660388947, -0.04645165428519249, 0.05069807916879654, -0.0799480676651001, 0.05590132996439934, -0.07412241399288177, 0.026752561330795288, -0.0460817776620388, -0.2500396966934204, 0.12516821920871735, -0.08440219610929489, -0.04263054579496384, -0.039096806198358536, 0.18710920214653015, -0.09238360822200775, 0.0015196007443591952, 0.024500641971826553, -0.00008093049837043509, -0.08618257939815521, -0.05626978352665901, -0.008611418306827545, -0.01370612159371376, 0.0605587363243103, 0.04142594337463379, -0.09551963210105896, -0.06058591976761818, -0.04161534458398819, -0.0018586971564218402, 0.33403095602989197, 0.09810057282447815, -0.046292744576931, 0.17393392324447632, 0.10699018090963364, -0.08708086609840393, -0.30292707681655884, -0.07725819945335388, -0.0799851045012474, -0.026687202975153923, -0.028951935470104218, -0.16540394723415375, 0.0818692147731781, -0.0030985758639872074, 0.010349465534090996, 0.10349910706281662, -0.24794204533100128, -0.09147637337446213, 0.1472831815481186, 0.023999102413654327, 0.3351094424724579, -0.11293166130781174, -0.09755206853151321, -0.04931047186255455, -0.14179958403110504, 0.17238929867744446, -0.054965659976005554, 0.08938152343034744, -0.03220284730195999, 0.1103312224149704, 0.057209331542253494, -0.038672249764204025, 0.03753164783120155, 0.01280028186738491, 0.004070690833032131, -0.11656955629587173, -0.03721853345632553, 0.05927279219031334, -0.01239687204360962, 0.0431542843580246, -0.030626775696873665, 0.05042644962668419, -0.11610346287488937, -0.03559141978621483, -0.09718530625104904, 0.05527614802122116, 0.033209703862667084, -0.07230573892593384, 0.02535100467503071, -0.07929795235395432, 0.026679834350943565, -0.011463316157460213, 0.19073231518268585, -0.04869036376476288, 0.16655586659908295, 0.15388649702072144, 0.13591068983078003, -0.10760082304477692, 0.03837193548679352, -0.07492130249738693, -0.06832669675350189, 0.06800366938114166, -0.10502270609140396, 0.06655241549015045, 0.12330719083547592, -0.0411357618868351, 0.06374823302030563, 0.11320103704929352, 0.02062961272895336, -0.01765989325940609, 0.1385980248451233, -0.25890034437179565, 0.023826781660318375, -0.09969114512205124, -0.053946852684020996, 0.045324306935071945, 0.06959566473960876, 0.1803196519613266, 0.01996755413711071, -0.03243176266551018, -0.010976474732160568, 0.0005780249484814703, -0.04870473966002464, 0.07170422375202179, 0.021222015842795372, 0.024676067754626274, -0.1308782398700714, 0.09323612600564957, 0.032887544482946396, -0.14486797153949738, 0.019849436357617378, 0.19134655594825745, -0.1371304839849472, -0.11486499011516571, 0.01224886067211628, 0.11295973509550095, -0.15867024660110474, -0.024805627763271332, -0.06911034882068634, -0.1232672780752182, 0.09491096436977386, 0.21401236951351166, 0.05331400781869888, 0.1008497029542923, -0.046942487359046936, -0.0496317520737648, -0.04561499506235123, 0.009240290150046349, 0.012895791791379452, 0.030672000721096992, -0.097745880484581, 0.10578422248363495, -0.040116216987371445, 0.16213259100914001, -0.0917268618941307, -0.06222947686910629, -0.14983442425727844, 0.03229285031557083, -0.15211552381515503, -0.05419791117310524, -0.06350395083427429, -0.05325648933649063, -0.01421641930937767, -0.009074408560991287, -0.04453456401824951, -0.039223432540893555, -0.1178443431854248, 0.023740172386169434, -0.04184343293309212, 0.03357211872935295, -0.07360640168190002, -0.00745047302916646, 0.0597982257604599, -0.04032554477453232, 0.12730717658996582, 0.12071295082569122, -0.11999447643756866, 0.13207589089870453, -0.13698095083236694, -0.10772223025560379, 0.10667144507169724, 0.019947899505496025, 0.057580724358558655, 0.08691609650850296, 0.024122396484017372, 0.07328153401613235, 0.017016666010022163, 0.03875018656253815, 0.022994665428996086, -0.11720026284456253, 0.02915577031672001, -0.0438992902636528, -0.14189468324184418, -0.07547144591808319, -0.034607090055942535, 0.03158587962388992, 0.008018662221729755, 0.11852530390024185, -0.053823456168174744, 0.12022940069437027, -0.07060523331165314, 0.010234953835606575, 0.010690975934267044, -0.16182446479797363, -0.06637652963399887, -0.08411522209644318, 0.032836735248565674, -0.008235974237322807, 0.18409450352191925, 0.03454678878188133, 0.05747787654399872, 0.02793210744857788, 0.07954391092061996, 0.005215851124376059, 0.020794428884983063, 0.22607649862766266, 0.07304691523313522, -0.06886540353298187, -0.1103024035692215, 0.06498146802186966, 0.008004664443433285, 0.04483301192522049, 0.1749526411294937, 0.03727349266409874, -0.03907724469900131, 0.10007185488939285, -0.019638560712337494, 0.028130175545811653, -0.11450393497943878, -0.17080892622470856, -0.00801891554147005, 0.07657715678215027, -0.011517325416207314, 0.0829968973994255, 0.16146962344646454, -0.019973335787653923, 0.030916273593902588, -0.009044856764376163, -0.056131210178136826, -0.17957162857055664, -0.1594834178686142, -0.08296467363834381, -0.10509900003671646, -0.0014652428217232227, -0.10988666117191315, 0.05996263399720192, 0.05867818742990494, 0.06662456691265106, -0.06648626923561096, 0.10458429902791977, 0.06543407589197159, -0.11919818818569183, 0.07942314445972443, -0.028797946870326996, 0.08120650798082352, 0.000997701776213944, -0.009244642220437527, -0.08453210443258286, 0.008097044192254543, -0.03108268976211548, 0.04917836934328079, -0.047017112374305725, 0.02154003456234932, -0.15374121069908142, -0.1096470057964325, -0.02257644757628441, 0.05983618274331093, -0.0428229495882988, 0.12894387543201447, 0.017068613320589066, -0.030336754396557808, 0.02801426127552986, 0.22194334864616394, -0.08584439754486084, -0.08055929839611053, -0.050540681928396225, 0.2432609349489212, 0.06307961791753769, 0.08444320410490036, 0.0028589183930307627, -0.012717257253825665, -0.09089452773332596, 0.3591165244579315, 0.2667014002799988, -0.055692918598651886, 0.02277890220284462, 0.015944819897413254, 0.0347137413918972, 0.11798495799303055, 0.16456447541713715, 0.08827649056911469, 0.25443965196609497, -0.06533562391996384, -0.018368344753980637, -0.014501972123980522, 0.000018250484572490677, -0.0930345430970192, 0.13507813215255737, 0.04284169152379036, -0.08161267638206482, -0.024515492841601372, 0.10017646849155426, -0.24063174426555634, 0.14782121777534485, -0.09359890967607498, -0.16162940859794617, -0.060918986797332764, -0.0147289102897048, 0.11586485803127289, -0.0017279664753004909, 0.08164822310209274, -0.01215168833732605, -0.08752647042274475, 0.05363667756319046, 0.029349831864237785, -0.222853422164917, 0.01617160066962242, 0.05048945173621178, -0.11925873160362244, -0.024077240377664566, -0.011171307414770126, 0.04385644197463989, 0.06714760512113571, 0.07385427504777908, -0.04466511681675911, 0.046728942543268204, -0.004126311279833317, -0.011370057240128517, 0.04598446562886238, 0.06270765513181686, 0.01540715154260397, -0.09723247587680817, 0.05001823231577873, -0.1556699126958847, 0.03317674249410629, -0.01597830280661583, -0.023336609825491905, -0.002392916241660714, -0.005987333599478006, -0.04110949859023094, 0.057095758616924286, 0.1028817892074585, -0.008210273459553719, 0.012179257348179817, -0.09038258343935013, -0.0342213474214077, -0.0023632640950381756, -0.11412134766578674, -0.09127872437238693, -0.11541768163442612, -0.10260939598083496, 0.11215279996395111, -0.009719906374812126, -0.2153121829032898, 0.021527882665395737, -0.1023377850651741, 0.04012138023972511, -0.21606485545635223, 0.10211227834224701, 0.09086371958255768, 0.011539488099515438, 0.008776325732469559, -0.008126933127641678, 0.0464082807302475, 0.10446552187204361, -0.12512299418449402, -0.09291534125804901 ]
null
null
transformers
# roberta-go --- language: Go datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **Golang** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-go") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-go") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Java code. ```python code = """ package main import ( "fmt" "runtime" ) func main() { fmt.Print("Go runs on ") switch os := runtime.<mask>; os { case "darwin": fmt.Println("OS X.") case "linux": fmt.Println("Linux.") default: // freebsd, openbsd, // plan9, windows... fmt.Printf("%s.\n", os) } } """.lstrip() pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) [('GOOS', 0.11810332536697388), ('FileInfo', 0.04276798665523529), ('Stdout', 0.03572738170623779), ('Getenv', 0.025064032524824142), ('FileMode', 0.01462600938975811)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
fill-mask
dbernsohn/roberta-go
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[]
TAGS #transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
# roberta-go --- language: Go datasets: - code_search_net --- This is a roberta pre-trained version on the CodeSearchNet dataset for Golang Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to fill masked words in a Java code. The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# roberta-go\n---\nlanguage: Go\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Golang Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-go\n---\nlanguage: Go\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Golang Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ 48, 107 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-go\n---\nlanguage: Go\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Golang Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ -0.05167168006300926, 0.10989104211330414, -0.003160676918923855, 0.06567347049713135, 0.19655147194862366, -0.002706542843952775, 0.054559823125600815, 0.04638488218188286, -0.04841665178537369, -0.019733883440494537, 0.1137414500117302, 0.13692040741443634, -0.002609977964311838, 0.18734575808048248, -0.0010273170191794634, -0.2598420977592468, 0.03992965817451477, 0.004834888037294149, -0.02988274022936821, 0.11405854672193527, 0.10898894816637039, -0.026304347440600395, 0.08366844803094864, -0.008976598270237446, -0.1824789047241211, -0.010171046480536461, -0.007938551716506481, -0.1088055819272995, 0.09725004434585571, 0.00006641593063250184, 0.1301174908876419, -0.02753361500799656, 0.00044422404607757926, -0.009406362660229206, 0.048054490238428116, 0.06961207091808319, -0.00014189579815138131, 0.06296341121196747, -0.06142725422978401, -0.04027742147445679, 0.06267250329256058, -0.030591638758778572, -0.0028229879681020975, 0.03508245572447777, -0.14049294590950012, -0.07551359385251999, 0.010389651171863079, -0.07966858148574829, 0.050899770110845566, 0.1374286264181137, -0.00011269345122855157, 0.1820012629032135, -0.06676004081964493, 0.13154223561286926, 0.17828311026096344, -0.21506617963314056, -0.08816343545913696, 0.12471725791692734, 0.07718712091445923, 0.04731899872422218, -0.011326061561703682, 0.0030625788494944572, 0.030540592968463898, 0.03668498247861862, 0.04722273722290993, -0.11321425437927246, -0.2404419332742691, -0.073268361389637, -0.1177777498960495, 0.013753298670053482, 0.12787334620952606, -0.07349500060081482, -0.04541254788637161, 0.037449244409799576, -0.13634611666202545, 0.08804478496313095, -0.00033075103419832885, 0.04980484023690224, -0.0038996702060103416, 0.0357939749956131, -0.08166279643774033, -0.129904642701149, -0.06727656722068787, -0.06036277487874031, -0.13559618592262268, 0.2446339726448059, 0.00007348198414547369, 0.05319209024310112, -0.15329940617084503, 0.006686478387564421, -0.08454237878322601, -0.15241985023021698, -0.01337416097521782, -0.05870113894343376, -0.004436163697391748, 0.02253703400492668, -0.06457355618476868, -0.12788617610931396, 0.14096595346927643, 0.12737548351287842, -0.043981730937957764, 0.033367011696100235, -0.0691770389676094, 0.03762213513255119, 0.036783378571271896, 0.11824271082878113, -0.06704418361186981, -0.09116734564304352, 0.12098762392997742, -0.12506169080734253, 0.0632399395108223, -0.06271259486675262, -0.08793648332357407, -0.020361555740237236, -0.0014798978809267282, 0.03534683212637901, 0.056363753974437714, 0.10257343202829361, -0.003633313113823533, -0.04416007921099663, 0.02784646488726139, -0.1071578785777092, -0.0350135937333107, -0.0138785969465971, 0.002698963973671198, -0.07947465777397156, 0.05882105603814125, 0.006209159269928932, -0.10825417190790176, -0.00009024949395097792, -0.06289692968130112, 0.014688295312225819, -0.08086109906435013, -0.13680262863636017, -0.00626835273578763, -0.16031001508235931, 0.02704278565943241, -0.16907899081707, -0.15479348599910736, -0.015414594672620296, 0.07762779295444489, -0.019107522442936897, -0.011703507974743843, -0.014089692384004593, -0.05335093289613724, -0.03852514177560806, -0.026114897802472115, 0.03050248697400093, -0.03205764293670654, 0.06920486688613892, 0.03928900137543678, 0.10379805415868759, -0.14593607187271118, 0.02295178733766079, -0.17191606760025024, -0.04095020517706871, -0.23828251659870148, 0.043221570551395416, -0.03591960668563843, 0.13274434208869934, -0.11496205627918243, -0.04493100568652153, 0.017711881548166275, 0.04125981777906418, 0.08132103085517883, 0.10126391053199768, -0.10074324905872345, -0.037140749394893646, 0.18337981402873993, -0.117278091609478, -0.0404665507376194, 0.09990932792425156, -0.0482264943420887, 0.13563482463359833, 0.08568546921014786, 0.17393268644809723, 0.11334820091724396, -0.04289980232715607, 0.10806574672460556, 0.011123559437692165, -0.08118005841970444, -0.13278476893901825, 0.015747543424367905, 0.02970661036670208, -0.06193597614765167, 0.056054167449474335, -0.0641137883067131, 0.08562485873699188, -0.01743568480014801, -0.03521156683564186, 0.0049927677027881145, -0.05965902656316757, -0.02292402647435665, 0.02692393772304058, 0.08828835189342499, -0.048183027654886246, -0.020263636484742165, -0.10066140443086624, 0.059968575835227966, -0.032987143844366074, 0.03195374086499214, -0.07225418835878372, 0.02063789963722229, -0.02924218960106373, 0.045255787670612335, -0.17885632812976837, 0.02290540374815464, -0.004283500369638205, 0.10625392943620682, 0.07184294611215591, -0.08524813503026962, 0.04512149840593338, -0.004406596999615431, 0.005724359303712845, 0.03288652002811432, 0.054911743849515915, -0.008017082698643208, -0.00047129805898293853, -0.11884462833404541, 0.016673767939209938, -0.06524302065372467, 0.0636742040514946, -0.042394738644361496, 0.02468874864280224, -0.08981460332870483, 0.09696640074253082, -0.008931959047913551, -0.02154809795320034, 0.027693159878253937, 0.037757597863674164, -0.038333699107170105, -0.04578009247779846, 0.040661320090293884, 0.0662793293595314, -0.06958439946174622, 0.07690244913101196, 0.006894455756992102, -0.017649034038186073, 0.14081518352031708, -0.20719031989574432, -0.04064096137881279, 0.12452742457389832, -0.004044384695589542, 0.029392773285508156, -0.004685009364038706, 0.03848664090037346, 0.1441296488046646, 0.0045527801848948, 0.11136683821678162, -0.04692436009645462, 0.06346525996923447, 0.03727041557431221, -0.1254665106534958, 0.038132164627313614, 0.06481187790632248, 0.060263752937316895, -0.18349681794643402, 0.0713278204202652, 0.03091738373041153, -0.1466393768787384, 0.200403094291687, 0.030482925474643707, 0.024150913581252098, -0.03756103292107582, 0.003983357455581427, 0.006265454925596714, -0.006815541535615921, -0.19766277074813843, -0.05161598324775696, 0.032789308577775955, -0.024928968399763107, 0.051781073212623596, -0.08618634939193726, -0.017535090446472168, -0.057051245123147964, 0.027743550017476082, -0.0024449045304208994, 0.032628342509269714, -0.027478232979774475, 0.03704440966248512, 0.015420999377965927, -0.08084570616483688, 0.07341626286506653, -0.002116825897246599, -0.033283334225416183, 0.22668389976024628, -0.09536144137382507, -0.26624661684036255, -0.11254629492759705, -0.09721379727125168, -0.06429482251405716, 0.04062004014849663, 0.0660834014415741, -0.15069609880447388, -0.028332719579339027, 0.0040160007774829865, 0.018939755856990814, -0.006798465270549059, 0.023646600544452667, 0.024991938844323158, 0.02862088568508625, -0.025226881727576256, -0.10711347311735153, -0.018731174990534782, -0.08353761583566666, -0.09819374978542328, 0.15520291030406952, -0.09655590355396271, 0.08790463954210281, 0.08950383216142654, 0.01045374758541584, 0.028785111382603645, 0.003324292367324233, 0.20543591678142548, -0.06587356328964233, 0.015247050672769547, 0.22208617627620697, -0.009002722799777985, 0.03145518898963928, 0.13059388101100922, -0.008874365128576756, -0.10345014184713364, 0.06597515195608139, -0.025822540745139122, -0.12042074650526047, -0.19786235690116882, -0.08391620218753815, -0.11685147136449814, 0.007784007582813501, 0.016226613894104958, 0.029935723170638084, 0.005315599963068962, 0.0803176686167717, 0.01700430177152157, 0.03673823922872543, -0.006104708649218082, 0.08978821337223053, 0.02742060087621212, -0.019464051350951195, 0.10994036495685577, -0.0021853684447705746, -0.08239232003688812, 0.02999664470553398, 0.016045311465859413, 0.17796939611434937, -0.01888185180723667, 0.11777106672525406, 0.03694549575448036, 0.07238534092903137, 0.052033405750989914, 0.0914592295885086, -0.03390872851014137, 0.01619107462465763, -0.03858305886387825, -0.05591120198369026, -0.08283095806837082, -0.005057154223322868, -0.06007036194205284, -0.043708886951208115, 0.031494494527578354, 0.060106176882982254, 0.03980393707752228, 0.17720235884189606, 0.016589714214205742, -0.2535760700702667, -0.06969529390335083, 0.02243378385901451, 0.032830655574798584, -0.06828442215919495, 0.04539857432246208, 0.02763073705136776, -0.07008828967809677, 0.03831423074007034, -0.00009078611765289679, 0.10102299600839615, -0.010693504475057125, 0.05650036782026291, -0.09401898086071014, 0.10229773074388504, 0.009153502993285656, 0.0734022930264473, -0.2756008803844452, 0.1991053968667984, -0.010907813906669617, 0.08470038324594498, -0.08132754266262054, -0.0008255130960606039, -0.0017190437065437436, -0.001261774799786508, 0.11258070170879364, 0.03378978744149208, 0.031687334179878235, -0.04640786349773407, -0.0388590469956398, 0.05276941508054733, 0.06545637547969818, 0.006513732951134443, 0.02978350967168808, 0.026292819529771805, -0.014842569828033447, -0.021152017638087273, -0.012207257561385632, -0.06988295167684555, -0.03420758619904518, 0.03642633929848671, 0.1259899139404297, -0.037930235266685486, -0.012909721583127975, -0.024659723043441772, 0.08496362715959549, 0.23372787237167358, 0.004847271833568811, -0.056242551654577255, -0.10326263308525085, 0.07380557805299759, 0.08018471300601959, -0.11498133093118668, 0.05141998454928398, -0.07671297341585159, -0.008654442615807056, -0.04808871075510979, -0.08838338404893875, 0.12887655198574066, -0.09183716773986816, -0.039366401731967926, -0.03716282173991203, 0.06913676112890244, 0.050340622663497925, 0.00025344587629660964, 0.016648301854729652, 0.04739873483777046, -0.06669171899557114, -0.09195514023303986, -0.04539911821484566, -0.0033456285018473864, 0.005116402171552181, 0.10917376726865768, -0.045616015791893005, -0.14405639469623566, -0.0162284504622221, -0.013237422332167625, 0.20962759852409363, 0.07442161440849304, -0.030131051316857338, 0.04725209251046181, 0.23463031649589539, -0.04503447934985161, -0.3080732822418213, -0.00447559729218483, 0.017227260395884514, 0.03171803802251816, -0.09317658096551895, -0.2078457772731781, 0.1702500581741333, -0.01327210571616888, -0.028728485107421875, -0.018445871770381927, -0.12905272841453552, -0.09306170046329498, 0.15748979151248932, 0.0656757801771164, 0.3723733425140381, -0.11136823892593384, -0.03092055395245552, -0.09863820672035217, -0.13003116846084595, 0.14543722569942474, -0.2743598520755768, 0.11882752180099487, 0.032103344798088074, 0.04822731763124466, 0.01308763399720192, -0.09079214930534363, 0.0532541386783123, -0.0053816502913832664, -0.010676898062229156, -0.06508782505989075, -0.08393344283103943, 0.12042269855737686, 0.030992237851023674, 0.035058874636888504, 0.057896703481674194, 0.0369236022233963, 0.0022601124364882708, -0.01435539685189724, -0.1150142252445221, 0.08200226724147797, 0.01943981647491455, -0.09533757716417313, 0.016054149717092514, 0.08227355033159256, 0.004944498650729656, 0.038792870938777924, 0.19465404748916626, -0.04779049754142761, 0.05968228355050087, 0.14635016024112701, 0.010850629769265652, -0.07490702718496323, 0.12813478708267212, 0.05108446627855301, -0.03996695578098297, 0.1359240859746933, -0.1305474042892456, 0.028669381514191628, 0.03305889666080475, 0.050448719412088394, 0.04803384095430374, 0.06127237528562546, -0.06562378257513046, 0.024425119161605835, 0.06308510899543762, -0.14203287661075592, 0.0156854297965765, 0.015434066765010357, -0.09797599166631699, -0.0063901012763381, 0.1128944531083107, 0.23162740468978882, -0.03187255561351776, -0.05675823241472244, -0.018585383892059326, 0.034603338688611984, -0.09726939350366592, 0.11941137164831161, 0.06605443358421326, 0.008807897567749023, -0.14404143393039703, 0.050297196954488754, 0.10957302898168564, 0.07215975970029831, 0.04308972880244255, 0.13680559396743774, -0.11733308434486389, -0.09832827001810074, -0.012469358742237091, 0.11894625425338745, -0.05249862000346184, -0.038280148059129715, -0.11001291871070862, -0.04253705218434334, -0.010408277623355389, 0.12760865688323975, 0.09193126112222672, -0.025410963222384453, -0.03734534978866577, 0.015123730525374413, -0.0678967759013176, -0.015491170808672905, 0.05480950325727463, 0.02487104944884777, -0.042850516736507416, 0.08504100143909454, 0.00835441891103983, 0.09812120348215103, -0.07853559404611588, -0.0480891615152359, -0.19698552787303925, 0.0663200244307518, -0.014471285045146942, 0.03328844532370567, -0.07993610948324203, -0.021843750029802322, -0.032390352338552475, -0.05591193959116936, -0.05100620165467262, 0.051808759570121765, -0.040483538061380386, -0.011532261967658997, -0.04536617919802666, -0.0005192433600313962, -0.07836522161960602, -0.027906831353902817, 0.06122971326112747, -0.028740499168634415, 0.09822628647089005, 0.07097199559211731, -0.08550012111663818, 0.04914635792374611, -0.22182559967041016, -0.0719791054725647, 0.06674405187368393, -0.007929833605885506, 0.0664537325501442, 0.0249665305018425, 0.004357044585049152, 0.03642904385924339, 0.10276531428098679, -0.015989914536476135, 0.17671257257461548, -0.10848735272884369, 0.009318430908024311, 0.006071806885302067, -0.10237929970026016, -0.03296198695898056, 0.004044732078909874, 0.07553303241729736, 0.07738430052995682, 0.11237679421901703, -0.04808312654495239, 0.06434771418571472, -0.0681118369102478, -0.005679798778146505, -0.01961158588528633, -0.12778793275356293, -0.0690927654504776, -0.04058517888188362, 0.05419696867465973, -0.04906512051820755, 0.07830135524272919, 0.06385897845029831, 0.05321618914604187, -0.0031791727524250746, 0.05524299293756485, -0.003736252197995782, 0.015254084020853043, 0.09405779838562012, 0.05262351036071777, -0.012956670485436916, 0.014231978915631771, 0.058930329978466034, 0.0736243724822998, 0.11337979882955551, 0.040471192449331284, 0.09638448059558868, 0.2286148965358734, 0.07928357273340225, 0.0013473420403897762, 0.06838376820087433, -0.04931037873029709, -0.04521139711141586, 0.00571606308221817, 0.05989089235663414, -0.025438548997044563, -0.036231543868780136, 0.15164083242416382, -0.03389411419630051, 0.021749677136540413, 0.015100683085620403, -0.08194755017757416, -0.1041351929306984, -0.15356411039829254, -0.11102709919214249, -0.0536036342382431, 0.02321496792137623, -0.10479786992073059, -0.0370306558907032, 0.04400380700826645, 0.0004920141072943807, -0.028379829600453377, 0.14193013310432434, 0.1267145723104477, -0.09384218603372574, 0.05023593828082085, -0.03632097691297531, 0.05547691509127617, 0.09827710688114166, -0.025155289098620415, -0.03208867087960243, 0.12087149173021317, 0.06081075593829155, 0.027598779648542404, 0.02655872330069542, 0.08367426693439484, -0.12132886052131653, -0.11220807582139969, -0.03921688720583916, 0.06118950620293617, -0.0065200855024158955, 0.1147015169262886, 0.047378018498420715, -0.050629980862140656, 0.05033552274107933, 0.19394522905349731, -0.036110810935497284, -0.1602233648300171, -0.12445229291915894, 0.22606584429740906, 0.052914097905159, 0.0007334229885600507, -0.05389689654111862, -0.061774201691150665, -0.09680327773094177, 0.2586829364299774, 0.29132625460624695, -0.07640009373426437, 0.013883765786886215, 0.040759310126304626, 0.00048512290231883526, 0.011717154644429684, 0.14948002994060516, 0.11678183823823929, 0.2341846078634262, -0.04089457541704178, -0.014430965296924114, -0.031784940510988235, -0.07539714127779007, -0.17022199928760529, -0.09540675580501556, 0.03361542150378227, -0.03058445453643799, -0.03179294243454933, 0.08472952991724014, -0.18857114017009735, -0.1378234475851059, -0.005716613959521055, -0.1620357483625412, -0.1287311613559723, -0.04171708971261978, 0.03928108513355255, 0.06911730021238327, 0.10431604087352753, -0.014940251596271992, 0.014241781085729599, 0.006671221926808357, -0.01616583950817585, -0.02786601521074772, -0.07495684921741486, 0.08870834112167358, -0.15314467251300812, 0.11311071366071701, -0.055225055664777756, 0.0693378672003746, 0.10323096066713333, 0.0406561940908432, -0.040010832250118256, 0.08654081076383591, -0.024979466572403908, -0.030454887077212334, 0.042634595185518265, 0.04618244245648384, -0.08965012431144714, -0.009004006162285805, 0.047826942056417465, -0.10230740904808044, 0.0017117332899942994, 0.016520051285624504, 0.027640273794531822, -0.1181953102350235, 0.04393766075372696, -0.15799790620803833, 0.07309336960315704, 0.13649038970470428, -0.047471918165683746, -0.007509458810091019, -0.09981460869312286, 0.0058977860026061535, 0.006094199139624834, -0.04310280829668045, -0.1511797457933426, -0.18583694100379944, -0.06363444775342941, 0.11023680865764618, 0.06009997799992561, -0.1712983399629593, 0.059128537774086, -0.08598071336746216, -0.00017699992167763412, -0.07379470765590668, 0.034713998436927795, 0.068902887403965, 0.011080591939389706, -0.0031082967761904, -0.05681728199124336, -0.0016493431758135557, 0.06169051676988602, -0.1721586138010025, -0.1743878424167633 ]
null
null
transformers
# roberta-java --- language: Java datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **Java** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-java") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-java") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Java code. ```python code = """ String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; for (String i : cars) { System.out.<mask>(i); } """.lstrip() pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) # [('println', 0.32571351528167725), # ('get', 0.2897663116455078), # ('remove', 0.0637081190943718), # ('exit', 0.058875661343336105), # ('print', 0.034190207719802856)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
fill-mask
dbernsohn/roberta-java
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[]
TAGS #transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
# roberta-java --- language: Java datasets: - code_search_net --- This is a roberta pre-trained version on the CodeSearchNet dataset for Java Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to fill masked words in a Java code. The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# roberta-java\n---\nlanguage: Java\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Java Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-java\n---\nlanguage: Java\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Java Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ 48, 106 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-java\n---\nlanguage: Java\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Java Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ -0.00548878638073802, 0.09720060974359512, -0.002583605470135808, 0.06937680393457413, 0.17268435657024384, -0.019927291199564934, 0.041995320469141006, 0.07150626927614212, -0.042098790407180786, -0.024158425629138947, 0.11690295487642288, 0.1412631720304489, 0.002023884793743491, 0.20121075212955475, -0.021005386486649513, -0.2603624761104584, 0.055842991918325424, -0.005314294248819351, -0.012234890833497047, 0.11550600081682205, 0.12566880881786346, -0.027197340503335, 0.09849824756383896, -0.021409371867775917, -0.2014150619506836, 0.02852557972073555, -0.017787443473935127, -0.12459712475538254, 0.08591076731681824, 0.0034906589426100254, 0.13333241641521454, -0.0076462700963020325, 0.007541199214756489, -0.047574955970048904, 0.043936219066381454, 0.05933993309736252, 0.016844090074300766, 0.06561049818992615, -0.06382422149181366, -0.013982617296278477, 0.05352695658802986, -0.03179378807544708, 0.009683062322437763, 0.025643635541200638, -0.14184202253818512, -0.0721149891614914, 0.018368711695075035, -0.09006226807832718, 0.07879845798015594, 0.1224043071269989, 0.0014242895413190126, 0.20575301349163055, -0.05215555429458618, 0.12970174849033356, 0.17809191346168518, -0.18827609717845917, -0.08357427269220352, 0.12896095216274261, 0.06523597985506058, 0.03318415582180023, -0.015527482144534588, -0.006976574193686247, 0.023600582033395767, 0.04592139646410942, 0.07190661877393723, -0.14002247154712677, -0.2894994616508484, -0.06573496758937836, -0.0889635905623436, 0.022040463984012604, 0.150546595454216, -0.06621111929416656, -0.031120559200644493, 0.053127583116292953, -0.1254357397556305, 0.10594599694013596, -0.006394250318408012, 0.020921988412737846, 0.0035776710137724876, 0.04104850813746452, -0.06330976635217667, -0.07627984881401062, -0.05132877826690674, -0.06038893759250641, -0.10702158510684967, 0.20934654772281647, 0.00391441211104393, 0.04740751534700394, -0.1586492359638214, -0.004705983679741621, -0.08578146249055862, -0.16526497900485992, -0.0023496660869568586, -0.06440718472003937, 0.02156730182468891, 0.018939075991511345, -0.04236992448568344, -0.17808789014816284, 0.13023151457309723, 0.08534350991249084, -0.059222493320703506, 0.036341190338134766, -0.06963081657886505, 0.03565284237265587, 0.0470430925488472, 0.09780286997556686, -0.05589691177010536, -0.0811120793223381, 0.11139421910047531, -0.09917591512203217, 0.04502999037504196, -0.04253831505775452, -0.09080324321985245, -0.0182928629219532, -0.006306605879217386, 0.027756337076425552, 0.0198381245136261, 0.11078042536973953, -0.005373500753194094, -0.02925948239862919, 0.03465474024415016, -0.12215573340654373, -0.03464875370264053, -0.04066436365246773, -0.004281231667846441, -0.07786393910646439, 0.0671394094824791, 0.021904610097408295, -0.0846942886710167, -0.0258456040173769, -0.06880774348974228, -0.0015529039083048701, -0.09046874195337296, -0.13532306253910065, -0.011293405666947365, -0.14692068099975586, 0.029215160757303238, -0.16830268502235413, -0.15740543603897095, -0.03314414992928505, 0.07510874420404434, -0.03795332834124565, -0.004188326187431812, -0.027143411338329315, -0.06649854779243469, -0.03244664892554283, -0.01842786930501461, 0.06740546226501465, -0.019975975155830383, 0.05938921123743057, 0.051174506545066833, 0.12105001509189606, -0.15764033794403076, 0.03464045748114586, -0.18973226845264435, -0.025321686640381813, -0.25260424613952637, 0.049828220158815384, -0.028495190665125847, 0.12948235869407654, -0.12620340287685394, -0.03670254349708557, 0.0004199419927317649, 0.04588554427027702, 0.0725037083029747, 0.08451292663812637, -0.15704025328159332, -0.0013463369105011225, 0.18007491528987885, -0.12550020217895508, -0.051096361130476, 0.07435121387243271, -0.05636713281273842, 0.18652606010437012, 0.07196197658777237, 0.1925070732831955, 0.06408011168241501, 0.02169126272201538, 0.11158256232738495, 0.02646162547171116, -0.05994965881109238, -0.08945725858211517, 0.020550856366753578, 0.04370997101068497, -0.05247702822089195, 0.05387053266167641, -0.05883537232875824, 0.06060230731964111, -0.009129339829087257, -0.0371093824505806, 0.00026005262043327093, -0.0554770827293396, -0.04420264810323715, 0.03184733912348747, 0.08920294046401978, -0.03467470034956932, -0.0027747645508497953, -0.05405585467815399, 0.062262438237667084, -0.05885636806488037, 0.024280615150928497, -0.06448414921760559, -0.024038834497332573, -0.01110983919352293, 0.04349518567323685, -0.17450110614299774, 0.052241187542676926, 0.016349876299500465, 0.05992753058671951, 0.024709800258278847, -0.052627068012952805, 0.02843089960515499, -0.005082817282527685, 0.024013448506593704, 0.029679706320166588, 0.05547355115413666, 0.009630515240132809, -0.00968807190656662, -0.13237084448337555, 0.00010493737499928102, -0.0566062331199646, 0.028188826516270638, -0.05465696379542351, 0.01287372037768364, -0.10550389438867569, 0.09523088485002518, 0.013971250504255295, 0.002752356231212616, 0.04451422020792961, 0.04433254152536392, -0.03972415253520012, -0.04799804836511612, 0.030347054824233055, 0.05086203292012215, -0.03785604238510132, 0.09528053551912308, -0.011094298213720322, -0.03443605825304985, 0.10381782054901123, -0.2117665857076645, -0.03499952703714371, 0.14104464650154114, -0.007040855474770069, 0.006080171093344688, -0.02317759022116661, 0.03708900138735771, 0.12714970111846924, -0.016167350113391876, 0.11599168926477432, -0.06573866307735443, 0.05401628836989403, 0.035657551139593124, -0.12699946761131287, 0.040416739881038666, 0.05799164995551109, 0.04132700711488724, -0.21024006605148315, 0.08073150366544724, 0.03272372856736183, -0.13718748092651367, 0.18463844060897827, 0.023396534845232964, 0.02290751226246357, -0.02596026472747326, -0.008005846291780472, -0.010459700599312782, -0.031460054218769073, -0.1917281150817871, -0.063832588493824, 0.04080256447196007, -0.028256023302674294, 0.03587159141898155, -0.054113514721393585, -0.014818066731095314, -0.04711297154426575, 0.030427295714616776, 0.011740592308342457, 0.03643086552619934, -0.021826330572366714, 0.030610084533691406, 0.03736450895667076, -0.08833510428667068, 0.061166346073150635, -0.005392991006374359, -0.03553909435868263, 0.21940216422080994, -0.09602754563093185, -0.29806259274482727, -0.11833421140909195, -0.05782259628176689, -0.019968559965491295, 0.03395706042647362, 0.06056518852710724, -0.12575921416282654, -0.056202132254838943, -0.0206149872392416, 0.007916155271232128, 0.021142687648534775, 0.0069182077422738075, 0.020889874547719955, 0.049870219081640244, -0.02196487970650196, -0.11092982441186905, -0.0251929871737957, -0.05000298097729683, -0.08516517281532288, 0.13324454426765442, -0.09198679774999619, 0.09490594267845154, 0.06339673697948456, -0.022741660475730896, 0.03474770113825798, 0.012745585292577744, 0.189814031124115, -0.05101536586880684, 0.043892789632081985, 0.1964045912027359, -0.03987392783164978, 0.0063867042772471905, 0.1518256962299347, -0.014621068723499775, -0.09812572598457336, 0.08253122121095657, -0.026869459077715874, -0.10850108414888382, -0.18737542629241943, -0.059068143367767334, -0.09841431677341461, 0.010434119030833244, 0.012052399106323719, 0.02475658431649208, -0.000489116064272821, 0.06910209357738495, 0.03549081087112427, 0.07561682164669037, -0.009622780606150627, 0.09214755147695541, 0.006947955582290888, 0.002866943133994937, 0.10742154717445374, -0.009728040546178818, -0.07575612515211105, 0.010319128632545471, 0.005288423504680395, 0.15923869609832764, -0.020295655354857445, 0.12473242729902267, 0.06630655378103256, 0.07848992943763733, 0.06361879408359528, 0.078689806163311, -0.07173876464366913, 0.010053394362330437, -0.04567105695605278, -0.07050671428442001, -0.09481538087129593, 0.00019817677093669772, -0.12807048857212067, 0.0071054548025131226, 0.03685808181762695, 0.08055224269628525, 0.03164350986480713, 0.1919744461774826, 0.02571340836584568, -0.2588423192501068, -0.06843872368335724, 0.02449631132185459, 0.006265918258577585, -0.06523994356393814, 0.042267683893442154, 0.06636397540569305, -0.08228782564401627, 0.012831391766667366, 0.002261112676933408, 0.09470954537391663, -0.02001044899225235, 0.06464332342147827, -0.05067438259720802, 0.09446684271097183, 0.026656530797481537, 0.07483651489019394, -0.2799762189388275, 0.20611608028411865, -0.008002054877579212, 0.08247388899326324, -0.06343811005353928, 0.009462563320994377, -0.0287382360547781, 0.016363264992833138, 0.10640041530132294, 0.02897685021162033, 0.04843901842832565, -0.04223836213350296, -0.017799438908696175, 0.07401879876852036, 0.044044241309165955, -0.001165485824458301, 0.025749942287802696, 0.009974825195968151, -0.024591078981757164, -0.01961824670433998, 0.041330140084028244, -0.09103111922740936, -0.04543062672019005, 0.032140057533979416, 0.10210657864809036, -0.017389273270964622, -0.008658659644424915, -0.008203678764402866, 0.10298965871334076, 0.21616137027740479, 0.03994576260447502, -0.054470960050821304, -0.08499068021774292, 0.0913616344332695, 0.08506312966346741, -0.10042417794466019, 0.02490173652768135, -0.07537262886762619, 0.0021152514964342117, -0.02643641270697117, -0.09620465338230133, 0.12087579071521759, -0.08887985348701477, -0.017707359045743942, -0.031239140778779984, 0.03664955869317055, 0.049094971269369125, -0.010974528267979622, 0.03943789005279541, 0.05160381644964218, -0.05038868263363838, -0.0705999955534935, -0.061669833958148956, 0.007104175165295601, 0.025962479412555695, 0.06572678685188293, -0.06510182470083237, -0.11179383099079132, -0.018486900255084038, -0.00727501418441534, 0.19197943806648254, 0.04558764025568962, -0.030051931738853455, 0.04531784728169441, 0.2489137053489685, -0.054947998374700546, -0.29156622290611267, 0.009547683410346508, 0.009446229785680771, 0.023460503667593002, -0.0766717717051506, -0.19566842913627625, 0.17052364349365234, -0.007525958586484194, -0.016489723697304726, -0.07750694453716278, -0.17193113267421722, -0.07709954679012299, 0.1426052749156952, 0.07172548025846481, 0.33706238865852356, -0.12969212234020233, -0.03188150003552437, -0.10167581588029861, -0.1873307228088379, 0.15106184780597687, -0.274742066860199, 0.09635471552610397, 0.011266041547060013, 0.04751981794834137, 0.00822808500379324, -0.07192611694335938, 0.024416696280241013, 0.006122959777712822, 0.00723280617967248, -0.06507054716348648, -0.09239859879016876, 0.0681752935051918, 0.024944644421339035, 0.06298680603504181, 0.059926267713308334, 0.0472266748547554, -0.005283766891807318, -0.005570084322243929, -0.11169492453336716, 0.07607576251029968, 0.015678664669394493, -0.11391231417655945, 0.026529164984822273, 0.080848328769207, 0.01594620756804943, 0.04535247012972832, 0.2131674587726593, -0.043003425002098083, 0.08070575445890427, 0.17054927349090576, 0.008666139096021652, -0.08045496791601181, 0.1539069265127182, 0.07018351554870605, -0.025360964238643646, 0.12505851686000824, -0.14340855181217194, 0.03696443885564804, 0.008868700824677944, 0.03521302342414856, 0.07270246744155884, 0.05171230807900429, -0.054671041667461395, 0.0026191812939941883, 0.04694049432873726, -0.14801476895809174, 0.028237244114279747, 0.01889910362660885, -0.03852554038167, -0.004990478977560997, 0.07017682492733002, 0.20051336288452148, -0.07391969114542007, -0.06396558880805969, -0.01148091722279787, 0.03718283027410507, -0.09711634367704391, 0.10698482394218445, 0.06547877937555313, 0.013329563662409782, -0.14470116794109344, 0.05545609071850777, 0.10725128650665283, 0.05386386439204216, 0.0478677861392498, 0.17425385117530823, -0.12928298115730286, -0.09958059340715408, 0.012656639330089092, 0.1680082231760025, -0.025739898905158043, -0.039597976952791214, -0.10515981912612915, -0.0403626374900341, -0.016374146565794945, 0.12764005362987518, 0.0908525288105011, -0.005231718998402357, -0.02035779319703579, -0.004078959114849567, -0.07959030568599701, -0.0023702499456703663, 0.025971781462430954, 0.045091304928064346, -0.027008699253201485, 0.06810984015464783, 0.001133400946855545, 0.08408277481794357, -0.07113633304834366, -0.0382210873067379, -0.18431870639324188, 0.03958549723029137, -0.013665393926203251, 0.04542574658989906, -0.07809238880872726, -0.03465088829398155, -0.022047679871320724, -0.04485218971967697, -0.04434987157583237, 0.05254068225622177, -0.03484005853533745, -0.011074097827076912, -0.04573288932442665, 0.007397230714559555, -0.0670311227440834, -0.02390221506357193, 0.049135152250528336, -0.01890493556857109, 0.07749170064926147, 0.043158650398254395, -0.08587582409381866, 0.041032806038856506, -0.2320246398448944, -0.06454666703939438, 0.06919350475072861, -0.023079561069607735, 0.08660407364368439, 0.007099951151758432, -0.011666371487081051, 0.03679302707314491, 0.11002195626497269, -0.02706320397555828, 0.18132764101028442, -0.10965736955404282, 0.03037579543888569, -0.007343287579715252, -0.08458832651376724, -0.031059937551617622, 0.019614987075328827, 0.09981340914964676, 0.06532828509807587, 0.1298442780971527, -0.06885266304016113, 0.05966969206929207, -0.0584455244243145, -0.010792308486998081, -0.01403727289289236, -0.11970803886651993, -0.09876357764005661, -0.03754844889044762, 0.03003385104238987, -0.07182512432336807, 0.04546498507261276, 0.0956072136759758, 0.050043750554323196, 0.004597799386829138, -0.007720163557678461, -0.029609009623527527, 0.0286336038261652, 0.07691338658332825, 0.06058516725897789, -0.024376319721341133, 0.009598989970982075, 0.06083275377750397, 0.06365051865577698, 0.12271935492753983, 0.0346653014421463, 0.14670585095882416, 0.21403633058071136, 0.08826258033514023, 0.02585739456117153, 0.0790427029132843, -0.022380752488970757, 0.008576499298214912, -0.004913334734737873, 0.0725727379322052, -0.022990889847278595, -0.024565543979406357, 0.15318965911865234, -0.046764079481363297, 0.020208386704325676, -0.0006368669564835727, -0.09023477137088776, -0.11318652331829071, -0.14760816097259521, -0.1222798079252243, -0.041450146585702896, 0.0015375176444649696, -0.11217409372329712, -0.0031554829329252243, 0.04340003430843353, -0.006695893593132496, -0.02944074012339115, 0.13135291635990143, 0.12984593212604523, -0.0846194326877594, 0.04762949422001839, -0.0264186579734087, 0.040326543152332306, 0.06737161427736282, -0.004050151444971561, -0.020949460566043854, 0.11928268522024155, 0.039915263652801514, 0.03345056250691414, 0.040281571447849274, 0.038255877792835236, -0.13516831398010254, -0.12284395843744278, -0.0320681557059288, 0.05260107293725014, -0.024974152445793152, 0.07648417353630066, 0.06631960719823837, -0.06071529537439346, 0.053402017802000046, 0.22535336017608643, -0.024452388286590576, -0.14226751029491425, -0.13340388238430023, 0.18774500489234924, 0.06462978571653366, 0.019488343968987465, -0.04252646118402481, -0.05175762623548508, -0.0936642661690712, 0.2350962609052658, 0.27723637223243713, -0.03431309014558792, 0.010821903124451637, 0.03750356659293175, 0.0006005713948979974, -0.01589112915098667, 0.15416480600833893, 0.11267710477113724, 0.17187999188899994, -0.03931771591305733, 0.004658845253288746, -0.036629971116781235, -0.08445826917886734, -0.1570972055196762, -0.093813955783844, 0.045355234295129776, -0.03738138824701309, -0.008306573145091534, 0.0704268142580986, -0.18217621743679047, -0.1427130550146103, -0.022491125389933586, -0.18326209485530853, -0.12299001961946487, -0.05391280725598335, 0.034621722996234894, 0.05581985414028168, 0.10129375755786896, -0.015962326899170876, 0.03188302367925644, 0.013467862270772457, 0.005040144082158804, -0.015841353684663773, -0.09052032977342606, 0.08957117050886154, -0.1651410013437271, 0.08089219033718109, -0.05076277256011963, 0.049907486885786057, 0.08829474449157715, 0.03570778667926788, -0.04835730418562889, 0.0824204534292221, -0.02096063829958439, 0.021446412429213524, 0.03812836855649948, 0.0767984390258789, -0.0701313316822052, 0.026864485815167427, 0.03806615248322487, -0.13549205660820007, -0.008126622065901756, -0.025476772338151932, 0.021115822717547417, -0.11442550271749496, 0.021757639944553375, -0.13132835924625397, 0.08020532876253128, 0.1585553139448166, -0.04154859483242035, 0.002716782269999385, -0.09410855919122696, 0.027472293004393578, 0.002579732332378626, -0.05225277692079544, -0.15222148597240448, -0.17444010078907013, -0.056699808686971664, 0.07835253328084946, 0.06140270084142685, -0.18799200654029846, 0.07242404669523239, -0.10619702935218811, -0.010244730859994888, -0.08109861612319946, 0.03794485703110695, 0.07628941535949707, 0.03843041509389877, -0.005376175977289677, -0.10577783733606339, 0.021051742136478424, 0.07418961077928543, -0.1472705602645874, -0.16977961361408234 ]
null
null
transformers
# roberta-javascript --- language: javascript datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **javascript** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-javascript") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-javascript") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Java code. ```python code = """ var i; for (i = 0; i < cars.<mask>; i++) { text += cars[i] + "<br>"; } """.lstrip() pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) # [('length', 0.9959614872932434), # ('i', 0.00027875584783032537), # ('len', 0.0002283261710545048), # ('nodeType', 0.00013731322542298585), # ('index', 7.5289819505997e-05)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
fill-mask
dbernsohn/roberta-javascript
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[]
TAGS #transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
# roberta-javascript --- language: javascript datasets: - code_search_net --- This is a roberta pre-trained version on the CodeSearchNet dataset for javascript Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to fill masked words in a Java code. The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# roberta-javascript\n---\nlanguage: javascript\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for javascript Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-javascript\n---\nlanguage: javascript\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for javascript Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ 48, 107 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-javascript\n---\nlanguage: javascript\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for javascript Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ -0.021204113960266113, 0.09275151044130325, -0.003217794233933091, 0.07150735706090927, 0.19947318732738495, -0.01714131608605385, 0.04341953620314598, 0.05671638622879982, -0.038225844502449036, -0.022153392434120178, 0.11223259568214417, 0.1233050525188446, -0.008622469380497932, 0.19419200718402863, -0.013605130836367607, -0.22109457850456238, 0.025134721770882607, -0.007340539246797562, 0.00017104283324442804, 0.11782152950763702, 0.09934902936220169, -0.028725983574986458, 0.09740156680345535, 0.007619889453053474, -0.20330554246902466, 0.036639779806137085, 0.005104790907353163, -0.10760470479726791, 0.07964726537466049, -0.00497259758412838, 0.1354207545518875, -0.01377154141664505, 0.010861766524612904, -0.050212230533361435, 0.051059603691101074, 0.07838905602693558, 0.00827439408749342, 0.058906592428684235, -0.0558909997344017, -0.06991036981344223, 0.045577242970466614, -0.038634028285741806, 0.004293729085475206, 0.05044334754347801, -0.14280347526073456, -0.06018794700503349, 0.017537279054522514, -0.10335877537727356, 0.07574436813592911, 0.1286327987909317, 0.00012343381240498275, 0.19418449699878693, -0.06509587913751602, 0.13709260523319244, 0.19752514362335205, -0.20236387848854065, -0.08052246272563934, 0.07493414729833603, 0.046008747071027756, 0.004919164814054966, -0.013610296882689, -0.0005507679306901991, 0.01611112244427204, 0.033557645976543427, 0.07618962973356247, -0.13926349580287933, -0.2705914378166199, -0.07136022299528122, -0.0914490669965744, 0.012407100759446621, 0.13219691812992096, -0.04523159936070442, -0.03161178529262543, 0.05665110424160957, -0.143421471118927, 0.1258833110332489, -0.033437520265579224, 0.05565483868122101, 0.0018286026315763593, 0.039283860474824905, -0.11002805829048157, -0.0827011838555336, -0.04868664965033531, -0.053331658244132996, -0.10936904698610306, 0.2182426005601883, -0.006932555697858334, 0.048998672515153885, -0.1740865856409073, 0.009287724271416664, -0.04980534687638283, -0.1739543229341507, -0.002250302815809846, -0.06789384037256241, 0.010692361742258072, 0.00660880608484149, -0.04332109913229942, -0.14531201124191284, 0.14629597961902618, 0.13817854225635529, -0.025517955422401428, 0.053197428584098816, -0.0807897225022316, 0.02588776871562004, 0.02400178462266922, 0.12466422468423843, -0.0194866843521595, -0.10483618080615997, 0.1183137595653534, -0.07805845141410828, 0.052314601838588715, -0.03800192102789879, -0.10561610758304596, -0.016749417409300804, -0.008301785215735435, 0.03592343255877495, 0.04087081179022789, 0.11611650884151459, -0.017187532037496567, -0.012878479436039925, 0.05246901884675026, -0.12316028773784637, -0.02746076136827469, -0.005748795345425606, -0.00774998776614666, -0.05194136127829552, 0.07416980713605881, 0.01028477493673563, -0.08261080086231232, -0.04827503114938736, -0.07354534417390823, 0.02855089120566845, -0.08304359763860703, -0.12488327920436859, -0.005670332349836826, -0.145757794380188, 0.03210729360580444, -0.1786918342113495, -0.1365191787481308, -0.03177957236766815, 0.06934749335050583, -0.007295283023267984, 0.02244621329009533, -0.047360870987176895, -0.07398667186498642, -0.023983482271432877, -0.017467183992266655, 0.04294157400727272, -0.026221610605716705, 0.058927033096551895, 0.06514152884483337, 0.1049690991640091, -0.13056187331676483, 0.027655551210045815, -0.19907993078231812, -0.02533433400094509, -0.23952165246009827, 0.06432638317346573, -0.006329279858618975, 0.13077063858509064, -0.12559300661087036, -0.03262998163700104, -0.016419874504208565, 0.03512318804860115, 0.07714885473251343, 0.12072330713272095, -0.11705320328474045, -0.03842804208397865, 0.19995838403701782, -0.09006199985742569, -0.07132481783628464, 0.08033827692270279, -0.06621845066547394, 0.13212309777736664, 0.09714500606060028, 0.18080399930477142, 0.08288439363241196, -0.024088604375720024, 0.08844123035669327, 0.049287933856248856, -0.06354618817567825, -0.08185181766748428, 0.019487431272864342, 0.015533899888396263, -0.03938313201069832, 0.04594320058822632, -0.05787775665521622, 0.09767274558544159, -0.016719313338398933, -0.03085918538272381, 0.00334906205534935, -0.05299799516797066, -0.0035587670281529427, 0.04701457917690277, 0.061854664236307144, -0.03278981149196625, -0.037394993007183075, -0.061063531786203384, 0.048198893666267395, -0.06275150179862976, 0.03240220248699188, -0.07060640305280685, -0.008171516470611095, -0.022972526028752327, 0.03527834266424179, -0.18952134251594543, -0.008256887085735798, -0.006783723831176758, 0.07472645491361618, 0.047215595841407776, -0.09137068688869476, 0.042908553034067154, -0.007607957813888788, 0.033804163336753845, 0.006180343683809042, 0.04332481697201729, -0.004276995547115803, -0.003513934789225459, -0.12388626486063004, -0.015248347073793411, -0.06436105817556381, 0.06797955185174942, -0.03622659295797348, 0.016754338517785072, -0.10487096756696701, 0.08430633693933487, 0.016126956790685654, -0.0005245383945293725, 0.02963748387992382, 0.03159438073635101, -0.04491664096713066, -0.05239730328321457, 0.031896691769361496, 0.041472289711236954, -0.04776660352945328, 0.051460739225149155, -0.027119062840938568, -0.030174221843481064, 0.11755544692277908, -0.2391868680715561, -0.03207109868526459, 0.12679637968540192, -0.012525641359388828, 0.030690159648656845, -0.016290241852402687, 0.018641306087374687, 0.15359503030776978, -0.0015255061443895102, 0.1290622502565384, -0.06110066547989845, 0.05938377603888512, 0.03196157142519951, -0.13174571096897125, 0.04661938175559044, 0.038924578577280045, 0.05106241628527641, -0.18768393993377686, 0.06797533482313156, 0.06777869164943695, -0.11539211124181747, 0.18878521025180817, 0.014820758253335953, 0.02911461889743805, -0.008761021308600903, -0.010519368574023247, -0.01806720159947872, -0.04798977077007294, -0.20559024810791016, -0.08757119625806808, 0.024597324430942535, -0.038698405027389526, 0.036481451243162155, -0.05464724078774452, -0.00013802561443299055, -0.044387929141521454, 0.024925244972109795, -0.014558163471519947, 0.029299616813659668, -0.012005715630948544, 0.03244074806571007, 0.04296735301613808, -0.10061946511268616, 0.05845591798424721, -0.010912096127867699, -0.048239219933748245, 0.21884222328662872, -0.08560318499803543, -0.2421436905860901, -0.09754911065101624, -0.07312509417533875, -0.03445909544825554, 0.039187461137771606, 0.05388738587498665, -0.13146594166755676, -0.03483348339796066, -0.016020609065890312, 0.02008901722729206, 0.020921451970934868, 0.012393982149660587, 0.03258652985095978, 0.037098079919815063, -0.02033492922782898, -0.11406195908784866, -0.037026166915893555, -0.061282217502593994, -0.10579999536275864, 0.09564303606748581, -0.10055752098560333, 0.11747989803552628, 0.09605347365140915, -0.0037480592727661133, 0.041523344814777374, 0.0040657962672412395, 0.19391483068466187, -0.060844648629426956, 0.04374097287654877, 0.21680337190628052, -0.030327364802360535, 0.023351142182946205, 0.12583598494529724, -0.00942332111299038, -0.08260183781385422, 0.07780248671770096, -0.024577578529715538, -0.11336829513311386, -0.1718243807554245, -0.07607043534517288, -0.10598038882017136, -0.008780181407928467, 0.015348512679338455, 0.007869306951761246, -0.02541091851890087, 0.06496916711330414, 0.011466652154922485, 0.051985472440719604, 0.004022992681711912, 0.10221781581640244, 0.015573732554912567, 0.02347167767584324, 0.11052890121936798, -0.01635231077671051, -0.08972062170505524, -0.004714696668088436, -0.004838168155401945, 0.15882046520709991, -0.014993442222476006, 0.14047780632972717, 0.06408865004777908, 0.052764616906642914, 0.03757148236036301, 0.06800884008407593, -0.038447462022304535, 0.012032303027808666, -0.03612072020769119, -0.06874270737171173, -0.09023916721343994, -0.010406029410660267, -0.10480460524559021, -0.0025311203207820654, 0.0051318565383553505, 0.09549732506275177, 0.0647600069642067, 0.15886546671390533, 0.0469106025993824, -0.2871047556400299, -0.05830980837345123, 0.020750733092427254, 0.008203131146728992, -0.05317419394850731, 0.045992057770490646, 0.012728742323815823, -0.08781597763299942, 0.0420803539454937, 0.0001458355109207332, 0.10258356481790543, 0.0011721575865522027, 0.06921663880348206, -0.03618384152650833, 0.09572562575340271, 0.024960698559880257, 0.06466150283813477, -0.2682470679283142, 0.1885657161474228, 0.009954127483069897, 0.09686587005853653, -0.06749856472015381, 0.01345327403396368, -0.0015444912714883685, 0.017039673402905464, 0.10582583397626877, 0.013487191870808601, 0.08465948700904846, -0.05654172971844673, 0.0028930632397532463, 0.07940490543842316, 0.07657415419816971, -0.004207741003483534, 0.04865892231464386, 0.009339623153209686, -0.04389889910817146, -0.018725251778960228, 0.022482069209218025, -0.11395952105522156, -0.05246458202600479, -0.004649988375604153, 0.08642589300870895, -0.048717860132455826, 0.009497620165348053, 0.009150553494691849, 0.06742605566978455, 0.1909005045890808, 0.028695017099380493, -0.06333526223897934, -0.07960432022809982, 0.09172170609235764, 0.059868015348911285, -0.12125563621520996, 0.03951837867498398, -0.08628232777118683, -0.002633184427395463, -0.030269211158156395, -0.1327364444732666, 0.11843960732221603, -0.09695665538311005, -0.011846892535686493, -0.03228496015071869, 0.07357723265886307, 0.05152128264307976, -0.015734076499938965, 0.0452314130961895, 0.0449431836605072, -0.06122204661369324, -0.07635106146335602, -0.043723251670598984, -0.016340628266334534, 0.032976482063531876, 0.08844155818223953, -0.03517191484570503, -0.13208627700805664, -0.02722523920238018, 0.05876893922686577, 0.1764526069164276, 0.04987156018614769, -0.034636180847883224, 0.014529653824865818, 0.22864462435245514, -0.04831680655479431, -0.28481170535087585, 0.030064936727285385, 0.01320323720574379, 0.009546476416289806, -0.06334712356328964, -0.21208296716213226, 0.1764102429151535, -0.04666755348443985, -0.017620645463466644, -0.050815630704164505, -0.19284094870090485, -0.06215030327439308, 0.14361602067947388, 0.04542303457856178, 0.31348922848701477, -0.1181497871875763, -0.020620448514819145, -0.09993322938680649, -0.17873020470142365, 0.14579367637634277, -0.33276331424713135, 0.08359302580356598, 0.027429724112153053, 0.04683869332075119, 0.009792101569473743, -0.07718327641487122, 0.0016684927977621555, 0.04166301339864731, 0.01966441050171852, -0.04999193921685219, -0.10446008294820786, 0.1161704733967781, 0.01444893330335617, 0.05702284350991249, 0.05271977558732033, 0.05394955351948738, 0.014127775095403194, -0.003554259892553091, -0.12169439345598221, 0.09680042415857315, 0.02086910419166088, -0.09180501103401184, 0.012503152713179588, 0.05282094329595566, 0.008572511374950409, 0.063197061419487, 0.22336681187152863, -0.04189787432551384, 0.06879507750272751, 0.1691136211156845, 0.03694073110818863, -0.08584754168987274, 0.13481169939041138, 0.06491003930568695, -0.03281090036034584, 0.1170818880200386, -0.14852015674114227, 0.0488593727350235, 0.006580896209925413, 0.04528193175792694, 0.05599267780780792, 0.06533006578683853, -0.055068742483854294, 0.029726672917604446, 0.040814176201820374, -0.1353229135274887, 0.023140937089920044, -0.0015097883297130466, -0.09769278019666672, -0.04065448418259621, 0.09351667016744614, 0.20379014313220978, -0.03403616324067116, -0.059210531413555145, -0.01707163266837597, 0.016814738512039185, -0.09339236468076706, 0.08740483969449997, 0.07617942988872528, 0.004781664349138737, -0.14204281568527222, 0.04102620109915733, 0.08141780644655228, 0.06465817987918854, 0.036276690661907196, 0.15244324505329132, -0.13381406664848328, -0.10153518617153168, -0.00046760181430727243, 0.20101763308048248, -0.03357592597603798, -0.02616676315665245, -0.11668851971626282, -0.025150014087557793, -0.019506214186549187, 0.12978024780750275, 0.09119050949811935, -0.007136228494346142, -0.022972362115979195, 0.013971616514027119, -0.07425416260957718, 0.005516969133168459, 0.03373649716377258, 0.029352305456995964, -0.028095362707972527, 0.09556128829717636, 0.0017415614565834403, 0.1052565798163414, -0.07085657119750977, -0.0406273752450943, -0.16995035111904144, 0.05742058530449867, -0.028801204636693, 0.033891819417476654, -0.08848901093006134, -0.024357693269848824, -0.03910774737596512, -0.028965400531888008, -0.05853721871972084, 0.0533248670399189, -0.036069247871637344, -0.016973840072751045, -0.01919933594763279, 0.00932482909411192, -0.09554804116487503, -0.0057646664790809155, 0.0409381203353405, -0.02605486288666725, 0.07872539013624191, 0.0505492240190506, -0.07938215136528015, 0.06003597378730774, -0.24867483973503113, -0.09395622462034225, 0.06767157465219498, -0.017587803304195404, 0.07217341661453247, 0.06028337776660919, 0.008092077448964119, 0.03231120854616165, 0.12107335776090622, -0.036454249173402786, 0.163503497838974, -0.09684429317712784, 0.046134404838085175, 0.0006165452068671584, -0.08043555915355682, -0.040373437106609344, 0.0310443714261055, 0.07955193519592285, 0.0660085529088974, 0.14687460660934448, -0.06876502186059952, 0.06920511275529861, -0.0940646231174469, -0.016455143690109253, -0.010005971416831017, -0.10959987342357635, -0.10489119589328766, -0.05551256611943245, 0.048658013343811035, -0.07544134557247162, 0.04342108219861984, 0.10099751502275467, 0.09531426429748535, -0.00022222523693926632, 0.03659839183092117, 0.0011629529763013124, 0.02110939845442772, 0.04394475743174553, 0.060798488557338715, -0.036850783973932266, 0.015623797662556171, 0.05602026358246803, 0.09257952868938446, 0.12201030552387238, 0.07774795591831207, 0.12181364744901657, 0.19626201689243317, 0.09917393326759338, 0.009884720668196678, 0.07182270288467407, -0.051951922476291656, -0.031122609972953796, 0.00006267034768825397, 0.06526265293359756, -0.029557621106505394, -0.05353869870305061, 0.1660580188035965, -0.025177475064992905, 0.0039512082003057, 0.020404959097504616, -0.07577452063560486, -0.1292225569486618, -0.13672073185443878, -0.12000803649425507, -0.045319072902202606, 0.0157104954123497, -0.09540989249944687, -0.017998013645410538, 0.042128339409828186, -0.02794826216995716, -0.025670768693089485, 0.16160842776298523, 0.14182806015014648, -0.09898063540458679, 0.05640547350049019, -0.0424685999751091, 0.04166153073310852, 0.1128740981221199, -0.012982972897589207, -0.014067232608795166, 0.07941567152738571, 0.053962089121341705, 0.033367786556482315, 0.018048767000436783, 0.05835440009832382, -0.15466304123401642, -0.13441963493824005, -0.037624478340148926, 0.07679291814565659, -0.02329566702246666, 0.07868514209985733, 0.06278754025697708, -0.049618370831012726, 0.041310250759124756, 0.19671131670475006, -0.024311194196343422, -0.12121475487947464, -0.13433308899402618, 0.18692557513713837, 0.0650521069765091, 0.017909623682498932, -0.05751452594995499, -0.06220732256770134, -0.07698522508144379, 0.2267276644706726, 0.2777416706085205, -0.054657984524965286, 0.02256268449127674, 0.018899044021964073, 0.0015133563429117203, 0.0035572394262999296, 0.17410781979560852, 0.09212514013051987, 0.18311595916748047, -0.03768368437886238, -0.02599242329597473, -0.024430032819509506, -0.08532461524009705, -0.14785604178905487, -0.0755646824836731, 0.03418855369091034, -0.031367506831884384, -0.005353630054742098, 0.08131729811429977, -0.18912382423877716, -0.10551362484693527, -0.02072007954120636, -0.16919472813606262, -0.10481860488653183, -0.040501706302165985, 0.024934014305472374, 0.08389490097761154, 0.1246800422668457, -0.023280519992113113, 0.007117203902453184, 0.016807664185762405, -0.009433310478925705, -0.03501086309552193, -0.0766579881310463, 0.07902263104915619, -0.19514869153499603, 0.0914987325668335, -0.04985297843813896, 0.056982364505529404, 0.09947824478149414, 0.04677114635705948, -0.03827415034174919, 0.0683555081486702, -0.014787619933485985, 0.03777628764510155, 0.05699539929628372, 0.04410286247730255, -0.06486959010362625, 0.008212548680603504, 0.0415465421974659, -0.11752883344888687, 0.011839807033538818, -0.03166310861706734, 0.011115042492747307, -0.13926509022712708, 0.012350392527878284, -0.1301461011171341, 0.0726601704955101, 0.1308286190032959, -0.042479462921619415, 0.00852468516677618, -0.07092080265283585, 0.011681800708174706, 0.026390984654426575, -0.033499326556921005, -0.17480070888996124, -0.16109201312065125, -0.05457485094666481, 0.08743608742952347, 0.046017181128263474, -0.16280320286750793, 0.08077558130025864, -0.10603435337543488, 0.0004730651853606105, -0.08723561465740204, 0.039054594933986664, 0.0648135095834732, 0.021216129884123802, -0.0007743007154203951, -0.09094733744859695, 0.03132041171193123, 0.09273544698953629, -0.17130595445632935, -0.16950629651546478 ]
null
null
transformers
# roberta-php --- language: php datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **php** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-php") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-php") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Java code. ```python code = """ $people = array( array('name' => 'Kalle', 'salt' => 856412), array('name' => 'Pierre', 'salt' => 215863) ); for($i = 0; $i < count($<mask>); ++$i) { $people[$i]['salt'] = mt_rand(000000, 999999); } """.lstrip() pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) # [('people', 0.785636842250824), # ('parts', 0.006270722020417452), # ('id', 0.0035842324141412973), # ('data', 0.0025512021966278553), # ('config', 0.002258970635011792)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
fill-mask
dbernsohn/roberta-php
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[]
TAGS #transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #has_space #region-us
# roberta-php --- language: php datasets: - code_search_net --- This is a roberta pre-trained version on the CodeSearchNet dataset for php Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to fill masked words in a Java code. The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# roberta-php\n---\nlanguage: php\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for php Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# roberta-php\n---\nlanguage: php\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for php Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ 52, 108 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# roberta-php\n---\nlanguage: php\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for php Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Java code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ -0.03928283229470253, 0.14113371074199677, -0.002213847590610385, 0.07805224508047104, 0.16425585746765137, -0.0026973411440849304, 0.05445015802979469, 0.04641445726156235, -0.09132691472768784, -0.005534591618925333, 0.13790641725063324, 0.08034881949424744, -0.02450426109135151, 0.19007337093353271, 0.000443186960183084, -0.22025105357170105, 0.058912452310323715, 0.018909258767962456, -0.09848690032958984, 0.11876195669174194, 0.09590515494346619, -0.0583823136985302, 0.07812856137752533, 0.0050843749195337296, -0.1596856266260147, 0.03723280504345894, -0.03329837694764137, -0.08635197579860687, 0.07771628350019455, -0.021686403080821037, 0.1539030373096466, -0.01982598938047886, 0.021163465455174446, -0.05689455196261406, 0.04411349073052406, 0.0681769922375679, -0.006182536017149687, 0.06214933842420578, -0.04961707070469856, -0.019337069243192673, -0.036941833794116974, -0.056566283106803894, 0.028779761865735054, 0.02306564524769783, -0.11513462662696838, -0.12208306044340134, 0.016024893149733543, -0.05579453706741333, 0.05494501069188118, 0.1284460574388504, 0.0073269749991595745, 0.16490334272384644, -0.07430443167686462, 0.10120058059692383, 0.19127178192138672, -0.21189792454242706, -0.07467024028301239, 0.12165237218141556, 0.03901807218790054, 0.010394766926765442, -0.010455993935465813, -0.0036910707131028175, 0.0032535416539758444, 0.026409009471535683, 0.07965131849050522, -0.12149014323949814, -0.18541954457759857, -0.04253759607672691, -0.11053184419870377, -0.009541799314320087, 0.16221261024475098, -0.0417182631790638, 0.0028490510303527117, 0.04108403995633125, -0.14250655472278595, 0.08897470682859421, -0.04953543841838837, 0.023708896711468697, 0.03965011611580849, 0.042515553534030914, -0.09146887809038162, -0.09254712611436844, -0.06852426379919052, -0.07029148936271667, -0.0960288941860199, 0.19050924479961395, 0.0228263009339571, 0.03831253945827484, -0.1534719318151474, 0.021908817812800407, -0.038575079292058945, -0.13315479457378387, 0.008571619167923927, -0.04206358268857002, 0.021576454862952232, 0.05093975365161896, -0.08032863587141037, -0.1636742651462555, 0.1538771390914917, 0.14797990024089813, -0.05269563943147659, 0.05638481304049492, -0.011582874692976475, 0.02468547597527504, -0.0066101811826229095, 0.11945807188749313, -0.04499526694417, -0.09541302174329758, 0.09201814234256744, -0.0930914357304573, 0.021017346531152725, -0.022914765402674675, -0.09870348870754242, -0.020720673725008965, 0.017488699406385422, 0.007119186222553253, 0.04185684397816658, 0.13180777430534363, -0.00004152153996983543, -0.012135407887399197, 0.013637023977935314, -0.12544400990009308, -0.012601220048964024, -0.005049482453614473, 0.02442818135023117, -0.0639301985502243, 0.08533792942762375, -0.006862570531666279, -0.10808724910020828, -0.00624192925170064, -0.06725304573774338, -0.005905755329877138, -0.0807199478149414, -0.12736135721206665, 0.004832238424569368, -0.12329620122909546, 0.01059645600616932, -0.17080654203891754, -0.11049784719944, -0.037733547389507294, 0.09764799475669861, -0.0029763865750283003, 0.01148728746920824, -0.035501882433891296, -0.05348876491189003, -0.00878838635981083, -0.025597918778657913, 0.0726846382021904, -0.036842118948698044, 0.03566398471593857, 0.03147319331765175, 0.1071942001581192, -0.16198468208312988, 0.0368797592818737, -0.1503305435180664, -0.02367011457681656, -0.19592373073101044, 0.03702077269554138, -0.026856454089283943, 0.0942002609372139, -0.13647596538066864, -0.05847339332103729, -0.03349023312330246, 0.04690100997686386, 0.08448634296655655, 0.12253211438655853, -0.09623879194259644, -0.015313737094402313, 0.2270055115222931, -0.08402963727712631, -0.06469547748565674, 0.05177357792854309, -0.06249188259243965, 0.15161752700805664, 0.06698071956634521, 0.20419059693813324, 0.04932457581162453, -0.033182915300130844, 0.1246441900730133, 0.03998083993792534, -0.022798821330070496, -0.11891860514879227, 0.03719012066721916, -0.00767596485093236, -0.04284970834851265, 0.05733412131667137, -0.08440523594617844, 0.039584431797266006, -0.008608309552073479, -0.04907990247011185, 0.0013968099374324083, -0.060689542442560196, 0.007820169441401958, 0.03182082623243332, 0.0981193408370018, -0.02211393602192402, -0.032322145998477936, 0.013483807444572449, 0.05322510376572609, -0.07785689830780029, 0.055000461637973785, -0.05392483249306679, 0.0020255025010555983, -0.03333470970392227, 0.0433925986289978, -0.19612926244735718, -0.005536639131605625, -0.03391074016690254, 0.05906587094068527, 0.05919073894619942, -0.03558045253157616, 0.060669057071208954, -0.04558948799967766, 0.019956380128860474, 0.02305028587579727, 0.03809376433491707, 0.02629699558019638, -0.04288339987397194, -0.10621638596057892, 0.0005177779821678996, -0.051617447286844254, 0.10034053772687912, -0.05343690142035484, 0.01866951584815979, -0.07047201693058014, 0.06392670422792435, -0.018406294286251068, -0.0019128144485875964, 0.01034619566053152, 0.02923811972141266, -0.02164727821946144, -0.030192671343684196, 0.04554089158773422, 0.049734268337488174, -0.04137975722551346, 0.042043253779411316, -0.012650822289288044, 0.01952221617102623, 0.14213807880878448, -0.23458139598369598, -0.033585794270038605, 0.07575133442878723, -0.013190318830311298, 0.0232109222561121, 0.02311442233622074, 0.01765209622681141, 0.11671188473701477, -0.0018906749319285154, 0.14200769364833832, -0.07540415227413177, 0.0425536185503006, 0.033075474202632904, -0.11686798185110092, 0.053945716470479965, 0.059192948043346405, 0.026202794164419174, -0.11973395198583603, 0.09089061617851257, 0.11114435642957687, -0.13166633248329163, 0.11584220081567764, -0.003010221989825368, 0.012401388958096504, -0.008419502526521683, -0.012481075711548328, -0.012973640114068985, -0.012724444270133972, -0.22395578026771545, -0.0737028494477272, 0.04515441134572029, -0.018131278455257416, 0.04116232320666313, -0.08652809262275696, 0.009219360537827015, -0.02564510703086853, 0.013106592930853367, -0.0003579720505513251, 0.022410014644265175, -0.023990340530872345, 0.036545947194099426, 0.062310270965099335, -0.08780982345342636, 0.060796916484832764, -0.004624043125659227, -0.04466864466667175, 0.22918692231178284, -0.09875631332397461, -0.267947256565094, -0.08667301386594772, -0.08946815878152847, -0.038342781364917755, 0.022212067618966103, 0.06914380937814713, -0.1598937064409256, -0.04005388915538788, -0.029109245166182518, -0.04650367796421051, -0.01125265471637249, 0.02984459511935711, 0.016090255230665207, 0.02797059342265129, 0.02038624696433544, -0.12279859185218811, -0.030239135026931763, -0.06656821817159653, -0.08965133130550385, 0.09097743034362793, -0.08011577278375626, 0.1108839213848114, 0.11792702972888947, -0.011248615570366383, 0.05721350014209747, 0.011158754117786884, 0.19390176236629486, -0.043370772153139114, 0.007581941783428192, 0.1844150424003601, -0.03067832998931408, 0.028853774070739746, 0.10662224143743515, 0.006778421811759472, -0.07822690159082413, 0.05900828540325165, -0.0035122977569699287, -0.10976708680391312, -0.18985432386398315, -0.11515086144208908, -0.09975021332502365, -0.06494908779859543, 0.05006379634141922, 0.050334908068180084, -0.014304772950708866, 0.07585828751325607, 0.03447873517870903, 0.025496698915958405, -0.009524154476821423, 0.09707584232091904, 0.09272446483373642, -0.008094246499240398, 0.10471790283918381, -0.02638821490108967, -0.09522313624620438, 0.020549362525343895, 0.02195640653371811, 0.15285414457321167, -0.00410805968567729, 0.09533269703388214, 0.08460766822099686, 0.08508322387933731, 0.016987010836601257, 0.08341404050588608, -0.027044769376516342, 0.03051292523741722, -0.04869522526860237, -0.06934719532728195, -0.061049215495586395, 0.01734122261404991, -0.10641063004732132, -0.04260427877306938, -0.012888804078102112, -0.00637726578861475, 0.044399965554475784, 0.19272054731845856, 0.03927955403923988, -0.2787804901599884, -0.04309357702732086, -0.008522296324372292, 0.00013973581371828914, -0.04860547557473183, 0.04874198138713837, -0.008900185115635395, -0.06862635165452957, 0.025882471352815628, -0.0034262435510754585, 0.11020804941654205, 0.011738747358322144, 0.06398414075374603, -0.03113255277276039, 0.04461382329463959, 0.03448087349534035, 0.06864248216152191, -0.23531174659729004, 0.23177599906921387, 0.005007673054933548, 0.060429200530052185, -0.07331662625074387, -0.013498781248927116, -0.022878799587488174, 0.011501546017825603, 0.09874609857797623, 0.024276655167341232, 0.11413377523422241, -0.04544507712125778, -0.010423892177641392, 0.08413830399513245, 0.07088761776685715, 0.017915815114974976, 0.03730002045631409, -0.00033258122857660055, -0.02471248432993889, 0.010671117343008518, 0.069725900888443, -0.06744705885648727, -0.08138343691825867, 0.004360686521977186, 0.11527267098426819, -0.054162099957466125, 0.0005208398215472698, -0.011498510837554932, 0.0007295480463653803, 0.21030575037002563, 0.04353437200188637, -0.05724388733506203, -0.09512661397457123, 0.06509128212928772, 0.07852690666913986, -0.11139146238565445, 0.08090484887361526, -0.0911155715584755, -0.03039228543639183, -0.014501407742500305, -0.1206771656870842, 0.11840707808732986, -0.0795668512582779, -0.01432092022150755, -0.027263609692454338, 0.038893286138772964, 0.03685572370886803, -0.005140053573995829, 0.04258235916495323, 0.04799419641494751, -0.09274100512266159, -0.07463178783655167, -0.0707879364490509, -0.01978158950805664, 0.08917679637670517, 0.04071628302335739, -0.05124018341302872, -0.03980078920722008, 0.0162552110850811, 0.03928987309336662, 0.21458013355731964, 0.07263033092021942, -0.060154322534799576, 0.027793128043413162, 0.22982776165008545, -0.05226412042975426, -0.34422746300697327, 0.004343191161751747, -0.009357853792607784, -0.01683589071035385, -0.07194814085960388, -0.18675631284713745, 0.18893277645111084, -0.02572043612599373, -0.04554136469960213, -0.09253523498773575, -0.17034056782722473, -0.08780597895383835, 0.16659574210643768, 0.06013452261686325, 0.3234447240829468, -0.150315523147583, -0.006634114775806665, -0.10031073540449142, -0.17578093707561493, 0.12451283633708954, -0.30832943320274353, 0.09822675585746765, 0.023894978687167168, 0.04749636352062225, -0.00507800467312336, -0.08583835512399673, 0.03538640961050987, 0.02137233503162861, 0.01853327453136444, -0.06482359021902084, -0.06041364371776581, 0.11170664429664612, -0.004984661936759949, 0.05986924469470978, 0.05850541219115257, 0.05657639726996422, -0.018649719655513763, -0.01514799240976572, -0.09983305633068085, 0.05763363093137741, 0.021676938980817795, -0.08837921172380447, -0.013991910964250565, 0.04602804780006409, 0.04690655320882797, 0.0479566790163517, 0.18661415576934814, -0.033481523394584656, 0.0404554046690464, 0.1712764948606491, 0.0006904329638928175, -0.11280064284801483, 0.030805198475718498, 0.07124854624271393, -0.041163478046655655, 0.12070837616920471, -0.17532382905483246, 0.053591758012771606, 0.013446572236716747, 0.03898647427558899, 0.03836307302117348, 0.073502317070961, -0.03526030108332634, -0.014530283398926258, 0.04851720109581947, -0.14224743843078613, -0.03456806018948555, 0.03010638989508152, -0.122399240732193, -0.052904535084962845, 0.11102870851755142, 0.18479974567890167, -0.046183302998542786, -0.042074352502822876, -0.008475534617900848, 0.01329741720110178, -0.1097315102815628, 0.140743225812912, 0.09794509410858154, 0.002372296527028084, -0.14067330956459045, 0.037832796573638916, 0.08825542032718658, 0.03800355643033981, 0.06365036964416504, 0.11948656290769577, -0.11825859546661377, -0.0991770550608635, 0.056892797350883484, 0.12999165058135986, -0.018685881048440933, -0.05517886206507683, -0.10669568926095963, -0.026933513581752777, 0.010406436398625374, 0.0885666161775589, 0.11152758449316025, -0.022368958219885826, -0.00579952634871006, 0.009171477518975735, -0.04685356095433235, 0.00016592233441770077, 0.043636951595544815, 0.030061425641179085, -0.034664545208215714, 0.08120253682136536, -0.0036761669907718897, 0.08887351304292679, -0.07809716463088989, -0.04023326188325882, -0.19110330939292908, 0.06299915164709091, -0.049705494195222855, 0.02870820462703705, -0.05832177400588989, -0.03177235648036003, -0.024224434047937393, -0.0280165933072567, -0.045706454664468765, 0.06213676184415817, -0.04427915811538696, -0.016532741487026215, -0.02537274919450283, 0.014020432718098164, -0.10030847787857056, -0.0030654333531856537, 0.02815871685743332, 0.0014096898958086967, 0.06592165678739548, 0.034823477268218994, -0.10394556820392609, 0.04475087672472, -0.2640422582626343, -0.08411647379398346, 0.07230831682682037, 0.006088006775826216, 0.07559377700090408, 0.06281231343746185, 0.0007836465956643224, 0.051291923969984055, 0.12080532312393188, -0.014444908127188683, 0.1914365440607071, -0.08843286335468292, 0.020199911668896675, -0.08045436441898346, -0.07675722986459732, -0.01626519300043583, 0.004599074367433786, 0.09585703909397125, 0.0909019485116005, 0.13446594774723053, -0.064371757209301, 0.04039078950881958, -0.0848463699221611, -0.016913942992687225, -0.008980344980955124, -0.10092741996049881, -0.09159106761217117, -0.07609442621469498, 0.03546488657593727, -0.05723389610648155, 0.12439636141061783, 0.09463166445493698, 0.022206919267773628, 0.011318466626107693, 0.044364672154188156, 0.01116030290722847, 0.0013955715112388134, 0.09386757761240005, 0.06296827644109726, -0.031654126942157745, 0.020591864362359047, 0.07934094965457916, 0.08619677275419235, 0.17131993174552917, 0.03657446801662445, 0.1734319031238556, 0.18219918012619019, 0.10815058648586273, -0.011123966425657272, 0.08946344256401062, -0.03763245791196823, 0.0028742069844156504, -0.007175708655267954, 0.0956774353981018, -0.07271688431501389, 0.014854250475764275, 0.12756584584712982, -0.037772126495838165, 0.0294656902551651, -0.0037232921458780766, -0.0799616202712059, -0.12642362713813782, -0.1417839676141739, -0.13723747432231903, -0.06943739950656891, -0.008614558726549149, -0.08068397641181946, -0.03678456321358681, 0.10259280353784561, -0.0006581341149285436, -0.001680040848441422, 0.1610686331987381, 0.11793045699596405, -0.06437311321496964, 0.034879159182310104, -0.035997889935970306, 0.036113280802965164, 0.09008681029081345, -0.030831627547740936, -0.009272676892578602, 0.09695365279912949, 0.05823471397161484, 0.04116562753915787, 0.006661626044660807, 0.05125531181693077, -0.11807175725698471, -0.0961642861366272, -0.05535943806171417, 0.08832161873579025, 0.012829373590648174, 0.14169928431510925, 0.044654786586761475, -0.07520937919616699, 0.0350647047162056, 0.15473592281341553, -0.03218071162700653, -0.1492614895105362, -0.11685952544212341, 0.16948729753494263, 0.07014714926481247, 0.020496495068073273, -0.05076909810304642, -0.05941010266542435, -0.08172722905874252, 0.27666375041007996, 0.33178970217704773, -0.06072615459561348, 0.026761211454868317, 0.06450756639242172, 0.0041554211638867855, 0.009479213505983353, 0.18731002509593964, 0.10123876482248306, 0.20159262418746948, -0.034889739006757736, -0.027085836976766586, -0.02812468446791172, -0.07884806394577026, -0.1818748414516449, -0.06402008980512619, 0.04585861414670944, -0.04969879612326622, -0.00455534178763628, 0.07325275242328644, -0.14974702894687653, -0.12355197221040726, 0.013395342975854874, -0.1593894213438034, -0.1189979836344719, -0.021577773615717888, 0.011174713261425495, 0.04909627139568329, 0.08261387050151825, -0.02785748615860939, 0.03489144891500473, -0.0017681859899312258, -0.019758468493819237, -0.019249314442276955, -0.08294054865837097, 0.11826585978269577, -0.1413823962211609, 0.1415839046239853, -0.02954709157347679, 0.07073908299207687, 0.09301450103521347, 0.045262888073921204, -0.0303200576454401, 0.05637260153889656, -0.005572606343775988, -0.02193477377295494, 0.04079615697264671, -0.031036237254738808, -0.08252806216478348, -0.05328734219074249, 0.03518444672226906, -0.08189712464809418, 0.0190861988812685, -0.013295605778694153, 0.003279004944488406, -0.1457909494638443, -0.008449328131973743, -0.1489025205373764, 0.07377193868160248, 0.12435948848724365, -0.04177882522344589, 0.005893504247069359, -0.08541321009397507, 0.0062215495854616165, -0.009378994815051556, -0.07397215813398361, -0.15240274369716644, -0.16312119364738464, -0.03876347839832306, 0.04191265627741814, 0.036846086382865906, -0.18056070804595947, 0.0593688078224659, -0.08606371283531189, 0.011184707283973694, -0.05069572106003761, 0.0590684749186039, 0.06918700039386749, 0.008530465885996819, -0.011613956652581692, -0.09451977908611298, 0.0049767885357141495, 0.08980491757392883, -0.16845250129699707, -0.1476271152496338 ]
null
null
transformers
# roberta-python --- language: python datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **Python** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-python") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-python") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Python code. ```python code = """ new_dict = {} for k, v in my_dict.<mask>(): new_dict[k] = v**2 """.lstrip() pred = {x["token_str"].replace("Δ ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) # [('items', 0.7376779913902283), # ('keys', 0.16238391399383545), # ('values', 0.03965481370687485), # ('iteritems', 0.03346433863043785), # ('splitlines', 0.0032723243348300457)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
fill-mask
dbernsohn/roberta-python
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[]
TAGS #transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
# roberta-python --- language: python datasets: - code_search_net --- This is a roberta pre-trained version on the CodeSearchNet dataset for Python Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to fill masked words in a Python code. The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# roberta-python\n---\nlanguage: python\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Python Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Python code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-python\n---\nlanguage: python\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Python Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Python code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ 48, 108 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-python\n---\nlanguage: python\ndatasets:\n- code_search_net\n---\n\nThis is a roberta pre-trained version on the CodeSearchNet dataset for Python Mask Language Model mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to fill masked words in a Python code.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ -0.02446572855114937, 0.09461064636707306, -0.002980609657242894, 0.07004109770059586, 0.22145716845989227, 0.015588700771331787, 0.04652438312768936, 0.06150041148066521, -0.0700429305434227, -0.016678858548402786, 0.11863777786493301, 0.15960320830345154, -0.002420762088149786, 0.19738617539405823, -0.00028767267940565944, -0.2674153447151184, 0.04801052808761597, -0.012247264385223389, -0.036388617008924484, 0.13093023002147675, 0.08829443901777267, -0.005491544492542744, 0.08541902154684067, -0.00040125660598278046, -0.18638451397418976, 0.020555885508656502, 0.01745167188346386, -0.09091667830944061, 0.0902145653963089, -0.0282323956489563, 0.17523635923862457, -0.06505301594734192, 0.03923720866441727, -0.04336994141340256, 0.034432850778102875, 0.08442036062479019, -0.011315318755805492, 0.04617709666490555, -0.058939117938280106, -0.07658936828374863, 0.1000700443983078, -0.049624279141426086, 0.07748331874608994, 0.026818368583917618, -0.13870663940906525, -0.12914526462554932, -0.0026347017847001553, -0.06380239874124527, 0.06647622585296631, 0.15710879862308502, -0.0011582544539123774, 0.22260098159313202, -0.035312019288539886, 0.13707055151462555, 0.14938880503177643, -0.2224433422088623, -0.06881754100322723, 0.08760745823383331, 0.02381725236773491, 0.015239173546433449, 0.02625168487429619, -0.008433671668171883, -0.008802471682429314, 0.04744332283735275, 0.05139899253845215, -0.10723825544118881, -0.19140173494815826, -0.11458203941583633, -0.14044830203056335, -0.007738469634205103, 0.07320990413427353, -0.09001324325799942, -0.04482381418347359, 0.05292782932519913, -0.15189795196056366, 0.07073648273944855, -0.0406268946826458, 0.08991891890764236, -0.010162562131881714, 0.02816004678606987, -0.0904596820473671, -0.060970790684223175, -0.02879355475306511, -0.033028386533260345, -0.11324308067560196, 0.27744072675704956, 0.030625274404883385, 0.05484171584248543, -0.14332309365272522, 0.010724562220275402, -0.06872400641441345, -0.11172948777675629, 0.008607565425336361, -0.04628324508666992, -0.015111023560166359, 0.020988378673791885, -0.04294254630804062, -0.10575848817825317, 0.10199494659900665, 0.20203328132629395, -0.02283964678645134, 0.04838715121150017, -0.04326678067445755, 0.012768642976880074, 0.0165899358689785, 0.10336662828922272, -0.058912135660648346, -0.04425365477800369, 0.10555577278137207, -0.11544588953256607, 0.06462891399860382, -0.051067739725112915, -0.09504316747188568, -0.0030697924084961414, -0.0025363564491271973, 0.03189704567193985, 0.06882892549037933, 0.13379204273223877, -0.008106709457933903, -0.03462682291865349, -0.038688600063323975, -0.10591919720172882, -0.021603181958198547, -0.014703460037708282, -0.001740422798320651, 0.010637718252837658, 0.09239335358142853, -0.010768316686153412, -0.08430220186710358, 0.06794829666614532, -0.07201103121042252, 0.029620155692100525, -0.06798484921455383, -0.1833508461713791, -0.021608363837003708, -0.1344844102859497, 0.028000395745038986, -0.181311696767807, -0.1293715536594391, -0.014825299382209778, 0.09223867207765579, 0.0010963184759020805, -0.0004390774411149323, -0.004877686034888029, -0.05283593013882637, -0.012698146514594555, -0.006113319657742977, 0.0004364391788840294, -0.0411444716155529, 0.07647983729839325, 0.050677817314863205, 0.09172915667295456, -0.18575552105903625, 0.026727313175797462, -0.14727571606636047, -0.044554393738508224, -0.20260688662528992, 0.020199179649353027, -0.04381871223449707, 0.15880438685417175, -0.11441288143396378, -0.07016918063163757, 0.03382861241698265, 0.03251318261027336, 0.08116023987531662, 0.10896538197994232, -0.08485625684261322, -0.033703844994306564, 0.21353712677955627, -0.10523466765880585, -0.05016815662384033, 0.0978490486741066, -0.0570862777531147, 0.1304813027381897, 0.09822232276201248, 0.14342769980430603, 0.10194218158721924, -0.10522599518299103, 0.08799459040164948, 0.025492018088698387, -0.046725448220968246, -0.07500524073839188, 0.03814563900232315, 0.002721383236348629, -0.06467866152524948, 0.03202296048402786, -0.05313730984926224, 0.0905834436416626, -0.015652688220143318, -0.031689126044511795, -0.0003608120314311236, -0.042661380022764206, 0.02115660347044468, 0.03635649010539055, 0.06764690577983856, -0.02899177372455597, -0.08550383150577545, -0.024598561227321625, 0.10135623067617416, -0.060550667345523834, 0.03604579344391823, -0.07482551038265228, 0.06335657835006714, 0.01267116330564022, 0.01918621174991131, -0.1786556839942932, -0.025767099112272263, -0.03419191762804985, 0.11897251754999161, 0.08029185980558395, -0.11824914067983627, 0.03933809697628021, -0.015849681571125984, 0.0441354401409626, 0.03535936400294304, 0.04147256165742874, -0.0026261056773364544, -0.030541066080331802, -0.08345380425453186, -0.00264917709864676, -0.0416962094604969, 0.15070761740207672, -0.0622638463973999, 0.026556674391031265, -0.10405762493610382, 0.06656534969806671, -0.016848955303430557, -0.01833500526845455, -0.0003606364189181477, 0.050242215394973755, -0.0442330501973629, -0.050539202988147736, 0.03661317378282547, 0.031589120626449585, -0.025784706696867943, -0.0122295580804348, -0.07661780714988708, -0.03216744214296341, 0.1468304693698883, -0.20230631530284882, -0.0710214227437973, 0.16313129663467407, 0.015616560354828835, 0.046518437564373016, -0.014906713739037514, 0.021940186619758606, 0.13985827565193176, 0.0033606563229113817, 0.1347639262676239, -0.026652494445443153, 0.08611302077770233, 0.0261775441467762, -0.1229240745306015, 0.07001221179962158, 0.045892395079135895, 0.04419346898794174, -0.1321924328804016, 0.08831476420164108, 0.0036463432479649782, -0.14212162792682648, 0.08917511999607086, 0.027218718081712723, 0.003967450466006994, 0.011241903528571129, -0.0021257507614791393, 0.0307182464748621, -0.0190323106944561, -0.13076838850975037, -0.05205871909856796, 0.03453787788748741, -0.03834570199251175, 0.033573564141988754, -0.06697766482830048, -0.0056453594006598, -0.02257395163178444, 0.03463093191385269, -0.08274433016777039, 0.010105608031153679, -0.004607854876667261, 0.038681648671627045, 0.04216336831450462, -0.09549494832754135, 0.03340531513094902, 0.00980496034026146, -0.04934404790401459, 0.24411234259605408, -0.09603060036897659, -0.2946567237377167, -0.10060443729162216, -0.1902848780155182, -0.0032584168948233128, 0.008161396719515324, 0.04962902516126633, -0.13975130021572113, -0.04384902864694595, 0.010658321902155876, 0.052733272314071655, -0.06642746925354004, 0.020073354244232178, -0.03252336010336876, 0.01836833357810974, -0.003351505845785141, -0.10007026046514511, -0.01252042967826128, -0.06728984415531158, -0.1143365353345871, 0.13749155402183533, -0.11053098738193512, 0.08124830573797226, 0.11535829305648804, -0.01966208405792713, 0.021025339141488075, -0.010356133803725243, 0.2366025745868683, -0.05532742664217949, -0.019260946661233902, 0.17619524896144867, -0.04746220260858536, 0.04256589710712433, 0.12748032808303833, -0.001740962965413928, -0.10086379200220108, 0.06998519599437714, -0.023541655391454697, -0.11412425339221954, -0.16296647489070892, -0.1248299852013588, -0.09721185266971588, 0.007915804162621498, 0.08351443707942963, 0.024486497044563293, -0.030973583459854126, 0.07872477918863297, 0.008134715259075165, 0.03868034482002258, -0.01039029285311699, 0.11539541184902191, 0.04273563250899315, 0.016227027401328087, 0.11818870157003403, -0.01155256386846304, -0.076667919754982, 0.01737937703728676, -0.006895346101373434, 0.17379577457904816, -0.004228611476719379, 0.09367618709802628, 0.03170260787010193, 0.090238556265831, 0.04629359021782875, 0.09989826381206512, -0.0392773263156414, 0.02787611447274685, -0.01695103570818901, -0.04194319620728493, -0.08057329803705215, -0.024435529485344887, -0.0484829917550087, -0.04636809229850769, 0.0024730509612709284, 0.0362946093082428, 0.006167499348521233, 0.14445683360099792, 0.08382352441549301, -0.29994064569473267, -0.052174944430589676, -0.008933840319514275, -0.0020928489975631237, -0.06777433305978775, 0.022377392277121544, -0.08342196047306061, -0.10912110656499863, 0.06994960457086563, -0.04487263411283493, 0.10863752663135529, 0.0017275850987061858, 0.03203344717621803, -0.06538321077823639, 0.06163971498608589, 0.009653097949922085, 0.04495105519890785, -0.25005805492401123, 0.21482086181640625, -0.008689194917678833, 0.0783359706401825, -0.054335493594408035, 0.007933862507343292, -0.009540180675685406, 0.03943308815360069, 0.08888714015483856, 0.0202485378831625, 0.10640688240528107, -0.07989025861024857, -0.05507110804319382, 0.06186097115278244, 0.07250253856182098, 0.01627478189766407, 0.07498517632484436, -0.015069214627146721, -0.008954022079706192, -0.009179675951600075, -0.004573422484099865, -0.04146328195929527, -0.08726157248020172, 0.011619491502642632, 0.027932826429605484, -0.05952997878193855, 0.02293378673493862, -0.01972760446369648, 0.04363137483596802, 0.2052578181028366, 0.026599759235978127, -0.08545652031898499, -0.1076674684882164, 0.08883141726255417, 0.061360280960798264, -0.12081493437290192, 0.09913045167922974, -0.09145611524581909, -0.04546404629945755, -0.02720622345805168, -0.1474488079547882, 0.13011237978935242, -0.08960440009832382, 0.02163139544427395, -0.016964886337518692, 0.04356180876493454, 0.04374341666698456, 0.019846301525831223, 0.01680769771337509, 0.07887929677963257, -0.08504971116781235, -0.05402171611785889, -0.09692978858947754, -0.009678903967142105, 0.020627114921808243, 0.1424712985754013, -0.05870991200208664, -0.10022260993719101, -0.06501791626214981, 0.05783897638320923, 0.2299748957157135, 0.09373420476913452, -0.05317557975649834, 0.023364003747701645, 0.1304500848054886, -0.033965252339839935, -0.3086136281490326, 0.0029701211024075747, 0.026465430855751038, -0.0006263218820095062, -0.05176480859518051, -0.23855583369731903, 0.15006688237190247, 0.009759682230651379, -0.01610996015369892, -0.010499726980924606, -0.19123531877994537, -0.07661622017621994, 0.18159139156341553, 0.06112714856863022, 0.30326876044273376, -0.1471378207206726, 0.017509689554572105, -0.09759244322776794, -0.120124951004982, 0.17640261352062225, -0.2675763666629791, 0.1021658405661583, 0.03219471499323845, 0.12050855159759521, 0.010016883723437786, -0.05791929364204407, 0.030640020966529846, -0.02048119530081749, -0.018204396590590477, -0.05867815017700195, -0.05510515719652176, 0.05176348239183426, 0.014333288185298443, 0.04767333343625069, 0.05181175470352173, 0.04578179866075516, -0.08948556333780289, -0.004336356185376644, -0.08558778464794159, 0.08263266086578369, 0.024379944428801537, -0.09079694002866745, -0.021483164280653, 0.03492499887943268, 0.03123079612851143, 0.040754154324531555, 0.18933923542499542, -0.02260492369532585, 0.0984416976571083, 0.06615612655878067, -0.004266757518053055, -0.018460150808095932, 0.02002449706196785, 0.06574945896863937, -0.03771942853927612, 0.10182845592498779, -0.14740628004074097, 0.011418333277106285, 0.03045027330517769, 0.06961610168218613, 0.03237226977944374, 0.06529829651117325, -0.05449259281158447, 0.02007364109158516, 0.04984916001558304, -0.1204945296049118, -0.01939770020544529, 0.05967295169830322, -0.09058185666799545, -0.04720614105463028, 0.06469278037548065, 0.19735637307167053, -0.04713946580886841, -0.06826864928007126, -0.0038125745486468077, 0.014117631129920483, -0.10010824352502823, 0.1334407776594162, 0.07892455160617828, 0.0015829566400498152, -0.15400917828083038, 0.019795242697000504, 0.08516596257686615, 0.07755828648805618, 0.0355469211935997, 0.15265196561813354, -0.11760349571704865, -0.091389961540699, 0.0282264556735754, 0.07926667481660843, -0.08377785980701447, -0.010905561968684196, -0.06389032304286957, -0.011805273592472076, -0.020977597683668137, 0.1309567391872406, 0.11005791276693344, -0.04198765754699707, -0.02676485851407051, 0.011293275281786919, -0.09781894832849503, -0.029636969789862633, 0.04824079945683479, 0.04789520800113678, -0.06081707030534744, 0.1316368728876114, 0.018685009330511093, 0.07649341225624084, -0.07455267012119293, -0.03646601736545563, -0.19439640641212463, 0.07036972790956497, -0.009955247864127159, 0.03818788006901741, -0.06033627316355705, -0.019924527034163475, -0.01171787828207016, -0.022912543267011642, -0.04163696989417076, 0.02613142505288124, -0.05516017600893974, -0.015401514247059822, -0.021402308717370033, -0.06100720912218094, -0.06438354402780533, 0.005532317329198122, 0.04679734259843826, -0.03113836608827114, 0.0738178938627243, 0.09365604817867279, -0.06827282905578613, 0.07699090987443924, -0.2328736037015915, -0.10495494306087494, 0.07281146943569183, -0.0011418869253247976, 0.07431778311729431, 0.030730217695236206, 0.010789823718369007, 0.008187729865312576, 0.14093151688575745, 0.008725911378860474, 0.19696441292762756, -0.09256274998188019, 0.0229622982442379, -0.031239667907357216, -0.07926104217767715, -0.010868779383599758, 0.0009368555620312691, 0.03461534529924393, 0.08889218419790268, 0.1893155574798584, -0.07378432154655457, 0.08623969554901123, -0.044739436358213425, -0.028406435623764992, -0.042474038898944855, -0.09640199691057205, -0.04283342510461807, -0.03830140829086304, 0.04588504508137703, -0.03593919053673744, 0.056261222809553146, 0.07461642473936081, 0.05821693688631058, 0.008076978847384453, 0.060908686369657516, 0.028853993862867355, -0.0043100835755467415, 0.11531887948513031, 0.09792777895927429, -0.017505649477243423, 0.012834811583161354, 0.05063377693295479, 0.0864422395825386, 0.15181832015514374, 0.07596500217914581, 0.12575826048851013, 0.141273632645607, 0.05777158588171005, -0.0037108093965798616, 0.06301209330558777, -0.06456051766872406, -0.12568578124046326, -0.021819641813635826, 0.06382153928279877, -0.020532099530100822, 0.03706298768520355, 0.13474245369434357, -0.0011858772486448288, 0.01389961875975132, 0.019568126648664474, -0.09596016258001328, -0.14792479574680328, -0.0768299251794815, -0.10269768536090851, -0.060164809226989746, 0.01278643123805523, -0.07436908036470413, -0.03309594839811325, 0.14026841521263123, 0.0025806035846471786, -0.0019012127304449677, 0.13567009568214417, 0.08105556666851044, -0.10120274871587753, 0.0066121360287070274, -0.02987772785127163, 0.027446199208498, 0.10198448598384857, -0.030092384666204453, -0.05350761488080025, 0.0803924947977066, 0.09087232500314713, 0.02581501007080078, -0.015944305807352066, 0.10743404924869537, -0.14846619963645935, -0.1092352643609047, -0.03385082632303238, 0.08924730122089386, -0.016805654391646385, 0.16953085362911224, 0.05605021119117737, -0.0507509708404541, 0.009382283315062523, 0.18175284564495087, -0.03536951169371605, -0.158859521150589, -0.14785096049308777, 0.3073025345802307, 0.009204776957631111, 0.013198761269450188, -0.06987981498241425, -0.05971074849367142, -0.09707416594028473, 0.26443248987197876, 0.29346221685409546, -0.041581250727176666, 0.01985100843012333, 0.02788846753537655, 0.0039970604702830315, 0.0025628565344959497, 0.19161176681518555, 0.109876349568367, 0.2309708595275879, -0.04501950368285179, -0.04575597122311592, -0.0367378331720829, -0.0669323056936264, -0.22580918669700623, -0.12575940787792206, 0.036014653742313385, -0.050359755754470825, -0.015437637455761433, 0.12264668941497803, -0.18556584417819977, -0.08748272806406021, -0.02694937027990818, -0.14865052700042725, -0.131364643573761, -0.04856010526418686, -0.015341895632445812, 0.0716719925403595, 0.12298735231161118, -0.03649594634771347, 0.002218755194917321, -0.029462018981575966, -0.006415450479835272, -0.056919146329164505, -0.11091965436935425, 0.12369699776172638, -0.12609660625457764, 0.114385224878788, -0.040371350944042206, 0.0610111728310585, 0.10160690546035767, 0.04319099336862564, -0.014316829852759838, 0.04208558052778244, -0.010958544909954071, -0.011864683590829372, 0.05714055150747299, 0.04700085520744324, -0.09556858986616135, -0.04197661206126213, 0.031227191910147667, -0.09347527474164963, 0.010221101343631744, -0.01651672273874283, 0.05358821898698807, -0.10214171558618546, -0.010340936481952667, -0.15223994851112366, 0.06701935827732086, 0.167770117521286, -0.04511674866080284, 0.025919239968061447, -0.09717430919408798, -0.03240462392568588, 0.04004442319273949, -0.06483948975801468, -0.16361644864082336, -0.2162415236234665, -0.08829083293676376, 0.026779990643262863, 0.017704961821436882, -0.20496518909931183, 0.0918697863817215, -0.11389396339654922, 0.007425377611070871, -0.09872500598430634, 0.07365822792053223, 0.04034283012151718, -0.008683837950229645, -0.006838375236839056, -0.05077836662530899, -0.0021545833442360163, 0.09889915585517883, -0.16397392749786377, -0.15085576474666595 ]
null
null
transformers
# measurement_time --- language: en datasets: - measurement_time --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/measurement_time](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetmeasurement_time) for solving **measurement time equations** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_measurement_time") model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_measurement_time") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "How many minutes are there between 2:09 PM and 2:27 PM?" input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> 18</s> ``` Another examples: + How many minutes are there between 2:09 PM and 2:27 PM? + Answer: 18 Pred: 18 ---- + What is 116 minutes after 10:06 AM? + Answer: 12:02 PM Pred: 12:02 PM ---- + What is 608 minutes after 3:14 PM? + Answer: 1:22 AM Pred: 1:22 AM ---- + What is 64 minutes before 9:16 AM? + Answer: 8:12 AM Pred: 8:12 AM ---- + What is 427 minutes before 4:27 AM? + Answer: 9:20 PM Pred: 9:20 PM ---- + How many minutes are there between 6:36 PM and 12:15 AM? + Answer: 339 Pred: 339 ---- + What is 554 minutes before 5:24 PM? + Answer: 8:10 AM Pred: 8:10 AM ---- + What is 307 minutes after 5:15 AM? + Answer: 10:22 AM Pred: 10:22 AM The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
text2text-generation
dbernsohn/t5_measurement_time
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# measurement_time --- language: en datasets: - measurement_time --- This is a t5-small fine-tuned version on the math_dataset/measurement_time for solving measurement time equations mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to solve algebra 1d equations into numbers. Another examples: + How many minutes are there between 2:09 PM and 2:27 PM? + Answer: 18 Pred: 18 ---- + What is 116 minutes after 10:06 AM? + Answer: 12:02 PM Pred: 12:02 PM ---- + What is 608 minutes after 3:14 PM? + Answer: 1:22 AM Pred: 1:22 AM ---- + What is 64 minutes before 9:16 AM? + Answer: 8:12 AM Pred: 8:12 AM ---- + What is 427 minutes before 4:27 AM? + Answer: 9:20 PM Pred: 9:20 PM ---- + How many minutes are there between 6:36 PM and 12:15 AM? + Answer: 339 Pred: 339 ---- + What is 554 minutes before 5:24 PM? + Answer: 8:10 AM Pred: 8:10 AM ---- + What is 307 minutes after 5:15 AM? + Answer: 10:22 AM Pred: 10:22 AM The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# measurement_time\n---\nlanguage: en\ndatasets:\n- measurement_time\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/measurement_time for solving measurement time equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ How many minutes are there between 2:09 PM and 2:27 PM?\n+ Answer: 18 Pred: 18\n----\n+ What is 116 minutes after 10:06 AM?\n+ Answer: 12:02 PM Pred: 12:02 PM\n----\n+ What is 608 minutes after 3:14 PM?\n+ Answer: 1:22 AM Pred: 1:22 AM\n----\n+ What is 64 minutes before 9:16 AM?\n+ Answer: 8:12 AM Pred: 8:12 AM\n----\n+ What is 427 minutes before 4:27 AM?\n+ Answer: 9:20 PM Pred: 9:20 PM\n----\n+ How many minutes are there between 6:36 PM and 12:15 AM?\n+ Answer: 339 Pred: 339\n----\n+ What is 554 minutes before 5:24 PM?\n+ Answer: 8:10 AM Pred: 8:10 AM\n----\n+ What is 307 minutes after 5:15 AM?\n+ Answer: 10:22 AM Pred: 10:22 AM\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# measurement_time\n---\nlanguage: en\ndatasets:\n- measurement_time\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/measurement_time for solving measurement time equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ How many minutes are there between 2:09 PM and 2:27 PM?\n+ Answer: 18 Pred: 18\n----\n+ What is 116 minutes after 10:06 AM?\n+ Answer: 12:02 PM Pred: 12:02 PM\n----\n+ What is 608 minutes after 3:14 PM?\n+ Answer: 1:22 AM Pred: 1:22 AM\n----\n+ What is 64 minutes before 9:16 AM?\n+ Answer: 8:12 AM Pred: 8:12 AM\n----\n+ What is 427 minutes before 4:27 AM?\n+ Answer: 9:20 PM Pred: 9:20 PM\n----\n+ How many minutes are there between 6:36 PM and 12:15 AM?\n+ Answer: 339 Pred: 339\n----\n+ What is 554 minutes before 5:24 PM?\n+ Answer: 8:10 AM Pred: 8:10 AM\n----\n+ What is 307 minutes after 5:15 AM?\n+ Answer: 10:22 AM Pred: 10:22 AM\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ 48, 306 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# measurement_time\n---\nlanguage: en\ndatasets:\n- measurement_time\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/measurement_time for solving measurement time equations mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ How many minutes are there between 2:09 PM and 2:27 PM?\n+ Answer: 18 Pred: 18\n----\n+ What is 116 minutes after 10:06 AM?\n+ Answer: 12:02 PM Pred: 12:02 PM\n----\n+ What is 608 minutes after 3:14 PM?\n+ Answer: 1:22 AM Pred: 1:22 AM\n----\n+ What is 64 minutes before 9:16 AM?\n+ Answer: 8:12 AM Pred: 8:12 AM\n----\n+ What is 427 minutes before 4:27 AM?\n+ Answer: 9:20 PM Pred: 9:20 PM\n----\n+ How many minutes are there between 6:36 PM and 12:15 AM?\n+ Answer: 339 Pred: 339\n----\n+ What is 554 minutes before 5:24 PM?\n+ Answer: 8:10 AM Pred: 8:10 AM\n----\n+ What is 307 minutes after 5:15 AM?\n+ Answer: 10:22 AM Pred: 10:22 AM\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ -0.07610338926315308, 0.07977675646543503, -0.0034631516318768263, 0.004631798714399338, 0.07642073929309845, 0.046385228633880615, -0.018459610641002655, 0.13493773341178894, -0.06014591455459595, 0.2160584181547165, 0.0725131630897522, 0.027665002271533012, 0.060757312923669815, 0.035807907581329346, 0.02936980128288269, -0.18946421146392822, -0.03723033145070076, -0.04534284025430679, -0.0007994442130438983, 0.1093396246433258, 0.04012713581323624, -0.1137099489569664, 0.027928005903959274, -0.08963723480701447, 0.008905026130378246, 0.0016615270869806409, -0.09212419390678406, -0.09432787448167801, 0.03034576028585434, 0.04443296417593956, -0.05399514362215996, -0.018525347113609314, 0.06707872450351715, -0.1781838983297348, -0.011492855846881866, 0.04616951942443848, -0.001751546747982502, 0.06520240753889084, 0.06424395740032196, 0.008884130045771599, 0.07119804620742798, -0.04914817586541176, 0.07430537790060043, 0.0426771342754364, -0.16832701861858368, -0.2382746934890747, -0.11757417768239975, 0.06360673904418945, 0.2275150716304779, 0.1758701503276825, -0.07706265896558762, 0.08866439759731293, -0.09756676107645035, 0.05978076159954071, 0.2662968635559082, -0.1914559006690979, -0.05773477628827095, 0.013643760234117508, 0.09739118069410324, 0.09682702273130417, -0.05538974702358246, -0.020987212657928467, 0.06483419984579086, 0.04887579753994942, -0.0016583632677793503, -0.04457201436161995, 0.12333907186985016, 0.004600959829986095, -0.21772876381874084, -0.10790074616670609, 0.0021037915721535683, 0.015228990465402603, -0.04890623688697815, -0.09055961668491364, -0.026068538427352905, -0.15232597291469574, -0.07007055729627609, -0.019037295132875443, 0.03364785015583038, -0.04184597730636597, -0.005277513992041349, 0.04716440662741661, 0.008350812830030918, -0.08667532354593277, 0.023967908695340157, 0.11492342501878738, 0.07318376004695892, -0.03392050787806511, 0.02198060229420662, 0.05832704156637192, -0.114851213991642, -0.14489345252513885, -0.07589340955018997, 0.07834898680448532, -0.12159612029790878, -0.025232240557670593, 0.008279049769043922, -0.04608882963657379, -0.010636716149747372, 0.3247371315956116, -0.12632186710834503, 0.09142373502254486, 0.027401261031627655, -0.04908115416765213, 0.010263470932841301, 0.16905440390110016, -0.08862698078155518, -0.15144957602024078, -0.10941465198993683, -0.00683231046423316, 0.0040505556389689445, -0.02746160328388214, 0.030886249616742134, 0.03239850699901581, 0.06766775250434875, 0.10624939203262329, 0.12856777012348175, -0.0191954355686903, 0.018337849527597427, -0.019255084916949272, 0.08149171620607376, -0.09748515486717224, 0.05569874495267868, 0.022517481818795204, -0.06344449520111084, -0.14587633311748505, 0.000528563978150487, -0.0012668544659391046, -0.1358727216720581, 0.09412353485822678, -0.023569775745272636, -0.09075818210840225, -0.08508330583572388, -0.08684884756803513, 0.07535255700349808, -0.011101718991994858, -0.09270506352186203, -0.012565204873681068, 0.0046678888611495495, -0.11681269109249115, -0.0030311935115605593, -0.0975426733493805, -0.015930630266666412, 0.023455910384655, -0.02618156187236309, 0.018349772319197655, -0.04863544926047325, 0.16365933418273926, -0.006767871789634228, 0.051763866096735, 0.10581177473068237, 0.05621758848428726, 0.16806846857070923, 0.1147993952035904, -0.06894252449274063, 0.0874534398317337, -0.14838187396526337, 0.010668916627764702, -0.06345648318529129, 0.03770468756556511, -0.1734396070241928, -0.11039835214614868, 0.015495802275836468, 0.0003927538054995239, 0.09621704369783401, 0.11643072217702866, -0.016066880896687508, -0.012632976286113262, 0.0851592943072319, -0.049128495156764984, -0.1382591873407364, 0.07924507558345795, 0.03850400820374489, -0.022045059129595757, 0.0019088147673755884, 0.07058120518922806, -0.036013953387737274, -0.05713954195380211, -0.04578632861375809, -0.11424647271633148, 0.028790468350052834, 0.06712524592876434, 0.06319846212863922, -0.08038029074668884, 0.01292735617607832, -0.044820401817560196, -0.08202896267175674, -0.038956888020038605, -0.05708517134189606, -0.06357897818088531, 0.03469756990671158, -0.012584886513650417, -0.04837971180677414, 0.1065812036395073, -0.053963176906108856, -0.07528992742300034, -0.10570519417524338, 0.002670362824574113, -0.0010794062400236726, -0.033836059272289276, 0.04750504344701767, -0.06088728830218315, 0.0026642968878149986, -0.06296859681606293, 0.04288247972726822, -0.17947877943515778, -0.012642265297472477, 0.02620905078947544, 0.0371670238673687, 0.06392019242048264, -0.10301102697849274, 0.05210472270846367, 0.03492269665002823, -0.03399354964494705, -0.07072821259498596, -0.02402891404926777, 0.006031990051269531, -0.10839895159006119, -0.10271646827459335, -0.05059770867228508, -0.011358082294464111, 0.07118073105812073, -0.07699942588806152, 0.006263456307351589, 0.024685388430953026, 0.050668198615312576, -0.020981790497899055, -0.048075221478939056, 0.0034831524826586246, 0.040256477892398834, 0.015942834317684174, -0.04143723472952843, 0.02770075388252735, -0.06902726739645004, -0.007881172932684422, 0.010791147127747536, -0.19780142605304718, -0.11542323231697083, 0.08348029851913452, 0.0029071508906781673, -0.12891785800457, 0.0260042455047369, -0.025169100612401962, -0.05882657319307327, -0.043241746723651886, -0.05815262347459793, 0.1721353828907013, 0.06929510086774826, 0.041281163692474365, -0.04896003007888794, -0.056084562093019485, 0.01795261725783348, -0.027254736050963402, -0.05995197221636772, 0.2098619043827057, 0.0839667096734047, -0.023317357525229454, 0.1002710685133934, 0.15828721225261688, 0.05521636828780174, -0.014033323153853416, -0.0717671811580658, -0.1525724232196808, -0.05069350078701973, 0.05323114991188049, 0.08321873098611832, -0.005166166462004185, -0.1165226548910141, -0.006049780175089836, 0.0355273075401783, 0.026754235848784447, -0.0004744343168567866, -0.1170332059264183, 0.026864521205425262, 0.04551182687282562, -0.025250807404518127, 0.03478507325053215, -0.04726932942867279, -0.04098840057849884, 0.051047373563051224, 0.11462867259979248, 0.03622256591916084, -0.029606690630316734, -0.04448540508747101, -0.13062751293182373, 0.17313994467258453, -0.03422278165817261, -0.1554374098777771, -0.03313383832573891, -0.09985215961933136, 0.06969118118286133, -0.03151173144578934, 0.0788314938545227, -0.13077744841575623, -0.06240914389491081, -0.04829425737261772, 0.14318838715553284, -0.025809571146965027, -0.01310477964580059, -0.01641112007200718, -0.02570767141878605, -0.0019998312927782536, -0.09674707055091858, 0.030990654602646828, 0.00014500186080113053, -0.06649485975503922, 0.07361864298582077, -0.0244569294154644, 0.15952801704406738, 0.1611025631427765, 0.03558633476495743, 0.004024550784379244, -0.012634677812457085, 0.29851579666137695, -0.12805818021297455, -0.013698866590857506, 0.13584746420383453, 0.048147086054086685, 0.07806532084941864, 0.12449724972248077, -0.01422370970249176, -0.08598977327346802, 0.0651593804359436, 0.10764326900243759, -0.06089755892753601, -0.2528652846813202, -0.018575165420770645, -0.035094182938337326, 0.0675366222858429, 0.10721969604492188, 0.024729928001761436, 0.023883812129497528, -0.035294100642204285, -0.07513702660799026, -0.028735840693116188, 0.009106134995818138, 0.11425518244504929, 0.05968959257006645, 0.033370956778526306, 0.064486563205719, -0.03277607634663582, 0.002716402756050229, 0.054231978952884674, -0.03787658363580704, 0.11124157905578613, 0.05704759433865547, 0.21077540516853333, 0.04184969142079353, 0.05571011081337929, -0.06425284594297409, -0.02923942543566227, -0.09381530433893204, 0.002689648885279894, -0.01162913627922535, -0.04964246600866318, 0.025830617174506187, 0.07029501348733902, 0.059234119951725006, -0.035066936165094376, -0.049757570028305054, -0.0332784429192543, -0.0009647424449212849, 0.27129265666007996, 0.07213346660137177, -0.16742552816867828, -0.02904895506799221, 0.04767466336488724, -0.062389954924583435, -0.053817104548215866, 0.034963324666023254, -0.0554022453725338, -0.09410638362169266, 0.08694244176149368, -0.04766695946455002, 0.13013656437397003, -0.02046867646276951, 0.0018717817729339004, 0.09581905603408813, -0.020758913829922676, 0.02606169693171978, 0.07207270711660385, -0.214583620429039, 0.11524085700511932, 0.020713169127702713, -0.017092721536755562, -0.03838840499520302, 0.03431304544210434, -0.06417344510555267, -0.03676040843129158, 0.14186260104179382, 0.0033794695045799017, -0.006021494511514902, -0.07344896346330643, -0.07990693300962448, -0.051874566823244095, 0.12512673437595367, -0.10091127455234528, 0.11976364254951477, 0.002661575563251972, -0.030714046210050583, -0.015618318691849709, 0.005144684109836817, -0.031968146562576294, -0.035234756767749786, 0.10289734601974487, -0.12494706362485886, 0.06782544404268265, -0.05494992434978485, -0.05093870311975479, -0.07255427539348602, 0.09959149360656738, -0.04581171274185181, -0.04174366965889931, -0.11832648515701294, 0.043503645807504654, 0.15701645612716675, -0.08462968468666077, 0.05311661586165428, 0.04074115678668022, 0.05628911778330803, 0.012705938890576363, 0.018960649147629738, 0.17638936638832092, -0.04719250276684761, -0.2581445574760437, -0.03168072924017906, 0.16703276336193085, 0.03379801660776138, 0.09797044098377228, -0.07301732897758484, 0.12678872048854828, -0.0060407016426324844, -0.07916068285703659, 0.08015614748001099, -0.0758332759141922, 0.05799347907304764, -0.06144144758582115, 0.05671343579888344, 0.028753099963068962, -0.07958973944187164, -0.05312512069940567, 0.04253477603197098, 0.20657968521118164, -0.04427029564976692, 0.04999949783086777, 0.1521182358264923, 0.014826071448624134, -0.24645531177520752, -0.0092618428170681, 0.09334684908390045, -0.015331469476222992, 0.011700323782861233, -0.11971680074930191, 0.025853751227259636, 0.06718099862337112, -0.024758759886026382, -0.01757970079779625, -0.41492363810539246, -0.09340889006853104, 0.027080275118350983, 0.0958605706691742, -0.2630421221256256, -0.23902173340320587, -0.08276936411857605, 0.06186673790216446, -0.13384225964546204, 0.0387880876660347, -0.05973866954445839, 0.06100368872284889, -0.009175385348498821, -0.02892128936946392, 0.032776061445474625, -0.0781540498137474, 0.07974372804164886, -0.0226405318826437, -0.01869257353246212, -0.0843144878745079, -0.05522254854440689, 0.022374041378498077, -0.06371268630027771, 0.11882630735635757, 0.023781387135386467, 0.01125076599419117, -0.08854307234287262, -0.02587829902768135, -0.07903899997472763, -0.03994997218251228, -0.13141630589962006, -0.04305633530020714, -0.026606738567352295, 0.06492763012647629, 0.07644455879926682, -0.01591580919921398, 0.16132086515426636, -0.042971421033144, 0.05313938856124878, 0.2470117211341858, 0.040986567735672, 0.03018178418278694, -0.17650218307971954, 0.01496711652725935, 0.047114718705415726, 0.040340155363082886, -0.1698182225227356, 0.045888110995292664, 0.10897167772054672, 0.09080237150192261, 0.12863712012767792, -0.01567213423550129, -0.13666000962257385, -0.05491532012820244, 0.006448595318943262, -0.04356484115123749, -0.2494163066148758, 0.02526206336915493, 0.004134471993893385, -0.1456354260444641, -0.03204105794429779, 0.054348260164260864, -0.0077332425862550735, -0.02599097602069378, 0.035328615456819534, 0.08949968218803406, 0.017683925107121468, 0.20412534475326538, 0.043680064380168915, 0.06067559868097305, -0.08129077404737473, 0.05846855044364929, 0.13066019117832184, -0.1350330412387848, 0.013953512534499168, 0.31634795665740967, -0.02923317812383175, -0.06754706054925919, 0.03228813037276268, -0.020003214478492737, -0.04349218308925629, 0.017589431256055832, -0.01107966061681509, -0.06972866505384445, 0.1355023980140686, 0.021298395469784737, -0.006667440291494131, -0.07707243412733078, 0.062016911804676056, 0.08434481173753738, -0.04418772831559181, 0.10451401770114899, 0.03252682834863663, 0.08666417002677917, 0.03180689737200737, 0.031657442450523376, 0.045975830405950546, 0.05573105812072754, -0.0075072855688631535, -0.02684348076581955, -0.13875263929367065, 0.0806630551815033, -0.08371800929307938, -0.055740974843502045, -0.05513107031583786, -0.009939809329807758, -0.06519055366516113, -0.04388732090592384, 0.003518486162647605, 0.03135361149907112, -0.06760738044977188, -0.13924144208431244, -0.06617456674575806, 0.02209390513598919, -0.15920816361904144, -0.05392035096883774, 0.0877680778503418, -0.03041592426598072, 0.06058143451809883, -0.07003018260002136, 0.008749349042773247, -0.07308005541563034, 0.1384410709142685, -0.017691899091005325, -0.0009517797734588385, 0.009147974662482738, 0.03921440616250038, -0.1293329894542694, -0.0399298369884491, -0.1028749868273735, -0.030656399205327034, 0.04650217667222023, -0.01919117197394371, -0.15238136053085327, 0.05921291187405586, -0.10219305753707886, -0.1448320895433426, -0.03889722004532814, 0.05810360237956047, -0.009479423984885216, -0.008967838250100613, 0.057534512132406235, -0.024804655462503433, 0.12738512456417084, -0.16799214482307434, -0.03500379994511604, 0.0009207510738633573, 0.029269415885210037, -0.04947424679994583, 0.019423380494117737, 0.06429311633110046, -0.07243790477514267, -0.046909768134355545, 0.013149437494575977, 0.13535286486148834, 0.07688583433628082, -0.015544707886874676, 0.05581546947360039, 0.0018874662928283215, 0.09929771721363068, -0.008443795144557953, -0.01737561821937561, 0.02775155007839203, 0.08278071135282516, -0.030925968661904335, 0.037908054888248444, 0.06312036514282227, 0.17178691923618317, 0.22590582072734833, 0.04271470382809639, 0.014495090581476688, -0.18601453304290771, -0.14282463490962982, 0.1406743824481964, -0.005647381767630577, 0.08464832603931427, -0.013913875445723534, 0.11384473741054535, 0.10859808325767517, -0.14612379670143127, 0.05364000424742699, -0.07501709461212158, -0.05965380370616913, -0.03326919674873352, -0.035277023911476135, -0.06267311424016953, -0.08625295013189316, 0.033601149916648865, -0.07173073291778564, 0.08346644788980484, 0.0423627607524395, 0.04123397544026375, 0.016420656815171242, 0.17202416062355042, 0.031259652227163315, -0.08221916854381561, -0.01856767013669014, 0.052538830786943436, 0.08306407183408737, 0.03355338051915169, 0.07080714404582977, 0.024777449667453766, -0.05808734521269798, 0.08556994795799255, 0.06961791962385178, -0.10898590087890625, 0.07103969901800156, 0.03853863477706909, -0.10039720684289932, -0.008625872433185577, 0.012822160497307777, 0.07479625940322876, 0.1773570030927658, 0.022899460047483444, 0.040521103888750076, -0.017631761729717255, 0.1801305115222931, -0.1622786670923233, -0.04259280860424042, -0.063867948949337, 0.23008161783218384, 0.06041267514228821, 0.05327592417597771, -0.042047351598739624, -0.13405002653598785, -0.04788573086261749, 0.16295766830444336, 0.05140884220600128, 0.005037768743932247, -0.03436291217803955, 0.08280699700117111, 0.007590732537209988, 0.026902491226792336, 0.025263091549277306, 0.09357023239135742, 0.18222638964653015, -0.060222938656806946, -0.0033440289553254843, -0.07013877481222153, -0.08616059273481369, -0.04313386231660843, 0.16322709619998932, 0.032388363033533096, -0.005847219843417406, -0.025632375851273537, 0.1143571212887764, 0.05547444522380829, -0.22689072787761688, 0.06587527692317963, -0.13952860236167908, -0.15428613126277924, 0.018307797610759735, 0.05038054659962654, 0.033009134232997894, 0.06297644227743149, 0.07781082391738892, 0.015986181795597076, 0.0998382493853569, 0.06530866026878357, -0.04536696895956993, -0.11741873621940613, 0.0896177887916565, -0.04982219636440277, 0.24783983826637268, -0.003999431151896715, 0.012586521916091442, 0.1112804114818573, -0.022197477519512177, -0.10604427009820938, 0.07458796352148056, 0.15505197644233704, -0.09747898578643799, 0.04180554300546646, 0.12283491343259811, -0.014239460229873657, 0.1294763684272766, 0.09761476516723633, -0.17321965098381042, -0.015579577535390854, -0.013014011085033417, 0.008294237777590752, -0.160644993185997, 0.013124319724738598, -0.05105910450220108, 0.15349653363227844, 0.1762447953224182, -0.04758773744106293, -0.04618051275610924, -0.04130418226122856, 0.0013346775667741895, -0.04347487539052963, 0.1947164535522461, -0.004247185308486223, -0.16081251204013824, 0.06174110993742943, -0.055912937968969345, 0.078456811606884, -0.12988901138305664, -0.07576803117990494, 0.09255845099687576, -0.03792530298233032, -0.02188456431031227, 0.09665127098560333, 0.10290908813476562, -0.03542228415608406, -0.07451754808425903, -0.12270037829875946, -0.020808909088373184, 0.15387926995754242, -0.14564946293830872, -0.02044397033751011 ]
null
null
transformers
# numbers_gcd --- language: en datasets: - numbers_gcd --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/numbers_gcd](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetnumbers_gcd) for solving **greatest common divisor** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_numbers_gcd") model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_numbers_gcd") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "What is the highest common factor of 4210884 and 72?" input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> 36</s> ``` Another examples: + Calculate the greatest common factor of 3470 and 97090. + Answer: 10 Pred: 10 ---- + Calculate the highest common factor of 3480 and 775431. + Answer: 87 Pred: 87 ---- + What is the highest common divisor of 26 and 88049? + Answer: 13 Pred: 13 ---- + Calculate the highest common factor of 1416 and 24203688. + Answer: 1416 Pred: 1416 ---- + Calculate the highest common divisor of 124 and 69445828. + Answer: 124 Pred: 124 ---- + What is the greatest common factor of 657906 and 470? + Answer: 94 Pred: 94 ---- + What is the highest common factor of 4210884 and 72? + Answer: 36 Pred: 36 The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
text2text-generation
dbernsohn/t5_numbers_gcd
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# numbers_gcd --- language: en datasets: - numbers_gcd --- This is a t5-small fine-tuned version on the math_dataset/numbers_gcd for solving greatest common divisor mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to solve algebra 1d equations into numbers. Another examples: + Calculate the greatest common factor of 3470 and 97090. + Answer: 10 Pred: 10 ---- + Calculate the highest common factor of 3480 and 775431. + Answer: 87 Pred: 87 ---- + What is the highest common divisor of 26 and 88049? + Answer: 13 Pred: 13 ---- + Calculate the highest common factor of 1416 and 24203688. + Answer: 1416 Pred: 1416 ---- + Calculate the highest common divisor of 124 and 69445828. + Answer: 124 Pred: 124 ---- + What is the greatest common factor of 657906 and 470? + Answer: 94 Pred: 94 ---- + What is the highest common factor of 4210884 and 72? + Answer: 36 Pred: 36 The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# numbers_gcd\n---\nlanguage: en\ndatasets:\n- numbers_gcd\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/numbers_gcd for solving greatest common divisor mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Calculate the greatest common factor of 3470 and 97090. \n+ Answer: 10 Pred: 10\n----\n+ Calculate the highest common factor of 3480 and 775431.\n+ Answer: 87 Pred: 87\n----\n+ What is the highest common divisor of 26 and 88049? \n+ Answer: 13 Pred: 13\n----\n+ Calculate the highest common factor of 1416 and 24203688.\n+ Answer: 1416 Pred: 1416\n----\n+ Calculate the highest common divisor of 124 and 69445828. \n+ Answer: 124 Pred: 124\n----\n+ What is the greatest common factor of 657906 and 470?\n+ Answer: 94 Pred: 94\n----\n+ What is the highest common factor of 4210884 and 72?\n+ Answer: 36 Pred: 36\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# numbers_gcd\n---\nlanguage: en\ndatasets:\n- numbers_gcd\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/numbers_gcd for solving greatest common divisor mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Calculate the greatest common factor of 3470 and 97090. \n+ Answer: 10 Pred: 10\n----\n+ Calculate the highest common factor of 3480 and 775431.\n+ Answer: 87 Pred: 87\n----\n+ What is the highest common divisor of 26 and 88049? \n+ Answer: 13 Pred: 13\n----\n+ Calculate the highest common factor of 1416 and 24203688.\n+ Answer: 1416 Pred: 1416\n----\n+ Calculate the highest common divisor of 124 and 69445828. \n+ Answer: 124 Pred: 124\n----\n+ What is the greatest common factor of 657906 and 470?\n+ Answer: 94 Pred: 94\n----\n+ What is the highest common factor of 4210884 and 72?\n+ Answer: 36 Pred: 36\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ 48, 282 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# numbers_gcd\n---\nlanguage: en\ndatasets:\n- numbers_gcd\n---\n\nThis is a t5-small fine-tuned version on the math_dataset/numbers_gcd for solving greatest common divisor mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to solve algebra 1d equations into numbers.\n\n\n\nAnother examples:\n\n+ Calculate the greatest common factor of 3470 and 97090. \n+ Answer: 10 Pred: 10\n----\n+ Calculate the highest common factor of 3480 and 775431.\n+ Answer: 87 Pred: 87\n----\n+ What is the highest common divisor of 26 and 88049? \n+ Answer: 13 Pred: 13\n----\n+ Calculate the highest common factor of 1416 and 24203688.\n+ Answer: 1416 Pred: 1416\n----\n+ Calculate the highest common divisor of 124 and 69445828. \n+ Answer: 124 Pred: 124\n----\n+ What is the greatest common factor of 657906 and 470?\n+ Answer: 94 Pred: 94\n----\n+ What is the highest common factor of 4210884 and 72?\n+ Answer: 36 Pred: 36\n\nThe whole training process and hyperparameters are in my GitHub repo\n> Created by Dor Bernsohn" ]
[ -0.08822343498468399, -0.01780482567846775, -0.004712902009487152, 0.07876647263765335, 0.07544147968292236, 0.11405769735574722, -0.06712932139635086, 0.16277119517326355, 0.05644994601607323, 0.1774366796016693, 0.0417068786919117, 0.061340365558862686, 0.07066194713115692, 0.07571474462747574, -0.014124884270131588, -0.13408340513706207, -0.08280059695243835, 0.009103158488869667, 0.03613295406103134, 0.08290319889783859, 0.05940938740968704, -0.08083101361989975, -0.021838946267962456, -0.04302221164107323, -0.08944248408079147, 0.03304799646139145, 0.02104058675467968, -0.038195837289094925, 0.13110986351966858, 0.054010190069675446, 0.022378848865628242, -0.014618399553000927, 0.07417036592960358, -0.14808344841003418, -0.018531199544668198, 0.06124090030789375, 0.012334587052464485, 0.06517311930656433, 0.14572322368621826, -0.03679695725440979, 0.035582076758146286, -0.029996678233146667, -0.010544597171247005, 0.08533136546611786, -0.14287610352039337, -0.2664570212364197, -0.15829609334468842, 0.0707983449101448, 0.163062185049057, 0.03261817246675491, -0.04050320014357567, 0.04974757134914398, -0.0429457388818264, 0.07411283254623413, 0.1508922278881073, -0.3128431737422943, -0.05747516453266144, 0.06942252814769745, 0.007796584628522396, 0.002393355593085289, -0.02364209108054638, -0.041772130876779556, 0.09128234535455704, 0.013231143355369568, 0.016056880354881287, -0.00920366495847702, 0.0711471438407898, 0.0022603024262934923, -0.14089271426200867, -0.07672413438558578, 0.027157500386238098, 0.042459629476070404, -0.02225560136139393, -0.040477730333805084, -0.07756556570529938, -0.0639946386218071, 0.025759177282452583, -0.09495974332094193, 0.014630166813731194, -0.042150333523750305, 0.11411888152360916, 0.017923401668667793, -0.046716783195734024, -0.06020171940326691, -0.0391511470079422, 0.07416187226772308, 0.037672266364097595, 0.023526806384325027, 0.11918730288743973, 0.016291720792651176, -0.13687163591384888, -0.10197199881076813, 0.026730643585324287, 0.07663021981716156, -0.19421908259391785, -0.05321742966771126, 0.04043686017394066, -0.030756458640098572, -0.007324326317757368, 0.12580394744873047, -0.04413231834769249, 0.07670225203037262, 0.05550040677189827, -0.028753118589520454, 0.025288864970207214, 0.07989492267370224, -0.1396823525428772, -0.013780282810330391, -0.02420763112604618, 0.02461237460374832, -0.014186859130859375, -0.00533301942050457, 0.03163851797580719, 0.013207021169364452, 0.08414963632822037, 0.058711569756269455, 0.05970374122262001, -0.06441973149776459, -0.02316323295235634, -0.01305395644158125, 0.060001857578754425, -0.13019825518131256, 0.04950818046927452, 0.01022504735738039, 0.0038080113008618355, 0.010913277044892311, -0.015464975498616695, -0.035761743783950806, -0.092552550137043, 0.07405371218919754, 0.005179538857191801, -0.05453038960695267, -0.055633895099163055, -0.07272445410490036, 0.04693382978439331, -0.05422719940543175, -0.12050958722829819, -0.0002110175701091066, 0.01277568843215704, -0.09997080266475677, 0.03227083012461662, -0.10577988624572754, -0.0861164778470993, 0.06187617778778076, -0.009274274110794067, -0.005145879928022623, -0.03580694645643234, 0.07037687301635742, 0.008204582147300243, 0.08129040151834488, 0.1003061980009079, 0.03941943868994713, 0.14966443181037903, 0.011813771910965443, -0.027222514152526855, 0.11429227888584137, -0.20724555850028992, 0.05216546729207039, -0.039340630173683167, 0.024389490485191345, -0.17086265981197357, -0.09743337333202362, 0.0994003415107727, -0.03522033244371414, 0.037504103034734726, 0.05671490728855133, -0.05481055751442909, -0.011131159961223602, 0.03243449702858925, -0.07723966240882874, -0.1634979248046875, 0.10317043215036392, 0.013983734883368015, -0.0523451566696167, 0.0633251741528511, 0.09243514388799667, 0.10104398429393768, -0.01438160240650177, -0.09405411034822464, -0.07901742309331894, 0.0037298230454325676, 0.09294518083333969, 0.08538568019866943, -0.04515207186341286, -0.04461762309074402, -0.043039917945861816, -0.013749588280916214, 0.04152209311723709, -0.0392923578619957, -0.06188998371362686, -0.024793870747089386, -0.04150500148534775, -0.033277980983257294, 0.1087067648768425, -0.020622000098228455, -0.08515086024999619, -0.07887476682662964, 0.01875036209821701, 0.015850329771637917, -0.07634902000427246, -0.036690108478069305, -0.0328080877661705, 0.08570554852485657, -0.19487719237804413, 0.02272901125252247, -0.16273178160190582, 0.023447124287486076, 0.07236647605895996, -0.0046007148921489716, -0.028197528794407845, 0.012725183740258217, 0.05653894320130348, 0.024514390155673027, -0.08870062232017517, -0.022769717499613762, 0.06640782952308655, -0.0061894250102341175, -0.06661779433488846, -0.12241943925619125, -0.10246992111206055, -0.003691202262416482, 0.05198489502072334, -0.07145555317401886, -0.004560146015137434, 0.06072444096207619, 0.12847793102264404, -0.08585469424724579, -0.03020431660115719, 0.01175810769200325, 0.044923339039087296, -0.011376558803021908, -0.033107493072748184, 0.034383486956357956, -0.09895531088113785, -0.0795629620552063, -0.01936180703341961, -0.06170148402452469, -0.006633690092712641, 0.05042537674307823, -0.06162390857934952, -0.12233318388462067, 0.06408597528934479, -0.06371503323316574, -0.02348368428647518, -0.018466921523213387, -0.08195973187685013, 0.17731048166751862, 0.04083563759922981, 0.05228906124830246, -0.05487934127449989, -0.11020071059465408, 0.05280883610248566, 0.06393295526504517, -0.014725256711244583, 0.16725046932697296, 0.0642285943031311, -0.11911647021770477, 0.06644570082426071, 0.07857754081487656, 0.04142224043607712, -0.06465678662061691, -0.07612129300832748, -0.10144763439893723, -0.04950914531946182, 0.09516589343547821, 0.07740974426269531, -0.0011562618892639875, -0.013886000961065292, -0.011046091094613075, 0.028387364000082016, 0.009395952336490154, -0.02221718803048134, -0.13387705385684967, 0.04568792134523392, 0.028017794713377953, -0.04853564873337746, 0.0855899378657341, -0.06278610229492188, -0.012184499762952328, 0.09889281541109085, 0.043167877942323685, 0.07121831923723221, -0.012287488207221031, -0.021352730691432953, -0.14031842350959778, 0.17862120270729065, -0.02083096280694008, -0.06514530628919601, -0.009804450906813145, 0.011525103822350502, -0.004958038683980703, -0.03442445769906044, 0.017901834100484848, -0.0822005495429039, -0.025220785290002823, 0.02324601262807846, 0.06450791656970978, -0.04625052958726883, 0.032891903072595596, -0.006839798763394356, -0.056456372141838074, 0.06320194154977798, -0.11965515464544296, 0.015643753111362457, 0.004075231496244669, -0.14554643630981445, 0.06472781300544739, 0.018847312778234482, 0.16449418663978577, 0.13088512420654297, -0.029231876134872437, -0.001068082288838923, -0.046492718160152435, 0.1983000487089157, -0.11811081320047379, 0.049378909170627594, 0.09573045372962952, 0.04794549569487572, 0.04600983485579491, 0.06199682503938675, 0.05955781787633896, -0.05747680738568306, 0.010107086040079594, 0.08944220095872879, -0.03597251698374748, -0.2638564109802246, -0.03603217005729675, -0.07469365745782852, -0.04223519563674927, 0.14191704988479614, 0.06848861277103424, -0.14077839255332947, 0.02370695024728775, -0.06108293682336807, 0.03921426087617874, 0.028943393379449844, 0.02040218375623226, 0.10928404331207275, 0.06525877118110657, 0.04911604896187782, -0.04881534352898598, -0.07557251304388046, 0.08635241538286209, 0.03552458435297012, 0.13242566585540771, 0.013026678934693336, 0.22090870141983032, 0.022960897535085678, 0.08874223381280899, -0.07566100358963013, 0.17651796340942383, -0.09699105471372604, 0.07172906398773193, 0.018115326762199402, -0.04949943348765373, 0.054449401795864105, 0.025595545768737793, 0.03608248382806778, 0.038280241191387177, 0.015090320259332657, -0.13245786726474762, 0.1013079434633255, 0.2519521117210388, 0.06562593579292297, -0.13028113543987274, 0.007597974501550198, 0.04901128634810448, -0.04800307750701904, 0.004846107680350542, -0.006215331610292196, -0.024323703721165657, -0.04601583257317543, 0.20712365210056305, -0.026250304654240608, 0.10966245085000992, -0.06557771563529968, -0.022347621619701385, 0.04118267819285393, -0.004808824509382248, 0.06754501909017563, 0.12043200433254242, -0.21118000149726868, 0.11648328602313995, 0.07365603744983673, 0.04190507531166077, -0.06849507987499237, 0.08045606315135956, -0.04849638417363167, -0.10709989070892334, 0.13570420444011688, -0.006221418734639883, 0.23613803088665009, -0.11432454735040665, -0.018959391862154007, 0.02635999768972397, 0.04980995133519173, -0.14262421429157257, 0.10100007057189941, 0.048333585262298584, -0.06291142106056213, -0.03920207917690277, -0.01766093820333481, -0.06583260744810104, -0.08668918907642365, 0.11537277698516846, -0.12960031628608704, -0.09348728507757187, -0.022565698251128197, -0.09507980197668076, -0.1781587153673172, 0.20000973343849182, -0.10718317329883575, -0.06500310450792313, -0.11098399013280869, 0.01717325672507286, 0.21232961118221283, -0.04256059601902962, 0.03367152437567711, 0.016119390726089478, 0.043116502463817596, -0.0671657994389534, -0.036910802125930786, 0.10922423750162125, 0.001427368144504726, -0.23521548509597778, -0.0012729865266010165, 0.20217737555503845, -0.017617953941226006, 0.062476757913827896, -0.015617436729371548, 0.12149354815483093, 0.01429121382534504, -0.10900440067052841, 0.11907339841127396, -0.03368164971470833, 0.027577126398682594, -0.05289608985185623, 0.02711082436144352, 0.06957107037305832, -0.0829351618885994, -0.011751672253012657, 0.07486176490783691, 0.23574963212013245, -0.10503190010786057, 0.006496321875602007, 0.10956458002328873, -0.027785198763012886, -0.12703195214271545, -0.05436107888817787, 0.05113700032234192, 0.036267224699258804, -0.03141805902123451, -0.0950029045343399, 0.1216445192694664, 0.1344171017408371, -0.03505063056945801, -0.024055110290646553, -0.1859627664089203, -0.11539968848228455, -0.05694233626127243, 0.08729435503482819, -0.19428788125514984, -0.22483916580677032, -0.05399114638566971, -0.04425036162137985, -0.10900726169347763, 0.04583354294300079, -0.015044033527374268, 0.05150927975773811, -0.05577683448791504, -0.09242560714483261, 0.02184075117111206, -0.06171836331486702, 0.10500789433717728, 0.0038132579065859318, -0.02854154258966446, -0.0016894711880013347, 0.06152312457561493, 0.07306718826293945, 0.003831617534160614, 0.10963572561740875, -0.03933299705386162, 0.013376384042203426, -0.19284744560718536, -0.07400039583444595, -0.040532734245061874, 0.016311366111040115, -0.05690276622772217, -0.03725169226527214, -0.07357639074325562, -0.03224718198180199, 0.06136872619390488, -0.03929124027490616, -0.011821620166301727, 0.032633762806653976, 0.13904014229774475, 0.10995455831289291, 0.17653322219848633, -0.0777912512421608, -0.12878814339637756, 0.0578678622841835, -0.02434925176203251, -0.004751262720674276, -0.2031947374343872, 0.057547975331544876, 0.21174262464046478, 0.06856808811426163, 0.10529119521379471, 0.03925517573952675, -0.1626872718334198, -0.02051706239581108, 0.043836940079927444, -0.08421450853347778, -0.23506298661231995, 0.023300541564822197, -0.01631609909236431, -0.11405366659164429, -0.014628681354224682, 0.0009428416378796101, -0.03679565712809563, -0.07742288708686829, 0.021715521812438965, 0.01988860033452511, -0.008567753247916698, 0.19587451219558716, 0.016481103375554085, 0.1314946711063385, -0.10054682940244675, 0.06744767725467682, 0.15133550763130188, -0.19169479608535767, -0.028826028108596802, 0.25051507353782654, -0.015361054800450802, -0.04812151566147804, 0.044262275099754333, 0.11802326142787933, 0.06264551728963852, 0.024272199720144272, -0.018551889806985855, -0.15483267605304718, 0.06876657903194427, 0.06696675717830658, 0.037536557763814926, -0.036252982914447784, 0.07567692548036575, -0.013281709514558315, -0.11459329724311829, 0.08100929111242294, 0.05656659975647926, 0.060699932277202606, -0.028631541877985, 0.007657143287360668, 0.030580760911107063, 0.023553872480988503, -0.00883795227855444, 0.04047325998544693, -0.07924216985702515, 0.006222447380423546, 0.08504132181406021, -0.012495871633291245, -0.07046226412057877, 0.009116034023463726, -0.025222091004252434, -0.040926493704319, 0.013367483392357826, 0.006619822699576616, -0.07378625124692917, -0.07844642549753189, -0.02946792170405388, 0.012940091080963612, -0.11035647243261337, -0.05916385352611542, 0.033837370574474335, -0.07167289406061172, 0.123738594353199, -0.07456736266613007, 0.02799304574728012, 0.00856494065374136, -0.05907686799764633, -0.06325651705265045, 0.04932328313589096, 0.03612048923969269, 0.03122219815850258, -0.16128607094287872, 0.05816785246133804, -0.004099802114069462, -0.01699565351009369, 0.04109198600053787, -0.03525852784514427, -0.10888941586017609, -0.023166563361883163, -0.08776615560054779, -0.07598520815372467, -0.06127084419131279, 0.005760238040238619, 0.15523278713226318, 0.0307358019053936, 0.05728171020746231, -0.08012780547142029, 0.0941949412226677, -0.24925293028354645, -0.04514065384864807, -0.05694633722305298, -0.010526175610721111, -0.09465830028057098, -0.011751909740269184, 0.06753329932689667, -0.0367957204580307, 0.06648652255535126, -0.06827190518379211, 0.12006857991218567, 0.04661794751882553, -0.09774389863014221, 0.0032930714078247547, 0.03356759250164032, 0.11072351783514023, 0.0170150026679039, -0.020659778267145157, -0.032299596816301346, 0.057471659034490585, -0.08129086345434189, 0.13489985466003418, -0.06512100249528885, 0.07772774994373322, 0.07148142904043198, -0.0585951954126358, 0.06952643394470215, -0.20522892475128174, 0.04280698671936989, 0.09841743111610413, -0.038724448531866074, 0.07375402748584747, 0.0017369631677865982, 0.08212240040302277, 0.08716939389705658, -0.09789261221885681, 0.04054784029722214, -0.0905708447098732, -0.048291537910699844, -0.06491734832525253, 0.09370632469654083, -0.07357088476419449, -0.04486750066280365, 0.018682781606912613, -0.0628712922334671, -0.02955090068280697, 0.058815304189920425, 0.06648464500904083, -0.004412543494254351, 0.0845620334148407, 0.049735113978385925, 0.026546701788902283, 0.036138031631708145, 0.03619399666786194, 0.05775687098503113, 0.07064238935709, 0.046537429094314575, 0.022357115522027016, -0.05762060731649399, 0.07145706564188004, 0.04113829508423805, -0.05306326225399971, 0.07818946242332458, 0.02759406715631485, -0.10553944855928421, 0.02320699393749237, -0.001821623183786869, 0.08650600165128708, 0.18231192231178284, -0.008399860933423042, -0.010935942642390728, -0.06669265031814575, -0.02445717714726925, -0.04648961126804352, 0.03792620450258255, -0.04754529893398285, 0.26119065284729004, 0.033743031322956085, 0.013164836913347244, 0.01786193437874317, -0.10332323610782623, 0.0006414427189156413, 0.12094239890575409, 0.04566885158419609, 0.11944569647312164, -0.02583109401166439, 0.030410338193178177, -0.012940457090735435, 0.08694276958703995, 0.015659432858228683, 0.058487098664045334, 0.1304612010717392, -0.06957516819238663, 0.06921517848968506, -0.061680201441049576, -0.02243098057806492, 0.0016560188960283995, 0.12044773250818253, 0.01722273789346218, 0.05377116799354553, 0.00009591136767994612, 0.12164224684238434, 0.1381721943616867, -0.14460188150405884, 0.16638603806495667, -0.23034778237342834, -0.12788395583629608, -0.01897580549120903, 0.042993586510419846, -0.053828462958335876, 0.04166566580533981, 0.01105508767068386, 0.023630116134881973, 0.017667319625616074, 0.04460117593407631, -0.19123145937919617, -0.06142934411764145, 0.023386238142848015, -0.001945963827893138, 0.17590343952178955, 0.017908837646245956, 0.11989656090736389, 0.12374578416347504, -0.06480398774147034, -0.16200217604637146, 0.05967036262154579, 0.08077554404735565, -0.129413902759552, 0.0681835263967514, 0.10745836794376373, 0.0007337162387557328, -0.007438876666128635, 0.04052570089697838, -0.14354334771633148, -0.04174893721938133, -0.02496146596968174, 0.003969050943851471, -0.16110053658485413, 0.0179268941283226, -0.057318978011608124, 0.10316433012485504, 0.17179764807224274, -0.042602356523275375, 0.03413388505578041, -0.10150060802698135, 0.03499109670519829, 0.0018534150440245867, 0.1511356681585312, -0.05696127563714981, -0.22277754545211792, 0.06815525144338608, -0.05645754188299179, 0.022664103657007217, -0.03441566228866577, -0.053184233605861664, 0.028747327625751495, -0.03735163062810898, -0.08064021915197372, 0.09499809145927429, 0.013290632516145706, 0.034487560391426086, -0.029713882133364677, -0.19918356835842133, -0.031050268560647964, 0.09425019472837448, -0.14600560069084167, -0.00606565410271287 ]
null
null
transformers
# t5_wikisql_SQL2en --- language: en datasets: - wikisql --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [wikisql dataset](https://huggingface.co/datasets/wikisql) for **SQL** to **English** **translation** text2text mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_wikisql_SQL2en") model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_wikisql_SQL2en") ``` You can then use this model to translate SQL queries into plain english. ```python query = "SELECT people FROM peoples where age > 10" input_text = f"translate SQL to English: {query} </s>" features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # Output: "What people are older than 10?" ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/SQLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
text2text-generation
dbernsohn/t5_wikisql_SQL2en
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5_wikisql_SQL2en --- language: en datasets: - wikisql --- This is a t5-small fine-tuned version on the wikisql dataset for SQL to English translation text2text mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to translate SQL queries into plain english. The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# t5_wikisql_SQL2en\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for SQL to English translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5_wikisql_SQL2en\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for SQL to English translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ 48, 115 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5_wikisql_SQL2en\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for SQL to English translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ -0.06531022489070892, 0.08955005556344986, -0.001636117696762085, 0.08211732655763626, 0.19234615564346313, 0.052610043436288834, 0.0659363716840744, 0.08122096955776215, -0.057884443551301956, -0.09492139518260956, 0.08331577479839325, 0.15038825571537018, 0.03557978942990303, 0.11871402710676193, -0.013324249535799026, -0.2909190356731415, 0.005854166112840176, 0.0064461189322173595, -0.031054062768816948, 0.12122940272092819, 0.1018223688006401, -0.05810033902525902, 0.09632892161607742, 0.0005417440552264452, -0.164470374584198, 0.023416122421622276, 0.025368737056851387, -0.09661196172237396, 0.14187045395374298, 0.07491916418075562, 0.12482477724552155, 0.02029070444405079, 0.09050445258617401, -0.11520286649465561, 0.04032124578952789, 0.06116712838411331, 0.0017383245285600424, 0.0633314922451973, -0.0014054684434086084, 0.04955355077981949, 0.0667017474770546, -0.11248895525932312, 0.011564336717128754, 0.038413699716329575, -0.08625732362270355, 0.013028270564973354, -0.03153904899954796, 0.034089844673871994, 0.061346571892499924, 0.09646677225828171, 0.020128943026065826, 0.1224794015288353, -0.08438635617494583, 0.1584874838590622, 0.1503850221633911, -0.24353061616420746, -0.0485541969537735, 0.05961495637893677, -0.0018793958006426692, 0.08104933798313141, -0.0264638252556324, 0.0003303403500467539, -0.008490236476063728, 0.06029903516173363, 0.04441895708441734, -0.1044951006770134, -0.23948673903942108, -0.004202702548354864, -0.1293513923883438, 0.006778193172067404, 0.14857594668865204, -0.03737039864063263, -0.044568855315446854, 0.024313578382134438, -0.10332474112510681, 0.0759747326374054, -0.018542367964982986, -0.04158752039074898, 0.008857762441039085, 0.016625113785266876, -0.04560818523168564, -0.1964150220155716, -0.124649278819561, -0.04220974072813988, -0.15511193871498108, 0.15331368148326874, 0.03714898228645325, 0.06647546589374542, -0.11523228138685226, 0.06569409370422363, -0.03378509730100632, -0.04464152082800865, -0.00954960286617279, -0.08423613011837006, -0.056848183274269104, -0.04531657695770264, -0.07219848781824112, -0.1165878176689148, 0.0936863049864769, -0.031767599284648895, -0.09448039531707764, 0.005081939976662397, 0.02585350163280964, 0.013531291857361794, 0.04271525889635086, 0.13815033435821533, -0.05943834036588669, -0.025587158277630806, 0.10636905580759048, -0.11339949071407318, -0.06552635878324509, 0.029985008761286736, -0.10743162781000137, -0.08320105075836182, -0.002046349225565791, 0.03355301171541214, -0.02131500281393528, 0.11658154428005219, -0.005290140397846699, -0.05708009749650955, 0.03353629261255264, -0.10712066292762756, -0.05464903265237808, -0.04125212877988815, -0.03983614966273308, 0.11182540655136108, 0.11281665414571762, 0.01791413500905037, -0.15984810888767242, -0.004272107034921646, -0.039022281765937805, 0.01590249501168728, -0.03129318356513977, -0.11579286307096481, -0.002535248640924692, -0.10887297987937927, 0.01609918102622032, -0.13256928324699402, -0.2375984936952591, -0.010032040067017078, 0.06443751603364944, 0.05050497129559517, -0.0553116500377655, -0.02813936024904251, 0.007499185856431723, -0.0038445787504315376, -0.06824655830860138, 0.03043346107006073, -0.04356619715690613, 0.028961075469851494, -0.05522364750504494, 0.05225958675146103, -0.22333437204360962, 0.02631998062133789, -0.11967427283525467, -0.08312918990850449, -0.1512143313884735, 0.11117073148488998, -0.00654988968744874, 0.051285479217767715, -0.11791715770959854, -0.046985022723674774, 0.042020268738269806, 0.059076372534036636, 0.03773336485028267, 0.14996019005775452, -0.2085576057434082, -0.00838453508913517, 0.20330636203289032, -0.09400513768196106, -0.09532972425222397, 0.11186370998620987, -0.025071481242775917, 0.19043199717998505, 0.1735239326953888, 0.11626757681369781, 0.08071140944957733, -0.10645278543233871, 0.10281302034854889, 0.1027885377407074, -0.05293786898255348, -0.09630335867404938, 0.012036473490297794, 0.036024417728185654, -0.01003397535532713, 0.02743465080857277, -0.04446667432785034, 0.06698831915855408, -0.054403237998485565, -0.03463030606508255, -0.02969987690448761, -0.08258361369371414, -0.02645086497068405, 0.006321054883301258, 0.06507304310798645, 0.0016500193160027266, -0.023555349558591843, 0.1275770366191864, 0.05554785206913948, -0.04723725467920303, 0.05867277458310127, -0.05515530705451965, -0.13471068441867828, 0.05494743585586548, 0.013264439068734646, -0.14845483005046844, -0.09542271494865417, -0.043653178960084915, 0.13624189794063568, 0.1179971843957901, 0.08094913512468338, 0.028369640931487083, 0.00845290906727314, -0.028381535783410072, 0.022108126431703568, 0.0321362279355526, 0.029266368597745895, -0.08693662285804749, -0.10101082175970078, 0.02000279910862446, -0.023372136056423187, -0.02072075940668583, -0.0937570184469223, 0.023825382813811302, -0.044260162860155106, 0.04835706204175949, 0.012142428196966648, 0.026782210916280746, 0.013598734512925148, 0.043434809893369675, -0.002270354190841317, -0.04397013038396835, 0.0761232078075409, 0.03461339324712753, -0.07699574530124664, 0.08730043470859528, 0.06464045494794846, 0.02183445356786251, 0.12821835279464722, -0.10466098040342331, -0.03549211099743843, -0.06389495730400085, -0.025840507820248604, 0.012272139079868793, -0.049197059124708176, 0.028302837163209915, 0.15650422871112823, 0.040567681193351746, 0.10052957385778427, -0.04769029840826988, 0.030441030859947205, -0.007860827259719372, -0.08635379374027252, 0.063852958381176, 0.04293999820947647, 0.022875552996993065, -0.3272782266139984, 0.050483640283346176, 0.04556751623749733, -0.06931911408901215, 0.1438591480255127, -0.0040377904660999775, -0.024222036823630333, 0.02670816332101822, -0.03493761271238327, -0.043209340423345566, 0.012984894216060638, -0.12781359255313873, -0.03814315423369408, 0.0412396602332592, 0.03701556473970413, 0.04094268009066582, -0.1102137342095375, -0.006861169822514057, -0.02218523807823658, -0.041187677532434464, -0.03977110981941223, -0.008435485884547234, 0.0036301028449088335, 0.07527736574411392, -0.000025539518901496194, 0.056518349796533585, 0.03893014416098595, 0.01187425758689642, -0.09316294640302658, 0.19856196641921997, -0.10926064848899841, -0.24593161046504974, -0.046066537499427795, -0.12904983758926392, -0.010014930739998817, -0.018488464877009392, 0.09787949919700623, -0.14981873333454132, -0.034602753818035126, 0.0009940245654433966, 0.09428896009922028, 0.02148374728858471, 0.017822880297899246, -0.03229375556111336, 0.020389407873153687, -0.050975605845451355, -0.1093304231762886, -0.018175533041357994, -0.04653646796941757, -0.1028285101056099, 0.06549762934446335, -0.1151004508137703, 0.032237596809864044, 0.06538182497024536, -0.023356521502137184, 0.029953446239233017, -0.07637512683868408, 0.2616339325904846, -0.018040122464299202, 0.08747664839029312, 0.22047793865203857, -0.04443598538637161, 0.02078176476061344, 0.08346561342477798, 0.017946746200323105, -0.062064118683338165, 0.07971053570508957, 0.00027363208937458694, -0.06631221622228622, -0.27524805068969727, -0.07525888085365295, -0.0580291673541069, -0.01710810326039791, 0.03654703125357628, 0.011577501893043518, -0.10433303564786911, 0.09064684808254242, 0.0002924386353697628, 0.06399713456630707, -0.0069758957251906395, 0.04639941081404686, 0.09057444334030151, 0.0018903727177530527, 0.08817366510629654, -0.05167410150170326, 0.007106923032552004, 0.09667804092168808, 0.09804191440343857, 0.09075195342302322, -0.03650509566068649, 0.11161988973617554, 0.06340045481920242, 0.10142696648836136, 0.03895437344908714, 0.15414930880069733, -0.0003118827298749238, 0.011419795453548431, -0.022527385503053665, -0.01786457560956478, -0.1040673479437828, 0.010966197587549686, -0.044980261474847794, -0.06438158452510834, -0.053854115307331085, 0.12928800284862518, 0.030488034710288048, 0.2747468650341034, 0.02628353051841259, -0.2275954782962799, -0.12684814631938934, -0.024711957201361656, -0.06480205059051514, -0.04753570631146431, 0.047939710319042206, 0.041454244405031204, -0.12570340931415558, 0.04777989536523819, 0.00970754399895668, 0.12863147258758545, -0.06788673251867294, 0.048011064529418945, 0.00012343355047050864, 0.07101308554410934, 0.0016556892078369856, 0.06435291469097137, -0.31422245502471924, 0.17417185008525848, 0.02892351523041725, 0.06795533746480942, -0.06652023643255234, -0.018743906170129776, 0.013608744367957115, 0.09924378991127014, 0.09652723371982574, 0.02206621691584587, 0.04501724988222122, -0.04103422537446022, -0.024065900593996048, 0.08679947257041931, 0.057184360921382904, 0.05104341730475426, 0.06567499041557312, -0.012828548438847065, 0.026085950434207916, 0.004961593542248011, 0.08947180956602097, -0.176736518740654, -0.10560731589794159, -0.047744255512952805, 0.05943651124835014, 0.011551355943083763, 0.010819963179528713, -0.042858656495809555, -0.028325829654932022, 0.20907528698444366, 0.023888226598501205, -0.11055605113506317, -0.14797653257846832, 0.1151227205991745, 0.043062567710876465, -0.1160244271159172, 0.035296808928251266, -0.03943462297320366, -0.012903436087071896, 0.0070607648231089115, -0.11803166568279266, 0.11412303894758224, -0.11050399392843246, -0.026456249877810478, -0.013843262568116188, 0.03663898631930351, 0.07911469787359238, 0.018162740394473076, 0.055118948221206665, -0.05691813677549362, -0.04666728898882866, -0.07251138240098953, -0.06065375357866287, 0.01990954391658306, 0.05526012182235718, 0.09872858226299286, -0.11151577532291412, -0.10951366275548935, -0.054480016231536865, -0.04322507604956627, 0.28793442249298096, -0.004441279452294111, -0.02577156573534012, 0.059464409947395325, 0.14748847484588623, -0.0755154937505722, -0.27055108547210693, -0.01611984334886074, 0.07303031533956528, 0.02284206822514534, -0.0280295442789793, -0.18892212212085724, 0.19591204822063446, 0.04880494624376297, 0.014715307392179966, -0.102906733751297, -0.1375475376844406, -0.10712284594774246, 0.10289933532476425, 0.1335865706205368, 0.19636711478233337, -0.09874472767114639, 0.029018893837928772, -0.06648527830839157, -0.12486571073532104, 0.2515840232372284, -0.28105413913726807, 0.08125718683004379, 0.036292534321546555, 0.12624233961105347, 0.0015977226430550218, -0.02138500101864338, -0.0030243918299674988, 0.018515119329094887, -0.03154745325446129, -0.043704453855752945, 0.019176995381712914, 0.03174655884504318, -0.007973919622600079, 0.08796749264001846, 0.049296557903289795, 0.07370321452617645, -0.035784102976322174, -0.023706888779997826, -0.10707122087478638, 0.030018296092748642, -0.002650605980306864, -0.11825592070817947, 0.03811195120215416, 0.04527438431978226, 0.04318040981888771, 0.014618282206356525, 0.0989546999335289, -0.05125413089990616, 0.03262535482645035, 0.1765901893377304, 0.11761294305324554, -0.05087574943900108, 0.038128968328237534, -0.007876712828874588, -0.04181035980582237, 0.044468048959970474, -0.16346685588359833, 0.03470068797469139, 0.055016301572322845, 0.010484352707862854, 0.052606113255023956, 0.030534036457538605, -0.005730847362428904, 0.0016470233676955104, 0.012314475141465664, -0.11764787882566452, -0.05129007622599602, -0.011997447349131107, -0.07470405846834183, -0.03865315765142441, 0.10531753301620483, 0.23381870985031128, -0.049073945730924606, -0.04512545466423035, -0.037188224494457245, -0.003753214841708541, -0.10875150561332703, 0.16187244653701782, 0.06549550592899323, 0.014800041913986206, -0.11720460653305054, 0.07264117151498795, 0.04505542665719986, -0.03774464875459671, 0.014286445453763008, 0.1735140085220337, -0.1759333610534668, -0.10139593482017517, 0.05026671290397644, 0.023149514570832253, -0.15043485164642334, -0.06953289359807968, -0.019212540239095688, -0.0583648681640625, 0.013398063369095325, 0.13814885914325714, 0.058130018413066864, -0.004781130701303482, -0.05953185260295868, -0.001301740063354373, -0.021444806829094887, 0.015462256968021393, 0.016564803197979927, 0.02169475518167019, -0.10734600573778152, 0.12242855131626129, -0.024996954947710037, 0.15123561024665833, -0.054991986602544785, -0.004482603631913662, -0.14742867648601532, 0.05670129507780075, -0.16000832617282867, 0.039641689509153366, -0.08157040923833847, 0.0016473588766530156, -0.03364432603120804, -0.08355353772640228, 0.009011284448206425, 0.033209770917892456, -0.058299753814935684, 0.028429502621293068, -0.008234367705881596, 0.05192643404006958, -0.050901904702186584, 0.008454285562038422, -0.008941447362303734, 0.014427632093429565, 0.12183750420808792, 0.0447554886341095, -0.1245899349451065, 0.13502496480941772, -0.14937061071395874, -0.010783214122056961, 0.05393785610795021, 0.023510120809078217, 0.10174789279699326, 0.07315701991319656, -0.009111938066780567, 0.051234595477581024, 0.11153990775346756, 0.00399781484156847, 0.1863895058631897, -0.02762194350361824, -0.014041553251445293, 0.0017571382923051715, -0.027243923395872116, -0.058011963963508606, -0.0038116970099508762, 0.09892954677343369, 0.04599751532077789, 0.1555534452199936, -0.06568995863199234, 0.04141991585493088, -0.12780599296092987, 0.0013512842124328017, 0.013287380337715149, -0.05132739618420601, -0.10138554871082306, -0.11156116425991058, 0.06085120141506195, -0.025429826229810715, 0.10645366460084915, 0.02233099564909935, 0.11400647461414337, 0.013179581612348557, -0.035797130316495895, -0.067097507417202, -0.0067717838101089, 0.18045756220817566, 0.012483355589210987, -0.01870381273329258, -0.012291375547647476, 0.04487553983926773, -0.004417960532009602, 0.05713138356804848, 0.18086886405944824, 0.08654186129570007, 0.09724023193120956, 0.10023964196443558, -0.010860243812203407, 0.08527475595474243, -0.07565674185752869, -0.12606362998485565, -0.006341961212456226, 0.021037016063928604, -0.06168808788061142, -0.0060999952256679535, 0.11369675397872925, -0.07421734184026718, 0.03134341165423393, -0.006868991535156965, -0.09803729504346848, -0.15091392397880554, -0.13392764329910278, -0.08639805018901825, -0.06896544992923737, -0.033271100372076035, -0.14819642901420593, 0.0017060624668374658, 0.05505749210715294, 0.06772277504205704, -0.014278468675911427, 0.11368679255247116, 0.11009973287582397, -0.1447429358959198, 0.05371786281466484, -0.009546279907226562, 0.04981626942753792, 0.010061772540211678, -0.01477614976465702, -0.027103140950202942, 0.08303117007017136, 0.037502992898225784, 0.017955830320715904, -0.02964806742966175, 0.04653555527329445, -0.09403964132070541, -0.0475858598947525, -0.03515749052166939, 0.08390987664461136, 0.006944742519408464, 0.10489386320114136, 0.0434202142059803, -0.0650392472743988, 0.03776629641652107, 0.21471476554870605, -0.058057527989149094, -0.22041869163513184, -0.13359282910823822, 0.28208059072494507, 0.041606247425079346, 0.0276022981852293, 0.010415161028504372, -0.026137297973036766, -0.04345564916729927, 0.2649741768836975, 0.2321396768093109, -0.1456717550754547, -0.01305962074548006, 0.01026537362486124, 0.0023890743032097816, -0.014437771402299404, 0.21862858533859253, 0.10329634696245193, 0.1501718908548355, -0.04940493777394295, 0.011604118160903454, -0.013055008836090565, -0.05436788871884346, -0.0951610580086708, -0.024394871667027473, 0.0326150618493557, -0.0119040971621871, -0.01310032606124878, 0.14121875166893005, -0.19316929578781128, -0.14669489860534668, -0.09670276939868927, -0.06867605447769165, -0.122702956199646, -0.05285036936402321, 0.03998597711324692, 0.06918887794017792, 0.0725049376487732, -0.02975623495876789, 0.038257598876953125, 0.0572972446680069, -0.009386543184518814, -0.08269424736499786, 0.012448440305888653, 0.15095926821231842, -0.11561819911003113, 0.00890184473246336, -0.021184876561164856, 0.117656409740448, 0.0654938742518425, 0.042248647660017014, -0.05599834397435188, 0.04359282925724983, -0.04401971772313118, -0.008602951653301716, 0.04809045046567917, -0.009011881425976753, -0.05726062133908272, -0.023822525516152382, 0.018098315224051476, -0.19766287505626678, 0.010066519491374493, 0.14685936272144318, -0.0025212266482412815, -0.08076044917106628, 0.03191176801919937, -0.11390677094459534, 0.1143464669585228, 0.13265445828437805, -0.018016211688518524, 0.07234904915094376, -0.12033706158399582, 0.028960082679986954, 0.021349839866161346, -0.05144403129816055, -0.10469940304756165, -0.14143367111682892, -0.06589309871196747, 0.035144321620464325, -0.003997016232460737, -0.10605229437351227, 0.03694340959191322, -0.07007982581853867, -0.004783103242516518, -0.11317244172096252, 0.10553848743438721, 0.09047075361013412, 0.018041759729385376, 0.008741412311792374, -0.06335988640785217, -0.0073366002179682255, 0.09765621274709702, -0.17218098044395447, -0.14510975778102875 ]
null
null
transformers
# t5_wikisql_en2SQL --- language: en datasets: - wikisql --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [wikisql dataset](https://huggingface.co/datasets/wikisql) for **English** to **SQL** **translation** text2text mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_wikisql_en2SQL") model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_wikisql_en2SQL") ``` You can then use this model to translate SQL queries into plain english. ```python query = "what are the names of all the people in the USA?" input_text = f"translate English to Sql: {query} </s>" features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # Output: "SELECT Name FROM table WHERE Country = USA" ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/SQLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
{}
text2text-generation
dbernsohn/t5_wikisql_en2SQL
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# t5_wikisql_en2SQL --- language: en datasets: - wikisql --- This is a t5-small fine-tuned version on the wikisql dataset for English to SQL translation text2text mission. To load the model: (necessary packages: !pip install transformers sentencepiece) You can then use this model to translate SQL queries into plain english. The whole training process and hyperparameters are in my GitHub repo > Created by Dor Bernsohn
[ "# t5_wikisql_en2SQL\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for English to SQL translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# t5_wikisql_en2SQL\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for English to SQL translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ 52, 115 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# t5_wikisql_en2SQL\n---\nlanguage: en\ndatasets:\n- wikisql\n---\n\nThis is a t5-small fine-tuned version on the wikisql dataset for English to SQL translation text2text mission.\n\nTo load the model:\n(necessary packages: !pip install transformers sentencepiece)\n\n\nYou can then use this model to translate SQL queries into plain english.\n\n\n\nThe whole training process and hyperparameters are in my GitHub repo\n\n> Created by Dor Bernsohn" ]
[ -0.0577201247215271, 0.09152215719223022, -0.00151244574226439, 0.08533680438995361, 0.1852836012840271, 0.05126091092824936, 0.052237581461668015, 0.09785155951976776, -0.05365767702460289, -0.08661464601755142, 0.07841871678829193, 0.1339939683675766, 0.025900380685925484, 0.11493861675262451, -0.01543881744146347, -0.27923932671546936, 0.0006531313410960138, 0.01292563695460558, -0.0414549857378006, 0.12694761157035828, 0.09689044207334518, -0.05711771920323372, 0.10158448666334152, 0.0024343114346265793, -0.1621420681476593, 0.03731061890721321, 0.024598179385066032, -0.104366235435009, 0.14041057229042053, 0.08021581918001175, 0.12175793200731277, 0.02399955503642559, 0.07867370545864105, -0.10465773940086365, 0.03838261216878891, 0.06680551916360855, -0.01259622536599636, 0.06536674499511719, 0.0029793051071465015, 0.03960288688540459, 0.0677977129817009, -0.1204134076833725, 0.011348173953592777, 0.0405508428812027, -0.0871913731098175, -0.012157981283962727, -0.02723051980137825, 0.037802282720804214, 0.05080564320087433, 0.10230080038309097, 0.013967583887279034, 0.1328815519809723, -0.09680525958538055, 0.15683633089065552, 0.17220617830753326, -0.2555350363254547, -0.042186539620161057, 0.05343746021389961, 0.02330600842833519, 0.08558584004640579, -0.024760441854596138, -0.0007402020273730159, -0.001818487886339426, 0.0555223673582077, 0.06191924586892128, -0.09877144545316696, -0.23966841399669647, 0.0026090440806001425, -0.13410735130310059, -0.0054860650561749935, 0.1540645807981491, -0.0338740311563015, -0.03076978400349617, 0.023923998698592186, -0.11674201488494873, 0.06413253396749496, 0.00004234761945554055, -0.03856184706091881, 0.001996808685362339, 0.006075762677937746, -0.053669434040784836, -0.2004668414592743, -0.13689185678958893, -0.038497645407915115, -0.165390282869339, 0.15290777385234833, 0.04587873816490173, 0.06083904951810837, -0.11468534916639328, 0.0743543952703476, -0.028837714344263077, -0.050669632852077484, -0.010940357111394405, -0.08615607768297195, -0.07286465167999268, -0.035830918699502945, -0.07858745753765106, -0.1235777959227562, 0.07885422557592392, -0.025410965085029602, -0.11237602680921555, -0.0016615642234683037, 0.030300118029117584, 0.020511701703071594, 0.03502991423010826, 0.1484997719526291, -0.07711978256702423, -0.02784988284111023, 0.09179610759019852, -0.11862074583768845, -0.05805201455950737, 0.02212420478463173, -0.12081728130578995, -0.09778309613466263, -0.0014009871520102024, 0.031480927020311356, -0.010007968172430992, 0.12077470123767853, -0.0019440274918451905, -0.05861567333340645, 0.04629097878932953, -0.1025533527135849, -0.03835742920637131, -0.02957920916378498, -0.045696161687374115, 0.09022220969200134, 0.12788939476013184, 0.01105235330760479, -0.16235709190368652, -0.007109829690307379, -0.04299328848719597, 0.017304588109254837, -0.03479251638054848, -0.13717372715473175, 0.006624654866755009, -0.09191811084747314, 0.008998093195259571, -0.14872464537620544, -0.2044035643339157, -0.003775646211579442, 0.05054590478539467, 0.0475415401160717, -0.05584618076682091, -0.014610793441534042, 0.0033087877091020346, 0.005428639240562916, -0.07050112634897232, 0.03328346088528633, -0.04042793810367584, 0.03527913987636566, -0.058007556945085526, 0.06456203758716583, -0.20759308338165283, 0.03069908544421196, -0.1220003291964531, -0.08585893362760544, -0.1356935054063797, 0.10222188383340836, 0.0040662335231900215, 0.040846087038517, -0.12165619432926178, -0.05949331074953079, 0.04099903628230095, 0.061038944870233536, 0.036202218383550644, 0.1426822692155838, -0.18700048327445984, -0.01263086311519146, 0.20778441429138184, -0.08119401335716248, -0.09868578612804413, 0.10871180146932602, -0.01417829655110836, 0.1731923222541809, 0.1555897295475006, 0.11596057564020157, 0.08223376423120499, -0.11224374920129776, 0.0897008404135704, 0.09814589470624924, -0.06054460629820824, -0.10178142040967941, 0.021077604964375496, 0.034005098044872284, -0.010638565756380558, 0.01802750490605831, -0.043913476169109344, 0.07592301070690155, -0.04469793662428856, -0.032469023019075394, -0.03242160379886627, -0.07298406958580017, 0.010370509698987007, 0.008370890282094479, 0.07164496928453445, -0.0005925680743530393, -0.05005638673901558, 0.1471102237701416, 0.04826145991683006, -0.04392898082733154, 0.06662905961275101, -0.04614781215786934, -0.1255689412355423, 0.04769260063767433, 0.015509726479649544, -0.14627176523208618, -0.10397760570049286, -0.04887542501091957, 0.12241947650909424, 0.11817387491464615, 0.0923406109213829, 0.03465209901332855, 0.007431452628225088, -0.03504132106900215, 0.010852063074707985, 0.024917343631386757, 0.0310827549546957, -0.08448225259780884, -0.09553325176239014, 0.012455726973712444, -0.025688743218779564, -0.021291766315698624, -0.08055783808231354, 0.03463811054825783, -0.030987385660409927, 0.053614336997270584, 0.011955883353948593, 0.036268893629312515, 0.017789481207728386, 0.041244324296712875, -0.014574326574802399, -0.042670488357543945, 0.06688855588436127, 0.0277814082801342, -0.08418522775173187, 0.11110106110572815, 0.028969697654247284, 0.02868303842842579, 0.1368926465511322, -0.09489032626152039, -0.03912455961108208, -0.047797225415706635, -0.03035144880414009, 0.008972987532615662, -0.0486750565469265, 0.005568011663854122, 0.13312405347824097, 0.037941429764032364, 0.10979349911212921, -0.05288247391581535, 0.016117587685585022, -0.013319669291377068, -0.08389899134635925, 0.05570417642593384, 0.04745985195040703, 0.01920100301504135, -0.3076791763305664, 0.06427280604839325, 0.0698319673538208, -0.07483057677745819, 0.1613946259021759, 0.013819705694913864, -0.030683010816574097, 0.020250149071216583, -0.028203211724758148, -0.041467972099781036, 0.005245080683380365, -0.12082810699939728, -0.033984843641519547, 0.044039178639650345, 0.036709584295749664, 0.04508015513420105, -0.10533426702022552, -0.006987294182181358, -0.009737102314829826, -0.03851141780614853, -0.046002890914678574, 0.007500077597796917, 0.013779249973595142, 0.07843334227800369, -0.0006826865719631314, 0.06300555914640427, 0.03847721591591835, 0.018129751086235046, -0.09189591556787491, 0.19339004158973694, -0.12001512944698334, -0.26257768273353577, -0.05480242520570755, -0.1157861202955246, -0.011661084368824959, -0.015462390147149563, 0.11739639192819595, -0.15246199071407318, -0.027903903275728226, -0.011991972103714943, 0.09771571308374405, 0.008396441116929054, 0.017391886562108994, -0.04928170517086983, 0.01616455800831318, -0.04294968396425247, -0.11717961728572845, -0.012883859686553478, -0.037398409098386765, -0.10703998059034348, 0.07979220151901245, -0.10432787984609604, 0.04458560794591904, 0.08311991393566132, -0.03018682636320591, 0.02721625380218029, -0.08098764717578888, 0.24507112801074982, -0.021769719198346138, 0.09338255971670151, 0.21471180021762848, -0.030528247356414795, 0.028962085023522377, 0.0962851345539093, 0.0126962186768651, -0.04084976017475128, 0.08099288493394852, 0.003835093230009079, -0.0695776715874672, -0.2839981019496918, -0.07827432453632355, -0.06783002614974976, -0.013262574560940266, 0.042791493237018585, 0.016265438869595528, -0.07927460968494415, 0.08115506172180176, -0.009015030227601528, 0.05308204144239426, -0.003991282545030117, 0.05811968073248863, 0.11442756652832031, -0.002329757437109947, 0.09427317976951599, -0.056639719754457474, 0.0051833526231348515, 0.1029905453324318, 0.10176633298397064, 0.09237109124660492, -0.05117655172944069, 0.1057605966925621, 0.06152189150452614, 0.1047324687242508, 0.041634444147348404, 0.14579890668392181, -0.0007091209990903735, 0.01843021996319294, -0.025627069175243378, -0.023378493264317513, -0.07536384463310242, 0.02300376445055008, -0.027255065739154816, -0.06577452272176743, -0.06057799980044365, 0.10859299451112747, 0.03296402096748352, 0.2473812848329544, 0.038389455527067184, -0.2216753214597702, -0.11857573688030243, -0.019455155357718468, -0.057604093104600906, -0.04729677364230156, 0.03913639858365059, 0.06795697659254074, -0.11856084316968918, 0.04700135812163353, 0.017809098586440086, 0.12257978320121765, -0.03399675339460373, 0.042532674968242645, 0.007857529446482658, 0.0627652257680893, -0.0028162579983472824, 0.06866036355495453, -0.30594196915626526, 0.1771782487630844, 0.0242140032351017, 0.045399170368909836, -0.06784069538116455, -0.02049785666167736, 0.01093625370413065, 0.0944116860628128, 0.09082810580730438, 0.023782724514603615, 0.032723430544137955, -0.04924345761537552, -0.01824927143752575, 0.07310674339532852, 0.048479896038770676, 0.05582888796925545, 0.06599859893321991, -0.01189351361244917, 0.02026699297130108, 0.01405335869640112, 0.1159459799528122, -0.15548919141292572, -0.10935484617948532, -0.0409480482339859, 0.06436209380626678, -0.003557590302079916, 0.008323859423398972, -0.050032760947942734, -0.03382817283272743, 0.20199409127235413, 0.019123801961541176, -0.11698513478040695, -0.1459314376115799, 0.0989251509308815, 0.04965195432305336, -0.12755268812179565, 0.03560610115528107, -0.03657347708940506, -0.006981961894780397, 0.0042556170374155045, -0.12444635480642319, 0.12000215798616409, -0.10128921270370483, -0.03029271960258484, -0.01141192577779293, 0.04615394026041031, 0.06041661277413368, 0.026827218011021614, 0.05027184262871742, -0.05498816445469856, -0.059925828129053116, -0.07373078912496567, -0.06387320905923843, 0.01715836673974991, 0.05946396291255951, 0.09401822090148926, -0.11143060028553009, -0.1164226084947586, -0.03964769467711449, -0.03591999411582947, 0.29467159509658813, -0.00010297756671207026, -0.048335377126932144, 0.06533768773078918, 0.12938164174556732, -0.06859023869037628, -0.2615477442741394, -0.025764483958482742, 0.07294803112745285, 0.026520375162363052, -0.0010257787071168423, -0.16920752823352814, 0.16211438179016113, 0.04150824621319771, 0.01471359096467495, -0.11563195288181305, -0.15284352004528046, -0.11066925525665283, 0.09278957545757294, 0.11894482374191284, 0.1877700239419937, -0.10680022090673447, 0.03266765922307968, -0.05653063580393791, -0.1323472261428833, 0.2464180439710617, -0.28474801778793335, 0.084283746778965, 0.02828459069132805, 0.13693271577358246, 0.004929020535200834, -0.02208896540105343, -0.00026102058473043144, 0.0073974765837192535, -0.03587231785058975, -0.05575798079371452, 0.014432410709559917, 0.047396983951330185, -0.01819385029375553, 0.09564860165119171, 0.027316946536302567, 0.06603847444057465, -0.0453241765499115, -0.01768353581428528, -0.11425946652889252, 0.03991509974002838, -0.008980067446827888, -0.11426138132810593, 0.026518547907471657, 0.04151232913136482, 0.05377206578850746, 0.001655676867812872, 0.09525872021913528, -0.048134319484233856, 0.0486421100795269, 0.19760622084140778, 0.10208210349082947, -0.04254427179694176, 0.026194076985120773, 0.0017449593869969249, -0.04365689679980278, 0.051589738577604294, -0.17450681328773499, 0.03995255380868912, 0.05646539852023125, 0.010462457314133644, 0.05191247910261154, 0.032758504152297974, -0.013408640399575233, 0.005388475488871336, 0.023376189172267914, -0.11649679392576218, -0.06577446311712265, -0.020419830456376076, -0.07671887427568436, -0.040112003684043884, 0.09181395173072815, 0.22698336839675903, -0.04624495655298233, -0.04607081040740013, -0.022421641275286674, -0.008458292111754417, -0.09846436232328415, 0.1532287448644638, 0.0728720873594284, 0.014048716053366661, -0.10745656490325928, 0.06262059509754181, 0.06130113825201988, -0.04319913312792778, 0.01898813433945179, 0.1721295565366745, -0.16050653159618378, -0.10807543992996216, 0.04362447187304497, -0.002234320854768157, -0.1510743498802185, -0.058937933295965195, -0.017872529104351997, -0.05301486700773239, 0.018963869661092758, 0.12465474009513855, 0.055296339094638824, -0.006858061067759991, -0.05071055516600609, -0.000845199974719435, -0.02240934781730175, 0.025129571557044983, 0.024784063920378685, 0.025100843980908394, -0.10762282460927963, 0.13696084916591644, -0.023241423070430756, 0.15197265148162842, -0.053780362010002136, -0.003151305951178074, -0.15110664069652557, 0.04600134491920471, -0.17086146771907806, 0.024279532954096794, -0.07831075042486191, -0.0002372793824179098, -0.03975840285420418, -0.09015753865242004, -0.00012060294102411717, 0.03762790933251381, -0.06124419346451759, 0.02682417258620262, -0.009330681525170803, 0.060523871332407, -0.0667034164071083, -0.0013535519829019904, -0.00713559752330184, 0.016455134376883507, 0.12015494704246521, 0.04184040054678917, -0.12268568575382233, 0.1237584799528122, -0.13250333070755005, -0.02443731389939785, 0.05045436695218086, 0.022372113540768623, 0.10252954810857773, 0.06959859281778336, -0.002746274694800377, 0.04306327551603317, 0.10075326263904572, 0.0025436978321522474, 0.16201499104499817, -0.033019933849573135, -0.006442970130592585, -0.0073784152045845985, -0.02894885092973709, -0.060777582228183746, 0.006230686325579882, 0.08433230221271515, 0.04774121940135956, 0.15059234201908112, -0.05938514322042465, 0.047554921358823776, -0.13287608325481415, 0.001796435914002359, 0.00998371560126543, -0.047254618257284164, -0.09421930462121964, -0.10825031250715256, 0.0561520978808403, -0.02022456005215645, 0.10090390592813492, 0.031343910843133926, 0.11536842584609985, 0.01595202460885048, -0.022279882803559303, -0.0576804094016552, -0.018005184829235077, 0.17155852913856506, -0.00695089902728796, -0.023105887696146965, -0.008509336039423943, 0.037322428077459335, 0.001436010468751192, 0.05616464838385582, 0.1800123006105423, 0.0881430059671402, 0.09631266444921494, 0.09487578272819519, -0.01196327805519104, 0.07546176761388779, -0.09900229424238205, -0.143671452999115, -0.0002649184316396713, 0.026856740936636925, -0.07245965301990509, -0.007939598523080349, 0.12127019464969635, -0.08152975142002106, 0.031872984021902084, -0.006119067315012217, -0.0894470363855362, -0.14897520840168, -0.12750354409217834, -0.08365689963102341, -0.08197599649429321, -0.040120042860507965, -0.14266707003116608, 0.007365403231233358, 0.028114020824432373, 0.0652880147099495, -0.008585911244153976, 0.11924698948860168, 0.10902059823274612, -0.1505763679742813, 0.03756358474493027, -0.008240627124905586, 0.06252813339233398, 0.018852531909942627, -0.0017091179033741355, -0.017741773277521133, 0.08637963980436325, 0.03428595885634422, 0.023681364953517914, -0.02915966883301735, 0.04476141929626465, -0.10076682269573212, -0.045339010655879974, -0.04648219048976898, 0.09305857867002487, 0.015270468778908253, 0.11655423790216446, 0.043939702212810516, -0.06898641586303711, 0.029146473854780197, 0.22799381613731384, -0.06764712184667587, -0.2155413031578064, -0.12667138874530792, 0.27297163009643555, 0.05904622748494148, 0.016511861234903336, 0.010970138013362885, -0.039073552936315536, -0.05714767426252365, 0.2554115951061249, 0.2361070215702057, -0.13115982711315155, -0.002059238264337182, 0.010970775969326496, 0.006766422651708126, -0.004471482243388891, 0.20419184863567352, 0.10457831621170044, 0.1637933850288391, -0.04497488588094711, 0.01601160690188408, -0.007745275739580393, -0.03997498378157616, -0.08795228600502014, -0.0073569160886108875, 0.02404423989355564, -0.025798650458455086, -0.007737778127193451, 0.12525857985019684, -0.17810997366905212, -0.13855312764644623, -0.09773723781108856, -0.0859367847442627, -0.1179761067032814, -0.03797769919037819, 0.07148445397615433, 0.06459727883338928, 0.07674483954906464, -0.024940894916653633, 0.03293655067682266, 0.0696321651339531, -0.004765384364873171, -0.09632142633199692, 0.01503079105168581, 0.15006141364574432, -0.11282195895910263, 0.021711813285946846, -0.026728220283985138, 0.11458040773868561, 0.07292479276657104, 0.04596328362822533, -0.0605502612888813, 0.04566903039813042, -0.03331516683101654, -0.025646721944212914, 0.04927711561322212, -0.01386533584445715, -0.05998622626066208, -0.03147919848561287, 0.021563977003097534, -0.20600692927837372, 0.008921835571527481, 0.1301821768283844, 0.011086191982030869, -0.08814650774002075, 0.029506659135222435, -0.10119175165891647, 0.11141704767942429, 0.1385354995727539, -0.02455941215157509, 0.05813448131084442, -0.11861302703619003, 0.011959039606153965, 0.020342396572232246, -0.046110618859529495, -0.09795624017715454, -0.1280258446931839, -0.05570027604699135, 0.023337379097938538, 0.012305228039622307, -0.11056504398584366, 0.026801109313964844, -0.06577608734369278, -0.0064669339917600155, -0.11723599582910538, 0.112636998295784, 0.093027763068676, 0.012726726941764355, 0.008924663066864014, -0.056433454155921936, -0.010575459338724613, 0.10311191529035568, -0.181412473320961, -0.13543401658535004 ]
null
null
generic
# Feature Extraction repository template This is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/fasttext_english ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/feature-extraction cd feature-extraction git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
{"library_name": "generic", "tags": ["feature-extraction"]}
feature-extraction
dbguilherme/teste
[ "generic", "feature-extraction", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #generic #feature-extraction #region-us
# Feature Extraction repository template This is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a 'URL' file. 2. Implement the 'URL' '__init__' and '__call__' methods. These methods are called by the Inference API. The '__init__' method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The '__call__' method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * URL ## How to start First create a repo in URL Then clone this template and push it to your repo.
[ "# Feature Extraction repository template\n\nThis is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps\n\n1. Specify the requirements by defining a 'URL' file.\n2. Implement the 'URL' '__init__' and '__call__' methods. These methods are called by the Inference API. The '__init__' method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The '__call__' method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.\n\nExample repos\n* URL", "## How to start\nFirst create a repo in URL \nThen clone this template and push it to your repo." ]
[ "TAGS\n#generic #feature-extraction #region-us \n", "# Feature Extraction repository template\n\nThis is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps\n\n1. Specify the requirements by defining a 'URL' file.\n2. Implement the 'URL' '__init__' and '__call__' methods. These methods are called by the Inference API. The '__init__' method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The '__call__' method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.\n\nExample repos\n* URL", "## How to start\nFirst create a repo in URL \nThen clone this template and push it to your repo." ]
[ 15, 170, 22 ]
[ "passage: TAGS\n#generic #feature-extraction #region-us \n# Feature Extraction repository template\n\nThis is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps\n\n1. Specify the requirements by defining a 'URL' file.\n2. Implement the 'URL' '__init__' and '__call__' methods. These methods are called by the Inference API. The '__init__' method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The '__call__' method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work.\n\nExample repos\n* URL## How to start\nFirst create a repo in URL \nThen clone this template and push it to your repo." ]
[ -0.016049562022089958, 0.022173112258315086, -0.0017738016322255135, 0.03140975907444954, 0.07291190326213837, -0.02539891190826893, -0.03927713632583618, 0.0984872430562973, 0.04912445321679115, 0.09341214597225189, 0.08616713434457779, 0.05853782221674919, 0.0794120728969574, 0.05364997312426567, -0.011377232149243355, -0.09741571545600891, 0.05103679373860359, -0.02858353592455387, 0.1589547097682953, 0.030572423711419106, 0.013123717159032822, -0.007017049472779036, 0.07355202734470367, -0.034238170832395554, -0.18415653705596924, 0.03699114918708801, 0.02723553031682968, 0.015301629900932312, -0.007341852877289057, 0.009215014055371284, 0.021187100559473038, -0.051299359649419785, 0.02587474323809147, -0.16993410885334015, 0.02107807621359825, 0.0430823378264904, 0.02609477937221527, 0.030164852738380432, 0.13502641022205353, -0.02009212225675583, -0.031756747514009476, 0.13876155018806458, 0.05150935798883438, 0.09977652877569199, -0.12725095450878143, -0.12292923778295517, -0.027067847549915314, 0.10539141297340393, 0.08458725363016129, 0.02323264628648758, 0.008562170900404453, 0.032827142626047134, -0.044044025242328644, 0.04392169043421745, 0.026109205558896065, -0.051706958562135696, -0.019627612084150314, 0.0741339772939682, 0.099795401096344, 0.022930504754185677, 0.06650050729513168, 0.0033672719728201628, 0.03883496671915054, 0.07727405428886414, -0.010274558328092098, -0.053207285702228546, -0.19002392888069153, -0.0661425068974495, -0.09992790222167969, -0.130597323179245, 0.226226806640625, -0.03918970376253128, -0.067664735019207, 0.019066115841269493, -0.07021922618150711, 0.0729404166340828, -0.011067970655858517, -0.0447487011551857, 0.010650898329913616, 0.1140112355351448, 0.10360332578420639, -0.08968178182840347, -0.03253338113427162, -0.1320565938949585, 0.0263375137001276, 0.06262926757335663, 0.018339186906814575, 0.11457658559083939, -0.08154495060443878, 0.1401616483926773, -0.10861042886972427, -0.0570140965282917, -0.059216950088739395, -0.07055062055587769, -0.007164669688791037, -0.03197554498910904, 0.023127596825361252, -0.0635843575000763, 0.03906030207872391, 0.2291376143693924, -0.016074426472187042, 0.07237926870584488, -0.07608174532651901, 0.10809207707643509, 0.08245581388473511, 0.11522849649190903, 0.04537880793213844, -0.03602505475282669, 0.047774408012628555, 0.01220506802201271, 0.007302689831703901, -0.043832797557115555, -0.07253631949424744, 0.005994939710944891, 0.007090488914400339, 0.04830018803477287, 0.10370921343564987, 0.003618338145315647, -0.01560636330395937, -0.03758338838815689, -0.014900054782629013, -0.13236016035079956, 0.009280003607273102, -0.0063040899112820625, -0.07302826642990112, -0.009378919377923012, 0.08850536495447159, -0.079232357442379, -0.14841575920581818, -0.18655909597873688, -0.10962281376123428, 0.09496213495731354, -0.09393759816884995, -0.03383669629693031, 0.028818458318710327, -0.10368219763040543, -0.01983674429357052, -0.08534102141857147, -0.21361422538757324, -0.06901978701353073, 0.17476379871368408, -0.0914306789636612, 0.034069474786520004, -0.0668279156088829, 0.02413821406662464, -0.03818735480308533, 0.0014178457204252481, -0.16579663753509521, -0.09609358012676239, -0.02692958526313305, 0.05575010925531387, 0.053312286734580994, -0.06404603272676468, 0.07590558379888535, -0.11670452356338501, 0.15401065349578857, -0.22629480063915253, 0.13115935027599335, -0.005650905892252922, 0.10228586196899414, -0.08059588074684143, 0.04488756135106087, 0.04194725304841995, 0.0595313236117363, 0.06130210682749748, 0.11743070185184479, -0.06457188725471497, -0.008472589775919914, 0.22524921596050262, -0.10427067428827286, -0.07451723515987396, 0.08433258533477783, -0.04396593198180199, 0.24243178963661194, 0.04515547305345535, 0.26350080966949463, 0.0937938541173935, 0.011815088801085949, 0.0906030461192131, 0.10085558146238327, -0.10110273212194443, -0.08774222433567047, -0.006139698904007673, -0.10701523721218109, -0.1026233360171318, 0.06527351588010788, -0.005262342281639576, 0.03160833567380905, 0.016658460721373558, -0.05900553613901138, -0.013516723178327084, 0.020168635994195938, -0.16995646059513092, -0.06527189165353775, -0.017974412068724632, 0.04566622152924538, 0.007502938155084848, 0.0008271252154372633, 0.012486591935157776, -0.06719544529914856, 0.003756782738491893, 0.004024120047688484, 0.21135930716991425, -0.1491282433271408, 0.04020063951611519, -0.12554267048835754, 0.012149177491664886, 0.03391711786389351, -0.04344611614942551, 0.084478959441185, -0.11209414899349213, -0.02378198131918907, 0.07069098204374313, 0.10658915340900421, -0.012645967304706573, 0.08143667131662369, -0.05440203472971916, -0.006229693070054054, -0.015336692333221436, -0.0687507763504982, -0.07557954639196396, -0.09033999592065811, -0.04635520651936531, 0.052860647439956665, -0.1399957239627838, -0.022227294743061066, -0.018221616744995117, -0.05491028353571892, 0.03621301427483559, -0.014030994847416878, -0.026060281321406364, -0.03691363334655762, 0.043657589703798294, 0.019425753504037857, 0.07986059784889221, 0.0185988899320364, -0.08083611726760864, -0.14958103001117706, 0.022196801379323006, -0.19770875573158264, -0.06905849277973175, -0.1131259873509407, -0.0012139106402173638, -0.014873476698994637, 0.029250500723719597, -0.07506370544433594, 0.1985977292060852, 0.005285145714879036, 0.07985270768404007, -0.09630953520536423, 0.015793602913618088, 0.019561883062124252, -0.11805589497089386, -0.0053216684609651566, -0.016252892091870308, 0.18972130119800568, -0.043113064020872116, 0.051724743098020554, -0.02180551551282406, -0.06557615846395493, 0.08881708234548569, 0.001542609534226358, -0.07310708612203598, -0.027212589979171753, 0.16911263763904572, -0.04950018972158432, 0.09602919220924377, -0.2057526558637619, -0.07585496455430984, 0.0028189446311444044, 0.020954182371497154, 0.08962088823318481, -0.12469836324453354, 0.014026211574673653, -0.026930417865514755, -0.01876990683376789, -0.0635325089097023, -0.12211757898330688, -0.024628812447190285, -0.012938168831169605, 0.07395824044942856, -0.043490342795848846, 0.07910095900297165, -0.05251450836658478, -0.0913010835647583, 0.15383002161979675, -0.06886447966098785, -0.1249953880906105, -0.22048678994178772, -0.09378346800804138, -0.08465322107076645, 0.06711612641811371, 0.02741074189543724, 0.006516237277537584, -0.03601321578025818, -0.08383236825466156, 0.10457508265972137, -0.04335771128535271, -0.10893703997135162, -0.12921254336833954, 0.003320511197671294, 0.020327402278780937, -0.13416031002998352, -0.044304557144641876, -0.017952127382159233, -0.03670705854892731, 0.05502399802207947, -0.07865658402442932, 0.0963791161775589, 0.16764356195926666, 0.017197493463754654, 0.08033248037099838, 0.03784212842583656, 0.09949814528226852, 0.03009696491062641, -0.017267556861042976, 0.1751147359609604, -0.039958927780389786, 0.08924511075019836, 0.11881846189498901, 0.01591179519891739, -0.0978919044137001, -0.019200142472982407, -0.07380857318639755, -0.09098058938980103, -0.07556755095720291, -0.052756331861019135, -0.04621186479926109, 0.0774678885936737, 0.12141217291355133, 0.018603689968585968, 0.0418425053358078, 0.09040030837059021, 0.032125577330589294, 0.03729141876101494, -0.000038536934880539775, 0.10887128859758377, -0.010775791481137276, -0.03532314673066139, 0.03545420616865158, 0.010991865769028664, -0.003032376989722252, 0.01745465025305748, 0.09935574233531952, 0.15509209036827087, 0.03783082216978073, -0.012654688209295273, 0.02348370850086212, 0.1162845715880394, 0.02323051169514656, 0.17251746356487274, 0.02308376505970955, 0.043166596442461014, -0.010237524285912514, -0.04032473638653755, -0.10444347560405731, 0.10304282605648041, -0.04662296921014786, -0.01645231433212757, 0.011194847524166107, -0.042049285024404526, 0.03690280765295029, 0.19396211206912994, 0.030559850856661797, -0.25432342290878296, -0.011778497137129307, 0.02974684350192547, -0.0019188200822100043, -0.1499428153038025, 0.06494792550802231, 0.04136598855257034, -0.05417671427130699, -0.10334912687540054, 0.03345418721437454, 0.1286725550889969, 0.015174314379692078, 0.005685634911060333, -0.04797017201781273, 0.0635053738951683, 0.010421971790492535, 0.03466782346367836, 0.02390107326209545, -0.005162774585187435, 0.03640253469347954, 0.04033916816115379, -0.05028004199266434, 0.12683165073394775, 0.04424308240413666, 0.012829597108066082, 0.14594140648841858, 0.0008009556913748384, -0.17422965168952942, -0.19964119791984558, -0.07669766992330551, 0.06169832497835159, 0.022449688985943794, -0.09569216519594193, 0.06984087824821472, -0.018223373219370842, 0.06398013234138489, -0.030972372740507126, -0.005590395070612431, 0.018313705921173096, -0.10821737349033356, -0.07538961619138718, -0.1676577627658844, 0.08727775514125824, 0.016680849716067314, 0.10557343065738678, 0.15645262598991394, 0.15425750613212585, -0.1316750943660736, -0.11171948909759521, -0.07145365327596664, -0.057165831327438354, 0.03491289168596268, -0.018474653363227844, -0.0003623123047873378, -0.038534656167030334, -0.040815554559230804, -0.018538882955908775, -0.1756422072649002, 0.10101274400949478, -0.07525637000799179, 0.07696976512670517, -0.01316023524850607, 0.06327292323112488, 0.0016081862850114703, -0.030843157321214676, 0.054614558815956116, 0.04893362149596214, -0.06755199283361435, -0.1116417646408081, 0.044856201857328415, 0.13119885325431824, 0.020561566576361656, 0.15493687987327576, -0.18191812932491302, -0.1268954873085022, -0.03317531198263168, 0.11257051676511765, 0.08523000031709671, 0.11511670053005219, -0.0074604651890695095, 0.013187043368816376, 0.19347156584262848, -0.08205664902925491, -0.2553446292877197, 0.05742339789867401, -0.0334901288151741, -0.03222903981804848, -0.046001873910427094, -0.17500148713588715, 0.22424431145191193, 0.053982239216566086, 0.008749779313802719, 0.24826820194721222, -0.11703802645206451, -0.019997162744402885, 0.10894551128149033, 0.013078306801617146, 0.20346452295780182, -0.06743139773607254, -0.07800820469856262, 0.02489377185702324, 0.025067975744605064, 0.07203406095504761, -0.08835035562515259, 0.022975310683250427, -0.010075266472995281, -0.017825450748205185, 0.05603523179888725, -0.03912941366434097, 0.07654266804456711, -0.016301464289426804, 0.09568334370851517, -0.05743800476193428, 0.012019401416182518, 0.09501650929450989, -0.07441074401140213, 0.21305136382579803, -0.008057799190282822, -0.008052436634898186, -0.025782402604818344, -0.04197893664240837, -0.03649461269378662, 0.09408021718263626, 0.012487050145864487, -0.06057117134332657, -0.007705054711550474, -0.06257281452417374, 0.06680838763713837, 0.05060625821352005, 0.09749685227870941, -0.08529254794120789, 0.13135160505771637, 0.3559410870075226, -0.03453165665268898, -0.13778001070022583, -0.07153630256652832, 0.03149861842393875, -0.05474652349948883, 0.10667283833026886, -0.08491706848144531, 0.023680424317717552, 0.01747659035027027, 0.01654553785920143, 0.10541551560163498, 0.10151662677526474, -0.056544579565525055, 0.018050802871584892, 0.0302400141954422, -0.067837193608284, -0.04800808057188988, -0.06041429936885834, -0.09789436310529709, -0.07730433344841003, -0.04741780832409859, 0.08360941708087921, -0.013307821936905384, 0.01246462482959032, -0.017611458897590637, 0.07025069743394852, -0.08948769420385361, 0.04613884165883064, -0.00046428648056462407, 0.02103973738849163, -0.06673417240381241, 0.07417000830173492, 0.02882375381886959, -0.007734469138085842, 0.03717777132987976, 0.12069281190633774, -0.052508242428302765, -0.08337108790874481, -0.09344989061355591, 0.16292494535446167, -0.07666345685720444, -0.06138782575726509, -0.1007104441523552, -0.0025296364910900593, -0.001403971342369914, 0.11275327205657959, 0.042355384677648544, 0.03161640092730522, -0.005424691364169121, 0.055484965443611145, -0.018619291484355927, 0.041453637182712555, 0.012454508803784847, 0.007435933221131563, -0.010980048216879368, 0.14152666926383972, 0.04395458102226257, 0.08293203264474869, -0.06659328937530518, -0.11372485011816025, -0.1259547770023346, 0.07100643962621689, -0.20465457439422607, 0.08695237338542938, -0.1289002001285553, -0.003151376498863101, 0.06571822613477707, 0.13676050305366516, -0.00659717433154583, 0.04180028289556503, -0.07346338033676147, -0.023097308352589607, -0.04440334066748619, 0.07277365773916245, -0.0543593093752861, 0.02805240824818611, 0.029965577647089958, -0.06548351794481277, 0.008325748145580292, 0.04623179882764816, -0.07114264369010925, 0.0251629576086998, 0.04512210190296173, -0.10417080670595169, 0.033203769475221634, 0.01945466361939907, -0.026614246889948845, 0.08610554784536362, -0.012429074384272099, 0.033874526619911194, -0.06899932026863098, -0.03411244973540306, 0.05161274969577789, -0.08723366260528564, 0.051696762442588806, -0.0049819136038422585, -0.13558819890022278, -0.06289732456207275, 0.012091300450265408, 0.04348514974117279, 0.11617381870746613, 0.04166007414460182, -0.04505150765180588, 0.05895138531923294, -0.08363691717386246, -0.013611276634037495, 0.06822673976421356, 0.01581728085875511, -0.03838284686207771, -0.09264685213565826, -0.002424204023554921, -0.018886424601078033, 0.17957809567451477, 0.09019986540079117, -0.010734621435403824, -0.0658707246184349, 0.08604054152965546, 0.12512768805027008, 0.0020024047698825598, -0.04013223573565483, 0.06929861009120941, -0.038700420409440994, -0.04032396897673607, 0.1263817548751831, 0.01727042719721794, -0.19882678985595703, -0.006078795529901981, 0.002858387306332588, 0.018749017268419266, 0.10028199106454849, 0.01460893265902996, -0.06842760741710663, 0.037352126091718674, -0.04071763902902603, 0.09129323810338974, 0.01977129653096199, -0.029760511592030525, 0.08140767365694046, 0.1440945267677307, -0.0197221040725708, 0.09357079118490219, 0.06774783879518509, -0.034338973462581635, -0.11010143160820007, -0.28677117824554443, -0.002532904502004385, -0.1493213027715683, -0.05789314955472946, -0.03769829869270325, -0.022682305425405502, 0.12896153330802917, -0.04838549345731735, -0.0053302207961678505, 0.06671065837144852, -0.03598784655332565, -0.12387153506278992, -0.006475026719272137, -0.04179856553673744, 0.047797758132219315, -0.03333987295627594, -0.03846677020192146, 0.0902792438864708, 0.0008145294268615544, 0.05202413350343704, 0.07267794758081436, 0.07410375028848648, 0.039227768778800964, -0.14174993336200714, -0.06277532130479813, -0.03831751272082329, 0.023301536217331886, -0.16449007391929626, 0.057126905769109726, 0.026491161435842514, -0.08925546705722809, 0.02337740734219551, 0.08368349075317383, -0.08755869418382645, 0.045987553894519806, -0.1260734647512436, 0.34547558426856995, 0.0036081576254218817, 0.06484166532754898, -0.03488972410559654, -0.10649450868368149, -0.07273287326097488, 0.11789854615926743, 0.14967191219329834, -0.017486339434981346, -0.040930986404418945, -0.017327159643173218, -0.003686974523589015, -0.05013349652290344, 0.05242924764752388, 0.0007838582969270647, 0.25726962089538574, -0.02228289656341076, 0.05260314419865608, 0.04401090368628502, -0.06736966222524643, -0.09357303380966187, -0.20195482671260834, 0.026514820754528046, 0.023913640528917313, -0.08190891891717911, 0.09281495213508606, -0.2635902762413025, 0.10912588238716125, 0.061136264353990555, 0.012243675999343395, -0.0036467243917286396, -0.07227040082216263, -0.1040239930152893, -0.028387337923049927, 0.08946973085403442, -0.030947912484407425, -0.0019943183287978172, 0.05539602041244507, -0.04695924371480942, -0.21904848515987396, -0.1671997606754303, 0.07188838720321655, -0.059297677129507065, 0.18949294090270996, 0.022549422457814217, -0.05509744957089424, 0.015969231724739075, 0.024350536987185478, -0.024852171540260315, 0.047249842435121536, -0.024682989344000816, -0.041461363434791565, -0.051816485822200775, 0.028835847973823547, -0.03565036877989769, 0.03423486277461052, -0.009209949523210526, -0.0774889588356018, -0.05282306671142578, -0.06859540194272995, -0.02389056235551834, -0.1311134696006775, -0.12486862391233444, -0.10815153270959854, 0.11736419051885605, 0.13066405057907104, 0.0068542687222361565, 0.0008213358232751489, -0.06825712323188782, 0.0944746881723404, 0.026180041953921318, -0.04440153017640114, -0.05192072317004204, -0.10939103364944458, 0.009287799708545208, -0.0053350417874753475, -0.036077678203582764, -0.1390666514635086, -0.02296488732099533, 0.053559351712465286, 0.03758254647254944, 0.013708256185054779, 0.0557633675634861, 0.1859075129032135, 0.060540106147527695, -0.059080570936203, -0.24201081693172455, 0.04452616721391678, 0.07891315966844559, -0.039756473153829575, -0.08274972438812256 ]
null
null
transformers
# Historic Language Models (HLMs) ## Languages Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: | Language | Training data | Size | -------- | ------------- | ---- | German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered) | French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered) | English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered) | Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB | Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB ## Models At the moment, the following models are available on the model hub: | Model identifier | Model Hub link | --------------------------------------------- | -------------------------------------------------------------------------- | `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) | `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased) | `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased) | `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased) # Corpora Stats ## German Europeana Corpus We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: | OCR confidence | Size | -------------- | ---- | **0.60** | 28GB | 0.65 | 18GB | 0.70 | 13GB For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: ![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png) ## French Europeana Corpus Like German, we use different ocr confidence thresholds: | OCR confidence | Size | -------------- | ---- | 0.60 | 31GB | 0.65 | 27GB | **0.70** | 27GB | 0.75 | 23GB | 0.80 | 11GB For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: ![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png) ## British Library Corpus Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering: | Years | Size | ----------------- | ---- | ALL | 24GB | >= 1800 && < 1900 | 24GB We use the year filtered variant. The following plot shows a tokens per year distribution: ![British Library Corpus Stats](stats/figures/bl_corpus_stats.png) ## Finnish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.2GB The following plot shows a tokens per year distribution: ![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png) ## Swedish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.1GB The following plot shows a tokens per year distribution: ![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png) ## All Corpora The following plot shows a tokens per year distribution of the complete training corpus: ![All Corpora Stats](stats/figures/all_corpus_stats.png) # Multilingual Vocab generation For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: | Language | Size | -------- | ---- | German | 10GB | French | 10GB | English | 10GB | Finnish | 9.5GB | Swedish | 9.7GB We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora: | Language | NER corpora | -------- | ------------------ | German | CLEF-HIPE, NewsEye | French | CLEF-HIPE, NewsEye | English | CLEF-HIPE | Finnish | NewsEye | Swedish | NewsEye Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.43 | 0.0004 | French | 1.25 | 0.0001 | English | 1.25 | 0.0 | Finnish | 1.69 | 0.0007 | Swedish | 1.43 | 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.31 | 0.0004 | French | 1.16 | 0.0001 | English | 1.17 | 0.0 | Finnish | 1.54 | 0.0007 | Swedish | 1.32 | 0.0 # Final pretraining corpora We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: | Language | Size | -------- | ---- | German | 28GB | French | 27GB | English | 24GB | Finnish | 27GB | Swedish | 27GB Total size is 130GB. # Pretraining ## Multilingual model We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: ```bash python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \ --output_dir gs://histolectra/bert-base-historic-multilingual-cased \ --bert_config_file ./config.json \ --max_seq_length=512 \ --max_predictions_per_seq=75 \ --do_train=True \ --train_batch_size=128 \ --num_train_steps=3000000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=100000 \ --keep_checkpoint_max=20 \ --use_tpu=True \ --tpu_name=electra-2 \ --num_tpu_cores=32 ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png) ## English model The English BERT model - with texts from British Library corpus - was trained with the Hugging Face JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-historic-english-cased/ \ --tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \ --train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \ --validation_file /mnt/datasets/bl-corpus/english_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 10 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic_english.png) ## Finnish model The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \ --validation_file /mnt/datasets/hlms/finnish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png) ## Swedish model The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \ --validation_file /mnt/datasets/hlms/swedish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png) # Acknowledgments Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "finnish", "license": "mit", "widget": [{"text": "T\u00e4k\u00e4l\u00e4inen sanomalehdist\u00f6 [MASK] erit - t\u00e4in"}]}
fill-mask
dbmdz/bert-base-finnish-europeana-cased
[ "transformers", "pytorch", "jax", "tensorboard", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "finnish" ]
TAGS #transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us
Historic Language Models (HLMs) =============================== Languages --------- Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: Language: German, Training data: Europeana, Size: 13-28GB (filtered) Language: French, Training data: Europeana, Size: 11-31GB (filtered) Language: English, Training data: British Library, Size: 24GB (year filtered) Language: Finnish, Training data: Europeana, Size: 1.2GB Language: Swedish, Training data: Europeana, Size: 1.1GB Models ------ At the moment, the following models are available on the model hub: Corpora Stats ============= German Europeana Corpus ----------------------- We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: !German Europeana Corpus Stats French Europeana Corpus ----------------------- Like German, we use different ocr confidence thresholds: For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: !French Europeana Corpus Stats British Library Corpus ---------------------- Metadata is taken from here. Stats incl. year filtering: We use the year filtered variant. The following plot shows a tokens per year distribution: !British Library Corpus Stats Finnish Europeana Corpus ------------------------ The following plot shows a tokens per year distribution: !Finnish Europeana Corpus Stats Swedish Europeana Corpus ------------------------ The following plot shows a tokens per year distribution: !Swedish Europeana Corpus Stats All Corpora ----------- The following plot shows a tokens per year distribution of the complete training corpus: !All Corpora Stats Multilingual Vocab generation ============================= For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: We then calculate the subword fertility rate and portion of '[UNK]'s over the following NER corpora: Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: Language: German, Subword fertility: 1.43, Unknown portion: 0.0004 Language: French, Subword fertility: 1.25, Unknown portion: 0.0001 Language: English, Subword fertility: 1.25, Unknown portion: 0.0 Language: Finnish, Subword fertility: 1.69, Unknown portion: 0.0007 Language: Swedish, Subword fertility: 1.43, Unknown portion: 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: Language: German, Subword fertility: 1.31, Unknown portion: 0.0004 Language: French, Subword fertility: 1.16, Unknown portion: 0.0001 Language: English, Subword fertility: 1.17, Unknown portion: 0.0 Language: Finnish, Subword fertility: 1.54, Unknown portion: 0.0007 Language: Swedish, Subword fertility: 1.32, Unknown portion: 0.0 Final pretraining corpora ========================= We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: Total size is 130GB. Pretraining =========== Multilingual model ------------------ We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: The following plot shows the pretraining loss curve: !Training loss curve English model ------------- The English BERT model - with texts from British Library corpus - was trained with the Hugging Face JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: The following plot shows the pretraining loss curve: !Training loss curve Finnish model ------------- The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: The following plot shows the pretraining loss curve: !Training loss curve Swedish model ------------- The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: The following plot shows the pretraining loss curve: !Training loss curve Acknowledgments =============== Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 48 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.051839087158441544, 0.05754934996366501, -0.007044851314276457, 0.041297439485788345, 0.09591711312532425, 0.03318804129958153, 0.16328027844429016, 0.10409025847911835, 0.11346999555826187, -0.02286713197827339, 0.15823522210121155, 0.23975786566734314, -0.00003775725053856149, 0.08866453915834427, -0.04481581225991249, -0.25359246134757996, 0.03618115931749344, 0.0695963203907013, -0.05953308194875717, 0.10630111396312714, 0.0596819743514061, -0.08269041031599045, 0.052472591400146484, 0.01378200389444828, -0.14518128335475922, 0.02707573026418686, 0.07519200444221497, -0.10383649915456772, 0.12508544325828552, 0.0433732271194458, 0.17881076037883759, 0.06339889019727707, -0.017478372901678085, -0.07896658778190613, 0.04197794571518898, 0.004860857967287302, -0.09716035425662994, 0.06864118576049805, 0.027406109496951103, -0.03776439651846886, -0.003476001787930727, 0.06514570116996765, 0.04294067621231079, 0.04420726001262665, -0.12576407194137573, -0.1709623485803604, -0.0360589362680912, 0.054294403642416, 0.04851033538579941, 0.04180488735437393, 0.03695087879896164, 0.1995430886745453, -0.09633425623178482, 0.07450947165489197, 0.11653825640678406, -0.36659589409828186, -0.008363665081560612, 0.10942085832357407, 0.10457140952348709, -0.03534732386469841, -0.06376351416110992, 0.050919707864522934, 0.02920958772301674, 0.014826401136815548, 0.08352810889482498, -0.07175076752901077, -0.014460613951086998, 0.02491201087832451, -0.06551115214824677, -0.03304477035999298, 0.13222791254520416, -0.038642678409814835, 0.03505551069974899, -0.02563815377652645, -0.08383870124816895, -0.05164634808897972, -0.029250452294945717, -0.021677307784557343, -0.01075158454477787, 0.06485699862241745, -0.04472553730010986, -0.04322175681591034, -0.1437714695930481, 0.0076313200406730175, -0.21628887951374054, 0.16907206177711487, 0.02317557856440544, 0.07413893193006516, -0.1858559548854828, 0.04917579144239426, -0.007590844761580229, -0.11577427387237549, 0.045862987637519836, -0.06356300413608551, 0.03290265426039696, -0.011133072897791862, -0.027505923062562943, -0.0779840424656868, 0.07944668084383011, 0.17087888717651367, 0.06365145742893219, 0.03157023340463638, 0.015674419701099396, 0.1266307681798935, -0.011389723047614098, 0.08015039563179016, 0.02824932336807251, 0.01610643044114113, 0.05071786418557167, -0.10003328323364258, 0.04134458303451538, -0.05608224496245384, -0.16160239279270172, -0.015702534466981888, 0.005432740319520235, 0.07704494893550873, 0.02900170162320137, 0.05996039882302284, -0.07861769944429398, 0.010046935640275478, 0.10924363881349564, -0.05051092803478241, 0.028501121327280998, -0.019385457038879395, 0.06689273566007614, 0.05005209147930145, 0.01764431782066822, -0.017253749072551727, 0.021859822794795036, 0.13077451288700104, -0.09576339274644852, -0.02259950153529644, -0.06218148022890091, -0.06952331960201263, 0.06361450999975204, -0.13742409646511078, 0.032379306852817535, -0.1531393676996231, -0.12872178852558136, 0.0583975687623024, 0.07879997044801712, -0.0029057052452117205, -0.026596834883093834, 0.05234909430146217, -0.015052029862999916, 0.035987064242362976, -0.04892256110906601, -0.03233768045902252, -0.040373124182224274, 0.09831603616476059, -0.03175034746527672, 0.08473435044288635, -0.132827490568161, 0.032071348279714584, -0.08683327585458755, 0.010430431924760342, -0.10835381597280502, -0.07438201457262039, -0.0563921257853508, 0.14807508885860443, -0.01091169472783804, -0.02032788284122944, -0.09476069360971451, 0.0321950800716877, -0.013892212882637978, 0.12639537453651428, -0.12116212397813797, -0.10733946412801743, 0.20915240049362183, -0.10810822993516922, -0.156493678689003, 0.08271043002605438, -0.004864166956394911, 0.050146594643592834, 0.04925102740526199, 0.12580396234989166, 0.053800199180841446, -0.18147921562194824, 0.08178479224443436, 0.11974798887968063, -0.1459348350763321, -0.18781527876853943, 0.029233399778604507, -0.022758232429623604, -0.0795423686504364, 0.04159080237150192, 0.06728886067867279, 0.10079384595155716, -0.050104327499866486, -0.06692779064178467, -0.017265694215893745, -0.023115774616599083, 0.09473375976085663, 0.0565795935690403, 0.10753615945577621, -0.07294490188360214, -0.05410412698984146, 0.023177023977041245, -0.018046695739030838, 0.052323512732982635, 0.02665993943810463, -0.10995971411466599, 0.11724098026752472, -0.05950678139925003, -0.01724715158343315, -0.1377701610326767, -0.1042751744389534, -0.014335145242512226, 0.01023098174482584, 0.004034374374896288, 0.1414593756198883, 0.11034344136714935, -0.036746613681316376, -0.012011022306978703, -0.0007765699992887676, 0.12691988050937653, 0.04082172363996506, -0.048998214304447174, -0.14070849120616913, 0.01667923294007778, -0.08377831429243088, -0.03244642913341522, -0.026370462030172348, 0.016483787447214127, 0.028443288058042526, 0.10919671505689621, 0.002071693539619446, 0.041054923087358475, -0.0700719952583313, 0.005429381504654884, -0.0364571288228035, 0.007942723110318184, 0.11245082318782806, 0.03030509501695633, -0.06307957321405411, 0.1839832216501236, -0.1323608011007309, 0.32725489139556885, 0.2046183943748474, -0.19289125502109528, -0.019637007266283035, 0.0009156471351161599, -0.024633921682834625, -0.007956132292747498, 0.0386410616338253, -0.0053722793236374855, 0.014699874445796013, -0.004269861616194248, 0.1440020352602005, -0.024756651371717453, -0.03608123958110809, 0.03660302236676216, -0.05308288335800171, -0.06696303933858871, 0.017729435116052628, 0.17938023805618286, -0.15947386622428894, 0.186334028840065, 0.2784985601902008, -0.019922513514757156, 0.17141041159629822, -0.017979402095079422, 0.009529639966785908, -0.016522187739610672, -0.03248045593500137, -0.0017459237715229392, 0.10581375658512115, -0.16977661848068237, -0.02442942187190056, 0.05657196417450905, -0.04820196330547333, 0.0367211252450943, -0.1557922065258026, -0.06153831258416176, 0.0046255639754235744, 0.03477578982710838, -0.03999156504869461, 0.11825788766145706, 0.005560677964240313, 0.06265360116958618, -0.029660245403647423, -0.12107476592063904, 0.1185598075389862, 0.003983780741691589, -0.04350627213716507, 0.13773678243160248, -0.11095631122589111, -0.25883549451828003, -0.13851222395896912, -0.14722876250743866, 0.032133907079696655, 0.012513358145952225, 0.0875658169388771, -0.043020691722631454, -0.044536370784044266, 0.05340518057346344, -0.0527057982981205, -0.033743273466825485, 0.05804596096277237, -0.09910064190626144, 0.026906810700893402, -0.039901137351989746, -0.09379890561103821, -0.07148706912994385, -0.034090571105480194, -0.022384006530046463, 0.11453430354595184, -0.04843152314424515, 0.06025031954050064, 0.1229909211397171, 0.0012367932358756661, 0.04999570548534393, -0.03751353546977043, 0.14375580847263336, -0.058938167989254, 0.011961431242525578, 0.14838910102844238, -0.02548835799098015, 0.08804616332054138, 0.17703141272068024, 0.0717308446764946, -0.040495675057172775, -0.01974266953766346, -0.04183902218937874, -0.1138993352651596, -0.1841747760772705, -0.06022971495985985, -0.12477733194828033, 0.011241169646382332, 0.0656278133392334, 0.0810658186674118, 0.15626436471939087, 0.09519478678703308, 0.04322393983602524, -0.0052810064516961575, -0.041275665163993835, 0.05319063365459442, 0.17378507554531097, -0.024185262620449066, 0.13222216069698334, -0.06188523396849632, -0.12739427387714386, 0.052776601165533066, 0.05350898951292038, 0.09967032074928284, 0.1358156055212021, 0.07174052298069, 0.07048027962446213, 0.19707077741622925, 0.15132512152194977, 0.11540325731039047, 0.009118536487221718, -0.07258951663970947, -0.012697822414338589, -0.026483604684472084, 0.0018536752322688699, 0.03314098343253136, 0.13619084656238556, -0.0936734527349472, -0.003583400510251522, -0.15562011301517487, 0.021646199747920036, 0.10743267834186554, 0.044912099838256836, -0.23810602724552155, 0.021326176822185516, 0.058489538729190826, 0.016327740624547005, -0.0408952459692955, 0.03618145361542702, -0.018795009702444077, -0.08605646342039108, 0.052121520042419434, -0.08796849846839905, 0.07939128577709198, 0.05301116034388542, 0.05718093365430832, 0.01501370407640934, -0.05106685310602188, 0.029419032856822014, 0.06364542990922928, -0.26543474197387695, 0.25326597690582275, 0.00487210787832737, 0.0043363976292312145, -0.07396209985017776, 0.006647484377026558, 0.04047825187444687, 0.11821144074201584, 0.12877273559570312, 0.005635477136820555, -0.05992585048079491, -0.08850368857383728, -0.011659959331154823, 0.022363774478435516, 0.05690794810652733, -0.02064673788845539, -0.041216276586055756, -0.03176962956786156, -0.03796757757663727, 0.025560200214385986, 0.0741967260837555, -0.023853270336985588, -0.14801272749900818, 0.07090052217245102, 0.048615556210279465, -0.05302291736006737, -0.014554938301444054, -0.07732009142637253, -0.1491258442401886, 0.1990075260400772, -0.06817089021205902, -0.038704097270965576, -0.10542717576026917, -0.11808627098798752, 0.04854150861501694, -0.08662097901105881, 0.07648878544569016, -0.07729719579219818, 0.003190411953255534, -0.0940379798412323, -0.18273860216140747, 0.16613228619098663, -0.11264490336179733, -0.0028398162685334682, -0.11429493874311447, 0.1359773725271225, -0.07341937720775604, 0.04110720381140709, 0.019658420234918594, 0.033366985619068146, -0.07361281663179398, -0.05781092122197151, 0.03920722380280495, -0.06033698841929436, 0.03932926431298256, -0.0902203693985939, -0.06301779299974442, -0.020242007449269295, 0.037884000688791275, 0.010747263208031654, 0.20396296679973602, 0.2425672858953476, -0.08453952521085739, 0.16882392764091492, 0.17954322695732117, -0.06344646960496902, -0.32538944482803345, -0.10425965487957001, -0.14501461386680603, -0.01634250581264496, 0.05451434105634689, -0.11082664877176285, 0.08978450298309326, 0.008248848840594292, -0.07513584196567535, 0.14275631308555603, -0.19474728405475616, -0.11187044531106949, 0.20845681428909302, 0.05579433590173721, 0.3933327794075012, -0.13834621012210846, -0.07903703302145004, -0.009891088120639324, -0.14639325439929962, 0.13047440350055695, -0.00960923358798027, 0.08409277349710464, -0.016912955790758133, 0.037252143025398254, 0.012626886367797852, -0.0973510667681694, 0.09767425805330276, -0.058244552463293076, 0.03351347893476486, -0.09784480184316635, -0.08591212332248688, 0.1170773133635521, -0.001281982404179871, -0.0034382434096187353, -0.0754755288362503, -0.02535209245979786, -0.021615367382764816, -0.016926495358347893, -0.08591051399707794, 0.12156950682401657, 0.007478289306163788, -0.07721824198961258, 0.011062739416956902, 0.0038660054560750723, -0.0330260768532753, -0.03820240870118141, 0.25861606001853943, 0.0170921441167593, 0.18053272366523743, 0.11620441824197769, 0.030003072693943977, -0.1481519639492035, -0.104375921189785, -0.059928957372903824, -0.09123123437166214, 0.09249807149171829, -0.0357370525598526, 0.027171293273568153, 0.10260025411844254, 0.0031277118250727654, 0.07188498228788376, 0.10620100051164627, -0.024698913097381592, -0.02230875939130783, 0.15182016789913177, -0.18328966200351715, -0.033344004303216934, 0.006184643134474754, 0.011690312065184116, 0.061225686222314835, 0.06334849447011948, 0.0791446641087532, 0.007221914362162352, -0.024311354383826256, 0.022815369069576263, -0.0005053107161074877, -0.05260808765888214, 0.03716006129980087, 0.06872495263814926, 0.0327146053314209, -0.10883650183677673, 0.013456217013299465, -0.0019058872712776065, -0.2148330956697464, -0.022956423461437225, 0.08037687838077545, -0.09310910105705261, -0.11530756205320358, 0.017102990299463272, 0.113884337246418, -0.0841464102268219, -0.04327096790075302, -0.07041926681995392, -0.11280620843172073, 0.0430489256978035, 0.1925356388092041, 0.08974827826023102, 0.07247795909643173, -0.02806892618536949, -0.0164092555642128, -0.017467768862843513, 0.017731059342622757, -0.050591472536325455, 0.04203501716256142, -0.10063640773296356, -0.0031517846509814262, 0.012646375223994255, 0.11142874509096146, -0.0931754782795906, -0.024791259318590164, -0.17504200339317322, 0.021976035088300705, -0.037535302340984344, -0.06035265699028969, -0.11085670441389084, -0.06535400450229645, 0.027930792421102524, -0.06336884945631027, -0.057974524796009064, -0.028940336778759956, -0.12112385779619217, 0.016414426267147064, 0.053685106337070465, 0.026378681883215904, -0.08713769167661667, -0.035030003637075424, 0.0878349021077156, -0.021211396902799606, 0.06460617482662201, 0.07175175100564957, -0.0402694009244442, 0.09869219362735748, -0.14973975718021393, -0.07678456604480743, 0.07971728593111038, 0.014169992879033089, 0.07108218967914581, 0.05858078971505165, 0.015226340852677822, 0.06820400059223175, 0.026210330426692963, 0.04431380331516266, 0.01753648743033409, -0.12533506751060486, 0.041553743183612823, 0.013296058401465416, -0.16332706809043884, -0.0298130102455616, -0.07173781096935272, 0.08729584515094757, -0.01501238252967596, 0.16193018853664398, -0.04326019436120987, 0.05969846248626709, -0.08368222415447235, 0.015430950559675694, -0.019609758630394936, -0.13675250113010406, -0.01440459955483675, -0.048768334090709686, -0.01726621389389038, -0.02894338220357895, 0.21556170284748077, 0.034025728702545166, -0.07295025140047073, 0.05880950018763542, 0.05583763122558594, -0.007627020590007305, -0.004625181667506695, 0.20452307164669037, 0.04921839013695717, -0.030866626650094986, -0.08676791191101074, 0.0849846750497818, 0.002669571666046977, -0.037294305860996246, 0.11639133095741272, 0.07645279914140701, 0.0235174261033535, 0.08199748396873474, 0.07498408854007721, 0.024055490270256996, -0.10256751626729965, -0.12409424781799316, -0.020988034084439278, 0.07267990708351135, 0.015765473246574402, 0.061739638447761536, 0.17407315969467163, -0.01526327058672905, 0.0382017157971859, -0.05325338989496231, -0.026040609925985336, -0.18832086026668549, -0.1911710947751999, -0.07335403561592102, -0.05790076404809952, 0.03999705612659454, 0.011681041680276394, -0.0029665471520274878, 0.08131464570760727, 0.04593855142593384, -0.04019766300916672, 0.06636624783277512, 0.016111889854073524, -0.0026994480285793543, -0.0064181974157691, 0.01357024535536766, -0.012806694954633713, -0.047783851623535156, 0.0009643658995628357, -0.1458704173564911, -0.024162521585822105, -0.054115138947963715, -0.006142050959169865, -0.03249034658074379, 0.02736322395503521, -0.07529088109731674, -0.12222789973020554, -0.04713910073041916, 0.024412820115685463, -0.00910845398902893, 0.08779486268758774, 0.0005544011946767569, 0.056242428719997406, 0.017034195363521576, 0.11104237288236618, -0.05557795241475105, -0.067995086312294, -0.034098390489816666, 0.17240868508815765, 0.028613146394491196, 0.07676767557859421, 0.006966684479266405, 0.025836698710918427, -0.04986418038606644, 0.27340570092201233, 0.34872251749038696, -0.028487324714660645, 0.07248261570930481, 0.04611162096261978, 0.014016358181834221, 0.026035044342279434, 0.12757743895053864, 0.043587591499090195, 0.2774013876914978, -0.10004895180463791, -0.027175065129995346, -0.05126895010471344, -0.02630932442843914, -0.10253342241048813, 0.031530920416116714, 0.025629648938775063, -0.03382710739970207, -0.03744705766439438, 0.07364004850387573, -0.13574041426181793, 0.0781281366944313, 0.09348227083683014, -0.16991128027439117, -0.054955340921878815, -0.0016502125654369593, 0.20376285910606384, -0.002897647675126791, 0.08135446906089783, -0.04521779716014862, -0.050024330615997314, 0.02881374955177307, 0.003952203318476677, -0.22811630368232727, -0.045949339866638184, 0.09744052588939667, -0.00003140247645205818, 0.1293671429157257, -0.03242747485637665, 0.053703803569078445, 0.09328465163707733, 0.07485628873109818, -0.038082055747509, 0.03144281730055809, 0.029686324298381805, -0.11715757846832275, -0.03903829678893089, -0.04384990781545639, 0.011899519711732864, -0.08750861138105392, 0.025666406378149986, -0.09675184637308121, 0.05073103681206703, -0.15704932808876038, -0.05274903029203415, -0.030182145535945892, 0.07677976042032242, -0.04176807031035423, 0.07733786851167679, 0.034905530512332916, 0.033319562673568726, -0.057139553129673004, -0.0438762828707695, -0.017986563965678215, 0.09237773716449738, -0.12231916934251785, -0.14325374364852905, -0.06759541481733322, -0.03438451513648033, 0.020126324146986008, -0.007274150382727385, -0.17977534234523773, -0.05907084420323372, -0.10031711310148239, -0.006800706963986158, -0.16756941378116608, 0.013188323006033897, 0.11622919142246246, 0.049342717975378036, -0.0021123301703482866, -0.06798454374074936, 0.026009880006313324, 0.014629384502768517, -0.16717568039894104, -0.08709432184696198 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz BERT model In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources French Europeana BERT models πŸŽ‰ # French Europeana BERT We extracted all French texts using the `language` metadata attribute from the Europeana corpus. The resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens. Based on the metadata information, texts from the 18th - 20th century are mainly included in the training corpus. Detailed information about the data and pretraining steps can be found in [this repository](https://github.com/stefan-it/europeana-bert). ## Model weights BERT model weights for PyTorch and TensorFlow are available. * French Europeana BERT: `dbmdz/bert-base-french-europeana-cased` - [model hub page](https://huggingface.co/dbmdz/bert-base-french-europeana-cased/tree/main) ## Results For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert). ## Usage With Transformers >= 2.3 our French Europeana BERT model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-french-europeana-cased") model = AutoModel.from_pretrained("dbmdz/bert-base-french-europeana-cased") ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT model just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download our model from their S3 storage πŸ€—
{"language": "fr", "license": "mit", "tags": ["historic french"]}
null
dbmdz/bert-base-french-europeana-cased
[ "transformers", "pytorch", "tf", "jax", "bert", "historic french", "fr", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #tf #jax #bert #historic french #fr #license-mit #endpoints_compatible #region-us
# + dbmdz BERT model In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources French Europeana BERT models # French Europeana BERT We extracted all French texts using the 'language' metadata attribute from the Europeana corpus. The resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens. Based on the metadata information, texts from the 18th - 20th century are mainly included in the training corpus. Detailed information about the data and pretraining steps can be found in this repository. ## Model weights BERT model weights for PyTorch and TensorFlow are available. * French Europeana BERT: 'dbmdz/bert-base-french-europeana-cased' - model hub page ## Results For results on Historic NER, please refer to this repository. ## Usage With Transformers >= 2.3 our French Europeana BERT model can be loaded like: # Huggingface model hub All models are available on the Huggingface model hub. # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT model just open an issue here # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download our model from their S3 storage
[ "# + dbmdz BERT model\n\nIn this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\nLibrary open sources French Europeana BERT models", "# French Europeana BERT\n\nWe extracted all French texts using the 'language' metadata attribute from the Europeana corpus.\n\nThe resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens.\n\nBased on the metadata information, texts from the 18th - 20th century are mainly included in the\ntraining corpus.\n\nDetailed information about the data and pretraining steps can be found in\nthis repository.", "## Model weights\n\nBERT model weights for PyTorch and TensorFlow are available.\n\n* French Europeana BERT: 'dbmdz/bert-base-french-europeana-cased' - model hub page", "## Results\n\nFor results on Historic NER, please refer to this repository.", "## Usage\n\nWith Transformers >= 2.3 our French Europeana BERT model can be loaded like:", "# Huggingface model hub\n\nAll models are available on the Huggingface model hub.", "# Contact (Bugs, Feedback, Contribution and more)\n\nFor questions about our BERT model just open an issue\nhere", "# Acknowledgments\n\nResearch supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\nThanks for providing access to the TFRC ️\n\nThanks to the generous support from the Hugging Face team,\nit is possible to download our model from their S3 storage" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #historic french #fr #license-mit #endpoints_compatible #region-us \n", "# + dbmdz BERT model\n\nIn this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\nLibrary open sources French Europeana BERT models", "# French Europeana BERT\n\nWe extracted all French texts using the 'language' metadata attribute from the Europeana corpus.\n\nThe resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens.\n\nBased on the metadata information, texts from the 18th - 20th century are mainly included in the\ntraining corpus.\n\nDetailed information about the data and pretraining steps can be found in\nthis repository.", "## Model weights\n\nBERT model weights for PyTorch and TensorFlow are available.\n\n* French Europeana BERT: 'dbmdz/bert-base-french-europeana-cased' - model hub page", "## Results\n\nFor results on Historic NER, please refer to this repository.", "## Usage\n\nWith Transformers >= 2.3 our French Europeana BERT model can be loaded like:", "# Huggingface model hub\n\nAll models are available on the Huggingface model hub.", "# Contact (Bugs, Feedback, Contribution and more)\n\nFor questions about our BERT model just open an issue\nhere", "# Acknowledgments\n\nResearch supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\nThanks for providing access to the TFRC ️\n\nThanks to the generous support from the Hugging Face team,\nit is possible to download our model from their S3 storage" ]
[ 41, 39, 98, 51, 17, 23, 18, 25, 64 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #historic french #fr #license-mit #endpoints_compatible #region-us \n# + dbmdz BERT model\n\nIn this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\nLibrary open sources French Europeana BERT models# French Europeana BERT\n\nWe extracted all French texts using the 'language' metadata attribute from the Europeana corpus.\n\nThe resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens.\n\nBased on the metadata information, texts from the 18th - 20th century are mainly included in the\ntraining corpus.\n\nDetailed information about the data and pretraining steps can be found in\nthis repository.## Model weights\n\nBERT model weights for PyTorch and TensorFlow are available.\n\n* French Europeana BERT: 'dbmdz/bert-base-french-europeana-cased' - model hub page## Results\n\nFor results on Historic NER, please refer to this repository.## Usage\n\nWith Transformers >= 2.3 our French Europeana BERT model can be loaded like:# Huggingface model hub\n\nAll models are available on the Huggingface model hub.# Contact (Bugs, Feedback, Contribution and more)\n\nFor questions about our BERT model just open an issue\nhere# Acknowledgments\n\nResearch supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).\nThanks for providing access to the TFRC ️\n\nThanks to the generous support from the Hugging Face team,\nit is possible to download our model from their S3 storage" ]
[ -0.04819624871015549, 0.18047796189785004, -0.001716742990538478, 0.09293726831674576, 0.054426174610853195, -0.005959848407655954, 0.14288221299648285, 0.08093053847551346, 0.1741633415222168, 0.029176747426390648, -0.05124219134449959, -0.09305058419704437, 0.028860749676823616, 0.08823709189891815, 0.06368685513734818, -0.1861492395401001, -0.0022627287544310093, -0.002677527256309986, -0.01838137023150921, 0.033793944865465164, 0.08725231885910034, -0.03548148646950722, 0.09575771540403366, 0.025353262200951576, -0.10719699412584305, 0.1314871609210968, -0.0850491002202034, -0.0326618030667305, 0.13460366427898407, 0.06828508526086807, 0.032367043197155, -0.044234342873096466, 0.0411025695502758, -0.10077616572380066, 0.023070957511663437, 0.06215326115489006, -0.0380740761756897, 0.07687424123287201, 0.1032131165266037, -0.049670908600091934, 0.16775082051753998, -0.035294823348522186, -0.0010508215054869652, 0.055078186094760895, -0.029861848801374435, -0.008425532840192318, -0.1294800192117691, 0.08211767673492432, -0.036515381187200546, 0.06550091505050659, 0.03124275989830494, 0.13924072682857513, -0.048477523028850555, 0.004147583618760109, 0.2311229258775711, -0.14287763833999634, -0.035336993634700775, 0.019832169637084007, 0.043880097568035126, 0.027628218755126, -0.1156892329454422, 0.05964672192931175, 0.019921109080314636, 0.0339914932847023, 0.03917054086923599, -0.0452694296836853, -0.10768339782953262, -0.04258237034082413, -0.06530891358852386, 0.0019407975487411022, 0.11548727750778198, 0.006191854830831289, -0.09593468904495239, -0.14201892912387848, -0.06060211732983589, 0.1776742935180664, -0.04375443235039711, 0.011539424769580364, 0.062384020537137985, -0.03116457723081112, 0.07592684030532837, -0.15678061544895172, -0.04159313440322876, -0.05149802565574646, -0.05903898552060127, 0.15596313774585724, -0.00246264785528183, 0.03586134687066078, 0.03380867466330528, 0.07277479767799377, -0.1404876708984375, -0.03597184643149376, -0.0029880963265895844, -0.033666327595710754, -0.04664897546172142, -0.031325530260801315, 0.0053621805272996426, 0.006520790513604879, 0.007833943702280521, 0.15121322870254517, -0.13686786592006683, -0.048869792371988297, -0.11162292957305908, -0.011376560665667057, 0.05455261096358299, 0.0623764768242836, -0.11830566078424454, -0.1657780408859253, 0.06964708864688873, -0.11412205547094345, 0.030514614656567574, 0.03167608380317688, -0.04457525536417961, -0.056254226714372635, -0.03553612157702446, 0.030670423060655594, 0.0062194219790399075, 0.001085250056348741, 0.019779633730649948, -0.041392214596271515, 0.2772534191608429, -0.07016699016094208, 0.02901865914463997, 0.032466109842061996, -0.08361576497554779, -0.011065657250583172, 0.05647839605808258, -0.028385739773511887, -0.0917564108967781, 0.016249408945441246, -0.12553007900714874, -0.036180417984724045, -0.03531889617443085, -0.1418546736240387, 0.06841113418340683, -0.13089558482170105, -0.02726958692073822, -0.11305207014083862, -0.12296359241008759, -0.014938689768314362, 0.019881388172507286, -0.07405876368284225, 0.032394036650657654, 0.015252831391990185, -0.000506568409036845, -0.03355718404054642, 0.0064697833731770515, 0.05321568250656128, -0.038112569600343704, -0.036239106208086014, -0.15813270211219788, 0.03321989253163338, -0.0698741003870964, 0.018230751156806946, -0.07381614297628403, -0.039314065128564835, -0.24025437235832214, 0.06836485117673874, -0.11988767981529236, -0.02680722251534462, -0.10250555723905563, 0.012456287629902363, 0.05058357119560242, 0.013717571273446083, 0.07392784208059311, 0.16398556530475616, -0.07546699792146683, -0.05637838691473007, 0.2162764072418213, -0.09713029116392136, -0.0958193764090538, 0.1616085022687912, -0.01862119883298874, 0.01835181936621666, 0.04417672008275986, 0.178715318441391, 0.05328298360109329, -0.15578243136405945, -0.06934992969036102, 0.008452583104372025, 0.057020753622055054, -0.051495201885700226, 0.03597264364361763, -0.07396060228347778, 0.017941251397132874, 0.005677815992385149, -0.0433715358376503, 0.029631324112415314, -0.020900320261716843, 0.03562559187412262, -0.004100209567695856, -0.06745591759681702, -0.004172652494162321, 0.04525689035654068, 0.03494399040937424, -0.0295270923525095, -0.034579962491989136, 0.1730736643075943, 0.07861730456352234, -0.037365373224020004, 0.04241104796528816, 0.03874271363019943, 0.07594306766986847, -0.05544334277510643, -0.016476400196552277, -0.12816420197486877, -0.1216941550374031, 0.08471247553825378, -0.07695237547159195, 0.08188726007938385, -0.03501448780298233, 0.07514206320047379, 0.11376465857028961, -0.047480858862400055, 0.029286257922649384, 0.013383714482188225, -0.006057227961719036, -0.011620160192251205, -0.10743894428014755, -0.0281186755746603, -0.05304760858416557, 0.12134643644094467, -0.048298172652721405, -0.021546579897403717, 0.008770208805799484, 0.20688030123710632, 0.018156686797738075, -0.060925960540771484, 0.012243198230862617, 0.014341468922793865, -0.022955527529120445, -0.021754341199994087, 0.011121217161417007, -0.020072026178240776, 0.00674827303737402, 0.14545683562755585, 0.007788478396832943, 0.009807171300053596, 0.08538635075092316, 0.1369253247976303, -0.051887597888708115, -0.09955106675624847, -0.06069403514266014, -0.00006423499871743843, -0.059600889682769775, -0.07846254855394363, 0.17559905350208282, 0.06598798930644989, 0.12384390085935593, -0.09170382469892502, -0.07350190728902817, 0.025003582239151, 0.04183175787329674, -0.0783410519361496, 0.1017930880188942, 0.006759414914995432, -0.034835632890462875, 0.1001097708940506, -0.018742619082331657, 0.0014445538399741054, 0.2355155646800995, 0.018253350630402565, -0.09469030797481537, 0.03881775215268135, -0.06258270144462585, 0.004434110131114721, 0.13822662830352783, -0.11149360984563828, -0.017647361382842064, 0.03097771666944027, -0.01369992084801197, 0.03287101909518242, -0.019956719130277634, 0.035584595054388046, -0.05572271719574928, -0.04782336950302124, 0.0215888861566782, 0.0663674995303154, -0.0012871881481260061, 0.1198500394821167, 0.0354454331099987, -0.004014341160655022, -0.09780776500701904, -0.041026681661605835, -0.09586260467767715, 0.13402630388736725, -0.11794839054346085, -0.1465264856815338, -0.12465871125459671, -0.01029169000685215, -0.18439507484436035, 0.019837696105241776, 0.0066778697073459625, 0.0014469692250713706, -0.06582383811473846, -0.12566985189914703, 0.03320765122771263, 0.09522280842065811, -0.08369342982769012, -0.05297931656241417, -0.0499790795147419, -0.0029469882138073444, -0.17596109211444855, -0.008927520364522934, -0.037146903574466705, -0.0800170823931694, -0.03937447443604469, -0.024766037240624428, 0.10864374041557312, -0.01095758005976677, -0.06491195410490036, -0.013294145464897156, -0.03192568197846413, 0.14110790193080902, -0.057091932743787766, 0.12814223766326904, 0.07212811708450317, 0.05847988650202751, 0.03840450569987297, 0.03026377595961094, 0.04771571606397629, -0.000929391710087657, -0.007161024492233992, 0.08881746977567673, -0.02383563295006752, -0.1665489375591278, -0.1803293526172638, -0.041659653186798096, 0.0023734653368592262, 0.050650704652071, 0.05450178682804108, -0.01074798684567213, 0.005414164625108242, -0.07740655541419983, -0.02578890509903431, 0.02136184647679329, 0.07011605054140091, 0.033597853034734726, 0.011624958366155624, 0.000995059497654438, -0.0569562204182148, -0.009730132296681404, 0.17449063062667847, 0.03644387796521187, 0.059447191655635834, -0.08229656517505646, 0.10827000439167023, 0.0009749695309437811, 0.0014279360184445977, -0.043275896459817886, 0.16717682778835297, -0.024243658408522606, 0.010078324005007744, -0.03882509842514992, -0.07205714285373688, 0.022332681342959404, 0.02544855698943138, -0.0024641307536512613, -0.02726162038743496, -0.0678938701748848, -0.19579929113388062, 0.07640133798122406, 0.143241286277771, 0.022563835605978966, -0.07158971577882767, -0.07562845200300217, 0.0031414180994033813, -0.07642421126365662, -0.10762858390808105, 0.020191319286823273, 0.10245410352945328, -0.16985806822776794, 0.06902330368757248, 0.01831555739045143, 0.1017053872346878, -0.019290104508399963, -0.02723100408911705, -0.026215368881821632, 0.07911994308233261, -0.04590264707803726, 0.032064761966466904, -0.11329876631498337, 0.14506453275680542, 0.01838667504489422, -0.006259533576667309, -0.07533461600542068, -0.005846901331096888, 0.07048013061285019, -0.0068489317782223225, 0.1868705451488495, 0.0146652702242136, 0.2000814527273178, 0.03756600245833397, -0.10231664776802063, 0.007477643899619579, -0.025085030123591423, -0.11888894438743591, 0.00674982275813818, 0.01342642679810524, -0.058128077536821365, -0.0643005445599556, 0.032331518828868866, -0.10779193043708801, -0.1408519446849823, -0.04935908690094948, -0.06600553542375565, -0.0553538054227829, -0.019398709759116173, -0.06833355873823166, -0.10508118569850922, 0.1376880407333374, 0.13255231082439423, -0.03504762053489685, -0.14578263461589813, -0.07956631481647491, 0.12182670831680298, -0.06014321371912956, 0.06368311494588852, -0.034398674964904785, 0.16557064652442932, -0.11498583108186722, -0.0911736786365509, 0.026325955986976624, -0.14480870962142944, -0.023131074383854866, -0.035166919231414795, 0.11503911763429642, 0.10133303701877594, 0.021686913445591927, 0.036367692053318024, 0.00889055896550417, 0.026150984689593315, -0.09743815660476685, -0.024074658751487732, 0.058511704206466675, 0.07545586675405502, 0.11958301812410355, -0.1077812910079956, -0.11611456423997879, -0.0006500424933619797, 0.02886330336332321, 0.0762229636311531, 0.15107683837413788, -0.03216467425227165, 0.1605909913778305, 0.19157110154628754, -0.06667963415384293, -0.27719077467918396, 0.04043744504451752, 0.033577412366867065, -0.03522965684533119, -0.03302881494164467, -0.10916003584861755, 0.100369893014431, 0.03612997755408287, -0.014193927869200706, 0.013867706060409546, -0.09753196686506271, -0.08457633852958679, 0.08454293757677078, 0.05944398418068886, 0.04158632084727287, -0.04059712216258049, -0.01951322890818119, -0.03391583636403084, -0.14600305259227753, 0.15988627076148987, -0.08691991865634918, -0.002488530008122325, -0.03115667961537838, 0.028782740235328674, 0.03695123270153999, -0.037727225571870804, 0.03079892508685589, 0.04942813143134117, 0.013270766474306583, -0.01970757730305195, 0.03470606729388237, 0.0701136365532875, -0.01172118540853262, 0.131822407245636, 0.02495928294956684, 0.014479612000286579, -0.14094242453575134, 0.006534919608384371, -0.0923788994550705, 0.17600210011005402, -0.042841531336307526, -0.05799064785242081, -0.022894451394677162, 0.08306892961263657, 0.030030900612473488, 0.002822508802637458, -0.024114754050970078, -0.019529560580849648, 0.08532782644033432, 0.19036011397838593, 0.08077075332403183, -0.030222322791814804, -0.01927676796913147, 0.07937242090702057, -0.03891688957810402, 0.01835927553474903, -0.01918371208012104, 0.05705359950661659, 0.0951782613992691, 0.038367319852113724, 0.05493124574422836, -0.04132620245218277, -0.14822939038276672, -0.05311800539493561, 0.051097262650728226, -0.17731653153896332, -0.06782563775777817, -0.0797002837061882, -0.12179527431726456, 0.030394840985536575, 0.02446627989411354, 0.15503473579883575, -0.05511585995554924, -0.07805764675140381, 0.0023809438571333885, 0.010917847976088524, 0.004154318477958441, 0.03288554772734642, 0.04574049264192581, -0.01252728421241045, -0.0759100466966629, 0.15471147000789642, 0.015468014404177666, -0.11546607315540314, 0.03956124931573868, 0.16125237941741943, -0.06768076866865158, -0.04672839492559433, -0.0035986427683383226, 0.147827610373497, -0.2003258317708969, -0.023772556334733963, -0.029035404324531555, -0.03574417158961296, -0.004542835522443056, 0.1683352142572403, 0.03799198567867279, -0.04689616337418556, -0.024736102670431137, -0.006541932467371225, -0.09772580862045288, 0.08967727422714233, 0.04372577369213104, 0.024927666410803795, 0.04728994145989418, -0.033872298896312714, -0.043562598526477814, 0.0040991599671542645, -0.032993730157613754, -0.007203368470072746, -0.09724245220422745, -0.09176129847764969, -0.23683197796344757, -0.03046797402203083, -0.06200540065765381, 0.0017245450289919972, -0.060214728116989136, -0.028900152072310448, 0.019826147705316544, 0.007255992386490107, -0.024569015949964523, -0.00296239135786891, 0.0200397577136755, 0.08963461220264435, -0.16982458531856537, -0.0018340710084885359, 0.060799144208431244, -0.05231139063835144, 0.15835486352443695, 0.09078792482614517, 0.012958625331521034, 0.011951901949942112, -0.06841413676738739, -0.04578070342540741, -0.061745159327983856, 0.021396243944764137, 0.10659527033567429, -0.0794425830245018, 0.02475295029580593, -0.01016120333224535, 0.024329688400030136, -0.01059143990278244, 0.05777119845151901, -0.017607975751161575, 0.035111259669065475, 0.03673669323325157, -0.056783951818943024, -0.05274132639169693, 0.10076804459095001, 0.1708495169878006, 0.0471404604613781, -0.03833410516381264, -0.0217893049120903, 0.018722714856266975, -0.08841921389102936, -0.005366409197449684, -0.0024371652398258448, -0.05737677216529846, -0.04743364080786705, 0.036994751542806625, 0.003023853525519371, 0.010371259413659573, 0.22733575105667114, 0.08062892407178879, 0.10028158128261566, 0.04940226674079895, -0.008610542863607407, -0.0693688690662384, -0.004736438859254122, 0.06237521022558212, -0.06687852740287781, 0.0259239561855793, -0.023017611354589462, 0.04783250018954277, -0.013532733544707298, 0.027416694909334183, 0.0820356011390686, 0.04458141699433327, -0.0014900413807481527, 0.030258841812610626, 0.05610819160938263, -0.05907663330435753, -0.07740294933319092, -0.11517127603292465, 0.09197821468114853, 0.02863367088139057, -0.11705782264471054, 0.07934275269508362, 0.057759568095207214, -0.22206011414527893, 0.10939554870128632, 0.061645399779081345, -0.030747421085834503, -0.06129131838679314, -0.03795553743839264, 0.001821925863623619, -0.032477885484695435, 0.022651776671409607, -0.1228564977645874, 0.07193353772163391, -0.011418693698942661, 0.06082453951239586, 0.015669062733650208, 0.1096806451678276, -0.16080714762210846, -0.08413560688495636, 0.08778174966573715, 0.07333198934793472, 0.027264825999736786, -0.012577656656503677, 0.06223874166607857, -0.030917225405573845, 0.06651724129915237, 0.017272137105464935, 0.08080661296844482, 0.06435109674930573, 0.017961598932743073, -0.01868949458003044, -0.054907914251089096, -0.030386313796043396, -0.020854584872722626, 0.007766176946461201, 0.20653468370437622, 0.05068212375044823, -0.04301341250538826, -0.02049166150391102, 0.22834163904190063, -0.07547277957201004, 0.01374098751693964, -0.09264672547578812, 0.23547349870204926, -0.02763444371521473, 0.03560245782136917, 0.03474182263016701, -0.057647574692964554, -0.047008465975522995, 0.19021539390087128, 0.24661625921726227, -0.002108905930072069, 0.012480871751904488, 0.03364032134413719, -0.01545268390327692, 0.05623771250247955, 0.03239632770419121, 0.03453861176967621, 0.27456608414649963, -0.04872937127947807, 0.10826072841882706, 0.016886865720152855, 0.008583578281104565, -0.04500029981136322, 0.21888373792171478, -0.04958033934235573, -0.06354644894599915, -0.019985273480415344, 0.028478553518652916, -0.0696992501616478, -0.3824906647205353, -0.03630758821964264, -0.11570388823747635, -0.08322133123874664, -0.04540947824716568, -0.1445101946592331, 0.06813347339630127, 0.06463779509067535, 0.05328509584069252, 0.023944871500134468, 0.21637269854545593, 0.020552871748805046, -0.10782995820045471, -0.10982182621955872, 0.059147171676158905, -0.12081167101860046, 0.2907661199569702, -0.005537129007279873, 0.0027519548311829567, 0.0504809208214283, -0.004841080866754055, -0.12969160079956055, -0.08989271521568298, 0.04781971499323845, -0.12316110730171204, -0.05361669510602951, 0.12258224189281464, -0.042769163846969604, 0.00025967968394979835, -0.016134433448314667, -0.07606729120016098, 0.04015596583485603, 0.05065951868891716, -0.02329995110630989, -0.07345075160264969, 0.11752290278673172, -0.11792709678411484, 0.152879536151886, 0.11537518352270126, -0.011164097115397453, 0.01827572099864483, -0.09813039004802704, 0.009170091710984707, 0.030765723437070847, 0.03163877874612808, 0.029743703082203865, -0.10033668577671051, 0.03522590920329094, -0.048037607222795486, -0.006944622844457626, -0.28330835700035095, 0.017269859090447426, -0.04041488841176033, 0.005838087294250727, -0.027990953996777534, 0.052611060440540314, 0.05825752019882202, 0.0401359386742115, 0.0033166971988976, -0.009321846067905426, -0.005396038759499788, 0.05949545279145241, -0.04606278985738754, -0.03807883709669113 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz German BERT models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources another German BERT models πŸŽ‰ # German BERT ## Stats In addition to the recently released [German BERT](https://deepset.ai/german-bert) model by [deepset](https://deepset.ai/) we provide another German-language model. The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus, Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with a size of 16GB and 2,350,234,427 tokens. For sentence splitting, we use [spacy](https://spacy.io/). Our preprocessing steps (sentence piece model for vocab generation) follow those used for training [SciBERT](https://github.com/allenai/scibert). The model is trained with an initial sequence length of 512 subwords and was performed for 1.5M steps. This release includes both cased and uncased models. ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | -------------------------------- | --------------------------------------------------------------------------------------------------------------- | `bert-base-german-dbmdz-cased` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.json) β€’ [`pytorch_model.bin`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin) β€’ [`vocab.txt`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt) | `bert-base-german-dbmdz-uncased` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.json) β€’ [`pytorch_model.bin`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin) β€’ [`vocab.txt`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt) ## Usage With Transformers >= 2.3 our German BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") model = AutoModel.from_pretrained("dbmdz/bert-base-german-cased") ``` ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/fine-tuned-berts-seq). # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "de", "license": "mit"}
fill-mask
dbmdz/bert-base-german-cased
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "de", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
+ dbmdz German BERT models ========================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources another German BERT models German BERT =========== Stats ----- In addition to the recently released German BERT model by deepset we provide another German-language model. The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus, Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with a size of 16GB and 2,350,234,427 tokens. For sentence splitting, we use spacy. Our preprocessing steps (sentence piece model for vocab generation) follow those used for training SciBERT. The model is trained with an initial sequence length of 512 subwords and was performed for 1.5M steps. This release includes both cased and uncased models. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Usage ----- With Transformers >= 2.3 our German BERT models can be loaded like: Results ------- For results on downstream tasks like NER or PoS tagging, please refer to this repository. Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT models just open an issue here Acknowledgments =============== Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.017137225717306137, 0.018642790615558624, -0.005587710067629814, 0.04178430885076523, 0.04811940714716911, 0.015619934536516666, 0.1209658682346344, 0.09032786637544632, 0.0696859359741211, -0.0023615332320332527, 0.16120074689388275, 0.17829541862010956, -0.030359813943505287, 0.16188743710517883, -0.04806555435061455, -0.21584849059581757, 0.07609734684228897, 0.015166922472417355, -0.06277866661548615, 0.10082584619522095, 0.09837961941957474, -0.07797390222549438, 0.06428909301757812, -0.021028714254498482, -0.08635657280683517, 0.04223059490323067, 0.07067091763019562, -0.11879824101924896, 0.15478292107582092, 0.02965475432574749, 0.17046122252941132, 0.0774027481675148, -0.009782957844436169, -0.061030950397253036, 0.04313146322965622, 0.027642861008644104, -0.11443319916725159, 0.03828532621264458, -0.011662106029689312, -0.031715698540210724, 0.032543666660785675, 0.010881355963647366, 0.042133938521146774, 0.04064849019050598, -0.1525777131319046, -0.2513589560985565, -0.0427241176366806, 0.06538041681051254, 0.02277320995926857, 0.05172334611415863, 0.018889544531702995, 0.22210904955863953, -0.1302463412284851, 0.07907319068908691, 0.13852941989898682, -0.3640775680541992, -0.008691152557730675, 0.12661723792552948, 0.13046638667583466, -0.021247245371341705, -0.06684613972902298, 0.05556907504796982, 0.06252307444810867, 0.017715003341436386, 0.15071862936019897, -0.05743611231446266, -0.05238356813788414, 0.03697116672992706, -0.08933567255735397, -0.05947251617908478, 0.17374330759048462, -0.028880076482892036, 0.024109480902552605, -0.025532666593790054, -0.09183932840824127, -0.028859157115221024, 0.007786914240568876, -0.03338314965367317, -0.0019704208243638277, 0.04834440350532532, -0.018949752673506737, -0.0031265770085155964, -0.151779443025589, 0.016859684139490128, -0.21153193712234497, 0.16860942542552948, -0.0009558854508213699, 0.0627622902393341, -0.16678792238235474, 0.05911094322800636, -0.01834719255566597, -0.12807008624076843, 0.04622916877269745, -0.07521449029445648, 0.0525733083486557, -0.009581033140420914, -0.034145716577768326, 0.01689710095524788, 0.08667726069688797, 0.18978092074394226, -0.006010343786329031, -0.009447591379284859, 0.010836687870323658, 0.10137013345956802, -0.0007334772381000221, 0.052581459283828735, 0.004009725991636515, -0.011057643219828606, 0.04419080540537834, -0.06896471232175827, 0.02896578423678875, -0.04163128510117531, -0.12353438884019852, -0.032693710178136826, 0.034194353967905045, 0.0845462903380394, 0.05597534403204918, 0.07142840325832367, -0.04562010243535042, 0.06461267173290253, 0.12041813135147095, -0.05473467335104942, 0.01437896117568016, -0.030633045360445976, 0.09878730773925781, -0.029620159417390823, 0.017390038818120956, -0.014811373315751553, 0.048747215420007706, 0.10324887186288834, -0.10921421647071838, -0.054703328758478165, -0.033739183098077774, -0.10406552255153656, 0.05768219754099846, -0.0910075381398201, 0.03616128861904144, -0.2133142054080963, -0.100994773209095, 0.06129022687673569, 0.05084072798490524, 0.013271271251142025, -0.04337339848279953, 0.08848324418067932, -0.05779174715280533, 0.03693029657006264, -0.05255001410841942, -0.03284584730863571, -0.07165202498435974, 0.09799008816480637, -0.04709148034453392, 0.10583378374576569, -0.14471489191055298, 0.013150413520634174, -0.09640303254127502, 0.015687281265854836, -0.11636573076248169, -0.09756594896316528, -0.04974735528230667, 0.15202495455741882, 0.017803266644477844, -0.04038631543517113, -0.11223311722278595, 0.058492086827754974, -0.0333065465092659, 0.13070005178451538, -0.14404092729091644, -0.06302572786808014, 0.20865830779075623, -0.1228911355137825, -0.17004390060901642, 0.080263152718544, 0.008864529430866241, 0.044767942279577255, 0.01844637654721737, 0.1553700566291809, 0.012624052353203297, -0.1939108818769455, 0.04135539382696152, 0.13638170063495636, -0.12809190154075623, -0.09536533802747726, 0.05211324244737625, -0.004039671737700701, -0.10162181407213211, 0.00774499261751771, 0.036776334047317505, 0.09222468733787537, -0.048860445618629456, -0.05995464324951172, -0.04203708842396736, -0.03235733509063721, 0.10582005232572556, 0.012710998766124249, 0.07317785918712616, -0.11015468090772629, -0.06640282273292542, -0.028611108660697937, -0.008694280870258808, 0.08596069365739822, 0.011567126028239727, -0.08607400208711624, 0.12371961027383804, -0.003425949951633811, -0.026657896116375923, -0.09972341358661652, -0.12681268155574799, -0.027874596416950226, 0.02834128960967064, -0.030705902725458145, 0.1906137466430664, 0.09088174253702164, -0.023125633597373962, -0.026130221784114838, -0.028598638251423836, 0.09069497138261795, 0.08396921306848526, -0.007799462880939245, -0.1341986060142517, 0.016148913651704788, -0.08866473287343979, -0.024659205228090286, -0.02454848773777485, 0.0218786783516407, 0.05657871440052986, 0.13816119730472565, -0.01097180973738432, 0.06134112551808357, -0.06455386430025101, 0.003330675885081291, -0.03589604049921036, -0.01553878653794527, 0.06063481420278549, 0.025409340858459473, -0.03325982764363289, 0.20632058382034302, -0.15612304210662842, 0.4218877851963043, 0.21555684506893158, -0.16766145825386047, -0.06044493243098259, 0.08204126358032227, -0.038127996027469635, 0.028964323922991753, 0.021187830716371536, -0.06025686115026474, -0.08243601024150848, -0.05935388058423996, 0.12800177931785583, -0.04922620579600334, -0.04915161430835724, 0.023244760930538177, -0.05584092438220978, -0.08005861937999725, 0.0026434087194502354, 0.06911198049783707, -0.1766834855079651, 0.21508443355560303, 0.36706051230430603, 0.007629120256751776, 0.1648615002632141, -0.023440971970558167, 0.019093772396445274, -0.027396809309720993, -0.03752696514129639, -0.03495083004236221, 0.13718923926353455, -0.1346382051706314, -0.01815313659608364, 0.060801759362220764, -0.014460901729762554, 0.019261082634329796, -0.1294952630996704, -0.08487240225076675, 0.027141552418470383, 0.04454704746603966, -0.07413198798894882, 0.14832037687301636, 0.020255379378795624, 0.11077004671096802, -0.022739294916391373, -0.1524759978055954, 0.09788016229867935, 0.004258658736944199, -0.0486895814538002, 0.12632836401462555, -0.13563743233680725, -0.275787889957428, -0.06753726303577423, -0.07648198306560516, 0.06369426101446152, 0.012828814797103405, 0.10404030978679657, -0.04159696027636528, -0.049865540117025375, -0.003427143907174468, -0.04396161064505577, -0.05124201625585556, 0.07602986693382263, -0.07790542393922806, 0.02178909257054329, -0.010344740003347397, -0.10174337774515152, -0.09070094674825668, 0.004858850501477718, -0.0512755922973156, 0.12905654311180115, -0.007466951850801706, 0.06760573387145996, 0.10071900486946106, -0.035713743418455124, 0.03661315143108368, -0.057698242366313934, 0.20929239690303802, -0.06751025468111038, 0.039873041212558746, 0.15579621493816376, 0.0010030096163973212, 0.07267167419195175, 0.21183745563030243, 0.045408401638269424, -0.03536846116185188, 0.006764200981706381, -0.0489439032971859, -0.10735378414392471, -0.11841269582509995, -0.08028893172740936, -0.11760269850492477, 0.012205205857753754, 0.029511457309126854, 0.0813547894358635, 0.15647470951080322, 0.05224006250500679, 0.021094994619488716, -0.049849733710289, -0.05147143453359604, 0.05069144815206528, 0.14872369170188904, -0.0497136227786541, 0.12739166617393494, -0.05372682958841324, -0.13847333192825317, 0.06973496079444885, 0.014984078705310822, 0.020671213045716286, 0.10827989131212234, -0.06361083686351776, 0.08181663602590561, 0.20890304446220398, 0.1159856766462326, 0.12201039493083954, 0.025263912975788116, -0.0851520448923111, -0.025251319631934166, -0.04487527906894684, 0.028841860592365265, 0.04992295056581497, 0.07863623648881912, -0.08312294632196426, -0.029104994609951973, -0.18805328011512756, 0.05413861572742462, 0.07426012307405472, 0.08913203328847885, -0.2175978422164917, 0.01423136331140995, 0.07365152984857559, 0.012160106562077999, -0.04178393632173538, 0.05431811884045601, 0.06391479074954987, -0.07098092883825302, 0.05345521122217178, -0.00806480273604393, 0.054087646305561066, 0.15043945610523224, 0.09602633863687515, -0.01804756373167038, -0.1014476865530014, -0.002153523964807391, 0.04115651920437813, -0.27976882457733154, 0.25724226236343384, -0.007825513370335102, -0.03802408650517464, -0.0597030408680439, -0.007472393102943897, 0.04486618563532829, 0.14925068616867065, 0.14667686820030212, 0.03517230227589607, -0.0896984189748764, -0.09388206899166107, 0.03800807148218155, 0.01502627320587635, 0.04715947061777115, -0.028942450881004333, -0.007273583672940731, -0.03968937695026398, -0.01956995204091072, 0.04595980420708656, 0.1864023506641388, -0.06381160020828247, -0.09985620528459549, 0.060793109238147736, 0.06135372072458267, 0.00781229417771101, -0.06783806532621384, -0.05510983243584633, -0.17502638697624207, 0.12662038207054138, -0.011863350868225098, -0.011466111987829208, -0.113596111536026, -0.13979946076869965, 0.06054900586605072, -0.05385153368115425, 0.09115628898143768, -0.05705104023218155, 0.00706656277179718, -0.10373463481664658, -0.15056830644607544, 0.1578717827796936, -0.14602535963058472, -0.02790192887187004, -0.10131236165761948, 0.11817390471696854, -0.10149239003658295, 0.04260139912366867, 0.03297479450702667, 0.04934345930814743, -0.0858934223651886, -0.05916965752840042, 0.033262018114328384, -0.1164495125412941, 0.06283070892095566, -0.05088960751891136, -0.058795150369405746, -0.08019373565912247, 0.07606451213359833, 0.0005846429849043489, 0.17334216833114624, 0.2813331186771393, -0.10545354336500168, 0.12954622507095337, 0.1256115585565567, -0.008306817151606083, -0.33706358075141907, -0.11623380333185196, -0.1915326714515686, -0.009082418866455555, 0.11102477461099625, -0.014600562863051891, 0.03455384820699692, -0.011592337861657143, -0.08535733073949814, 0.11065402626991272, -0.16161753237247467, -0.09104886651039124, 0.21698373556137085, 0.0007258115219883621, 0.3789067566394806, -0.1461767852306366, -0.023741597309708595, 0.005851271562278271, -0.1116027981042862, 0.10608451068401337, -0.08323202282190323, 0.052892621606588364, -0.006259622983634472, 0.0043943808414042, 0.020693151280283928, -0.08026941120624542, 0.1211879774928093, -0.07648644596338272, 0.05645008385181427, -0.11874580383300781, -0.09857342392206192, 0.14566883444786072, -0.016038715839385986, 0.007006793282926083, -0.09852363914251328, 0.0063243587501347065, -0.031131388619542122, 0.010976453311741352, -0.11595971137285233, 0.14027109742164612, -0.017160985618829727, -0.10057429224252701, -0.0073508997447788715, 0.03137525916099548, -0.00316902669146657, -0.0597640685737133, 0.19053268432617188, -0.005719904787838459, 0.24933786690235138, 0.12852874398231506, 0.007381037343293428, -0.1352853626012802, -0.05058259889483452, 0.013602357357740402, -0.09256910532712936, 0.08671117573976517, -0.05613798648118973, 0.04236466810107231, 0.060008369386196136, -0.007999531924724579, 0.07107936590909958, 0.10755588114261627, -0.009712517261505127, -0.056123729795217514, 0.19022051990032196, -0.19853846728801727, -0.04665248095989227, -0.011316923424601555, 0.02205486409366131, 0.0669155865907669, 0.036116208881139755, 0.08332478255033493, -0.02101338654756546, -0.011267663910984993, -0.006745319813489914, 0.0012515427079051733, -0.07771067321300507, 0.007256864570081234, 0.08336013555526733, 0.058966632932424545, -0.07801022380590439, -0.018213994801044464, -0.0027399961836636066, -0.1517694890499115, -0.013004927895963192, 0.06598123162984848, -0.08396094292402267, -0.1401737928390503, 0.0011440688977017999, 0.0429120734333992, -0.04974338412284851, -0.030474217608571053, -0.03645765781402588, -0.1410156786441803, 0.03315221518278122, 0.23811647295951843, 0.08591785281896591, 0.09593834728002548, 0.035582706332206726, -0.017753170803189278, 0.020843779668211937, 0.016525166109204292, -0.05929004028439522, 0.03427182510495186, -0.12989164888858795, 0.07602028548717499, -0.011451208963990211, 0.10867827385663986, -0.10397525131702423, 0.01601910963654518, -0.18012604117393494, -0.011755101382732391, -0.03760330006480217, -0.08800350874662399, -0.09478110820055008, -0.07438304275274277, 0.038438428193330765, -0.08692128956317902, -0.048320915549993515, -0.027591830119490623, -0.11794716119766235, 0.017554080113768578, 0.0551120899617672, 0.05748673900961876, -0.08430653065443039, -0.05040767788887024, 0.0872993990778923, -0.03212122246623039, 0.08149108290672302, 0.05574057623744011, -0.04681885614991188, 0.08025475591421127, -0.12717998027801514, -0.0907314270734787, 0.0839085727930069, -0.002028547925874591, 0.06707948446273804, 0.051975227892398834, -0.003061913885176182, 0.04559512063860893, 0.011655880138278008, 0.05017921328544617, -0.011367443948984146, -0.0994940772652626, 0.06145033240318298, 0.04739769175648689, -0.14562548696994781, 0.009814975783228874, -0.10596016049385071, 0.11449852585792542, -0.06513361632823944, 0.12260519713163376, -0.04182839021086693, 0.027257515117526054, -0.11029702425003052, 0.013715715147554874, -0.04663316532969475, -0.13773059844970703, -0.05270101875066757, -0.028435396030545235, -0.0007890948327258229, -0.019575947895646095, 0.2218618392944336, 0.06554250419139862, -0.09452049434185028, 0.07603465765714645, 0.027226729318499565, 0.02951996587216854, -0.0010573328472673893, 0.19151781499385834, 0.02803177200257778, -0.055911026895046234, -0.1220562681555748, 0.034912142902612686, -0.005289443302899599, -0.11047621816396713, 0.1032116711139679, 0.11179547011852264, 0.041916877031326294, 0.06400766223669052, 0.06933921575546265, -0.038876134902238846, -0.0928206741809845, -0.19143988192081451, -0.0014526478480547667, 0.05021810531616211, -0.034099385142326355, -0.0184258371591568, 0.2069297581911087, -0.017920566722750664, 0.03493814915418625, -0.0674658939242363, 0.025534814223647118, -0.1793449968099594, -0.1146116778254509, -0.06404612958431244, -0.06119666248559952, 0.009692063555121422, -0.014788823202252388, 0.01477948110550642, 0.08576584607362747, 0.040861260145902634, -0.022360866889357567, 0.08813018351793289, 0.006842500995844603, -0.013940433971583843, 0.0030062776058912277, 0.028127947822213173, 0.025671251118183136, -0.06279439479112625, 0.001314534805715084, -0.1315155178308487, -0.028288112953305244, -0.07531190663576126, -0.018770238384604454, -0.059741124510765076, 0.009073661640286446, -0.09446791559457779, -0.09202796965837479, -0.054300498217344284, 0.01854408159852028, -0.02801677957177162, 0.10141115635633469, -0.0004490012943278998, 0.041756898164749146, 0.03070535510778427, 0.15615974366664886, -0.0727548897266388, -0.12836888432502747, -0.029793594032526016, 0.20713548362255096, 0.02285083942115307, 0.09815036505460739, -0.010639909654855728, 0.023922814056277275, -0.07546809315681458, 0.20118148624897003, 0.3510076403617859, -0.03252757713198662, 0.11128802597522736, 0.01981593854725361, 0.009556751698255539, 0.013141355477273464, 0.09069428592920303, 0.08190712332725525, 0.26696574687957764, -0.09349322319030762, 0.014720321632921696, -0.05950953811407089, 0.0022461418993771076, -0.09474994987249374, 0.019437234848737717, 0.02360592409968376, -0.03510884940624237, -0.02717982977628708, 0.05055961757898331, -0.09181366860866547, 0.05897250026464462, 0.08555520325899124, -0.1887659877538681, -0.037495341151952744, 0.012072485871613026, 0.16667793691158295, -0.007933185435831547, 0.08010750263929367, -0.05081409588456154, -0.04772591218352318, 0.012502199038863182, -0.007041802629828453, -0.15385837852954865, -0.05415772646665573, 0.11129431426525116, 0.013642984442412853, 0.14942720532417297, -0.04453172907233238, 0.04583220183849335, 0.10694997012615204, 0.047867607325315475, -0.05501668527722359, 0.08320358395576477, 0.05338606610894203, -0.09572167694568634, -0.07083097845315933, -0.07902682572603226, 0.010812330059707165, -0.07089196145534515, 0.0362602174282074, -0.1584370881319046, 0.0481562539935112, -0.050271593034267426, -0.055501386523246765, -0.025897806510329247, 0.06263621151447296, -0.025909852236509323, 0.08263272792100906, 0.02955755777657032, -0.00031544413650408387, -0.03432318568229675, -0.03796287253499031, -0.01808970794081688, 0.09316946566104889, -0.12712281942367554, -0.12352349609136581, -0.03933759778738022, -0.010840152390301228, 0.017042800784111023, -0.017964638769626617, -0.1307237446308136, -0.07045480608940125, -0.07632091641426086, 0.017496382817626, -0.13771583139896393, 0.0237148217856884, 0.10677771270275116, 0.04455683380365372, 0.007194752339273691, -0.055383019149303436, 0.012751483358442783, 0.047163933515548706, -0.14062035083770752, -0.07147111743688583 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz BERT models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources German Europeana BERT models πŸŽ‰ # German Europeana BERT We use the open source [Europeana newspapers](http://www.europeana-newspapers.eu/) that were provided by *The European Library*. The final training corpus has a size of 51GB and consists of 8,035,986,369 tokens. Detailed information about the data and pretraining steps can be found in [this repository](https://github.com/stefan-it/europeana-bert). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ------------------------------------------ | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-german-europeana-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-cased/vocab.txt) ## Results For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert). ## Usage With Transformers >= 2.3 our German Europeana BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-europeana-cased") model = AutoModel.from_pretrained("dbmdz/bert-base-german-europeana-cased") ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "de", "license": "mit", "tags": ["historic german"]}
null
dbmdz/bert-base-german-europeana-cased
[ "transformers", "pytorch", "tf", "jax", "bert", "historic german", "de", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us
+ dbmdz BERT models =================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources German Europeana BERT models German Europeana BERT ===================== We use the open source Europeana newspapers that were provided by *The European Library*. The final training corpus has a size of 51GB and consists of 8,035,986,369 tokens. Detailed information about the data and pretraining steps can be found in this repository. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Results ------- For results on Historic NER, please refer to this repository. Usage ----- With Transformers >= 2.3 our German Europeana BERT models can be loaded like: Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT models just open an issue here Acknowledgments =============== Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us \n" ]
[ 40 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us \n" ]
[ -0.04819458723068237, 0.029256289824843407, -0.007894583977758884, 0.04001659154891968, 0.008747518062591553, 0.015001633204519749, 0.08485016226768494, 0.04574563354253769, 0.1659662276506424, -0.05237589776515961, 0.13211582601070404, 0.15378089249134064, -0.03779097646474838, -0.07175435870885849, -0.04239761829376221, -0.26304733753204346, 0.031979337334632874, 0.08537804335355759, -0.013776279054582119, 0.07501823455095291, 0.09720012545585632, -0.09077167510986328, 0.04443293437361717, -0.014785745181143284, -0.1158987507224083, 0.09755878895521164, 0.027123456820845604, -0.07280537486076355, 0.16208018362522125, 0.022637249901890755, 0.09628493338823318, 0.03739001601934433, -0.024032140150666237, -0.08832450211048126, 0.007708695251494646, -0.06458940356969833, -0.11844993382692337, 0.009866624139249325, 0.0418347492814064, -0.09531504660844803, 0.09897173196077347, 0.12349102646112442, -0.07167749106884003, 0.043928805738687515, -0.16384926438331604, -0.21959161758422852, -0.06649108231067657, 0.16244015097618103, -0.0076048728078603745, 0.06926342844963074, 0.04783855378627777, 0.1255785971879959, -0.12525969743728638, 0.046482380479574203, 0.13945551216602325, -0.3265018165111542, -0.022728674113750458, 0.07359924167394638, 0.04931367561221123, 0.011844622902572155, -0.062027059495449066, 0.10130064189434052, 0.042511507868766785, 0.009211861528456211, 0.00012554634304251522, -0.11305838078260422, 0.05294141545891762, 0.0853172019124031, -0.0835581123828888, -0.08445542305707932, 0.20463357865810394, -0.021252889186143875, 0.013353363610804081, 0.047951605170965195, -0.034750357270240784, -0.0006424588500522077, 0.03237712383270264, -0.06460420787334442, -0.026669489219784737, 0.07216044515371323, 0.07075034081935883, -0.027637481689453125, -0.08652949333190918, 0.07487385720014572, -0.21045006811618805, 0.25152823328971863, 0.022819751873612404, 0.06708729267120361, -0.13934798538684845, 0.028290005400776863, -0.09999167174100876, -0.08221018314361572, -0.006211787927895784, -0.04384300485253334, 0.05325717851519585, -0.01239869650453329, -0.025929998606443405, 0.09339892119169235, 0.03175542503595352, 0.1761578917503357, 0.006552821025252342, -0.03823600336909294, -0.003922812640666962, 0.15711253881454468, -0.00007808546797605231, 0.10086555778980255, 0.059042658656835556, -0.05034085363149643, 0.023469774052500725, -0.20345579087734222, -0.021584345027804375, 0.023811422288417816, -0.16089153289794922, -0.0787167027592659, 0.0063642398454248905, 0.08151275664567947, -0.03368285670876503, 0.0004002038622274995, -0.04185821861028671, 0.04743821546435356, 0.021729854866862297, -0.014214358292520046, -0.0002046620356850326, -0.02002381905913353, 0.018934054300189018, 0.12930186092853546, -0.0996178388595581, -0.036791201680898666, -0.018908511847257614, 0.15214616060256958, -0.0729704350233078, 0.0073700775392353535, -0.02674456126987934, -0.07325752079486847, 0.08543674647808075, -0.08174806088209152, 0.07662298530340195, -0.15729974210262299, -0.1056293323636055, 0.055491313338279724, 0.08105113357305527, 0.017563866451382637, 0.061358142644166946, 0.028408074751496315, -0.04634283483028412, 0.0008798476774245501, -0.049833882600069046, -0.17954310774803162, -0.07872091978788376, 0.09267155826091766, -0.12028516083955765, 0.009912221692502499, -0.16377048194408417, 0.030406350269913673, -0.12644118070602417, -0.012423616833984852, -0.15569062530994415, -0.08328524231910706, -0.030470896512269974, 0.11677439510822296, 0.022464273497462273, -0.035895828157663345, -0.07183189690113068, 0.042191311717033386, -0.05243128165602684, 0.1311621516942978, -0.1265963464975357, -0.1210494115948677, 0.22755886614322662, -0.11068537831306458, -0.15037977695465088, 0.11089566349983215, 0.02386307716369629, 0.000775221036747098, 0.08207948505878448, 0.1769932359457016, 0.04768497869372368, -0.1852557510137558, 0.007945633493363857, 0.12670129537582397, -0.09803152829408646, -0.10733392089605331, 0.045248162001371384, -0.026531647890806198, -0.0761830136179924, 0.00827706791460514, -0.04517795518040657, 0.0896385982632637, -0.06299292296171188, 0.0006541379261761904, 0.01428995095193386, 0.008323108777403831, 0.11505525559186935, 0.045309923589229584, 0.08423107862472534, -0.12922583520412445, -0.04076039418578148, 0.0844157263636589, -0.022265570238232613, 0.09746935218572617, 0.004888040013611317, -0.007802818901836872, 0.014779509045183659, 0.03371703624725342, -0.0012697175843641162, -0.08313235640525818, -0.05975349247455597, 0.004577122163027525, 0.010028660297393799, 0.046787939965724945, 0.2735883891582489, 0.08839426189661026, -0.028953321278095245, -0.05450637638568878, -0.018850911408662796, 0.037665314972400665, 0.02147354930639267, 0.02050274796783924, -0.10348913073539734, 0.049615275114774704, -0.03134622052311897, -0.09147641062736511, 0.011698231101036072, -0.014019602909684181, 0.1589120775461197, 0.13207463920116425, -0.02465992420911789, 0.06019974872469902, -0.12811103463172913, 0.044454410672187805, -0.03260239586234093, 0.030905164778232574, 0.060248300433158875, 0.002295298269018531, -0.04027608409523964, 0.23463915288448334, -0.0017429414438083768, 0.3966418206691742, 0.1924346387386322, -0.2269018292427063, -0.02039279416203499, -0.014610528014600277, -0.06876121461391449, 0.03476545587182045, 0.058041755110025406, -0.09273266792297363, 0.08466006070375443, -0.020173443481326103, 0.05592765659093857, -0.05107796564698219, -0.1032509133219719, -0.02431129664182663, 0.002469847211614251, -0.09233356267213821, 0.085000179708004, 0.0758565217256546, -0.19997726380825043, 0.19881798326969147, 0.383309930562973, 0.02014933153986931, 0.20729942619800568, -0.05303436890244484, 0.021785970777273178, -0.0029715625569224358, -0.04546194151043892, -0.04148399084806442, 0.212397962808609, -0.16589221358299255, -0.01446866150945425, 0.03306528180837631, -0.015061530284583569, 0.011949777603149414, -0.1115594357252121, -0.06833574175834656, -0.02365504391491413, 0.009346588514745235, -0.025291122496128082, 0.07316341251134872, -0.01734083704650402, 0.12372667342424393, -0.01932794600725174, -0.1662437468767166, 0.09952814131975174, 0.02278822846710682, -0.07063133269548416, 0.1219104453921318, -0.11395209282636642, -0.20681911706924438, -0.05042498931288719, -0.07920850813388824, -0.020292412489652634, -0.00032185696181841195, 0.07464341819286346, -0.011618580669164658, -0.028505342081189156, 0.11609669029712677, 0.084494449198246, -0.12403104454278946, 0.031793829053640366, -0.09781830757856369, 0.011549330316483974, -0.10164511948823929, -0.08964484184980392, -0.12212052941322327, -0.06771799921989441, -0.043015990406274796, 0.06660287082195282, -0.06557343155145645, 0.060977187007665634, 0.04649446904659271, -0.035626769065856934, 0.09555792063474655, -0.06674604117870331, 0.13399313390254974, -0.07619564235210419, 0.030616987496614456, 0.09449502825737, -0.024997832253575325, 0.055991481989622116, 0.13064080476760864, 0.09236643463373184, -0.044486839324235916, -0.06794089823961258, -0.027047108858823776, -0.08435580134391785, -0.12730443477630615, -0.09999115020036697, -0.11960088461637497, 0.09807601571083069, 0.02820216491818428, 0.04703487455844879, 0.14602982997894287, 0.019475825130939484, -0.013585158623754978, -0.07934108376502991, -0.04003092646598816, 0.054763782769441605, 0.21832381188869476, -0.018758835271000862, 0.03784599527716637, -0.04948687553405762, -0.10221514850854874, 0.1253439038991928, 0.01270212884992361, 0.02191418595612049, 0.12464503943920135, -0.06861627101898193, 0.07045502960681915, 0.14156197011470795, 0.08903422951698303, 0.09743447601795197, 0.009859376586973667, -0.058936331421136856, 0.00939991045743227, -0.06083309277892113, 0.05615922436118126, 0.02946140617132187, 0.0517030693590641, -0.05240527167916298, -0.019776402041316032, -0.2948482632637024, 0.0859716385602951, 0.03752438724040985, 0.09111341834068298, -0.08444652706384659, -0.030034761875867844, 0.0327802412211895, -0.03222009539604187, -0.01600613445043564, 0.08935170620679855, -0.00397494388744235, -0.13698288798332214, 0.10069720447063446, -0.028769509866833687, 0.10303904861211777, 0.060915395617485046, 0.09200730919837952, -0.014212525449693203, -0.11536938697099686, 0.02075372450053692, 0.05729818716645241, -0.34412649273872375, 0.29677554965019226, 0.01454292144626379, -0.04003338888287544, -0.08792450278997421, -0.06147565692663193, 0.026170426979660988, 0.17234951257705688, 0.16620749235153198, 0.05736509710550308, -0.06529190391302109, 0.016010789200663567, 0.07048194855451584, 0.005037686787545681, 0.08224166929721832, -0.06301380693912506, -0.07281797379255295, -0.0009753629565238953, -0.007861911319196224, -0.011513001285493374, 0.09375791996717453, -0.02976210042834282, -0.04356585070490837, 0.04559233412146568, -0.00695600314065814, 0.012269843369722366, 0.0021024064626544714, -0.033613111823797226, -0.0993424728512764, 0.1384168118238449, -0.07476933300495148, -0.0019629141315817833, -0.12931177020072937, -0.15467886626720428, 0.032805487513542175, -0.07769279181957245, 0.04726800695061684, -0.02177570015192032, -0.025934826582670212, -0.14227615296840668, -0.16318361461162567, 0.1406400352716446, -0.1505861133337021, 0.06798854470252991, -0.05152910575270653, 0.17605282366275787, -0.0033795873168855906, 0.046686410903930664, 0.022572578862309456, 0.005591805092990398, -0.02062566950917244, -0.1250360906124115, 0.09235242009162903, -0.18626977503299713, 0.0018916536355391145, -0.05543812736868858, -0.0984644964337349, -0.04401756450533867, 0.0595356710255146, -0.024556247517466545, 0.10253369063138962, 0.2626540958881378, -0.04342292249202728, 0.15475250780582428, 0.14870981872081757, -0.027031244710087776, -0.3524331748485565, -0.014884588308632374, -0.18257306516170502, -0.039842866361141205, 0.009465246461331844, -0.0810844674706459, 0.1264713853597641, 0.06153421103954315, -0.059292975813150406, 0.11427053809165955, -0.25096186995506287, -0.08192620426416397, 0.17298349738121033, -0.029825735837221146, 0.4704858064651489, -0.039316531270742416, -0.05903736501932144, 0.023054588586091995, -0.20535002648830414, 0.1158684566617012, 0.025424892082810402, -0.000521915964782238, -0.028979474678635597, 0.0012342949630692601, 0.017939848825335503, -0.04844864830374718, 0.05787196382880211, 0.05857333168387413, 0.04316938295960426, -0.08646532148122787, -0.12621809542179108, 0.1648806631565094, 0.030306464061141014, -0.009557824581861496, -0.016579851508140564, -0.009966489858925343, -0.1208842471241951, 0.017528660595417023, -0.1364871859550476, 0.1905951350927353, -0.011928662657737732, -0.13537395000457764, -0.037765227258205414, 0.02976745367050171, -0.07959575206041336, -0.052539728581905365, 0.19754590094089508, 0.010749349370598793, 0.15268371999263763, -0.04105769097805023, 0.06228729709982872, -0.12109522521495819, -0.03791305050253868, -0.046334899961948395, -0.06328468024730682, 0.04989149793982506, 0.0404687374830246, 0.023598898202180862, 0.15048660337924957, 0.007714289706200361, 0.033054500818252563, 0.0651477575302124, -0.0036108202766627073, -0.04963812604546547, 0.09995148330926895, -0.23605607450008392, -0.08882690221071243, -0.08521903306245804, -0.07811299711465836, 0.2283584028482437, 0.10110390931367874, 0.10071951895952225, -0.007334334775805473, 0.007456775289028883, 0.0005836080526933074, -0.08998875319957733, -0.0862978845834732, -0.04603901877999306, 0.01845170184969902, 0.0035067268181592226, -0.05742909759283066, 0.055030062794685364, -0.0638178288936615, -0.2188406139612198, -0.027715325355529785, 0.15180334448814392, -0.09469626098871231, -0.0822441428899765, -0.08588110655546188, 0.09656599164009094, -0.3111693859100342, -0.002915036864578724, -0.049341630190610886, -0.1467059850692749, 0.06575477868318558, 0.2898145914077759, 0.08126331120729446, 0.09240932017564774, -0.011866607703268528, -0.003093198174610734, 0.05294685438275337, 0.007718802895396948, -0.05706045776605606, 0.01116564217954874, -0.036911383271217346, 0.05715397745370865, -0.041160617023706436, 0.13368166983127594, -0.09398490935564041, -0.011702582240104675, -0.173807755112648, 0.04814355447888374, -0.1079769879579544, -0.1470758318901062, -0.108147032558918, -0.07269439101219177, -0.015463609248399734, -0.16365943849086761, -0.035188887268304825, -0.038414366543293, -0.14243437349796295, 0.10054623335599899, 0.09262868762016296, 0.06529965996742249, -0.059143658727407455, -0.04133544862270355, 0.11234643310308456, -0.010365935042500496, 0.1344824582338333, 0.16078461706638336, -0.006753949448466301, 0.15848974883556366, -0.11501603573560715, -0.09507827460765839, 0.09599396586418152, 0.012227529659867287, 0.07440104335546494, 0.13435567915439606, -0.0024500007275491953, 0.10337219387292862, -0.014429483562707901, 0.09135919064283371, -0.1580018401145935, -0.07683845609426498, 0.018698550760746002, 0.08261559158563614, -0.17174085974693298, 0.009962470270693302, -0.01847500540316105, 0.18462687730789185, -0.05127701908349991, 0.07697861641645432, -0.01460358127951622, 0.04151339828968048, -0.017785409465432167, 0.0018400729168206453, 0.020427240058779716, -0.21459250152111053, -0.0683412030339241, -0.03847199305891991, -0.02021733671426773, 0.004829869139939547, 0.2569943368434906, 0.03656001389026642, -0.08162788301706314, 0.11023087799549103, 0.04834163188934326, -0.019696371629834175, 0.02023579366505146, 0.223454087972641, -0.003429143223911524, -0.030963188037276268, -0.20480556786060333, 0.06068941578269005, -0.043492499738931656, -0.08292364329099655, 0.17414389550685883, 0.13284273445606232, 0.05968116596341133, 0.01986580528318882, 0.0690937265753746, 0.009370139800012112, -0.09447676688432693, -0.24165096879005432, 0.09512248635292053, 0.081262968480587, -0.010290834121406078, 0.1647944301366806, 0.1839398890733719, -0.06180837005376816, 0.03863924369215965, 0.009665529243648052, 0.04115557298064232, -0.1327897310256958, -0.0612201951444149, 0.004771000239998102, -0.049237385392189026, 0.024689169600605965, -0.027429478242993355, 0.061514366418123245, 0.0182554442435503, 0.0942927896976471, -0.06694386154413223, 0.03792937099933624, -0.018986156210303307, -0.08868379145860672, 0.0941259115934372, -0.013507256284356117, 0.043811261653900146, -0.0896601676940918, -0.021147985011339188, -0.18416842818260193, -0.09752301871776581, -0.0843830332159996, -0.0028334097005426884, -0.057426273822784424, -0.0916205570101738, -0.1159573569893837, -0.051542770117521286, -0.012715271674096584, 0.03051566518843174, 0.0037149882409721613, 0.05348831042647362, 0.0062863025814294815, 0.027237139642238617, 0.008365151472389698, 0.1292811781167984, -0.036035895347595215, -0.0733044445514679, 0.05828749015927315, 0.157373309135437, 0.05531931295990944, 0.1449737697839737, 0.025253744795918465, 0.06188898906111717, 0.03341352567076683, 0.19143852591514587, 0.2855944335460663, -0.0268822330981493, 0.05771338567137718, 0.02539479173719883, 0.03855352848768234, 0.12143861502408981, 0.06465420126914978, 0.03081965446472168, 0.3626241981983185, -0.10989682376384735, 0.0015121427131816745, -0.050639305263757706, 0.023150674998760223, -0.06995401531457901, 0.14187873899936676, 0.026015352457761765, -0.11555445939302444, -0.06665193289518356, 0.1004858911037445, -0.08991693705320358, 0.061788178980350494, 0.04815433919429779, -0.1679925173521042, -0.03398014232516289, -0.03360316902399063, 0.09986642003059387, 0.05953177437186241, 0.10846469551324844, -0.06752677261829376, -0.08944611996412277, 0.03985879570245743, 0.03938005864620209, -0.2720331847667694, -0.15815024077892303, 0.08557214587926865, 0.06248321756720543, 0.08697818964719772, -0.03772910311818123, 0.04164193570613861, 0.10835906863212585, 0.01644917204976082, -0.0036643357016146183, -0.027915917336940765, 0.09170176833868027, -0.11211197823286057, -0.1417725533246994, -0.07170789688825607, 0.017374955117702484, -0.022231895476579666, 0.03160961717367172, -0.10497622936964035, 0.06208855286240578, 0.0177911426872015, -0.14289219677448273, -0.021972013637423515, 0.14223192632198334, -0.036211833357810974, 0.048538099974393845, 0.04302999749779701, 0.026872707530856133, -0.040801163762807846, -0.07570286095142365, -0.023138366639614105, 0.1319815069437027, -0.10044091194868088, -0.06618747115135193, 0.04968677833676338, -0.0354972705245018, 0.07565672695636749, -0.07037591189146042, -0.06344620883464813, -0.06249347701668739, -0.05931302160024643, 0.08889594674110413, -0.17755991220474243, 0.0012144290376454592, 0.03935634717345238, 0.006351267918944359, 0.05754875764250755, -0.05501805245876312, 0.04594789445400238, -0.02130294404923916, -0.0337422750890255, -0.05700709670782089 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz BERT models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources German Europeana BERT models πŸŽ‰ # German Europeana BERT We use the open source [Europeana newspapers](http://www.europeana-newspapers.eu/) that were provided by *The European Library*. The final training corpus has a size of 51GB and consists of 8,035,986,369 tokens. Detailed information about the data and pretraining steps can be found in [this repository](https://github.com/stefan-it/europeana-bert). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ------------------------------------------ | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-german-europeana-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/vocab.txt) ## Results For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert). ## Usage With Transformers >= 2.3 our German Europeana BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-europeana-uncased") model = AutoModel.from_pretrained("dbmdz/bert-base-german-europeana-uncased") ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "de", "license": "mit", "tags": ["historic german"]}
null
dbmdz/bert-base-german-europeana-uncased
[ "transformers", "pytorch", "tf", "jax", "bert", "historic german", "de", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us
+ dbmdz BERT models =================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources German Europeana BERT models German Europeana BERT ===================== We use the open source Europeana newspapers that were provided by *The European Library*. The final training corpus has a size of 51GB and consists of 8,035,986,369 tokens. Detailed information about the data and pretraining steps can be found in this repository. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Results ------- For results on Historic NER, please refer to this repository. Usage ----- With Transformers >= 2.3 our German Europeana BERT models can be loaded like: Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT models just open an issue here Acknowledgments =============== Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us \n" ]
[ 40 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #historic german #de #license-mit #endpoints_compatible #region-us \n" ]
[ -0.04819458723068237, 0.029256289824843407, -0.007894583977758884, 0.04001659154891968, 0.008747518062591553, 0.015001633204519749, 0.08485016226768494, 0.04574563354253769, 0.1659662276506424, -0.05237589776515961, 0.13211582601070404, 0.15378089249134064, -0.03779097646474838, -0.07175435870885849, -0.04239761829376221, -0.26304733753204346, 0.031979337334632874, 0.08537804335355759, -0.013776279054582119, 0.07501823455095291, 0.09720012545585632, -0.09077167510986328, 0.04443293437361717, -0.014785745181143284, -0.1158987507224083, 0.09755878895521164, 0.027123456820845604, -0.07280537486076355, 0.16208018362522125, 0.022637249901890755, 0.09628493338823318, 0.03739001601934433, -0.024032140150666237, -0.08832450211048126, 0.007708695251494646, -0.06458940356969833, -0.11844993382692337, 0.009866624139249325, 0.0418347492814064, -0.09531504660844803, 0.09897173196077347, 0.12349102646112442, -0.07167749106884003, 0.043928805738687515, -0.16384926438331604, -0.21959161758422852, -0.06649108231067657, 0.16244015097618103, -0.0076048728078603745, 0.06926342844963074, 0.04783855378627777, 0.1255785971879959, -0.12525969743728638, 0.046482380479574203, 0.13945551216602325, -0.3265018165111542, -0.022728674113750458, 0.07359924167394638, 0.04931367561221123, 0.011844622902572155, -0.062027059495449066, 0.10130064189434052, 0.042511507868766785, 0.009211861528456211, 0.00012554634304251522, -0.11305838078260422, 0.05294141545891762, 0.0853172019124031, -0.0835581123828888, -0.08445542305707932, 0.20463357865810394, -0.021252889186143875, 0.013353363610804081, 0.047951605170965195, -0.034750357270240784, -0.0006424588500522077, 0.03237712383270264, -0.06460420787334442, -0.026669489219784737, 0.07216044515371323, 0.07075034081935883, -0.027637481689453125, -0.08652949333190918, 0.07487385720014572, -0.21045006811618805, 0.25152823328971863, 0.022819751873612404, 0.06708729267120361, -0.13934798538684845, 0.028290005400776863, -0.09999167174100876, -0.08221018314361572, -0.006211787927895784, -0.04384300485253334, 0.05325717851519585, -0.01239869650453329, -0.025929998606443405, 0.09339892119169235, 0.03175542503595352, 0.1761578917503357, 0.006552821025252342, -0.03823600336909294, -0.003922812640666962, 0.15711253881454468, -0.00007808546797605231, 0.10086555778980255, 0.059042658656835556, -0.05034085363149643, 0.023469774052500725, -0.20345579087734222, -0.021584345027804375, 0.023811422288417816, -0.16089153289794922, -0.0787167027592659, 0.0063642398454248905, 0.08151275664567947, -0.03368285670876503, 0.0004002038622274995, -0.04185821861028671, 0.04743821546435356, 0.021729854866862297, -0.014214358292520046, -0.0002046620356850326, -0.02002381905913353, 0.018934054300189018, 0.12930186092853546, -0.0996178388595581, -0.036791201680898666, -0.018908511847257614, 0.15214616060256958, -0.0729704350233078, 0.0073700775392353535, -0.02674456126987934, -0.07325752079486847, 0.08543674647808075, -0.08174806088209152, 0.07662298530340195, -0.15729974210262299, -0.1056293323636055, 0.055491313338279724, 0.08105113357305527, 0.017563866451382637, 0.061358142644166946, 0.028408074751496315, -0.04634283483028412, 0.0008798476774245501, -0.049833882600069046, -0.17954310774803162, -0.07872091978788376, 0.09267155826091766, -0.12028516083955765, 0.009912221692502499, -0.16377048194408417, 0.030406350269913673, -0.12644118070602417, -0.012423616833984852, -0.15569062530994415, -0.08328524231910706, -0.030470896512269974, 0.11677439510822296, 0.022464273497462273, -0.035895828157663345, -0.07183189690113068, 0.042191311717033386, -0.05243128165602684, 0.1311621516942978, -0.1265963464975357, -0.1210494115948677, 0.22755886614322662, -0.11068537831306458, -0.15037977695465088, 0.11089566349983215, 0.02386307716369629, 0.000775221036747098, 0.08207948505878448, 0.1769932359457016, 0.04768497869372368, -0.1852557510137558, 0.007945633493363857, 0.12670129537582397, -0.09803152829408646, -0.10733392089605331, 0.045248162001371384, -0.026531647890806198, -0.0761830136179924, 0.00827706791460514, -0.04517795518040657, 0.0896385982632637, -0.06299292296171188, 0.0006541379261761904, 0.01428995095193386, 0.008323108777403831, 0.11505525559186935, 0.045309923589229584, 0.08423107862472534, -0.12922583520412445, -0.04076039418578148, 0.0844157263636589, -0.022265570238232613, 0.09746935218572617, 0.004888040013611317, -0.007802818901836872, 0.014779509045183659, 0.03371703624725342, -0.0012697175843641162, -0.08313235640525818, -0.05975349247455597, 0.004577122163027525, 0.010028660297393799, 0.046787939965724945, 0.2735883891582489, 0.08839426189661026, -0.028953321278095245, -0.05450637638568878, -0.018850911408662796, 0.037665314972400665, 0.02147354930639267, 0.02050274796783924, -0.10348913073539734, 0.049615275114774704, -0.03134622052311897, -0.09147641062736511, 0.011698231101036072, -0.014019602909684181, 0.1589120775461197, 0.13207463920116425, -0.02465992420911789, 0.06019974872469902, -0.12811103463172913, 0.044454410672187805, -0.03260239586234093, 0.030905164778232574, 0.060248300433158875, 0.002295298269018531, -0.04027608409523964, 0.23463915288448334, -0.0017429414438083768, 0.3966418206691742, 0.1924346387386322, -0.2269018292427063, -0.02039279416203499, -0.014610528014600277, -0.06876121461391449, 0.03476545587182045, 0.058041755110025406, -0.09273266792297363, 0.08466006070375443, -0.020173443481326103, 0.05592765659093857, -0.05107796564698219, -0.1032509133219719, -0.02431129664182663, 0.002469847211614251, -0.09233356267213821, 0.085000179708004, 0.0758565217256546, -0.19997726380825043, 0.19881798326969147, 0.383309930562973, 0.02014933153986931, 0.20729942619800568, -0.05303436890244484, 0.021785970777273178, -0.0029715625569224358, -0.04546194151043892, -0.04148399084806442, 0.212397962808609, -0.16589221358299255, -0.01446866150945425, 0.03306528180837631, -0.015061530284583569, 0.011949777603149414, -0.1115594357252121, -0.06833574175834656, -0.02365504391491413, 0.009346588514745235, -0.025291122496128082, 0.07316341251134872, -0.01734083704650402, 0.12372667342424393, -0.01932794600725174, -0.1662437468767166, 0.09952814131975174, 0.02278822846710682, -0.07063133269548416, 0.1219104453921318, -0.11395209282636642, -0.20681911706924438, -0.05042498931288719, -0.07920850813388824, -0.020292412489652634, -0.00032185696181841195, 0.07464341819286346, -0.011618580669164658, -0.028505342081189156, 0.11609669029712677, 0.084494449198246, -0.12403104454278946, 0.031793829053640366, -0.09781830757856369, 0.011549330316483974, -0.10164511948823929, -0.08964484184980392, -0.12212052941322327, -0.06771799921989441, -0.043015990406274796, 0.06660287082195282, -0.06557343155145645, 0.060977187007665634, 0.04649446904659271, -0.035626769065856934, 0.09555792063474655, -0.06674604117870331, 0.13399313390254974, -0.07619564235210419, 0.030616987496614456, 0.09449502825737, -0.024997832253575325, 0.055991481989622116, 0.13064080476760864, 0.09236643463373184, -0.044486839324235916, -0.06794089823961258, -0.027047108858823776, -0.08435580134391785, -0.12730443477630615, -0.09999115020036697, -0.11960088461637497, 0.09807601571083069, 0.02820216491818428, 0.04703487455844879, 0.14602982997894287, 0.019475825130939484, -0.013585158623754978, -0.07934108376502991, -0.04003092646598816, 0.054763782769441605, 0.21832381188869476, -0.018758835271000862, 0.03784599527716637, -0.04948687553405762, -0.10221514850854874, 0.1253439038991928, 0.01270212884992361, 0.02191418595612049, 0.12464503943920135, -0.06861627101898193, 0.07045502960681915, 0.14156197011470795, 0.08903422951698303, 0.09743447601795197, 0.009859376586973667, -0.058936331421136856, 0.00939991045743227, -0.06083309277892113, 0.05615922436118126, 0.02946140617132187, 0.0517030693590641, -0.05240527167916298, -0.019776402041316032, -0.2948482632637024, 0.0859716385602951, 0.03752438724040985, 0.09111341834068298, -0.08444652706384659, -0.030034761875867844, 0.0327802412211895, -0.03222009539604187, -0.01600613445043564, 0.08935170620679855, -0.00397494388744235, -0.13698288798332214, 0.10069720447063446, -0.028769509866833687, 0.10303904861211777, 0.060915395617485046, 0.09200730919837952, -0.014212525449693203, -0.11536938697099686, 0.02075372450053692, 0.05729818716645241, -0.34412649273872375, 0.29677554965019226, 0.01454292144626379, -0.04003338888287544, -0.08792450278997421, -0.06147565692663193, 0.026170426979660988, 0.17234951257705688, 0.16620749235153198, 0.05736509710550308, -0.06529190391302109, 0.016010789200663567, 0.07048194855451584, 0.005037686787545681, 0.08224166929721832, -0.06301380693912506, -0.07281797379255295, -0.0009753629565238953, -0.007861911319196224, -0.011513001285493374, 0.09375791996717453, -0.02976210042834282, -0.04356585070490837, 0.04559233412146568, -0.00695600314065814, 0.012269843369722366, 0.0021024064626544714, -0.033613111823797226, -0.0993424728512764, 0.1384168118238449, -0.07476933300495148, -0.0019629141315817833, -0.12931177020072937, -0.15467886626720428, 0.032805487513542175, -0.07769279181957245, 0.04726800695061684, -0.02177570015192032, -0.025934826582670212, -0.14227615296840668, -0.16318361461162567, 0.1406400352716446, -0.1505861133337021, 0.06798854470252991, -0.05152910575270653, 0.17605282366275787, -0.0033795873168855906, 0.046686410903930664, 0.022572578862309456, 0.005591805092990398, -0.02062566950917244, -0.1250360906124115, 0.09235242009162903, -0.18626977503299713, 0.0018916536355391145, -0.05543812736868858, -0.0984644964337349, -0.04401756450533867, 0.0595356710255146, -0.024556247517466545, 0.10253369063138962, 0.2626540958881378, -0.04342292249202728, 0.15475250780582428, 0.14870981872081757, -0.027031244710087776, -0.3524331748485565, -0.014884588308632374, -0.18257306516170502, -0.039842866361141205, 0.009465246461331844, -0.0810844674706459, 0.1264713853597641, 0.06153421103954315, -0.059292975813150406, 0.11427053809165955, -0.25096186995506287, -0.08192620426416397, 0.17298349738121033, -0.029825735837221146, 0.4704858064651489, -0.039316531270742416, -0.05903736501932144, 0.023054588586091995, -0.20535002648830414, 0.1158684566617012, 0.025424892082810402, -0.000521915964782238, -0.028979474678635597, 0.0012342949630692601, 0.017939848825335503, -0.04844864830374718, 0.05787196382880211, 0.05857333168387413, 0.04316938295960426, -0.08646532148122787, -0.12621809542179108, 0.1648806631565094, 0.030306464061141014, -0.009557824581861496, -0.016579851508140564, -0.009966489858925343, -0.1208842471241951, 0.017528660595417023, -0.1364871859550476, 0.1905951350927353, -0.011928662657737732, -0.13537395000457764, -0.037765227258205414, 0.02976745367050171, -0.07959575206041336, -0.052539728581905365, 0.19754590094089508, 0.010749349370598793, 0.15268371999263763, -0.04105769097805023, 0.06228729709982872, -0.12109522521495819, -0.03791305050253868, -0.046334899961948395, -0.06328468024730682, 0.04989149793982506, 0.0404687374830246, 0.023598898202180862, 0.15048660337924957, 0.007714289706200361, 0.033054500818252563, 0.0651477575302124, -0.0036108202766627073, -0.04963812604546547, 0.09995148330926895, -0.23605607450008392, -0.08882690221071243, -0.08521903306245804, -0.07811299711465836, 0.2283584028482437, 0.10110390931367874, 0.10071951895952225, -0.007334334775805473, 0.007456775289028883, 0.0005836080526933074, -0.08998875319957733, -0.0862978845834732, -0.04603901877999306, 0.01845170184969902, 0.0035067268181592226, -0.05742909759283066, 0.055030062794685364, -0.0638178288936615, -0.2188406139612198, -0.027715325355529785, 0.15180334448814392, -0.09469626098871231, -0.0822441428899765, -0.08588110655546188, 0.09656599164009094, -0.3111693859100342, -0.002915036864578724, -0.049341630190610886, -0.1467059850692749, 0.06575477868318558, 0.2898145914077759, 0.08126331120729446, 0.09240932017564774, -0.011866607703268528, -0.003093198174610734, 0.05294685438275337, 0.007718802895396948, -0.05706045776605606, 0.01116564217954874, -0.036911383271217346, 0.05715397745370865, -0.041160617023706436, 0.13368166983127594, -0.09398490935564041, -0.011702582240104675, -0.173807755112648, 0.04814355447888374, -0.1079769879579544, -0.1470758318901062, -0.108147032558918, -0.07269439101219177, -0.015463609248399734, -0.16365943849086761, -0.035188887268304825, -0.038414366543293, -0.14243437349796295, 0.10054623335599899, 0.09262868762016296, 0.06529965996742249, -0.059143658727407455, -0.04133544862270355, 0.11234643310308456, -0.010365935042500496, 0.1344824582338333, 0.16078461706638336, -0.006753949448466301, 0.15848974883556366, -0.11501603573560715, -0.09507827460765839, 0.09599396586418152, 0.012227529659867287, 0.07440104335546494, 0.13435567915439606, -0.0024500007275491953, 0.10337219387292862, -0.014429483562707901, 0.09135919064283371, -0.1580018401145935, -0.07683845609426498, 0.018698550760746002, 0.08261559158563614, -0.17174085974693298, 0.009962470270693302, -0.01847500540316105, 0.18462687730789185, -0.05127701908349991, 0.07697861641645432, -0.01460358127951622, 0.04151339828968048, -0.017785409465432167, 0.0018400729168206453, 0.020427240058779716, -0.21459250152111053, -0.0683412030339241, -0.03847199305891991, -0.02021733671426773, 0.004829869139939547, 0.2569943368434906, 0.03656001389026642, -0.08162788301706314, 0.11023087799549103, 0.04834163188934326, -0.019696371629834175, 0.02023579366505146, 0.223454087972641, -0.003429143223911524, -0.030963188037276268, -0.20480556786060333, 0.06068941578269005, -0.043492499738931656, -0.08292364329099655, 0.17414389550685883, 0.13284273445606232, 0.05968116596341133, 0.01986580528318882, 0.0690937265753746, 0.009370139800012112, -0.09447676688432693, -0.24165096879005432, 0.09512248635292053, 0.081262968480587, -0.010290834121406078, 0.1647944301366806, 0.1839398890733719, -0.06180837005376816, 0.03863924369215965, 0.009665529243648052, 0.04115557298064232, -0.1327897310256958, -0.0612201951444149, 0.004771000239998102, -0.049237385392189026, 0.024689169600605965, -0.027429478242993355, 0.061514366418123245, 0.0182554442435503, 0.0942927896976471, -0.06694386154413223, 0.03792937099933624, -0.018986156210303307, -0.08868379145860672, 0.0941259115934372, -0.013507256284356117, 0.043811261653900146, -0.0896601676940918, -0.021147985011339188, -0.18416842818260193, -0.09752301871776581, -0.0843830332159996, -0.0028334097005426884, -0.057426273822784424, -0.0916205570101738, -0.1159573569893837, -0.051542770117521286, -0.012715271674096584, 0.03051566518843174, 0.0037149882409721613, 0.05348831042647362, 0.0062863025814294815, 0.027237139642238617, 0.008365151472389698, 0.1292811781167984, -0.036035895347595215, -0.0733044445514679, 0.05828749015927315, 0.157373309135437, 0.05531931295990944, 0.1449737697839737, 0.025253744795918465, 0.06188898906111717, 0.03341352567076683, 0.19143852591514587, 0.2855944335460663, -0.0268822330981493, 0.05771338567137718, 0.02539479173719883, 0.03855352848768234, 0.12143861502408981, 0.06465420126914978, 0.03081965446472168, 0.3626241981983185, -0.10989682376384735, 0.0015121427131816745, -0.050639305263757706, 0.023150674998760223, -0.06995401531457901, 0.14187873899936676, 0.026015352457761765, -0.11555445939302444, -0.06665193289518356, 0.1004858911037445, -0.08991693705320358, 0.061788178980350494, 0.04815433919429779, -0.1679925173521042, -0.03398014232516289, -0.03360316902399063, 0.09986642003059387, 0.05953177437186241, 0.10846469551324844, -0.06752677261829376, -0.08944611996412277, 0.03985879570245743, 0.03938005864620209, -0.2720331847667694, -0.15815024077892303, 0.08557214587926865, 0.06248321756720543, 0.08697818964719772, -0.03772910311818123, 0.04164193570613861, 0.10835906863212585, 0.01644917204976082, -0.0036643357016146183, -0.027915917336940765, 0.09170176833868027, -0.11211197823286057, -0.1417725533246994, -0.07170789688825607, 0.017374955117702484, -0.022231895476579666, 0.03160961717367172, -0.10497622936964035, 0.06208855286240578, 0.0177911426872015, -0.14289219677448273, -0.021972013637423515, 0.14223192632198334, -0.036211833357810974, 0.048538099974393845, 0.04302999749779701, 0.026872707530856133, -0.040801163762807846, -0.07570286095142365, -0.023138366639614105, 0.1319815069437027, -0.10044091194868088, -0.06618747115135193, 0.04968677833676338, -0.0354972705245018, 0.07565672695636749, -0.07037591189146042, -0.06344620883464813, -0.06249347701668739, -0.05931302160024643, 0.08889594674110413, -0.17755991220474243, 0.0012144290376454592, 0.03935634717345238, 0.006351267918944359, 0.05754875764250755, -0.05501805245876312, 0.04594789445400238, -0.02130294404923916, -0.0337422750890255, -0.05700709670782089 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz German BERT models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources another German BERT models πŸŽ‰ # German BERT ## Stats In addition to the recently released [German BERT](https://deepset.ai/german-bert) model by [deepset](https://deepset.ai/) we provide another German-language model. The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus, Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with a size of 16GB and 2,350,234,427 tokens. For sentence splitting, we use [spacy](https://spacy.io/). Our preprocessing steps (sentence piece model for vocab generation) follow those used for training [SciBERT](https://github.com/allenai/scibert). The model is trained with an initial sequence length of 512 subwords and was performed for 1.5M steps. This release includes both cased and uncased models. ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | -------------------------------- | --------------------------------------------------------------------------------------------------------------- | `bert-base-german-dbmdz-cased` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.json) β€’ [`pytorch_model.bin`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin) β€’ [`vocab.txt`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt) | `bert-base-german-dbmdz-uncased` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.json) β€’ [`pytorch_model.bin`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin) β€’ [`vocab.txt`](https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt) ## Usage With Transformers >= 2.3 our German BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") model = AutoModel.from_pretrained("dbmdz/bert-base-german-cased") ``` ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/fine-tuned-berts-seq). # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "de", "license": "mit"}
fill-mask
dbmdz/bert-base-german-uncased
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "de", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
+ dbmdz German BERT models ========================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources another German BERT models German BERT =========== Stats ----- In addition to the recently released German BERT model by deepset we provide another German-language model. The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus, Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with a size of 16GB and 2,350,234,427 tokens. For sentence splitting, we use spacy. Our preprocessing steps (sentence piece model for vocab generation) follow those used for training SciBERT. The model is trained with an initial sequence length of 512 subwords and was performed for 1.5M steps. This release includes both cased and uncased models. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Usage ----- With Transformers >= 2.3 our German BERT models can be loaded like: Results ------- For results on downstream tasks like NER or PoS tagging, please refer to this repository. Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT models just open an issue here Acknowledgments =============== Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.017137225717306137, 0.018642790615558624, -0.005587710067629814, 0.04178430885076523, 0.04811940714716911, 0.015619934536516666, 0.1209658682346344, 0.09032786637544632, 0.0696859359741211, -0.0023615332320332527, 0.16120074689388275, 0.17829541862010956, -0.030359813943505287, 0.16188743710517883, -0.04806555435061455, -0.21584849059581757, 0.07609734684228897, 0.015166922472417355, -0.06277866661548615, 0.10082584619522095, 0.09837961941957474, -0.07797390222549438, 0.06428909301757812, -0.021028714254498482, -0.08635657280683517, 0.04223059490323067, 0.07067091763019562, -0.11879824101924896, 0.15478292107582092, 0.02965475432574749, 0.17046122252941132, 0.0774027481675148, -0.009782957844436169, -0.061030950397253036, 0.04313146322965622, 0.027642861008644104, -0.11443319916725159, 0.03828532621264458, -0.011662106029689312, -0.031715698540210724, 0.032543666660785675, 0.010881355963647366, 0.042133938521146774, 0.04064849019050598, -0.1525777131319046, -0.2513589560985565, -0.0427241176366806, 0.06538041681051254, 0.02277320995926857, 0.05172334611415863, 0.018889544531702995, 0.22210904955863953, -0.1302463412284851, 0.07907319068908691, 0.13852941989898682, -0.3640775680541992, -0.008691152557730675, 0.12661723792552948, 0.13046638667583466, -0.021247245371341705, -0.06684613972902298, 0.05556907504796982, 0.06252307444810867, 0.017715003341436386, 0.15071862936019897, -0.05743611231446266, -0.05238356813788414, 0.03697116672992706, -0.08933567255735397, -0.05947251617908478, 0.17374330759048462, -0.028880076482892036, 0.024109480902552605, -0.025532666593790054, -0.09183932840824127, -0.028859157115221024, 0.007786914240568876, -0.03338314965367317, -0.0019704208243638277, 0.04834440350532532, -0.018949752673506737, -0.0031265770085155964, -0.151779443025589, 0.016859684139490128, -0.21153193712234497, 0.16860942542552948, -0.0009558854508213699, 0.0627622902393341, -0.16678792238235474, 0.05911094322800636, -0.01834719255566597, -0.12807008624076843, 0.04622916877269745, -0.07521449029445648, 0.0525733083486557, -0.009581033140420914, -0.034145716577768326, 0.01689710095524788, 0.08667726069688797, 0.18978092074394226, -0.006010343786329031, -0.009447591379284859, 0.010836687870323658, 0.10137013345956802, -0.0007334772381000221, 0.052581459283828735, 0.004009725991636515, -0.011057643219828606, 0.04419080540537834, -0.06896471232175827, 0.02896578423678875, -0.04163128510117531, -0.12353438884019852, -0.032693710178136826, 0.034194353967905045, 0.0845462903380394, 0.05597534403204918, 0.07142840325832367, -0.04562010243535042, 0.06461267173290253, 0.12041813135147095, -0.05473467335104942, 0.01437896117568016, -0.030633045360445976, 0.09878730773925781, -0.029620159417390823, 0.017390038818120956, -0.014811373315751553, 0.048747215420007706, 0.10324887186288834, -0.10921421647071838, -0.054703328758478165, -0.033739183098077774, -0.10406552255153656, 0.05768219754099846, -0.0910075381398201, 0.03616128861904144, -0.2133142054080963, -0.100994773209095, 0.06129022687673569, 0.05084072798490524, 0.013271271251142025, -0.04337339848279953, 0.08848324418067932, -0.05779174715280533, 0.03693029657006264, -0.05255001410841942, -0.03284584730863571, -0.07165202498435974, 0.09799008816480637, -0.04709148034453392, 0.10583378374576569, -0.14471489191055298, 0.013150413520634174, -0.09640303254127502, 0.015687281265854836, -0.11636573076248169, -0.09756594896316528, -0.04974735528230667, 0.15202495455741882, 0.017803266644477844, -0.04038631543517113, -0.11223311722278595, 0.058492086827754974, -0.0333065465092659, 0.13070005178451538, -0.14404092729091644, -0.06302572786808014, 0.20865830779075623, -0.1228911355137825, -0.17004390060901642, 0.080263152718544, 0.008864529430866241, 0.044767942279577255, 0.01844637654721737, 0.1553700566291809, 0.012624052353203297, -0.1939108818769455, 0.04135539382696152, 0.13638170063495636, -0.12809190154075623, -0.09536533802747726, 0.05211324244737625, -0.004039671737700701, -0.10162181407213211, 0.00774499261751771, 0.036776334047317505, 0.09222468733787537, -0.048860445618629456, -0.05995464324951172, -0.04203708842396736, -0.03235733509063721, 0.10582005232572556, 0.012710998766124249, 0.07317785918712616, -0.11015468090772629, -0.06640282273292542, -0.028611108660697937, -0.008694280870258808, 0.08596069365739822, 0.011567126028239727, -0.08607400208711624, 0.12371961027383804, -0.003425949951633811, -0.026657896116375923, -0.09972341358661652, -0.12681268155574799, -0.027874596416950226, 0.02834128960967064, -0.030705902725458145, 0.1906137466430664, 0.09088174253702164, -0.023125633597373962, -0.026130221784114838, -0.028598638251423836, 0.09069497138261795, 0.08396921306848526, -0.007799462880939245, -0.1341986060142517, 0.016148913651704788, -0.08866473287343979, -0.024659205228090286, -0.02454848773777485, 0.0218786783516407, 0.05657871440052986, 0.13816119730472565, -0.01097180973738432, 0.06134112551808357, -0.06455386430025101, 0.003330675885081291, -0.03589604049921036, -0.01553878653794527, 0.06063481420278549, 0.025409340858459473, -0.03325982764363289, 0.20632058382034302, -0.15612304210662842, 0.4218877851963043, 0.21555684506893158, -0.16766145825386047, -0.06044493243098259, 0.08204126358032227, -0.038127996027469635, 0.028964323922991753, 0.021187830716371536, -0.06025686115026474, -0.08243601024150848, -0.05935388058423996, 0.12800177931785583, -0.04922620579600334, -0.04915161430835724, 0.023244760930538177, -0.05584092438220978, -0.08005861937999725, 0.0026434087194502354, 0.06911198049783707, -0.1766834855079651, 0.21508443355560303, 0.36706051230430603, 0.007629120256751776, 0.1648615002632141, -0.023440971970558167, 0.019093772396445274, -0.027396809309720993, -0.03752696514129639, -0.03495083004236221, 0.13718923926353455, -0.1346382051706314, -0.01815313659608364, 0.060801759362220764, -0.014460901729762554, 0.019261082634329796, -0.1294952630996704, -0.08487240225076675, 0.027141552418470383, 0.04454704746603966, -0.07413198798894882, 0.14832037687301636, 0.020255379378795624, 0.11077004671096802, -0.022739294916391373, -0.1524759978055954, 0.09788016229867935, 0.004258658736944199, -0.0486895814538002, 0.12632836401462555, -0.13563743233680725, -0.275787889957428, -0.06753726303577423, -0.07648198306560516, 0.06369426101446152, 0.012828814797103405, 0.10404030978679657, -0.04159696027636528, -0.049865540117025375, -0.003427143907174468, -0.04396161064505577, -0.05124201625585556, 0.07602986693382263, -0.07790542393922806, 0.02178909257054329, -0.010344740003347397, -0.10174337774515152, -0.09070094674825668, 0.004858850501477718, -0.0512755922973156, 0.12905654311180115, -0.007466951850801706, 0.06760573387145996, 0.10071900486946106, -0.035713743418455124, 0.03661315143108368, -0.057698242366313934, 0.20929239690303802, -0.06751025468111038, 0.039873041212558746, 0.15579621493816376, 0.0010030096163973212, 0.07267167419195175, 0.21183745563030243, 0.045408401638269424, -0.03536846116185188, 0.006764200981706381, -0.0489439032971859, -0.10735378414392471, -0.11841269582509995, -0.08028893172740936, -0.11760269850492477, 0.012205205857753754, 0.029511457309126854, 0.0813547894358635, 0.15647470951080322, 0.05224006250500679, 0.021094994619488716, -0.049849733710289, -0.05147143453359604, 0.05069144815206528, 0.14872369170188904, -0.0497136227786541, 0.12739166617393494, -0.05372682958841324, -0.13847333192825317, 0.06973496079444885, 0.014984078705310822, 0.020671213045716286, 0.10827989131212234, -0.06361083686351776, 0.08181663602590561, 0.20890304446220398, 0.1159856766462326, 0.12201039493083954, 0.025263912975788116, -0.0851520448923111, -0.025251319631934166, -0.04487527906894684, 0.028841860592365265, 0.04992295056581497, 0.07863623648881912, -0.08312294632196426, -0.029104994609951973, -0.18805328011512756, 0.05413861572742462, 0.07426012307405472, 0.08913203328847885, -0.2175978422164917, 0.01423136331140995, 0.07365152984857559, 0.012160106562077999, -0.04178393632173538, 0.05431811884045601, 0.06391479074954987, -0.07098092883825302, 0.05345521122217178, -0.00806480273604393, 0.054087646305561066, 0.15043945610523224, 0.09602633863687515, -0.01804756373167038, -0.1014476865530014, -0.002153523964807391, 0.04115651920437813, -0.27976882457733154, 0.25724226236343384, -0.007825513370335102, -0.03802408650517464, -0.0597030408680439, -0.007472393102943897, 0.04486618563532829, 0.14925068616867065, 0.14667686820030212, 0.03517230227589607, -0.0896984189748764, -0.09388206899166107, 0.03800807148218155, 0.01502627320587635, 0.04715947061777115, -0.028942450881004333, -0.007273583672940731, -0.03968937695026398, -0.01956995204091072, 0.04595980420708656, 0.1864023506641388, -0.06381160020828247, -0.09985620528459549, 0.060793109238147736, 0.06135372072458267, 0.00781229417771101, -0.06783806532621384, -0.05510983243584633, -0.17502638697624207, 0.12662038207054138, -0.011863350868225098, -0.011466111987829208, -0.113596111536026, -0.13979946076869965, 0.06054900586605072, -0.05385153368115425, 0.09115628898143768, -0.05705104023218155, 0.00706656277179718, -0.10373463481664658, -0.15056830644607544, 0.1578717827796936, -0.14602535963058472, -0.02790192887187004, -0.10131236165761948, 0.11817390471696854, -0.10149239003658295, 0.04260139912366867, 0.03297479450702667, 0.04934345930814743, -0.0858934223651886, -0.05916965752840042, 0.033262018114328384, -0.1164495125412941, 0.06283070892095566, -0.05088960751891136, -0.058795150369405746, -0.08019373565912247, 0.07606451213359833, 0.0005846429849043489, 0.17334216833114624, 0.2813331186771393, -0.10545354336500168, 0.12954622507095337, 0.1256115585565567, -0.008306817151606083, -0.33706358075141907, -0.11623380333185196, -0.1915326714515686, -0.009082418866455555, 0.11102477461099625, -0.014600562863051891, 0.03455384820699692, -0.011592337861657143, -0.08535733073949814, 0.11065402626991272, -0.16161753237247467, -0.09104886651039124, 0.21698373556137085, 0.0007258115219883621, 0.3789067566394806, -0.1461767852306366, -0.023741597309708595, 0.005851271562278271, -0.1116027981042862, 0.10608451068401337, -0.08323202282190323, 0.052892621606588364, -0.006259622983634472, 0.0043943808414042, 0.020693151280283928, -0.08026941120624542, 0.1211879774928093, -0.07648644596338272, 0.05645008385181427, -0.11874580383300781, -0.09857342392206192, 0.14566883444786072, -0.016038715839385986, 0.007006793282926083, -0.09852363914251328, 0.0063243587501347065, -0.031131388619542122, 0.010976453311741352, -0.11595971137285233, 0.14027109742164612, -0.017160985618829727, -0.10057429224252701, -0.0073508997447788715, 0.03137525916099548, -0.00316902669146657, -0.0597640685737133, 0.19053268432617188, -0.005719904787838459, 0.24933786690235138, 0.12852874398231506, 0.007381037343293428, -0.1352853626012802, -0.05058259889483452, 0.013602357357740402, -0.09256910532712936, 0.08671117573976517, -0.05613798648118973, 0.04236466810107231, 0.060008369386196136, -0.007999531924724579, 0.07107936590909958, 0.10755588114261627, -0.009712517261505127, -0.056123729795217514, 0.19022051990032196, -0.19853846728801727, -0.04665248095989227, -0.011316923424601555, 0.02205486409366131, 0.0669155865907669, 0.036116208881139755, 0.08332478255033493, -0.02101338654756546, -0.011267663910984993, -0.006745319813489914, 0.0012515427079051733, -0.07771067321300507, 0.007256864570081234, 0.08336013555526733, 0.058966632932424545, -0.07801022380590439, -0.018213994801044464, -0.0027399961836636066, -0.1517694890499115, -0.013004927895963192, 0.06598123162984848, -0.08396094292402267, -0.1401737928390503, 0.0011440688977017999, 0.0429120734333992, -0.04974338412284851, -0.030474217608571053, -0.03645765781402588, -0.1410156786441803, 0.03315221518278122, 0.23811647295951843, 0.08591785281896591, 0.09593834728002548, 0.035582706332206726, -0.017753170803189278, 0.020843779668211937, 0.016525166109204292, -0.05929004028439522, 0.03427182510495186, -0.12989164888858795, 0.07602028548717499, -0.011451208963990211, 0.10867827385663986, -0.10397525131702423, 0.01601910963654518, -0.18012604117393494, -0.011755101382732391, -0.03760330006480217, -0.08800350874662399, -0.09478110820055008, -0.07438304275274277, 0.038438428193330765, -0.08692128956317902, -0.048320915549993515, -0.027591830119490623, -0.11794716119766235, 0.017554080113768578, 0.0551120899617672, 0.05748673900961876, -0.08430653065443039, -0.05040767788887024, 0.0872993990778923, -0.03212122246623039, 0.08149108290672302, 0.05574057623744011, -0.04681885614991188, 0.08025475591421127, -0.12717998027801514, -0.0907314270734787, 0.0839085727930069, -0.002028547925874591, 0.06707948446273804, 0.051975227892398834, -0.003061913885176182, 0.04559512063860893, 0.011655880138278008, 0.05017921328544617, -0.011367443948984146, -0.0994940772652626, 0.06145033240318298, 0.04739769175648689, -0.14562548696994781, 0.009814975783228874, -0.10596016049385071, 0.11449852585792542, -0.06513361632823944, 0.12260519713163376, -0.04182839021086693, 0.027257515117526054, -0.11029702425003052, 0.013715715147554874, -0.04663316532969475, -0.13773059844970703, -0.05270101875066757, -0.028435396030545235, -0.0007890948327258229, -0.019575947895646095, 0.2218618392944336, 0.06554250419139862, -0.09452049434185028, 0.07603465765714645, 0.027226729318499565, 0.02951996587216854, -0.0010573328472673893, 0.19151781499385834, 0.02803177200257778, -0.055911026895046234, -0.1220562681555748, 0.034912142902612686, -0.005289443302899599, -0.11047621816396713, 0.1032116711139679, 0.11179547011852264, 0.041916877031326294, 0.06400766223669052, 0.06933921575546265, -0.038876134902238846, -0.0928206741809845, -0.19143988192081451, -0.0014526478480547667, 0.05021810531616211, -0.034099385142326355, -0.0184258371591568, 0.2069297581911087, -0.017920566722750664, 0.03493814915418625, -0.0674658939242363, 0.025534814223647118, -0.1793449968099594, -0.1146116778254509, -0.06404612958431244, -0.06119666248559952, 0.009692063555121422, -0.014788823202252388, 0.01477948110550642, 0.08576584607362747, 0.040861260145902634, -0.022360866889357567, 0.08813018351793289, 0.006842500995844603, -0.013940433971583843, 0.0030062776058912277, 0.028127947822213173, 0.025671251118183136, -0.06279439479112625, 0.001314534805715084, -0.1315155178308487, -0.028288112953305244, -0.07531190663576126, -0.018770238384604454, -0.059741124510765076, 0.009073661640286446, -0.09446791559457779, -0.09202796965837479, -0.054300498217344284, 0.01854408159852028, -0.02801677957177162, 0.10141115635633469, -0.0004490012943278998, 0.041756898164749146, 0.03070535510778427, 0.15615974366664886, -0.0727548897266388, -0.12836888432502747, -0.029793594032526016, 0.20713548362255096, 0.02285083942115307, 0.09815036505460739, -0.010639909654855728, 0.023922814056277275, -0.07546809315681458, 0.20118148624897003, 0.3510076403617859, -0.03252757713198662, 0.11128802597522736, 0.01981593854725361, 0.009556751698255539, 0.013141355477273464, 0.09069428592920303, 0.08190712332725525, 0.26696574687957764, -0.09349322319030762, 0.014720321632921696, -0.05950953811407089, 0.0022461418993771076, -0.09474994987249374, 0.019437234848737717, 0.02360592409968376, -0.03510884940624237, -0.02717982977628708, 0.05055961757898331, -0.09181366860866547, 0.05897250026464462, 0.08555520325899124, -0.1887659877538681, -0.037495341151952744, 0.012072485871613026, 0.16667793691158295, -0.007933185435831547, 0.08010750263929367, -0.05081409588456154, -0.04772591218352318, 0.012502199038863182, -0.007041802629828453, -0.15385837852954865, -0.05415772646665573, 0.11129431426525116, 0.013642984442412853, 0.14942720532417297, -0.04453172907233238, 0.04583220183849335, 0.10694997012615204, 0.047867607325315475, -0.05501668527722359, 0.08320358395576477, 0.05338606610894203, -0.09572167694568634, -0.07083097845315933, -0.07902682572603226, 0.010812330059707165, -0.07089196145534515, 0.0362602174282074, -0.1584370881319046, 0.0481562539935112, -0.050271593034267426, -0.055501386523246765, -0.025897806510329247, 0.06263621151447296, -0.025909852236509323, 0.08263272792100906, 0.02955755777657032, -0.00031544413650408387, -0.03432318568229675, -0.03796287253499031, -0.01808970794081688, 0.09316946566104889, -0.12712281942367554, -0.12352349609136581, -0.03933759778738022, -0.010840152390301228, 0.017042800784111023, -0.017964638769626617, -0.1307237446308136, -0.07045480608940125, -0.07632091641426086, 0.017496382817626, -0.13771583139896393, 0.0237148217856884, 0.10677771270275116, 0.04455683380365372, 0.007194752339273691, -0.055383019149303436, 0.012751483358442783, 0.047163933515548706, -0.14062035083770752, -0.07147111743688583 ]
null
null
transformers
# Language Model for Historic Dutch In this repository we open source a language model for Historic Dutch, trained on the [Delpher Corpus](https://www.delpher.nl/over-delpher/delpher-open-krantenarchief/download-teksten-kranten-1618-1879\), that include digitized texts from Dutch newspapers, ranging from 1618 to 1879. # Changelog * 13.12.2021: Initial version of this repository. # Model Zoo The following models for Historic Dutch are available on the Hugging Face Model Hub: | Model identifier | Model Hub link | -------------------------------------- | ------------------------------------------------------------------- | `dbmdz/bert-base-historic-dutch-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-dutch-cased) # Stats The download urls for all archives can be found [here](delpher-corpus.urls). We then used the awesome `alto-tools` from [this](https://github.com/cneud/alto-tools) repository to extract plain text. The following table shows the size overview per year range: | Period | Extracted plain text size | --------- | -------------------------: | 1618-1699 | 170MB | 1700-1709 | 103MB | 1710-1719 | 65MB | 1720-1729 | 137MB | 1730-1739 | 144MB | 1740-1749 | 188MB | 1750-1759 | 171MB | 1760-1769 | 235MB | 1770-1779 | 271MB | 1780-1789 | 414MB | 1790-1799 | 614MB | 1800-1809 | 734MB | 1810-1819 | 807MB | 1820-1829 | 987MB | 1830-1839 | 1.7GB | 1840-1849 | 2.2GB | 1850-1854 | 1.3GB | 1855-1859 | 1.7GB | 1860-1864 | 2.0GB | 1865-1869 | 2.3GB | 1870-1874 | 1.9GB | 1875-1876 | 867MB | 1877-1879 | 1.9GB The total training corpus consists of 427,181,269 sentences and 3,509,581,683 tokens (counted via `wc`), resulting in a total corpus size of 21GB. The following figure shows an overview of the number of chars per year distribution: ![Delpher Corpus Stats](figures/delpher_corpus_stats.png) # Language Model Pretraining We use the official [BERT](https://github.com/google-research/bert) implementation using the following command to train the model: ```bash python3 run_pretraining.py --input_file gs://delpher-bert/tfrecords/*.tfrecord \ --output_dir gs://delpher-bert/bert-base-historic-dutch-cased \ --bert_config_file ./config.json \ --max_seq_length=512 \ --max_predictions_per_seq=75 \ --do_train=True \ --train_batch_size=128 \ --num_train_steps=3000000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=100000 \ --keep_checkpoint_max=20 \ --use_tpu=True \ --tpu_name=electra-2 \ --num_tpu_cores=32 ``` We train the model for 3M steps using a total batch size of 128 on a v3-32 TPU. The pretraining loss curve can be seen in the next figure: ![Delpher Pretraining Loss Curve](figures/training_loss.png) # Evaluation We evaluate our model on the preprocessed Europeana NER dataset for Dutch, that was presented in the ["Data Centric Domain Adaptation for Historical Text with OCR Errors"](https://github.com/stefan-it/historic-domain-adaptation-icdar) paper. The data is available in their repository. We perform a hyper-parameter search for: * Batch sizes: `[4, 8]` * Learning rates: `[3e-5, 5e-5]` * Number of epochs: `[5, 10]` and report averaged F1-Score over 5 runs with different seeds. We also include [hmBERT](https://github.com/stefan-it/clef-hipe/blob/main/hlms.md) as baseline model. Results: | Model | F1-Score (Dev / Test) | ------------------- | --------------------- | hmBERT | (82.73) / 81.34 | Maerz et al. (2021) | - / 84.2 | Ours | (89.73) / 87.45 # License All models are licensed under [MIT](LICENSE). # Acknowledgments Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❀️ We thank [Clemens Neudecker](https://github.com/cneud) for maintaining the amazing [ALTO tools](https://github.com/cneud/alto-tools) that were used for parsing the Delpher Corpus XML files. Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "dutch", "license": "mit", "widget": [{"text": "de [MASK] vau Financien, in hec vorige jaar, da inkomswi"}]}
fill-mask
dbmdz/bert-base-historic-dutch-cased
[ "transformers", "pytorch", "tf", "tensorboard", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "dutch" ]
TAGS #transformers #pytorch #tf #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us
Language Model for Historic Dutch ================================= In this repository we open source a language model for Historic Dutch, trained on the Delpher Corpus, that include digitized texts from Dutch newspapers, ranging from 1618 to 1879. Changelog ========= * 13.12.2021: Initial version of this repository. Model Zoo ========= The following models for Historic Dutch are available on the Hugging Face Model Hub: Stats ===== The download urls for all archives can be found here. We then used the awesome 'alto-tools' from this repository to extract plain text. The following table shows the size overview per year range: The total training corpus consists of 427,181,269 sentences and 3,509,581,683 tokens (counted via 'wc'), resulting in a total corpus size of 21GB. The following figure shows an overview of the number of chars per year distribution: !Delpher Corpus Stats Language Model Pretraining ========================== We use the official BERT implementation using the following command to train the model: We train the model for 3M steps using a total batch size of 128 on a v3-32 TPU. The pretraining loss curve can be seen in the next figure: !Delpher Pretraining Loss Curve Evaluation ========== We evaluate our model on the preprocessed Europeana NER dataset for Dutch, that was presented in the "Data Centric Domain Adaptation for Historical Text with OCR Errors" paper. The data is available in their repository. We perform a hyper-parameter search for: * Batch sizes: '[4, 8]' * Learning rates: '[3e-5, 5e-5]' * Number of epochs: '[5, 10]' and report averaged F1-Score over 5 runs with different seeds. We also include hmBERT as baseline model. Results: License ======= All models are licensed under MIT. Acknowledgments =============== Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ️ We thank Clemens Neudecker for maintaining the amazing ALTO tools that were used for parsing the Delpher Corpus XML files. Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 48 ]
[ "passage: TAGS\n#transformers #pytorch #tf #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06136072427034378, 0.029431084170937538, -0.006590177305042744, 0.05745568126440048, 0.09853187203407288, 0.03618107736110687, 0.15030387043952942, 0.10798430442810059, 0.10550741106271744, -0.023315567523241043, 0.1406051218509674, 0.23285365104675293, 0.00012523737677838653, 0.10556961596012115, -0.060407184064388275, -0.25973793864250183, 0.02649657055735588, 0.08078159391880035, -0.08380843698978424, 0.09985719621181488, 0.062174614518880844, -0.07017336785793304, 0.05792618542909622, 0.0015635103918612003, -0.1487693339586258, 0.037149131298065186, 0.08086956292390823, -0.11460737138986588, 0.1387087106704712, 0.07382955402135849, 0.16469897329807281, 0.07263772934675217, -0.033371008932590485, -0.05358152091503143, 0.045628584921360016, 0.017558228224515915, -0.11618547141551971, 0.06792572885751724, 0.03722640126943588, -0.025706501677632332, 0.021936874836683273, 0.06284521520137787, 0.03298014774918556, 0.056402403861284256, -0.12493564188480377, -0.1521296203136444, -0.037564076483249664, 0.07915321737527847, 0.02213301509618759, 0.03686701878905296, 0.0391765758395195, 0.21856549382209778, -0.08001260459423065, 0.09965649992227554, 0.11107611656188965, -0.3887903392314911, -0.010272772051393986, 0.1138203963637352, 0.06352399289608002, -0.04072894901037216, -0.04903549700975418, 0.059645876288414, 0.03845403343439102, 0.020975181832909584, 0.08299243450164795, -0.07035432755947113, -0.034959208220243454, 0.024963049218058586, -0.08232000470161438, -0.023120740428566933, 0.12487919628620148, -0.030104944482445717, 0.029286013916134834, -0.010018757544457912, -0.10804758965969086, -0.03559118136763573, -0.01705062761902809, -0.025473207235336304, -0.019252968952059746, 0.06085401028394699, -0.04158883914351463, -0.06013623997569084, -0.14702774584293365, 0.018572965636849403, -0.25452834367752075, 0.18035633862018585, 0.026675038039684296, 0.06968598067760468, -0.17918244004249573, 0.05764893814921379, -0.01834254339337349, -0.11852319538593292, 0.04540044441819191, -0.061726946383714676, 0.011934984475374222, -0.02145286090672016, -0.02592514269053936, -0.10358287394046783, 0.07872048020362854, 0.1734086126089096, 0.04659527167677879, 0.025443745777010918, -0.022727621719241142, 0.11813878268003464, -0.022562703117728233, 0.07819438725709915, -0.011271380819380283, 0.01917318068444729, 0.059225257486104965, -0.13104474544525146, 0.028482843190431595, -0.056036725640296936, -0.16350245475769043, -0.03295890986919403, 0.0073739876970648766, 0.07069846987724304, 0.023105083033442497, 0.08654128760099411, -0.05848073586821556, 0.001011901767924428, 0.11021304130554199, -0.06045674532651901, 0.01123451255261898, -0.018045540899038315, 0.05660100653767586, 0.061978816986083984, 0.047856468707323074, -0.03647119551897049, 0.0014152922667562962, 0.11666492372751236, -0.08780714869499207, -0.04120921343564987, -0.04222312942147255, -0.084551140666008, 0.07124411314725876, -0.15122441947460175, 0.0306266937404871, -0.1791110336780548, -0.11385847628116608, 0.07150642573833466, 0.06597136706113815, -0.013239653781056404, -0.010607986710965633, 0.07701169699430466, -0.030491851270198822, 0.022526420652866364, -0.03814656287431717, -0.015013502910733223, -0.03863045945763588, 0.10474849492311478, -0.042361751198768616, 0.08386106789112091, -0.1600445806980133, 0.03413786366581917, -0.06954813748598099, 0.0048988438211381435, -0.12153447419404984, -0.06117561087012291, -0.05751784145832062, 0.12708772718906403, -0.0197165347635746, -0.04102082550525665, -0.11263097822666168, 0.027755646035075188, -0.00785752758383751, 0.11736433953046799, -0.13130666315555573, -0.09952887892723083, 0.21888266503810883, -0.12201076000928879, -0.17368939518928528, 0.09503988176584244, 0.0019373848335817456, 0.04401107132434845, 0.03923843428492546, 0.1368730217218399, 0.08556384593248367, -0.18074458837509155, 0.08736339211463928, 0.13607503473758698, -0.1572076380252838, -0.16948676109313965, 0.011661537922918797, -0.012445583008229733, -0.07559870928525925, 0.030126580968499184, 0.06930185854434967, 0.11539339274168015, -0.05329100787639618, -0.055447693914175034, -0.030164506286382675, -0.031673964112997055, 0.10693696141242981, 0.05019306391477585, 0.10300461947917938, -0.07353222370147705, -0.04408455267548561, 0.030468206852674484, -0.025307150557637215, 0.04135562479496002, 0.03406011685729027, -0.11695291101932526, 0.12848162651062012, -0.030492665246129036, -0.012052234262228012, -0.14254528284072876, -0.12515057623386383, -0.018108831718564034, 0.03416108340024948, 0.020358731970191002, 0.17044059932231903, 0.11016543209552765, -0.025359073653817177, -0.027028948068618774, 0.0015698487404733896, 0.13186797499656677, 0.04841615632176399, -0.0409613773226738, -0.1360509991645813, 0.02613481879234314, -0.07507748901844025, -0.035651300102472305, -0.021234659478068352, 0.017713550478219986, 0.07695634663105011, 0.11780425161123276, 0.010260159149765968, 0.05774259567260742, -0.057257797569036484, 0.005187030415982008, -0.038273610174655914, -0.01194645557552576, 0.09665597230195999, 0.03429843485355377, -0.08604176342487335, 0.18525180220603943, -0.13918013870716095, 0.34452709555625916, 0.2098204791545868, -0.19089505076408386, -0.045413337647914886, 0.0011474192142486572, -0.036151476204395294, -0.00593261094763875, 0.05515163764357567, -0.019150076434016228, 0.014288932085037231, -0.011682136915624142, 0.14390340447425842, -0.030010122805833817, -0.04474550113081932, 0.04417276754975319, -0.03980197757482529, -0.06321607530117035, 0.018584929406642914, 0.16786405444145203, -0.18660369515419006, 0.18085040152072906, 0.25216764211654663, 0.009017372503876686, 0.18962737917900085, -0.03702755272388458, -0.002437022514641285, 0.00022871277178637683, -0.00961364060640335, 0.009611009620130062, 0.09666737914085388, -0.17618560791015625, -0.004971847403794527, 0.06722564250230789, -0.05396313965320587, 0.04287019744515419, -0.15875233709812164, -0.05197257176041603, 0.009127810597419739, 0.013652428984642029, -0.03037896938621998, 0.13807618618011475, 0.009053357876837254, 0.08642491698265076, -0.030525198206305504, -0.12375310063362122, 0.12260939180850983, 0.015741417184472084, -0.06469717621803284, 0.1456008106470108, -0.11624830216169357, -0.262081503868103, -0.13189205527305603, -0.12599387764930725, 0.021451642736792564, 0.012926679104566574, 0.08811338245868683, -0.027820365503430367, -0.04852104187011719, 0.04043404757976532, -0.049057263880968094, -0.016929350793361664, 0.07192032784223557, -0.0933573767542839, 0.01777094602584839, -0.029673773795366287, -0.10587689280509949, -0.0680636614561081, -0.02384517900645733, -0.03166082873940468, 0.13468390703201294, -0.06939356029033661, 0.07466338574886322, 0.1476592868566513, -0.014553005807101727, 0.0588085800409317, -0.059883952140808105, 0.1510312259197235, -0.06878766417503357, 0.05774302780628204, 0.15962356328964233, -0.030364274978637695, 0.08530629426240921, 0.1572035700082779, 0.06263149529695511, -0.04066050052642822, -0.0023868808057159185, -0.03362858295440674, -0.12474752962589264, -0.19660784304141998, -0.0697396844625473, -0.12685009837150574, 0.02302149124443531, 0.04287123680114746, 0.08966881781816483, 0.16526280343532562, 0.09407474100589752, 0.04287980496883392, -0.01087277103215456, -0.03577753156423569, 0.03946389630436897, 0.18722166121006012, -0.018601473420858383, 0.12337721139192581, -0.07838964462280273, -0.11484363675117493, 0.08451300114393234, 0.045632489025592804, 0.1101735383272171, 0.10090001672506332, 0.05238986015319824, 0.0773264616727829, 0.17376409471035004, 0.1270107477903366, 0.13949361443519592, 0.007663336116820574, -0.0660000666975975, -0.015183841809630394, -0.03695305436849594, 0.03243646025657654, 0.024520205333828926, 0.10772578418254852, -0.11926686018705368, -0.005075410008430481, -0.13429562747478485, 0.038372404873371124, 0.11534973978996277, 0.04720686003565788, -0.22364333271980286, 0.010439694859087467, 0.03031943365931511, 0.0174347385764122, -0.03622252121567726, 0.03760194778442383, 0.016584085300564766, -0.07807716727256775, 0.08062586188316345, -0.07995389401912689, 0.06557261198759079, 0.08364320546388626, 0.0523969903588295, 0.04024733975529671, -0.05927639827132225, 0.018534529954195023, 0.05859406292438507, -0.2843514084815979, 0.26943978667259216, 0.005734692327678204, -0.009749889373779297, -0.08442938327789307, -0.0007600070675835013, 0.04705345258116722, 0.13548432290554047, 0.12592759728431702, 0.00609889579936862, -0.007765062619000673, -0.09729768335819244, 0.0016292663058266044, 0.017102504149079323, 0.07383349537849426, -0.0014241188764572144, -0.044510938227176666, -0.024098671972751617, -0.039664626121520996, 0.04348611459136009, 0.09811120480298996, -0.020762789994478226, -0.13261735439300537, 0.07837296277284622, 0.037222038954496384, -0.08101076632738113, -0.016996342688798904, -0.08355680853128433, -0.1735176295042038, 0.18523073196411133, -0.07291502505540848, -0.054997675120830536, -0.12542086839675903, -0.0970713347196579, 0.04815865308046341, -0.09687313437461853, 0.09246285259723663, -0.07136581838130951, -0.0062788850627839565, -0.08961890637874603, -0.2143491953611374, 0.16983802616596222, -0.1090315580368042, -0.014722436666488647, -0.08368920534849167, 0.1415511965751648, -0.08103509247303009, 0.040369126945734024, 0.021764209493994713, 0.005428778938949108, -0.03533907234668732, -0.06627489626407623, 0.031437959522008896, -0.0951862707734108, 0.037923865020275116, -0.0819331556558609, -0.07632962614297867, -0.02296336367726326, 0.04047537222504616, 0.013698230497539043, 0.20216776430606842, 0.21432144939899445, -0.08890010416507721, 0.15484727919101715, 0.14135883748531342, -0.045608438551425934, -0.33112218976020813, -0.07230377197265625, -0.1439296156167984, -0.03094819001853466, 0.053996291011571884, -0.10437527298927307, 0.08633778989315033, 0.002731358865275979, -0.05488645285367966, 0.16016747057437897, -0.18874981999397278, -0.11955872178077698, 0.21473811566829681, 0.06382240355014801, 0.34893858432769775, -0.13963256776332855, -0.06978922337293625, 0.015263380482792854, -0.1406836360692978, 0.1360769271850586, -0.05649590492248535, 0.08400820940732956, -0.0059631457552313805, 0.038971349596977234, 0.016605369746685028, -0.09076766669750214, 0.07275117188692093, -0.045200832188129425, 0.03749632090330124, -0.1076761782169342, -0.07335803657770157, 0.11701300740242004, 0.007011628709733486, 0.015072375535964966, -0.03919587656855583, -0.006066734436899424, -0.0007538761128671467, -0.01935345120728016, -0.09320537000894547, 0.1258956491947174, 0.010318802669644356, -0.09629780799150467, -0.007004220969974995, 0.013460511341691017, -0.023216115310788155, -0.0512828566133976, 0.19998949766159058, 0.006644388660788536, 0.16862227022647858, 0.1428353488445282, 0.050480328500270844, -0.16368533670902252, -0.08190765976905823, -0.06565111130475998, -0.0948239266872406, 0.07847484946250916, -0.03209199383854866, 0.03358845412731171, 0.1082337275147438, 0.0012170717818662524, 0.06926900893449783, 0.11079078167676926, -0.028668977320194244, -0.034785978496074677, 0.15452741086483002, -0.19276063144207, -0.053767893463373184, -0.01706700399518013, -0.04804166406393051, 0.07529013603925705, 0.0717235878109932, 0.0987415462732315, 0.005219887476414442, -0.002074840012937784, 0.03010326623916626, -0.019503887742757797, -0.0521213598549366, 0.056337885558605194, 0.08736760169267654, 0.025175537914037704, -0.1060529574751854, 0.01183305773884058, -0.013180495239794254, -0.19503723084926605, -0.014461289159953594, 0.07706989347934723, -0.105084128677845, -0.12143726646900177, 0.015695657581090927, 0.09053383767604828, -0.12038692831993103, -0.04449419677257538, -0.062353551387786865, -0.11710313707590103, 0.05190902575850487, 0.2596489191055298, 0.08148364722728729, 0.08370932936668396, -0.03134326636791229, -0.014060735702514648, -0.0031581767834722996, 0.0183771513402462, -0.04318659007549286, 0.045212361961603165, -0.10821980983018875, 0.07052752375602722, -0.0037078680470585823, 0.130361407995224, -0.10256794840097427, -0.013035998679697514, -0.1715957373380661, 0.01377752237021923, -0.06476103514432907, -0.054078858345746994, -0.08585169911384583, -0.05953547731041908, 0.025501050055027008, -0.07187066972255707, -0.05228153616189957, -0.018764330074191093, -0.11914519965648651, 0.023949971422553062, 0.06115100160241127, 0.018747739493846893, -0.09335387498140335, -0.04560798779129982, 0.07507569342851639, -0.0197403933852911, 0.08306875824928284, 0.06277607381343842, -0.0696975588798523, 0.09636179357767105, -0.16377489268779755, -0.0813072919845581, 0.09141694754362106, 0.022571520879864693, 0.0798228532075882, 0.07392983883619308, 0.026212872937321663, 0.05637917295098305, 0.012932902202010155, 0.048200447112321854, 0.0348760262131691, -0.11393570154905319, 0.046720027923583984, -0.016766080632805824, -0.14786210656166077, -0.037125520408153534, -0.059805795550346375, 0.08107645809650421, -0.008532273583114147, 0.12820002436637878, -0.057157065719366074, 0.04982364550232887, -0.09179696440696716, 0.004127511754631996, -0.009260923601686954, -0.13062259554862976, 0.007278878707438707, -0.03508729115128517, -0.008578311651945114, -0.032793011516332626, 0.20007170736789703, 0.027627794072031975, -0.07231328636407852, 0.06010417640209198, 0.04067311808466911, 0.004969275556504726, -0.01734492927789688, 0.21428298950195312, 0.02565912716090679, -0.023688971996307373, -0.11031421273946762, 0.07772670686244965, -0.005505889654159546, -0.05294041335582733, 0.1572788506746292, 0.056081317365169525, -0.04395667463541031, 0.06907039880752563, 0.07798046618700027, 0.014063484035432339, -0.10298991203308105, -0.14871904253959656, -0.031038297340273857, 0.08557137101888657, 0.005987907759845257, 0.04195145145058632, 0.16897132992744446, -0.034230172634124756, 0.04501798376441002, -0.03117891401052475, -0.0279061459004879, -0.18071246147155762, -0.20469951629638672, -0.06882156431674957, -0.05369691178202629, 0.04088897258043289, -0.0009472668170928955, -0.011157567612826824, 0.05774720013141632, 0.07020467519760132, -0.045165855437517166, 0.11143607646226883, -0.023971306160092354, -0.004648779518902302, 0.011422261595726013, 0.024000011384487152, -0.008724117651581764, -0.04644419252872467, -0.015553520061075687, -0.13942161202430725, -0.002426019636914134, -0.06905658543109894, -0.008928347378969193, -0.0165521539747715, 0.02528039738535881, -0.08092370629310608, -0.1005856916308403, -0.049335677176713943, 0.024236205965280533, -0.0064923414029181, 0.09237773716449738, 0.002849558601155877, 0.05111490190029144, 0.01679811254143715, 0.09358586370944977, -0.057772718369960785, -0.09981760382652283, -0.049005694687366486, 0.17324557900428772, 0.023949474096298218, 0.07182306796312332, 0.014945466071367264, 0.006195918191224337, -0.06098180636763573, 0.30249059200286865, 0.3469044864177704, -0.03808266296982765, 0.08033395558595657, 0.051928773522377014, 0.02099095657467842, 0.04556674510240555, 0.1599552035331726, 0.05090419203042984, 0.27988365292549133, -0.08272851258516312, -0.059645574539899826, -0.05298241600394249, -0.01057723630219698, -0.10239100456237793, 0.06692642718553543, 0.04122814163565636, -0.04126827418804169, -0.02968800812959671, 0.08277939260005951, -0.13316616415977478, 0.04857565835118294, 0.07880084216594696, -0.16538313031196594, -0.05034057796001434, -0.011462868191301823, 0.14783471822738647, -0.0059387218207120895, 0.08025451004505157, -0.05175161361694336, -0.04062572866678238, 0.01809123158454895, 0.02325623109936714, -0.23547117412090302, -0.008478145115077496, 0.08727499842643738, -0.026234259828925133, 0.12238636612892151, -0.03137990087270737, 0.05012649670243263, 0.09484101831912994, 0.08206134289503098, -0.02588672749698162, 0.05558106675744057, 0.03379372879862785, -0.11367221921682358, -0.03877917677164078, -0.050056714564561844, 0.008489195257425308, -0.11530286818742752, 0.02208052948117256, -0.1133914366364479, 0.04636648669838905, -0.09999290108680725, -0.049208883196115494, -0.03962942212820053, 0.07376360148191452, -0.06088261306285858, 0.07609622925519943, 0.05156353488564491, 0.028813716024160385, -0.03823691979050636, -0.06715565174818039, -0.02254488319158554, 0.09210313856601715, -0.1454339325428009, -0.1251361221075058, -0.052547965198755264, -0.03161723166704178, -0.023903479799628258, -0.011689016595482826, -0.1718713343143463, -0.055431485176086426, -0.10699035227298737, 0.005760776810348034, -0.179567351937294, 0.031031617894768715, 0.11115120351314545, 0.047211237251758575, 0.007794851437211037, -0.032577596604824066, 0.01433696411550045, 0.014782284386456013, -0.17444387078285217, -0.06873899698257446 ]
null
null
transformers
🚨 Notice: After re-checking this model again, it seems that the model is not working very well. E.g. MLM predictions are very likely to predict `[UNK]` token, which is actually not good. We will update this model soon. For now, please use the [`bigscience-historical-texts/bert-base-blbooks-cased`](https://huggingface.co/bigscience-historical-texts/bert-base-blbooks-cased) instead, as it was pretrained on the same corpus.
{"language": "en", "license": "mit", "widget": [{"text": "and I cannot conceive the reafon why [MASK] hath"}]}
fill-mask
dbmdz/bert-base-historic-english-cased
[ "transformers", "pytorch", "jax", "tensorboard", "safetensors", "bert", "fill-mask", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #en #license-mit #autotrain_compatible #endpoints_compatible #region-us
Notice: After re-checking this model again, it seems that the model is not working very well. E.g. MLM predictions are very likely to predict '[UNK]' token, which is actually not good. We will update this model soon. For now, please use the 'bigscience-historical-texts/bert-base-blbooks-cased' instead, as it was pretrained on the same corpus.
[]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 55 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #en #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06357963383197784, 0.04416026175022125, -0.007273771800100803, 0.0362987257540226, 0.08500707149505615, 0.01269509643316269, 0.16366735100746155, 0.08714278787374496, 0.10854307562112808, -0.004111272748559713, 0.15794263780117035, 0.2332368940114975, -0.009876171126961708, 0.10344479233026505, -0.05941719189286232, -0.22594933211803436, 0.04934931546449661, 0.05239808186888695, -0.04837993159890175, 0.11718830466270447, 0.06401555240154266, -0.08957511931657791, 0.050729092210531235, 0.007168694399297237, -0.1076980009675026, 0.0204435084015131, 0.08303739875555038, -0.11561193317174911, 0.13501831889152527, 0.02590383030474186, 0.20337516069412231, 0.06010933592915535, -0.017887616530060768, -0.09107348322868347, 0.04632583633065224, 0.017732886597514153, -0.08505672961473465, 0.05843787267804146, 0.0364188589155674, -0.05712759867310524, -0.03330783545970917, 0.032499752938747406, 0.05447933077812195, 0.047804515808820724, -0.12173481285572052, -0.19101226329803467, -0.041241686791181564, 0.051739826798439026, 0.07055249810218811, 0.045050669461488724, 0.02717537060379982, 0.22048325836658478, -0.09720751643180847, 0.08081714063882828, 0.12003070116043091, -0.3719193935394287, -0.006757120136171579, 0.0910382866859436, 0.11352323740720749, -0.034212153404951096, -0.06943153589963913, 0.0457155704498291, 0.039199668914079666, 0.013270460069179535, 0.10764279961585999, -0.059100162237882614, -0.017182867974042892, 0.013622044585645199, -0.07830870896577835, -0.023511312901973724, 0.11930250376462936, -0.038995757699012756, 0.031681131571531296, -0.05530000850558281, -0.09394295513629913, -0.03396616131067276, -0.026036636903882027, -0.027121445164084435, -0.01613118126988411, 0.048496756702661514, -0.04215778410434723, -0.014198867604136467, -0.14817047119140625, 0.011320176534354687, -0.1903955042362213, 0.18621063232421875, 0.01951727643609047, 0.06328967958688736, -0.18486759066581726, 0.054639145731925964, 0.010728524066507816, -0.1257254183292389, 0.055923137813806534, -0.06881802529096603, 0.04935339838266373, -0.019489001482725143, -0.010423894040286541, -0.0767328292131424, 0.09169863909482956, 0.17122651636600494, 0.024486279115080833, 0.025080889463424683, 0.0022494031582027674, 0.11646007746458054, -0.0229735616594553, 0.0643421933054924, 0.02520241215825081, 0.015151814557611942, 0.0631338432431221, -0.06832760572433472, 0.062244828790426254, -0.041934993118047714, -0.12146597355604172, -0.008856214582920074, 0.027703329920768738, 0.09654325246810913, 0.025681424885988235, 0.0689210370182991, -0.0823797956109047, 0.03815275430679321, 0.10786376893520355, -0.05997653305530548, 0.023641282692551613, -0.012837810441851616, 0.08844316750764847, 0.020471319556236267, 0.01628977432847023, -0.009221072308719158, 0.022822801023721695, 0.15329022705554962, -0.1022505834698677, -0.02536892332136631, -0.048262231051921844, -0.06866610795259476, 0.06550715118646622, -0.1208847388625145, 0.03741215541958809, -0.16868279874324799, -0.1313013881444931, 0.06021646037697792, 0.06419367343187332, 0.01931786723434925, -0.017156103625893593, 0.05222572013735771, -0.028588704764842987, 0.01753249019384384, -0.04768184572458267, -0.04144912213087082, -0.04887816682457924, 0.10247237980365753, -0.036634188145399094, 0.07230180501937866, -0.10224217921495438, 0.007662965916097164, -0.10088691860437393, 0.02158999815583229, -0.122444748878479, -0.09129178524017334, -0.056739166378974915, 0.1619042605161667, -0.00307621737010777, -0.020596805959939957, -0.09890753030776978, 0.03674488514661789, -0.009598663076758385, 0.14745411276817322, -0.11131645739078522, -0.09434925764799118, 0.23510430753231049, -0.13513626158237457, -0.16224627196788788, 0.09389673173427582, 0.0033346759155392647, 0.03679216653108597, 0.06018972024321556, 0.11603866517543793, 0.04116412252187729, -0.19194911420345306, 0.05436662957072258, 0.11732403934001923, -0.1474473923444748, -0.15761704742908478, 0.02509951964020729, -0.026311183348298073, -0.09251535683870316, 0.03530241176486015, 0.07724179327487946, 0.09534279257059097, -0.05387989804148674, -0.06890145689249039, -0.0313105545938015, -0.02891208790242672, 0.10640475153923035, 0.04928993061184883, 0.08203747123479843, -0.08985262364149094, -0.06639306992292404, -0.006443474907428026, -0.020210199058055878, 0.04389634728431702, 0.020541444420814514, -0.11679462343454361, 0.11787637323141098, -0.05136789754033089, -0.02765965275466442, -0.12986747920513153, -0.12428443878889084, -0.014818445779383183, 0.0025456836447119713, -0.03549642115831375, 0.10301877558231354, 0.12127302587032318, -0.014616822823882103, -0.01875634677708149, -0.02378939837217331, 0.13284547626972198, 0.04985865578055382, -0.039837125688791275, -0.14962603151798248, 0.023208782076835632, -0.09354647994041443, -0.009907696396112442, -0.04095982387661934, 0.02407715655863285, 0.04210161790251732, 0.12697476148605347, 0.011217649094760418, 0.03227078169584274, -0.06243770942091942, 0.0024792535696178675, -0.0276203416287899, -0.0016917525790631771, 0.09908489137887955, 0.02856813371181488, -0.0671112909913063, 0.1664602905511856, -0.15868228673934937, 0.36090537905693054, 0.1992374211549759, -0.16983158886432648, -0.025362256914377213, 0.010044198483228683, -0.031127315014600754, -0.0007160692475736141, 0.019852928817272186, -0.010831709019839764, -0.008089764043688774, 0.0009805964073166251, 0.14215493202209473, -0.0398545078933239, -0.05282105877995491, 0.04184499755501747, -0.06455313414335251, -0.06889189779758453, 0.020802870392799377, 0.12665212154388428, -0.15971305966377258, 0.18967784941196442, 0.2827411890029907, -0.015459774993360043, 0.15959137678146362, -0.027991294860839844, 0.011529847979545593, -0.012942896224558353, 0.00009152899292530492, 0.004115731455385685, 0.11486215144395828, -0.16147483885288239, -0.005443362519145012, 0.05151417851448059, -0.048392731696367264, 0.02887892723083496, -0.15782564878463745, -0.06486787647008896, -0.0008918087114579976, 0.037282757461071014, -0.02992927096784115, 0.11250949651002884, 0.010279037989675999, 0.08199111372232437, -0.04657960310578346, -0.12348925322294235, 0.10997560620307922, -0.0054166740737855434, -0.055928003042936325, 0.1559029370546341, -0.10792895406484604, -0.27733832597732544, -0.12275099009275436, -0.12015373259782791, 0.048460885882377625, 0.006742804776877165, 0.07822621613740921, -0.05340396240353584, -0.05568621680140495, 0.03421024978160858, -0.04930942505598068, -0.007183073554188013, 0.06660091131925583, -0.07441141456365585, 0.0276553463190794, -0.017781207337975502, -0.08992716670036316, -0.06607323884963989, -0.03924563527107239, -0.03349098563194275, 0.11869535595178604, -0.020088685676455498, 0.05205914378166199, 0.12016767263412476, -0.0026630812790244818, 0.031626030802726746, -0.0437479205429554, 0.14182688295841217, -0.05726718530058861, 0.0174572691321373, 0.15228994190692902, -0.0470881462097168, 0.0963379293680191, 0.1902734786272049, 0.06754507124423981, -0.03968431428074837, -0.008564762771129608, -0.03857547044754028, -0.11036766320466995, -0.18558640778064728, -0.06811164319515228, -0.10293558239936829, 0.017236031591892242, 0.0506926067173481, 0.07796891778707504, 0.13543130457401276, 0.1003708466887474, 0.029179943725466728, -0.047648172825574875, -0.02841532789170742, 0.0536525622010231, 0.13685093820095062, -0.022751780226826668, 0.12745113670825958, -0.05243319272994995, -0.14151531457901, 0.0391109436750412, 0.040494926273822784, 0.0731588676571846, 0.11843390017747879, 0.017722895368933678, 0.07273824512958527, 0.20645248889923096, 0.15188521146774292, 0.13177618384361267, 0.003941067028790712, -0.0861406996846199, 0.004413537681102753, -0.034953709691762924, 0.002834457904100418, 0.021887492388486862, 0.08337042480707169, -0.055651914328336716, -0.011639488860964775, -0.13307639956474304, 0.04137316718697548, 0.10058068484067917, 0.05324067175388336, -0.24577687680721283, 0.015576052479445934, 0.06968480348587036, 0.018700743094086647, -0.049088042229413986, 0.04985438659787178, 0.015511707402765751, -0.0682995617389679, 0.06399346888065338, -0.09937611222267151, 0.059225864708423615, 0.06402944028377533, 0.06453178822994232, -0.0005237808800302446, -0.04265730082988739, 0.01036942657083273, 0.0483875572681427, -0.24259068071842194, 0.2528129816055298, 0.009800615720450878, 0.022083112969994545, -0.0669383704662323, 0.011411432176828384, 0.033359136432409286, 0.12078159302473068, 0.16348667442798615, 0.003479299833998084, -0.04889138787984848, -0.08386821299791336, -0.027272293344140053, 0.02734636887907982, 0.05853172764182091, -0.009947889484465122, -0.025339817628264427, -0.028916483744978905, -0.037741769105196, 0.03235979378223419, 0.04776323214173317, -0.04180528223514557, -0.1359785497188568, 0.055781878530979156, 0.0558345764875412, -0.037296973168849945, -0.04586891829967499, -0.07395175099372864, -0.1511903554201126, 0.19081339240074158, -0.08121585100889206, -0.04549212381243706, -0.10691075772047043, -0.1266229897737503, 0.05221056938171387, -0.0771704837679863, 0.08362652361392975, -0.07088416069746017, 0.015300318598747253, -0.10302268713712692, -0.16105179488658905, 0.16063159704208374, -0.13318687677383423, -0.026222331449389458, -0.11398971080780029, 0.15847662091255188, -0.06510274857282639, 0.019937345758080482, 0.023548657074570656, 0.028031429275870323, -0.055707741528749466, -0.056088887155056, 0.03355936333537102, -0.05802454426884651, 0.059564802795648575, -0.067842036485672, -0.06551468372344971, -0.07546316087245941, 0.03200118988752365, 0.015513197518885136, 0.1833188682794571, 0.27343815565109253, -0.07514744997024536, 0.139654740691185, 0.1925148367881775, -0.03875972330570221, -0.32694748044013977, -0.10496734827756882, -0.15709419548511505, -0.0190112441778183, 0.07184940576553345, -0.06150704249739647, 0.10250221192836761, 0.007354458328336477, -0.084912970662117, 0.13537247478961945, -0.18891137838363647, -0.11099117249250412, 0.22476589679718018, 0.0712931677699089, 0.3889031410217285, -0.14316333830356598, -0.07079913467168808, 0.00376050709746778, -0.11354570835828781, 0.10555583983659744, -0.05364134907722473, 0.05963348224759102, -0.005107896868139505, 0.013901076279580593, 0.020230596885085106, -0.11215802282094955, 0.10354182869195938, -0.07346910983324051, 0.04817589744925499, -0.09853760898113251, -0.07437587529420853, 0.11746165156364441, -0.0021094062831252813, -0.0030077937990427017, -0.08748302608728409, -0.00776673574000597, 0.00635985191911459, -0.021949240937829018, -0.07813567668199539, 0.13817347586154938, -0.00012953049736097455, -0.08664733916521072, 0.02365995943546295, 0.005135178565979004, -0.03252754360437393, -0.044410016387701035, 0.24458946287631989, 0.0196524728089571, 0.22359175980091095, 0.12936262786388397, 0.058032188564538956, -0.14435279369354248, -0.08303273469209671, -0.037752337753772736, -0.09903694689273834, 0.08932293951511383, -0.013998403213918209, 0.03690456598997116, 0.09015966206789017, 0.009358986280858517, 0.05959872528910637, 0.10811720043420792, -0.020682567730545998, -0.03414340689778328, 0.1571417599916458, -0.2018885761499405, -0.052340973168611526, 0.009733128361403942, 0.03006415069103241, 0.036200884729623795, 0.09185266494750977, 0.08324716240167618, 0.00837450660765171, -0.019705727696418762, 0.010163374245166779, 0.012341988272964954, -0.0435212142765522, 0.03808226436376572, 0.06961125880479813, 0.046386536210775375, -0.09873227775096893, 0.00903214979916811, -0.018802417442202568, -0.20841355621814728, -0.023207444697618484, 0.06399031728506088, -0.1029278039932251, -0.10875013470649719, 0.021340252831578255, 0.11522848159074783, -0.0362098403275013, -0.056466586887836456, -0.06740019470453262, -0.1296987682580948, 0.029580704867839813, 0.22950731217861176, 0.08420679718255997, 0.08180615305900574, -0.00212405645288527, -0.015883157029747963, -0.031808000057935715, 0.03955797478556633, -0.042550958693027496, 0.036003634333610535, -0.12272360920906067, 0.010133461095392704, 0.009997655637562275, 0.08798736333847046, -0.09448116272687912, -0.005773879121989012, -0.17543765902519226, 0.017882592976093292, -0.034622643142938614, -0.04939392954111099, -0.1154937818646431, -0.06042744219303131, 0.018928928300738335, -0.06379815936088562, -0.05143722891807556, -0.032179392874240875, -0.10214992612600327, 0.026079513132572174, 0.05732308328151703, 0.018075603991746902, -0.09801927953958511, -0.03960283100605011, 0.08773364126682281, -0.03794870898127556, 0.07748691737651825, 0.0678698867559433, -0.05068324878811836, 0.09763733297586441, -0.1891028881072998, -0.06878392398357391, 0.09360197186470032, -0.002904762513935566, 0.05918241664767265, 0.06229094788432121, 0.010789794847369194, 0.06426828354597092, 0.017979200929403305, 0.04701625928282738, 0.018682915717363358, -0.12335624545812607, 0.06722599267959595, 0.035929106175899506, -0.1525404453277588, -0.03178991749882698, -0.09013422578573227, 0.08674131333827972, -0.046920742839574814, 0.16677342355251312, -0.05403118208050728, 0.052203238010406494, -0.09483359754085541, 0.020739175379276276, -0.020995739847421646, -0.13224847614765167, -0.024628037586808205, -0.02309376187622547, -0.01311187818646431, -0.02592545375227928, 0.2139275223016739, 0.020624596625566483, -0.07590018957853317, 0.06486779451370239, 0.0403849259018898, 0.008244701661169529, 0.007340037263929844, 0.2016836553812027, 0.03301567584276199, -0.04342440888285637, -0.0969504565000534, 0.054210565984249115, 0.008978467434644699, -0.0884128138422966, 0.11444550007581711, 0.09159162640571594, 0.0039588878862559795, 0.07890953123569489, 0.06033860146999359, 0.016702698543667793, -0.10013801604509354, -0.1344558596611023, -0.043388593941926956, 0.04591689258813858, 0.023089714348316193, 0.04733617603778839, 0.1965356022119522, -0.004590844735503197, 0.02294895052909851, -0.051196902990341187, -0.020215697586536407, -0.19551357626914978, -0.17872309684753418, -0.07584331184625626, -0.04207252338528633, 0.04485052824020386, 0.00014350614219438285, -0.01811668463051319, 0.07259388267993927, 0.04439481720328331, -0.03152700513601303, 0.1009894534945488, 0.030198784545063972, 0.010843431577086449, -0.0000218834920815425, 0.030214136466383934, 0.0024417233653366566, -0.039238061755895615, -0.007921474054455757, -0.1448175609111786, -0.024258123710751534, -0.062484804540872574, -0.015666423365473747, -0.041089024394750595, 0.03532031178474426, -0.0725335106253624, -0.11463896185159683, -0.04509016126394272, 0.029223227873444557, -0.01456448994576931, 0.06786336749792099, 0.0006070724339224398, 0.048283521085977554, 0.021793154999613762, 0.12909866869449615, -0.05120810121297836, -0.09721840918064117, -0.03210452198982239, 0.17701241374015808, 0.01185791939496994, 0.08624467998743057, 0.013800588436424732, 0.02206527628004551, -0.02864238992333412, 0.24983695149421692, 0.3255981206893921, -0.014965823851525784, 0.08990848809480667, 0.02475915290415287, 0.012800599448382854, 0.0018431865610182285, 0.10450667142868042, 0.0587494894862175, 0.29603371024131775, -0.10048644989728928, -0.014799602329730988, -0.04430117830634117, -0.02271808125078678, -0.11379837244749069, 0.022303162142634392, 0.01096273772418499, -0.016399074345827103, -0.04403850436210632, 0.07953173667192459, -0.12496073544025421, 0.06965024024248123, 0.08787734806537628, -0.1686658263206482, -0.0506553128361702, -0.0024112847167998552, 0.21353980898857117, -0.0120114516466856, 0.07958746701478958, -0.03695142641663551, -0.05622292309999466, 0.007658248767256737, 0.0030996412970125675, -0.19058111310005188, -0.033789366483688354, 0.07648404687643051, 0.008486080914735794, 0.15723367035388947, -0.020028548315167427, 0.045548394322395325, 0.09726200997829437, 0.04900163784623146, -0.04612848535180092, 0.04713185504078865, 0.039377517998218536, -0.11464125663042068, -0.03791426122188568, -0.05375576764345169, 0.01399106252938509, -0.0697578638792038, 0.021707287058234215, -0.11637066304683685, 0.05236086621880531, -0.14021466672420502, -0.06160830706357956, -0.03569510951638222, 0.0791899785399437, -0.028123142197728157, 0.07131034135818481, 0.02101096883416176, 0.02381461299955845, -0.037364378571510315, -0.03423060476779938, -0.004234993830323219, 0.07683389633893967, -0.11343815177679062, -0.11224411427974701, -0.0940643697977066, -0.015069068409502506, 0.036211930215358734, -0.009945334866642952, -0.18212677538394928, -0.06349700689315796, -0.09080420434474945, -0.002229458885267377, -0.18334639072418213, -0.005613410845398903, 0.12346287071704865, 0.055603817105293274, -0.0015299151418730617, -0.054562631994485855, 0.023288439959287643, 0.033847250044345856, -0.15259726345539093, -0.08916255086660385 ]
null
null
transformers
# hmBERT: Historical Multilingual Language Models for Named Entity Recognition More information about our hmBERT model can be found in our new paper: ["hmBERT: Historical Multilingual Language Models for Named Entity Recognition"](https://arxiv.org/abs/2205.15575). ## Languages Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: | Language | Training data | Size | -------- | ------------- | ---- | German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered) | French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered) | English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered) | Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB | Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB ## Smaller Models We have also released smaller models for the multilingual model: | Model identifier | Model Hub link | ----------------------------------------------- | --------------------------------------------------------------------------- | `dbmdz/bert-tiny-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-tiny-historic-multilingual-cased) | `dbmdz/bert-mini-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-mini-historic-multilingual-cased) | `dbmdz/bert-small-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-small-historic-multilingual-cased) | `dbmdz/bert-medium-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) # Corpora Stats ## German Europeana Corpus We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: | OCR confidence | Size | -------------- | ---- | **0.60** | 28GB | 0.65 | 18GB | 0.70 | 13GB For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: ![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png) ## French Europeana Corpus Like German, we use different ocr confidence thresholds: | OCR confidence | Size | -------------- | ---- | 0.60 | 31GB | 0.65 | 27GB | **0.70** | 27GB | 0.75 | 23GB | 0.80 | 11GB For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: ![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png) ## British Library Corpus Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering: | Years | Size | ----------------- | ---- | ALL | 24GB | >= 1800 && < 1900 | 24GB We use the year filtered variant. The following plot shows a tokens per year distribution: ![British Library Corpus Stats](stats/figures/bl_corpus_stats.png) ## Finnish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.2GB The following plot shows a tokens per year distribution: ![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png) ## Swedish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.1GB The following plot shows a tokens per year distribution: ![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png) ## All Corpora The following plot shows a tokens per year distribution of the complete training corpus: ![All Corpora Stats](stats/figures/all_corpus_stats.png) # Multilingual Vocab generation For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: | Language | Size | -------- | ---- | German | 10GB | French | 10GB | English | 10GB | Finnish | 9.5GB | Swedish | 9.7GB We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora: | Language | NER corpora | -------- | ------------------ | German | CLEF-HIPE, NewsEye | French | CLEF-HIPE, NewsEye | English | CLEF-HIPE | Finnish | NewsEye | Swedish | NewsEye Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.43 | 0.0004 | French | 1.25 | 0.0001 | English | 1.25 | 0.0 | Finnish | 1.69 | 0.0007 | Swedish | 1.43 | 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.31 | 0.0004 | French | 1.16 | 0.0001 | English | 1.17 | 0.0 | Finnish | 1.54 | 0.0007 | Swedish | 1.32 | 0.0 # Final pretraining corpora We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: | Language | Size | -------- | ---- | German | 28GB | French | 27GB | English | 24GB | Finnish | 27GB | Swedish | 27GB Total size is 130GB. # Pretraining ## Multilingual model We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: ```bash python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \ --output_dir gs://histolectra/bert-base-historic-multilingual-cased \ --bert_config_file ./config.json \ --max_seq_length=512 \ --max_predictions_per_seq=75 \ --do_train=True \ --train_batch_size=128 \ --num_train_steps=3000000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=100000 \ --keep_checkpoint_max=20 \ --use_tpu=True \ --tpu_name=electra-2 \ --num_tpu_cores=32 ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png) # Acknowledgments Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "multilingual", "license": "mit", "widget": [{"text": "and I cannot conceive the reafon why [MASK] hath"}, {"text": "T\u00e4k\u00e4l\u00e4inen sanomalehdist\u00f6 [MASK] erit - t\u00e4in"}, {"text": "Det vore [MASK] h\u00e4ller n\u00f6dv\u00e4ndigt att be"}, {"text": "Comme, \u00e0 cette \u00e9poque [MASK] \u00e9tait celle de la"}, {"text": "In [MASK] an atmosph\u00e4rischen Nahrungsmitteln"}]}
fill-mask
dbmdz/bert-base-historic-multilingual-cased
[ "transformers", "pytorch", "jax", "tensorboard", "safetensors", "bert", "fill-mask", "multilingual", "arxiv:2205.15575", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2205.15575" ]
[ "multilingual" ]
TAGS #transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #multilingual #arxiv-2205.15575 #license-mit #autotrain_compatible #endpoints_compatible #region-us
hmBERT: Historical Multilingual Language Models for Named Entity Recognition ============================================================================ More information about our hmBERT model can be found in our new paper: "hmBERT: Historical Multilingual Language Models for Named Entity Recognition". Languages --------- Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: Language: German, Training data: Europeana, Size: 13-28GB (filtered) Language: French, Training data: Europeana, Size: 11-31GB (filtered) Language: English, Training data: British Library, Size: 24GB (year filtered) Language: Finnish, Training data: Europeana, Size: 1.2GB Language: Swedish, Training data: Europeana, Size: 1.1GB Smaller Models -------------- We have also released smaller models for the multilingual model: Corpora Stats ============= German Europeana Corpus ----------------------- We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: !German Europeana Corpus Stats French Europeana Corpus ----------------------- Like German, we use different ocr confidence thresholds: For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: !French Europeana Corpus Stats British Library Corpus ---------------------- Metadata is taken from here. Stats incl. year filtering: We use the year filtered variant. The following plot shows a tokens per year distribution: !British Library Corpus Stats Finnish Europeana Corpus ------------------------ The following plot shows a tokens per year distribution: !Finnish Europeana Corpus Stats Swedish Europeana Corpus ------------------------ The following plot shows a tokens per year distribution: !Swedish Europeana Corpus Stats All Corpora ----------- The following plot shows a tokens per year distribution of the complete training corpus: !All Corpora Stats Multilingual Vocab generation ============================= For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: We then calculate the subword fertility rate and portion of '[UNK]'s over the following NER corpora: Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: Language: German, Subword fertility: 1.43, Unknown portion: 0.0004 Language: French, Subword fertility: 1.25, Unknown portion: 0.0001 Language: English, Subword fertility: 1.25, Unknown portion: 0.0 Language: Finnish, Subword fertility: 1.69, Unknown portion: 0.0007 Language: Swedish, Subword fertility: 1.43, Unknown portion: 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: Language: German, Subword fertility: 1.31, Unknown portion: 0.0004 Language: French, Subword fertility: 1.16, Unknown portion: 0.0001 Language: English, Subword fertility: 1.17, Unknown portion: 0.0 Language: Finnish, Subword fertility: 1.54, Unknown portion: 0.0007 Language: Swedish, Subword fertility: 1.32, Unknown portion: 0.0 Final pretraining corpora ========================= We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: Total size is 130GB. Pretraining =========== Multilingual model ------------------ We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: The following plot shows the pretraining loss curve: !Training loss curve Acknowledgments =============== Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #multilingual #arxiv-2205.15575 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 66 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #bert #fill-mask #multilingual #arxiv-2205.15575 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.0823097750544548, 0.05790502578020096, -0.006636320613324642, 0.06099153310060501, 0.09956224262714386, 0.023819655179977417, 0.19313327968120575, 0.08569980412721634, 0.06811918318271637, -0.0015144911594688892, 0.1546626091003418, 0.19708751142024994, 0.013128778897225857, 0.1097177267074585, -0.04369549825787544, -0.2446916550397873, 0.026008201763033867, 0.03700700402259827, -0.011212470941245556, 0.10445897281169891, 0.0719655379652977, -0.06317144632339478, 0.054567936807870865, 0.0067375474609434605, -0.1341913342475891, 0.03229576349258423, 0.07903192192316055, -0.10803600400686264, 0.13143299520015717, 0.06167119741439819, 0.17132171988487244, 0.05929442122578621, 0.015401937067508698, -0.08354055881500244, 0.03285898640751839, -0.0037636314518749714, -0.09320957213640213, 0.06075868010520935, 0.0436616986989975, -0.046670958399772644, 0.012159516103565693, 0.020138537511229515, 0.028187815099954605, 0.049017444252967834, -0.1103290319442749, -0.1862621307373047, -0.04434879496693611, 0.0897732675075531, 0.05419132485985756, 0.051457714289426804, 0.039155106991529465, 0.1922122687101364, -0.05298163369297981, 0.09161100536584854, 0.11126381158828735, -0.39431267976760864, -0.02636214904487133, 0.07566256076097488, 0.10112117975950241, -0.013177336193621159, -0.06443915516138077, 0.05502620339393616, 0.05430302023887634, 0.007900514639914036, 0.047371845692396164, -0.08577393740415573, -0.03999917581677437, -0.007368037477135658, -0.05858180299401283, 0.008521108888089657, 0.14342151582241058, -0.031113488599658012, 0.018170537427067757, -0.029211916029453278, -0.06111035495996475, -0.018521828576922417, -0.032530128955841064, -0.0064179482869803905, -0.007589308079332113, 0.03514757752418518, -0.02639186754822731, -0.029046079143881798, -0.15068760514259338, 0.011352011002600193, -0.21657705307006836, 0.17208509147167206, 0.0225558839738369, 0.06192130222916603, -0.15734176337718964, 0.02224610559642315, -0.025830954313278198, -0.11857711523771286, 0.04744774475693703, -0.0700143575668335, 0.055033981800079346, 0.008612201549112797, 0.0013073342852294445, -0.09181150048971176, 0.08522069454193115, 0.10944078862667084, 0.011590898036956787, 0.05562623590230942, -0.035457149147987366, 0.11585676670074463, -0.03795881196856499, 0.07129351049661636, 0.03307754546403885, 0.008099176920950413, 0.05606018006801605, -0.05678681284189224, 0.08083248883485794, -0.045624613761901855, -0.16690461337566376, -0.019869256764650345, -0.010688806883990765, 0.10839521884918213, 0.00806925818324089, 0.05927632376551628, -0.06243729591369629, 0.04153851792216301, 0.09690383821725845, -0.07095812261104584, 0.03900526091456413, -0.01643122360110283, 0.0871308222413063, 0.021517900750041008, 0.00570395914837718, -0.017750661820173264, -0.009999481029808521, 0.13257572054862976, -0.07964871823787689, 0.01482078991830349, -0.04658176749944687, -0.08276661485433578, 0.06254231929779053, -0.075386643409729, 0.010749723762273788, -0.17494089901447296, -0.09682101756334305, 0.04927024990320206, 0.05150815099477768, -0.0030010316986590624, -0.015116827562451363, 0.031151873990893364, -0.009005299769341946, 0.057897232472896576, -0.052273984998464584, -0.04914962872862816, -0.04915444180369377, 0.0853695496916771, -0.013376877643167973, 0.07866884768009186, -0.14135125279426575, 0.009380475617945194, -0.0740126371383667, 0.0036055368836969137, -0.09193668514490128, -0.07407159358263016, -0.07040979713201523, 0.12744879722595215, -0.004837007261812687, -0.03475218638777733, -0.08053938299417496, 0.05039840191602707, 0.000865467416588217, 0.12240827828645706, -0.14962947368621826, -0.09177267551422119, 0.2519482374191284, -0.12997038662433624, -0.14584636688232422, 0.09893272817134857, 0.018316252157092094, 0.003795360680669546, 0.057646043598651886, 0.12372151762247086, 0.02931125834584236, -0.19650530815124512, 0.06619974225759506, 0.12469487637281418, -0.12166828662157059, -0.1611107736825943, 0.034949056804180145, -0.04414360970258713, -0.10027296841144562, 0.03479667007923126, 0.05699922889471054, 0.10149049013853073, -0.0378020815551281, -0.06728476285934448, -0.01569770835340023, -0.022080453112721443, 0.0918770283460617, 0.055689312517642975, 0.10018908977508545, -0.10530547797679901, -0.055635519325733185, -0.014568322338163853, -0.004978138487786055, 0.04771789163351059, 0.022527961060404778, -0.1048518642783165, 0.0879087820649147, -0.024638956412672997, -0.02472671866416931, -0.11138774454593658, -0.0885668396949768, -0.021024487912654877, 0.022230662405490875, 0.015842288732528687, 0.09405045956373215, 0.09454784542322159, 0.003636805107817054, -0.04652799293398857, -0.009574810974299908, 0.13900986313819885, 0.036444682627916336, -0.03530682995915413, -0.15237949788570404, 0.055762577801942825, -0.07942195981740952, -0.029039492830634117, -0.06380970776081085, 0.006630769930779934, 0.008025133050978184, 0.09119979292154312, -0.0003768188471440226, 0.04938090592622757, -0.06642645597457886, 0.028000086545944214, -0.041347961872816086, -0.0002896309888456017, 0.11195854097604752, 0.028341474011540413, -0.05964602157473564, 0.20312438905239105, -0.1508716642856598, 0.3598484694957733, 0.19898581504821777, -0.147178053855896, -0.03275984525680542, -0.0064641693606972694, -0.004409892950206995, -0.0049659074284136295, 0.0314810685813427, 0.010812222957611084, -0.018306249752640724, -0.008243700489401817, 0.16372233629226685, -0.046206969767808914, -0.0007885053637437522, 0.03678332269191742, -0.06300795078277588, -0.08331473171710968, 0.043726012110710144, 0.11375606060028076, -0.19519634544849396, 0.17982898652553558, 0.2574077844619751, -0.03530215844511986, 0.18825730681419373, -0.00846032239496708, 0.029514918103814125, -0.031183777377009392, 0.009608425199985504, 0.01762893982231617, 0.1081266924738884, -0.1290562003850937, -0.02863195352256298, 0.029381489381194115, -0.03401791304349899, 0.016477666795253754, -0.16076162457466125, -0.07582532614469528, -0.012121587991714478, 0.01517993863672018, -0.051128875464200974, 0.1014229878783226, -0.00010902881331276149, 0.08642612397670746, -0.04847249388694763, -0.12405025213956833, 0.10540713369846344, -0.004332376178354025, -0.0601578913629055, 0.1517118662595749, -0.13753533363342285, -0.29682374000549316, -0.15416690707206726, -0.15210290253162384, 0.004919049795717001, 0.012267686426639557, 0.0900065153837204, -0.06289798766374588, -0.04351791739463806, 0.025942601263523102, -0.060434628278017044, -0.04791809618473053, 0.03322882950305939, -0.0625816136598587, 0.040245991200208664, -0.01673058234155178, -0.10051329433917999, -0.05628063902258873, -0.029031366109848022, -0.028986124321818352, 0.10388915985822678, -0.03359301760792732, 0.05456529185175896, 0.10385430604219437, -0.012633966282010078, 0.03577280044555664, -0.048496734350919724, 0.09516839683055878, -0.041565317660570145, -0.019655855372548103, 0.13744179904460907, -0.017575904726982117, 0.09585645794868469, 0.18650208413600922, 0.09325810521841049, -0.03585582971572876, -0.01020081341266632, -0.03737522289156914, -0.0919945016503334, -0.19774144887924194, -0.0624849870800972, -0.11299531161785126, 0.025966079905629158, 0.052867136895656586, 0.07927843183279037, 0.10862018167972565, 0.07611705362796783, 0.01867404580116272, -0.005225392058491707, -0.019688041880726814, 0.06126420199871063, 0.17951133847236633, -0.025083579123020172, 0.13155874609947205, -0.07494182139635086, -0.12655720114707947, 0.055291056632995605, 0.04057585448026657, 0.08905220031738281, 0.12169335037469864, 0.014333452098071575, 0.06075248122215271, 0.18867285549640656, 0.15151117742061615, 0.11633772403001785, 0.023404497653245926, -0.08248443901538849, 0.0058561405166983604, -0.03596949577331543, 0.01877695880830288, 0.02382487989962101, 0.09516255557537079, -0.06301935762166977, -0.011067550629377365, -0.11097242683172226, 0.017009306699037552, 0.07973726838827133, 0.04449085146188736, -0.2155783772468567, 0.03293254226446152, 0.06517577171325684, 0.018473243340849876, -0.07829786092042923, 0.050834763795137405, 0.025472352281212807, -0.07665788382291794, 0.10588165372610092, -0.0842880830168724, 0.06157334893941879, 0.04848099127411842, 0.04508316144347191, -0.030916715040802956, -0.042473506182432175, 0.008123599924147129, 0.07417656481266022, -0.2999246120452881, 0.2691495716571808, 0.021175049245357513, 0.02403510920703411, -0.050757743418216705, 0.012907467782497406, 0.04083941876888275, 0.13900958001613617, 0.15183265507221222, 0.011170370504260063, -0.06824567168951035, -0.09849053621292114, -0.011029498651623726, 0.014478215016424656, 0.06890648603439331, 0.04648886248469353, -0.05544966459274292, -0.02412305399775505, -0.047632064670324326, 0.014347651973366737, 0.03639540448784828, -0.08607098460197449, -0.16297610104084015, 0.06993823498487473, 0.06533243507146835, -0.05339745804667473, -0.03637458756566048, -0.09691119194030762, -0.15562476217746735, 0.18502561748027802, -0.10336539149284363, -0.04134215787053108, -0.09236238896846771, -0.1205802783370018, 0.04302180930972099, -0.09501826763153076, 0.06748206168413162, -0.07274140417575836, 0.002932552248239517, -0.1019124835729599, -0.14055649936199188, 0.15416888892650604, -0.12054535001516342, -0.012602653354406357, -0.1131914034485817, 0.15362319350242615, -0.07716233283281326, 0.027700170874595642, 0.015382721088826656, 0.015767376869916916, -0.04302481934428215, -0.07428242266178131, 0.03161557391285896, -0.05401964485645294, 0.058721840381622314, -0.06625401973724365, -0.07434594631195068, -0.12997329235076904, 0.019691871479153633, -0.02183680050075054, 0.1930406242609024, 0.2610369324684143, -0.0720079094171524, 0.1316002458333969, 0.18842941522598267, -0.05806836485862732, -0.307975172996521, -0.12421556562185287, -0.12668801844120026, 0.004040117841213942, 0.046930208802223206, -0.07307977974414825, 0.056487563997507095, 0.017135322093963623, -0.08280806243419647, 0.132241353392601, -0.17844589054584503, -0.12603910267353058, 0.19210509955883026, 0.05493321269750595, 0.36136770248413086, -0.15195493400096893, -0.08625582605600357, -0.035814423114061356, -0.10665323585271835, 0.11488444358110428, -0.021982135251164436, 0.08035952597856522, -0.016994774341583252, -0.0010441035265102983, 0.009420539252460003, -0.08691398054361343, 0.10597757250070572, -0.08588308840990067, 0.03763715177774429, -0.11208361387252808, -0.09313295781612396, 0.12193392217159271, 0.008575495332479477, 0.015680016949772835, -0.11985526978969574, -0.02226695604622364, 0.0004803585179615766, -0.02241409569978714, -0.07323019951581955, 0.11541949957609177, -0.009508136659860611, -0.05538982152938843, 0.02525760792195797, 0.006923083681613207, -0.0524129718542099, -0.04590878635644913, 0.2469356209039688, 0.011950482614338398, 0.1846553087234497, 0.13151277601718903, 0.07671378552913666, -0.12474516779184341, -0.04706772044301033, -0.049177974462509155, -0.09656751900911331, 0.07903357595205307, -0.025003256276249886, 0.03039538487792015, 0.07878779619932175, 0.00804413203150034, 0.07366173714399338, 0.08858069032430649, -0.01918298937380314, -0.012282870709896088, 0.16590847074985504, -0.15542800724506378, -0.06622137874364853, 0.007854224182665348, 0.05897738039493561, 0.06169126555323601, 0.08850936591625214, 0.09382573515176773, 0.002650872338563204, -0.018738912418484688, 0.00392485223710537, 0.006007175426930189, -0.04134998843073845, 0.047008901834487915, 0.08177684992551804, 0.030028769746422768, -0.09630760550498962, 0.01578272320330143, 0.0006553177372552454, -0.1870809644460678, -0.01480336394160986, 0.11116770654916763, -0.09362344443798065, -0.1133498102426529, 0.022044699639081955, 0.1168300062417984, -0.06749109923839569, -0.08679737150669098, -0.05352763086557388, -0.11869363486766815, 0.017807377502322197, 0.19899964332580566, 0.05846136063337326, 0.05090707913041115, -0.02197154238820076, -0.0358995757997036, -0.005240346770733595, 0.03696352243423462, -0.04101162776350975, 0.05568557232618332, -0.12135985493659973, 0.020278358832001686, 0.024764513596892357, 0.09829960763454437, -0.08362411707639694, -0.001958719687536359, -0.16354937851428986, 0.01695983298122883, -0.045107465237379074, -0.01372463908046484, -0.11428222060203552, -0.04309731349349022, 0.011395846493542194, -0.07010412216186523, -0.04915269464254379, -0.02136748656630516, -0.09546293318271637, 0.02577688731253147, 0.0396021343767643, 0.03564830496907234, -0.08985976874828339, -0.03592415526509285, 0.05990740284323692, -0.006086535751819611, 0.07575073838233948, 0.06405424326658249, -0.04383125901222229, 0.10475477576255798, -0.19564993679523468, -0.055137962102890015, 0.07670191675424576, 0.016814228147268295, 0.0503503680229187, 0.052880093455314636, 0.015235590748488903, 0.08211789280176163, 0.045746006071567535, 0.04441463574767113, 0.05901201814413071, -0.11917092651128769, 0.038339316844940186, 0.006518456619232893, -0.17165520787239075, -0.02501850016415119, -0.032127149403095245, 0.08095463365316391, -0.035001467913389206, 0.15364885330200195, -0.07550553977489471, 0.03224492818117142, -0.07278675585985184, 0.02365794964134693, -0.024394411593675613, -0.13694614171981812, -0.03510136157274246, -0.04503714665770531, -0.004032884258776903, -0.01505502313375473, 0.1947014182806015, 0.030312374234199524, -0.06509219110012054, 0.04797405004501343, 0.027227722108364105, -0.027990641072392464, -0.001111253397539258, 0.18369223177433014, 0.013918446376919746, -0.027518048882484436, -0.09868036210536957, 0.045587316155433655, -0.0030596647411584854, -0.027028312906622887, 0.09712241590023041, 0.08156155794858932, 0.024568980559706688, 0.07787880301475525, 0.08540824800729752, 0.005852408707141876, -0.0964561179280281, -0.1207006424665451, -0.033920932561159134, 0.04221361130475998, -0.002577058970928192, 0.07345979660749435, 0.18436534702777863, 0.0010497384937480092, 0.01611323468387127, -0.0601617805659771, -0.040563106536865234, -0.18805567920207977, -0.18139638006687164, -0.07701943069696426, -0.06631428748369217, 0.044801030308008194, 0.002185764955356717, 0.037700507789850235, 0.05247354134917259, 0.06265774369239807, -0.044014427810907364, 0.058762501925230026, 0.01659538969397545, -0.022813089191913605, 0.018749644979834557, 0.02195526286959648, 0.02783309482038021, -0.024012204259634018, 0.005185981281101704, -0.13711975514888763, -0.06022651493549347, -0.041129618883132935, -0.0016521662473678589, -0.01679155044257641, 0.039330996572971344, -0.07385986298322678, -0.09667376428842545, -0.03605477884411812, 0.041619617491960526, 0.036947399377822876, 0.12141884118318558, 0.01806696131825447, 0.032486286014318466, 0.02498512528836727, 0.11987540125846863, -0.03852906450629234, -0.09506042301654816, -0.01588917151093483, 0.17377211153507233, 0.008115191012620926, 0.10079681128263474, -0.01905115880072117, 0.025019703432917595, -0.016603153198957443, 0.23411881923675537, 0.31464090943336487, -0.023048853501677513, 0.06873740255832672, 0.021368874236941338, 0.014152969233691692, 0.008675427176058292, 0.11313376575708389, 0.06712498515844345, 0.29081857204437256, -0.08305803686380386, -0.01811552233994007, -0.053343236446380615, 0.005113624967634678, -0.12920936942100525, 0.033445537090301514, -0.006975141819566488, -0.03380655497312546, -0.0168331116437912, 0.08211958408355713, -0.08676745742559433, 0.09905369579792023, 0.0721692442893982, -0.15549619495868683, -0.06031390652060509, 0.020933818072080612, 0.2173718512058258, 0.006778704933822155, 0.057531002908945084, -0.040927864611148834, -0.03348466753959656, 0.006831123027950525, -0.003955405671149492, -0.1931408792734146, -0.05195622146129608, 0.04972090572118759, -0.02387099526822567, 0.13347995281219482, -0.01286389585584402, 0.07982146739959717, 0.09700147807598114, 0.07588855177164078, -0.025643350556492805, 0.07977426797151566, 0.028153827413916588, -0.07619984447956085, 0.008086716756224632, -0.040578655898571014, 0.00936858169734478, -0.05204275622963905, 0.029119590297341347, -0.047205716371536255, 0.06027103215456009, -0.09572210162878036, -0.06827031821012497, -0.04933733120560646, 0.10708355903625488, -0.06726659834384918, 0.07528527081012726, 0.04737493023276329, 0.02709689550101757, -0.06293129175901413, -0.027136782184243202, -0.019189534708857536, 0.07244980335235596, -0.07438021153211594, -0.10650710016489029, -0.09151026606559753, -0.014676013961434364, 0.0329887829720974, 0.02306204102933407, -0.1894010305404663, -0.05069953203201294, -0.11394121497869492, 0.004975265823304653, -0.17264962196350098, 0.005634039640426636, 0.11268699169158936, 0.025042306631803513, -0.003910454921424389, -0.128409281373024, 0.03243667259812355, 0.030518779531121254, -0.15046821534633636, -0.08884690701961517 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz BERT and ELECTRA models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models πŸŽ‰ # Italian BERT The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/). Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in `config.json`. However, the model is working and all evaluations were done under those circumstances. See [this issue](https://github.com/dbmdz/berts/issues/7) for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for [BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt) | `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt) | `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt) | `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt) ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/italian-bertelectra). ## Usage With Transformers >= 2.3 our Italian BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the (recommended) Italian XXL BERT models, just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-xxl-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the Italian XXL ELECTRA model (discriminator), just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT/ELECTRA models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "it", "license": "mit", "datasets": ["wikipedia"]}
fill-mask
dbmdz/bert-base-italian-cased
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "it", "dataset:wikipedia", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
+ dbmdz BERT and ELECTRA models =============================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models Italian BERT ============ The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the OPUS corpora collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the OSCAR corpus. Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in 'URL'. However, the model is working and all evaluations were done under those circumstances. See this issue for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for BERTurk. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Results ------- For results on downstream tasks like NER or PoS tagging, please refer to this repository. Usage ----- With Transformers >= 2.3 our Italian BERT models can be loaded like: To load the (recommended) Italian XXL BERT models, just use: To load the Italian XXL ELECTRA model (discriminator), just use: Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT/ELECTRA models just open an issue here Acknowledgments =============== Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 63 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.03144901990890503, 0.05854027345776558, -0.004188124090433121, 0.06036433205008507, 0.051557283848524094, 0.03873739391565323, 0.11041123420000076, 0.11060477793216705, 0.0863788053393364, -0.029641637578606606, 0.15443755686283112, 0.17204220592975616, -0.012625621631741524, 0.17014209926128387, -0.044999562203884125, -0.21072407066822052, 0.07855599373579025, 0.020639553666114807, -0.05758114904165268, 0.0963280126452446, 0.11153198778629303, -0.09529268741607666, 0.07312631607055664, -0.027606908231973648, -0.09869106858968735, 0.02841472066938877, 0.07728268951177597, -0.128292515873909, 0.16028107702732086, 0.024775950238108635, 0.1541043221950531, 0.0715877041220665, -0.005523725878447294, -0.058382708579301834, 0.04880261793732643, 0.033075954765081406, -0.09826786071062088, 0.05918964371085167, -0.007543542422354221, -0.003412701888009906, 0.01918160356581211, 0.017287692055106163, 0.03401283547282219, 0.03143518790602684, -0.13649532198905945, -0.22641871869564056, -0.043292004615068436, 0.07718246430158615, -0.005592833738774061, 0.041108593344688416, 0.020133988931775093, 0.22117376327514648, -0.11687124520540237, 0.08956889808177948, 0.15401144325733185, -0.3452942669391632, -0.014158590696752071, 0.12416345626115799, 0.09963758289813995, -0.03311759978532791, -0.06903373450040817, 0.06951580941677094, 0.04049041494727135, 0.023327240720391273, 0.156740203499794, -0.06454635411500931, -0.11232343316078186, 0.024779122322797775, -0.06444192677736282, -0.06058662384748459, 0.24154765903949738, -0.017528509721159935, 0.041595909744501114, -0.027407687157392502, -0.09137009084224701, 0.007568745408207178, 0.005233417730778456, -0.01410981547087431, -0.002625934546813369, 0.0439850352704525, -0.025206733494997025, -0.03678491711616516, -0.14961186051368713, 0.014721560291945934, -0.21681168675422668, 0.1460883468389511, 0.0022241633851081133, 0.08195005357265472, -0.15717004239559174, 0.04794975370168686, -0.03039838746190071, -0.13515789806842804, 0.0279084425419569, -0.07354824244976044, 0.044932346791028976, -0.0233241505920887, -0.036789488047361374, 0.008855697698891163, 0.11425842344760895, 0.1795344203710556, -0.01531186606734991, -0.02696632593870163, -0.004399584606289864, 0.10471630096435547, 0.038269203156232834, 0.03384626656770706, -0.05592123046517372, -0.03266245499253273, 0.07595837116241455, -0.07286292314529419, 0.033828407526016235, -0.043786585330963135, -0.1146988719701767, -0.03872992843389511, 0.05120108276605606, 0.06487059593200684, 0.09213831275701523, 0.07635670155286789, -0.04047691449522972, 0.04384591802954674, 0.11326323449611664, -0.06309189647436142, 0.023670870810747147, -0.0273696631193161, 0.06519407778978348, -0.026196355000138283, 0.03981487825512886, -0.018057534471154213, 0.038738369941711426, 0.08367914706468582, -0.10344544053077698, -0.04339142143726349, -0.02349952422082424, -0.10968120396137238, 0.07210395485162735, -0.08489822596311569, 0.04445529729127884, -0.20664772391319275, -0.12924428284168243, 0.06710048019886017, 0.06648959219455719, 0.0031082977075129747, -0.03812678903341293, 0.10534710437059402, -0.050859689712524414, 0.043306201696395874, -0.05750270560383797, -0.022046102210879326, -0.0801021084189415, 0.09301342815160751, -0.062158625572919846, 0.11640278249979019, -0.17355765402317047, 0.019326455891132355, -0.10700299590826035, 0.004467794205993414, -0.08820194005966187, -0.0950864925980568, -0.05050978437066078, 0.12027618288993835, 0.0033777474891394377, -0.023756666108965874, -0.09530726075172424, 0.04434765502810478, -0.01766241528093815, 0.12926118075847626, -0.15436215698719025, -0.041233740746974945, 0.19149872660636902, -0.11932158470153809, -0.19320830702781677, 0.09037571400403976, 0.003406671341508627, 0.06210070848464966, 0.023967741057276726, 0.143472358584404, 0.0214950293302536, -0.16092701256275177, 0.005376800894737244, 0.13087591528892517, -0.10077619552612305, -0.10540637373924255, 0.0422029122710228, 0.01352185383439064, -0.07983606308698654, 0.025786127895116806, 0.03632491081953049, 0.09048963338136673, -0.051843054592609406, -0.06692621856927872, -0.06027568131685257, -0.04632158577442169, 0.08938415348529816, 0.02295895479619503, 0.07142791152000427, -0.08804074674844742, -0.0506293810904026, -0.00774125661700964, 0.005537777673453093, 0.07491549104452133, 0.01573457010090351, -0.0700371041893959, 0.15276019275188446, -0.03181974217295647, -0.007995451800525188, -0.12478707730770111, -0.12022557854652405, -0.02801925130188465, 0.06113366410136223, -0.025082334876060486, 0.1317245215177536, 0.08310271799564362, -0.02972123958170414, -0.024850189685821533, -0.011585807427763939, 0.08702750504016876, 0.09271751344203949, -0.008627946488559246, -0.14053715765476227, 0.011878272518515587, -0.07517044246196747, -0.03331832215189934, -0.021331606432795525, 0.002725784434005618, 0.01869233325123787, 0.13801677525043488, -0.015113862231373787, 0.0574360117316246, -0.04713618382811546, -0.007016147021204233, -0.058433182537555695, -0.015670357272028923, 0.06405242532491684, 0.025655051693320274, -0.02180594764649868, 0.18959954380989075, -0.10559067130088806, 0.3904063105583191, 0.22533245384693146, -0.16992908716201782, -0.0469900481402874, 0.07227721065282822, -0.020012686029076576, 0.02008911594748497, -0.008221147581934929, -0.05014408007264137, -0.11294964700937271, -0.05279801785945892, 0.12118250131607056, -0.05677775666117668, -0.02497856318950653, 0.03579603135585785, -0.06537231802940369, -0.07346660643815994, -0.007879146374762058, 0.10057283937931061, -0.20648621022701263, 0.20758166909217834, 0.3370943069458008, 0.0016041017370298505, 0.16857531666755676, -0.015764424577355385, 0.01334374863654375, -0.02267409674823284, -0.071954645216465, -0.04447801783680916, 0.15765301883220673, -0.12539438903331757, 0.0005366833065636456, 0.07757876068353653, -0.015057948417961597, 0.006524246651679277, -0.13046082854270935, -0.07071764022111893, 0.019871026277542114, 0.03303470462560654, -0.0834750309586525, 0.12739069759845734, 0.027606187388300896, 0.12225323170423508, -0.023834584280848503, -0.11499354243278503, 0.08613267540931702, 0.013063579797744751, -0.03750155493617058, 0.14102493226528168, -0.13269661366939545, -0.2984454035758972, -0.05361165478825569, -0.09377358108758926, 0.034427642822265625, 0.002435486065223813, 0.09498973935842514, -0.016105838119983673, -0.0524451844394207, -0.009501424618065357, -0.0526929534971714, -0.026364993304014206, 0.06698987632989883, -0.08291114866733551, 0.0265326090157032, -0.011920190416276455, -0.0925455391407013, -0.08490684628486633, 0.013155301101505756, -0.03193218633532524, 0.13952812552452087, -0.01455309521406889, 0.06689346581697464, 0.05807040259242058, -0.03954888880252838, 0.03610776737332344, -0.050470709800720215, 0.2034851461648941, -0.06095454841852188, 0.07059455662965775, 0.16722947359085083, 0.00034867561771534383, 0.050391945987939835, 0.2171790450811386, 0.049416568130254745, -0.02912399359047413, -0.0035983100533485413, -0.05426141619682312, -0.10095076262950897, -0.1346467286348343, -0.09474164992570877, -0.11796128749847412, 0.01666877418756485, 0.059089295566082, 0.07316222786903381, 0.12278780341148376, 0.06504905968904495, 0.01870509423315525, -0.033289410173892975, -0.05174848064780235, 0.03319428861141205, 0.1362489014863968, -0.03811149299144745, 0.12117476761341095, -0.055135998874902725, -0.08933935314416885, 0.08425705879926682, 0.045832883566617966, 0.051958344876766205, 0.07261020690202713, -0.035726822912693024, 0.07683989405632019, 0.23767052590847015, 0.09993770718574524, 0.13585761189460754, 0.03799533471465111, -0.07357838749885559, -0.01476721465587616, -0.03972688317298889, 0.021265795454382896, 0.03373446315526962, 0.07592004537582397, -0.07478447258472443, -0.014178633689880371, -0.14880473911762238, 0.05133147910237312, 0.10089993476867676, 0.08351755887269974, -0.22767697274684906, 0.0050148251466453075, 0.0603671558201313, 0.01884431205689907, -0.05598069727420807, 0.040486495941877365, 0.07850667089223862, -0.07171114534139633, 0.057137347757816315, -0.016195015981793404, 0.054731398820877075, 0.11314485967159271, 0.059613220393657684, -0.011893562972545624, -0.09518411755561829, 0.00832071341574192, 0.05203060805797577, -0.26882606744766235, 0.2720224857330322, -0.001259648590348661, -0.025494784116744995, -0.0732392817735672, -0.01791258342564106, 0.04706120863556862, 0.15806648135185242, 0.14525389671325684, 0.03873208537697792, -0.07296478003263474, -0.09295020252466202, -0.0014682351611554623, 0.016040237620472908, 0.010875867679715157, -0.0004254695086274296, -0.009264419786632061, -0.05298523232340813, -0.021411139518022537, 0.04106349125504494, 0.18481747806072235, -0.06904920190572739, -0.10553858429193497, 0.043943557888269424, 0.08616431057453156, -0.0018871626816689968, -0.05199446156620979, -0.0706803947687149, -0.1469653695821762, 0.15312573313713074, 0.01307235099375248, -0.02674057148396969, -0.11896248906850815, -0.07301674783229828, 0.08429568260908127, -0.06522175669670105, 0.08853866904973984, -0.07370575517416, 0.022650204598903656, -0.0900392085313797, -0.1672184318304062, 0.14997068047523499, -0.15274344384670258, -0.02674228325486183, -0.0989171490073204, 0.09248842298984528, -0.09865066409111023, 0.04431848227977753, 0.055093247443437576, 0.05554470419883728, -0.0948527529835701, -0.05225265026092529, 0.03290088474750519, -0.07247074693441391, 0.05558758229017258, -0.031211799010634422, -0.061044465750455856, -0.11053448170423508, 0.08361943066120148, -0.007295351475477219, 0.19607241451740265, 0.23635821044445038, -0.11197329312562943, 0.12184832245111465, 0.13546445965766907, -0.025089509785175323, -0.3595547378063202, -0.11624498665332794, -0.17609205842018127, -0.01060901116579771, 0.08956968039274216, -0.02859932743012905, 0.07481575757265091, -0.013153026811778545, -0.09035028517246246, 0.09789188206195831, -0.14695404469966888, -0.09083974361419678, 0.21613535284996033, 0.018660401925444603, 0.3399328589439392, -0.14511457085609436, -0.024024315178394318, -0.009512635879218578, -0.11091649532318115, 0.15369760990142822, -0.10533967614173889, 0.05911485478281975, -0.013909237459301949, 0.004139552358537912, 0.012183205224573612, -0.07813585549592972, 0.09954077750444412, -0.10108282417058945, 0.0321965292096138, -0.11407190561294556, -0.0811825767159462, 0.12100551277399063, -0.025202220305800438, 0.035652369260787964, -0.04711417853832245, 0.012638144195079803, -0.02103186398744583, 0.01458238810300827, -0.12779991328716278, 0.1409309208393097, -0.01114159356802702, -0.0891025960445404, -0.013689546845853329, 0.0447087436914444, -0.011901319026947021, -0.05258827656507492, 0.20707644522190094, 0.017609955742955208, 0.2205880731344223, 0.13022127747535706, 0.01245747972279787, -0.14182347059249878, -0.05552227050065994, 0.004726429004222155, -0.09754383563995361, 0.07945490628480911, -0.07810647785663605, 0.03913445025682449, 0.05111776292324066, 0.001342486939392984, 0.06283694505691528, 0.09253716468811035, -0.024310005828738213, -0.04345175251364708, 0.18278281390666962, -0.21058645844459534, -0.03082706592977047, -0.0076413387432694435, 0.00901560578495264, 0.03737424314022064, 0.013118859380483627, 0.09628792852163315, -0.0349426232278347, -0.025654003024101257, -0.010936541482806206, 0.018751977011561394, -0.06672031432390213, 0.0308033749461174, 0.10096185654401779, 0.042084451764822006, -0.09766431152820587, 0.024060342460870743, 0.0007986105047166348, -0.11456049978733063, -0.005025430582463741, 0.05746957287192345, -0.09132248908281326, -0.14922763407230377, 0.009266253560781479, 0.018580442294478416, -0.049363743513822556, -0.0565616674721241, -0.0344686359167099, -0.12042242288589478, 0.01690557599067688, 0.20458851754665375, 0.08372139930725098, 0.07254569232463837, 0.0236162431538105, -0.04879440739750862, 0.010211420245468616, 0.037708718329668045, -0.0686349868774414, 0.032822925597429276, -0.1248563900589943, 0.03449467942118645, -0.008577791973948479, 0.12436963617801666, -0.09835115075111389, 0.014217514544725418, -0.1753753423690796, -0.015422840602695942, -0.03269396722316742, -0.05784007906913757, -0.11257720738649368, -0.06603407859802246, 0.02994263358414173, -0.09766007214784622, -0.05303233861923218, -0.02479202300310135, -0.10329461097717285, -0.0008629703079350293, 0.045386385172605515, 0.0547492578625679, -0.10937243700027466, -0.06124405935406685, 0.08060261607170105, -0.013958820141851902, 0.07729014754295349, 0.04823029041290283, -0.05647318437695503, 0.08084550499916077, -0.14249326288700104, -0.11217918992042542, 0.0715373232960701, 0.012011321261525154, 0.08645838499069214, 0.016264446079730988, 0.006923564709722996, 0.06594253331422806, 0.007847819477319717, 0.04597339779138565, 0.0019507452379912138, -0.10722078382968903, 0.017426669597625732, 0.01513566542416811, -0.12296707928180695, 0.01982063055038452, -0.08475609123706818, 0.13200309872627258, -0.07486012578010559, 0.13159026205539703, -0.0484512634575367, 0.021160248667001724, -0.12629885971546173, 0.017842687666416168, -0.06064259260892868, -0.1535007506608963, -0.07519461214542389, -0.01859966106712818, 0.005336684174835682, -0.02454289421439171, 0.23430657386779785, 0.08391255885362625, -0.07443144172430038, 0.06781987845897675, 0.04008927941322327, -0.008381889201700687, -0.00537219038233161, 0.20057016611099243, 0.014817800372838974, -0.06181533262133598, -0.09569287300109863, 0.05355997383594513, -0.004710820969194174, -0.06815414130687714, 0.09051362425088882, 0.1089104413986206, 0.07243208587169647, 0.03835507109761238, 0.0843275636434555, -0.03273425251245499, -0.06024431064724922, -0.19648230075836182, -0.020339075475931168, 0.07434237003326416, -0.01697203703224659, -0.05200304463505745, 0.17569980025291443, -0.03281139209866524, 0.0388525165617466, -0.08036508411169052, 0.00637404527515173, -0.1709703952074051, -0.13046398758888245, -0.0818382203578949, -0.055347222834825516, 0.002187883947044611, -0.04884792119264603, 0.003143428824841976, 0.10745321959257126, 0.037850357592105865, -0.03836483508348465, 0.07187864184379578, 0.028515469282865524, -0.025324800983071327, 0.0132627347484231, 0.03378914296627045, 0.017587963491678238, -0.061733588576316833, -0.002607495989650488, -0.1278763711452484, -0.007940826006233692, -0.06782500445842743, -0.0006724119884893298, -0.05052383989095688, 0.03583437204360962, -0.10249804705381393, -0.10403111577033997, -0.05312073975801468, 0.0072165061719715595, -0.019971877336502075, 0.08456313610076904, 0.008245921693742275, 0.050485167652368546, 0.04855545982718468, 0.1739550679922104, -0.056285761296749115, -0.11999597400426865, -0.05260586366057396, 0.16893337666988373, 0.007780720945447683, 0.06141001358628273, -0.0008094902150332928, 0.015051943250000477, -0.07314229756593704, 0.23802264034748077, 0.36269980669021606, -0.03039684146642685, 0.09878816455602646, 0.014932559803128242, 0.0037695609498769045, 0.006866013165563345, 0.11345569044351578, 0.081180140376091, 0.22856149077415466, -0.0782909095287323, 0.0203280970454216, -0.07192746549844742, 0.0010582675458863378, -0.09624478965997696, 0.005493991542607546, 0.03974740952253342, -0.02725783735513687, -0.03942658752202988, 0.061702899634838104, -0.09006039798259735, 0.022075269371271133, 0.06750493496656418, -0.1925891488790512, -0.0576685406267643, -0.007592036854475737, 0.15044863522052765, 0.012218899093568325, 0.05498522147536278, -0.06204594299197197, -0.005358158145099878, 0.02347307838499546, -0.009988884441554546, -0.16145776212215424, -0.04563358053565025, 0.10574255883693695, -0.000813603401184082, 0.167389377951622, -0.038182564079761505, 0.04914161190390587, 0.10359542816877365, 0.03578212857246399, -0.08180972188711166, 0.07255859673023224, 0.04672904312610626, -0.06536328792572021, -0.04047081992030144, -0.07085221260786057, 0.0159338116645813, -0.06863084435462952, 0.057261962443590164, -0.10662814229726791, 0.042127788066864014, -0.06456221640110016, -0.044417981058359146, -0.03230605646967888, 0.07978640496730804, -0.023842306807637215, 0.09732840955257416, 0.03711596131324768, -0.021140318363904953, -0.0406796894967556, -0.057747721672058105, -0.006715268362313509, 0.08127989619970322, -0.12402404844760895, -0.1207892969250679, -0.04117708280682564, -0.020187996327877045, 0.006530333310365677, -0.00792099628597498, -0.13863492012023926, -0.05397247523069382, -0.07846809178590775, -0.005218826234340668, -0.14102043211460114, 0.028515931218862534, 0.12040777504444122, 0.03800107538700104, 0.00020001627854071558, 0.006143919657915831, 0.009102629497647285, 0.032907046377658844, -0.14336857199668884, -0.08396632969379425 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz BERT and ELECTRA models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models πŸŽ‰ # Italian BERT The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/). Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in `config.json`. However, the model is working and all evaluations were done under those circumstances. See [this issue](https://github.com/dbmdz/berts/issues/7) for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for [BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt) | `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt) | `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt) | `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt) ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/italian-bertelectra). ## Usage With Transformers >= 2.3 our Italian BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the (recommended) Italian XXL BERT models, just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-xxl-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the Italian XXL ELECTRA model (discriminator), just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT/ELECTRA models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "it", "license": "mit", "datasets": ["wikipedia"]}
fill-mask
dbmdz/bert-base-italian-uncased
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "it", "dataset:wikipedia", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #tf #jax #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
+ dbmdz BERT and ELECTRA models =============================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models Italian BERT ============ The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the OPUS corpora collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the OSCAR corpus. Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in 'URL'. However, the model is working and all evaluations were done under those circumstances. See this issue for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for BERTurk. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Results ------- For results on downstream tasks like NER or PoS tagging, please refer to this repository. Usage ----- With Transformers >= 2.3 our Italian BERT models can be loaded like: To load the (recommended) Italian XXL BERT models, just use: To load the Italian XXL ELECTRA model (discriminator), just use: Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT/ELECTRA models just open an issue here Acknowledgments =============== Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.0123423021286726, 0.06960970163345337, -0.004287904594093561, 0.056210022419691086, 0.06078420206904411, 0.05983934551477432, 0.0901472344994545, 0.13448967039585114, 0.09696845710277557, -0.03528768941760063, 0.15353113412857056, 0.17072099447250366, -0.010234556160867214, 0.13402511179447174, -0.037960074841976166, -0.2406189739704132, 0.07097458839416504, 0.033534057438373566, -0.09989599883556366, 0.08475048840045929, 0.10446876287460327, -0.09210571646690369, 0.06988074630498886, -0.027568409219384193, -0.11936627328395844, 0.04405082017183304, 0.05478954315185547, -0.10960250347852707, 0.15582211315631866, 0.038776788860559464, 0.1302952617406845, 0.060681480914354324, -0.026761258020997047, -0.06436172127723694, 0.04759268835186958, 0.015877913683652878, -0.10127976536750793, 0.0682627260684967, -0.025295618921518326, 0.009219893254339695, 0.04111871123313904, 0.03038332797586918, 0.017128217965364456, 0.027338601648807526, -0.15072543919086456, -0.21668843924999237, -0.048782262951135635, 0.060286249965429306, -0.03420818969607353, 0.037736982107162476, 0.02016262151300907, 0.19076021015644073, -0.13475856184959412, 0.06915326416492462, 0.16581451892852783, -0.3344060480594635, -0.00551473768427968, 0.135944664478302, 0.08002737164497375, -0.03400056064128876, -0.060280218720436096, 0.08377251774072647, 0.035981569439172745, 0.019427945837378502, 0.13159912824630737, -0.07338635623455048, -0.08788415044546127, 0.0429658517241478, -0.05926695838570595, -0.07829806208610535, 0.2667873799800873, -0.011837316676974297, 0.0578838512301445, 0.00584555696696043, -0.09007968008518219, 0.0007916679023765028, 0.006258293054997921, -0.00369505537673831, 0.01476280577480793, 0.05637478083372116, -0.009573807008564472, -0.06020015850663185, -0.14672113955020905, 0.026031382381916046, -0.22862154245376587, 0.12316060811281204, 0.0008923103450797498, 0.08270001411437988, -0.15426144003868103, 0.037391964346170425, -0.03595045208930969, -0.11864857375621796, 0.022688042372465134, -0.06412734091281891, 0.024390067905187607, -0.01611780934035778, -0.0598231703042984, 0.01961890049278736, 0.10710380971431732, 0.18416807055473328, 0.014005966484546661, -0.029802288860082626, 0.006438467651605606, 0.11871923506259918, 0.061616215854883194, 0.02533571794629097, -0.07606656849384308, -0.039369549602270126, 0.05847761407494545, -0.10168522596359253, 0.008546746335923672, -0.05558732524514198, -0.13838841021060944, -0.05790054425597191, 0.02524450235068798, 0.05056488886475563, 0.10614310204982758, 0.06479182839393616, -0.040179215371608734, 0.029001004993915558, 0.0908079445362091, -0.056106992065906525, 0.028978755697607994, -0.029021581634879112, 0.046357981860637665, 0.01617784984409809, 0.024007881060242653, -0.01802070625126362, 0.03933955356478691, 0.06936293095350266, -0.10778488963842392, -0.03296510502696037, -0.026460150256752968, -0.10942183434963226, 0.07564949244260788, -0.09871495515108109, 0.050698354840278625, -0.18678033351898193, -0.10874006897211075, 0.05227474495768547, 0.08163196593523026, -0.019328024238348007, -0.041391052305698395, 0.11283364146947861, -0.03865863010287285, 0.06159832328557968, -0.053575240075588226, -0.0039854953065514565, -0.0829584151506424, 0.08603538572788239, -0.07280127704143524, 0.1308279186487198, -0.1998862326145172, 0.03764006495475769, -0.08451013267040253, -0.0009883666643872857, -0.08007358759641647, -0.07631918787956238, -0.04498798027634621, 0.11529432237148285, -0.008006646297872066, -0.02790892869234085, -0.10569994896650314, 0.044099822640419006, -0.01910499483346939, 0.12328179180622101, -0.17386706173419952, -0.049380864948034286, 0.16645772755146027, -0.0856119841337204, -0.1839640736579895, 0.09558304399251938, -0.010086686350405216, 0.07555178552865982, 0.006513345520943403, 0.16825616359710693, 0.018435467034578323, -0.14001025259494781, 0.02047627978026867, 0.1329781413078308, -0.08535772562026978, -0.11304625123739243, 0.05418941378593445, 0.003765739966183901, -0.06125772371888161, 0.022817304357886314, 0.03267774358391762, 0.08838513493537903, -0.043770529329776764, -0.05974378436803818, -0.05007459223270416, -0.03933003917336464, 0.08202677965164185, 0.02240084856748581, 0.09522487223148346, -0.0675610825419426, -0.03505637124180794, 0.025336239486932755, 0.009940346702933311, 0.08726304024457932, 0.039433564990758896, -0.048411209136247635, 0.16450007259845734, -0.03319668769836426, -0.006057661958038807, -0.1378682553768158, -0.0789538025856018, -0.039903946220874786, 0.06940007954835892, -0.0008540085982531309, 0.18708905577659607, 0.056869544088840485, -0.07077677547931671, -0.019055308774113655, 0.01369277760386467, 0.0832725465297699, 0.08642760664224625, -0.009168891236186028, -0.12489844858646393, 0.0004662727296818048, -0.06790173798799515, -0.056341446936130524, -0.006999194622039795, -0.004547270946204662, 0.017096111550927162, 0.1227419450879097, -0.02554198168218136, 0.062403056770563126, -0.04344181716442108, -0.0036310823634266853, -0.0677606388926506, -0.003891945583745837, 0.07003413140773773, 0.023088181391358376, -0.019109273329377174, 0.19696302711963654, -0.07599681615829468, 0.36112967133522034, 0.2226603776216507, -0.20044392347335815, -0.04291095957159996, 0.06664679944515228, -0.01942305825650692, 0.01898644119501114, 0.01284167543053627, -0.05877948924899101, -0.09036438912153244, -0.05570138618350029, 0.11471772193908691, -0.04368029534816742, -0.013721276074647903, 0.02293384075164795, -0.06707686930894852, -0.0712336078286171, -0.006657490041106939, 0.12793856859207153, -0.2088271826505661, 0.21012909710407257, 0.3337938189506531, 0.010216687805950642, 0.18579627573490143, -0.005559393670409918, 0.008520673960447311, -0.03836343437433243, -0.10039110481739044, -0.058082010596990585, 0.14218345284461975, -0.16238170862197876, -0.017008326947689056, 0.08506922423839569, -0.009287707507610321, 0.0230522733181715, -0.1221771165728569, -0.06899303942918777, 0.0292176716029644, 0.04332450404763222, -0.09542664140462875, 0.13173224031925201, 0.026835989207029343, 0.11206769198179245, 0.002839339431375265, -0.08942670375108719, 0.08258050680160522, 0.01270714309066534, -0.03088993765413761, 0.12646439671516418, -0.14049914479255676, -0.29712045192718506, -0.05622323602437973, -0.10770534723997116, 0.04072663560509682, 0.003940840717405081, 0.1007598266005516, -0.007055110298097134, -0.040889278054237366, 0.016058554872870445, -0.031439587473869324, -0.08477406203746796, 0.05901949480175972, -0.09381844103336334, 0.025701094418764114, -0.04326919838786125, -0.08559241145849228, -0.08975054323673248, 0.014501889236271381, -0.01701708696782589, 0.13186456263065338, -0.04004604369401932, 0.07418113946914673, 0.06040409952402115, -0.026756882667541504, 0.055430445820093155, -0.04715827852487564, 0.21288838982582092, -0.06312914937734604, 0.06574461609125137, 0.14738458395004272, 0.020051829516887665, 0.041432976722717285, 0.20726794004440308, 0.054641079157590866, -0.030498521402478218, -0.016753200441598892, -0.04821178689599037, -0.10293816030025482, -0.1288023740053177, -0.09030130505561829, -0.14225627481937408, 0.0115209287032485, 0.06310831755399704, 0.07279907912015915, 0.12334568798542023, 0.05048249661922455, 0.03527852147817612, -0.014859357848763466, -0.0776318609714508, 0.027751987800002098, 0.18525876104831696, -0.04340371489524841, 0.10981151461601257, -0.0625150129199028, -0.06316479295492172, 0.09739808738231659, 0.06918933242559433, 0.06443417072296143, 0.09348360449075699, 0.013913366012275219, 0.07806439697742462, 0.2233395129442215, 0.09507486969232559, 0.10893416404724121, 0.04387054964900017, -0.05754684656858444, -0.02756577543914318, -0.02745187282562256, 0.02375398762524128, 0.0478290356695652, 0.1354692280292511, -0.12123100459575653, -0.011083897203207016, -0.1777254343032837, 0.036630891263484955, 0.09971143305301666, 0.09775368124246597, -0.1890123337507248, 0.007063701283186674, 0.05493449419736862, 0.008696883916854858, -0.05293913558125496, 0.03812875971198082, 0.05241202563047409, -0.08881682902574539, 0.0492570735514164, 0.003938499838113785, 0.06445849686861038, 0.0926271602511406, 0.0602429173886776, -0.01021028496325016, -0.12498094141483307, 0.020771287381649017, 0.05668611824512482, -0.29479238390922546, 0.27991798520088196, -0.006930578034371138, -0.06630441546440125, -0.06961748003959656, -0.030534548684954643, 0.04823891445994377, 0.14511261880397797, 0.12799422442913055, 0.04486884921789169, -0.07082336395978928, -0.08220968395471573, 0.019325869157910347, 0.004811927210539579, 0.014041339978575706, -0.02172860875725746, -0.016722455620765686, -0.04918324947357178, -0.01062828116118908, 0.034418314695358276, 0.24118280410766602, -0.042195964604616165, -0.12283410131931305, 0.06408853828907013, 0.0712258592247963, -0.02169884741306305, -0.020689528435468674, -0.06677062064409256, -0.1466464400291443, 0.15358464419841766, 0.03662516176700592, -0.01650458388030529, -0.12574808299541473, -0.04317038878798485, 0.09977131336927414, -0.06921367347240448, 0.08743380010128021, -0.0794135108590126, 0.006118261720985174, -0.09096290171146393, -0.17536909878253937, 0.15561430156230927, -0.12978094816207886, 0.00003798930993070826, -0.08818244934082031, 0.07637012749910355, -0.10441350936889648, 0.06371624022722244, 0.05094944313168526, 0.06443934887647629, -0.11202456057071686, -0.05448295176029205, 0.05370492488145828, -0.0826888456940651, 0.04680169001221657, -0.029918504878878593, -0.05517594888806343, -0.044968876987695694, 0.09298849105834961, -0.01437368057668209, 0.23836329579353333, 0.22418025135993958, -0.11367640644311905, 0.14868129789829254, 0.10653345286846161, -0.048631906509399414, -0.34967705607414246, -0.10208708792924881, -0.17687945067882538, -0.006809190381318331, 0.07899457216262817, -0.08982130140066147, 0.04858841374516487, -0.016753556206822395, -0.07814488559961319, 0.0965719074010849, -0.16107721626758575, -0.08395279943943024, 0.19781124591827393, -0.01497599296271801, 0.3677157461643219, -0.13534773886203766, -0.027362151071429253, -0.021906744688749313, -0.1391974687576294, 0.16936412453651428, -0.061810798943042755, 0.07832776755094528, -0.024369528517127037, 0.027047600597143173, 0.01093039009720087, -0.06609918922185898, 0.10983236134052277, -0.07469891011714935, 0.013358849100768566, -0.11152362078428268, -0.10395874828100204, 0.12298362702131271, -0.02856322191655636, 0.02044290490448475, -0.020076893270015717, -0.006490872707217932, -0.07556027919054031, 0.020258190110325813, -0.1348794847726822, 0.12854675948619843, -0.01062439288944006, -0.07907208800315857, -0.039040956646203995, 0.053093548864126205, 0.01129979733377695, -0.04061036929488182, 0.21897481381893158, 0.006809186656028032, 0.1887577623128891, 0.10975421220064163, -0.01412395853549242, -0.14491145312786102, -0.07630062103271484, 0.005702093709260225, -0.08795531839132309, 0.0661965161561966, -0.10025772452354431, 0.02824859879910946, 0.06718521565198898, -0.0007757659768685699, 0.06581725180149078, 0.09439423680305481, -0.027014635503292084, -0.027681633830070496, 0.17619040608406067, -0.1877608448266983, -0.03548908978700638, -0.007022913079708815, -0.030089832842350006, 0.05489673465490341, -0.03320687264204025, 0.09325133264064789, -0.019090525805950165, -0.02890617400407791, 0.007103626616299152, 0.003785594366490841, -0.07010561972856522, 0.016945019364356995, 0.1019146665930748, 0.030822312459349632, -0.10521619021892548, 0.036730460822582245, 0.010818296112120152, -0.12176946550607681, 0.0031532233115285635, 0.06573352962732315, -0.07623987644910812, -0.15630283951759338, -0.015943050384521484, -0.0004854082071688026, -0.09398313611745834, -0.03916698321700096, -0.02806662768125534, -0.10334222763776779, 0.028209121897816658, 0.1771848052740097, 0.08762253820896149, 0.06944871693849564, -0.0009599996265023947, -0.05249864608049393, 0.032261453568935394, 0.013816404156386852, -0.06797133386135101, 0.024238040670752525, -0.0924883559346199, 0.0336950346827507, -0.016047438606619835, 0.14510808885097504, -0.0928204134106636, -0.00278139254078269, -0.17182166874408722, -0.011561998166143894, -0.04741371050477028, -0.07044190913438797, -0.11699992418289185, -0.08099594712257385, 0.03476296737790108, -0.10013563185930252, -0.061917081475257874, -0.036514174193143845, -0.13068875670433044, -0.011728855781257153, 0.03517148643732071, 0.06469765305519104, -0.09315013885498047, -0.054478805512189865, 0.0936288833618164, -0.008271314203739166, 0.07488863915205002, 0.05518278852105141, -0.04850151389837265, 0.0808572918176651, -0.09903602302074432, -0.12347307801246643, 0.06630121916532516, 0.013971241191029549, 0.09377416223287582, 0.003027375089004636, -0.0005354568711481988, 0.05823840945959091, 0.015987670049071312, 0.04489261656999588, -0.00985968578606844, -0.10089888423681259, -0.0021063194144517183, 0.0031941330526024103, -0.12773774564266205, 0.026122678071260452, -0.07459545135498047, 0.1340571641921997, -0.04024606570601463, 0.10434878617525101, -0.02757790870964527, 0.03087184578180313, -0.111562579870224, 0.015905367210507393, -0.05911262705922127, -0.1500050276517868, -0.042551733553409576, -0.038738664239645004, 0.00561034120619297, -0.02082783542573452, 0.25150543451309204, 0.08530066907405853, -0.07630661129951477, 0.06448537856340408, 0.05574234947562218, -0.021863741800189018, -0.00944671593606472, 0.20261405408382416, 0.03418722376227379, -0.06364060938358307, -0.0852823257446289, 0.08000911772251129, -0.006247511599212885, -0.010427664034068584, 0.10461641103029251, 0.10208731144666672, 0.10728034377098083, 0.038207780569791794, 0.07307850569486618, -0.02952686883509159, -0.05921756848692894, -0.18301071226596832, 0.0024631174746900797, 0.09957721084356308, -0.028973126783967018, -0.04478603973984718, 0.15549980103969574, -0.05458717793226242, 0.06511835753917694, -0.07893074303865433, 0.0063300891779363155, -0.16131938993930817, -0.13939063251018524, -0.06942322105169296, -0.06730885803699493, -0.006115925498306751, -0.04871873930096626, 0.03174860030412674, 0.12916013598442078, 0.03581157699227333, -0.03166601061820984, 0.03128352761268616, 0.028809884563088417, -0.04904387518763542, 0.02073153480887413, 0.017187856137752533, 0.011405852623283863, -0.08465924113988876, 0.005183892790228128, -0.12510448694229126, -0.010067648254334927, -0.06610588729381561, 0.010713782161474228, -0.04857220873236656, 0.021481771022081375, -0.11710675805807114, -0.10452664643526077, -0.0589592345058918, 0.0053769005462527275, -0.024067524820566177, 0.10665146261453629, 0.008030543103814125, 0.05108560621738434, 0.036255739629268646, 0.17529088258743286, -0.06104917824268341, -0.08220652490854263, -0.05647243931889534, 0.1349743753671646, 0.01731470786035061, 0.054861877113580704, -0.007728576194494963, 0.01409253291785717, -0.09339787811040878, 0.24649322032928467, 0.3786972761154175, -0.04200957715511322, 0.08925673365592957, 0.038677312433719635, 0.005293946713209152, 0.04145250469446182, 0.1193942278623581, 0.06999761611223221, 0.20624415576457977, -0.08701010793447495, -0.001487924251705408, -0.08017564564943314, -0.011906268075108528, -0.08570309728384018, 0.023806801065802574, 0.06032536178827286, -0.04394211992621422, -0.036334313452243805, 0.0663493424654007, -0.11698085814714432, -0.0019733558874577284, 0.07057087123394012, -0.20476719737052917, -0.059526391327381134, -0.009259851649403572, 0.12459055334329605, 0.017956696450710297, 0.07252734899520874, -0.06741425395011902, -0.019048716872930527, 0.04639396071434021, -0.002100491663441062, -0.19627679884433746, -0.06069067120552063, 0.13382844626903534, -0.0030528767965734005, 0.11499309539794922, -0.04709955304861069, 0.036810748279094696, 0.1023169606924057, 0.05633113160729408, -0.0750550627708435, 0.041621703654527664, 0.04566929116845131, -0.04745350405573845, -0.052053652703762054, -0.06470023840665817, 0.015316318720579147, -0.09180168807506561, 0.07124556601047516, -0.09082870930433273, 0.05194232985377312, -0.06005537137389183, -0.03210873156785965, -0.027229970321059227, 0.06533197313547134, -0.04401508346199989, 0.09085561335086823, 0.050845786929130554, -0.022294718772172928, -0.04622364044189453, -0.05715195834636688, -0.030446067452430725, 0.08551090210676193, -0.1317061483860016, -0.1554967314004898, -0.01919250376522541, -0.0343664214015007, -0.0033288034610450268, -0.014071433804929256, -0.11445792019367218, -0.05230281502008438, -0.06866638362407684, 0.003371031489223242, -0.1094975695014, 0.05045987293124199, 0.09839677065610886, 0.02714494802057743, -0.0016390405362471938, 0.0015494455583393574, 0.02039778232574463, 0.025072675198316574, -0.14829814434051514, -0.07653535157442093 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz BERT and ELECTRA models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models πŸŽ‰ # Italian BERT The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/). Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in `config.json`. However, the model is working and all evaluations were done under those circumstances. See [this issue](https://github.com/dbmdz/berts/issues/7) for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for [BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt) | `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt) | `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt) | `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt) ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/italian-bertelectra). ## Usage With Transformers >= 2.3 our Italian BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the (recommended) Italian XXL BERT models, just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-xxl-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the Italian XXL ELECTRA model (discriminator), just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT/ELECTRA models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "it", "license": "mit", "datasets": ["wikipedia"]}
fill-mask
dbmdz/bert-base-italian-xxl-cased
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "it", "dataset:wikipedia", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
+ dbmdz BERT and ELECTRA models =============================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models Italian BERT ============ The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the OPUS corpora collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the OSCAR corpus. Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in 'URL'. However, the model is working and all evaluations were done under those circumstances. See this issue for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for BERTurk. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Results ------- For results on downstream tasks like NER or PoS tagging, please refer to this repository. Usage ----- With Transformers >= 2.3 our Italian BERT models can be loaded like: To load the (recommended) Italian XXL BERT models, just use: To load the Italian XXL ELECTRA model (discriminator), just use: Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT/ELECTRA models just open an issue here Acknowledgments =============== Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 63 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.03144901990890503, 0.05854027345776558, -0.004188124090433121, 0.06036433205008507, 0.051557283848524094, 0.03873739391565323, 0.11041123420000076, 0.11060477793216705, 0.0863788053393364, -0.029641637578606606, 0.15443755686283112, 0.17204220592975616, -0.012625621631741524, 0.17014209926128387, -0.044999562203884125, -0.21072407066822052, 0.07855599373579025, 0.020639553666114807, -0.05758114904165268, 0.0963280126452446, 0.11153198778629303, -0.09529268741607666, 0.07312631607055664, -0.027606908231973648, -0.09869106858968735, 0.02841472066938877, 0.07728268951177597, -0.128292515873909, 0.16028107702732086, 0.024775950238108635, 0.1541043221950531, 0.0715877041220665, -0.005523725878447294, -0.058382708579301834, 0.04880261793732643, 0.033075954765081406, -0.09826786071062088, 0.05918964371085167, -0.007543542422354221, -0.003412701888009906, 0.01918160356581211, 0.017287692055106163, 0.03401283547282219, 0.03143518790602684, -0.13649532198905945, -0.22641871869564056, -0.043292004615068436, 0.07718246430158615, -0.005592833738774061, 0.041108593344688416, 0.020133988931775093, 0.22117376327514648, -0.11687124520540237, 0.08956889808177948, 0.15401144325733185, -0.3452942669391632, -0.014158590696752071, 0.12416345626115799, 0.09963758289813995, -0.03311759978532791, -0.06903373450040817, 0.06951580941677094, 0.04049041494727135, 0.023327240720391273, 0.156740203499794, -0.06454635411500931, -0.11232343316078186, 0.024779122322797775, -0.06444192677736282, -0.06058662384748459, 0.24154765903949738, -0.017528509721159935, 0.041595909744501114, -0.027407687157392502, -0.09137009084224701, 0.007568745408207178, 0.005233417730778456, -0.01410981547087431, -0.002625934546813369, 0.0439850352704525, -0.025206733494997025, -0.03678491711616516, -0.14961186051368713, 0.014721560291945934, -0.21681168675422668, 0.1460883468389511, 0.0022241633851081133, 0.08195005357265472, -0.15717004239559174, 0.04794975370168686, -0.03039838746190071, -0.13515789806842804, 0.0279084425419569, -0.07354824244976044, 0.044932346791028976, -0.0233241505920887, -0.036789488047361374, 0.008855697698891163, 0.11425842344760895, 0.1795344203710556, -0.01531186606734991, -0.02696632593870163, -0.004399584606289864, 0.10471630096435547, 0.038269203156232834, 0.03384626656770706, -0.05592123046517372, -0.03266245499253273, 0.07595837116241455, -0.07286292314529419, 0.033828407526016235, -0.043786585330963135, -0.1146988719701767, -0.03872992843389511, 0.05120108276605606, 0.06487059593200684, 0.09213831275701523, 0.07635670155286789, -0.04047691449522972, 0.04384591802954674, 0.11326323449611664, -0.06309189647436142, 0.023670870810747147, -0.0273696631193161, 0.06519407778978348, -0.026196355000138283, 0.03981487825512886, -0.018057534471154213, 0.038738369941711426, 0.08367914706468582, -0.10344544053077698, -0.04339142143726349, -0.02349952422082424, -0.10968120396137238, 0.07210395485162735, -0.08489822596311569, 0.04445529729127884, -0.20664772391319275, -0.12924428284168243, 0.06710048019886017, 0.06648959219455719, 0.0031082977075129747, -0.03812678903341293, 0.10534710437059402, -0.050859689712524414, 0.043306201696395874, -0.05750270560383797, -0.022046102210879326, -0.0801021084189415, 0.09301342815160751, -0.062158625572919846, 0.11640278249979019, -0.17355765402317047, 0.019326455891132355, -0.10700299590826035, 0.004467794205993414, -0.08820194005966187, -0.0950864925980568, -0.05050978437066078, 0.12027618288993835, 0.0033777474891394377, -0.023756666108965874, -0.09530726075172424, 0.04434765502810478, -0.01766241528093815, 0.12926118075847626, -0.15436215698719025, -0.041233740746974945, 0.19149872660636902, -0.11932158470153809, -0.19320830702781677, 0.09037571400403976, 0.003406671341508627, 0.06210070848464966, 0.023967741057276726, 0.143472358584404, 0.0214950293302536, -0.16092701256275177, 0.005376800894737244, 0.13087591528892517, -0.10077619552612305, -0.10540637373924255, 0.0422029122710228, 0.01352185383439064, -0.07983606308698654, 0.025786127895116806, 0.03632491081953049, 0.09048963338136673, -0.051843054592609406, -0.06692621856927872, -0.06027568131685257, -0.04632158577442169, 0.08938415348529816, 0.02295895479619503, 0.07142791152000427, -0.08804074674844742, -0.0506293810904026, -0.00774125661700964, 0.005537777673453093, 0.07491549104452133, 0.01573457010090351, -0.0700371041893959, 0.15276019275188446, -0.03181974217295647, -0.007995451800525188, -0.12478707730770111, -0.12022557854652405, -0.02801925130188465, 0.06113366410136223, -0.025082334876060486, 0.1317245215177536, 0.08310271799564362, -0.02972123958170414, -0.024850189685821533, -0.011585807427763939, 0.08702750504016876, 0.09271751344203949, -0.008627946488559246, -0.14053715765476227, 0.011878272518515587, -0.07517044246196747, -0.03331832215189934, -0.021331606432795525, 0.002725784434005618, 0.01869233325123787, 0.13801677525043488, -0.015113862231373787, 0.0574360117316246, -0.04713618382811546, -0.007016147021204233, -0.058433182537555695, -0.015670357272028923, 0.06405242532491684, 0.025655051693320274, -0.02180594764649868, 0.18959954380989075, -0.10559067130088806, 0.3904063105583191, 0.22533245384693146, -0.16992908716201782, -0.0469900481402874, 0.07227721065282822, -0.020012686029076576, 0.02008911594748497, -0.008221147581934929, -0.05014408007264137, -0.11294964700937271, -0.05279801785945892, 0.12118250131607056, -0.05677775666117668, -0.02497856318950653, 0.03579603135585785, -0.06537231802940369, -0.07346660643815994, -0.007879146374762058, 0.10057283937931061, -0.20648621022701263, 0.20758166909217834, 0.3370943069458008, 0.0016041017370298505, 0.16857531666755676, -0.015764424577355385, 0.01334374863654375, -0.02267409674823284, -0.071954645216465, -0.04447801783680916, 0.15765301883220673, -0.12539438903331757, 0.0005366833065636456, 0.07757876068353653, -0.015057948417961597, 0.006524246651679277, -0.13046082854270935, -0.07071764022111893, 0.019871026277542114, 0.03303470462560654, -0.0834750309586525, 0.12739069759845734, 0.027606187388300896, 0.12225323170423508, -0.023834584280848503, -0.11499354243278503, 0.08613267540931702, 0.013063579797744751, -0.03750155493617058, 0.14102493226528168, -0.13269661366939545, -0.2984454035758972, -0.05361165478825569, -0.09377358108758926, 0.034427642822265625, 0.002435486065223813, 0.09498973935842514, -0.016105838119983673, -0.0524451844394207, -0.009501424618065357, -0.0526929534971714, -0.026364993304014206, 0.06698987632989883, -0.08291114866733551, 0.0265326090157032, -0.011920190416276455, -0.0925455391407013, -0.08490684628486633, 0.013155301101505756, -0.03193218633532524, 0.13952812552452087, -0.01455309521406889, 0.06689346581697464, 0.05807040259242058, -0.03954888880252838, 0.03610776737332344, -0.050470709800720215, 0.2034851461648941, -0.06095454841852188, 0.07059455662965775, 0.16722947359085083, 0.00034867561771534383, 0.050391945987939835, 0.2171790450811386, 0.049416568130254745, -0.02912399359047413, -0.0035983100533485413, -0.05426141619682312, -0.10095076262950897, -0.1346467286348343, -0.09474164992570877, -0.11796128749847412, 0.01666877418756485, 0.059089295566082, 0.07316222786903381, 0.12278780341148376, 0.06504905968904495, 0.01870509423315525, -0.033289410173892975, -0.05174848064780235, 0.03319428861141205, 0.1362489014863968, -0.03811149299144745, 0.12117476761341095, -0.055135998874902725, -0.08933935314416885, 0.08425705879926682, 0.045832883566617966, 0.051958344876766205, 0.07261020690202713, -0.035726822912693024, 0.07683989405632019, 0.23767052590847015, 0.09993770718574524, 0.13585761189460754, 0.03799533471465111, -0.07357838749885559, -0.01476721465587616, -0.03972688317298889, 0.021265795454382896, 0.03373446315526962, 0.07592004537582397, -0.07478447258472443, -0.014178633689880371, -0.14880473911762238, 0.05133147910237312, 0.10089993476867676, 0.08351755887269974, -0.22767697274684906, 0.0050148251466453075, 0.0603671558201313, 0.01884431205689907, -0.05598069727420807, 0.040486495941877365, 0.07850667089223862, -0.07171114534139633, 0.057137347757816315, -0.016195015981793404, 0.054731398820877075, 0.11314485967159271, 0.059613220393657684, -0.011893562972545624, -0.09518411755561829, 0.00832071341574192, 0.05203060805797577, -0.26882606744766235, 0.2720224857330322, -0.001259648590348661, -0.025494784116744995, -0.0732392817735672, -0.01791258342564106, 0.04706120863556862, 0.15806648135185242, 0.14525389671325684, 0.03873208537697792, -0.07296478003263474, -0.09295020252466202, -0.0014682351611554623, 0.016040237620472908, 0.010875867679715157, -0.0004254695086274296, -0.009264419786632061, -0.05298523232340813, -0.021411139518022537, 0.04106349125504494, 0.18481747806072235, -0.06904920190572739, -0.10553858429193497, 0.043943557888269424, 0.08616431057453156, -0.0018871626816689968, -0.05199446156620979, -0.0706803947687149, -0.1469653695821762, 0.15312573313713074, 0.01307235099375248, -0.02674057148396969, -0.11896248906850815, -0.07301674783229828, 0.08429568260908127, -0.06522175669670105, 0.08853866904973984, -0.07370575517416, 0.022650204598903656, -0.0900392085313797, -0.1672184318304062, 0.14997068047523499, -0.15274344384670258, -0.02674228325486183, -0.0989171490073204, 0.09248842298984528, -0.09865066409111023, 0.04431848227977753, 0.055093247443437576, 0.05554470419883728, -0.0948527529835701, -0.05225265026092529, 0.03290088474750519, -0.07247074693441391, 0.05558758229017258, -0.031211799010634422, -0.061044465750455856, -0.11053448170423508, 0.08361943066120148, -0.007295351475477219, 0.19607241451740265, 0.23635821044445038, -0.11197329312562943, 0.12184832245111465, 0.13546445965766907, -0.025089509785175323, -0.3595547378063202, -0.11624498665332794, -0.17609205842018127, -0.01060901116579771, 0.08956968039274216, -0.02859932743012905, 0.07481575757265091, -0.013153026811778545, -0.09035028517246246, 0.09789188206195831, -0.14695404469966888, -0.09083974361419678, 0.21613535284996033, 0.018660401925444603, 0.3399328589439392, -0.14511457085609436, -0.024024315178394318, -0.009512635879218578, -0.11091649532318115, 0.15369760990142822, -0.10533967614173889, 0.05911485478281975, -0.013909237459301949, 0.004139552358537912, 0.012183205224573612, -0.07813585549592972, 0.09954077750444412, -0.10108282417058945, 0.0321965292096138, -0.11407190561294556, -0.0811825767159462, 0.12100551277399063, -0.025202220305800438, 0.035652369260787964, -0.04711417853832245, 0.012638144195079803, -0.02103186398744583, 0.01458238810300827, -0.12779991328716278, 0.1409309208393097, -0.01114159356802702, -0.0891025960445404, -0.013689546845853329, 0.0447087436914444, -0.011901319026947021, -0.05258827656507492, 0.20707644522190094, 0.017609955742955208, 0.2205880731344223, 0.13022127747535706, 0.01245747972279787, -0.14182347059249878, -0.05552227050065994, 0.004726429004222155, -0.09754383563995361, 0.07945490628480911, -0.07810647785663605, 0.03913445025682449, 0.05111776292324066, 0.001342486939392984, 0.06283694505691528, 0.09253716468811035, -0.024310005828738213, -0.04345175251364708, 0.18278281390666962, -0.21058645844459534, -0.03082706592977047, -0.0076413387432694435, 0.00901560578495264, 0.03737424314022064, 0.013118859380483627, 0.09628792852163315, -0.0349426232278347, -0.025654003024101257, -0.010936541482806206, 0.018751977011561394, -0.06672031432390213, 0.0308033749461174, 0.10096185654401779, 0.042084451764822006, -0.09766431152820587, 0.024060342460870743, 0.0007986105047166348, -0.11456049978733063, -0.005025430582463741, 0.05746957287192345, -0.09132248908281326, -0.14922763407230377, 0.009266253560781479, 0.018580442294478416, -0.049363743513822556, -0.0565616674721241, -0.0344686359167099, -0.12042242288589478, 0.01690557599067688, 0.20458851754665375, 0.08372139930725098, 0.07254569232463837, 0.0236162431538105, -0.04879440739750862, 0.010211420245468616, 0.037708718329668045, -0.0686349868774414, 0.032822925597429276, -0.1248563900589943, 0.03449467942118645, -0.008577791973948479, 0.12436963617801666, -0.09835115075111389, 0.014217514544725418, -0.1753753423690796, -0.015422840602695942, -0.03269396722316742, -0.05784007906913757, -0.11257720738649368, -0.06603407859802246, 0.02994263358414173, -0.09766007214784622, -0.05303233861923218, -0.02479202300310135, -0.10329461097717285, -0.0008629703079350293, 0.045386385172605515, 0.0547492578625679, -0.10937243700027466, -0.06124405935406685, 0.08060261607170105, -0.013958820141851902, 0.07729014754295349, 0.04823029041290283, -0.05647318437695503, 0.08084550499916077, -0.14249326288700104, -0.11217918992042542, 0.0715373232960701, 0.012011321261525154, 0.08645838499069214, 0.016264446079730988, 0.006923564709722996, 0.06594253331422806, 0.007847819477319717, 0.04597339779138565, 0.0019507452379912138, -0.10722078382968903, 0.017426669597625732, 0.01513566542416811, -0.12296707928180695, 0.01982063055038452, -0.08475609123706818, 0.13200309872627258, -0.07486012578010559, 0.13159026205539703, -0.0484512634575367, 0.021160248667001724, -0.12629885971546173, 0.017842687666416168, -0.06064259260892868, -0.1535007506608963, -0.07519461214542389, -0.01859966106712818, 0.005336684174835682, -0.02454289421439171, 0.23430657386779785, 0.08391255885362625, -0.07443144172430038, 0.06781987845897675, 0.04008927941322327, -0.008381889201700687, -0.00537219038233161, 0.20057016611099243, 0.014817800372838974, -0.06181533262133598, -0.09569287300109863, 0.05355997383594513, -0.004710820969194174, -0.06815414130687714, 0.09051362425088882, 0.1089104413986206, 0.07243208587169647, 0.03835507109761238, 0.0843275636434555, -0.03273425251245499, -0.06024431064724922, -0.19648230075836182, -0.020339075475931168, 0.07434237003326416, -0.01697203703224659, -0.05200304463505745, 0.17569980025291443, -0.03281139209866524, 0.0388525165617466, -0.08036508411169052, 0.00637404527515173, -0.1709703952074051, -0.13046398758888245, -0.0818382203578949, -0.055347222834825516, 0.002187883947044611, -0.04884792119264603, 0.003143428824841976, 0.10745321959257126, 0.037850357592105865, -0.03836483508348465, 0.07187864184379578, 0.028515469282865524, -0.025324800983071327, 0.0132627347484231, 0.03378914296627045, 0.017587963491678238, -0.061733588576316833, -0.002607495989650488, -0.1278763711452484, -0.007940826006233692, -0.06782500445842743, -0.0006724119884893298, -0.05052383989095688, 0.03583437204360962, -0.10249804705381393, -0.10403111577033997, -0.05312073975801468, 0.0072165061719715595, -0.019971877336502075, 0.08456313610076904, 0.008245921693742275, 0.050485167652368546, 0.04855545982718468, 0.1739550679922104, -0.056285761296749115, -0.11999597400426865, -0.05260586366057396, 0.16893337666988373, 0.007780720945447683, 0.06141001358628273, -0.0008094902150332928, 0.015051943250000477, -0.07314229756593704, 0.23802264034748077, 0.36269980669021606, -0.03039684146642685, 0.09878816455602646, 0.014932559803128242, 0.0037695609498769045, 0.006866013165563345, 0.11345569044351578, 0.081180140376091, 0.22856149077415466, -0.0782909095287323, 0.0203280970454216, -0.07192746549844742, 0.0010582675458863378, -0.09624478965997696, 0.005493991542607546, 0.03974740952253342, -0.02725783735513687, -0.03942658752202988, 0.061702899634838104, -0.09006039798259735, 0.022075269371271133, 0.06750493496656418, -0.1925891488790512, -0.0576685406267643, -0.007592036854475737, 0.15044863522052765, 0.012218899093568325, 0.05498522147536278, -0.06204594299197197, -0.005358158145099878, 0.02347307838499546, -0.009988884441554546, -0.16145776212215424, -0.04563358053565025, 0.10574255883693695, -0.000813603401184082, 0.167389377951622, -0.038182564079761505, 0.04914161190390587, 0.10359542816877365, 0.03578212857246399, -0.08180972188711166, 0.07255859673023224, 0.04672904312610626, -0.06536328792572021, -0.04047081992030144, -0.07085221260786057, 0.0159338116645813, -0.06863084435462952, 0.057261962443590164, -0.10662814229726791, 0.042127788066864014, -0.06456221640110016, -0.044417981058359146, -0.03230605646967888, 0.07978640496730804, -0.023842306807637215, 0.09732840955257416, 0.03711596131324768, -0.021140318363904953, -0.0406796894967556, -0.057747721672058105, -0.006715268362313509, 0.08127989619970322, -0.12402404844760895, -0.1207892969250679, -0.04117708280682564, -0.020187996327877045, 0.006530333310365677, -0.00792099628597498, -0.13863492012023926, -0.05397247523069382, -0.07846809178590775, -0.005218826234340668, -0.14102043211460114, 0.028515931218862534, 0.12040777504444122, 0.03800107538700104, 0.00020001627854071558, 0.006143919657915831, 0.009102629497647285, 0.032907046377658844, -0.14336857199668884, -0.08396632969379425 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz BERT and ELECTRA models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models πŸŽ‰ # Italian BERT The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/). Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in `config.json`. However, the model is working and all evaluations were done under those circumstances. See [this issue](https://github.com/dbmdz/berts/issues/7) for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for [BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt) | `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt) | `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt) | `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt) ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/italian-bertelectra). ## Usage With Transformers >= 2.3 our Italian BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the (recommended) Italian XXL BERT models, just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-xxl-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the Italian XXL ELECTRA model (discriminator), just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT/ELECTRA models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "it", "license": "mit", "datasets": ["wikipedia"]}
fill-mask
dbmdz/bert-base-italian-xxl-uncased
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "it", "dataset:wikipedia", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
+ dbmdz BERT and ELECTRA models =============================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models Italian BERT ============ The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the OPUS corpora collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the OSCAR corpus. Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in 'URL'. However, the model is working and all evaluations were done under those circumstances. See this issue for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for BERTurk. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Results ------- For results on downstream tasks like NER or PoS tagging, please refer to this repository. Usage ----- With Transformers >= 2.3 our Italian BERT models can be loaded like: To load the (recommended) Italian XXL BERT models, just use: To load the Italian XXL ELECTRA model (discriminator), just use: Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT/ELECTRA models just open an issue here Acknowledgments =============== Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 63 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #it #dataset-wikipedia #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.03144901990890503, 0.05854027345776558, -0.004188124090433121, 0.06036433205008507, 0.051557283848524094, 0.03873739391565323, 0.11041123420000076, 0.11060477793216705, 0.0863788053393364, -0.029641637578606606, 0.15443755686283112, 0.17204220592975616, -0.012625621631741524, 0.17014209926128387, -0.044999562203884125, -0.21072407066822052, 0.07855599373579025, 0.020639553666114807, -0.05758114904165268, 0.0963280126452446, 0.11153198778629303, -0.09529268741607666, 0.07312631607055664, -0.027606908231973648, -0.09869106858968735, 0.02841472066938877, 0.07728268951177597, -0.128292515873909, 0.16028107702732086, 0.024775950238108635, 0.1541043221950531, 0.0715877041220665, -0.005523725878447294, -0.058382708579301834, 0.04880261793732643, 0.033075954765081406, -0.09826786071062088, 0.05918964371085167, -0.007543542422354221, -0.003412701888009906, 0.01918160356581211, 0.017287692055106163, 0.03401283547282219, 0.03143518790602684, -0.13649532198905945, -0.22641871869564056, -0.043292004615068436, 0.07718246430158615, -0.005592833738774061, 0.041108593344688416, 0.020133988931775093, 0.22117376327514648, -0.11687124520540237, 0.08956889808177948, 0.15401144325733185, -0.3452942669391632, -0.014158590696752071, 0.12416345626115799, 0.09963758289813995, -0.03311759978532791, -0.06903373450040817, 0.06951580941677094, 0.04049041494727135, 0.023327240720391273, 0.156740203499794, -0.06454635411500931, -0.11232343316078186, 0.024779122322797775, -0.06444192677736282, -0.06058662384748459, 0.24154765903949738, -0.017528509721159935, 0.041595909744501114, -0.027407687157392502, -0.09137009084224701, 0.007568745408207178, 0.005233417730778456, -0.01410981547087431, -0.002625934546813369, 0.0439850352704525, -0.025206733494997025, -0.03678491711616516, -0.14961186051368713, 0.014721560291945934, -0.21681168675422668, 0.1460883468389511, 0.0022241633851081133, 0.08195005357265472, -0.15717004239559174, 0.04794975370168686, -0.03039838746190071, -0.13515789806842804, 0.0279084425419569, -0.07354824244976044, 0.044932346791028976, -0.0233241505920887, -0.036789488047361374, 0.008855697698891163, 0.11425842344760895, 0.1795344203710556, -0.01531186606734991, -0.02696632593870163, -0.004399584606289864, 0.10471630096435547, 0.038269203156232834, 0.03384626656770706, -0.05592123046517372, -0.03266245499253273, 0.07595837116241455, -0.07286292314529419, 0.033828407526016235, -0.043786585330963135, -0.1146988719701767, -0.03872992843389511, 0.05120108276605606, 0.06487059593200684, 0.09213831275701523, 0.07635670155286789, -0.04047691449522972, 0.04384591802954674, 0.11326323449611664, -0.06309189647436142, 0.023670870810747147, -0.0273696631193161, 0.06519407778978348, -0.026196355000138283, 0.03981487825512886, -0.018057534471154213, 0.038738369941711426, 0.08367914706468582, -0.10344544053077698, -0.04339142143726349, -0.02349952422082424, -0.10968120396137238, 0.07210395485162735, -0.08489822596311569, 0.04445529729127884, -0.20664772391319275, -0.12924428284168243, 0.06710048019886017, 0.06648959219455719, 0.0031082977075129747, -0.03812678903341293, 0.10534710437059402, -0.050859689712524414, 0.043306201696395874, -0.05750270560383797, -0.022046102210879326, -0.0801021084189415, 0.09301342815160751, -0.062158625572919846, 0.11640278249979019, -0.17355765402317047, 0.019326455891132355, -0.10700299590826035, 0.004467794205993414, -0.08820194005966187, -0.0950864925980568, -0.05050978437066078, 0.12027618288993835, 0.0033777474891394377, -0.023756666108965874, -0.09530726075172424, 0.04434765502810478, -0.01766241528093815, 0.12926118075847626, -0.15436215698719025, -0.041233740746974945, 0.19149872660636902, -0.11932158470153809, -0.19320830702781677, 0.09037571400403976, 0.003406671341508627, 0.06210070848464966, 0.023967741057276726, 0.143472358584404, 0.0214950293302536, -0.16092701256275177, 0.005376800894737244, 0.13087591528892517, -0.10077619552612305, -0.10540637373924255, 0.0422029122710228, 0.01352185383439064, -0.07983606308698654, 0.025786127895116806, 0.03632491081953049, 0.09048963338136673, -0.051843054592609406, -0.06692621856927872, -0.06027568131685257, -0.04632158577442169, 0.08938415348529816, 0.02295895479619503, 0.07142791152000427, -0.08804074674844742, -0.0506293810904026, -0.00774125661700964, 0.005537777673453093, 0.07491549104452133, 0.01573457010090351, -0.0700371041893959, 0.15276019275188446, -0.03181974217295647, -0.007995451800525188, -0.12478707730770111, -0.12022557854652405, -0.02801925130188465, 0.06113366410136223, -0.025082334876060486, 0.1317245215177536, 0.08310271799564362, -0.02972123958170414, -0.024850189685821533, -0.011585807427763939, 0.08702750504016876, 0.09271751344203949, -0.008627946488559246, -0.14053715765476227, 0.011878272518515587, -0.07517044246196747, -0.03331832215189934, -0.021331606432795525, 0.002725784434005618, 0.01869233325123787, 0.13801677525043488, -0.015113862231373787, 0.0574360117316246, -0.04713618382811546, -0.007016147021204233, -0.058433182537555695, -0.015670357272028923, 0.06405242532491684, 0.025655051693320274, -0.02180594764649868, 0.18959954380989075, -0.10559067130088806, 0.3904063105583191, 0.22533245384693146, -0.16992908716201782, -0.0469900481402874, 0.07227721065282822, -0.020012686029076576, 0.02008911594748497, -0.008221147581934929, -0.05014408007264137, -0.11294964700937271, -0.05279801785945892, 0.12118250131607056, -0.05677775666117668, -0.02497856318950653, 0.03579603135585785, -0.06537231802940369, -0.07346660643815994, -0.007879146374762058, 0.10057283937931061, -0.20648621022701263, 0.20758166909217834, 0.3370943069458008, 0.0016041017370298505, 0.16857531666755676, -0.015764424577355385, 0.01334374863654375, -0.02267409674823284, -0.071954645216465, -0.04447801783680916, 0.15765301883220673, -0.12539438903331757, 0.0005366833065636456, 0.07757876068353653, -0.015057948417961597, 0.006524246651679277, -0.13046082854270935, -0.07071764022111893, 0.019871026277542114, 0.03303470462560654, -0.0834750309586525, 0.12739069759845734, 0.027606187388300896, 0.12225323170423508, -0.023834584280848503, -0.11499354243278503, 0.08613267540931702, 0.013063579797744751, -0.03750155493617058, 0.14102493226528168, -0.13269661366939545, -0.2984454035758972, -0.05361165478825569, -0.09377358108758926, 0.034427642822265625, 0.002435486065223813, 0.09498973935842514, -0.016105838119983673, -0.0524451844394207, -0.009501424618065357, -0.0526929534971714, -0.026364993304014206, 0.06698987632989883, -0.08291114866733551, 0.0265326090157032, -0.011920190416276455, -0.0925455391407013, -0.08490684628486633, 0.013155301101505756, -0.03193218633532524, 0.13952812552452087, -0.01455309521406889, 0.06689346581697464, 0.05807040259242058, -0.03954888880252838, 0.03610776737332344, -0.050470709800720215, 0.2034851461648941, -0.06095454841852188, 0.07059455662965775, 0.16722947359085083, 0.00034867561771534383, 0.050391945987939835, 0.2171790450811386, 0.049416568130254745, -0.02912399359047413, -0.0035983100533485413, -0.05426141619682312, -0.10095076262950897, -0.1346467286348343, -0.09474164992570877, -0.11796128749847412, 0.01666877418756485, 0.059089295566082, 0.07316222786903381, 0.12278780341148376, 0.06504905968904495, 0.01870509423315525, -0.033289410173892975, -0.05174848064780235, 0.03319428861141205, 0.1362489014863968, -0.03811149299144745, 0.12117476761341095, -0.055135998874902725, -0.08933935314416885, 0.08425705879926682, 0.045832883566617966, 0.051958344876766205, 0.07261020690202713, -0.035726822912693024, 0.07683989405632019, 0.23767052590847015, 0.09993770718574524, 0.13585761189460754, 0.03799533471465111, -0.07357838749885559, -0.01476721465587616, -0.03972688317298889, 0.021265795454382896, 0.03373446315526962, 0.07592004537582397, -0.07478447258472443, -0.014178633689880371, -0.14880473911762238, 0.05133147910237312, 0.10089993476867676, 0.08351755887269974, -0.22767697274684906, 0.0050148251466453075, 0.0603671558201313, 0.01884431205689907, -0.05598069727420807, 0.040486495941877365, 0.07850667089223862, -0.07171114534139633, 0.057137347757816315, -0.016195015981793404, 0.054731398820877075, 0.11314485967159271, 0.059613220393657684, -0.011893562972545624, -0.09518411755561829, 0.00832071341574192, 0.05203060805797577, -0.26882606744766235, 0.2720224857330322, -0.001259648590348661, -0.025494784116744995, -0.0732392817735672, -0.01791258342564106, 0.04706120863556862, 0.15806648135185242, 0.14525389671325684, 0.03873208537697792, -0.07296478003263474, -0.09295020252466202, -0.0014682351611554623, 0.016040237620472908, 0.010875867679715157, -0.0004254695086274296, -0.009264419786632061, -0.05298523232340813, -0.021411139518022537, 0.04106349125504494, 0.18481747806072235, -0.06904920190572739, -0.10553858429193497, 0.043943557888269424, 0.08616431057453156, -0.0018871626816689968, -0.05199446156620979, -0.0706803947687149, -0.1469653695821762, 0.15312573313713074, 0.01307235099375248, -0.02674057148396969, -0.11896248906850815, -0.07301674783229828, 0.08429568260908127, -0.06522175669670105, 0.08853866904973984, -0.07370575517416, 0.022650204598903656, -0.0900392085313797, -0.1672184318304062, 0.14997068047523499, -0.15274344384670258, -0.02674228325486183, -0.0989171490073204, 0.09248842298984528, -0.09865066409111023, 0.04431848227977753, 0.055093247443437576, 0.05554470419883728, -0.0948527529835701, -0.05225265026092529, 0.03290088474750519, -0.07247074693441391, 0.05558758229017258, -0.031211799010634422, -0.061044465750455856, -0.11053448170423508, 0.08361943066120148, -0.007295351475477219, 0.19607241451740265, 0.23635821044445038, -0.11197329312562943, 0.12184832245111465, 0.13546445965766907, -0.025089509785175323, -0.3595547378063202, -0.11624498665332794, -0.17609205842018127, -0.01060901116579771, 0.08956968039274216, -0.02859932743012905, 0.07481575757265091, -0.013153026811778545, -0.09035028517246246, 0.09789188206195831, -0.14695404469966888, -0.09083974361419678, 0.21613535284996033, 0.018660401925444603, 0.3399328589439392, -0.14511457085609436, -0.024024315178394318, -0.009512635879218578, -0.11091649532318115, 0.15369760990142822, -0.10533967614173889, 0.05911485478281975, -0.013909237459301949, 0.004139552358537912, 0.012183205224573612, -0.07813585549592972, 0.09954077750444412, -0.10108282417058945, 0.0321965292096138, -0.11407190561294556, -0.0811825767159462, 0.12100551277399063, -0.025202220305800438, 0.035652369260787964, -0.04711417853832245, 0.012638144195079803, -0.02103186398744583, 0.01458238810300827, -0.12779991328716278, 0.1409309208393097, -0.01114159356802702, -0.0891025960445404, -0.013689546845853329, 0.0447087436914444, -0.011901319026947021, -0.05258827656507492, 0.20707644522190094, 0.017609955742955208, 0.2205880731344223, 0.13022127747535706, 0.01245747972279787, -0.14182347059249878, -0.05552227050065994, 0.004726429004222155, -0.09754383563995361, 0.07945490628480911, -0.07810647785663605, 0.03913445025682449, 0.05111776292324066, 0.001342486939392984, 0.06283694505691528, 0.09253716468811035, -0.024310005828738213, -0.04345175251364708, 0.18278281390666962, -0.21058645844459534, -0.03082706592977047, -0.0076413387432694435, 0.00901560578495264, 0.03737424314022064, 0.013118859380483627, 0.09628792852163315, -0.0349426232278347, -0.025654003024101257, -0.010936541482806206, 0.018751977011561394, -0.06672031432390213, 0.0308033749461174, 0.10096185654401779, 0.042084451764822006, -0.09766431152820587, 0.024060342460870743, 0.0007986105047166348, -0.11456049978733063, -0.005025430582463741, 0.05746957287192345, -0.09132248908281326, -0.14922763407230377, 0.009266253560781479, 0.018580442294478416, -0.049363743513822556, -0.0565616674721241, -0.0344686359167099, -0.12042242288589478, 0.01690557599067688, 0.20458851754665375, 0.08372139930725098, 0.07254569232463837, 0.0236162431538105, -0.04879440739750862, 0.010211420245468616, 0.037708718329668045, -0.0686349868774414, 0.032822925597429276, -0.1248563900589943, 0.03449467942118645, -0.008577791973948479, 0.12436963617801666, -0.09835115075111389, 0.014217514544725418, -0.1753753423690796, -0.015422840602695942, -0.03269396722316742, -0.05784007906913757, -0.11257720738649368, -0.06603407859802246, 0.02994263358414173, -0.09766007214784622, -0.05303233861923218, -0.02479202300310135, -0.10329461097717285, -0.0008629703079350293, 0.045386385172605515, 0.0547492578625679, -0.10937243700027466, -0.06124405935406685, 0.08060261607170105, -0.013958820141851902, 0.07729014754295349, 0.04823029041290283, -0.05647318437695503, 0.08084550499916077, -0.14249326288700104, -0.11217918992042542, 0.0715373232960701, 0.012011321261525154, 0.08645838499069214, 0.016264446079730988, 0.006923564709722996, 0.06594253331422806, 0.007847819477319717, 0.04597339779138565, 0.0019507452379912138, -0.10722078382968903, 0.017426669597625732, 0.01513566542416811, -0.12296707928180695, 0.01982063055038452, -0.08475609123706818, 0.13200309872627258, -0.07486012578010559, 0.13159026205539703, -0.0484512634575367, 0.021160248667001724, -0.12629885971546173, 0.017842687666416168, -0.06064259260892868, -0.1535007506608963, -0.07519461214542389, -0.01859966106712818, 0.005336684174835682, -0.02454289421439171, 0.23430657386779785, 0.08391255885362625, -0.07443144172430038, 0.06781987845897675, 0.04008927941322327, -0.008381889201700687, -0.00537219038233161, 0.20057016611099243, 0.014817800372838974, -0.06181533262133598, -0.09569287300109863, 0.05355997383594513, -0.004710820969194174, -0.06815414130687714, 0.09051362425088882, 0.1089104413986206, 0.07243208587169647, 0.03835507109761238, 0.0843275636434555, -0.03273425251245499, -0.06024431064724922, -0.19648230075836182, -0.020339075475931168, 0.07434237003326416, -0.01697203703224659, -0.05200304463505745, 0.17569980025291443, -0.03281139209866524, 0.0388525165617466, -0.08036508411169052, 0.00637404527515173, -0.1709703952074051, -0.13046398758888245, -0.0818382203578949, -0.055347222834825516, 0.002187883947044611, -0.04884792119264603, 0.003143428824841976, 0.10745321959257126, 0.037850357592105865, -0.03836483508348465, 0.07187864184379578, 0.028515469282865524, -0.025324800983071327, 0.0132627347484231, 0.03378914296627045, 0.017587963491678238, -0.061733588576316833, -0.002607495989650488, -0.1278763711452484, -0.007940826006233692, -0.06782500445842743, -0.0006724119884893298, -0.05052383989095688, 0.03583437204360962, -0.10249804705381393, -0.10403111577033997, -0.05312073975801468, 0.0072165061719715595, -0.019971877336502075, 0.08456313610076904, 0.008245921693742275, 0.050485167652368546, 0.04855545982718468, 0.1739550679922104, -0.056285761296749115, -0.11999597400426865, -0.05260586366057396, 0.16893337666988373, 0.007780720945447683, 0.06141001358628273, -0.0008094902150332928, 0.015051943250000477, -0.07314229756593704, 0.23802264034748077, 0.36269980669021606, -0.03039684146642685, 0.09878816455602646, 0.014932559803128242, 0.0037695609498769045, 0.006866013165563345, 0.11345569044351578, 0.081180140376091, 0.22856149077415466, -0.0782909095287323, 0.0203280970454216, -0.07192746549844742, 0.0010582675458863378, -0.09624478965997696, 0.005493991542607546, 0.03974740952253342, -0.02725783735513687, -0.03942658752202988, 0.061702899634838104, -0.09006039798259735, 0.022075269371271133, 0.06750493496656418, -0.1925891488790512, -0.0576685406267643, -0.007592036854475737, 0.15044863522052765, 0.012218899093568325, 0.05498522147536278, -0.06204594299197197, -0.005358158145099878, 0.02347307838499546, -0.009988884441554546, -0.16145776212215424, -0.04563358053565025, 0.10574255883693695, -0.000813603401184082, 0.167389377951622, -0.038182564079761505, 0.04914161190390587, 0.10359542816877365, 0.03578212857246399, -0.08180972188711166, 0.07255859673023224, 0.04672904312610626, -0.06536328792572021, -0.04047081992030144, -0.07085221260786057, 0.0159338116645813, -0.06863084435462952, 0.057261962443590164, -0.10662814229726791, 0.042127788066864014, -0.06456221640110016, -0.044417981058359146, -0.03230605646967888, 0.07978640496730804, -0.023842306807637215, 0.09732840955257416, 0.03711596131324768, -0.021140318363904953, -0.0406796894967556, -0.057747721672058105, -0.006715268362313509, 0.08127989619970322, -0.12402404844760895, -0.1207892969250679, -0.04117708280682564, -0.020187996327877045, 0.006530333310365677, -0.00792099628597498, -0.13863492012023926, -0.05397247523069382, -0.07846809178590775, -0.005218826234340668, -0.14102043211460114, 0.028515931218862534, 0.12040777504444122, 0.03800107538700104, 0.00020001627854071558, 0.006143919657915831, 0.009102629497647285, 0.032907046377658844, -0.14336857199668884, -0.08396632969379425 ]
null
null
transformers
# Historic Language Models (HLMs) ## Languages Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: | Language | Training data | Size | -------- | ------------- | ---- | German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered) | French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered) | English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered) | Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB | Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB ## Models At the moment, the following models are available on the model hub: | Model identifier | Model Hub link | --------------------------------------------- | -------------------------------------------------------------------------- | `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) | `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased) | `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased) | `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased) # Corpora Stats ## German Europeana Corpus We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: | OCR confidence | Size | -------------- | ---- | **0.60** | 28GB | 0.65 | 18GB | 0.70 | 13GB For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: ![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png) ## French Europeana Corpus Like German, we use different ocr confidence thresholds: | OCR confidence | Size | -------------- | ---- | 0.60 | 31GB | 0.65 | 27GB | **0.70** | 27GB | 0.75 | 23GB | 0.80 | 11GB For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: ![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png) ## British Library Corpus Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering: | Years | Size | ----------------- | ---- | ALL | 24GB | >= 1800 && < 1900 | 24GB We use the year filtered variant. The following plot shows a tokens per year distribution: ![British Library Corpus Stats](stats/figures/bl_corpus_stats.png) ## Finnish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.2GB The following plot shows a tokens per year distribution: ![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png) ## Swedish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.1GB The following plot shows a tokens per year distribution: ![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png) ## All Corpora The following plot shows a tokens per year distribution of the complete training corpus: ![All Corpora Stats](stats/figures/all_corpus_stats.png) # Multilingual Vocab generation For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: | Language | Size | -------- | ---- | German | 10GB | French | 10GB | English | 10GB | Finnish | 9.5GB | Swedish | 9.7GB We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora: | Language | NER corpora | -------- | ------------------ | German | CLEF-HIPE, NewsEye | French | CLEF-HIPE, NewsEye | English | CLEF-HIPE | Finnish | NewsEye | Swedish | NewsEye Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.43 | 0.0004 | French | 1.25 | 0.0001 | English | 1.25 | 0.0 | Finnish | 1.69 | 0.0007 | Swedish | 1.43 | 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.31 | 0.0004 | French | 1.16 | 0.0001 | English | 1.17 | 0.0 | Finnish | 1.54 | 0.0007 | Swedish | 1.32 | 0.0 # Final pretraining corpora We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: | Language | Size | -------- | ---- | German | 28GB | French | 27GB | English | 24GB | Finnish | 27GB | Swedish | 27GB Total size is 130GB. # Pretraining ## Multilingual model We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: ```bash python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \ --output_dir gs://histolectra/bert-base-historic-multilingual-cased \ --bert_config_file ./config.json \ --max_seq_length=512 \ --max_predictions_per_seq=75 \ --do_train=True \ --train_batch_size=128 \ --num_train_steps=3000000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=100000 \ --keep_checkpoint_max=20 \ --use_tpu=True \ --tpu_name=electra-2 \ --num_tpu_cores=32 ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png) ## English model The English BERT model - with texts from British Library corpus - was trained with the Hugging Face JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-historic-english-cased/ \ --tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \ --train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \ --validation_file /mnt/datasets/bl-corpus/english_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 10 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic_english.png) ## Finnish model The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \ --validation_file /mnt/datasets/hlms/finnish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png) ## Swedish model The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \ --validation_file /mnt/datasets/hlms/swedish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png) # Acknowledgments Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "swedish", "license": "mit", "widget": [{"text": "Det vore [MASK] h\u00e4ller n\u00f6dv\u00e4ndigt att be"}]}
fill-mask
dbmdz/bert-base-swedish-europeana-cased
[ "transformers", "pytorch", "jax", "tensorboard", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "swedish" ]
TAGS #transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us
Historic Language Models (HLMs) =============================== Languages --------- Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: Language: German, Training data: Europeana, Size: 13-28GB (filtered) Language: French, Training data: Europeana, Size: 11-31GB (filtered) Language: English, Training data: British Library, Size: 24GB (year filtered) Language: Finnish, Training data: Europeana, Size: 1.2GB Language: Swedish, Training data: Europeana, Size: 1.1GB Models ------ At the moment, the following models are available on the model hub: Corpora Stats ============= German Europeana Corpus ----------------------- We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: !German Europeana Corpus Stats French Europeana Corpus ----------------------- Like German, we use different ocr confidence thresholds: For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: !French Europeana Corpus Stats British Library Corpus ---------------------- Metadata is taken from here. Stats incl. year filtering: We use the year filtered variant. The following plot shows a tokens per year distribution: !British Library Corpus Stats Finnish Europeana Corpus ------------------------ The following plot shows a tokens per year distribution: !Finnish Europeana Corpus Stats Swedish Europeana Corpus ------------------------ The following plot shows a tokens per year distribution: !Swedish Europeana Corpus Stats All Corpora ----------- The following plot shows a tokens per year distribution of the complete training corpus: !All Corpora Stats Multilingual Vocab generation ============================= For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: We then calculate the subword fertility rate and portion of '[UNK]'s over the following NER corpora: Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: Language: German, Subword fertility: 1.43, Unknown portion: 0.0004 Language: French, Subword fertility: 1.25, Unknown portion: 0.0001 Language: English, Subword fertility: 1.25, Unknown portion: 0.0 Language: Finnish, Subword fertility: 1.69, Unknown portion: 0.0007 Language: Swedish, Subword fertility: 1.43, Unknown portion: 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: Language: German, Subword fertility: 1.31, Unknown portion: 0.0004 Language: French, Subword fertility: 1.16, Unknown portion: 0.0001 Language: English, Subword fertility: 1.17, Unknown portion: 0.0 Language: Finnish, Subword fertility: 1.54, Unknown portion: 0.0007 Language: Swedish, Subword fertility: 1.32, Unknown portion: 0.0 Final pretraining corpora ========================= We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: Total size is 130GB. Pretraining =========== Multilingual model ------------------ We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: The following plot shows the pretraining loss curve: !Training loss curve English model ------------- The English BERT model - with texts from British Library corpus - was trained with the Hugging Face JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: The following plot shows the pretraining loss curve: !Training loss curve Finnish model ------------- The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: The following plot shows the pretraining loss curve: !Training loss curve Swedish model ------------- The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: The following plot shows the pretraining loss curve: !Training loss curve Acknowledgments =============== Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 48 ]
[ "passage: TAGS\n#transformers #pytorch #jax #tensorboard #bert #fill-mask #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.051839087158441544, 0.05754934996366501, -0.007044851314276457, 0.041297439485788345, 0.09591711312532425, 0.03318804129958153, 0.16328027844429016, 0.10409025847911835, 0.11346999555826187, -0.02286713197827339, 0.15823522210121155, 0.23975786566734314, -0.00003775725053856149, 0.08866453915834427, -0.04481581225991249, -0.25359246134757996, 0.03618115931749344, 0.0695963203907013, -0.05953308194875717, 0.10630111396312714, 0.0596819743514061, -0.08269041031599045, 0.052472591400146484, 0.01378200389444828, -0.14518128335475922, 0.02707573026418686, 0.07519200444221497, -0.10383649915456772, 0.12508544325828552, 0.0433732271194458, 0.17881076037883759, 0.06339889019727707, -0.017478372901678085, -0.07896658778190613, 0.04197794571518898, 0.004860857967287302, -0.09716035425662994, 0.06864118576049805, 0.027406109496951103, -0.03776439651846886, -0.003476001787930727, 0.06514570116996765, 0.04294067621231079, 0.04420726001262665, -0.12576407194137573, -0.1709623485803604, -0.0360589362680912, 0.054294403642416, 0.04851033538579941, 0.04180488735437393, 0.03695087879896164, 0.1995430886745453, -0.09633425623178482, 0.07450947165489197, 0.11653825640678406, -0.36659589409828186, -0.008363665081560612, 0.10942085832357407, 0.10457140952348709, -0.03534732386469841, -0.06376351416110992, 0.050919707864522934, 0.02920958772301674, 0.014826401136815548, 0.08352810889482498, -0.07175076752901077, -0.014460613951086998, 0.02491201087832451, -0.06551115214824677, -0.03304477035999298, 0.13222791254520416, -0.038642678409814835, 0.03505551069974899, -0.02563815377652645, -0.08383870124816895, -0.05164634808897972, -0.029250452294945717, -0.021677307784557343, -0.01075158454477787, 0.06485699862241745, -0.04472553730010986, -0.04322175681591034, -0.1437714695930481, 0.0076313200406730175, -0.21628887951374054, 0.16907206177711487, 0.02317557856440544, 0.07413893193006516, -0.1858559548854828, 0.04917579144239426, -0.007590844761580229, -0.11577427387237549, 0.045862987637519836, -0.06356300413608551, 0.03290265426039696, -0.011133072897791862, -0.027505923062562943, -0.0779840424656868, 0.07944668084383011, 0.17087888717651367, 0.06365145742893219, 0.03157023340463638, 0.015674419701099396, 0.1266307681798935, -0.011389723047614098, 0.08015039563179016, 0.02824932336807251, 0.01610643044114113, 0.05071786418557167, -0.10003328323364258, 0.04134458303451538, -0.05608224496245384, -0.16160239279270172, -0.015702534466981888, 0.005432740319520235, 0.07704494893550873, 0.02900170162320137, 0.05996039882302284, -0.07861769944429398, 0.010046935640275478, 0.10924363881349564, -0.05051092803478241, 0.028501121327280998, -0.019385457038879395, 0.06689273566007614, 0.05005209147930145, 0.01764431782066822, -0.017253749072551727, 0.021859822794795036, 0.13077451288700104, -0.09576339274644852, -0.02259950153529644, -0.06218148022890091, -0.06952331960201263, 0.06361450999975204, -0.13742409646511078, 0.032379306852817535, -0.1531393676996231, -0.12872178852558136, 0.0583975687623024, 0.07879997044801712, -0.0029057052452117205, -0.026596834883093834, 0.05234909430146217, -0.015052029862999916, 0.035987064242362976, -0.04892256110906601, -0.03233768045902252, -0.040373124182224274, 0.09831603616476059, -0.03175034746527672, 0.08473435044288635, -0.132827490568161, 0.032071348279714584, -0.08683327585458755, 0.010430431924760342, -0.10835381597280502, -0.07438201457262039, -0.0563921257853508, 0.14807508885860443, -0.01091169472783804, -0.02032788284122944, -0.09476069360971451, 0.0321950800716877, -0.013892212882637978, 0.12639537453651428, -0.12116212397813797, -0.10733946412801743, 0.20915240049362183, -0.10810822993516922, -0.156493678689003, 0.08271043002605438, -0.004864166956394911, 0.050146594643592834, 0.04925102740526199, 0.12580396234989166, 0.053800199180841446, -0.18147921562194824, 0.08178479224443436, 0.11974798887968063, -0.1459348350763321, -0.18781527876853943, 0.029233399778604507, -0.022758232429623604, -0.0795423686504364, 0.04159080237150192, 0.06728886067867279, 0.10079384595155716, -0.050104327499866486, -0.06692779064178467, -0.017265694215893745, -0.023115774616599083, 0.09473375976085663, 0.0565795935690403, 0.10753615945577621, -0.07294490188360214, -0.05410412698984146, 0.023177023977041245, -0.018046695739030838, 0.052323512732982635, 0.02665993943810463, -0.10995971411466599, 0.11724098026752472, -0.05950678139925003, -0.01724715158343315, -0.1377701610326767, -0.1042751744389534, -0.014335145242512226, 0.01023098174482584, 0.004034374374896288, 0.1414593756198883, 0.11034344136714935, -0.036746613681316376, -0.012011022306978703, -0.0007765699992887676, 0.12691988050937653, 0.04082172363996506, -0.048998214304447174, -0.14070849120616913, 0.01667923294007778, -0.08377831429243088, -0.03244642913341522, -0.026370462030172348, 0.016483787447214127, 0.028443288058042526, 0.10919671505689621, 0.002071693539619446, 0.041054923087358475, -0.0700719952583313, 0.005429381504654884, -0.0364571288228035, 0.007942723110318184, 0.11245082318782806, 0.03030509501695633, -0.06307957321405411, 0.1839832216501236, -0.1323608011007309, 0.32725489139556885, 0.2046183943748474, -0.19289125502109528, -0.019637007266283035, 0.0009156471351161599, -0.024633921682834625, -0.007956132292747498, 0.0386410616338253, -0.0053722793236374855, 0.014699874445796013, -0.004269861616194248, 0.1440020352602005, -0.024756651371717453, -0.03608123958110809, 0.03660302236676216, -0.05308288335800171, -0.06696303933858871, 0.017729435116052628, 0.17938023805618286, -0.15947386622428894, 0.186334028840065, 0.2784985601902008, -0.019922513514757156, 0.17141041159629822, -0.017979402095079422, 0.009529639966785908, -0.016522187739610672, -0.03248045593500137, -0.0017459237715229392, 0.10581375658512115, -0.16977661848068237, -0.02442942187190056, 0.05657196417450905, -0.04820196330547333, 0.0367211252450943, -0.1557922065258026, -0.06153831258416176, 0.0046255639754235744, 0.03477578982710838, -0.03999156504869461, 0.11825788766145706, 0.005560677964240313, 0.06265360116958618, -0.029660245403647423, -0.12107476592063904, 0.1185598075389862, 0.003983780741691589, -0.04350627213716507, 0.13773678243160248, -0.11095631122589111, -0.25883549451828003, -0.13851222395896912, -0.14722876250743866, 0.032133907079696655, 0.012513358145952225, 0.0875658169388771, -0.043020691722631454, -0.044536370784044266, 0.05340518057346344, -0.0527057982981205, -0.033743273466825485, 0.05804596096277237, -0.09910064190626144, 0.026906810700893402, -0.039901137351989746, -0.09379890561103821, -0.07148706912994385, -0.034090571105480194, -0.022384006530046463, 0.11453430354595184, -0.04843152314424515, 0.06025031954050064, 0.1229909211397171, 0.0012367932358756661, 0.04999570548534393, -0.03751353546977043, 0.14375580847263336, -0.058938167989254, 0.011961431242525578, 0.14838910102844238, -0.02548835799098015, 0.08804616332054138, 0.17703141272068024, 0.0717308446764946, -0.040495675057172775, -0.01974266953766346, -0.04183902218937874, -0.1138993352651596, -0.1841747760772705, -0.06022971495985985, -0.12477733194828033, 0.011241169646382332, 0.0656278133392334, 0.0810658186674118, 0.15626436471939087, 0.09519478678703308, 0.04322393983602524, -0.0052810064516961575, -0.041275665163993835, 0.05319063365459442, 0.17378507554531097, -0.024185262620449066, 0.13222216069698334, -0.06188523396849632, -0.12739427387714386, 0.052776601165533066, 0.05350898951292038, 0.09967032074928284, 0.1358156055212021, 0.07174052298069, 0.07048027962446213, 0.19707077741622925, 0.15132512152194977, 0.11540325731039047, 0.009118536487221718, -0.07258951663970947, -0.012697822414338589, -0.026483604684472084, 0.0018536752322688699, 0.03314098343253136, 0.13619084656238556, -0.0936734527349472, -0.003583400510251522, -0.15562011301517487, 0.021646199747920036, 0.10743267834186554, 0.044912099838256836, -0.23810602724552155, 0.021326176822185516, 0.058489538729190826, 0.016327740624547005, -0.0408952459692955, 0.03618145361542702, -0.018795009702444077, -0.08605646342039108, 0.052121520042419434, -0.08796849846839905, 0.07939128577709198, 0.05301116034388542, 0.05718093365430832, 0.01501370407640934, -0.05106685310602188, 0.029419032856822014, 0.06364542990922928, -0.26543474197387695, 0.25326597690582275, 0.00487210787832737, 0.0043363976292312145, -0.07396209985017776, 0.006647484377026558, 0.04047825187444687, 0.11821144074201584, 0.12877273559570312, 0.005635477136820555, -0.05992585048079491, -0.08850368857383728, -0.011659959331154823, 0.022363774478435516, 0.05690794810652733, -0.02064673788845539, -0.041216276586055756, -0.03176962956786156, -0.03796757757663727, 0.025560200214385986, 0.0741967260837555, -0.023853270336985588, -0.14801272749900818, 0.07090052217245102, 0.048615556210279465, -0.05302291736006737, -0.014554938301444054, -0.07732009142637253, -0.1491258442401886, 0.1990075260400772, -0.06817089021205902, -0.038704097270965576, -0.10542717576026917, -0.11808627098798752, 0.04854150861501694, -0.08662097901105881, 0.07648878544569016, -0.07729719579219818, 0.003190411953255534, -0.0940379798412323, -0.18273860216140747, 0.16613228619098663, -0.11264490336179733, -0.0028398162685334682, -0.11429493874311447, 0.1359773725271225, -0.07341937720775604, 0.04110720381140709, 0.019658420234918594, 0.033366985619068146, -0.07361281663179398, -0.05781092122197151, 0.03920722380280495, -0.06033698841929436, 0.03932926431298256, -0.0902203693985939, -0.06301779299974442, -0.020242007449269295, 0.037884000688791275, 0.010747263208031654, 0.20396296679973602, 0.2425672858953476, -0.08453952521085739, 0.16882392764091492, 0.17954322695732117, -0.06344646960496902, -0.32538944482803345, -0.10425965487957001, -0.14501461386680603, -0.01634250581264496, 0.05451434105634689, -0.11082664877176285, 0.08978450298309326, 0.008248848840594292, -0.07513584196567535, 0.14275631308555603, -0.19474728405475616, -0.11187044531106949, 0.20845681428909302, 0.05579433590173721, 0.3933327794075012, -0.13834621012210846, -0.07903703302145004, -0.009891088120639324, -0.14639325439929962, 0.13047440350055695, -0.00960923358798027, 0.08409277349710464, -0.016912955790758133, 0.037252143025398254, 0.012626886367797852, -0.0973510667681694, 0.09767425805330276, -0.058244552463293076, 0.03351347893476486, -0.09784480184316635, -0.08591212332248688, 0.1170773133635521, -0.001281982404179871, -0.0034382434096187353, -0.0754755288362503, -0.02535209245979786, -0.021615367382764816, -0.016926495358347893, -0.08591051399707794, 0.12156950682401657, 0.007478289306163788, -0.07721824198961258, 0.011062739416956902, 0.0038660054560750723, -0.0330260768532753, -0.03820240870118141, 0.25861606001853943, 0.0170921441167593, 0.18053272366523743, 0.11620441824197769, 0.030003072693943977, -0.1481519639492035, -0.104375921189785, -0.059928957372903824, -0.09123123437166214, 0.09249807149171829, -0.0357370525598526, 0.027171293273568153, 0.10260025411844254, 0.0031277118250727654, 0.07188498228788376, 0.10620100051164627, -0.024698913097381592, -0.02230875939130783, 0.15182016789913177, -0.18328966200351715, -0.033344004303216934, 0.006184643134474754, 0.011690312065184116, 0.061225686222314835, 0.06334849447011948, 0.0791446641087532, 0.007221914362162352, -0.024311354383826256, 0.022815369069576263, -0.0005053107161074877, -0.05260808765888214, 0.03716006129980087, 0.06872495263814926, 0.0327146053314209, -0.10883650183677673, 0.013456217013299465, -0.0019058872712776065, -0.2148330956697464, -0.022956423461437225, 0.08037687838077545, -0.09310910105705261, -0.11530756205320358, 0.017102990299463272, 0.113884337246418, -0.0841464102268219, -0.04327096790075302, -0.07041926681995392, -0.11280620843172073, 0.0430489256978035, 0.1925356388092041, 0.08974827826023102, 0.07247795909643173, -0.02806892618536949, -0.0164092555642128, -0.017467768862843513, 0.017731059342622757, -0.050591472536325455, 0.04203501716256142, -0.10063640773296356, -0.0031517846509814262, 0.012646375223994255, 0.11142874509096146, -0.0931754782795906, -0.024791259318590164, -0.17504200339317322, 0.021976035088300705, -0.037535302340984344, -0.06035265699028969, -0.11085670441389084, -0.06535400450229645, 0.027930792421102524, -0.06336884945631027, -0.057974524796009064, -0.028940336778759956, -0.12112385779619217, 0.016414426267147064, 0.053685106337070465, 0.026378681883215904, -0.08713769167661667, -0.035030003637075424, 0.0878349021077156, -0.021211396902799606, 0.06460617482662201, 0.07175175100564957, -0.0402694009244442, 0.09869219362735748, -0.14973975718021393, -0.07678456604480743, 0.07971728593111038, 0.014169992879033089, 0.07108218967914581, 0.05858078971505165, 0.015226340852677822, 0.06820400059223175, 0.026210330426692963, 0.04431380331516266, 0.01753648743033409, -0.12533506751060486, 0.041553743183612823, 0.013296058401465416, -0.16332706809043884, -0.0298130102455616, -0.07173781096935272, 0.08729584515094757, -0.01501238252967596, 0.16193018853664398, -0.04326019436120987, 0.05969846248626709, -0.08368222415447235, 0.015430950559675694, -0.019609758630394936, -0.13675250113010406, -0.01440459955483675, -0.048768334090709686, -0.01726621389389038, -0.02894338220357895, 0.21556170284748077, 0.034025728702545166, -0.07295025140047073, 0.05880950018763542, 0.05583763122558594, -0.007627020590007305, -0.004625181667506695, 0.20452307164669037, 0.04921839013695717, -0.030866626650094986, -0.08676791191101074, 0.0849846750497818, 0.002669571666046977, -0.037294305860996246, 0.11639133095741272, 0.07645279914140701, 0.0235174261033535, 0.08199748396873474, 0.07498408854007721, 0.024055490270256996, -0.10256751626729965, -0.12409424781799316, -0.020988034084439278, 0.07267990708351135, 0.015765473246574402, 0.061739638447761536, 0.17407315969467163, -0.01526327058672905, 0.0382017157971859, -0.05325338989496231, -0.026040609925985336, -0.18832086026668549, -0.1911710947751999, -0.07335403561592102, -0.05790076404809952, 0.03999705612659454, 0.011681041680276394, -0.0029665471520274878, 0.08131464570760727, 0.04593855142593384, -0.04019766300916672, 0.06636624783277512, 0.016111889854073524, -0.0026994480285793543, -0.0064181974157691, 0.01357024535536766, -0.012806694954633713, -0.047783851623535156, 0.0009643658995628357, -0.1458704173564911, -0.024162521585822105, -0.054115138947963715, -0.006142050959169865, -0.03249034658074379, 0.02736322395503521, -0.07529088109731674, -0.12222789973020554, -0.04713910073041916, 0.024412820115685463, -0.00910845398902893, 0.08779486268758774, 0.0005544011946767569, 0.056242428719997406, 0.017034195363521576, 0.11104237288236618, -0.05557795241475105, -0.067995086312294, -0.034098390489816666, 0.17240868508815765, 0.028613146394491196, 0.07676767557859421, 0.006966684479266405, 0.025836698710918427, -0.04986418038606644, 0.27340570092201233, 0.34872251749038696, -0.028487324714660645, 0.07248261570930481, 0.04611162096261978, 0.014016358181834221, 0.026035044342279434, 0.12757743895053864, 0.043587591499090195, 0.2774013876914978, -0.10004895180463791, -0.027175065129995346, -0.05126895010471344, -0.02630932442843914, -0.10253342241048813, 0.031530920416116714, 0.025629648938775063, -0.03382710739970207, -0.03744705766439438, 0.07364004850387573, -0.13574041426181793, 0.0781281366944313, 0.09348227083683014, -0.16991128027439117, -0.054955340921878815, -0.0016502125654369593, 0.20376285910606384, -0.002897647675126791, 0.08135446906089783, -0.04521779716014862, -0.050024330615997314, 0.02881374955177307, 0.003952203318476677, -0.22811630368232727, -0.045949339866638184, 0.09744052588939667, -0.00003140247645205818, 0.1293671429157257, -0.03242747485637665, 0.053703803569078445, 0.09328465163707733, 0.07485628873109818, -0.038082055747509, 0.03144281730055809, 0.029686324298381805, -0.11715757846832275, -0.03903829678893089, -0.04384990781545639, 0.011899519711732864, -0.08750861138105392, 0.025666406378149986, -0.09675184637308121, 0.05073103681206703, -0.15704932808876038, -0.05274903029203415, -0.030182145535945892, 0.07677976042032242, -0.04176807031035423, 0.07733786851167679, 0.034905530512332916, 0.033319562673568726, -0.057139553129673004, -0.0438762828707695, -0.017986563965678215, 0.09237773716449738, -0.12231916934251785, -0.14325374364852905, -0.06759541481733322, -0.03438451513648033, 0.020126324146986008, -0.007274150382727385, -0.17977534234523773, -0.05907084420323372, -0.10031711310148239, -0.006800706963986158, -0.16756941378116608, 0.013188323006033897, 0.11622919142246246, 0.049342717975378036, -0.0021123301703482866, -0.06798454374074936, 0.026009880006313324, 0.014629384502768517, -0.16717568039894104, -0.08709432184696198 ]
null
null
transformers
# πŸ€— + πŸ“š dbmdz Turkish BERT model In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources a cased model for Turkish πŸŽ‰ # πŸ‡ΉπŸ‡· BERTurk BERTurk is a community-driven cased BERT model for Turkish. Some datasets used for pretraining and evaluation are contributed from the awesome Turkish NLP community, as well as the decision for the model name: BERTurk. ## Stats The current version of the model is trained on a filtered and sentence segmented version of the Turkish [OSCAR corpus](https://traces1.inria.fr/oscar/), a recent Wikipedia dump, various [OPUS corpora](http://opus.nlpl.eu/) and a special corpus provided by [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/). The final training corpus has a size of 35GB and 44,04,976,662 tokens. Thanks to Google's TensorFlow Research Cloud (TFRC) we could train a cased model on a TPU v3-8 for 2M steps. For this model we use a vocab size of 128k. ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ------------------------------------ | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-turkish-128k-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-128k-cased/config.json) β€’ [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-128k-cased/pytorch_model.bin) β€’ [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-128k-cased/vocab.txt) ## Usage With Transformers >= 2.3 our BERTurk cased model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-128k-cased") model = AutoModel.from_pretrained("dbmdz/bert-base-turkish-128k-cased") ``` ## Results For results on PoS tagging or NER tasks, please refer to [this repository](https://github.com/stefan-it/turkish-bert). # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT models just open an issue [here](https://github.com/dbmdz/berts/issues/new) πŸ€— # Acknowledgments Thanks to [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/) for providing us additional large corpora for Turkish. Many thanks to Reyyan Yeniterzi for providing us the Turkish NER dataset for evaluation. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❀️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage πŸ€—
{"language": "tr", "license": "mit"}
null
dbmdz/bert-base-turkish-128k-cased
[ "transformers", "pytorch", "tf", "jax", "bert", "tr", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #tf #jax #bert #tr #license-mit #endpoints_compatible #has_space #region-us
+ dbmdz Turkish BERT model ========================== In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources a cased model for Turkish πŸ‡ΉπŸ‡· BERTurk ========== BERTurk is a community-driven cased BERT model for Turkish. Some datasets used for pretraining and evaluation are contributed from the awesome Turkish NLP community, as well as the decision for the model name: BERTurk. Stats ----- The current version of the model is trained on a filtered and sentence segmented version of the Turkish OSCAR corpus, a recent Wikipedia dump, various OPUS corpora and a special corpus provided by Kemal Oflazer. The final training corpus has a size of 35GB and 44,04,976,662 tokens. Thanks to Google's TensorFlow Research Cloud (TFRC) we could train a cased model on a TPU v3-8 for 2M steps. For this model we use a vocab size of 128k. Model weights ------------- Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! Usage ----- With Transformers >= 2.3 our BERTurk cased model can be loaded like: Results ------- For results on PoS tagging or NER tasks, please refer to this repository. Huggingface model hub ===================== All models are available on the Huggingface model hub. Contact (Bugs, Feedback, Contribution and more) =============================================== For questions about our BERT models just open an issue here Acknowledgments =============== Thanks to Kemal Oflazer for providing us additional large corpora for Turkish. Many thanks to Reyyan Yeniterzi for providing us the Turkish NER dataset for evaluation. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ️ Thanks to the generous support from the Hugging Face team, it is possible to download both cased and uncased models from their S3 storage
[]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #tr #license-mit #endpoints_compatible #has_space #region-us \n" ]
[ 40 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #tr #license-mit #endpoints_compatible #has_space #region-us \n" ]
[ 0.018921364098787308, -0.00019106945546809584, -0.006394296884536743, 0.03337884694337845, 0.054041218012571335, 0.031650494784116745, 0.06662475317716599, 0.10807959735393524, 0.05830428749322891, -0.019409330561757088, 0.13395871222019196, 0.18363657593727112, -0.042950283735990524, 0.03756747394800186, -0.033980563282966614, -0.23781342804431915, 0.0514480322599411, 0.052651047706604004, -0.07216320186853409, 0.11049067229032516, 0.07754318416118622, -0.07751429826021194, 0.05530031770467758, -0.009757393039762974, -0.12986992299556732, 0.03262612968683243, 0.04725905507802963, -0.07637171447277069, 0.1480608433485031, 0.044089175760746, 0.12649399042129517, 0.09060006588697433, -0.03512771427631378, -0.0813177078962326, 0.034379344433546066, 0.012670991010963917, -0.12737680971622467, 0.04784052446484566, 0.0038243152666836977, -0.03693895414471626, 0.13288435339927673, 0.05445465072989464, 0.0063299741595983505, 0.03950441628694534, -0.16893337666988373, -0.2548118233680725, -0.07381822168827057, 0.08884354680776596, -0.02052173763513565, 0.04091643914580345, 0.03058725595474243, 0.20716851949691772, -0.13842296600341797, 0.05934154987335205, 0.19126549363136292, -0.39465510845184326, -0.011868304572999477, 0.16808973252773285, 0.12622633576393127, 0.032379381358623505, -0.06192849576473236, 0.06399940699338913, 0.05275721848011017, 0.019478803500533104, 0.12466363608837128, -0.07277891039848328, -0.04720394313335419, 0.10058879852294922, -0.10866198688745499, -0.08265569061040878, 0.22826968133449554, -0.020683445036411285, 0.03560272604227066, 0.03850972279906273, -0.07584118098020554, -0.07571636140346527, 0.025144880637526512, -0.022743092849850655, 0.0026006216648966074, 0.07900294661521912, -0.01369452103972435, -0.04454221948981285, -0.15518058836460114, 0.025484146550297737, -0.22992919385433197, 0.13037264347076416, -0.0037297243252396584, 0.08252513408660889, -0.17930646240711212, 0.0790943130850792, -0.019592057913541794, -0.07786344736814499, 0.03198960795998573, -0.09400814026594162, 0.05977398529648781, 0.004003958310931921, -0.05471600219607353, 0.07530807703733444, 0.05432100594043732, 0.14611782133579254, 0.012070882134139538, -0.01876658946275711, 0.017675457522273064, 0.12192820757627487, -0.024760860949754715, 0.04574089124798775, -0.015430393628776073, 0.02416994422674179, 0.01457999087870121, -0.11165327578783035, -0.008331339806318283, -0.04006664454936981, -0.13114413619041443, -0.053011540323495865, -0.00046386977192014456, 0.06673956662416458, 0.05116226524114609, 0.05029689148068428, -0.04164477437734604, 0.04405054822564125, 0.0799972265958786, -0.014050222001969814, 0.007079362403601408, -0.018930165097117424, 0.07033229619264603, 0.044898953288793564, 0.004350714851170778, -0.013392960652709007, 0.06401839852333069, 0.06933358311653137, -0.11029591411352158, -0.032753556966781616, -0.024227159097790718, -0.08324852585792542, 0.07242018729448318, -0.09464021027088165, 0.04510653018951416, -0.19161643087863922, -0.03341130539774895, 0.04895780235528946, 0.06587915122509003, -0.003518822602927685, -0.02106628008186817, 0.09844736754894257, -0.07420367002487183, 0.04550398886203766, -0.05749610438942909, -0.023689400404691696, -0.061869945377111435, 0.11284130066633224, -0.08427777886390686, 0.09290680289268494, -0.15307174623012543, 0.041453663259744644, -0.07665122300386429, 0.013973030261695385, -0.05626176297664642, -0.07523717731237411, -0.04507468268275261, 0.15355731546878815, 0.008108905516564846, -0.06740334630012512, -0.14346280694007874, 0.046696294099092484, -0.04539621248841286, 0.09800661355257034, -0.12722671031951904, -0.058843065053224564, 0.17224109172821045, -0.07735142111778259, -0.1869661957025528, 0.05597550794482231, 0.013961449265480042, 0.05645507201552391, 0.013563055545091629, 0.22008489072322845, 0.05232677236199379, -0.14414089918136597, 0.03595493361353874, 0.14881235361099243, -0.13480418920516968, -0.1392943114042282, 0.07309679687023163, 0.005714767146855593, -0.08493904769420624, -0.008863232098519802, 0.007384501863270998, 0.10543231666088104, -0.05483245849609375, -0.04142352193593979, -0.04210564121603966, -0.00836840271949768, 0.0716710314154625, 0.03725959360599518, 0.08052113652229309, -0.09881141036748886, -0.056291595101356506, 0.05348818004131317, 0.0003750566393136978, 0.09270141273736954, 0.0430111289024353, -0.050984617322683334, 0.10983968526124954, 0.001625535194762051, -0.039218783378601074, -0.12669385969638824, -0.08412294834852219, -0.041719261556863785, 0.06811828911304474, 0.0077491686679422855, 0.28311729431152344, 0.06907472014427185, -0.08319556713104248, -0.017015645280480385, -0.006065546069294214, 0.0952838882803917, 0.07185361534357071, -0.022340446710586548, -0.09672259539365768, -0.0047282068990170956, -0.06517353653907776, -0.08806779235601425, -0.04047058895230293, 0.026650212705135345, 0.13822844624519348, 0.12135589867830276, -0.02114042267203331, 0.06477739661931992, -0.0375421978533268, 0.01081872172653675, -0.04319320619106293, -0.01595330238342285, 0.08564510196447372, 0.023633481934666634, -0.0436147004365921, 0.22958077490329742, -0.08547714352607727, 0.3939151465892792, 0.22446800768375397, -0.1657782644033432, -0.031030558049678802, 0.06123265251517296, -0.051767002791166306, 0.03748093545436859, 0.06632548570632935, -0.0631106048822403, -0.040214505046606064, -0.05183693394064903, 0.1000824049115181, -0.04166794940829277, -0.0760674849152565, 0.005690592806786299, -0.03536844626069069, -0.07515683025121689, 0.046796247363090515, 0.07047999650239944, -0.2172105759382248, 0.19383907318115234, 0.3774738013744354, 0.05013132467865944, 0.14449995756149292, -0.03993186727166176, 0.012442865408957005, -0.032865963876247406, -0.03054577298462391, -0.04821619763970375, 0.10719674080610275, -0.16407407820224762, -0.037437137216329575, 0.07295597344636917, 0.006247274111956358, 0.034409135580062866, -0.15331147611141205, -0.10955478996038437, 0.04336130619049072, 0.029929859563708305, -0.09580295532941818, 0.1635720133781433, 0.010531868785619736, 0.10101879388093948, -0.012210089713335037, -0.12064392119646072, 0.09066576510667801, 0.014052140526473522, -0.05228690803050995, 0.09404075145721436, -0.13077005743980408, -0.2045978605747223, -0.06662975996732712, -0.06628576666116714, 0.073656365275383, -0.01600862666964531, 0.1302538514137268, -0.026411157101392746, -0.0007316036499105394, 0.020127976313233376, -0.026053689420223236, -0.1503445953130722, 0.06380217522382736, -0.08932972699403763, 0.02396491914987564, -0.06136816740036011, -0.10904357582330704, -0.09035322815179825, -0.014093480072915554, -0.07301399111747742, 0.1116311103105545, -0.05141761153936386, 0.0725216194987297, 0.09947564452886581, -0.028806697577238083, 0.053319692611694336, -0.06826431304216385, 0.20720802247524261, -0.059331413358449936, 0.030779873952269554, 0.15294189751148224, 0.054447006434202194, 0.07210250198841095, 0.15391798317432404, 0.07699142396450043, -0.03385859355330467, -0.011553134769201279, -0.05508512631058693, -0.11758847534656525, -0.1600302904844284, -0.05947500467300415, -0.1385406106710434, 0.0024164041969925165, -0.005456132814288139, 0.08605465292930603, 0.13780304789543152, 0.03569338470697403, 0.028745347633957863, -0.046719420701265335, -0.05642664059996605, 0.056320443749427795, 0.2243598997592926, -0.058458078652620316, 0.10283274203538895, -0.08308514952659607, -0.07471421360969543, 0.10732393711805344, 0.02800784818828106, 0.08840981125831604, 0.1018141582608223, -0.031360968947410583, 0.10143575817346573, 0.2378867119550705, 0.11593813449144363, 0.08610434830188751, -0.00764454435557127, -0.058286938816308975, -0.04331653192639351, -0.03456863388419151, 0.03303278237581253, 0.0610777847468853, 0.10405449569225311, -0.11127109825611115, 0.0004154023772571236, -0.2587382197380066, 0.047090817242860794, 0.04537611082196236, 0.06576401740312576, -0.15773995220661163, 0.014254134148359299, 0.06556764245033264, 0.011166803538799286, -0.02129744365811348, 0.07596481591463089, 0.0803239718079567, -0.07936139404773712, 0.03128942474722862, -0.0033386985305696726, 0.07891964167356491, 0.141982302069664, 0.08221472799777985, 0.026959864422678947, -0.14622759819030762, 0.018382223322987556, 0.05415626987814903, -0.29122474789619446, 0.2603740990161896, -0.016298852860927582, -0.08506055176258087, -0.017716290429234505, -0.051800116896629333, 0.02599170058965683, 0.17704296112060547, 0.11179764568805695, 0.047093238681554794, -0.08303944021463394, -0.09443166106939316, 0.06625372916460037, 0.006351374089717865, 0.06221204996109009, -0.048077523708343506, -0.039894506335258484, -0.038912419229745865, -0.006282614544034004, 0.03132876753807068, 0.1985524743795395, -0.00042567605851218104, -0.09110472351312637, 0.05488983541727066, 0.033157818019390106, -0.012798459269106388, -0.04242902994155884, -0.040151726454496384, -0.1195252388715744, 0.07019954174757004, -0.012865433469414711, -0.01390661671757698, -0.11006497591733932, -0.1635427623987198, 0.0876099169254303, -0.054369423538446426, 0.06406673043966293, -0.03894845396280289, -0.07413246482610703, -0.0853787437081337, -0.1807815432548523, 0.14632569253444672, -0.10285159945487976, 0.005677650682628155, -0.07375694811344147, 0.1498737931251526, -0.10922247916460037, 0.07183880358934402, 0.012159033678472042, 0.04959312453866005, -0.11737602204084396, -0.09297776967287064, 0.02451600506901741, -0.09403116255998611, 0.04706693813204765, -0.09736547619104385, -0.04247691482305527, 0.05206327140331268, 0.07581953704357147, -0.009907481260597706, 0.18349303305149078, 0.22155191004276276, -0.12401971220970154, 0.1636885553598404, 0.07030263543128967, -0.02478925697505474, -0.2698127031326294, -0.08735955506563187, -0.18858814239501953, -0.037029486149549484, 0.09425146132707596, -0.04421720281243324, 0.016336563974618912, 0.026114607229828835, -0.0652138963341713, 0.11724712699651718, -0.24414044618606567, -0.06941452622413635, 0.12150342017412186, -0.030888468027114868, 0.3945734202861786, -0.15146198868751526, -0.043057575821876526, 0.05751958116889, -0.23613524436950684, 0.15220879018306732, -0.06982243061065674, 0.059932176023721695, -0.024687664583325386, 0.009625919163227081, 0.012956679798662663, -0.058646511286497116, 0.11852645874023438, -0.028607038781046867, 0.03917904198169708, -0.0995291993021965, -0.14747604727745056, 0.15192294120788574, -0.010339842177927494, -0.0039353701286017895, -0.0560183972120285, 0.0014862052630633116, -0.14887772500514984, 0.02288043312728405, -0.14148478209972382, 0.09924518316984177, -0.013591835275292397, -0.08339280635118484, -0.06405390053987503, 0.030689138919115067, -0.0006512186955660582, -0.0655183494091034, 0.22220633924007416, -0.01301235519349575, 0.23067015409469604, 0.09011214226484299, -0.001718861167319119, -0.16529352962970734, -0.1028117686510086, -0.0182523000985384, -0.06786543875932693, 0.07782507687807083, -0.14629456400871277, 0.00777800939977169, 0.10193872451782227, 0.0008055730140767992, 0.03828044235706329, 0.10511858016252518, -0.018135055899620056, -0.01799452118575573, 0.17199650406837463, -0.17657452821731567, -0.10651668906211853, -0.0373256579041481, 0.004737530369311571, 0.11901739239692688, 0.04452887549996376, 0.08069372177124023, -0.035874053835868835, -0.00571437506005168, 0.006929844152182341, -0.04200324788689613, -0.10143157839775085, -0.026781678199768066, 0.09098425507545471, 0.04007735103368759, -0.08146607875823975, -0.014658465050160885, 0.018745744600892067, -0.14638830721378326, -0.04493904858827591, 0.09320402890443802, -0.0856664702296257, -0.1383364200592041, -0.03634100779891014, -0.028726182878017426, -0.1471620500087738, 0.005056874826550484, 0.021310318261384964, -0.11028612405061722, 0.046193405985832214, 0.23917366564273834, 0.07942447811365128, 0.12003888934850693, -0.00624223193153739, -0.014540894888341427, 0.06047806888818741, -0.03106739930808544, -0.09156856685876846, 0.028075164183974266, -0.13165976107120514, 0.06659668684005737, -0.015198924578726292, 0.13404253125190735, -0.09143192321062088, -0.013847830705344677, -0.16979002952575684, 0.01005585864186287, -0.03643380478024483, -0.11661911755800247, -0.1018761694431305, -0.0664786621928215, 0.03516659885644913, -0.12889797985553741, -0.06750722229480743, -0.014512577094137669, -0.1366327852010727, 0.030165666714310646, 0.040125224739313126, 0.08488902449607849, -0.084175243973732, -0.04602627828717232, 0.0952710434794426, -0.007860500365495682, 0.07812531292438507, 0.0796566754579544, -0.04677276313304901, 0.09265077859163284, -0.0742633044719696, -0.09033126384019852, 0.07081255316734314, 0.008014141581952572, 0.07401663064956665, 0.06573578715324402, -0.005506083834916353, 0.033054232597351074, 0.011137601919472218, 0.060951173305511475, -0.06692736595869064, -0.09784119576215744, 0.002001343760639429, 0.012363482266664505, -0.1226206123828888, 0.005838602315634489, -0.0842478796839714, 0.16003870964050293, -0.0031541911885142326, 0.09600365906953812, 0.014077738858759403, 0.019272007048130035, -0.11455035954713821, -0.0005564488237723708, -0.031815413385629654, -0.16153185069561005, -0.020841067656874657, -0.04984382167458534, -0.014035704545676708, -0.014970787800848484, 0.21103821694850922, 0.052751973271369934, -0.12153859436511993, 0.06305060535669327, 0.06090157851576805, 0.014134160242974758, -0.024568676948547363, 0.22517432272434235, 0.04472561925649643, -0.04426772892475128, -0.11429143697023392, 0.06277164816856384, -0.031958941370248795, -0.0988655537366867, 0.1007656380534172, 0.12398026138544083, 0.05795013904571533, 0.04358082637190819, 0.0883537083864212, -0.016972195357084274, -0.11261337250471115, -0.2075732797384262, 0.04702022299170494, 0.05454430729150772, -0.0723206102848053, 0.0690259262919426, 0.19904738664627075, -0.04785175248980522, 0.054873671382665634, -0.061130229383707047, 0.03585329279303551, -0.14385195076465607, -0.09793546795845032, -0.02680368348956108, -0.112136609852314, 0.00018097730935551226, -0.025985533371567726, 0.05662226676940918, 0.1552053987979889, 0.05158377066254616, -0.0050090644508600235, 0.013797912746667862, 0.034431930631399155, -0.05215965583920479, 0.00695808045566082, 0.01798609457910061, 0.0237100999802351, -0.097680002450943, 0.021873442456126213, -0.0972055122256279, -0.09044606238603592, -0.07261839509010315, 0.003794738557189703, -0.04609888419508934, -0.02652757056057453, -0.1192617192864418, -0.08353544026613235, -0.05491027981042862, 0.03775608912110329, -0.020447196438908577, 0.09760937839746475, 0.0010796304559335113, 0.03233664855360985, 0.017549393698573112, 0.2191435843706131, -0.07920964062213898, -0.041005779057741165, 0.005028486717492342, 0.1873423457145691, 0.03238807991147041, 0.09078659117221832, -0.00025332922814413905, 0.026695407927036285, -0.06992001086473465, 0.21113532781600952, 0.3371700942516327, -0.03200918808579445, 0.08686735481023788, 0.04957680404186249, 0.014318463392555714, 0.06563498079776764, 0.10330832004547119, 0.10295400023460388, 0.23794005811214447, -0.11865480244159698, 0.003639715723693371, -0.0632590800523758, 0.03249784931540489, -0.060046788305044174, 0.04283567890524864, 0.03338109329342842, -0.07934872806072235, -0.02819124050438404, 0.06159615516662598, -0.08641811460256577, 0.055679332464933395, 0.07948239147663116, -0.20277303457260132, -0.0322968028485775, -0.012311164289712906, 0.1655222773551941, -0.0081708999350667, 0.09296835213899612, -0.058473922312259674, -0.07403064519166946, 0.013284390792250633, 0.010752661153674126, -0.24578692018985748, -0.05873711407184601, 0.1534961313009262, 0.02293015830218792, 0.060544077306985855, -0.06414378434419632, 0.025068385526537895, 0.09329359978437424, 0.06718573719263077, -0.06130964681506157, 0.05137915909290314, 0.05769737809896469, -0.09846795350313187, -0.11652769893407822, -0.10557594150304794, 0.024011142551898956, -0.06896069645881653, 0.04533424600958824, -0.14160817861557007, 0.049556341022253036, -0.004323633853346109, -0.011176121421158314, -0.027610979974269867, 0.02008398436009884, -0.029410140588879585, 0.08877939730882645, 0.033858463168144226, -0.008892212063074112, -0.047436561435461044, -0.04151783511042595, -0.06487058103084564, 0.10949592292308807, -0.09368491172790527, -0.118156798183918, 0.02916806749999523, -0.047728683799505234, 0.015931548550724983, -0.028221987187862396, -0.07404676824808121, -0.07388848811388016, -0.03162632882595062, 0.030543042346835136, -0.11053670197725296, 0.04174854978919029, 0.08706703037023544, 0.030031858012080193, 0.012773646973073483, -0.06605713814496994, 0.01675252430140972, 0.042071882635354996, -0.13691921532154083, -0.03748135268688202 ]